prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from typing import Optional, Tuple import numpy as np from qtpy.QtCore import QEventLoop, Qt, QThread, QTimer, Signal, Slot from qtpy.QtWidgets import ( QHBoxLayout, QVBoxLayout, QSizePolicy, QWidget, QLineEdit, ) from ..components.dims import Dims from ..components.dims_constants import DimsMode from ..util.event import Event from .qt_scrollbar import ModifiedScrollBar class QtDims(QWidget): """Qt View for Dims model. Parameters ---------- dims : Dims Dims object to be passed to Qt object parent : QWidget, optional QWidget that will be the parent of this widget Attributes ---------- dims : Dims Dims object sliders : list List of slider widgets """ # Qt Signals for sending events to Qt thread update_ndim = Signal() update_axis = Signal(int) update_range = Signal(int) update_display = Signal() update_axis_labels = Signal(int) def __init__(self, dims: Dims, parent=None): super().__init__(parent=parent) self.SLIDERHEIGHT = 22 # We keep a reference to the view: self.dims = dims # list of sliders self.sliders = [] self.axis_labels = [] # True / False if slider is or is not displayed self._displayed_sliders = [] self._last_used = None self._play_ready = True # False if currently awaiting a draw event # Initialises the layout: layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) self.setLayout(layout) self.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Fixed) # Update the number of sliders now that the dims have been added self._update_nsliders() # The next lines connect events coming from the model to the Qt event # system: We need to go through Qt signals so that these events are run # in the Qt event loop thread. This is all about changing thread # context for thread-safety purposes # ndim change listener def update_ndim_listener(event): self.update_ndim.emit() self.dims.events.ndim.connect(update_ndim_listener) self.update_ndim.connect(self._update_nsliders) # axis change listener def update_axis_listener(event): self.update_axis.emit(event.axis) self.dims.events.axis.connect(update_axis_listener) self.update_axis.connect(self._update_slider) # range change listener def update_range_listener(event): self.update_range.emit(event.axis) self.dims.events.range.connect(update_range_listener) self.update_range.connect(self._update_range) # display change listener def update_display_listener(event): self.update_display.emit() self.dims.events.ndisplay.connect(update_display_listener) self.dims.events.order.connect(update_display_listener) self.update_display.connect(self._update_display) # axis labels change listener def update_axis_labels_listener(event): self.update_axis_labels.emit(event.axis) self.dims.events.axis_labels.connect(update_axis_labels_listener) self.update_axis_labels.connect(self._update_axis_labels) @property def nsliders(self): """Returns the number of sliders displayed Returns ------- nsliders: int Number of sliders displayed """ return len(self.sliders) @property def last_used(self): """int: Index of slider last used. """ return self._last_used @last_used.setter def last_used(self, last_used): if last_used == self.last_used: return formerly_used = self.last_used if formerly_used is not None: sld = self.sliders[formerly_used] sld.setProperty('last_used', False) sld.style().unpolish(sld) sld.style().polish(sld) self._last_used = last_used if last_used is not None: sld = self.sliders[last_used] sld.setProperty('last_used', True) sld.style().unpolish(sld) sld.style().polish(sld) def _update_slider(self, axis: int): """Updates position for a given slider. Parameters ---------- axis : int Axis index. """ if axis >= len(self.sliders): return slider = self.sliders[axis] mode = self.dims.mode[axis] if mode == DimsMode.POINT: slider.setValue(self.dims.point[axis]) self.last_used = axis def _update_range(self, axis: int): """Updates range for a given slider. Parameters ---------- axis : int Axis index. """ if axis >= len(self.sliders): return slider = self.sliders[axis] _range = self.dims.range[axis] _range = (_range[0], _range[1] - _range[2], _range[2]) if _range not in (None, (None, None, None)): if _range[1] == 0: self._displayed_sliders[axis] = False self.last_used = None slider.hide() else: if ( not self._displayed_sliders[axis] and axis not in self.dims.displayed ): self._displayed_sliders[axis] = True self.last_used = axis slider.show() slider.setMinimum(_range[0]) slider.setMaximum(_range[1]) slider.setSingleStep(_range[2]) slider.setPageStep(_range[2]) else: self._displayed_sliders[axis] = False slider.hide() nsliders = np.sum(self._displayed_sliders) self.setMinimumHeight(nsliders * self.SLIDERHEIGHT) def _update_display(self): """Updates display for all sliders.""" slider_list = reversed(list(enumerate(self.sliders))) label_list = reversed(self.axis_labels) for (axis, slider), label in zip(slider_list, label_list): if axis in self.dims.displayed: # Displayed dimensions correspond to non displayed sliders self._displayed_sliders[axis] = False self.last_used = None slider.hide() label.hide() else: # Non displayed dimensions correspond to displayed sliders self._displayed_sliders[axis] = True self.last_used = axis slider.show() label.show() nsliders = np.sum(self._displayed_sliders) self.setMinimumHeight(nsliders * self.SLIDERHEIGHT) def _update_nsliders(self): """Updates the number of sliders based on the number of dimensions.""" self._trim_sliders(0) self._create_sliders(self.dims.ndim) self._update_display() for i in range(self.dims.ndim): self._update_range(i) if self._displayed_sliders[i]: self._update_slider(i) def _update_axis_labels(self, axis): """Updates the label for the given axis.""" self.axis_labels[axis].setText(self.dims.axis_labels[axis]) def _create_sliders(self, number_of_sliders: int): """Creates sliders to match new number of dimensions. Parameters ---------- number_of_sliders : int new number of sliders """ # add extra sliders so that number_of_sliders are present # add to the beginning of the list for slider_num in range(self.nsliders, number_of_sliders): dim_axis = number_of_sliders - slider_num - 1 axis_label = self._create_axis_label_widget(dim_axis) slider = self._create_range_slider_widget(dim_axis) # Hard-coded 1:50 ratio. Can be more dynamic as a function # of the name of the label, but it might be a little bit # over the top. current_row = QHBoxLayout() if axis_label.text != '': current_row.addWidget(axis_label, stretch=1) current_row.addWidget(slider, stretch=50) else: current_row.addWidget(slider) self.layout().addLayout(current_row) self.axis_labels.insert(0, axis_label) self.sliders.insert(0, slider) self._displayed_sliders.insert(0, True) nsliders =
np.sum(self._displayed_sliders)
numpy.sum
import multiprocessing import sys import itertools as it import warnings import numpy as np import mdtraj as md from progressbar import ProgressBar from itertools import combinations_with_replacement from scattering.utils.utils import get_dt, get_unique_atoms from scattering.utils.constants import get_form_factor def compute_van_hove( trj, chunk_length, parallel=False, water=False, r_range=(0, 1.0), bin_width=0.005, n_bins=None, self_correlation=True, periodic=True, opt=True, partial=False, ): """Compute the Van Hove function of a trajectory. Atom pairs referenced in partial Van Hove functions are in alphabetical order. If specific ordering of atom pairs are needed, user should use compute_partial_van_hove then vhf_from_pvhf to compute total Van Hove function. Parameters ---------- trj : mdtraj.Trajectory trajectory on which to compute the Van Hove function chunk_length : int length of time between restarting averaging parallel : bool, default=True Use parallel implementation with `multiprocessing` water : bool use X-ray form factors for water that account for polarization r_range : array-like, shape=(2,), optional, default=(0.0, 1.0) Minimum and maximum radii. bin_width : float, optional, default=0.005 Width of the bins in nanometers. n_bins : int, optional, default=None The number of bins. If specified, this will override the `bin_width` parameter. self_correlation : bool, default=True Whether or not to include the self-self correlations partial : bool, default = False Whether or not to return a dictionary including partial Van Hove function. Returns ------- r : numpy.ndarray r positions generated by histogram binning g_r_t : numpy.ndarray Van Hove function at each time and position """ n_physical_atoms = len([a for a in trj.top.atoms if a.element.mass > 0]) unique_elements = list( set([a.element for a in trj.top.atoms if a.element.mass > 0]) ) if parallel: data = [] for elem1, elem2 in it.combinations_with_replacement(unique_elements[::-1], 2): # Add a bool to check if self-correlations should be analyzed self_bool = self_correlation if elem1 != elem2: self_bool = False warnings.warn( "Total VHF calculation: No self-correlations for {} and {}, setting `self_correlation` to `False`.".format( elem1, elem2 ) ) data.append( [ trj, chunk_length, "element {}".format(elem1.symbol), "element {}".format(elem2.symbol), r_range, bin_width, n_bins, self_bool, periodic, opt, ] ) manager = multiprocessing.Manager() partial_dict = manager.dict() jobs = [] version_info = sys.version_info for d in data: with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool: if version_info.major == 3 and version_info.minor <= 7: p = pool.Process(target=worker, args=(partial_dict, d)) elif version_info.major == 3 and version_info.minor >= 8: ctx = multiprocessing.get_context() p = pool.Process(ctx, target=worker, args=(partial_dict, d)) jobs.append(p) p.start() for proc in jobs: proc.join() r = partial_dict["r"] del partial_dict["r"] else: partial_dict = dict() for elem1, elem2 in it.combinations_with_replacement(unique_elements[::-1], 2): # Add a bool to check if self-correlations should be analyzed self_bool = self_correlation if elem1 != elem2: self_bool = False warnings.warn( "Total VHF calculation: No self-correlations for {} and {}, setting `self_correlation` to `False`.".format( elem1, elem2 ) ) if elem1.symbol > elem2.symbol: temp = elem1 elem1 = elem2 elem2 = temp print("doing {0} and {1} ...".format(elem1, elem2)) r, g_r_t_partial = compute_partial_van_hove( trj=trj, chunk_length=chunk_length, selection1="element {}".format(elem1.symbol), selection2="element {}".format(elem2.symbol), r_range=r_range, bin_width=bin_width, n_bins=n_bins, self_correlation=self_bool, periodic=periodic, opt=opt, ) partial_dict[ ("element {}".format(elem1.symbol), "element {}".format(elem2.symbol)) ] = g_r_t_partial if partial: return partial_dict norm = 0 g_r_t = None for key, val in partial_dict.items(): elem1, elem2 = key concentration1 = ( trj.atom_slice(trj.top.select(elem1)).n_atoms / n_physical_atoms ) concentration2 = ( trj.atom_slice(trj.top.select(elem2)).n_atoms / n_physical_atoms ) form_factor1 = get_form_factor(element_name=elem1.split()[1], water=water) form_factor2 = get_form_factor(element_name=elem2.split()[1], water=water) coeff = form_factor1 * concentration1 * form_factor2 * concentration2 if g_r_t is None: g_r_t =
np.zeros_like(val)
numpy.zeros_like
""" Code from <NAME>'s IDP-Parrot tool from the Holehouse Lab. All credit for this code should go to Dan. See https://idptools-parrot.readthedocs.io/en/latest/api.html#module-parrot.encode_sequence for more information. """ """ File containing functions for encoding a string of amino acids into a numeric vector. ............................................................................. parrot was developed by the Holehouse lab Original release ---- 2020 Question/comments/concerns? Raise an issue on github: https://github.com/idptools/parrot Licensed under the MIT license. """ import sys import os import numpy as np import torch ONE_HOT = {'A': 0, 'C': 1, 'D': 2, 'E': 3, 'F': 4, 'G': 5, 'H': 6, 'I': 7, 'K': 8, 'L': 9, 'M': 10, 'N': 11, 'P': 12, 'Q': 13, 'R': 14, 'S': 15, 'T': 16, 'V': 17, 'W': 18, 'Y': 19} def one_hot(seq): """Convert an amino acid sequence to a PyTorch tensor of one-hot vectors Each amino acid is represented by a length 20 vector with a single 1 and 19 0's Inputing a sequence with a nono-canonical amino acid letter will cause the program to exit. E.g. Glutamic acid (E) is encoded: [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] Parameters ---------- seq : str An uppercase sequence of amino acids (single letter code) Returns ------- torch.IntTensor a PyTorch tensor representing the encoded sequence """ l = len(seq) m = np.zeros((l, 20)) try: for i in range(l): m[i, ONE_HOT[seq[i]]] = 1 except: error_str = 'Invalid amino acid detected: ' + seq[i] raise ValueError(error_str) return torch.from_numpy(m) def rev_one_hot(seq_vectors): """Decode a list of one-hot sequence vectors into amino acid sequences Parameters ---------- seq_vectors : list of numpy arrays A list containing sequence vectors Returns ------- list Strings of amino acid sequences """ REV_ONE_HOT = 'ACDEFGHIKLMNPQRSTVWY' sequences = [] for seq_vector in seq_vectors: seq = [] for residue in seq_vector: seq.append(REV_ONE_HOT[
np.argmax(residue)
numpy.argmax
""" gui/average ~~~~~~~~~~~~~~~~~~~~ Graphical user interface for three-dimensional averaging of particles :author: <NAME>, 2017 :copyright: Copyright (c) 2017 Jungmann Lab, Max Planck Institute of Biochemistry """ import os.path import sys import traceback import colorsys import matplotlib.pyplot as plt import numba import numpy as np import scipy from scipy import signal from PyQt4 import QtCore, QtGui from .. import io, lib, render from numpy.lib.recfunctions import stack_arrays from cmath import rect, phase from tqdm import tqdm import scipy.ndimage.filters DEFAULT_OVERSAMPLING = 1.0 INITIAL_REL_MAXIMUM = 2.0 ZOOM = 10 / 7 N_GROUP_COLORS = 8 @numba.jit(nopython=True, nogil=True) def render_hist(x, y, oversampling, t_min, t_max): n_pixel = int(np.ceil(oversampling * (t_max - t_min))) in_view = (x > t_min) & (y > t_min) & (x < t_max) & (y < t_max) x = x[in_view] y = y[in_view] x = oversampling * (x - t_min) y = oversampling * (y - t_min) image = np.zeros((n_pixel, n_pixel), dtype=np.float32) render._fill(image, x, y) return len(x), image @numba.jit(nopython=True, nogil=True) def render_histxyz(a, b, oversampling, a_min, a_max, b_min, b_max): n_pixel_a = int(np.ceil(oversampling * (a_max - a_min))) n_pixel_b = int(np.ceil(oversampling * (b_max - b_min))) in_view = (a > a_min) & (b > b_min) & (a < a_max) & (b < b_max) a = a[in_view] b = b[in_view] a = oversampling * (a - a_min) b = oversampling * (b - b_min) image = np.zeros((n_pixel_b, n_pixel_a), dtype=np.float32) render._fill(image, a, b) return len(a), image def rotate_axis(axis,vx,vy,vz,angle,pixelsize): if axis == 'z': vx_rot = np.cos(angle) * vx - np.sin(angle) * vy vy_rot = np.sin(angle) * vx + np.cos(angle) * vy vz_rot = vz elif axis == 'y': vx_rot = np.cos(angle) * vx + np.sin(angle) * np.divide(vz, pixelsize) vy_rot = vy vz_rot = -np.sin(angle) * vx * pixelsize + np.cos(angle) * vz elif axis == 'x': vx_rot = vx vy_rot = np.cos(angle) * vy - np.sin(angle) * np.divide(vz, pixelsize) vz_rot = np.sin(angle) * vy * pixelsize + np.cos(angle) * vz return vx_rot, vy_rot, vz_rot def compute_xcorr(CF_image_avg, image): F_image = np.fft.fft2(image) xcorr = np.fft.fftshift(np.real(np.fft.ifft2((F_image * CF_image_avg)))) return xcorr class ParametersDialog(QtGui.QDialog): def __init__(self, window): super().__init__(window) self.window = window self.setWindowTitle('Parameters') self.setModal(False) grid = QtGui.QGridLayout(self) grid.addWidget(QtGui.QLabel('Oversampling:'), 0, 0) self.oversampling = QtGui.QDoubleSpinBox() self.oversampling.setRange(1, 200) self.oversampling.setValue(DEFAULT_OVERSAMPLING) self.oversampling.setDecimals(1) self.oversampling.setKeyboardTracking(False) self.oversampling.valueChanged.connect(self.window.updateLayout) grid.addWidget(self.oversampling, 0, 1) self.iterations = QtGui.QSpinBox() self.iterations.setRange(1, 1) self.iterations.setValue(1) class View(QtGui.QLabel): def __init__(self, window): super().__init__() self.window = window self.setMinimumSize(1, 1) self.setAlignment(QtCore.Qt.AlignCenter) self.setAcceptDrops(True) self._pixmap = None def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): urls = event.mimeData().urls() path = urls[0].toLocalFile() ext = os.path.splitext(path)[1].lower() if ext == '.hdf5': self.open(path) def resizeEvent(self, event): if self._pixmap is not None: self.set_pixmap(self._pixmap) def set_image(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap('magma')(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype('uint8') Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) self._pixmap = QtGui.QPixmap.fromImage(qimage) self.set_pixmap(self._pixmap) def set_pixmap(self, pixmap): self.setPixmap(pixmap.scaled(self.width(), self.height(), QtCore.Qt.KeepAspectRatio, QtCore.Qt.FastTransformation)) def update_image(self, *args): oversampling = self.window.parameters_dialog.oversampling.value() t_min = -self.r t_max = self.r N_avg, image_avg = render.render_hist(self.locs, oversampling, t_min, t_min, t_max, t_max) self.set_image(image_avg) class DatasetDialog(QtGui.QDialog): def __init__(self, window): super().__init__(window) self.window = window self.setWindowTitle('Datasets') self.setModal(False) self.layout = QtGui.QVBoxLayout() self.checks = [] self.setLayout(self.layout) def add_entry(self,path): c = QtGui.QCheckBox(path) self.layout.addWidget(c) self.checks.append(c) self.checks[-1].setChecked(True) class Window(QtGui.QMainWindow): def __init__(self): super().__init__() self.setWindowTitle('Picasso: Average3') self.resize(1024, 512) this_directory = os.path.dirname(os.path.realpath(__file__)) icon_path = os.path.join(this_directory, 'icons', 'average.ico') icon = QtGui.QIcon(icon_path) self.setWindowIcon(icon) self.setAcceptDrops(True) self.parameters_dialog = ParametersDialog(self) self.dataset_dialog = DatasetDialog(self) menu_bar = self.menuBar() file_menu = menu_bar.addMenu('File') open_action = file_menu.addAction('Open') open_action.setShortcut(QtGui.QKeySequence.Open) open_action.triggered.connect(self.open) file_menu.addAction(open_action) save_action = file_menu.addAction('Save') save_action.setShortcut(QtGui.QKeySequence.Save) save_action.triggered.connect(self.save) file_menu.addAction(save_action) process_menu = menu_bar.addMenu('Process') parameters_action = process_menu.addAction('Parameters') parameters_action.setShortcut('Ctrl+P') parameters_action.triggered.connect(self.parameters_dialog.show) dataset_action = process_menu.addAction('Datasets') dataset_action.triggered.connect(self.dataset_dialog.show) self.status_bar = self.statusBar() self._pixmap = None self.locs = [] self.z_state = [] self.group_index = [] self.infos = [] self.locs_paths = [] self._mode = 'Zoom' self._pan = False self._size_hint = (768, 768) self.n_locs = 0 self._picks = [] self.index_blocks = [] self._drift = [] # Define DisplaySettingsDialog self.viewxy = QtGui.QLabel('') self.viewxz = QtGui.QLabel('') self.viewyz = QtGui.QLabel('') self.viewcp = QtGui.QLabel('') minsize = 512 self.viewxy.setFixedWidth(minsize) self.viewxy.setFixedHeight(minsize) self.viewxz.setFixedWidth(minsize) self.viewxz.setFixedHeight(minsize) self.viewyz.setFixedWidth(minsize) self.viewyz.setFixedHeight(minsize) self.viewcp.setFixedWidth(minsize) self.viewcp.setFixedHeight(minsize) # Define layout display_groupbox = QtGui.QGroupBox('Display') displaygrid = QtGui.QGridLayout(display_groupbox) displaygrid.addWidget(QtGui.QLabel('XY'), 0, 0) displaygrid.addWidget(self.viewxy, 1, 0) displaygrid.addWidget(QtGui.QLabel('XZ'), 0, 1) displaygrid.addWidget(self.viewxz, 1, 1) displaygrid.addWidget(QtGui.QLabel('YZ'), 2, 0) displaygrid.addWidget(self.viewyz, 3, 0) displaygrid.addWidget(QtGui.QLabel('CP'), 2, 1) displaygrid.addWidget(self.viewcp, 3, 1) button_groupbox = QtGui.QGroupBox('Buttons') buttongrid = QtGui.QGridLayout(button_groupbox) rotation_groupbox = QtGui.QGroupBox('Rotation + Translation') rotationgrid = QtGui.QGridLayout(rotation_groupbox) centerofmassbtn = QtGui.QPushButton("Center of Mass XYZ") axis_groupbox = QtGui.QGroupBox('Axis') axisgrid = QtGui.QGridLayout(axis_groupbox) self.x_axisbtn = QtGui.QRadioButton("X") self.y_axisbtn = QtGui.QRadioButton("Y") self.z_axisbtn = QtGui.QRadioButton("Z") self.z_axisbtn.setChecked(True) axisgrid.addWidget(self.x_axisbtn, 0, 0) axisgrid.addWidget(self.y_axisbtn, 0, 1) axisgrid.addWidget(self.z_axisbtn, 0, 2) proj_groupbox = QtGui.QGroupBox('Projection') projgrid = QtGui.QGridLayout(proj_groupbox) self.xy_projbtn = QtGui.QRadioButton("XY") self.yz_projbtn = QtGui.QRadioButton("YZ") self.xz_projbtn = QtGui.QRadioButton("XZ") self.xy_projbtn.setChecked(True) projgrid.addWidget(self.xy_projbtn, 0, 0) projgrid.addWidget(self.yz_projbtn, 0, 1) projgrid.addWidget(self.xz_projbtn, 0, 2) rotatebtn = QtGui.QPushButton("Rotate") self.radio_sym = QtGui.QRadioButton("x symmetry") self.symEdit = QtGui.QSpinBox() self.symEdit.setRange(2, 50) self.symEdit.setValue(8) self.radio_sym_custom = QtGui.QRadioButton("custom symmetry") self.symcustomEdit = QtGui.QLineEdit("90,180,270") deg_groupbox = QtGui.QGroupBox('Degrees') deggrid = QtGui.QGridLayout(deg_groupbox) self.full_degbtn = QtGui.QRadioButton("Full") self.part_degbtn = QtGui.QRadioButton("Part") self.degEdit = QtGui.QTextEdit() self.degEdit = QtGui.QSpinBox() self.degEdit.setRange(1, 10) self.degEdit.setValue(5) deggrid.addWidget(self.full_degbtn, 0, 0) deggrid.addWidget(self.part_degbtn, 0, 1) deggrid.addWidget(self.degEdit, 0, 2) self.full_degbtn.setChecked(True) # Rotation Groupbox rotationgrid.addWidget(axis_groupbox, 0, 0, 1, 2) rotationgrid.addWidget(proj_groupbox, 1, 0, 1, 2) rotationgrid.addWidget(deg_groupbox, 2, 0, 1, 2) rotationgrid.addWidget(rotatebtn, 3, 0, 1, 2) rotationgrid.addWidget(self.symEdit, 4, 0) rotationgrid.addWidget(self.radio_sym, 4, 1) rotationgrid.addWidget(self.radio_sym_custom, 5, 0) rotationgrid.addWidget(self.symcustomEdit, 5, 1) buttongrid.addWidget(centerofmassbtn, 0, 0) buttongrid.addWidget(rotation_groupbox, 1, 0) centerofmassbtn.clicked.connect(self.centerofmass) rotatebtn.clicked.connect(self.rotate_groups) self.translatebtn = QtGui.QCheckBox("Translate only") self.flipbtn = QtGui.QCheckBox("Consider flipped structures") self.alignxbtn = QtGui.QPushButton("Align X") self.alignybtn = QtGui.QPushButton("Align Y") self.alignzzbtn = QtGui.QPushButton("Align Z_Z") self.alignzybtn = QtGui.QPushButton("Align Z_Y") self.translatexbtn = QtGui.QPushButton("Translate X") self.translateybtn = QtGui.QPushButton("Translate Y") self.translatezbtn = QtGui.QPushButton("Translate Z") self.rotatexy_convbtn = QtGui.QPushButton('Rotate XY - Convolution') self.scorebtn = QtGui.QPushButton('Calculate Score') operate_groupbox = QtGui.QGroupBox('Operate') operategrid = QtGui.QGridLayout(operate_groupbox) rotationgrid.addWidget(self.translatebtn, 7, 0) rotationgrid.addWidget(self.flipbtn, 8, 0) self.x_range = QtGui.QLineEdit('-3,3') rotationgrid.addWidget(QtGui.QLabel('x-Range (Px)'), 9, 0) rotationgrid.addWidget(self.x_range, 9, 1) self.y_range = QtGui.QLineEdit('-3,3') rotationgrid.addWidget(QtGui.QLabel('y-Range (Px)'), 10, 0) rotationgrid.addWidget(self.y_range, 10, 1) self.z_range = QtGui.QLineEdit('-1000,1000') rotationgrid.addWidget(QtGui.QLabel('z-Range (nm)'), 11, 0) rotationgrid.addWidget(self.z_range, 11, 1) self.z_range.textChanged.connect(self.adjust_z) self.x_range.textChanged.connect(self.adjust_xy) self.y_range.textChanged.connect(self.adjust_xy) operategrid.addWidget(self.alignxbtn, 0, 1) operategrid.addWidget(self.alignybtn, 1, 1) operategrid.addWidget(self.alignzzbtn, 2, 1) operategrid.addWidget(self.alignzybtn, 3, 1) operategrid.addWidget(self.translatexbtn, 0, 0) operategrid.addWidget(self.translateybtn, 1, 0) operategrid.addWidget(self.translatezbtn, 2, 0) operategrid.addWidget(self.rotatexy_convbtn,4,0) operategrid.addWidget(self.scorebtn,4,1) self.rotatexy_convbtn.clicked.connect(self.rotatexy_convolution) self.alignxbtn.clicked.connect(self.align_x) self.alignybtn.clicked.connect(self.align_y) self.alignzzbtn.clicked.connect(self.align_zz) self.alignzybtn.clicked.connect(self.align_zy) self.translatexbtn.clicked.connect(self.translate_x) self.translateybtn.clicked.connect(self.translate_y) self.translatezbtn.clicked.connect(self.translate_z) self.scorebtn.clicked.connect(self.calculate_score) buttongrid.addWidget(operate_groupbox, 2, 0) self.contrastEdit = QtGui.QDoubleSpinBox() self.contrastEdit.setDecimals(1) self.contrastEdit.setRange(0, 10) self.contrastEdit.setValue(0.5) self.contrastEdit.setSingleStep(0.1) self.contrastEdit.valueChanged.connect(self.updateLayout) self.grid = QtGui.QGridLayout() self.grid.addWidget(display_groupbox, 0, 0, 2, 1) self.grid.addWidget(button_groupbox, 0, 1, 1, 1) contrast_groupbox = QtGui.QGroupBox('Contrast') contrastgrid = QtGui.QGridLayout(contrast_groupbox) contrastgrid.addWidget(self.contrastEdit) buttongrid.addWidget(contrast_groupbox) MODEL_X_DEFAULT = '0,20,40,60,0,20,40,60,0,20,40,60' MODEL_Y_DEFAULT = '0,20,40,0,20,40,0,20,40,0,20,40' MODEL_Z_DEFAULT = '0,0,0,0,0,0,0,0,0,0,0,0' self.modelchk = QtGui.QCheckBox("Use Model") self.model_x = QtGui.QLineEdit(MODEL_X_DEFAULT) self.model_y = QtGui.QLineEdit(MODEL_Y_DEFAULT) self.model_z = QtGui.QLineEdit(MODEL_Z_DEFAULT) self.model_preview_btn = QtGui.QPushButton('Preview') self.model_preview_btn.clicked.connect(self.model_preview) self.modelblurEdit = QtGui.QDoubleSpinBox() self.modelblurEdit.setDecimals(1) self.modelblurEdit.setRange(0, 10) self.modelblurEdit.setValue(0.5) self.modelblurEdit.setSingleStep(0.1) self.pixelsizeEdit = QtGui.QSpinBox() self.pixelsizeEdit.setRange(1,999) self.pixelsizeEdit.setValue(130) model_groupbox = QtGui.QGroupBox('Model') modelgrid = QtGui.QGridLayout(model_groupbox) modelgrid.addWidget(self.modelchk,0,0) modelgrid.addWidget(QtGui.QLabel('X-Coordinates'),1,0) modelgrid.addWidget(self.model_x,1,1) modelgrid.addWidget(QtGui.QLabel('Y-Coordinates'),2,0) modelgrid.addWidget(self.model_y,2,1) modelgrid.addWidget(QtGui.QLabel('Z-Coordinates'),3,0) modelgrid.addWidget(self.model_z,3,1) modelgrid.addWidget(QtGui.QLabel('Blur:'),4, 0) modelgrid.addWidget(self.modelblurEdit, 4, 1) modelgrid.addWidget(QtGui.QLabel('Pixelsize:'),5,0) modelgrid.addWidget(self.pixelsizeEdit, 5, 1) modelgrid.addWidget(self.model_preview_btn, 6 ,0) modelgrid.addWidget(self.modelchk, 6, 1) buttongrid.addWidget(model_groupbox) mainWidget = QtGui.QWidget() mainWidget.setLayout(self.grid) self.setCentralWidget(mainWidget) self.status_bar.showMessage('Average3 ready.') def open(self): path = QtGui.QFileDialog.getOpenFileName(self, 'Open localizations', filter='*.hdf5') if path: self.add(path) def save(self, path): n_channels = len(self.locs) for i in range(n_channels): cx = self.infos[i][0]['Width'] / 2 cy = self.infos[i][0]['Height'] / 2 out_locs = self.locs[i].copy() out_locs.x += cx out_locs.y += cy info = self.infos[i] + [{'Generated by': 'Picasso Average3'}] if not self.z_state[i]: out_locs = lib.remove_from_rec(out_locs, 'z') out_path = os.path.splitext(self.locs_paths[i])[0] + '_avg3.hdf5' path = QtGui.QFileDialog.getSaveFileName(self, 'Save localizations', out_path, filter='*.hdf5') io.save_locs(path, out_locs, info) def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): urls = event.mimeData().urls() path = urls[0].toLocalFile() ext = os.path.splitext(path)[1].lower() if ext == '.hdf5': print('Opening {} ..'.format(path)) self.add(path) def add(self, path, rendermode=True): try: locs, info = io.load_locs(path, qt_parent=self) except io.NoMetadataFileError: return if len(self.locs) == 0: self.pixelsize = 0 if not hasattr(locs, 'group'): msgBox = QtGui.QMessageBox(self) msgBox.setWindowTitle('Error') msgBox.setText('Datafile does not contain group information. Please load file with picked localizations.') msgBox.exec_() else: locs = lib.ensure_sanity(locs, info) if not hasattr(locs, 'z'): locs = lib.append_to_rec(locs, locs.x.copy(), 'z') self.pixelsize = 1 has_z = False else: has_z = True if self.pixelsize == 0: pixelsize,ok = QtGui.QInputDialog.getInt(self,"Pixelsize Dialog","Please enter the pixelsize in nm", 130) if ok: self.pixelsize = pixelsize else: self.pixelsize = 130 self.locs.append(locs) self.z_state.append(has_z) self.infos.append(info) self.locs_paths.append(path) self.index_blocks.append(None) self._drift.append(None) self.dataset_dialog.add_entry(path) self.dataset_dialog.checks[-1].stateChanged.connect(self.updateLayout) cx = self.infos[-1][0]['Width'] / 2 cy = self.infos[-1][0]['Height'] / 2 self.locs[-1].x -= cx self.locs[-1].y -= cy if len(self.locs) == 1: self.median_lp = np.mean([np.median(locs.lpx), np.median(locs.lpy)]) if hasattr(locs, 'group'): groups = np.unique(locs.group) groupcopy = locs.group.copy() for i in range(len(groups)): groupcopy[locs.group == groups[i]] = i np.random.shuffle(groups) groups %= N_GROUP_COLORS self.group_color = groups[groupcopy] if render: self.fit_in_view(autoscale=True) else: if render: self.update_scene() self.oversampling = 1 if len(self.locs) == 1: self.t_min = np.min([np.min(locs.x),np.min(locs.y)]) self.t_max = np.max([np.max(locs.x),np.max(locs.y)]) self.z_min = np.min(locs.z) self.z_max = np.max(locs.z) else: self.t_min = np.min([np.min(locs.x),np.min(locs.y),self.t_min]) self.t_max = np.max([np.max(locs.x),np.max(locs.y),self.t_max]) self.z_min = np.min([np.min(locs.z),self.z_min]) self.z_max = np.min([np.max(locs.z),self.z_max]) if len(self.locs) == 1: print('Dataset loaded from {}.'.format(path)) else: print('Dataset loaded from {}, Total number of datasets {}.'.format(path, len(self.locs))) #CREATE GROUP INDEX if hasattr(locs, 'group'): groups = np.unique(locs.group) n_groups = len(groups) n_locs = len(locs) group_index = scipy.sparse.lil_matrix((n_groups, n_locs), dtype=np.bool) progress = lib.ProgressDialog('Creating group index', 0, len(groups), self) progress.set_value(0) for i, group in enumerate(groups): index = np.where(locs.group == group)[0] group_index[i, index] = True progress.set_value(i+1) self.group_index.append(group_index) self.n_groups = n_groups os.chdir(os.path.dirname(path)) self.calculate_radii() self.oversampling = 4 self.updateLayout() def updateLayout(self): if len(self.locs) > 0: pixmap1, pixmap2, pixmap3 = self.hist_multi_channel(self.locs) self.viewxy.setPixmap(pixmap1) self.viewxz.setPixmap(pixmap2) self.viewyz.setPixmap(pixmap3) def centerofmass_all(self): #Align all by center of mass n_channels = len(self.locs) out_locs_x = [] out_locs_y = [] out_locs_z = [] for j in range(n_channels): sel_locs_x = [] sel_locs_y = [] sel_locs_z = [] #stack arrays sel_locs_x = self.locs[j].x sel_locs_y = self.locs[j].y sel_locs_z = self.locs[j].z out_locs_x.append(sel_locs_x) out_locs_y.append(sel_locs_y) out_locs_z.append(sel_locs_z) out_locs_x=stack_arrays(out_locs_x, asrecarray=True, usemask=False) out_locs_y=stack_arrays(out_locs_y, asrecarray=True, usemask=False) out_locs_z=stack_arrays(out_locs_z, asrecarray=True, usemask=False) mean_x = np.mean(out_locs_x) mean_y = np.mean(out_locs_y) mean_z = np.mean(out_locs_z) for j in range(n_channels): self.locs[j].x -= mean_x self.locs[j].y -= mean_y self.locs[j].z -= mean_z def calculate_radii(self): #CALCULATE PROPER R VALUES n_channels = len(self.locs) self.r = 0 self.r_z = 0 for j in range(n_channels): self.r = np.max([3 * np.sqrt(np.mean(self.locs[j].x**2 + self.locs[j].y**2)),self.r]) self.r_z = np.max([5 * np.sqrt(np.mean(self.locs[j].z**2)),self.r_z]) self.t_min = -self.r self.t_max = self.r self.z_min = -self.r_z self.z_max = self.r_z self.z_min_load = self.z_min.copy() self.z_max_load = self.z_max.copy() def centerofmass(self): print('Aligning by center of mass.. ', end='', flush=True) n_groups = self.n_groups n_channels = len(self.locs) progress = lib.ProgressDialog('Aligning by center of mass', 0, n_groups, self) progress.set_value(0) for i in range(n_groups): out_locs_x = [] out_locs_y = [] out_locs_z = [] for j in range(n_channels): sel_locs_x = [] sel_locs_y = [] sel_locs_z = [] index = self.group_index[j][i, :].nonzero()[1] # stack arrays sel_locs_x = self.locs[j].x[index] sel_locs_y = self.locs[j].y[index] sel_locs_z = self.locs[j].z[index] out_locs_x.append(sel_locs_x) out_locs_y.append(sel_locs_y) out_locs_z.append(sel_locs_z) progress.set_value(i+1) out_locs_x = stack_arrays(out_locs_x, asrecarray=True, usemask=False) out_locs_y = stack_arrays(out_locs_y, asrecarray=True, usemask=False) out_locs_z = stack_arrays(out_locs_z, asrecarray=True, usemask=False) mean_x = np.mean(out_locs_x) mean_y = np.mean(out_locs_y) mean_z = np.mean(out_locs_z) for j in range(n_channels): index = self.group_index[j][i, :].nonzero()[1] self.locs[j].x[index] -= mean_x self.locs[j].y[index] -= mean_y self.locs[j].z[index] -= mean_z self.calculate_radii() self.updateLayout() print('Complete.') def histtoImage(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap('magma')(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype('uint8') Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled(self.viewxy.width(), np.round(self.viewxy.height()*Y/X), QtCore.Qt.KeepAspectRatioByExpanding) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap def hist_multi_channel(self, locs): oversampling = self.parameters_dialog.oversampling.value() self.oversampling = oversampling if locs is None: locs = self.locs n_channels = len(locs) hues = np.arange(0, 1, 1 / n_channels) colors = [colorsys.hsv_to_rgb(_, 1, 1) for _ in hues] renderings = [] for i in range(n_channels): if self.dataset_dialog.checks[i].isChecked(): renderings.append(render.render_hist3d(locs[i], oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize)) n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) pixmap1 = self.pixmap_from_colors(images,colors,2) pixmap2 = self.pixmap_from_colors(images,colors,0) pixmap3 = self.pixmap_from_colors(images,colors,1) return pixmap1, pixmap2, pixmap3 def pixmap_from_colors(self,images,colors,axisval): if axisval == 2: image = [np.sum(_, axis=axisval) for _ in images] else: image = [np.transpose(np.sum(_, axis=axisval)) for _ in images] image = np.array([self.scale_contrast(_) for _ in image]) Y, X = image.shape[1:] bgra = np.zeros((Y, X, 4), dtype=np.float32) for color, image in zip(colors, image): bgra[:, :, 0] += color[2] * image bgra[:, :, 1] += color[1] * image bgra[:, :, 2] += color[0] * image bgra = np.minimum(bgra, 1) self._bgra = self.to_8bit(bgra) qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled(self.viewxy.width(), np.round(self.viewxy.height()*Y/X), QtCore.Qt.KeepAspectRatioByExpanding) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap def align_x(self): print('Align X') self.align_all('x') def align_y(self): print('Align Y') self.align_all('y') def align_zz(self): print('Align Z') self.align_all('zz') def align_zy(self): print('Align Z') self.align_all('zy') def translate_x(self): print('Translate X') self.translate('x') def translate_y(self): print('Translate Y') self.translate('y') def translate_z(self): print('Translate Z') self.translate('z') def translate(self, translateaxis): renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) if translateaxis == 'x': image = [np.sum(_, axis=2) for _ in images] signalimg = [np.sum(_, axis=0) for _ in image] elif translateaxis == 'y': image = [np.sum(_, axis=2) for _ in images] signalimg = [np.sum(_, axis=1) for _ in image] elif translateaxis == 'z': image = [np.sum(_, axis=1) for _ in images] signalimg = [np.sum(_, axis=0) for _ in image] fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1, 1 ,1) for element in signalimg: plt.plot(element) n_groups = self.group_index[0].shape[0] print('Translating..') for i in tqdm(range(n_groups)): self.status_bar.showMessage('Group {} / {}.'.format(i, n_groups)) self.translate_group(signalimg, i, translateaxis) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) self.centerofmass_all() self.updateLayout() self.status_bar.showMessage('Done!') def translate_group(self, signalimg, group, translateaxis): n_channels = len(self.locs) all_xcorr = np.zeros((1, n_channels)) all_da = np.zeros((1, n_channels)) if translateaxis == 'x': proplane = 'xy' elif translateaxis == 'y': proplane = 'xy' elif translateaxis == 'z': proplane = 'xz' plotmode = 0 for j in range(n_channels): if plotmode: fig = plt.figure() ax1 = fig.add_subplot(1, 3, 1) plt.plot(signalimg[j]) ax2 = fig.add_subplot(1, 3, 2) if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] xcorr_max = 0.0 plane = self.render_planes(x_rot, y_rot, z_rot, proplane, self.pixelsize) # if translateaxis == 'x': projection = np.sum(plane, axis=0) elif translateaxis == 'y': projection = np.sum(plane, axis=1) elif translateaxis == 'z': projection = np.sum(plane, axis=1) if plotmode: plt.plot(projection) #print('Step X') #ax3 = fig.add_subplot(1,3,3) #plt.imshow(plane, interpolation='nearest', cmap=plt.cm.ocean) corrval = np.max(signal.correlate(signalimg[j],projection)) shiftval = np.argmax(signal.correlate(signalimg[j], projection))-len(signalimg[j])+1 all_xcorr[0,j] = corrval all_da[0,j] = shiftval/self.oversampling if plotmode: plt.show() #value with biggest cc value form table maximumcc = np.argmax(np.sum(all_xcorr,axis = 1)) dafinal = np.mean(all_da[maximumcc,:]) for j in range(n_channels): index = self.group_index[j][group].nonzero()[1] if translateaxis == 'x': self.locs[j].x[index] += dafinal elif translateaxis == 'y': self.locs[j].y[index] += dafinal elif translateaxis == 'z': self.locs[j].z[index] += dafinal*self.pixelsize def adjust_z(self): z_range_str = np.asarray((self.z_range.text()).split(",")) z_range = [] for element in z_range_str: try: z_range.append(float(element)) except ValueError: pass z_min = z_range[0] z_max = z_range[1] self.z_min = np.max([z_min, self.z_min_load]) self.z_max = np.min([z_max, self.z_max_load]) print('Z min {}, Z max {}'.format(self.z_min, self.z_max)) self.updateLayout() def adjust_xy(self): x_range_str = np.asarray((self.x_range.text()).split(",")) x_range = [] for element in x_range_str: try: x_range.append(float(element)) except ValueError: pass x_min = x_range[0] x_max = x_range[1] self.x_min = np.max([x_min, self.t_min]) self.x_max = np.min([x_max, self.t_max]) print('X min {}, X max {}'.format(self.x_min, self.x_max)) y_range_str = np.asarray((self.y_range.text()).split(",")) y_range = [] for element in y_range_str: try: y_range.append(float(element)) except ValueError: pass y_min = y_range[0] y_max = y_range[1] self.y_min = np.max([y_min, self.t_min]) self.y_max = np.min([y_max, self.t_max]) print('Y min {}, Y max {}'.format(self.y_min, self.y_max)) self.updateLayout() def rotatexy_convolution_group(self, CF_image_avg, angles, group, rotaxis, proplane): n_channels = len(self.locs) allrot = [] alldx = [] alldy = [] alldz = [] n_angles = len(angles) all_xcorr = np.zeros((n_angles,n_channels)) all_da = np.zeros((n_angles,n_channels)) all_db = np.zeros((n_angles,n_channels)) for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() xcorr_max = 0.0 if self.translatebtn.isChecked(): angles = [0] n_angles = 1 for k in range(n_angles): angle = angles[k] # rotate locs x_rot, y_rot, z_rot = rotate_axis(rotaxis, x_original, y_original, z_original, angle, self.pixelsize) # render group image for plane image = self.render_planes(x_rot, y_rot, z_rot, proplane, self.pixelsize) # calculate cross-correlation if 0: fig = plt.figure() ax1 = fig.add_subplot(1,2,1) ax1.set_aspect('equal') plt.imshow(image, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() plt.show() plt.waitforbuttonpress() xcorr = np.sum(np.multiply(CF_image_avg[j], image)) all_xcorr[k,j] = xcorr #value with biggest cc value form table maximumcc = np.argmax(np.sum(all_xcorr,axis = 1)) rotfinal = angles[maximumcc] dafinal = np.mean(all_da[maximumcc,:]) dbfinal = np.mean(all_db[maximumcc,:]) for j in range(n_channels): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() # rotate and shift image group locs x_rot, y_rot, z_rot = rotate_axis(rotaxis, x_original, y_original, z_original, rotfinal, self.pixelsize) self.locs[j].x[index] = x_rot self.locs[j].y[index] = y_rot self.locs[j].z[index] = z_rot def rotatexy_convolution(self): #TODO: re-write ths with kwargs at some point rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = 'x' elif self.y_axisbtn.isChecked(): rotaxis = 'y' elif self.z_axisbtn.isChecked(): rotaxis = 'z' n_groups = self.group_index[0].shape[0] a_step = np.arcsin(1 / (self.oversampling * self.r)) if self.full_degbtn.isChecked(): angles = np.arange(0, 2*np.pi, a_step) elif self.part_degbtn.isChecked(): degree = self.degEdit.value() angles = np.arange(-degree/360*2*np.pi, degree/360*2*np.pi, a_step) renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) #DELIVER CORRECT PROJECTION FOR IMAGE proplane = [] if self.xy_projbtn.isChecked(): proplane = 'xy' image = [np.sum(_, axis=2) for _ in images] elif self.yz_projbtn.isChecked(): proplane = 'yz' image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif self.xz_projbtn.isChecked(): proplane = 'xz' image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] #Change CFiamge for symmetry if self.radio_sym.isChecked(): print('Using symmetry.') fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for i in range(symmetry-1): image[0] += scipy.ndimage.interpolation.rotate(imageold,((i+1)*360/symmetry) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.radio_sym_custom.isChecked(): print('Using custom symmetry.') symmetry_txt = np.asarray((self.symcustomEdit.text()).split(',')) print(symmetry_txt) fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for degree in symmetry_txt: image[0] += scipy.ndimage.interpolation.rotate(imageold, float(degree) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.modelchk.isChecked(): self.generate_template() image[0] = self.template_img CF_image_avg = image # TODO: blur auf average !!! print('Convolving..') for i in tqdm(range(n_groups)): self.status_bar.showMessage('Group {} / {}.'.format(i,n_groups)) self.rotatexy_convolution_group(CF_image_avg, angles, i, rotaxis, proplane) self.updateLayout() self.status_bar.showMessage('Done!') def rotate_groups(self): #Read out values from radiobuttons #TODO: maybe re-write this with kwargs rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = 'x' elif self.y_axisbtn.isChecked(): rotaxis = 'y' elif self.z_axisbtn.isChecked(): rotaxis = 'z' n_groups = self.group_index[0].shape[0] a_step = np.arcsin(1 / (self.oversampling * self.r)) if self.full_degbtn.isChecked(): angles = np.arange(0, 2*np.pi, a_step) elif self.part_degbtn.isChecked(): degree = self.degEdit.value() angles = np.arange(-degree/360*2*np.pi, degree/360*2*np.pi, a_step) renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) #DELIVER CORRECT PROJECTION FOR IMAGE proplane = [] if self.xy_projbtn.isChecked(): proplane = 'xy' image = [np.sum(_, axis=2) for _ in images] elif self.yz_projbtn.isChecked(): proplane = 'yz' image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif self.xz_projbtn.isChecked(): proplane = 'xz' image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] if self.radio_sym.isChecked(): print('Radio sym') fig = plt.figure(figsize = (5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for i in range(symmetry-1): image[0] += scipy.ndimage.interpolation.rotate(imageold,((i+1)*360/symmetry) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) #TODO: Sort these functions out, combine with radio_sym / also for convolving. if self.radio_sym_custom.isChecked(): print('Using custom symmetry.') symmetry_txt = np.asarray((self.symcustomEdit.text()).split(',')) fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for degree in symmetry_txt: image[0] += scipy.ndimage.interpolation.rotate(imageold, float(degree) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.modelchk.isChecked(): self.generate_template() image[0] = self.template_img CF_image_avg = [np.conj(np.fft.fft2(_)) for _ in image] #n_pixel, _ = image_avg.shape #image_half = n_pixel / 2 # TODO: blur auf average !!! print('Rotating..') for i in tqdm(range(n_groups)): self.status_bar.showMessage('Group {} / {}.'.format(i,n_groups)) self.align_group(CF_image_avg, angles, i, rotaxis, proplane) self.updateLayout() self.status_bar.showMessage('Done!') def getUIstate(self): rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = 'x' elif self.y_axisbtn.isChecked(): rotaxis = 'y' elif self.z_axisbtn.isChecked(): rotaxis = 'z' proplane = [] if self.xy_projbtn.isChecked(): proplane = 'xy' elif self.yz_projbtn.isChecked(): proplane = 'yz' elif self.xz_projbtn.isChecked(): proplane = 'xz' return rotaxis, proplane def projectPlanes(self, images, proplane): if proplane == 'xy': image = [np.sum(_, axis=2) for _ in images] elif proplane == 'yz': image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif proplane == 'xz': image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] return image def generate_template(self): model_x_str = np.asarray((self.model_x.text()).split(",")) model_y_str = np.asarray((self.model_y.text()).split(",")) model_z_str = np.asarray((self.model_z.text()).split(",")) model_x = [] model_y = [] model_z = [] for element in model_x_str: try: model_x.append(float(element)) except ValueError: pass for element in model_y_str: try: model_y.append(float(element)) except ValueError: pass for element in model_z_str: try: model_z.append(float(element)) except ValueError: pass pixelsize = self.pixelsizeEdit.value() blur = self.modelblurEdit.value() # Center of mass model_x = np.array(model_x)/pixelsize model_y =
np.array(model_y)
numpy.array
# coding: utf-8 # In[ ]: import csv import math import numpy as np import pandas import sys import warnings from collections import Counter from csv import reader from sklearn import tree from sklearn import decomposition from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils import check_random_state from sklearn.preprocessing import LabelEncoder warnings.filterwarnings("ignore") def load_csv(fileName): file = open(fileName, "r") lines = reader(file) dataset = list(lines) return dataset def stringColumnToFloat(dataset, column): for row in dataset: row[column] = float(row[column].strip()) def projection_simplex(v, z=1): n_features = v.shape[0] u = np.sort(v)[::-1] cssv = np.cumsum(u) - z ind = np.arange(n_features) + 1 cond = u - cssv / ind > 0 rho = ind[cond][-1] theta = cssv[cond][-1] / float(rho) w = np.maximum(v - theta, 0) return w class MulticlassSVM(BaseEstimator, ClassifierMixin): def __init__(self, C=1, max_iter=50, tol=0.05, random_state=None, verbose=0): self.C = C self.max_iter = max_iter self.tol = tol, self.random_state = random_state self.verbose = verbose def _partial_gradient(self, X, y, i): # Partial gradient for the ith sample. g = np.dot(X[i], self.coef_.T) + 1 g[y[i]] -= 1 return g def _violation(self, g, y, i): # Optimality violation for the ith sample. smallest = np.inf for k in range(g.shape[0]): if k == y[i] and self.dual_coef_[k, i] >= self.C: continue elif k != y[i] and self.dual_coef_[k, i] >= 0: continue smallest = min(smallest, g[k]) return g.max() - smallest def _solve_subproblem(self, g, y, norms, i): Ci = np.zeros(g.shape[0]) Ci[y[i]] = self.C beta_hat = norms[i] * (Ci - self.dual_coef_[:, i]) + g / norms[i] z = self.C * norms[i] beta = projection_simplex(beta_hat, z) return Ci - self.dual_coef_[:, i] - beta / norms[i] def fit(self, X, y): n_samples, n_features = X.shape self._label_encoder = LabelEncoder() y = self._label_encoder.fit_transform(y) n_classes = len(self._label_encoder.classes_) self.dual_coef_ = np.zeros((n_classes, n_samples), dtype=np.float64) self.coef_ = np.zeros((n_classes, n_features)) norms = np.sqrt(np.sum(X ** 2, axis=1)) rs = check_random_state(self.random_state) ind = np.arange(n_samples) rs.shuffle(ind) violation_init = None for it in range(self.max_iter): violation_sum = 0 for ii in range(n_samples): i = ind[ii] if norms[i] == 0: continue g = self._partial_gradient(X, y, i) v = self._violation(g, y, i) violation_sum += v if v < 1e-12: continue delta = self._solve_subproblem(g, y, norms, i) self.coef_ += (delta * X[i][:, np.newaxis]).T self.dual_coef_[:, i] += delta if it == 0: violation_init = violation_sum vratio = violation_sum / violation_init if vratio < self.tol: break return self def predict(self, X): decision = np.dot(X, self.coef_.T) pred = decision.argmax(axis=1) # print(pred) return pred def calculateTimeStampWeight(row, min_timestamp, max_timestamp): return ((pandas.to_datetime(row['timestamp'])-min_timestamp).days + 1)/((max_timestamp-min_timestamp).days+1) def TFIDFProductValue(row): return row['tf']*row['idf'] def CalculateMovieTF(row): return row['tag_weightage'] / row['total_movie_weightage'] def calculateIDFData(row, total_movies): return math.log10(total_movies / row['count_of_movies']) def calculateTFIDFData(tfdata, idfdata): tfidfdata = tfdata.merge(idfdata, on='tagid') tfidfdata['tfidf'] = tfidfdata.apply(TFIDFProductValue, axis=1) return tfidfdata[['movieid','tagid','tfidf']] def fetchMoviesTagsData(): allmoviesTagsData =pandas.read_csv("data/mltags.csv") min_timestamp = pandas.to_datetime(min(allmoviesTagsData['timestamp'])) max_timestamp = pandas.to_datetime(max(allmoviesTagsData['timestamp'])) allmoviesTagsData['timestamp_weightage'] = allmoviesTagsData.apply(calculateTimeStampWeight, axis=1, args=(min_timestamp, max_timestamp)) allmoviesTagsData['tag_weightage'] = allmoviesTagsData.groupby(['movieid','tagid'])['timestamp_weightage'].transform('sum') allmoviesTagsData = allmoviesTagsData[['movieid','tagid','tag_weightage']].drop_duplicates(subset=['movieid','tagid']) allmoviesTagsData['total_movie_weightage'] = allmoviesTagsData.groupby(['movieid'])['tag_weightage'].transform('sum') allmoviesTagsData['tf'] = allmoviesTagsData.apply(CalculateMovieTF, axis=1) taglist = allmoviesTagsData['tagid'].tolist() alltagsdata = pandas.read_csv("data/mltags.csv") specifictagsdata = alltagsdata[alltagsdata['tagid'].isin(taglist)] specifictagsdata.drop_duplicates(subset=['tagid', 'movieid'], inplace=True) specifictagsdata['count_of_movies'] = specifictagsdata.groupby('tagid')['movieid'].transform('count') specifictagsdata.drop_duplicates(subset=['tagid'], inplace=True) moviesdata = pandas.read_csv("data/mlmovies.csv") total_movies = moviesdata.shape[0] specifictagsdata['idf'] = specifictagsdata.apply(calculateIDFData, axis=1, total_movies=total_movies) tfidfdata = calculateTFIDFData(allmoviesTagsData, specifictagsdata[['tagid', 'idf']]) return tfidfdata def fetchMoviesDetails(movielist): moviedetails = pandas.read_csv("data/mlmovies.csv") moviedetails = moviedetails[moviedetails['movieid'].isin(movielist)] movienamelist = moviedetails.values.tolist() movienamelist = sorted(movienamelist, key=lambda x: x[0]) return movienamelist def fetchLabelDetails(): labeldetails = pandas.read_csv("data/mllabels.csv") labellist = labeldetails.values.tolist() return labellist def classificationUsingSVM(): print("Assigning labels using SVM classifier") labelListDetails = fetchLabelDetails() modifiedList =[] labelNames = sorted(np.unique([item[1] for item in labelListDetails])) for i in range (0, len(labelListDetails)): modifiedList.append((labelListDetails[i][0],labelListDetails[i][1],labelNames.index(labelListDetails[i][1]))) modifiedList = sorted(modifiedList, key=lambda x: x[0]) LabelledListOfMovies = sorted(np.unique([item[0] for item in modifiedList])) listOfLabelledIDs =[] for ele in modifiedList: listOfLabelledIDs.append(ele[2]) tempDataFrame = pandas.DataFrame(listOfLabelledIDs) tempDataFrame.to_csv('ListOfLabelledIDs.csv', index=False, header=False) moviesTagsData = fetchMoviesTagsData() moviesList = sorted(np.unique(moviesTagsData['movieid'].tolist())) movieTagMatrix = moviesTagsData.pivot_table(index='movieid', columns='tagid',values='tfidf', fill_value=0) data = [] for movieID in LabelledListOfMovies: i = moviesList.index(movieID) data.append(movieTagMatrix.values[i]) tempDataFrame = pandas.DataFrame(data) tempDataFrame.to_csv('LabelledMovieTagData.csv', index=False, header=False) tempDataFrame = pandas.DataFrame(movieTagMatrix.values) tempDataFrame.to_csv('MovieTagData.csv', index=False, header=False) fileName = 'LabelledMovieTagData.csv' data = load_csv(fileName) for i in range(len(data[0])): stringColumnToFloat(data, i) fileName = 'ListOfLabelledIDs.csv' labels = load_csv(fileName) fileName = 'MovieTagData.csv' testData = load_csv(fileName) for i in range(len(testData[0])): stringColumnToFloat(testData, i) label = [] for i in labels: label.append(i[0]) clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1) clf.fit(np.array(data), label) labelledResults = clf.predict(
np.array(testData)
numpy.array
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ The rapidart module provides routines for artifact detection and region of interest analysis. These functions include: * ArtifactDetect: performs artifact detection on functional images * StimulusCorrelation: determines correlation between stimuli schedule and movement/intensity parameters """ import os from copy import deepcopy from nibabel import load, funcs, Nifti1Image import numpy as np from ..interfaces.base import ( BaseInterface, traits, InputMultiPath, OutputMultiPath, TraitedSpec, File, BaseInterfaceInputSpec, isdefined, ) from ..utils.filemanip import ensure_list, save_json, split_filename from ..utils.misc import find_indices, normalize_mc_params from .. import logging, config iflogger = logging.getLogger("nipype.interface") def _get_affine_matrix(params, source): """Return affine matrix given a set of translation and rotation parameters params : np.array (upto 12 long) in native package format source : the package that generated the parameters supports SPM, AFNI, FSFAST, FSL, NIPY """ if source == "NIPY": # nipy does not store typical euler angles, use nipy to convert from nipy.algorithms.registration import to_matrix44 return to_matrix44(params) params = normalize_mc_params(params, source) # process for FSL, SPM, AFNI and FSFAST rotfunc = lambda x: np.array([[np.cos(x), np.sin(x)], [-np.sin(x), np.cos(x)]]) q = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0]) if len(params) < 12: params = np.hstack((params, q[len(params) :])) params.shape = (len(params),) # Translation T = np.eye(4) T[0:3, -1] = params[0:3] # Rotation Rx = np.eye(4) Rx[1:3, 1:3] = rotfunc(params[3]) Ry = np.eye(4) Ry[(0, 0, 2, 2), (0, 2, 0, 2)] = rotfunc(params[4]).ravel() Rz = np.eye(4) Rz[0:2, 0:2] = rotfunc(params[5]) # Scaling S = np.eye(4) S[0:3, 0:3] = np.diag(params[6:9]) # Shear Sh = np.eye(4) Sh[(0, 0, 1), (1, 2, 2)] = params[9:12] if source in ("AFNI", "FSFAST"): return np.dot(T, np.dot(Ry, np.dot(Rx, np.dot(Rz, np.dot(S, Sh))))) return np.dot(T, np.dot(Rx, np.dot(Ry, np.dot(Rz, np.dot(S, Sh))))) def _calc_norm(mc, use_differences, source, brain_pts=None): """Calculates the maximum overall displacement of the midpoints of the faces of a cube due to translation and rotation. Parameters ---------- mc : motion parameter estimates [3 translation, 3 rotation (radians)] use_differences : boolean brain_pts : [4 x n_points] of coordinates Returns ------- norm : at each time point displacement : euclidean distance (mm) of displacement at each coordinate """ affines = [_get_affine_matrix(mc[i, :], source) for i in range(mc.shape[0])] return _calc_norm_affine(affines, use_differences, brain_pts) def _calc_norm_affine(affines, use_differences, brain_pts=None): """Calculates the maximum overall displacement of the midpoints of the faces of a cube due to translation and rotation. Parameters ---------- affines : list of [4 x 4] affine matrices use_differences : boolean brain_pts : [4 x n_points] of coordinates Returns ------- norm : at each time point displacement : euclidean distance (mm) of displacement at each coordinate """ if brain_pts is None: respos = np.diag([70, 70, 75]) resneg = np.diag([-70, -110, -45]) all_pts = np.vstack((np.hstack((respos, resneg)), np.ones((1, 6)))) displacement = None else: all_pts = brain_pts n_pts = all_pts.size - all_pts.shape[1] newpos = np.zeros((len(affines), n_pts)) if brain_pts is not None: displacement = np.zeros((len(affines), int(n_pts / 3))) for i, affine in enumerate(affines): newpos[i, :] = np.dot(affine, all_pts)[0:3, :].ravel() if brain_pts is not None: displacement[i, :] = np.sqrt( np.sum( np.power( np.reshape(newpos[i, :], (3, all_pts.shape[1])) - all_pts[0:3, :], 2, ), axis=0, ) ) # np.savez('displacement.npz', newpos=newpos, pts=all_pts) normdata = np.zeros(len(affines)) if use_differences: newpos = np.concatenate( (np.zeros((1, n_pts)),
np.diff(newpos, n=1, axis=0)
numpy.diff
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import gym from torch.distributions import MultivariateNormal import time import logz import time import inspect import os from wrappers import make_env import matplotlib.pyplot as plt import queue from torch.distributions.categorical import Categorical class Network(nn.Module): """ Construct conv net to recognize game image arguments: input_shape: shape of observation (n_channel, height, width) n_actions: number of actions returns: for discrete action: logits for each action for gaussian action: mean of the action """ def __init__(self, ob_dim, action_dim): super(Network, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ob_dim[0], 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU() ) conv_out_size = self._get_conv_out(ob_dim) self.fc = nn.Sequential( nn.Linear(conv_out_size, 512), nn.ReLU(), nn.Linear(512, action_dim) ) self.conv.apply(self.init_weight) self.fc.apply(self.init_weight) def init_weight(self, m): if type(m) == nn.Linear or type(m) == nn.Conv2d: torch.nn.init.xavier_uniform_(m.weight) m.bias.data.fill_(0.01) def _get_conv_out(self, shape): o = self.conv(torch.zeros(1, *shape)) return int(np.prod(o.size())) def forward(self, x, is_softmax=False): x = torch.as_tensor(x) conv_out = self.conv(x).view(x.size()[0], -1) if is_softmax: return F.softmax(self.fc(conv_out), dim=-1) return self.fc(conv_out) class Agent: def __init__(self, computation_graph_args, sample_trajectory_args, estimate_advantage_args): super(Agent, self).__init__() self.ob_dim = computation_graph_args['ob_dim'] self.ac_dim = computation_graph_args['ac_dim'] self.discrete = computation_graph_args['discrete'] self.learning_rate = computation_graph_args['learning_rate'] self.num_target_updates = computation_graph_args['num_target_updates'] self.num_grad_steps_per_target_update = computation_graph_args['num_grad_steps_per_target_update'] self.save_path = computation_graph_args['save_path'] self.load_path = computation_graph_args['load_path'] self.max_checkpoints = computation_graph_args['max_checkpoints'] self.animate = sample_trajectory_args['animate'] self.max_path_length = sample_trajectory_args['max_path_length'] self.min_timesteps_per_batch = sample_trajectory_args['min_timesteps_per_batch'] self.gamma = estimate_advantage_args['gamma'] self.normalize_advantages = estimate_advantage_args['normalize_advantages'] self.actor_nn = Network(self.ob_dim, self.ac_dim) self.critic_nn = Network(self.ob_dim, 1) self.log_std = nn.Parameter(torch.FloatTensor(self.ac_dim)) self.critic_optim = torch.optim.Adam(self.critic_nn.parameters()) if self.discrete: actor_param_list = self.actor_nn.parameters() else: actor_param_list = list(self.actor_nn.parameters()) + list(self.log_std) self.actor_optim = torch.optim.Adam(actor_param_list) self.ckpt_paths = queue.Queue() if self.load_path: self.step, self.best_val = self.load_model(self.load_path) else: self.step = 0 self.best_val = -1 def get_policy_parameter(self, ob): """ Compute the parameters for action given this observation, which are parameters of the policy distribution p(a|s) arguments: ob: (bs, self.ob_dim) return: if discrete: logits of categorical distribution over action action_logit: (bs, action_dim) if continuous: tuple (mean, log_std) of a Gaussian mean: (bs, action_dim) log_std: (action_dim) (trainable variable, not output of nn) """ if self.discrete: action_logit = self.actor_nn(ob, True) return action_logit else: mean = self.actor_nn(ob) log_std = self.log_std return (mean, log_std) def sample_action(self, policy_parameter): """ Sample a random action according to the distribution specified by policy_parameter arguments: for discrete action: logits of categorical distribution over actions logits: (bs, action_dim) for continuous action: (mean, log_std) of a Gaussian distribution over actions mean: (bs, action_dim) log_std: action_dim returns: sample_ac: if discrete: (bs) if continuous: (bs, action_dim) """ if self.discrete: logits = policy_parameter sampled_ac = torch.multinomial(F.softmax(logits, dim=1), 1) else: mean, log_std = policy_parameter z = torch.randn(self.ac_dim) sampled_ac = mean + torch.exp(log_std) * z return sampled_ac def get_log_prob(self, policy_parameter, taken_action): """ Compute the log probability of the taken_action under the current parameters of the policy arguments: policy_parameters if discrete: logits of a categorical distribution over actions logits: (bs, action_dim) if continuous: (mean, log_std) of a Gaussian distribution over actions mean: (bs, action_dim) log_std: (action_dim) taken_action: (bs) if discrete, (bs, action_dim) if continuous returns: log_prob: (bs) """ if self.discrete: logits = policy_parameter bs, _ = logits.size() log_prob_v = F.log_softmax(logits, dim=1) log_prob = log_prob_v[range(bs), taken_action] else: mean, log_std = policy_parameter cov = torch.eye(self.ac_dim) cov[range(self.ac_dim), range(self.ac_dim)] = torch.exp(log_std) ** 2 m = MultivariateNormal(mean, cov) log_prob = m.log_prob(taken_action) return log_prob def update_actor(self, obs, actions, adv): """ Update parameters of the policy. arguments: obs: (sum_of_path_lengths, ob_dim) actions: (sum_of_path_lengths) adv: (sum_of_path_lengths) returns: nothing """ self.actor_optim.zero_grad() policy_parameter = self.get_policy_parameter(obs) log_prob = self.get_log_prob(policy_parameter, actions) loss = torch.mean(-log_prob * adv) print('Previous log_prob: ' + str(-loss)) loss.backward() self.actor_optim.step() policy_parameter = self.get_policy_parameter(obs) log_prob = self.get_log_prob(policy_parameter, actions) loss = torch.mean(-log_prob * adv) print('Updated log_prob: ' + str(-loss)) def update_critic(self, obs, next_obs, re, terminal): """ Update the parameters of the critic arguments: obs: (sum_of_path_lengths, ob_dim) next_obs: (sum_of_path_lengths, ob_dim) re: (sum_of_path_lengths) terminal: (sum_of_path_lengths) returns: nothing """ for _ in range(self.num_target_updates): # recompute target values v_s_next = torch.squeeze(self.critic_nn(next_obs)) target_value = re + self.gamma * v_s_next * (1 - terminal) for _ in range(self.num_grad_steps_per_target_update): self.critic_optim.zero_grad() v_s_prediction = torch.squeeze(self.critic_nn(obs)) loss_fn = nn.MSELoss() loss = loss_fn(v_s_prediction, target_value.detach()) loss.backward() self.critic_optim.step() def estimate_advantage(self, obs, next_obs, re, terminal): """ Estimates the advantage function value for each timestep. arguments: obs: (sum_of_path_lengths, ob_dim) next_obs: (sum_of_path_lengths, ob_dim) re: (sum_of_path_lengths) terminal: (sum_of_path_lengths) returns: adv: (sum_of_path_lengths) """ v_s = torch.squeeze(self.critic_nn(obs)) v_s_next = torch.squeeze(self.critic_nn(next_obs)) q = re + self.gamma * v_s_next * (1 - terminal) adv = q - v_s if self.normalize_advantages: mean = torch.mean(adv) std = torch.std(adv) adv = (adv - mean)/(std + 1e-8) return adv def sample_trajectories(self, itr, env): # Collect paths until we have enough timesteps timesteps_this_batch = 0 paths = [] while True: animate_this_episode=(len(paths)==0 and (itr % 10 == 0) and self.animate) path = self.sample_trajectory(env, animate_this_episode) paths.append(path) timesteps_this_batch += pathlength(path) if timesteps_this_batch > self.min_timesteps_per_batch: break return paths, timesteps_this_batch def sample_trajectory(self, env, animate_this_episode): """ sample trajectory for one episode, finish when done return by env is 1 or n_steps > self.max_path_length """ ob = env.reset() obs, acs, rewards, next_obs, terminals = [], [], [], [], [] steps = 0 while True: if animate_this_episode: env.render() time.sleep(0.1) obs.append(ob) policy_parameter = self.get_policy_parameter(ob[None, :]) ac = self.sample_action(policy_parameter) ac = ac[0] acs.append(ac) ob, rew, done, _ = env.step(ac) # add the observation after taking a step to next_obs next_obs.append(ob) rewards.append(rew) steps += 1 # If the episode ended, the corresponding terminal value is 1 # otherwise, it is 0 # YOUR CODE HERE # print(steps) # plt.imshow(ob[1], cmap='gray') # plt.savefig ('image/grafico01' + str(steps) + '.png') # plt.show() if done or steps > self.max_path_length: terminals.append(1) break else: terminals.append(0) path = {"observation" : np.array(obs, dtype=np.float32), "reward" : np.array(rewards, dtype=np.float32), "action" : np.array(acs, dtype=np.float32), "next_observation": np.array(next_obs, dtype=np.float32), "terminal": np.array(terminals, dtype=np.float32)} return path def save_model(self, step, val): ckpt_dict = { 'actor_state': self.actor_nn.cpu().state_dict(), 'critic_state': self.critic_nn.cpu().state_dict(), 'step': step, 'best_val': self.best_val } checkpoint_path = os.path.join(self.save_path, 'step_{}.pth.tar'.format(step)) torch.save(ckpt_dict, checkpoint_path) self.ckpt_paths.put(checkpoint_path) print('Saved checkpoint: {}'.format(checkpoint_path)) if self.best_val < val: print('New best checkpoint at step {}...'.format(step)) self.best_val = val # remove checkpoint with lower value if self.ckpt_paths.qsize() > self.max_checkpoints: worst_ckpt = self.ckpt_paths.get() try: os.remove(worst_ckpt) print('Removed checkpoint: {}'.format(worst_ckpt)) except OSError: # Avoid crashing if checkpoint has been removed or protected pass def load_model(self, checkpoint_path): ckpt_dict = torch.load(checkpoint_path) self.actor_nn.load_state_dict(ckpt_dict['actor_state']) self.critic_nn.load_state_dict(ckpt_dict['critic_state']) step = ckpt_dict['step'] best_val = ckpt_dict['best_val'] return step, best_val def pathlength(path): return len(path["reward"]) def setup_logger(logdir, locals_): # Configure output directory for logging logz.configure_output_dir(logdir) # Log experimental parameters args = inspect.getargspec(train_AC)[0] params = {k: locals_[k] if k in locals_ else None for k in args} logz.save_params(params) def train_AC( exp_name, env_name, n_iter, gamma, min_timesteps_per_batch, max_path_length, learning_rate, num_target_updates, num_grad_steps_per_target_update, animate, logdir, normalize_advantages, seed, save_path, load_path, max_checkpoints, save_every): start = time.time() #========================================================================================# # Set Up Logger #========================================================================================# setup_logger(logdir, locals()) #========================================================================================# # Set Up Env #========================================================================================# # Make the gym environment # env = gym.make(env_name) env = make_env() # Set random seeds torch.manual_seed(seed) np.random.seed(seed) # env.seed(seed) # Maximum length for episodes max_path_length = max_path_length or env.spec['max_episode_steps'] # Is this env continuous, or self.discrete? discrete = isinstance(env.action_space, gym.spaces.Discrete) # Observation and action sizes ob_dim = env.observation_space.shape ac_dim = env.action_space.n if discrete else env.action_space.shape[0] #========================================================================================# # Initialize Agent #========================================================================================# computation_graph_args = { 'ob_dim': ob_dim, 'ac_dim': ac_dim, 'discrete': discrete, 'learning_rate': learning_rate, 'num_target_updates': num_target_updates, 'num_grad_steps_per_target_update': num_grad_steps_per_target_update, 'save_path': save_path, 'load_path': load_path, 'max_checkpoints': max_checkpoints, } sample_trajectory_args = { 'animate': animate, 'max_path_length': max_path_length, 'min_timesteps_per_batch': min_timesteps_per_batch, } estimate_advantage_args = { 'gamma': gamma, 'normalize_advantages': normalize_advantages, } agent = Agent(computation_graph_args, sample_trajectory_args, estimate_advantage_args) #estimate_return_args #========================================================================================# # Training Loop #========================================================================================# total_timesteps = 0 for itr in range(agent.step + 1, agent.step + 1 + n_iter): print("********** Iteration %i ************"%itr) paths, timesteps_this_batch = agent.sample_trajectories(itr, env) total_timesteps += timesteps_this_batch # Build arrays for observation, action for the policy gradient update by concatenating # across paths obs = np.concatenate([path["observation"] for path in paths]) actions = np.concatenate([path["action"] for path in paths]) re = np.concatenate([path["reward"] for path in paths]) next_obs = np.concatenate([path["next_observation"] for path in paths]) terminal = np.concatenate([path["terminal"] for path in paths]) print(actions[:20]) # obs = torch.from_numpy(obs).type(torch.float32) # actions = torch.from_numpy(actions).type(torch.int8) # re = torch.from_numpy(re).type(torch.float32) # next_obs = torch.from_numpy(next_obs).type(torch.float32) # Call tensorflow operations to: # (1) update the critic, by calling agent.update_critic # (2) use the updated critic to compute the advantage by, calling agent.estimate_advantage # (3) use the estimated advantage values to update the actor, by calling agent.update_actor # YOUR CODE HERE obs = torch.as_tensor(obs) actions = torch.as_tensor(actions).type(torch.long) next_obs = torch.as_tensor(next_obs) re = torch.as_tensor(re) terminal = torch.as_tensor(terminal) agent.update_critic(obs, next_obs, re, terminal) adv = agent.estimate_advantage(obs, next_obs, re, terminal) agent.update_actor(obs, actions, adv.detach()) # Log diagnostics returns = [path["reward"].sum() for path in paths] ep_lengths = [pathlength(path) for path in paths] logz.log_tabular("Time", time.time() - start) logz.log_tabular("Iteration", itr) logz.log_tabular("AverageReturn", np.mean(returns)) logz.log_tabular("StdReturn",
np.std(returns)
numpy.std
__author__ = "<NAME>, <NAME> and <NAME>" __version__ = "0.0.1" __license__ = "BSD" import unittest import numpy as np import time import torch import ConfigSpace as CS import ConfigSpace.hyperparameters as CSH from autoPyTorch.utils.configspace_wrapper import ConfigWrapper from autoPyTorch.pipeline.nodes.resampling_strategy_selector import ResamplingStrategySelector from numpy.testing import assert_array_almost_equal from autoPyTorch.components.preprocessing.resampling import TargetSizeStrategyUpsample, \ RandomOverSamplingWithReplacement, RandomUnderSamplingWithReplacement class TestResamplingStrategySelector(unittest.TestCase): def test_resampling_strategy_selector_only_train(self): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) Y = np.array([[0, 1], [1, 0], [1, 0]]) train_indices = np.array([0, 1, 2]) hyperparameter_config = { ResamplingStrategySelector.get_name() + ConfigWrapper.delimiter + "over_sampling_method": "random_over_sampling", ResamplingStrategySelector.get_name() + ConfigWrapper.delimiter + "under_sampling_method": "random_under_sampling", ResamplingStrategySelector.get_name() + ConfigWrapper.delimiter + "target_size_strategy": "up", } resampler_node = ResamplingStrategySelector() resampler_node.add_over_sampling_method("random_over_sampling", RandomOverSamplingWithReplacement) resampler_node.add_under_sampling_method("random_under_sampling", RandomUnderSamplingWithReplacement) resampler_node.add_target_size_strategy("up", TargetSizeStrategyUpsample) pipeline_config = {"random_seed": 42, "shuffle": True} fit_result = resampler_node.fit(pipeline_config=pipeline_config, hyperparameter_config=hyperparameter_config, X=X, Y=Y, train_indices=train_indices, valid_indices=None) assert_array_almost_equal(sorted(fit_result['train_indices']), np.array([0, 1, 2, 3])) num_0 = 0 num_1 = 0 for i in range(fit_result['X'].shape[0]): x = fit_result['X'][i, :] y = fit_result['Y'][i, :] if np.all(y ==
np.array([0, 1])
numpy.array
""" NASBench-101 search space, rollout, controller, evaluator. During the development, referred https://github.com/automl/nas_benchmarks/blob/master/tabular_benchmarks/nas_cifar10.py """ import abc import copy import os import re import random import collections import itertools import yaml import numpy as np import torch from torch import nn import torch.nn.functional as F import nasbench from nasbench import api from nasbench.lib import graph_util, config from aw_nas import utils from aw_nas.ops import get_op, Identity from aw_nas.utils.exception import expect from aw_nas.common import SearchSpace from aw_nas.rollout.base import BaseRollout from aw_nas.controller.base import BaseController from aw_nas.evaluator.base import BaseEvaluator from aw_nas.rollout.compare import CompareRollout from aw_nas.evaluator.arch_network import ArchEmbedder from aw_nas.utils import DenseGraphConvolution, DenseGraphFlow from aw_nas.weights_manager.shared import SharedCell, SharedOp from aw_nas.weights_manager.base import CandidateNet, BaseWeightsManager INPUT = 'input' OUTPUT = 'output' CONV1X1 = 'conv1x1-bn-relu' CONV3X3 = 'conv3x3-bn-relu' MAXPOOL3X3 = 'maxpool3x3' OUTPUT_NODE = 6 VERTICES = 7 MAX_EDGES = 9 _nasbench_cfg = config.build_config() def parent_combinations_old(adjacency_matrix, node, n_parents=2): """Get all possible parent combinations for the current node.""" if node != 1: # Parents can only be nodes which have an index that is lower than the current index, # because of the upper triangular adjacency matrix and because the index is also a # topological ordering in our case. return itertools.combinations(np.argwhere(adjacency_matrix[:node, node] == 0).flatten(), n_parents) # (e.g. (0, 1), (0, 2), (1, 2), ... else: return [[0]] def parent_combinations(node, num_parents): if node == 1 and num_parents == 1: return [(0,)] else: return list(itertools.combinations(list(range(int(node))), num_parents)) def upscale_to_nasbench_format(adjacency_matrix): """ The search space uses only 4 intermediate nodes, rather than 5 as used in nasbench This method adds a dummy node to the graph which is never used to be compatible with nasbench. :param adjacency_matrix: :return: """ return np.insert( np.insert(adjacency_matrix, 5, [0, 0, 0, 0, 0, 0], axis=1), 5, [0, 0, 0, 0, 0, 0, 0], axis=0) def _literal_np_array(arr): if arr is None: return None return "np.array({})".format(np.array2string(arr, separator=",").replace("\n", " ")) class _ModelSpec(api.ModelSpec): def __repr__(self): return "_ModelSpec({}, {}; pruned_matrix={}, pruned_ops={})".format( _literal_np_array(self.original_matrix), self.original_ops, _literal_np_array(self.matrix), self.ops, ) def hash_spec(self, *args, **kwargs): return super(_ModelSpec, self).hash_spec(_nasbench_cfg["available_ops"]) class NasBench101SearchSpace(SearchSpace): NAME = "nasbench-101" def __init__( self, multi_fidelity=False, load_nasbench=True, compare_reduced=True, compare_use_hash=False, validate_spec=True, ): super(NasBench101SearchSpace, self).__init__() self.ops_choices = ["conv1x1-bn-relu", "conv3x3-bn-relu", "maxpool3x3", "none"] awnas_ops = [ "conv_bn_relu_1x1", "conv_bn_relu_3x3", "max_pool_3x3", "none", ] self.op_mapping = {k: v for k, v in zip(self.ops_choices, awnas_ops)} self.ops_choice_to_idx = { choice: i for i, choice in enumerate(self.ops_choices) } # operations: "conv3x3-bn-relu", "conv1x1-bn-relu", "maxpool3x3" self.multi_fidelity = multi_fidelity self.load_nasbench = load_nasbench self.compare_reduced = compare_reduced self.compare_use_hash = compare_use_hash self.num_vertices = VERTICES self.max_edges = MAX_EDGES self.none_op_ind = self.ops_choices.index("none") self.num_possible_edges = self.num_vertices * \ (self.num_vertices - 1) // 2 self.num_op_choices = len(self.ops_choices) # 3 + 1 (none) self.num_ops = self.num_vertices - 2 # 5 self.idx = np.triu_indices(self.num_vertices, k=1) self.validate_spec = validate_spec if self.load_nasbench: self._init_nasbench() def __getstate__(self): state = super(NasBench101SearchSpace, self).__getstate__().copy() del state["nasbench"] return state def __setstate__(self, state): super(NasBench101SearchSpace, self).__setstate__(state) if self.load_nasbench: # slow, comment this if do not need to load nasbench API when pickle load from disk self._init_nasbench() def pad_archs(self, archs): return [self._pad_arch(arch) for arch in archs] def _pad_arch(self, arch): # padding for batchify training adj, ops = arch # all normalize the the reduced one spec = self.construct_modelspec(edges=None, matrix=adj, ops=ops) adj, ops = spec.matrix, self.op_to_idx(spec.ops) num_v = adj.shape[0] if num_v < VERTICES: padded_adj = np.concatenate( (adj[:-1], np.zeros((VERTICES - num_v, num_v), dtype=np.int8), adj[-1:]) ) padded_adj = np.concatenate( ( padded_adj[:, :-1], np.zeros((VERTICES, VERTICES - num_v)), padded_adj[:, -1:], ), axis=1, ) padded_ops = ops + [3] * (7 - num_v) adj, ops = padded_adj, padded_ops return (adj, ops) def _random_sample_ori(self): while 1: matrix = np.random.choice( [0, 1], size=(self.num_vertices, self.num_vertices) ) matrix = np.triu(matrix, 1) ops = np.random.choice( self.ops_choices[:-1], size=(self.num_vertices) ).tolist() ops[0] = "input" ops[-1] = "output" spec = _ModelSpec(matrix=matrix, ops=ops) if self.validate_spec and not self.nasbench.is_valid(spec): continue return NasBench101Rollout( spec.original_matrix, ops=self.op_to_idx(spec.original_ops), search_space=self, ) def _random_sample_me(self): while 1: splits = np.array( sorted( [0] + list( np.random.randint( 0, self.max_edges + 1, size=self.num_possible_edges - 1 ) ) + [self.max_edges] ) ) edges = np.minimum(splits[1:] - splits[:-1], 1) matrix = self.edges_to_matrix(edges) ops = np.random.randint(0, self.num_op_choices, size=self.num_ops) rollout = NasBench101Rollout(matrix, ops, search_space=self) try: self.nasbench._check_spec(rollout.genotype) except api.OutOfDomainError: # ignore out-of-domain archs (disconnected) continue else: return rollout # optional API def genotype_from_str(self, genotype_str): return eval(genotype_str) return eval(re.search("(_ModelSpec\(.+);", genotype_str).group(1) + ")") # ---- APIs ---- def random_sample(self): m, ops = self.sample(True) if len(ops) < len(m) - 2: ops.append("none") return NasBench101Rollout(m, [self.ops_choices.index(op) for op in ops], search_space=self) return self._random_sample_ori() def genotype(self, arch): # return the corresponding ModelSpec # edges, ops = arch matrix, ops = arch return self.construct_modelspec(edges=None, matrix=matrix, ops=ops) def rollout_from_genotype(self, genotype): return NasBench101Rollout( genotype.original_matrix, ops=self.op_to_idx(genotype.original_ops), search_space=self, ) def plot_arch(self, genotypes, filename, label, plot_format="pdf", **kwargs): graph = genotypes.visualize() graph.format = "pdf" graph.render(filename, view=False) return filename + ".{}".format(plot_format) def distance(self, arch1, arch2): pass # ---- helpers ---- def _init_nasbench(self): # the arch -> performances dataset self.base_dir = os.path.join( utils.get_awnas_dir("AWNAS_DATA", "data"), "nasbench-101" ) if self.multi_fidelity: self.nasbench = api.NASBench( os.path.join(self.base_dir, "nasbench_full.tfrecord") ) else: self.nasbench = api.NASBench( os.path.join(self.base_dir, "nasbench_only108.tfrecord") ) def edges_to_matrix(self, edges): matrix = np.zeros( [self.num_vertices, self.num_vertices], dtype=np.int8) matrix[self.idx] = edges return matrix def op_to_idx(self, ops): return [ self.ops_choice_to_idx[op] for op in ops if op not in {"input", "output"} ] def matrix_to_edges(self, matrix): return matrix[self.idx] def matrix_to_connection(self, matrix): edges = matrix[self.idx].astype(np.bool) node_connections = {} concat_nodes = [] for from_, to_ in zip(self.idx[0][edges], self.idx[1][edges]): # index of nodes starts with 1 rather than 0 if to_ < len(matrix) - 1: node_connections.setdefault(to_, []).append(from_) else: if from_ >= len(matrix) - 2: continue concat_nodes.append(from_) return node_connections, concat_nodes def construct_modelspec(self, edges, matrix, ops): if matrix is None: assert edges is not None matrix = self.edges_to_matrix(edges) # expect(graph_util.num_edges(matrix) <= self.max_edges, # "number of edges could not exceed {}".format(self.max_edges)) labeling = [self.ops_choices[op_ind] for op_ind in ops] labeling = ["input"] + list(labeling) + ["output"] model_spec = _ModelSpec(matrix, labeling) return model_spec def random_sample_arch(self): # not uniform, and could be illegal, # if there is not edge from the INPUT or no edge to the OUTPUT, # Just check and reject for now return self.random_sample().arch def batch_rollouts(self, batch_size, shuffle=True, max_num=None): len_ = ori_len_ = len(self.nasbench.fixed_statistics) if max_num is not None: len_ = min(max_num, len_) list_ = list(self.nasbench.fixed_statistics.values()) indexes = np.arange(ori_len_) np.random.shuffle(indexes) ind = 0 while ind < len_: end_ind = min(len_, ind + batch_size) yield [ NasBench101Rollout( list_[r_ind]["module_adjacency"], self.op_to_idx(list_[r_ind]["module_operations"]), search_space=self, ) for r_ind in indexes[ind:end_ind] ] ind = end_ind @classmethod def supported_rollout_types(cls): return ["nasbench-101"] class NasBench101OneShotSearchSpace(NasBench101SearchSpace): # NAME = "nasbench-101-1shot" def __init__( self, multi_fidelity=False, load_nasbench=True, compare_reduced=True, compare_use_hash=False, validate_spec=True, num_cell_groups=2, num_init_nodes=1, cell_layout=None, reduce_cell_groups=(1,), num_layers=8, ): super(NasBench101OneShotSearchSpace, self).__init__( multi_fidelity, load_nasbench, compare_reduced, compare_use_hash, validate_spec, ) self.num_init_nodes = num_init_nodes self.num_cell_groups = num_cell_groups self.reduce_cell_groups = reduce_cell_groups self.num_layers = num_layers if cell_layout is not None: expect( len(cell_layout) == self.num_layers, "Length of `cell_layout` should equal `num_layers`", ) expect( np.max(cell_layout) == self.num_cell_groups - 1, "Max of elements of `cell_layout` should equal `num_cell_groups-1`", ) self.cell_layout = cell_layout elif self.num_cell_groups == 2: # by default: cell 0: normal cel, cell 1: reduce cell self.cell_layout = [0] * self.num_layers self.cell_layout[self.num_layers // 3] = 1 self.cell_layout[(2 * self.num_layers) // 3] = 1 else: raise ValueError self.loose_end = False self.num_steps = 4 self.concat_op = "concat" self.concat_nodes = None self.cellwise_primitives = False self.shared_primitives = self.ops_choices self.num_parents = None if self.load_nasbench: self._init_nasbench() def _is_valid(self, matrix): assert self.num_parents is not None, \ "Do no use nasbench-101-1shot directly, please use nasbench-101-1shot-1, "\ "nasbench-101-1shot-2 or nasbench-101-1shot-3 search space instead." num_node = list(matrix.sum(0)) if len(num_node) == VERTICES - 1: num_node.insert(-2, 0) return all([p == k for p, k in zip(self.num_parents, num_node)]) @abc.abstractmethod def create_nasbench_adjacency_matrix(self, parents, **kwargs): """Based on given connectivity pattern create the corresponding adjacency matrix.""" pass def sample(self, with_loose_ends, upscale=True): if with_loose_ends: adjacency_matrix_sample = self._sample_adjacency_matrix_with_loose_ends() else: adjacency_matrix_sample = self._sample_adjacency_matrix_without_loose_ends( adjacency_matrix=np.zeros( [self.num_intermediate_nodes + 2, self.num_intermediate_nodes + 2]), node=self.num_intermediate_nodes + 1) assert self._check_validity_of_adjacency_matrix( adjacency_matrix_sample), 'Incorrect graph' if upscale and self.NAME[-1] in ["1", "2"]: adjacency_matrix_sample = upscale_to_nasbench_format( adjacency_matrix_sample) return adjacency_matrix_sample, random.choices(self.ops_choices[:-1], k=self.num_intermediate_nodes) def _sample_adjacency_matrix_with_loose_ends(self): parents_per_node = [random.sample(list(itertools.combinations(list(range(int(node))), num_parents)), 1) for node, num_parents in self.num_parents_per_node.items()][2:] parents = { '0': [], '1': [0] } for node, node_parent in enumerate(parents_per_node, 2): parents[str(node)] = node_parent adjacency_matrix = self._create_adjacency_matrix_with_loose_ends( parents) return adjacency_matrix def _sample_adjacency_matrix_without_loose_ends(self, adjacency_matrix, node): req_num_parents = self.num_parents_per_node[str(node)] current_num_parents = np.sum(adjacency_matrix[:, node], dtype=np.int) num_parents_left = req_num_parents - current_num_parents sampled_parents = \ random.sample(list(parent_combinations_old( adjacency_matrix, node, n_parents=num_parents_left)), 1)[0] for parent in sampled_parents: adjacency_matrix[parent, node] = 1 adjacency_matrix = self._sample_adjacency_matrix_without_loose_ends( adjacency_matrix, parent) return adjacency_matrix @abc.abstractmethod def generate_adjacency_matrix_without_loose_ends(self, **kwargs): """Returns every adjacency matrix in the search space without loose ends.""" pass def convert_config_to_nasbench_format(self, config): parents = {node: config["choice_block_{}_parents".format(node)] for node in list(self.num_parents_per_node.keys())[1:]} parents['0'] = [] adjacency_matrix = self.create_nasbench_adjacency_matrix_with_loose_ends( parents) ops = [config["choice_block_{}_op".format(node)] for node in list( self.num_parents_per_node.keys())[1:-1]] return adjacency_matrix, ops def generate_search_space_without_loose_ends(self): # Create all possible connectivity patterns for iter, adjacency_matrix in enumerate(self.generate_adjacency_matrix_without_loose_ends()): print(iter) # Print graph # Evaluate every possible combination of node ops. n_repeats = int(np.sum(np.sum(adjacency_matrix, axis=1)[1:-1] > 0)) for combination in itertools.product([CONV1X1, CONV3X3, MAXPOOL3X3], repeat=n_repeats): # Create node labels # Add some op as node 6 which isn't used, here conv1x1 ops = [INPUT] combination = list(combination) for i in range(5): if np.sum(adjacency_matrix, axis=1)[i + 1] > 0: ops.append(combination.pop()) else: ops.append(CONV1X1) assert len(combination) == 0, 'Something is wrong' ops.append(OUTPUT) # Create nested list from numpy matrix nasbench_adjacency_matrix = adjacency_matrix.astype( np.int).tolist() # Assemble the model spec model_spec = api.ModelSpec( # Adjacency matrix of the module matrix=nasbench_adjacency_matrix, # Operations at the vertices of the module, matches order of matrix ops=ops) yield adjacency_matrix, ops, model_spec def _generate_adjacency_matrix(self, adjacency_matrix, node): if self._check_validity_of_adjacency_matrix(adjacency_matrix): # If graph from search space then yield. yield adjacency_matrix else: req_num_parents = self.num_parents_per_node[str(node)] current_num_parents = np.sum( adjacency_matrix[:, node], dtype=np.int) num_parents_left = req_num_parents - current_num_parents for parents in parent_combinations_old(adjacency_matrix, node, n_parents=num_parents_left): # Make copy of adjacency matrix so that when it returns to this stack # it can continue with the unmodified adjacency matrix adjacency_matrix_copy = copy.copy(adjacency_matrix) for parent in parents: adjacency_matrix_copy[parent, node] = 1 for graph in self._generate_adjacency_matrix(adjacency_matrix=adjacency_matrix_copy, node=parent): yield graph def _create_adjacency_matrix(self, parents, adjacency_matrix, node): if self._check_validity_of_adjacency_matrix(adjacency_matrix): # If graph from search space then yield. return adjacency_matrix else: for parent in parents[str(node)]: adjacency_matrix[parent, node] = 1 if parent != 0: adjacency_matrix = self._create_adjacency_matrix(parents=parents, adjacency_matrix=adjacency_matrix, node=parent) return adjacency_matrix def _create_adjacency_matrix_with_loose_ends(self, parents): # Create the adjacency_matrix on a per node basis adjacency_matrix = np.zeros([len(parents), len(parents)]) for node, node_parents in parents.items(): for parent in node_parents: adjacency_matrix[parent, int(node)] = 1 return adjacency_matrix def _check_validity_of_adjacency_matrix(self, adjacency_matrix): """ Checks whether a graph is a valid graph in the search space. 1. Checks that the graph is non empty 2. Checks that every node has the correct number of inputs 3. Checks that if a node has outgoing edges then it should also have incoming edges 4. Checks that input node is connected 5. Checks that the graph has no more than 9 edges :param adjacency_matrix: :return: """ # Check that the graph contains nodes num_intermediate_nodes = sum( np.array(np.sum(adjacency_matrix, axis=1) > 0, dtype=int)[1:-1]) if num_intermediate_nodes == 0: return False # Check that every node has exactly the right number of inputs col_sums = np.sum(adjacency_matrix[:, :], axis=0) for col_idx, col_sum in enumerate(col_sums): # important FIX! if col_idx > 0: if col_sum != self.num_parents_per_node[str(col_idx)]: return False # Check that if a node has outputs then it should also have incoming edges (apart from zero) col_sums = np.sum(np.sum(adjacency_matrix, axis=0) > 0) row_sums = np.sum(np.sum(adjacency_matrix, axis=1) > 0) if col_sums != row_sums: return False # Check that the input node is always connected. Otherwise the graph is disconnected. row_sum =
np.sum(adjacency_matrix, axis=1)
numpy.sum
# Run Grtrans with rrjet model # The rrjet model is defined in "fluid_model_rrjet.py" # NOTE -- currently the power law emissivity is very slow because paralleization is off # First make grtrans with 'make' # Then run this in python import numpy as np import grtrans_batch as gr import matplotlib.pyplot as plt import scipy.ndimage.filters as filt ang=20. name = 'rrjet'+str(ang) mu = np.cos(ang*np.pi/180.) size = 300. uout = 1./(10*size) npix = 100 ngeo = 5000 cmperMpc = 3.086e24 MBH = 6.7e9 DTOBH = 16.528*cmperMpc RADPERUAS = np.pi/180./3600./1.e6 psize_rg = 2*size/npix cmperrg = 147708.8 * MBH psize_cm = psize_rg * cmperrg psize_rad = psize_cm / DTOBH psize_uas = psize_rad / RADPERUAS pp= 2.001 RF = 43.e9 cfun = 'jet' cfun2 = 'seismic' RERUN = True FNAME = 'grtrans_jet_compare.txt' def main(): # run grtrans x=gr.grtrans() x.write_grtrans_inputs(name+'.in', oname=name+'.out', fname='RRJET',phi0=0., betaeconst=1.e-4, ximax=10., nfreq=1,fmin=RF,fmax=RF, gmin=10., gmax=1.e35, p2=pp, p1=pp, #ename='SYNCHPL', ename='POLSYNCHPL', nvals=4, fpositron=0, spin=0., standard=1, uout=uout, mbh=MBH, #epcoefindx=[1,1,1,1,1,1,1], #epcoefindx=[1,1,1,1,0,0,0], mdotmin=1.57e15,mdotmax=1.57e15,nmdot=1, nmu=1,mumin=mu,mumax=mu, gridvals=[-size,size,-size,size], nn=[npix,npix,ngeo], hindf=1,hnt=1, muval=1.) if RERUN: x.run_grtrans() # load image x.read_grtrans_output() x.convert_to_Jy(DTOBH) #grt_obj=x save_grtrans_image(x) display_grtrans_image(x) def save_grtrans_image(grt_obj): """quick save, not ehtim compatible""" I_im = grt_obj.ivals[:,0,0].reshape(npix,npix).flatten() Q_im = grt_obj.ivals[:,1,0].reshape(npix,npix).flatten() U_im = grt_obj.ivals[:,2,0].reshape(npix,npix).flatten() V_im = grt_obj.ivals[:,3,0].reshape(npix,npix).flatten() # convert to Tb factor = 3.254e13/(RF**2 * psize_rad**2) I_im *= factor Q_im *= factor U_im *= factor V_im *= factor x = np.array([[i for i in range(npix)] for j in range(npix)]).flatten() y = np.array([[j for i in range(npix)] for j in range(npix)]).flatten() x -= npix/2 y -= npix/2 x = x*psize_uas y = y*psize_uas outdat = np.vstack((x.T,y.T,I_im.T,Q_im.T,U_im.T,V_im.T)).T np.savetxt('../rrjet_and_riaf/'+FNAME,outdat) #np.savetxt('../rrjet_and_riaf/grtrans_jet_compare_positron_noconv.txt',outdat) return def display_grtrans_image(grt_obj,nvec=20,veccut=0.005,blur_kernel=1.25): plt.close('all') I_im = grt_obj.ivals[:,0,0].reshape(npix,npix) Q_im = grt_obj.ivals[:,1,0].reshape(npix,npix) U_im = grt_obj.ivals[:,2,0].reshape(npix,npix) V_im = grt_obj.ivals[:,3,0].reshape(npix,npix) I_im = filt.gaussian_filter(I_im, (blur_kernel, blur_kernel)) Q_im = filt.gaussian_filter(Q_im, (blur_kernel, blur_kernel)) U_im = filt.gaussian_filter(U_im, (blur_kernel, blur_kernel)) V_im = filt.gaussian_filter(V_im, (blur_kernel, blur_kernel)) # convert to Tb factor = 3.254e13/(RF**2 * psize_rad**2) I_im *= factor Q_im *= factor U_im *= factor V_im *= factor # Polarization Vectors P_im = np.abs(Q_im + 1j*U_im) m_im = P_im/I_im thin = npix//nvec mask = I_im > veccut * np.max(I_im) mask2 = mask[::thin, ::thin] m = m_im[::thin, ::thin][mask2] x = (np.array([[i for i in range(npix)] for j in range(npix)])[::thin, ::thin]) x = x[mask2] y = (np.array([[j for i in range(npix)] for j in range(npix)])[::thin, ::thin]) y = y[mask2] a = (-np.sin(np.angle(Q_im+1j*U_im)/2)[::thin, ::thin]) a = a[mask2] #a = m*a b = ( np.cos(np.angle(Q_im+1j*U_im)/2)[::thin, ::thin]) b = b[mask2] #b = m*b P_im[
np.logical_not(mask)
numpy.logical_not
#!/usr/bin/env python # -*- coding: utf-8 -*- """Diagnostic script to reproduce Cox et al. (2018). Description ----------- Plot effective climate sensitivity ECS vs. temperature variability metric psi to establish an emergent relationship for ECS. Author ------ <NAME> (DLR, Germany) Project ------- CRESCENDO Configuration options in recipe ------------------------------- confidence_level : float, optional (default: 0.66) Confidence level for ECS error estimation. """ import logging import os import iris import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np import esmvaltool.diag_scripts.emergent_constraints as ec import esmvaltool.diag_scripts.shared.iris_helpers as ih from esmvaltool.diag_scripts.shared import ( ProvenanceLogger, get_diagnostic_filename, get_plot_filename, group_metadata, io, plot, run_diagnostic, select_metadata) logger = logging.getLogger(os.path.basename(__file__)) plt.style.use(plot.get_path_to_mpl_style()) COLOR_SMALL_LAMBDA = '#800060' COLOR_LARGE_LAMBDA = '#009900' (FIG, AXES) = plt.subplots() ECS_ATTRS = { 'short_name': 'ecs', 'long_name': 'Effective Climate Sensitivity (ECS)', 'units': 'K', } TASA_ATTRS = { 'short_name': 'tasa', 'long_name': 'Near-Surface Air Temperature Anomaly', 'units': 'K', } PSI_ATTRS = { 'short_name': 'psi', 'long_name': 'Temperature variability metric', 'units': 'K', } def _get_ancestor_files(cfg, obs_name, projects=None): """Get ancestor files for provenance.""" if projects is None: projects = _get_project(cfg) if isinstance(projects, str): projects = [projects] datasets = [] for project in projects: datasets.extend( select_metadata(cfg['input_data'].values(), project=project)) datasets.extend( select_metadata(cfg['input_data'].values(), dataset=obs_name)) return [d['filename'] for d in datasets] def _get_model_color(model, lambda_cube): """Get color of model dependent on climate feedback parameter.""" clim_sens = lambda_cube.extract(iris.Constraint(dataset=model)).data if clim_sens < 1.0: col = COLOR_SMALL_LAMBDA else: col = COLOR_LARGE_LAMBDA return col def _plot_model_point(model, psi_cube, ecs_cube, lambda_cube): """Plot a single model point for emergent relationship.""" col = _get_model_color(model, lambda_cube) style = plot.get_dataset_style(model, 'cox18nature') AXES.plot( psi_cube.extract(iris.Constraint(dataset=model)).data, ecs_cube.extract(iris.Constraint(dataset=model)).data, linestyle='none', marker=style['mark'], markeredgecolor=col, markerfacecolor=col, markersize=style['size']) def _get_line_plot_legend(): """Add legend for line plots.""" color_obs = plot.get_dataset_style('OBS', 'cox18nature')['color'] handles = [ mlines.Line2D([], [], color=COLOR_SMALL_LAMBDA, label=r'$\lambda < 1.0$ Wm$^{-2}$K$^{-1}$'), mlines.Line2D([], [], color=COLOR_LARGE_LAMBDA, label=r'$\lambda > 1.0$ Wm$^{-2}$K$^{-1}$'), mlines.Line2D([], [], linestyle='none', marker='o', markeredgecolor=color_obs, markerfacecolor=color_obs, label='Observations'), ] return AXES.legend(handles=handles, loc='upper left') def _get_project(cfg): """Extract project from cfg.""" input_data = cfg['input_data'].values() projects = list(group_metadata(input_data, 'project').keys()) projects = [p for p in projects if 'obs' not in p.lower()] if len(projects) == 1: return projects[0] return projects def _save_fig(cfg, basename, legend=None): """Save matplotlib figure.""" path = get_plot_filename(basename, cfg) if legend is None: legend = [] else: legend = [legend] FIG.savefig( path, additional_artists=legend, bbox_inches='tight', orientation='landscape') logger.info("Wrote %s", path) AXES.cla() return path def get_external_cubes(cfg): """Get external cubes for psi, ECS and lambda.""" cubes = iris.cube.CubeList() for filename in ('psi.nc', 'ecs.nc', 'lambda.nc'): filepath = io.get_ancestor_file(cfg, filename) cube = iris.load_cube(filepath) cube = cube.extract( ih.iris_project_constraint(['OBS'], cfg, negate=True)) cubes.append(cube) cubes = ih.intersect_dataset_coordinates(cubes) return (cubes[0], cubes[1], cubes[2]) def get_provenance_record(caption, statistics, plot_type, ancestor_files): """Create a provenance record describing the diagnostic data and plot.""" record = { 'ancestors': ancestor_files, 'authors': ['schlund_manuel'], 'caption': caption, 'domains': ['global'], 'plot_type': plot_type, 'realms': ['atmos'], 'references': ['cox18nature'], 'statistics': statistics, 'themes': ['EC'], } return record def plot_temperature_anomaly(cfg, tas_cubes, lambda_cube, obs_name): """Plot temperature anomaly versus time.""" for cube in tas_cubes.values(): cube.data -= np.mean( cube.extract( iris.Constraint(year=lambda cell: 1961 <= cell <= 1990)).data) # Save netcdf file and provencance filename = 'temperature_anomaly_{}'.format(obs_name) netcdf_path = get_diagnostic_filename(filename, cfg) io.save_1d_data(tas_cubes, netcdf_path, 'year', TASA_ATTRS) project = _get_project(cfg) provenance_record = get_provenance_record( "Simulated change in global temperature from {} models (coloured " "lines), compared to the global temperature anomaly from the {} " "dataset (black dots). The anomalies are relative to a baseline " "period of 1961-1990.".format(project, obs_name), ['anomaly'], ['times'], _get_ancestor_files(cfg, obs_name)) # Plot if cfg['write_plots']: models = lambda_cube.coord('dataset').points # Plot lines for model in models: cube = tas_cubes[model] AXES.plot( cube.coord('year').points, cube.data, color=_get_model_color(model, lambda_cube)) obs_style = plot.get_dataset_style('OBS', 'cox18nature') obs_cube = tas_cubes[obs_name] AXES.plot( obs_cube.coord('year').points, obs_cube.data, linestyle='none', marker='o', markeredgecolor=obs_style['color'], markerfacecolor=obs_style['color']) # Plot appearance AXES.set_title('Simulation of global warming record') AXES.set_xlabel('Year') AXES.set_ylabel('Temperature anomaly / K') legend = _get_line_plot_legend() # Save plot provenance_record['plot_file'] = _save_fig(cfg, filename, legend) # Write provenance with ProvenanceLogger(cfg) as provenance_logger: provenance_logger.log(netcdf_path, provenance_record) def plot_psi(cfg, psi_cubes, lambda_cube, obs_name): """Plot temperature variability metric psi versus time.""" filename = 'temperature_variability_metric_{}'.format(obs_name) netcdf_path = get_diagnostic_filename(filename, cfg) io.save_1d_data(psi_cubes, netcdf_path, 'year', PSI_ATTRS) project = _get_project(cfg) provenance_record = get_provenance_record( "Psi metric of variability versus time, from the {0} models " "(coloured lines), and the {1} observational data (black circles). " "The psi values are calculated for windows of width {2} yr, after " "linear de-trending in each window. These {2}-yr windows are shown " "for different end times.".format(project, obs_name, cfg.get('window_length', 55)), ['corr', 'var'], ['times'], _get_ancestor_files(cfg, obs_name)) # Plot if cfg['write_plots']: models = lambda_cube.coord('dataset').points # Plot lines for model in models: cube = psi_cubes[model] AXES.plot( cube.coord('year').points, cube.data, color=_get_model_color(model, lambda_cube)) obs_style = plot.get_dataset_style('OBS', 'cox18nature') obs_cube = psi_cubes[obs_name] AXES.plot( obs_cube.coord('year').points, obs_cube.data, linestyle='none', marker='o', markeredgecolor=obs_style['color'], markerfacecolor=obs_style['color']) # Plot appearance AXES.set_title('Metric of variability versus time') AXES.set_xlabel('Year') AXES.set_ylabel(r'$\Psi$ / K') legend = _get_line_plot_legend() # Save plot provenance_record['plot_file'] = _save_fig(cfg, filename, legend) # Write provenance with ProvenanceLogger(cfg) as provenance_logger: provenance_logger.log(netcdf_path, provenance_record) def plot_emergent_relationship(cfg, psi_cube, ecs_cube, lambda_cube, obs_cube): """Plot emergent relationship.""" filename = 'emergent_relationship_{}'.format( obs_cube.attributes['dataset']) cube = ecs_cube.copy() cube.add_aux_coord( iris.coords.AuxCoord(psi_cube.data, **ih.convert_to_iris(PSI_ATTRS)), 0) netcdf_path = get_diagnostic_filename(filename, cfg) io.iris_save(cube, netcdf_path) provenance_record = get_provenance_record( "Emergent relationship between ECS and the psi metric. The black dot-" "dashed line shows the best-fit linear regression across the model " "ensemble, with the prediction error for the fit given by the black " "dashed lines. The vertical blue lines show the observational " "constraint from the {} observations: the mean (dot-dashed line) and " "the mean plus and minus one standard deviation (dashed lines).". format(obs_cube.attributes['dataset']), ['mean', 'corr', 'var'], ['scatter'], _get_ancestor_files(cfg, obs_cube.attributes['dataset'])) # Plot if cfg['write_plots']: obs_mean = np.mean(obs_cube.data) obs_std = np.std(obs_cube.data) # Calculate regression line lines = ec.regression_line(psi_cube.data, ecs_cube.data) logger.info("Found emergent relationship with slope %.2f (r = %.2f)", lines['slope'], lines['rvalue']) # Plot points for model in psi_cube.coord('dataset').points: _plot_model_point(model, psi_cube, ecs_cube, lambda_cube) # Plot lines AXES.set_xlim(auto=False) AXES.set_ylim(auto=False) AXES.plot( lines['x'], lines['y_best_estim'], color='black', linestyle='dashdot', label='Linear regression') AXES.plot( lines['x'], lines['y_minus_err'], color='black', linestyle='dashed') AXES.plot( lines['x'], lines['y_plus_err'], color='black', linestyle='dashed') AXES.axvline( obs_mean, color='blue', linestyle='dashdot', label='Observational constraint') AXES.axvline(obs_mean - obs_std, color='blue', linestyle='dashed') AXES.axvline(obs_mean + obs_std, color='blue', linestyle='dashed') # Plot appearance AXES.set_title('Emergent relationship fit') AXES.set_xlabel(r'$\Psi$ / K') AXES.set_ylabel('ECS / K') legend = AXES.legend(loc='upper left') # Save plot provenance_record['plot_file'] = _save_fig(cfg, filename, legend) # Write provenance with ProvenanceLogger(cfg) as provenance_logger: provenance_logger.log(netcdf_path, provenance_record) def plot_pdf(cfg, psi_cube, ecs_cube, obs_cube): """Plot probability density function of ECS.""" obs_mean = np.mean(obs_cube.data) obs_std = np.std(obs_cube.data) (ecs_lin, ecs_pdf) = ec.gaussian_pdf(psi_cube.data, ecs_cube.data, obs_mean, obs_std) # Provenance filename = 'pdf_{}'.format(obs_cube.attributes['dataset']) netcdf_path = get_diagnostic_filename(filename, cfg) cube = iris.cube.Cube( ecs_pdf, var_name='pdf', long_name='Probability density function', units='K-1') cube.add_aux_coord( iris.coords.AuxCoord(ecs_lin, **ih.convert_to_iris(ECS_ATTRS)), 0) io.iris_save(cube, netcdf_path) project = _get_project(cfg) provenance_record = get_provenance_record( "The PDF for ECS. The orange histograms show the prior distributions " "that arise from equal weighting of the {} models in 0.5 K bins.". format(project), ['mean'], ['other'], _get_ancestor_files(cfg, obs_cube.attributes['dataset'])) # Plot if cfg['write_plots']: AXES.plot( ecs_lin, ecs_pdf, color='black', linewidth=2.0, label='Emergent constraint') AXES.hist( ecs_cube.data, bins=6, range=(2.0, 5.0), density=True, color='orange', label='{} models'.format(project)) # Plot appearance AXES.set_title('PDF of emergent constraint') AXES.set_xlabel('ECS / K') AXES.set_ylabel('Probability density') legend = AXES.legend(loc='upper left') # Save plot provenance_record['plot_file'] = _save_fig(cfg, filename, legend) # Write provenance with ProvenanceLogger(cfg) as provenance_logger: provenance_logger.log(netcdf_path, provenance_record) def plot_cdf(cfg, psi_cube, ecs_cube, obs_cube): """Plot cumulative distribution function of ECS.""" confidence_level = cfg.get('confidence_level', 0.66) (ecs_lin, ecs_pdf) = ec.gaussian_pdf(psi_cube.data, ecs_cube.data, np.mean(obs_cube.data), np.std(obs_cube.data)) ecs_cdf = ec.cdf(ecs_lin, ecs_pdf) # Provenance filename = 'cdf_{}'.format(obs_cube.attributes['dataset']) netcdf_path = get_diagnostic_filename(filename, cfg) cube = iris.cube.Cube( ecs_cdf, var_name='cdf', long_name='Cumulative distribution function', units='1') cube.add_aux_coord( iris.coords.AuxCoord(ecs_lin, **ih.convert_to_iris(ECS_ATTRS)), 0) io.iris_save(cube, netcdf_path) project = _get_project(cfg) provenance_record = get_provenance_record( "The CDF for ECS. The horizontal dot-dashed lines show the {}% " "confidence limits. The orange histograms show the prior " "distributions that arise from equal weighting of the {} models in " "0.5 K bins.".format(int(confidence_level * 100), project), ['mean'], ['other'], _get_ancestor_files(cfg, obs_cube.attributes['dataset'])) # Plot if cfg['write_plots']: AXES.plot( ecs_lin, ecs_cdf, color='black', linewidth=2.0, label='Emergent constraint') AXES.hist( ecs_cube.data, bins=6, range=(2.0, 5.0), cumulative=True, density=True, color='orange', label='{} models'.format(project)) AXES.axhline( (1.0 - confidence_level) / 2.0, color='black', linestyle='dashdot') AXES.axhline( (1.0 + confidence_level) / 2.0, color='black', linestyle='dashdot') # Plot appearance AXES.set_title('CDF of emergent constraint') AXES.set_xlabel('ECS / K') AXES.set_ylabel('CDF') legend = AXES.legend(loc='upper left') # Save plot provenance_record['plot_file'] = _save_fig(cfg, filename, legend) # Write provenance with ProvenanceLogger(cfg) as provenance_logger: provenance_logger.log(netcdf_path, provenance_record) def get_ecs_range(cfg, psi_cube, ecs_cube, obs_cube): """Get constrained ecs range.""" confidence_level = cfg.get('confidence_level', 0.66) conf_low = (1.0 - confidence_level) / 2.0 conf_high = (1.0 + confidence_level) / 2.0 # Calculate PDF and CDF (ecs_lin, ecs_pdf) = ec.gaussian_pdf(psi_cube.data, ecs_cube.data,
np.mean(obs_cube.data)
numpy.mean
from __future__ import division import glob import numpy as NP from functools import reduce import numpy.ma as MA import progressbar as PGB import h5py import healpy as HP import warnings import copy import astropy.cosmology as CP from astropy.time import Time, TimeDelta from astropy.io import fits from astropy import units as U from astropy import constants as FCNST from scipy import interpolate from astroutils import DSP_modules as DSP from astroutils import constants as CNST from astroutils import nonmathops as NMO from astroutils import mathops as OPS from astroutils import lookup_operations as LKP import prisim from prisim import interferometry as RI from prisim import primary_beams as PB from prisim import delay_spectrum as DS try: from pyuvdata import UVBeam except ImportError: uvbeam_module_found = False else: uvbeam_module_found = True prisim_path = prisim.__path__[0]+'/' cosmoPlanck15 = CP.Planck15 # Planck 2015 cosmology cosmo100 = cosmoPlanck15.clone(name='Modified Planck 2015 cosmology with h=1.0', H0=100.0) # Modified Planck 2015 cosmology with h=1.0, H= 100 km/s/Mpc ################################################################################ def write_PRISim_bispectrum_phase_to_npz(infile_prefix, outfile_prefix, triads=None, bltriplet=None, hdf5file_prefix=None, infmt='npz', datakey='noisy', blltol=0.1): """ ---------------------------------------------------------------------------- Write closure phases computed in a PRISim simulation to a NPZ file with appropriate format for further analysis. Inputs: infile_prefix [string] HDF5 file or NPZ file created by a PRISim simulation or its replication respectively. If infmt is specified as 'hdf5', then hdf5file_prefix will be ignored and all the observing info will be read from here. If infmt is specified as 'npz', then hdf5file_prefix needs to be specified in order to read the observing parameters. triads [list or numpy array or None] Antenna triads given as a list of 3-element lists or a ntriads x 3 array. Each element in the inner list is an antenna label. They will be converted to strings internally. If set to None, then all triads determined by bltriplet will be used. If specified, then inputs in blltol and bltriplet will be ignored. bltriplet [numpy array or None] 3x3 numpy array containing the 3 baseline vectors. The first axis denotes the three baselines, the second axis denotes the East, North, Up coordinates of the baseline vector. Units are in m. Will be used only if triads is set to None. outfile_prefix [string] Prefix of the NPZ file. It will be appended by '_noiseless', '_noisy', and '_noise' and further by extension '.npz' infmt [string] Format of the input file containing visibilities. Accepted values are 'npz' (default), and 'hdf5'. If infmt is specified as 'npz', then hdf5file_prefix also needs to be specified for reading the observing parameters datakey [string] Specifies which -- 'noiseless', 'noisy' (default), or 'noise' -- visibilities are to be written to the output. If set to None, and infmt is 'hdf5', then all three sets of visibilities are written. The datakey string will also be added as a suffix in the output file. blltol [scalar] Baseline length tolerance (in m) for matching baseline vectors in triads. It must be a scalar. Default = 0.1 m. Will be used only if triads is set to None and bltriplet is to be used. ---------------------------------------------------------------------------- """ if not isinstance(infile_prefix, str): raise TypeError('Input infile_prefix must be a string') if not isinstance(outfile_prefix, str): raise TypeError('Input outfile_prefix must be a string') if (triads is None) and (bltriplet is None): raise ValueError('One of triads or bltriplet must be set') if triads is None: if not isinstance(bltriplet, NP.ndarray): raise TypeError('Input bltriplet must be a numpy array') if not isinstance(blltol, (int,float)): raise TypeError('Input blltol must be a scalar') if bltriplet.ndim != 2: raise ValueError('Input bltriplet must be a 2D numpy array') if bltriplet.shape[0] != 3: raise ValueError('Input bltriplet must contain three baseline vectors') if bltriplet.shape[1] != 3: raise ValueError('Input bltriplet must contain baseline vectors along three corrdinates in the ENU frame') else: if not isinstance(triads, (list, NP.ndarray)): raise TypeError('Input triads must be a list or numpy array') triads = NP.asarray(triads).astype(str) if not isinstance(infmt, str): raise TypeError('Input infmt must be a string') if infmt.lower() not in ['npz', 'hdf5']: raise ValueError('Input file format must be npz or hdf5') if infmt.lower() == 'npz': if not isinstance(hdf5file_prefix, str): raise TypeError('If infmt is npz, then hdf5file_prefix needs to be specified for observing parameters information') if datakey is None: datakey = ['noisy'] if isinstance(datakey, str): datakey = [datakey] elif not isinstance(datakey, list): raise TypeError('Input datakey must be a list') for dkey in datakey: if dkey.lower() not in ['noiseless', 'noisy', 'noise']: raise ValueError('Invalid input found in datakey') if infmt.lower() == 'hdf5': fullfnames_with_extension = glob.glob(infile_prefix + '*' + infmt.lower()) fullfnames_without_extension = [fname.split('.hdf5')[0] for fname in fullfnames_with_extension] else: fullfnames_without_extension = [infile_prefix] if len(fullfnames_without_extension) == 0: raise IOError('No input files found with pattern {0}'.format(infile_prefix)) try: if infmt.lower() == 'hdf5': simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[0]) else: simvis = RI.InterferometerArray(None, None, None, init_file=hdf5file_prefix) except: raise IOError('Input PRISim file does not contain a valid PRISim output') latitude = simvis.latitude longitude = simvis.longitude location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) last = simvis.lst / 15.0 / 24.0 # from degrees to fraction of day last = last.reshape(-1,1) daydata = NP.asarray(simvis.timestamp[0]).ravel() if infmt.lower() == 'npz': simvisinfo = NP.load(fullfnames_without_extension[0]+'.'+infmt.lower()) skyvis = simvisinfo['noiseless'][0,...] vis = simvisinfo['noisy'] noise = simvisinfo['noise'] n_realize = vis.shape[0] else: n_realize = len(fullfnames_without_extension) cpdata = {} outfile = {} for fileind in range(n_realize): if infmt.lower() == 'npz': simvis.vis_freq = vis[fileind,...] simvis.vis_noise_freq = noise[fileind,...] else: simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[fileind]) if fileind == 0: if triads is None: triads, bltriplets = simvis.getThreePointCombinations(unique=False) # triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # bltriplets = NP.asarray(prisim_BSP_info['baseline_triplets']) triads = NP.asarray(triads).reshape(-1,3) bltriplets = NP.asarray(bltriplets) blinds = [] matchinfo = LKP.find_NN(bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol) revind = [] for blnum in NP.arange(bltriplet.shape[0]): if len(matchinfo[0][blnum]) == 0: revind += [blnum] if len(revind) > 0: flip_factor = NP.ones(3, dtype=NP.float) flip_factor[NP.array(revind)] = -1 rev_bltriplet = bltriplet * flip_factor.reshape(-1,1) matchinfo = LKP.find_NN(rev_bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol) for blnum in NP.arange(bltriplet.shape[0]): if len(matchinfo[0][blnum]) == 0: raise ValueError('Some baselines in the triplet are not found in the model triads') triadinds = [] for blnum in NP.arange(bltriplet.shape[0]): triadind, blind = NP.unravel_index(NP.asarray(matchinfo[0][blnum]), (bltriplets.shape[0], bltriplets.shape[1])) triadinds += [triadind] triadind_intersection = NP.intersect1d(triadinds[0], NP.intersect1d(triadinds[1], triadinds[2])) if triadind_intersection.size == 0: raise ValueError('Specified triad not found in the PRISim model. Try other permutations of the baseline vectors and/or reverse individual baseline vectors in the triad before giving up.') triads = triads[triadind_intersection,:] selected_bltriplets = bltriplets[triadind_intersection,:,:].reshape(-1,3,3) prisim_BSP_info = simvis.getClosurePhase(antenna_triplets=triads.tolist(), delay_filter_info=None, specsmooth_info=None, spectral_window_info=None, unique=False) if fileind == 0: triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # Re-establish the triads returned after the first iteration (to accunt for any order flips) for outkey in datakey: if fileind == 0: outfile[outkey] = outfile_prefix + '_{0}.npz'.format(outkey) if outkey == 'noiseless': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...] cpdata[outkey] = prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]), axis=0) if outkey == 'noisy': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...] cpdata[outkey] = prisim_BSP_info['closure_phase_vis'][NP.newaxis,...] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]), axis=0) if outkey == 'noise': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:] cpdata[outkey] = prisim_BSP_info['closure_phase_noise'][NP.newaxis,:,:] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_noise'][NP.newaxis,...]), axis=0) for outkey in datakey: cpdata[outkey] = NP.rollaxis(cpdata[outkey], 3, start=0) flagsdata = NP.zeros(cpdata[outkey].shape, dtype=NP.bool) NP.savez_compressed(outfile[outkey], closures=cpdata[outkey], flags=flagsdata, triads=triads, last=last+NP.zeros((1,n_realize)), days=daydata+NP.arange(n_realize)) ################################################################################ def loadnpz(npzfile, longitude=0.0, latitude=0.0, lst_format='fracday'): """ ---------------------------------------------------------------------------- Read an input NPZ file containing closure phase data output from CASA and return a dictionary Inputs: npzfile [string] Input NPZ file including full path containing closure phase data. It must have the following files/keys inside: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units which is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) latitude [scalar int or float] Latitude of site (in degrees). Default=0.0 deg. longitude [scalar int or float] Longitude of site (in degrees). Default=0.0 deg. lst_format [string] Specifies the format/units in which the 'last' key is to be interpreted. If set to 'hourangle', the LST is in units of hour angle. If set to 'fracday', the fractional portion of the 'last' value is the LST in units of days. Output: cpinfo [dictionary] Contains one top level keys, namely, 'raw' Under key 'raw' which holds a dictionary, the subkeys include 'cphase' (nlst,ndays,ntriads,nchan), 'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags' (nlst,ndays,ntriads,nchan), and some other optional keys ---------------------------------------------------------------------------- """ npzdata = NP.load(npzfile) cpdata = npzdata['closures'] triadsdata = npzdata['triads'] flagsdata = npzdata['flags'] location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location) # lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD if lst_format.lower() == 'hourangle': lstHA = npzdata['last'] lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s) elif lst_format.lower() == 'fracday': lstfrac, lstint = NP.modf(npzdata['last']) lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD lstHA = lstfrac * 24.0 # in hours else: raise ValueError('Input lst_format invalid') cp = cpdata.astype(NP.float64) flags = flagsdata.astype(NP.bool) cpinfo = {} datapool = ['raw'] for dpool in datapool: cpinfo[dpool] = {} if dpool == 'raw': qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst'] for qty in qtys: if qty == 'cphase': cpinfo[dpool][qty] = NP.copy(cp) elif qty == 'triads': cpinfo[dpool][qty] = NP.copy(triadsdata) elif qty == 'flags': cpinfo[dpool][qty] = NP.copy(flags) elif qty == 'lst': cpinfo[dpool][qty] = NP.copy(lstHA) elif qty == 'lst-day': cpinfo[dpool][qty] = NP.copy(lstday.jd) elif qty == 'days': cpinfo[dpool][qty] = NP.copy(daydata.jd) elif qty == 'dayavg': if 'averaged_closures' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_dayavg) elif qty == 'std_triads': if 'std_dev_triad' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_std_triads) elif qty == 'std_lst': if 'std_dev_lst' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_std_lst) return cpinfo ################################################################################ def npz2hdf5(npzfile, hdf5file, longitude=0.0, latitude=0.0, lst_format='fracday'): """ ---------------------------------------------------------------------------- Read an input NPZ file containing closure phase data output from CASA and save it to HDF5 format Inputs: npzfile [string] Input NPZ file including full path containing closure phase data. It must have the following files/keys inside: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units ehich is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) hdf5file [string] Output HDF5 file including full path. latitude [scalar int or float] Latitude of site (in degrees). Default=0.0 deg. longitude [scalar int or float] Longitude of site (in degrees). Default=0.0 deg. lst_format [string] Specifies the format/units in which the 'last' key is to be interpreted. If set to 'hourangle', the LST is in units of hour angle. If set to 'fracday', the fractional portion of the 'last' value is the LST in units of days. ---------------------------------------------------------------------------- """ npzdata = NP.load(npzfile) cpdata = npzdata['closures'] triadsdata = npzdata['triads'] flagsdata = npzdata['flags'] location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location) # lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD if lst_format.lower() == 'hourangle': lstHA = npzdata['last'] lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s) elif lst_format.lower() == 'fracday': lstfrac, lstint = NP.modf(npzdata['last']) lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD lstHA = lstfrac * 24.0 # in hours else: raise ValueError('Input lst_format invalid') cp = cpdata.astype(NP.float64) flags = flagsdata.astype(NP.bool) if 'averaged_closures' in npzdata: day_avg_cpdata = npzdata['averaged_closures'] cp_dayavg = day_avg_cpdata.astype(NP.float64) if 'std_dev_triad' in npzdata: std_triads_cpdata = npzdata['std_dev_triad'] cp_std_triads = std_triads_cpdata.astype(NP.float64) if 'std_dev_lst' in npzdata: std_lst_cpdata = npzdata['std_dev_lst'] cp_std_lst = std_lst_cpdata.astype(NP.float64) with h5py.File(hdf5file, 'w') as fobj: datapool = ['raw'] for dpool in datapool: if dpool == 'raw': qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst'] for qty in qtys: data = None if qty == 'cphase': data = NP.copy(cp) elif qty == 'triads': data = NP.copy(triadsdata) elif qty == 'flags': data = NP.copy(flags) elif qty == 'lst': data = NP.copy(lstHA) elif qty == 'lst-day': data = NP.copy(lstday.jd) elif qty == 'days': data = NP.copy(daydata.jd) elif qty == 'dayavg': if 'averaged_closures' in npzdata: data = NP.copy(cp_dayavg) elif qty == 'std_triads': if 'std_dev_triad' in npzdata: data = NP.copy(cp_std_triads) elif qty == 'std_lst': if 'std_dev_lst' in npzdata: data = NP.copy(cp_std_lst) if data is not None: dset = fobj.create_dataset('{0}/{1}'.format(dpool, qty), data=data, compression='gzip', compression_opts=9) ################################################################################ def save_CPhase_cross_power_spectrum(xcpdps, outfile): """ ---------------------------------------------------------------------------- Save cross-power spectrum information in a dictionary to a HDF5 file Inputs: xcpdps [dictionary] This dictionary is essentially an output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains one or more of the following keys named 'whole', 'submodel', 'residual', and 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum outfile [string] Full path to the external HDF5 file where the cross- power spectrum information provided in xcpdps will be saved ---------------------------------------------------------------------------- """ if not isinstance(xcpdps, dict): raise TypeError('Input xcpdps must be a dictionary') with h5py.File(outfile, 'w') as fileobj: hdrgrp = fileobj.create_group('header') hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in hdrkeys: dset = hdrgrp.create_dataset(key, data=xcpdps[key]) sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in xcpdps: smplgrp = fileobj.create_group(smplng) for key in sampling_keys: dset = smplgrp.create_dataset(key, data=xcpdps[smplng][key]) for dpool in dpool_keys: if dpool in xcpdps[smplng]: dpoolgrp = smplgrp.create_group(dpool) keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh'] for key in keys: if key in xcpdps[smplng][dpool]: if isinstance(xcpdps[smplng][dpool][key], dict): subgrp = dpoolgrp.create_group(key) for subkey in xcpdps[smplng][dpool][key]: dset = subgrp.create_dataset(str(subkey), data=xcpdps[smplng][dpool][key][subkey]) else: dset = dpoolgrp.create_dataset(key, data=xcpdps[smplng][dpool][key]) for stat in ['mean', 'median']: if stat in xcpdps[smplng][dpool]: if isinstance(xcpdps[smplng][dpool][stat], list): for ii in range(len(xcpdps[smplng][dpool][stat])): dset = dpoolgrp.create_dataset(stat+'/diagcomb_{0}'.format(ii), data=xcpdps[smplng][dpool][stat][ii].si.value) dset.attrs['units'] = str(xcpdps[smplng][dpool][stat][ii].si.unit) else: dset = dpoolgrp.create_dataset(stat, data=xcpdps[smplng][dpool][stat].si.value) dset.attrs['units'] = str(xcpdps[smplng][dpool][stat].si.unit) ################################################################################ def read_CPhase_cross_power_spectrum(infile): """ ---------------------------------------------------------------------------- Read information about cross power spectrum from an external HDF5 file into a dictionary. This is the counterpart to save_CPhase_corss_power_spectrum() Input: infile [string] Full path to the external HDF5 file that contains info about cross-power spectrum. Output: xcpdps [dictionary] This dictionary has structure the same as output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains one or more of the following keys named 'whole', 'submodel', 'residual', and 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum outfile [string] Full path to the external HDF5 file where the cross- power spectrum information provided in xcpdps will be saved ---------------------------------------------------------------------------- """ if not isinstance(infile, str): raise TypeError('Input infile must be a string') xcpdps = {} with h5py.File(infile, 'r') as fileobj: hdrgrp = fileobj['header'] hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in hdrkeys: xcpdps[key] = hdrgrp[key].value sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in fileobj: smplgrp = fileobj[smplng] xcpdps[smplng] = {} for key in sampling_keys: xcpdps[smplng][key] = smplgrp[key].value for dpool in dpool_keys: if dpool in smplgrp: xcpdps[smplng][dpool] = {} dpoolgrp = smplgrp[dpool] keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh'] for key in keys: if key in dpoolgrp: if isinstance(dpoolgrp[key], h5py.Group): xcpdps[smplng][dpool][key] = {} for subkey in dpoolgrp[key]: xcpdps[smplng][dpool][key][int(subkey)] = dpoolgrp[key][subkey].value elif isinstance(dpoolgrp[key], h5py.Dataset): xcpdps[smplng][dpool][key] = dpoolgrp[key].value else: raise TypeError('Invalid h5py data type encountered') for stat in ['mean', 'median']: if stat in dpoolgrp: if isinstance(dpoolgrp[stat], h5py.Dataset): valunits = dpoolgrp[stat].attrs['units'] xcpdps[smplng][dpool][stat] = dpoolgrp[stat].value * U.Unit(valunits) elif isinstance(dpoolgrp[stat], h5py.Group): xcpdps[smplng][dpool][stat] = [] for diagcomb_ind in range(len(dpoolgrp[stat].keys())): if 'diagcomb_{0}'.format(diagcomb_ind) in dpoolgrp[stat]: valunits = dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].attrs['units'] xcpdps[smplng][dpool][stat] += [dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].value * U.Unit(valunits)] return xcpdps ################################################################################ def incoherent_cross_power_spectrum_average(xcpdps, excpdps=None, diagoffsets=None): """ ---------------------------------------------------------------------------- Perform incoherent averaging of cross power spectrum along specified axes Inputs: xcpdps [dictionary or list of dictionaries] If provided as a list of dictionaries, each dictionary consists of cross power spectral information coming possible from different sources, and they will be averaged be averaged incoherently. If a single dictionary is provided instead of a list of dictionaries, the said averaging does not take place. Each dictionary is essentially an output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum excpdps [dictionary or list of dictionaries] If provided as a list of dictionaries, each dictionary consists of cross power spectral information of subsample differences coming possible from different sources, and they will be averaged be averaged incoherently. This is optional. If not set (default=None), no incoherent averaging happens. If a single dictionary is provided instead of a list of dictionaries, the said averaging does not take place. Each dictionary is essentially an output of the member function compute_power_spectrum_uncertainty() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,) array), 'dday' ((ndaycomb,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains a key named 'errinfo' which is a dictionary. It contains information about power spectrum uncertainties obtained from subsample differences. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum uncertainties incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum uncertainties incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum diagoffsets [NoneType or dictionary or list of dictionaries] This info is used for incoherent averaging along specified diagonals along specified axes. This incoherent averaging is performed after incoherently averaging multiple cross-power spectra (if any). If set to None, this incoherent averaging is not performed. Many combinations of axes and diagonals can be specified as individual dictionaries in a list. If only one dictionary is specified, then it assumed that only one combination of axes and diagonals is requested. If a list of dictionaries is given, each dictionary in the list specifies a different combination for incoherent averaging. Each dictionary should have the following key-value pairs. The key is the axis number (allowed values are 1, 2, 3) that denote the axis type (1=LST, 2=Days, 3=Triads to be averaged), and the value under they keys is a list or numpy array of diagonals to be averaged incoherently. These axes-diagonal combinations apply to both the inputs xcpdps and excpdps, except axis=2 does not apply to excpdps (since it is made of subsample differences already) and will be skipped. Outputs: A tuple consisting of two dictionaries. The first dictionary contains the incoherent averaging of xcpdps as specified by the inputs, while the second consists of incoherent of excpdps as specified by the inputs. The structure of these dictionaries are practically the same as the dictionary inputs xcpdps and excpdps respectively. The only differences in dictionary structure are: * Under key ['oversampled'/'resampled']['whole'/'submodel'/'residual' /'effinfo']['mean'/'median'] is a list of numpy arrays, where each array in the list corresponds to the dictionary in the list in input diagoffsets that defines the axes-diagonal combination. ---------------------------------------------------------------------------- """ if isinstance(xcpdps, dict): xcpdps = [xcpdps] if not isinstance(xcpdps, list): raise TypeError('Invalid data type provided for input xcpdps') if excpdps is not None: if isinstance(excpdps, dict): excpdps = [excpdps] if not isinstance(excpdps, list): raise TypeError('Invalid data type provided for input excpdps') if len(xcpdps) != len(excpdps): raise ValueError('Inputs xcpdps and excpdps found to have unequal number of values') out_xcpdps = {'triads': xcpdps[0]['triads'], 'triads_ind': xcpdps[0]['triads_ind'], 'lst': xcpdps[0]['lst'], 'lst_ind': xcpdps[0]['lst_ind'], 'dlst': xcpdps[0]['dlst'], 'days': xcpdps[0]['days'], 'day_ind': xcpdps[0]['day_ind'], 'dday': xcpdps[0]['dday']} out_excpdps = None if excpdps is not None: out_excpdps = {'triads': excpdps[0]['triads'], 'triads_ind': excpdps[0]['triads_ind'], 'lst': excpdps[0]['lst'], 'lst_ind': excpdps[0]['lst_ind'], 'dlst': excpdps[0]['dlst'], 'days': excpdps[0]['days'], 'day_ind': excpdps[0]['day_ind'], 'dday': excpdps[0]['dday']} for smplng in ['oversampled', 'resampled']: if smplng in xcpdps[0]: out_xcpdps[smplng] = {'z': xcpdps[0][smplng]['z'], 'kprll': xcpdps[0][smplng]['kprll'], 'lags': xcpdps[0][smplng]['lags'], 'freq_center': xcpdps[0][smplng]['freq_center'], 'bw_eff': xcpdps[0][smplng]['bw_eff'], 'shape': xcpdps[0][smplng]['shape'], 'freq_wts': xcpdps[0][smplng]['freq_wts'], 'lag_corr_length': xcpdps[0][smplng]['lag_corr_length']} if excpdps is not None: out_excpdps[smplng] = {'z': excpdps[0][smplng]['z'], 'kprll': excpdps[0][smplng]['kprll'], 'lags': excpdps[0][smplng]['lags'], 'freq_center': excpdps[0][smplng]['freq_center'], 'bw_eff': excpdps[0][smplng]['bw_eff'], 'shape': excpdps[0][smplng]['shape'], 'freq_wts': excpdps[0][smplng]['freq_wts'], 'lag_corr_length': excpdps[0][smplng]['lag_corr_length']} for dpool in ['whole', 'submodel', 'residual']: if dpool in xcpdps[0][smplng]: out_xcpdps[smplng][dpool] = {'diagoffsets': xcpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': xcpdps[0][smplng][dpool]['axesmap']} for stat in ['mean', 'median']: if stat in xcpdps[0][smplng][dpool]: out_xcpdps[smplng][dpool][stat] = {} arr = [] diagweights = [] for i in range(len(xcpdps)): arr += [xcpdps[i][smplng][dpool][stat].si.value] arr_units = xcpdps[i][smplng][dpool][stat].si.unit if isinstance(xcpdps[i][smplng][dpool]['diagweights'], dict): diagwts = 1.0 diagwts_shape = NP.ones(xcpdps[i][smplng][dpool][stat].ndim, dtype=NP.int) for ax in xcpdps[i][smplng][dpool]['diagweights']: tmp_shape = NP.copy(diagwts_shape) tmp_shape[xcpdps[i][smplng][dpool]['axesmap'][ax]] = xcpdps[i][smplng][dpool]['diagweights'][ax].size diagwts = diagwts * xcpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape)) elif isinstance(xcpdps[i][smplng][dpool]['diagweights'], NP.ndarray): diagwts = NP.copy(xcpdps[i][smplng][dpool]['diagweights']) else: raise TypeError('Diagonal weights in input must be a dictionary or a numpy array') diagweights += [diagwts] diagweights = NP.asarray(diagweights) arr = NP.asarray(arr) arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units diagweights = NP.nansum(diagweights, axis=0) out_xcpdps[smplng][dpool][stat] = arr out_xcpdps[smplng][dpool]['diagweights'] = diagweights for dpool in ['errinfo']: if dpool in excpdps[0][smplng]: out_excpdps[smplng][dpool] = {'diagoffsets': excpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': excpdps[0][smplng][dpool]['axesmap']} for stat in ['mean', 'median']: if stat in excpdps[0][smplng][dpool]: out_excpdps[smplng][dpool][stat] = {} arr = [] diagweights = [] for i in range(len(excpdps)): arr += [excpdps[i][smplng][dpool][stat].si.value] arr_units = excpdps[i][smplng][dpool][stat].si.unit if isinstance(excpdps[i][smplng][dpool]['diagweights'], dict): diagwts = 1.0 diagwts_shape = NP.ones(excpdps[i][smplng][dpool][stat].ndim, dtype=NP.int) for ax in excpdps[i][smplng][dpool]['diagweights']: tmp_shape = NP.copy(diagwts_shape) tmp_shape[excpdps[i][smplng][dpool]['axesmap'][ax]] = excpdps[i][smplng][dpool]['diagweights'][ax].size diagwts = diagwts * excpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape)) elif isinstance(excpdps[i][smplng][dpool]['diagweights'], NP.ndarray): diagwts = NP.copy(excpdps[i][smplng][dpool]['diagweights']) else: raise TypeError('Diagonal weights in input must be a dictionary or a numpy array') diagweights += [diagwts] diagweights = NP.asarray(diagweights) arr = NP.asarray(arr) arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units diagweights = NP.nansum(diagweights, axis=0) out_excpdps[smplng][dpool][stat] = arr out_excpdps[smplng][dpool]['diagweights'] = diagweights if diagoffsets is not None: if isinstance(diagoffsets, dict): diagoffsets = [diagoffsets] if not isinstance(diagoffsets, list): raise TypeError('Input diagoffsets must be a list of dictionaries') for ind in range(len(diagoffsets)): for ax in diagoffsets[ind]: if not isinstance(diagoffsets[ind][ax], (list, NP.ndarray)): raise TypeError('Values in input dictionary diagoffsets must be a list or numpy array') diagoffsets[ind][ax] = NP.asarray(diagoffsets[ind][ax]) for smplng in ['oversampled', 'resampled']: if smplng in out_xcpdps: for dpool in ['whole', 'submodel', 'residual']: if dpool in out_xcpdps[smplng]: masks = [] for ind in range(len(diagoffsets)): mask_ones = NP.ones(out_xcpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool) mask_agg = None for ax in diagoffsets[ind]: mltdim_slice = [slice(None)] * mask_ones.ndim mltdim_slice[out_xcpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_xcpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0] mask_tmp = NP.copy(mask_ones) mask_tmp[tuple(mltdim_slice)] = False if mask_agg is None: mask_agg = NP.copy(mask_tmp) else: mask_agg = NP.logical_or(mask_agg, mask_tmp) masks += [NP.copy(mask_agg)] diagwts = NP.copy(out_xcpdps[smplng][dpool]['diagweights']) out_xcpdps[smplng][dpool]['diagweights'] = [] for stat in ['mean', 'median']: if stat in out_xcpdps[smplng][dpool]: arr = NP.copy(out_xcpdps[smplng][dpool][stat].si.value) arr_units = out_xcpdps[smplng][dpool][stat].si.unit out_xcpdps[smplng][dpool][stat] = [] for ind in range(len(diagoffsets)): masked_diagwts = MA.array(diagwts, mask=masks[ind]) axes_to_avg = tuple([out_xcpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind]]) out_xcpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units] if len(out_xcpdps[smplng][dpool]['diagweights']) < len(diagoffsets): out_xcpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)] if excpdps is not None: for smplng in ['oversampled', 'resampled']: if smplng in out_excpdps: for dpool in ['errinfo']: if dpool in out_excpdps[smplng]: masks = [] for ind in range(len(diagoffsets)): mask_ones = NP.ones(out_excpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool) mask_agg = None for ax in diagoffsets[ind]: if ax != 2: mltdim_slice = [slice(None)] * mask_ones.ndim mltdim_slice[out_excpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_excpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0] mask_tmp = NP.copy(mask_ones) mask_tmp[tuple(mltdim_slice)] = False if mask_agg is None: mask_agg = NP.copy(mask_tmp) else: mask_agg = NP.logical_or(mask_agg, mask_tmp) masks += [NP.copy(mask_agg)] diagwts = NP.copy(out_excpdps[smplng][dpool]['diagweights']) out_excpdps[smplng][dpool]['diagweights'] = [] for stat in ['mean', 'median']: if stat in out_excpdps[smplng][dpool]: arr = NP.copy(out_excpdps[smplng][dpool][stat].si.value) arr_units = out_excpdps[smplng][dpool][stat].si.unit out_excpdps[smplng][dpool][stat] = [] for ind in range(len(diagoffsets)): masked_diagwts = MA.array(diagwts, mask=masks[ind]) axes_to_avg = tuple([out_excpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind] if ax!=2]) out_excpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units] if len(out_excpdps[smplng][dpool]['diagweights']) < len(diagoffsets): out_excpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)] return (out_xcpdps, out_excpdps) ################################################################################ def incoherent_kbin_averaging(xcpdps, kbins=None, num_kbins=None, kbintype='log'): """ ---------------------------------------------------------------------------- Averages the power spectrum incoherently by binning in bins of k. Returns the power spectrum in units of both standard power spectrum and \Delta^2 Inputs: xcpdps [dictionary] A dictionary that contains the incoherent averaged power spectrum along LST and/or triads axes. This dictionary is essentially the one(s) returned as the output of the function incoherent_cross_power_spectrum_average() kbins [NoneType, list or numpy array] Bins in k. If set to None (default), it will be determined automatically based on the inputs in num_kbins, and kbintype. If num_kbins is None and kbintype='linear', the negative and positive values of k are folded into a one-sided power spectrum. In this case, the bins will approximately have the same resolution as the k-values in the input power spectrum for all the spectral windows. num_kbins [NoneType or integer] Number of k-bins. Used only if kbins is set to None. If kbintype is set to 'linear', the negative and positive values of k are folded into a one-sided power spectrum. In this case, the bins will approximately have the same resolution as the k-values in the input power spectrum for all the spectral windows. kbintype [string] Specifies the type of binning, used only if kbins is set to None. Accepted values are 'linear' and 'log' for linear and logarithmic bins respectively. Outputs: Dictionary containing the power spectrum information. At the top level, it contains keys specifying the sampling to be 'oversampled' or 'resampled'. Under each of these keys is another dictionary containing the following keys: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' or one key named 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. 'errinfo' contains power spectrum information about the subsample differences. There is also another dictionary under key 'kbininfo' that contains information about k-bins. These dictionaries contain the following keys and values: 'whole'/'submodel'/'residual'/'errinfo' [dictionary] It contains the following keys and values: 'mean' [dictionary] Delay power spectrum information under the 'mean' statistic incoherently obtained by averaging the input power spectrum in bins of k. It contains output power spectrum expressed as two quantities each of which is a dictionary with the following key-value pairs: 'PS' [list of numpy arrays] Standard power spectrum in units of 'K2 Mpc3'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'Del2' [list of numpy arrays] power spectrum in Delta^2 units of 'K2'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'median' [dictionary] Delay power spectrum information under the 'median' statistic incoherently obtained by averaging the input power spectrum in bins of k. It contains output power spectrum expressed as two quantities each of which is a dictionary with the following key-value pairs: 'PS' [list of numpy arrays] Standard power spectrum in units of 'K2 Mpc3'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'Del2' [list of numpy arrays] power spectrum in Delta^2 units of 'K2'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'kbininfo' [dictionary] Contains the k-bin information. It contains the following key-value pairs: 'counts' [list] List of numpy arrays where each numpy array in the stores the counts in the determined k-bins. Each numpy array in the list corresponds to a spectral window (redshift subband). The shape of each numpy array is (nkbins,) 'kbin_edges' [list] List of numpy arrays where each numpy array contains the k-bin edges. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nkbins+1,). 'kbinnum' [list] List of numpy arrays containing the bin number under which the k value falls. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nlags,). 'ri' [list] List of numpy arrays containing the reverse indices for each k-bin. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nlags+nkbins+1,). 'whole'/'submodel'/'residual' or 'errinfo' [dictionary] k-bin info estimated for the different datapools under different stats and PS definitions. It has the keys 'mean' and 'median' for the mean and median statistic respectively. Each of them contain a dictionary with the following key-value pairs: 'PS' [list] List of numpy arrays where each numpy array contains a standard power spectrum typically in units of 'K2 Mpc3'. Its shape is the same as input power spectrum except the k-axis which now has nkbins number of elements. 'Del2' [list] List of numpy arrays where each numpy array contains a Delta^2 power spectrum typically in units of 'K2'. Its shape is the same as input power spectrum except the k-axis which now has nkbins number of elements. ---------------------------------------------------------------------------- """ if not isinstance(xcpdps, dict): raise TypeError('Input xcpdps must be a dictionary') if kbins is not None: if not isinstance(kbins, (list,NP.ndarray)): raise TypeError('Input kbins must be a list or numpy array') else: if not isinstance(kbintype, str): raise TypeError('Input kbintype must be a string') if kbintype.lower() not in ['linear', 'log']: raise ValueError('Input kbintype must be set to "linear" or "log"') if kbintype.lower() == 'log': if num_kbins is None: num_kbins = 10 psinfo = {} keys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in keys: psinfo[key] = xcpdps[key] sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in xcpdps: psinfo[smplng] = {} for key in sampling_keys: psinfo[smplng][key] = xcpdps[smplng][key] kprll = xcpdps[smplng]['kprll'] lags = xcpdps[smplng]['lags'] eps = 1e-10 if kbins is None: dkprll = NP.max(NP.mean(NP.diff(kprll, axis=-1), axis=-1)) if kbintype.lower() == 'linear': bins_kprll = NP.linspace(eps, NP.abs(kprll).max()+eps, num=kprll.shape[1]/2+1, endpoint=True) else: bins_kprll = NP.geomspace(eps, NP.abs(kprll).max()+eps, num=num_kbins+1, endpoint=True) bins_kprll = NP.insert(bins_kprll, 0, -eps) else: bins_kprll = NP.asarray(kbins) num_kbins = bins_kprll.size - 1 psinfo[smplng]['kbininfo'] = {'counts': [], 'kbin_edges': [], 'kbinnum': [], 'ri': []} for spw in range(kprll.shape[0]): counts, kbin_edges, kbinnum, ri = OPS.binned_statistic(NP.abs(kprll[spw,:]), statistic='count', bins=bins_kprll) counts = counts.astype(NP.int) psinfo[smplng]['kbininfo']['counts'] += [NP.copy(counts)] psinfo[smplng]['kbininfo']['kbin_edges'] += [kbin_edges / U.Mpc] psinfo[smplng]['kbininfo']['kbinnum'] += [NP.copy(kbinnum)] psinfo[smplng]['kbininfo']['ri'] += [NP.copy(ri)] for dpool in dpool_keys: if dpool in xcpdps[smplng]: psinfo[smplng][dpool] = {} psinfo[smplng]['kbininfo'][dpool] = {} keys = ['diagoffsets', 'diagweights', 'axesmap'] for key in keys: psinfo[smplng][dpool][key] = xcpdps[smplng][dpool][key] for stat in ['mean', 'median']: if stat in xcpdps[smplng][dpool]: psinfo[smplng][dpool][stat] = {'PS': [], 'Del2': []} psinfo[smplng]['kbininfo'][dpool][stat] = [] for combi in range(len(xcpdps[smplng][dpool][stat])): outshape = NP.asarray(xcpdps[smplng][dpool][stat][combi].shape) outshape[-1] = num_kbins tmp_dps = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit) tmp_Del2 = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit / U.Mpc**3) tmp_kprll = NP.full(tuple(outshape), NP.nan, dtype=NP.float) / U.Mpc for spw in range(kprll.shape[0]): counts = NP.copy(psinfo[smplng]['kbininfo']['counts'][spw]) ri = NP.copy(psinfo[smplng]['kbininfo']['ri'][spw]) print('Processing datapool={0}, stat={1}, LST-Day-Triad combination={2:0d}, spw={3:0d}...'.format(dpool, stat, combi, spw)) progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(marker='-', left=' |', right='| '), PGB.Counter(), '/{0:0d} k-bins '.format(num_kbins), PGB.ETA()], maxval=num_kbins).start() for binnum in range(num_kbins): if counts[binnum] > 0: ind_kbin = ri[ri[binnum]:ri[binnum+1]] tmp_dps[spw,...,binnum] = NP.nanmean(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) k_shape = NP.ones(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1).ndim, dtype=NP.int) k_shape[-1] = -1 tmp_Del2[spw,...,binnum] = NP.nanmean(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc)**3 * NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) / (2*NP.pi**2) tmp_kprll[spw,...,binnum] = NP.nansum(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc) * NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) / NP.nansum(NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) progress.update(binnum+1) progress.finish() psinfo[smplng][dpool][stat]['PS'] += [copy.deepcopy(tmp_dps)] psinfo[smplng][dpool][stat]['Del2'] += [copy.deepcopy(tmp_Del2)] psinfo[smplng]['kbininfo'][dpool][stat] += [copy.deepcopy(tmp_kprll)] return psinfo ################################################################################ class ClosurePhase(object): """ ---------------------------------------------------------------------------- Class to hold and operate on Closure Phase information. It has the following attributes and member functions. Attributes: extfile [string] Full path to external file containing information of ClosurePhase instance. The file is in HDF5 format cpinfo [dictionary] Contains the following top level keys, namely, 'raw', 'processed', and 'errinfo' Under key 'raw' which holds a dictionary, the subkeys include 'cphase' (nlst,ndays,ntriads,nchan), 'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags' (nlst,ndays,ntriads,nchan). Under the 'processed' key are more subkeys, namely, 'native', 'prelim', and optionally 'submodel' and 'residual' each holding a dictionary. Under 'native' dictionary, the subsubkeys for further dictionaries are 'cphase' (masked array: (nlst,ndays,ntriads,nchan)), 'eicp' (complex masked array: (nlst,ndays,ntriads,nchan)), and 'wts' (masked array: (nlst,ndays,ntriads,nchan)). Under 'prelim' dictionary, the subsubkeys for further dictionaries are 'tbins' (numpy array of tbin centers after smoothing), 'dtbins' (numpy array of tbin intervals), 'wts' (masked array: (ntbins,ndays,ntriads,nchan)), 'eicp' and 'cphase'. The dictionaries under 'eicp' are indexed by keys 'mean' (complex masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (complex masked array: (ntbins,ndays,ntriads,nchan)). The dictionaries under 'cphase' are indexed by keys 'mean' (masked array: (ntbins,ndays,ntriads,nchan)), 'median' (masked array: (ntbins,ndays,ntriads,nchan)), 'rms' (masked array: (ntbins,ndays,ntriads,nchan)), and 'mad' (masked array: (ntbins,ndays,ntriads,nchan)). The last one denotes Median Absolute Deviation. Under 'submodel' dictionary, the subsubkeys for further dictionaries are 'cphase' (masked array: (nlst,ndays,ntriads,nchan)), and 'eicp' (complex masked array: (nlst,ndays,ntriads,nchan)). Under 'residual' dictionary, the subsubkeys for further dictionaries are 'cphase' and 'eicp'. These are dictionaries too. The dictionaries under 'eicp' are indexed by keys 'mean' (complex masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (complex masked array: (ntbins,ndays,ntriads,nchan)). The dictionaries under 'cphase' are indexed by keys 'mean' (masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (masked array: (ntbins,ndays,ntriads,nchan)). Under key 'errinfo', it contains the following keys and values: 'list_of_pair_of_pairs' List of pair of pairs for which differences of complex exponentials have been computed, where the elements are bins of days. The number of elements in the list is ncomb. And each element is a smaller (4-element) list of pair of pairs 'eicp_diff' Difference of complex exponentials between pairs of day bins. This will be used in evaluating noise properties in power spectrum. It is a dictionary with two keys '0' and '1' where each contains the difference from a pair of subsamples. Each of these keys contains a numpy array of shape (nlstbins,ncomb,2,ntriads,nchan) 'wts' Weights in difference of complex exponentials obtained by sum of squares of weights that are associated with the pair that was used in the differencing. It is a dictionary with two keys '0' and '1' where each contains the weights associated It is of shape (nlstbins,ncomb,2,ntriads,nchan) Member functions: __init__() Initialize an instance of class ClosurePhase expicp() Compute and return complex exponential of the closure phase as a masked array smooth_in_tbins() Smooth the complex exponentials of closure phases in LST bins. Both mean and median smoothing is produced. subtract() Subtract complex exponential of the bispectrum phase from the current instance and updates the cpinfo attribute subsample_differencing() Create subsamples and differences between subsamples to evaluate noise properties from the data set. save() Save contents of attribute cpinfo in external HDF5 file ---------------------------------------------------------------------------- """ def __init__(self, infile, freqs, infmt='npz'): """ ------------------------------------------------------------------------ Initialize an instance of class ClosurePhase Inputs: infile [string] Input file including full path. It could be a NPZ with raw data, or a HDF5 file that could contain raw or processed data. The input file format is specified in the input infmt. If it is a NPZ file, it must contain the following keys/files: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units which is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) freqs [numpy array] Frequencies (in Hz) in the input. Size is nchan. infmt [string] Input file format. Accepted values are 'npz' (default) and 'hdf5'. ------------------------------------------------------------------------ """ if not isinstance(infile, str): raise TypeError('Input infile must be a string') if not isinstance(freqs, NP.ndarray): raise TypeError('Input freqs must be a numpy array') freqs = freqs.ravel() if not isinstance(infmt, str): raise TypeError('Input infmt must be a string') if infmt.lower() not in ['npz', 'hdf5']: raise ValueError('Input infmt must be "npz" or "hdf5"') if infmt.lower() == 'npz': infilesplit = infile.split('.npz') infile_noext = infilesplit[0] self.cpinfo = loadnpz(infile) # npz2hdf5(infile, infile_noext+'.hdf5') self.extfile = infile_noext + '.hdf5' else: # if not isinstance(infile, h5py.File): # raise TypeError('Input infile is not a valid HDF5 file') self.extfile = infile self.cpinfo = NMO.load_dict_from_hdf5(self.extfile) if freqs.size != self.cpinfo['raw']['cphase'].shape[-1]: raise ValueError('Input frequencies do not match with dimensions of the closure phase data') self.f = freqs self.df = freqs[1] - freqs[0] force_expicp = False if 'processed' not in self.cpinfo: force_expicp = True else: if 'native' not in self.cpinfo['processed']: force_expicp = True self.expicp(force_action=force_expicp) if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['errinfo'] = {} ############################################################################ def expicp(self, force_action=False): """ ------------------------------------------------------------------------ Compute the complex exponential of the closure phase as a masked array Inputs: force_action [boolean] If set to False (default), the complex exponential is computed only if it has not been done so already. Otherwise the computation is forced. ------------------------------------------------------------------------ """ if 'processed' not in self.cpinfo: self.cpinfo['processed'] = {} force_action = True if 'native' not in self.cpinfo['processed']: self.cpinfo['processed']['native'] = {} force_action = True if 'cphase' not in self.cpinfo['processed']['native']: self.cpinfo['processed']['native']['cphase'] = MA.array(self.cpinfo['raw']['cphase'].astype(NP.float64), mask=self.cpinfo['raw']['flags']) force_action = True if not force_action: if 'eicp' not in self.cpinfo['processed']['native']: self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase']) self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags']) else: self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase']) self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags']) ############################################################################ def smooth_in_tbins(self, daybinsize=None, ndaybins=None, lstbinsize=None): """ ------------------------------------------------------------------------ Smooth the complex exponentials of closure phases in time bins. Both mean and median smoothing is produced. Inputs: daybinsize [Nonetype or scalar] Day bin size (in days) over which mean and median are estimated across different days for a fixed LST bin. If set to None, it will look for value in input ndaybins. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. ndaybins [NoneType or integer] Number of bins along day axis. Only if daybinsize is set to None. It produces bins that roughly consist of equal number of days in each bin regardless of how much the days in each bin are separated from each other. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. lstbinsize [NoneType or scalar] LST bin size (in seconds) over which mean and median are estimated across the LST. If set to None, no smoothing is performed ------------------------------------------------------------------------ """ if (ndaybins is not None) and (daybinsize is not None): raise ValueError('Only one of daybinsize or ndaybins should be set') if (daybinsize is not None) or (ndaybins is not None): if daybinsize is not None: if not isinstance(daybinsize, (int,float)): raise TypeError('Input daybinsize must be a scalar') dres = NP.diff(self.cpinfo['raw']['days']).min() # in days dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days if daybinsize > dres: daybinsize = NP.clip(daybinsize, dres, dextent) eps = 1e-10 daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize) ndaybins = daybins.size daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps])) if ndaybins > 1: daybinintervals = daybins[1:] - daybins[:-1] daybincenters = daybins[:-1] + 0.5 * daybinintervals else: daybinintervals = NP.asarray(daybinsize).reshape(-1) daybincenters = daybins[0] + 0.5 * daybinintervals counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins) counts = counts.astype(NP.int) # if 'prelim' not in self.cpinfo['processed']: # self.cpinfo['processed']['prelim'] = {} # self.cpinfo['processed']['prelim']['eicp'] = {} # self.cpinfo['processed']['prelim']['cphase'] = {} # self.cpinfo['processed']['prelim']['daybins'] = daybincenters # self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) for binnum in xrange(counts.size): ind_daybin = ri[ri[binnum]:ri[binnum+1]] wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1) eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1))) eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1))) cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data # mask = wts_daybins <= 0.0 # self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask) # self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask) # self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask) # self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask) # self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask) # self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask) # self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask) else: if not isinstance(ndaybins, int): raise TypeError('Input ndaybins must be an integer') if ndaybins <= 0: raise ValueError('Input ndaybins must be positive') days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins) daybincenters = NP.asarray([NP.mean(days) for days in days_split]) daybinintervals = NP.asarray([days.max()-days.min() for days in days_split]) counts = NP.asarray([days.size for days in days_split]) wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1) # mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1) wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1) eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1) eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean)) eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian)) eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1) cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['processed']['prelim']['eicp'] = {} self.cpinfo['processed']['prelim']['cphase'] = {} self.cpinfo['processed']['prelim']['daybins'] = daybincenters self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals mask = wts_daybins <= 0.0 self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask) self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask) self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask) self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask) self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask) rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities if NP.any(rawlst > 24.0): rawlst -= 24.0 if rawlst.shape[0] > 1: # LST bin only if there are multiple LST if lstbinsize is not None: if not isinstance(lstbinsize, (int,float)): raise TypeError('Input lstbinsize must be a scalar') lstbinsize = lstbinsize / 3.6e3 # in hours tres = NP.diff(rawlst[:,0]).min() # in hours textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours eps = 1e-10 if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} no_change_in_lstbins = False if lstbinsize > tres: lstbinsize = NP.clip(lstbinsize, tres, textent) lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize) nlstbins = lstbins.size lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps])) if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) lstbincenters = lstbins[0] + 0.5 * lstbinintervals self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals no_change_in_lstbins = False else: # Perform no binning and keep the current LST resolution, data and weights warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') lstbinsize = tres lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) nlstbins = lstbins.size - 1 if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals self.cpinfo['processed']['prelim']['lstbins'] = lstbins[:-1] # Ensure that the LST bins are inside the min/max envelope to # error-free interpolation later self.cpinfo['processed']['prelim']['lstbins'][0] += eps self.cpinfo['processed']['prelim']['lstbins'][-1] -= eps no_change_in_lstbins = True counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins) counts = counts.astype(NP.int) if 'wts' not in self.cpinfo['processed']['prelim']: outshape = (counts.size, self.cpinfo['processed']['native']['eicp'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) else: outshape = (counts.size, self.cpinfo['processed']['prelim']['wts'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) wts_lstbins = NP.zeros(outshape) eicp_tmean = NP.zeros(outshape, dtype=NP.complex128) eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128) cp_trms = NP.zeros(outshape) cp_tmad = NP.zeros(outshape) for binnum in xrange(counts.size): if no_change_in_lstbins: ind_lstbin = [binnum] else: ind_lstbin = ri[ri[binnum]:ri[binnum+1]] if 'wts' not in self.cpinfo['processed']['prelim']: indict = self.cpinfo['processed']['native'] else: indict = self.cpinfo['processed']['prelim'] wts_lstbins[binnum,:,:,:] = NP.sum(indict['wts'][ind_lstbin,:,:,:].data, axis=0) if 'wts' not in self.cpinfo['processed']['prelim']: eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(indict['eicp'][ind_lstbin,:,:,:], axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(indict['eicp'][ind_lstbin,:,:,:].real, axis=0) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][ind_lstbin,:,:,:].imag, axis=0))) cp_trms[binnum,:,:,:] = MA.std(indict['cphase'][ind_lstbin,:,:,:], axis=0).data cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data else: eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*indict['cphase']['mean'][ind_lstbin,:,:,:]), axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0))) cp_trms[binnum,:,:,:] = MA.std(indict['cphase']['mean'][ind_lstbin,:,:,:], axis=0).data cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase']['median'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data mask = wts_lstbins <= 0.0 self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_lstbins, mask=mask) if 'eicp' not in self.cpinfo['processed']['prelim']: self.cpinfo['processed']['prelim']['eicp'] = {} if 'cphase' not in self.cpinfo['processed']['prelim']: self.cpinfo['processed']['prelim']['cphase'] = {} self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_tmean, mask=mask) self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_tmedian, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_tmean), mask=mask) self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_tmedian), mask=mask) self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_trms, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_tmad, mask=mask) # else: # # Perform no binning and keep the current LST resolution, data and weights # warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') # lstbinsize = tres # lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) # nlstbins = lstbins.size - 1 # if nlstbins > 1: # lstbinintervals = lstbins[1:] - lstbins[:-1] # lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals # else: # lstbinintervals = NP.asarray(lstbinsize).reshape(-1) # lstbincenters = lstbins[0] + 0.5 * lstbinintervals # if 'prelim' not in self.cpinfo['processed']: # self.cpinfo['processed']['prelim'] = {} # self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters # self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals if (rawlst.shape[0] <= 1) or (lstbinsize is None): nlstbins = rawlst.shape[0] lstbins = NP.mean(rawlst, axis=1) if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['processed']['prelim']['lstbins'] = lstbins if lstbinsize is not None: self.cpinfo['processed']['prelim']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1) else: self.cpinfo['processed']['prelim']['dlstbins'] = NP.zeros(1) ############################################################################ def subtract(self, cphase): """ ------------------------------------------------------------------------ Subtract complex exponential of the bispectrum phase from the current instance and updates the cpinfo attribute Inputs: cphase [masked array] Bispectrum phase array as a maked array. It must be of same size as freqs along the axis specified in input axis. Action: Updates 'submodel' and 'residual' keys under attribute cpinfo under key 'processed' ------------------------------------------------------------------------ """ if not isinstance(cphase, NP.ndarray): raise TypeError('Input cphase must be a numpy array') if not isinstance(cphase, MA.MaskedArray): cphase = MA.array(cphase, mask=NP.isnan(cphase)) if not OPS.is_broadcastable(cphase.shape, self.cpinfo['processed']['prelim']['cphase']['median'].shape): raise ValueError('Input cphase has shape incompatible with that in instance attribute') else: minshape = tuple(NP.ones(self.cpinfo['processed']['prelim']['cphase']['median'].ndim - cphase.ndim, dtype=NP.int)) + cphase.shape cphase = cphase.reshape(minshape) # cphase = NP.broadcast_to(cphase, minshape) eicp = NP.exp(1j*cphase) self.cpinfo['processed']['submodel'] = {} self.cpinfo['processed']['submodel']['cphase'] = cphase self.cpinfo['processed']['submodel']['eicp'] = eicp self.cpinfo['processed']['residual'] = {'eicp': {}, 'cphase': {}} for key in ['mean', 'median']: eicpdiff = self.cpinfo['processed']['prelim']['eicp'][key] - eicp eicpratio = self.cpinfo['processed']['prelim']['eicp'][key] / eicp self.cpinfo['processed']['residual']['eicp'][key] = eicpdiff self.cpinfo['processed']['residual']['cphase'][key] = MA.array(NP.angle(eicpratio.data), mask=self.cpinfo['processed']['residual']['eicp'][key].mask) ############################################################################ def subsample_differencing(self, daybinsize=None, ndaybins=4, lstbinsize=None): """ ------------------------------------------------------------------------ Create subsamples and differences between subsamples to evaluate noise properties from the data set. Inputs: daybinsize [Nonetype or scalar] Day bin size (in days) over which mean and median are estimated across different days for a fixed LST bin. If set to None, it will look for value in input ndaybins. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. Must yield greater than or equal to 4 bins ndaybins [NoneType or integer] Number of bins along day axis. Only if daybinsize is set to None. It produces bins that roughly consist of equal number of days in each bin regardless of how much the days in each bin are separated from each other. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. If set, it must be set to greater than or equal to 4 lstbinsize [NoneType or scalar] LST bin size (in seconds) over which mean and median are estimated across the LST. If set to None, no smoothing is performed ------------------------------------------------------------------------ """ if (ndaybins is not None) and (daybinsize is not None): raise ValueError('Only one of daybinsize or ndaybins should be set') if (daybinsize is not None) or (ndaybins is not None): if daybinsize is not None: if not isinstance(daybinsize, (int,float)): raise TypeError('Input daybinsize must be a scalar') dres = NP.diff(self.cpinfo['raw']['days']).min() # in days dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days if daybinsize > dres: daybinsize = NP.clip(daybinsize, dres, dextent) eps = 1e-10 daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize) ndaybins = daybins.size daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps])) if ndaybins >= 4: daybinintervals = daybins[1:] - daybins[:-1] daybincenters = daybins[:-1] + 0.5 * daybinintervals else: raise ValueError('Could not find at least 4 bins along repeating days. Adjust binning interval.') counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins) counts = counts.astype(NP.int) wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) for binnum in xrange(counts.size): ind_daybin = ri[ri[binnum]:ri[binnum+1]] wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1) eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1))) eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1))) cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data else: if not isinstance(ndaybins, int): raise TypeError('Input ndaybins must be an integer') if ndaybins < 4: raise ValueError('Input ndaybins must be greater than or equal to 4') days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins) daybincenters = NP.asarray([NP.mean(days) for days in days_split]) daybinintervals = NP.asarray([days.max()-days.min() for days in days_split]) counts = NP.asarray([days.size for days in days_split]) wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1) # mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1) wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1) eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1) eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean)) eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian)) eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1) cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan mask = wts_daybins <= 0.0 wts_daybins = MA.array(wts_daybins, mask=mask) cp_dmean = MA.array(NP.angle(eicp_dmean), mask=mask) cp_dmedian = MA.array(NP.angle(eicp_dmedian), mask=mask) self.cpinfo['errinfo']['daybins'] = daybincenters self.cpinfo['errinfo']['diff_dbins'] = daybinintervals self.cpinfo['errinfo']['wts'] = {'{0}'.format(ind): None for ind in range(2)} self.cpinfo['errinfo']['eicp_diff'] = {'{0}'.format(ind): {} for ind in range(2)} rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities if NP.any(rawlst > 24.0): rawlst -= 24.0 if rawlst.shape[0] > 1: # LST bin only if there are multiple LST if lstbinsize is not None: if not isinstance(lstbinsize, (int,float)): raise TypeError('Input lstbinsize must be a scalar') lstbinsize = lstbinsize / 3.6e3 # in hours tres = NP.diff(rawlst[:,0]).min() # in hours textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours eps = 1e-10 no_change_in_lstbins = False if lstbinsize > tres: lstbinsize = NP.clip(lstbinsize, tres, textent) lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize) nlstbins = lstbins.size lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps])) if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) lstbincenters = lstbins[0] + 0.5 * lstbinintervals self.cpinfo['errinfo']['lstbins'] = lstbincenters self.cpinfo['errinfo']['dlstbins'] = lstbinintervals no_change_in_lstbins = False else: # Perform no binning and keep the current LST resolution warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') lstbinsize = tres lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) nlstbins = lstbins.size - 1 if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) self.cpinfo['errinfo']['dlstbins'] = lstbinintervals self.cpinfo['errinfo']['lstbins'] = lstbins[:-1] # Ensure that the LST bins are inside the min/max envelope to # error-free interpolation later self.cpinfo['errinfo']['lstbins'][0] += eps self.cpinfo['errinfo']['lstbins'][-1] -= eps no_change_in_lstbins = True counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins) counts = counts.astype(NP.int) outshape = (counts.size, wts_daybins.shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) wts_lstbins = NP.zeros(outshape) eicp_tmean = NP.zeros(outshape, dtype=NP.complex128) eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128) cp_trms = NP.zeros(outshape) cp_tmad = NP.zeros(outshape) for binnum in xrange(counts.size): if no_change_in_lstbins: ind_lstbin = [binnum] else: ind_lstbin = ri[ri[binnum]:ri[binnum+1]] wts_lstbins[binnum,:,:,:] = NP.sum(wts_daybins[ind_lstbin,:,:,:].data, axis=0) eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*cp_dmean[ind_lstbin,:,:,:]), axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(cp_dmedian[ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(cp_dmedian[ind_lstbin,:,:,:]), axis=0))) mask = wts_lstbins <= 0.0 wts_lstbins = MA.array(wts_lstbins, mask=mask) eicp_tmean = MA.array(eicp_tmean, mask=mask) eicp_tmedian = MA.array(eicp_tmedian, mask=mask) else: wts_lstbins = MA.copy(wts_daybins) mask = wts_lstbins.mask eicp_tmean = MA.array(NP.exp(1j*NP.angle(NP.exp(1j*cp_dmean))), mask=mask) eicp_tmedian = MA.array(NP.exp(1j*NP.angle(NP.cos(cp_dmedian) + 1j * NP.sin(cp_dmedian))), mask=mask) if (rawlst.shape[0] <= 1) or (lstbinsize is None): nlstbins = rawlst.shape[0] lstbins = NP.mean(rawlst, axis=1) self.cpinfo['errinfo']['lstbins'] = lstbins if lstbinsize is not None: self.cpinfo['errinfo']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1) else: self.cpinfo['errinfo']['dlstbins'] = NP.zeros(1) ncomb = NP.sum(NP.asarray([(ndaybins-i-1)*(ndaybins-i-2)*(ndaybins-i-3)/2 for i in range(ndaybins-3)])).astype(int) diff_outshape = (nlstbins, ncomb, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) for diffind in range(2): self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['mean'] = MA.empty(diff_outshape, dtype=NP.complex) self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['median'] = MA.empty(diff_outshape, dtype=NP.complex) self.cpinfo['errinfo']['wts']['{0}'.format(diffind)] = MA.empty(diff_outshape, dtype=NP.float) ind = -1 self.cpinfo['errinfo']['list_of_pair_of_pairs'] = [] list_of_pair_of_pairs = [] for i in range(ndaybins-1): for j in range(i+1,ndaybins): for k in range(ndaybins-1): if (k != i) and (k != j): for m in range(k+1,ndaybins): if (m != i) and (m != j): pair_of_pairs = [set([i,j]), set([k,m])] if (pair_of_pairs not in list_of_pair_of_pairs) and (pair_of_pairs[::-1] not in list_of_pair_of_pairs): ind += 1 list_of_pair_of_pairs += [copy.deepcopy(pair_of_pairs)] self.cpinfo['errinfo']['list_of_pair_of_pairs'] += [[i,j,k,m]] for stat in ['mean', 'median']: if stat == 'mean': self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,j,:,:].data - eicp_tmean[:,i,:,:].data), mask=NP.logical_or(eicp_tmean[:,j,:,:].mask, eicp_tmean[:,i,:,:].mask)) self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,m,:,:].data - eicp_tmean[:,k,:,:].data), mask=NP.logical_or(eicp_tmean[:,m,:,:].mask, eicp_tmean[:,k,:,:].mask)) self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,j,:,:].data**2 + wts_lstbins[:,i,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,j,:,:].mask, wts_lstbins[:,i,:,:].mask)) self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,m,:,:].data**2 + wts_lstbins[:,k,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,m,:,:].mask, wts_lstbins[:,k,:,:].mask)) # self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,j,:,:] - eicp_tmean[:,i,:,:]) # self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,m,:,:] - eicp_tmean[:,k,:,:]) # self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,j,:,:]**2 + wts_lstbins[:,i,:,:]**2) # self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,m,:,:]**2 + wts_lstbins[:,k,:,:]**2) else: self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,j,:,:].data - eicp_tmedian[:,i,:,:].data), mask=NP.logical_or(eicp_tmedian[:,j,:,:].mask, eicp_tmedian[:,i,:,:].mask)) self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,m,:,:].data - eicp_tmedian[:,k,:,:].data), mask=NP.logical_or(eicp_tmedian[:,m,:,:].mask, eicp_tmedian[:,k,:,:].mask)) # self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,j,:,:] - eicp_tmedian[:,i,:,:]) # self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,m,:,:] - eicp_tmedian[:,k,:,:]) mask0 = self.cpinfo['errinfo']['wts']['0'] <= 0.0 mask1 = self.cpinfo['errinfo']['wts']['1'] <= 0.0 self.cpinfo['errinfo']['eicp_diff']['0'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['0'][stat], mask=mask0) self.cpinfo['errinfo']['eicp_diff']['1'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['1'][stat], mask=mask1) self.cpinfo['errinfo']['wts']['0'] = MA.array(self.cpinfo['errinfo']['wts']['0'], mask=mask0) self.cpinfo['errinfo']['wts']['1'] = MA.array(self.cpinfo['errinfo']['wts']['1'], mask=mask1) ############################################################################ def save(self, outfile=None): """ ------------------------------------------------------------------------ Save contents of attribute cpinfo in external HDF5 file Inputs: outfile [NoneType or string] Output file (HDF5) to save contents to. If set to None (default), it will be saved in the file pointed to by the extfile attribute of class ClosurePhase ------------------------------------------------------------------------ """ if outfile is None: outfile = self.extfile NMO.save_dict_to_hdf5(self.cpinfo, outfile, compressinfo={'compress_fmt': 'gzip', 'compress_opts': 9}) ################################################################################ class ClosurePhaseDelaySpectrum(object): """ ---------------------------------------------------------------------------- Class to hold and operate on Closure Phase information. It has the following attributes and member functions. Attributes: cPhase [instance of class ClosurePhase] Instance of class ClosurePhase f [numpy array] Frequencies (in Hz) in closure phase spectra df [float] Frequency resolution (in Hz) in closure phase spectra cPhaseDS [dictionary] Possibly oversampled Closure Phase Delay Spectrum information. cPhaseDS_resampled [dictionary] Resampled Closure Phase Delay Spectrum information. Member functions: __init__() Initialize instance of class ClosurePhaseDelaySpectrum FT() Fourier transform of complex closure phase spectra mapping from frequency axis to delay axis. subset() Return triad and time indices to select a subset of processed data compute_power_spectrum() Compute power spectrum of closure phase data. It is in units of Mpc/h. rescale_power_spectrum() Rescale power spectrum to dimensional quantity by converting the ratio given visibility amplitude information average_rescaled_power_spectrum() Average the rescaled power spectrum with physical units along certain axes with inverse variance or regular averaging beam3Dvol() Compute three-dimensional volume of the antenna power pattern along two transverse axes and one LOS axis. ---------------------------------------------------------------------------- """ def __init__(self, cPhase): """ ------------------------------------------------------------------------ Initialize instance of class ClosurePhaseDelaySpectrum Inputs: cPhase [class ClosurePhase] Instance of class ClosurePhase ------------------------------------------------------------------------ """ if not isinstance(cPhase, ClosurePhase): raise TypeError('Input cPhase must be an instance of class ClosurePhase') self.cPhase = cPhase self.f = self.cPhase.f self.df = self.cPhase.df self.cPhaseDS = None self.cPhaseDS_resampled = None ############################################################################ def FT(self, bw_eff, freq_center=None, shape=None, fftpow=None, pad=None, datapool='prelim', visscaleinfo=None, method='fft', resample=True, apply_flags=True): """ ------------------------------------------------------------------------ Fourier transform of complex closure phase spectra mapping from frequency axis to delay axis. Inputs: bw_eff [scalar or numpy array] effective bandwidths (in Hz) on the selected frequency windows for subband delay transform of closure phases. If a scalar value is provided, the same will be applied to all frequency windows freq_center [scalar, list or numpy array] frequency centers (in Hz) of the selected frequency windows for subband delay transform of closure phases. The value can be a scalar, list or numpy array. If a scalar is provided, the same will be applied to all frequency windows. Default=None uses the center frequency from the class attribute named channels shape [string] frequency window shape for subband delay transform of closure phases. Accepted values for the string are 'rect' or 'RECT' (for rectangular), 'bnw' and 'BNW' (for Blackman-Nuttall), and 'bhw' or 'BHW' (for Blackman-Harris). Default=None sets it to 'rect' (rectangular window) fftpow [scalar] the power to which the FFT of the window will be raised. The value must be a positive scalar. Default = 1.0 pad [scalar] padding fraction relative to the number of frequency channels for closure phases. Value must be a non-negative scalar. For e.g., a pad of 1.0 pads the frequency axis with zeros of the same width as the number of channels. After the delay transform, the transformed closure phases are downsampled by a factor of 1+pad. If a negative value is specified, delay transform will be performed with no padding. Default=None sets to padding factor to 1.0 datapool [string] Specifies which data set is to be Fourier transformed visscaleinfo [dictionary] Dictionary containing reference visibilities based on which the closure phases will be scaled to units of visibilities. It contains the following keys and values: 'vis' [numpy array or instance of class InterferometerArray] Reference visibilities from the baselines that form the triad. It can be an instance of class RI.InterferometerArray or a numpy array. If an instance of class InterferometerArray, the baseline triplet must be set in key 'bltriplet' and value in key 'lst' will be ignored. If the value under this key 'vis' is set to a numpy array, it must be of shape (nbl=3, nlst_vis, nchan). In this case the value under key 'bltriplet' will be ignored. The nearest LST will be looked up and applied after smoothing along LST based on the smoothing parameter 'smooth' 'bltriplet' [Numpy array] Will be used in searching for matches to these three baseline vectors if the value under key 'vis' is set to an instance of class InterferometerArray. However, if value under key 'vis' is a numpy array, this key 'bltriplet' will be ignored. 'lst' [numpy array] Reference LST (in hours). It is of shape (nlst_vis,). It will be used only if value under key 'vis' is a numpy array, otherwise it will be ignored and read from the instance of class InterferometerArray passed under key 'vis'. If the specified LST range does not cover the data LST range, those LST will contain NaN in the delay spectrum 'smoothinfo' [dictionary] Dictionary specifying smoothing and/or interpolation parameters. It has the following keys and values: 'op_type' [string] Specifies the interpolating operation. Must be specified (no default). Accepted values are 'interp1d' (scipy.interpolate), 'median' (skimage.filters), 'tophat' (astropy.convolution) and 'gaussian' (astropy.convolution) 'interp_kind' [string (optional)] Specifies the interpolation kind (if 'op_type' is set to 'interp1d'). For accepted values, see scipy.interpolate.interp1d() 'window_size' [integer (optional)] Specifies the size of the interpolating/smoothing kernel. Only applies when 'op_type' is set to 'median', 'tophat' or 'gaussian' The kernel is a tophat function when 'op_type' is set to 'median' or 'tophat'. If refers to FWHM when 'op_type' is set to 'gaussian' resample [boolean] If set to True (default), resample the delay spectrum axis to independent samples along delay axis. If set to False, return the results as is even if they may be be oversampled and not all samples may be independent method [string] Specifies the Fourier transform method to be used. Accepted values are 'fft' (default) for FFT and 'nufft' for non-uniform FFT apply_flags [boolean] If set to True (default), weights determined from flags will be applied. If False, no weights from flagging will be applied, and thus even flagged data will be included Outputs: A dictionary that contains the oversampled (if resample=False) or resampled (if resample=True) delay spectrum information. It has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags=nchan+npad if resample=True, where npad is the number of frequency channels padded specified under the key 'npad'. If resample=False, nlags = number of delays after resampling only independent delays. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_win x nlst x ndays x ntriads x nlags. nlags=nchan+npad if resample=True, where npad is the number of frequency channels padded specified under the key 'npad'. If resample=False, nlags = number of delays after resampling only independent delays. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'whole' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'prelim' key of attribute cpinfo. Contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(nlst,ndays,ntriads,nchan) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'submodel' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'submodel' key of attribute cpinfo. Contains the following keys and values: 'dspec' [numpy array] Delay spectrum of closure phases Shape=(nspw,nlst,ndays,ntriads,nlags) 'residual' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'residual' key of attribute cpinfo after subtracting 'submodel' bispectrum phase from that of 'prelim'. It contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(nlst,ndays,ntriads,nchan) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'errinfo' [dictionary] It has two keys 'dspec0' and 'dspec1' each of which are dictionaries with the following keys and values: 'twts' [numpy array] Weights for the subsample difference. It is of shape (nlst, ndays, ntriads, nchan) 'mean' [numpy array] Delay spectrum of the subsample difference obtained by using the mean statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) 'median' [numpy array] Delay spectrum of the subsample difference obtained by using the median statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) ------------------------------------------------------------------------ """ try: bw_eff except NameError: raise NameError('Effective bandwidth must be specified') else: if not isinstance(bw_eff, (int, float, list, NP.ndarray)): raise TypeError('Value of effective bandwidth must be a scalar, list or numpy array') bw_eff = NP.asarray(bw_eff).reshape(-1) if NP.any(bw_eff <= 0.0): raise ValueError('All values in effective bandwidth must be strictly positive') if freq_center is None: freq_center = NP.asarray(self.f[self.f.size/2]).reshape(-1) elif isinstance(freq_center, (int, float, list, NP.ndarray)): freq_center = NP.asarray(freq_center).reshape(-1) if NP.any((freq_center <= self.f.min()) | (freq_center >= self.f.max())): raise ValueError('Value(s) of frequency center(s) must lie strictly inside the observing band') else: raise TypeError('Values(s) of frequency center must be scalar, list or numpy array') if (bw_eff.size == 1) and (freq_center.size > 1): bw_eff = NP.repeat(bw_eff, freq_center.size) elif (bw_eff.size > 1) and (freq_center.size == 1): freq_center = NP.repeat(freq_center, bw_eff.size) elif bw_eff.size != freq_center.size: raise ValueError('Effective bandwidth(s) and frequency center(s) must have same number of elements') if shape is not None: if not isinstance(shape, str): raise TypeError('Window shape must be a string') if shape not in ['rect', 'bhw', 'bnw', 'RECT', 'BHW', 'BNW']: raise ValueError('Invalid value for window shape specified.') else: shape = 'rect' if fftpow is None: fftpow = 1.0 else: if not isinstance(fftpow, (int, float)): raise TypeError('Power to raise window FFT by must be a scalar value.') if fftpow < 0.0: raise ValueError('Power for raising FFT of window by must be positive.') if pad is None: pad = 1.0 else: if not isinstance(pad, (int, float)): raise TypeError('pad fraction must be a scalar value.') if pad < 0.0: pad = 0.0 if verbose: print('\tPad fraction found to be negative. Resetting to 0.0 (no padding will be applied).') if not isinstance(datapool, str): raise TypeError('Input datapool must be a string') if datapool.lower() not in ['prelim']: raise ValueError('Specified datapool not supported') if visscaleinfo is not None: if not isinstance(visscaleinfo, dict): raise TypeError('Input visscaleinfo must be a dictionary') if 'vis' not in visscaleinfo: raise KeyError('Input visscaleinfo does not contain key "vis"') if not isinstance(visscaleinfo['vis'], RI.InterferometerArray): if 'lst' not in visscaleinfo: raise KeyError('Input visscaleinfo does not contain key "lst"') lst_vis = visscaleinfo['lst'] * 15.0 if not isinstance(visscaleinfo['vis'], (NP.ndarray,MA.MaskedArray)): raise TypeError('Input visibilities must be a numpy or a masked array') if not isinstance(visscaleinfo['vis'], MA.MaskedArray): visscaleinfo['vis'] = MA.array(visscaleinfo['vis'], mask=NP.isnan(visscaleinfo['vis'])) vistriad = MA.copy(visscaleinfo['vis']) else: if 'bltriplet' not in visscaleinfo: raise KeyError('Input dictionary visscaleinfo does not contain key "bltriplet"') blind, blrefind, dbl = LKP.find_1NN(visscaleinfo['vis'].baselines, visscaleinfo['bltriplet'], distance_ULIM=0.2, remove_oob=True) if blrefind.size != 3: blind_missing = NP.setdiff1d(NP.arange(3), blind, assume_unique=True) blind_next, blrefind_next, dbl_next = LKP.find_1NN(visscaleinfo['vis'].baselines, -1*visscaleinfo['bltriplet'][blind_missing,:], distance_ULIM=0.2, remove_oob=True) if blind_next.size + blind.size != 3: raise ValueError('Exactly three baselines were not found in the reference baselines') else: blind = NP.append(blind, blind_missing[blind_next]) blrefind = NP.append(blrefind, blrefind_next) else: blind_missing = [] vistriad = NP.transpose(visscaleinfo['vis'].skyvis_freq[blrefind,:,:], (0,2,1)) if len(blind_missing) > 0: vistriad[-blrefind_next.size:,:,:] = vistriad[-blrefind_next.size:,:,:].conj() vistriad = MA.array(vistriad, mask=NP.isnan(vistriad)) lst_vis = visscaleinfo['vis'].lst viswts = MA.array(NP.ones_like(vistriad.data), mask=vistriad.mask, dtype=NP.float) lst_out = self.cPhase.cpinfo['processed']['prelim']['lstbins'] * 15.0 if lst_vis.size == 1: # Apply the visibility scaling from one reference LST to all LST vis_ref = vistriad * NP.ones(lst_out.size).reshape(1,-1,1) wts_ref = viswts * NP.ones(lst_out.size).reshape(1,-1,1) else: vis_ref, wts_ref = OPS.interpolate_masked_array_1D(vistriad, viswts, 1, visscaleinfo['smoothinfo'], inploc=lst_vis, outloc=lst_out) if not isinstance(method, str): raise TypeError('Input method must be a string') if method.lower() not in ['fft', 'nufft']: raise ValueError('Specified FFT method not supported') if not isinstance(apply_flags, bool): raise TypeError('Input apply_flags must be boolean') flagwts = 1.0 visscale = 1.0 if datapool.lower() == 'prelim': if method.lower() == 'fft': freq_wts = NP.empty((bw_eff.size, self.f.size), dtype=NP.float_) # nspw x nchan frac_width = DSP.window_N2width(n_window=None, shape=shape, fftpow=fftpow, area_normalize=False, power_normalize=True) window_loss_factor = 1 / frac_width n_window = NP.round(window_loss_factor * bw_eff / self.df).astype(NP.int) ind_freq_center, ind_channels, dfrequency = LKP.find_1NN(self.f.reshape(-1,1), freq_center.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True) sortind = NP.argsort(ind_channels) ind_freq_center = ind_freq_center[sortind] ind_channels = ind_channels[sortind] dfrequency = dfrequency[sortind] n_window = n_window[sortind] for i,ind_chan in enumerate(ind_channels): window = NP.sqrt(frac_width * n_window[i]) * DSP.window_fftpow(n_window[i], shape=shape, fftpow=fftpow, centering=True, peak=None, area_normalize=False, power_normalize=True) window_chans = self.f[ind_chan] + self.df * (NP.arange(n_window[i]) - int(n_window[i]/2)) ind_window_chans, ind_chans, dfreq = LKP.find_1NN(self.f.reshape(-1,1), window_chans.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True) sind = NP.argsort(ind_window_chans) ind_window_chans = ind_window_chans[sind] ind_chans = ind_chans[sind] dfreq = dfreq[sind] window = window[ind_window_chans] window = NP.pad(window, ((ind_chans.min(), self.f.size-1-ind_chans.max())), mode='constant', constant_values=((0.0,0.0))) freq_wts[i,:] = window npad = int(self.f.size * pad) lags = DSP.spectral_axis(self.f.size + npad, delx=self.df, use_real=False, shift=True) result = {'freq_center': freq_center, 'shape': shape, 'freq_wts': freq_wts, 'bw_eff': bw_eff, 'fftpow': fftpow, 'npad': npad, 'lags': lags, 'lag_corr_length': self.f.size / NP.sum(freq_wts, axis=-1), 'whole': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'residual': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'errinfo': {'dspec0': {'twts': self.cPhase.cpinfo['errinfo']['wts']['0']}, 'dspec1': {'twts': self.cPhase.cpinfo['errinfo']['wts']['1']}}, 'submodel': {}} if visscaleinfo is not None: visscale = NP.nansum(NP.transpose(vis_ref[NP.newaxis,NP.newaxis,:,:,:], axes=(0,3,1,2,4)) * freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) / NP.nansum(freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) # nspw x nlst x (ndays=1) x (nbl=3) x (nchan=1) visscale = NP.sqrt(1.0/NP.nansum(1/NP.abs(visscale)**2, axis=-2, keepdims=True)) # nspw x nlst x (ndays=1) x (ntriads=1) x (nchan=1) for dpool in ['errinfo', 'prelim', 'submodel', 'residual']: if dpool.lower() == 'errinfo': for diffind in range(2): if apply_flags: flagwts = NP.copy(self.cPhase.cpinfo['errinfo']['wts']['{0}'.format(diffind)].data) flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan for stat in self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)]: eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].data) # Minimum shape as stored # eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].filled(0.0)) # Minimum shape as stored eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].shape) # Broadcast to final shape eicp = eicp[NP.newaxis,...] # nlst x ndayscomb x ntriads x nchan --> (nspw=1) x nlst x ndayscomb x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] result[dpool]['dspec{0}'.format(diffind)][stat] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: if dpool in self.cPhase.cpinfo['processed']: if apply_flags: flagwts = NP.copy(self.cPhase.cpinfo['processed'][datapool]['wts'].data) flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan if dpool == 'submodel': eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].data) # Minimum shape as stored # eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].filled(1.0)) # Minimum shape as stored eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo['processed'][datapool]['eicp']['mean'].shape) # Broadcast to final shape eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] result[dpool]['dspec'] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: for key in self.cPhase.cpinfo['processed'][dpool]['eicp']: eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].data) # eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].filled(1.0)) eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] if dpool == 'prelim': result['whole']['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: result[dpool]['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df result['lag_kernel'] = DSP.FT1D(NP.pad(flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df self.cPhaseDS = result if resample: result_resampled = copy.deepcopy(result) downsample_factor = NP.min((self.f.size + npad) * self.df / bw_eff) result_resampled['lags'] = DSP.downsampler(result_resampled['lags'], downsample_factor, axis=-1, method='interp', kind='linear') result_resampled['lag_kernel'] = DSP.downsampler(result_resampled['lag_kernel'], downsample_factor, axis=-1, method='interp', kind='linear') for dpool in ['errinfo', 'prelim', 'submodel', 'residual']: if dpool.lower() == 'errinfo': for diffind in self.cPhase.cpinfo[dpool]['eicp_diff']: for key in self.cPhase.cpinfo[dpool]['eicp_diff'][diffind]: result_resampled[dpool]['dspec'+diffind][key] = DSP.downsampler(result_resampled[dpool]['dspec'+diffind][key], downsample_factor, axis=-1, method='FFT') if dpool in self.cPhase.cpinfo['processed']: if dpool == 'submodel': result_resampled[dpool]['dspec'] = DSP.downsampler(result_resampled[dpool]['dspec'], downsample_factor, axis=-1, method='FFT') else: for key in self.cPhase.cpinfo['processed'][datapool]['eicp']: if dpool == 'prelim': result_resampled['whole']['dspec'][key] = DSP.downsampler(result_resampled['whole']['dspec'][key], downsample_factor, axis=-1, method='FFT') else: result_resampled[dpool]['dspec'][key] = DSP.downsampler(result_resampled[dpool]['dspec'][key], downsample_factor, axis=-1, method='FFT') self.cPhaseDS_resampled = result_resampled return result_resampled else: return result ############################################################################ def subset(self, selection=None): """ ------------------------------------------------------------------------ Return triad and time indices to select a subset of processed data Inputs: selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. Outputs: Tuple (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) containing the triad, LST, day, and day-pair (for subsample differences) indices, each as a numpy array ------------------------------------------------------------------------ """ if selection is None: selsection = {} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') triads = map(tuple, self.cPhase.cpinfo['raw']['triads']) if 'triads' not in selection: selection['triads'] = triads if selection['triads'] is None: selection['triads'] = triads triad_ind = [triads.index(triad) for triad in selection['triads']] triad_ind = NP.asarray(triad_ind) lst_ind = None if 'lst' not in selection: if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0]) else: if selection['lst'] is None: if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0]) elif isinstance(selection['lst'], (list,NP.ndarray)): if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = selection['lst'] if NP.any(NP.logical_or(lst_ind < 0, lst_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0])): raise ValueError('Input processed lst indices out of bounds') else: raise TypeError('Wrong type for processed lst indices') if lst_ind is None: raise ValueError('LST index selection could not be performed') day_ind = None day_ind_eicpdiff = None if 'days' not in selection: if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1]) if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs'])) else: if selection['days'] is None: if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1]) if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs'])) elif isinstance(selection['days'], (list,NP.ndarray)): if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = selection['days'] if NP.any(NP.logical_or(day_ind < 0, day_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1])): raise ValueError('Input processed day indices out of bounds') if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = [i for i,item in enumerate(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs']) if len(set(item)-set(selection['days']))==0] else: raise TypeError('Wrong type for processed day indices') if day_ind is None: raise ValueError('Day index selection could not be performed') return (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) ############################################################################ def compute_power_spectrum(self, cpds=None, selection=None, autoinfo=None, xinfo=None, cosmo=cosmo100, units='K', beamparms=None): """ ------------------------------------------------------------------------ Compute power spectrum of closure phase data. It is in units of Mpc/h Inputs: cpds [dictionary] A dictionary that contains the 'oversampled' (if resample=False) and/or 'resampled' (if resample=True) delay spectrum information. If it is not specified the attributes cPhaseDS['processed'] and cPhaseDS_resampled['processed'] are used. Under each of these keys, it holds a dictionary that has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_bl x n_win x nlags x n_t. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'processed' [dictionary] Contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(ntriads,npol,nchan,nt) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,npol,nt,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,npol,nt,ntriads,nlags) selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. autoinfo [NoneType or dictionary] Specifies parameters for processing before power spectrum in auto or cross modes. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes that will be averaged coherently before squaring (for auto) or cross-multiplying (for cross) power spectrum. If set to None (default), no axes are averaged coherently. If set to int, list, tuple or numpy array, those axes will be averaged coherently after applying the weights specified under key 'wts' along those axes. 1=lst, 2=days, 3=triads. 'wts' [NoneType/list/numpy array] If not provided (equivalent to setting it to None) or set to None (default), it is set to a one element list which is a one element numpy array of unity. Otherwise, it must be a list of same number of elements as in key 'axes' and each of these must be a numpy broadcast compatible array corresponding to each of the axis specified in 'axes' xinfo [NoneType or dictionary] Specifies parameters for processing cross power spectrum. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes over which power spectrum will be computed incoherently by cross- multiplication. If set to None (default), no cross- power spectrum is computed. If set to int, list, tuple or numpy array, cross-power over those axes will be computed incoherently by cross-multiplication. The cross-spectrum over these axes will be computed after applying the pre- and post- cross-multiplication weights specified in key 'wts'. 1=lst, 2=days, 3=triads. 'collapse_axes' [list] The axes that will be collpased after the cross-power matrix is produced by cross-multiplication. If this key is not set, it will be initialized to an empty list (default), in which case none of the axes is collapsed and the full cross-power matrix will be output. it must be a subset of values under key 'axes'. This will reduce it from a square matrix along that axis to collapsed values along each of the leading diagonals. 1=lst, 2=days, 3=triads. 'dlst' [scalar] LST interval (in mins) or difference between LST pairs which will be determined and used for cross-power spectrum. Will only apply if values under 'axes' contains the LST axis(=1). 'dlst_range' [scalar, numpy array, or NoneType] Specifies the LST difference(s) in minutes that are to be used in the computation of cross-power spectra. If a scalar, only the diagonal consisting of pairs with that LST difference will be computed. If a numpy array, those diagonals consisting of pairs with that LST difference will be computed. If set to None (default), the main diagonal (LST difference of 0) and the first off-main diagonal (LST difference of 1 unit) corresponding to pairs with 0 and 1 unit LST difference are computed. Applies only if key 'axes' contains LST axis (=1). 'avgcov' [boolean] It specifies if the collapse of square covariance matrix is to be collapsed further to a single number after applying 'postX' weights. If not set or set to False (default), this late stage collapse will not be performed. Otherwise, it will be averaged in a weighted average sense where the 'postX' weights would have already been applied during the collapsing operation 'wts' [NoneType or Dictionary] If not set, a default dictionary (see default values below) will be created. It must have the follwoing keys and values: 'preX' [list of numpy arrays] It contains pre-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postX' [list of numpy arrays] It contains post-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of 'preX' weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postXnorm' [boolean] If False (default), no normalization is done after the application of postX weights. If set to True, the delay cross power spectrum will be normalized by the sum of the weights. cosmo [instance of cosmology class from astropy] An instance of class FLRW or default_cosmology of astropy cosmology module. Default uses Planck 2015 cosmology, with H0=100 h km/s/Mpc units [string] Specifies the units of output power spectum. Accepted values are 'Jy' and 'K' (default)) and the power spectrum will be in corresponding squared units. Output: Dictionary with the keys 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estiamted over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum Examples: (1) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': None, 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}} Output delay power spectrum has shape (Nspw, Nlst, 1, Ntriads, Nlags) (2) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}, 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, 1, Ntriads, Ntriads, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4,5]} (3) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [3], 'dlst_range': [0.0, 1.0, 2.0]} Output delay power spectrum has shape (Nspw, 3, Nlst, 1, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1,2], 3: [4]} (4) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [1,3], 'dlst_range': [1.0, 2.0, 3.0, 4.0]} Output delay power spectrum has shape (Nspw, 4, Ndays, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1], 3: [3]} (5) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': [3], 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, Ndays, 1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4]} (6) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': []} Output delay power spectrum has shape (Nspw, 1, Ndays, 1, Nlags) diagoffsets = {}, axesmap = {1: [1], 3: [3]} ------------------------------------------------------------------------ """ if not isinstance(units,str): raise TypeError('Input parameter units must be a string') if units.lower() == 'k': if not isinstance(beamparms, dict): raise TypeError('Input beamparms must be a dictionary') if 'freqs' not in beamparms: beamparms['freqs'] = self.f beamparms_orig = copy.deepcopy(beamparms) if autoinfo is None: autoinfo = {'axes': None, 'wts': [NP.ones(1, dtpye=NP.float)]} elif not isinstance(autoinfo, dict): raise TypeError('Input autoinfo must be a dictionary') if 'axes' not in autoinfo: autoinfo['axes'] = None else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input autoinfo must be an integer, list, tuple or numpy array') else: autoinfo['axes'] = NP.asarray(autoinfo['axes']).reshape(-1) if 'wts' not in autoinfo: if autoinfo['axes'] is not None: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] * len(autoinfo['axes']) else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['wts'], list): raise TypeError('wts in input autoinfo must be a list of numpy arrays') else: if len(autoinfo['wts']) != len(autoinfo['axes']): raise ValueError('Input list of wts must be same as length of autoinfo axes') else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] if xinfo is None: xinfo = {'axes': None, 'wts': {'preX': [NP.ones(1, dtpye=NP.float)], 'postX': [NP.ones(1, dtpye=NP.float)], 'preXnorm': False, 'postXnorm': False}} elif not isinstance(xinfo, dict): raise TypeError('Input xinfo must be a dictionary') if 'axes' not in xinfo: xinfo['axes'] = None else: if not isinstance(xinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input xinfo must be an integer, list, tuple or numpy array') else: xinfo['axes'] = NP.asarray(xinfo['axes']).reshape(-1) if 'wts' not in xinfo: xinfo['wts'] = {} for xkey in ['preX', 'postX']: if xinfo['axes'] is not None: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] * len(xinfo['axes']) else: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] xinfo['wts']['preXnorm'] = False xinfo['wts']['postXnorm'] = False else: if xinfo['axes'] is not None: if not isinstance(xinfo['wts'], dict): raise TypeError('wts in input xinfo must be a dictionary') for xkey in ['preX', 'postX']: if not isinstance(xinfo['wts'][xkey], list): raise TypeError('{0} wts in input xinfo must be a list of numpy arrays'.format(xkey)) else: if len(xinfo['wts'][xkey]) != len(xinfo['axes']): raise ValueError('Input list of {0} wts must be same as length of xinfo axes'.format(xkey)) else: for xkey in ['preX', 'postX']: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] if 'preXnorm' not in xinfo['wts']: xinfo['wts']['preXnorm'] = False if 'postXnorm' not in xinfo['wts']: xinfo['wts']['postXnorm'] = False if not isinstance(xinfo['wts']['preXnorm'], NP.bool): raise TypeError('preXnorm in input xinfo must be a boolean') if not isinstance(xinfo['wts']['postXnorm'], NP.bool): raise TypeError('postXnorm in input xinfo must be a boolean') if 'avgcov' not in xinfo: xinfo['avgcov'] = False if not isinstance(xinfo['avgcov'], NP.bool): raise TypeError('avgcov under input xinfo must be boolean') if 'collapse_axes' not in xinfo: xinfo['collapse_axes'] = [] if not isinstance(xinfo['collapse_axes'], (int,list,tuple,NP.ndarray)): raise TypeError('collapse_axes under input xinfo must be an integer, tuple, list or numpy array') else: xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']).reshape(-1) if (autoinfo['axes'] is not None) and (xinfo['axes'] is not None): if NP.intersect1d(autoinfo['axes'], xinfo['axes']).size > 0: raise ValueError("Inputs autoinfo['axes'] and xinfo['axes'] must have no intersection") cohax = autoinfo['axes'] if cohax is None: cohax = [] incohax = xinfo['axes'] if incohax is None: incohax = [] if selection is None: selection = {'triads': None, 'lst': None, 'days': None} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') if cpds is None: cpds = {} sampling = ['oversampled', 'resampled'] for smplng in sampling: if smplng == 'oversampled': cpds[smplng] = copy.deepcopy(self.cPhaseDS) else: cpds[smplng] = copy.deepcopy(self.cPhaseDS_resampled) triad_ind, lst_ind, day_ind, day_ind_eicpdiff = self.subset(selection=selection) result = {'triads': self.cPhase.cpinfo['raw']['triads'][triad_ind], 'triads_ind': triad_ind, 'lst': self.cPhase.cpinfo['processed']['prelim']['lstbins'][lst_ind], 'lst_ind': lst_ind, 'dlst': self.cPhase.cpinfo['processed']['prelim']['dlstbins'][lst_ind], 'days': self.cPhase.cpinfo['processed']['prelim']['daybins'][day_ind], 'day_ind': day_ind, 'dday': self.cPhase.cpinfo['processed']['prelim']['diff_dbins'][day_ind]} dlstbin = NP.mean(self.cPhase.cpinfo['processed']['prelim']['dlstbins']) if 'dlst_range' in xinfo: if xinfo['dlst_range'] is None: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated else: dlst_range = NP.asarray(xinfo['dlst_range']).ravel() / 60.0 # Difference in LST between a pair of LST (in hours) if dlst_range.size == 1: dlst_range = NP.insert(dlst_range, 0, 0.0) lstshifts = NP.arange(max([0, NP.ceil(1.0*dlst_range.min()/dlstbin).astype(NP.int)]), min([NP.ceil(1.0*dlst_range.max()/dlstbin).astype(NP.int), result['lst'].size])) else: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated result['lstXoffsets'] = lstshifts * dlstbin # LST interval corresponding to diagonal offsets created by the LST covariance for smplng in sampling: result[smplng] = {} wl = FCNST.c / (cpds[smplng]['freq_center'] * U.Hz) z = CNST.rest_freq_HI / cpds[smplng]['freq_center'] - 1 dz = CNST.rest_freq_HI / cpds[smplng]['freq_center']**2 * cpds[smplng]['bw_eff'] dkprll_deta = DS.dkprll_deta(z, cosmo=cosmo) kprll = dkprll_deta.reshape(-1,1) * cpds[smplng]['lags'] rz_los = cosmo.comoving_distance(z) # in Mpc/h drz_los = FCNST.c * cpds[smplng]['bw_eff']*U.Hz * (1+z)**2 / (CNST.rest_freq_HI * U.Hz) / (cosmo.H0 * cosmo.efunc(z)) # in Mpc/h if units == 'Jy': jacobian1 = 1 / (cpds[smplng]['bw_eff'] * U.Hz) jacobian2 = drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = 1.0 elif units == 'K': beamparms = copy.deepcopy(beamparms_orig) omega_bw = self.beam3Dvol(beamparms, freq_wts=cpds[smplng]['freq_wts']) jacobian1 = 1 / (omega_bw * U.Hz) # The steradian is present but not explicitly assigned jacobian2 = rz_los**2 * drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = wl**2 / (2*FCNST.k_B) else: raise ValueError('Input value for units invalid') factor = jacobian1 * jacobian2 * temperature_from_fluxdensity**2 result[smplng]['z'] = z result[smplng]['kprll'] = kprll result[smplng]['lags'] = NP.copy(cpds[smplng]['lags']) result[smplng]['freq_center'] = cpds[smplng]['freq_center'] result[smplng]['bw_eff'] = cpds[smplng]['bw_eff'] result[smplng]['shape'] = cpds[smplng]['shape'] result[smplng]['freq_wts'] = cpds[smplng]['freq_wts'] result[smplng]['lag_corr_length'] = cpds[smplng]['lag_corr_length'] for dpool in ['whole', 'submodel', 'residual']: if dpool in cpds[smplng]: result[smplng][dpool] = {} inpshape = list(cpds[smplng]['whole']['dspec']['mean'].shape) inpshape[1] = lst_ind.size inpshape[2] = day_ind.size inpshape[3] = triad_ind.size if len(cohax) > 0: nsamples_coh = NP.prod(NP.asarray(inpshape)[NP.asarray(cohax)]) else: nsamples_coh = 1 if len(incohax) > 0: nsamples = NP.prod(NP.asarray(inpshape)[NP.asarray(incohax)]) nsamples_incoh = nsamples * (nsamples - 1) else: nsamples_incoh = 1 twts_multidim_idx = NP.ix_(lst_ind,day_ind,triad_ind,NP.arange(1)) # shape=(nlst,ndays,ntriads,1) dspec_multidim_idx = NP.ix_(NP.arange(wl.size),lst_ind,day_ind,triad_ind,NP.arange(inpshape[4])) # shape=(nspw,nlst,ndays,ntriads,nchan) max_wt_in_chan = NP.max(NP.sum(cpds[smplng]['whole']['dspec']['twts'].data, axis=(0,1,2))) select_chan = NP.argmax(NP.sum(cpds[smplng]['whole']['dspec']['twts'].data, axis=(0,1,2))) twts = NP.copy(cpds[smplng]['whole']['dspec']['twts'].data[:,:,:,[select_chan]]) # shape=(nlst,ndays,ntriads,nlags=1) if nsamples_coh > 1: awts_shape = tuple(NP.ones(cpds[smplng]['whole']['dspec']['mean'].ndim, dtype=NP.int)) awts = NP.ones(awts_shape, dtype=NP.complex) awts_shape = NP.asarray(awts_shape) for caxind,caxis in enumerate(cohax): curr_awts_shape = NP.copy(awts_shape) curr_awts_shape[caxis] = -1 awts = awts * autoinfo['wts'][caxind].reshape(tuple(curr_awts_shape)) for stat in ['mean', 'median']: if dpool == 'submodel': dspec = NP.copy(cpds[smplng][dpool]['dspec'][dspec_multidim_idx]) else: dspec = NP.copy(cpds[smplng][dpool]['dspec'][stat][dspec_multidim_idx]) if nsamples_coh > 1: if stat == 'mean': dspec = NP.sum(twts[twts_multidim_idx][NP.newaxis,...] * awts * dspec[dspec_multidim_idx], axis=cohax, keepdims=True) / NP.sum(twts[twts_multidim_idx][NP.newaxis,...] * awts, axis=cohax, keepdims=True) else: dspec = NP.median(dspec[dspec_multidim_idx], axis=cohax, keepdims=True) if nsamples_incoh > 1: expandax_map = {} wts_shape = tuple(NP.ones(dspec.ndim, dtype=NP.int)) preXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for incaxind,incaxis in enumerate(xinfo['axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[incaxis] = -1 preXwts = preXwts * xinfo['wts']['preX'][incaxind].reshape(tuple(curr_wts_shape)) dspec1 = NP.copy(dspec) dspec2 = NP.copy(dspec) preXwts1 = NP.copy(preXwts) preXwts2 = NP.copy(preXwts) for incax in NP.sort(incohax)[::-1]: dspec1 = NP.expand_dims(dspec1, axis=incax) preXwts1 = NP.expand_dims(preXwts1, axis=incax) if incax == 1: preXwts1_outshape = list(preXwts1.shape) preXwts1_outshape[incax+1] = dspec1.shape[incax+1] preXwts1_outshape = tuple(preXwts1_outshape) preXwts1 = NP.broadcast_to(preXwts1, preXwts1_outshape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() preXwts2_tmp = NP.expand_dims(preXwts2, axis=incax) preXwts2_shape = NP.asarray(preXwts2_tmp.shape) preXwts2_shape[incax] = lstshifts.size preXwts2_shape[incax+1] = preXwts1_outshape[incax+1] preXwts2_shape = tuple(preXwts2_shape) preXwts2 = NP.broadcast_to(preXwts2_tmp, preXwts2_shape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() dspec2_tmp = NP.expand_dims(dspec2, axis=incax) dspec2_shape = NP.asarray(dspec2_tmp.shape) dspec2_shape[incax] = lstshifts.size # dspec2_shape = NP.insert(dspec2_shape, incax, lstshifts.size) dspec2_shape = tuple(dspec2_shape) dspec2 = NP.broadcast_to(dspec2_tmp, dspec2_shape).copy() # For some strange reason the NP.broadcast_to() creates a "read-only" immutable array which is changed to writeable by copy() for lstshiftind, lstshift in enumerate(lstshifts): dspec2[:,lstshiftind,...] = NP.roll(dspec2_tmp[:,0,...], lstshift, axis=incax) dspec2[:,lstshiftind,:lstshift,...] = NP.nan preXwts2[:,lstshiftind,...] = NP.roll(preXwts2_tmp[:,0,...], lstshift, axis=incax) preXwts2[:,lstshiftind,:lstshift,...] = NP.nan else: dspec2 = NP.expand_dims(dspec2, axis=incax+1) preXwts2 = NP.expand_dims(preXwts2, axis=incax+1) expandax_map[incax] = incax + NP.arange(2) for ekey in expandax_map: if ekey > incax: expandax_map[ekey] += 1 result[smplng][dpool][stat] = factor.reshape((-1,)+tuple(NP.ones(dspec1.ndim-1, dtype=NP.int))) * (dspec1*U.Unit('Jy Hz') * preXwts1) * (dspec2*U.Unit('Jy Hz') * preXwts2).conj() if xinfo['wts']['preXnorm']: result[smplng][dpool][stat] = result[smplng][dpool][stat] / NP.nansum(preXwts1 * preXwts2.conj(), axis=NP.union1d(NP.where(logical_or(NP.asarray(preXwts1.shape)>1, NP.asarray(preXwts2.shape)>1))), keepdims=True) # Normalize by summing the weights over the expanded axes if (len(xinfo['collapse_axes']) > 0) or (xinfo['avgcov']): # if any one of collapsing of incoherent axes or # averaging of full covariance is requested diagoffsets = {} # Stores the correlation index difference along each axis. diagweights = {} # Stores the number of points summed in the trace along the offset diagonal for colaxind, colax in enumerate(xinfo['collapse_axes']): if colax == 1: shp = NP.ones(dspec.ndim, dtype=NP.int) shp[colax] = lst_ind.size multdim_idx = tuple([NP.arange(axdim) for axdim in shp]) diagweights[colax] = NP.sum(NP.logical_not(NP.isnan(dspec[multdim_idx]))) - lstshifts # diagweights[colax] = result[smplng][dpool][stat].shape[expandax_map[colax][-1]] - lstshifts if stat == 'mean': result[smplng][dpool][stat] = NP.nanmean(result[smplng][dpool][stat], axis=expandax_map[colax][-1]) else: result[smplng][dpool][stat] = NP.nanmedian(result[smplng][dpool][stat], axis=expandax_map[colax][-1]) diagoffsets[colax] = lstshifts else: pspec_unit = result[smplng][dpool][stat].si.unit result[smplng][dpool][stat], offsets, diagwts = OPS.array_trace(result[smplng][dpool][stat].si.value, offsets=None, axis1=expandax_map[colax][0], axis2=expandax_map[colax][1], outaxis='axis1') diagwts_shape = NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int) diagwts_shape[expandax_map[colax][0]] = diagwts.size diagoffsets[colax] = offsets diagweights[colax] = NP.copy(diagwts) result[smplng][dpool][stat] = result[smplng][dpool][stat] * pspec_unit / diagwts.reshape(diagwts_shape) for ekey in expandax_map: if ekey > colax: expandax_map[ekey] -= 1 expandax_map[colax] = NP.asarray(expandax_map[colax][0]).ravel() wts_shape = tuple(NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int)) postXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for colaxind, colax in enumerate(xinfo['collapse_axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[expandax_map[colax]] = -1 postXwts = postXwts * xinfo['wts']['postX'][colaxind].reshape(tuple(curr_wts_shape)) result[smplng][dpool][stat] = result[smplng][dpool][stat] * postXwts axes_to_sum = tuple(NP.asarray([expandax_map[colax] for colax in xinfo['collapse_axes']]).ravel()) # for post-X normalization and collapse of covariance matrix if xinfo['wts']['postXnorm']: result[smplng][dpool][stat] = result[smplng][dpool][stat] / NP.nansum(postXwts, axis=axes_to_sum, keepdims=True) # Normalize by summing the weights over the collapsed axes if xinfo['avgcov']: # collapse the axes further (postXwts have already # been applied) diagoffset_weights = 1.0 for colaxind in zip(*sorted(zip(NP.arange(xinfo['collapse_axes'].size), xinfo['collapse_axes']), reverse=True))[0]: # It is important to sort the collapsable axes in # reverse order before deleting elements below, # otherwise the axes ordering may be get messed up diagoffset_weights_shape = NP.ones(result[smplng][dpool][stat].ndim, dtype=NP.int) diagoffset_weights_shape[expandax_map[xinfo['collapse_axes'][colaxind]][0]] = diagweights[xinfo['collapse_axes'][colaxind]].size diagoffset_weights = diagoffset_weights * diagweights[xinfo['collapse_axes'][colaxind]].reshape(diagoffset_weights_shape) del diagoffsets[xinfo['collapse_axes'][colaxind]] result[smplng][dpool][stat] = NP.nansum(result[smplng][dpool][stat]*diagoffset_weights, axis=axes_to_sum, keepdims=True) / NP.nansum(diagoffset_weights, axis=axes_to_sum, keepdims=True) else: result[smplng][dpool][stat] = factor.reshape((-1,)+tuple(NP.ones(dspec.ndim-1, dtype=NP.int))) * NP.abs(dspec * U.Jy)**2 diagoffsets = {} expandax_map = {} if units == 'Jy': result[smplng][dpool][stat] = result[smplng][dpool][stat].to('Jy2 Mpc') elif units == 'K': result[smplng][dpool][stat] = result[smplng][dpool][stat].to('K2 Mpc3') else: raise ValueError('Input value for units invalid') result[smplng][dpool]['diagoffsets'] = diagoffsets result[smplng][dpool]['diagweights'] = diagweights result[smplng][dpool]['axesmap'] = expandax_map result[smplng][dpool]['nsamples_incoh'] = nsamples_incoh result[smplng][dpool]['nsamples_coh'] = nsamples_coh return result ############################################################################ def compute_power_spectrum_uncertainty(self, cpds=None, selection=None, autoinfo=None,xinfo=None, cosmo=cosmo100, units='K', beamparms=None): """ ------------------------------------------------------------------------ Compute uncertainty in the power spectrum of closure phase data. It is in units of Mpc/h Inputs: cpds [dictionary] A dictionary that contains the 'oversampled' (if resample=False) and/or 'resampled' (if resample=True) delay spectrum information on the key 'errinfo'. If it is not specified the attributes cPhaseDS['errinfo'] and cPhaseDS_resampled['errinfo'] are used. Under each of these sampling keys, it holds a dictionary that has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_bl x n_win x nlags x n_t. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'errinfo' [dictionary] It has two keys 'dspec0' and 'dspec1' each of which are dictionaries with the following keys and values: 'twts' [numpy array] Weights for the subsample difference. It is of shape (nlst, ndays, ntriads, nchan) 'mean' [numpy array] Delay spectrum of the subsample difference obtained by using the mean statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) 'median' [numpy array] Delay spectrum of the subsample difference obtained by using the median statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. autoinfo [NoneType or dictionary] Specifies parameters for processing before power spectrum in auto or cross modes. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes that will be averaged coherently before squaring (for auto) or cross-multiplying (for cross) power spectrum. If set to None (default), no axes are averaged coherently. If set to int, list, tuple or numpy array, those axes will be averaged coherently after applying the weights specified under key 'wts' along those axes. 1=lst, 3=triads. Value of 2 for axes is not allowed since that denotes repeated days and it is along this axis that cross-power is computed regardless. 'wts' [NoneType/list/numpy array] If not provided (equivalent to setting it to None) or set to None (default), it is set to a one element list which is a one element numpy array of unity. Otherwise, it must be a list of same number of elements as in key 'axes' and each of these must be a numpy broadcast compatible array corresponding to each of the axis specified in 'axes' xinfo [NoneType or dictionary] Specifies parameters for processing cross power spectrum. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes over which power spectrum will be computed incoherently by cross- multiplication. If set to None (default), no cross- power spectrum is computed. If set to int, list, tuple or numpy array, cross-power over those axes will be computed incoherently by cross-multiplication. The cross-spectrum over these axes will be computed after applying the pre- and post- cross-multiplication weights specified in key 'wts'. 1=lst, 3=triads. Value of 2 for axes is not allowed since that denotes repeated days and it is along this axis that cross-power is computed regardless. 'collapse_axes' [list] The axes that will be collpased after the cross-power matrix is produced by cross-multiplication. If this key is not set, it will be initialized to an empty list (default), in which case none of the axes is collapsed and the full cross-power matrix will be output. it must be a subset of values under key 'axes'. This will reduce it from a square matrix along that axis to collapsed values along each of the leading diagonals. 1=lst, 3=triads. 'dlst' [scalar] LST interval (in mins) or difference between LST pairs which will be determined and used for cross-power spectrum. Will only apply if values under 'axes' contains the LST axis(=1). 'dlst_range' [scalar, numpy array, or NoneType] Specifies the LST difference(s) in minutes that are to be used in the computation of cross-power spectra. If a scalar, only the diagonal consisting of pairs with that LST difference will be computed. If a numpy array, those diagonals consisting of pairs with that LST difference will be computed. If set to None (default), the main diagonal (LST difference of 0) and the first off-main diagonal (LST difference of 1 unit) corresponding to pairs with 0 and 1 unit LST difference are computed. Applies only if key 'axes' contains LST axis (=1). 'avgcov' [boolean] It specifies if the collapse of square covariance matrix is to be collapsed further to a single number after applying 'postX' weights. If not set or set to False (default), this late stage collapse will not be performed. Otherwise, it will be averaged in a weighted average sense where the 'postX' weights would have already been applied during the collapsing operation 'wts' [NoneType or Dictionary] If not set, a default dictionary (see default values below) will be created. It must have the follwoing keys and values: 'preX' [list of numpy arrays] It contains pre-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postX' [list of numpy arrays] It contains post-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of 'preX' weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postXnorm' [boolean] If False (default), no normalization is done after the application of postX weights. If set to True, the delay cross power spectrum will be normalized by the sum of the weights. cosmo [instance of cosmology class from astropy] An instance of class FLRW or default_cosmology of astropy cosmology module. Default uses Planck 2015 cosmology, with H0=100 h km/s/Mpc units [string] Specifies the units of output power spectum. Accepted values are 'Jy' and 'K' (default)) and the power spectrum will be in corresponding squared units. Output: Dictionary with the keys 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,) array), 'dday' ((ndaycomb,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains a key named 'errinfo' which is a dictionary. It contains information about power spectrum uncertainties obtained from subsample differences. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum uncertainties incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum uncertainties incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum Examples: (1) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': None, 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}} This will not do anything because axes cannot include value 2 which denote the 'days' axis and the uncertainties are obtained through subsample differencing along days axis regardless. Output delay power spectrum has shape (Nspw, Nlst, Ndaycomb, Ntriads, Nlags) (2) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}, 'dlst_range': None} This will not do anything about coherent averaging along axis=2 because axes cannot include value 2 which denote the 'days' axis and the uncertainties are obtained through subsample differencing along days axis regardless. Output delay power spectrum has shape (Nspw, 2, Nlst, Ndaycomb, Ntriads, Ntriads, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4,5]} (3) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [3], 'dlst_range': [0.0, 1.0, 2.0]} This will not do anything about coherent averaging along axis=2 because axes cannot include value 2 which denote the 'days' axis and the uncertainties are obtained through subsample differencing along days axis regardless. Output delay power spectrum has shape (Nspw, 3, Nlst, 1, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1,2], 3: [4]} (4) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [1,3], 'dlst_range': [1.0, 2.0, 3.0, 4.0]} Output delay power spectrum has shape (Nspw, 4, Ndaycomb, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1], 3: [3]} (5) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': [3], 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, Ndays, 1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4]} (6) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': []} Output delay power spectrum has shape (Nspw, 1, Ndays, 1, Nlags) diagoffsets = {}, axesmap = {1: [1], 3: [3]} ------------------------------------------------------------------------ """ if not isinstance(units,str): raise TypeError('Input parameter units must be a string') if units.lower() == 'k': if not isinstance(beamparms, dict): raise TypeError('Input beamparms must be a dictionary') if 'freqs' not in beamparms: beamparms['freqs'] = self.f beamparms_orig = copy.deepcopy(beamparms) if autoinfo is None: autoinfo = {'axes': None, 'wts': [NP.ones(1, dtpye=NP.float)]} elif not isinstance(autoinfo, dict): raise TypeError('Input autoinfo must be a dictionary') if 'axes' not in autoinfo: autoinfo['axes'] = None else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input autoinfo must be an integer, list, tuple or numpy array') else: autoinfo['axes'] = NP.asarray(autoinfo['axes']).reshape(-1) if 'wts' not in autoinfo: if autoinfo['axes'] is not None: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] * len(autoinfo['axes']) else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['wts'], list): raise TypeError('wts in input autoinfo must be a list of numpy arrays') else: if len(autoinfo['wts']) != len(autoinfo['axes']): raise ValueError('Input list of wts must be same as length of autoinfo axes') else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] if xinfo is None: xinfo = {'axes': None, 'wts': {'preX': [NP.ones(1, dtpye=NP.float)], 'postX': [NP.ones(1, dtpye=NP.float)], 'preXnorm': False, 'postXnorm': False}} elif not isinstance(xinfo, dict): raise TypeError('Input xinfo must be a dictionary') if 'axes' not in xinfo: xinfo['axes'] = None else: if not isinstance(xinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input xinfo must be an integer, list, tuple or numpy array') else: xinfo['axes'] = NP.asarray(xinfo['axes']).reshape(-1) if 'wts' not in xinfo: xinfo['wts'] = {} for xkey in ['preX', 'postX']: if xinfo['axes'] is not None: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] * len(xinfo['axes']) else: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] xinfo['wts']['preXnorm'] = False xinfo['wts']['postXnorm'] = False else: if xinfo['axes'] is not None: if not isinstance(xinfo['wts'], dict): raise TypeError('wts in input xinfo must be a dictionary') for xkey in ['preX', 'postX']: if not isinstance(xinfo['wts'][xkey], list): raise TypeError('{0} wts in input xinfo must be a list of numpy arrays'.format(xkey)) else: if len(xinfo['wts'][xkey]) != len(xinfo['axes']): raise ValueError('Input list of {0} wts must be same as length of xinfo axes'.format(xkey)) else: for xkey in ['preX', 'postX']: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] if 'preXnorm' not in xinfo['wts']: xinfo['wts']['preXnorm'] = False if 'postXnorm' not in xinfo['wts']: xinfo['wts']['postXnorm'] = False if not isinstance(xinfo['wts']['preXnorm'], NP.bool): raise TypeError('preXnorm in input xinfo must be a boolean') if not isinstance(xinfo['wts']['postXnorm'], NP.bool): raise TypeError('postXnorm in input xinfo must be a boolean') if 'avgcov' not in xinfo: xinfo['avgcov'] = False if not isinstance(xinfo['avgcov'], NP.bool): raise TypeError('avgcov under input xinfo must be boolean') if 'collapse_axes' not in xinfo: xinfo['collapse_axes'] = [] if not isinstance(xinfo['collapse_axes'], (int,list,tuple,NP.ndarray)): raise TypeError('collapse_axes under input xinfo must be an integer, tuple, list or numpy array') else: xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']).reshape(-1) if (autoinfo['axes'] is not None) and (xinfo['axes'] is not None): if NP.intersect1d(autoinfo['axes'], xinfo['axes']).size > 0: raise ValueError("Inputs autoinfo['axes'] and xinfo['axes'] must have no intersection") cohax = autoinfo['axes'] if cohax is None: cohax = [] if 2 in cohax: # Remove axis=2 from cohax if isinstance(cohax, list): cohax.remove(2) if isinstance(cohax, NP.ndarray): cohax = cohax.tolist() cohax.remove(2) cohax = NP.asarray(cohax) incohax = xinfo['axes'] if incohax is None: incohax = [] if 2 in incohax: # Remove axis=2 from incohax if isinstance(incohax, list): incohax.remove(2) if isinstance(incohax, NP.ndarray): incohax = incohax.tolist() incohax.remove(2) incohax = NP.asarray(incohax) if selection is None: selection = {'triads': None, 'lst': None, 'days': None} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') if cpds is None: cpds = {} sampling = ['oversampled', 'resampled'] for smplng in sampling: if smplng == 'oversampled': cpds[smplng] = copy.deepcopy(self.cPhaseDS) else: cpds[smplng] = copy.deepcopy(self.cPhaseDS_resampled) triad_ind, lst_ind, day_ind, day_ind_eicpdiff = self.subset(selection=selection) result = {'triads': self.cPhase.cpinfo['raw']['triads'][triad_ind], 'triads_ind': triad_ind, 'lst': self.cPhase.cpinfo['errinfo']['lstbins'][lst_ind], 'lst_ind': lst_ind, 'dlst': self.cPhase.cpinfo['errinfo']['dlstbins'][lst_ind], 'days': self.cPhase.cpinfo['errinfo']['daybins'][day_ind], 'day_ind': day_ind_eicpdiff, 'dday': self.cPhase.cpinfo['errinfo']['diff_dbins'][day_ind]} dlstbin = NP.mean(self.cPhase.cpinfo['errinfo']['dlstbins']) if 'dlst_range' in xinfo: if xinfo['dlst_range'] is None: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated else: dlst_range = NP.asarray(xinfo['dlst_range']).ravel() / 60.0 # Difference in LST between a pair of LST (in hours) if dlst_range.size == 1: dlst_range = NP.insert(dlst_range, 0, 0.0) lstshifts = NP.arange(max([0, NP.ceil(1.0*dlst_range.min()/dlstbin).astype(NP.int)]), min([NP.ceil(1.0*dlst_range.max()/dlstbin).astype(NP.int), result['lst'].size])) else: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated result['lstXoffsets'] = lstshifts * dlstbin # LST interval corresponding to diagonal offsets created by the LST covariance for smplng in sampling: result[smplng] = {} wl = FCNST.c / (cpds[smplng]['freq_center'] * U.Hz) z = CNST.rest_freq_HI / cpds[smplng]['freq_center'] - 1 dz = CNST.rest_freq_HI / cpds[smplng]['freq_center']**2 * cpds[smplng]['bw_eff'] dkprll_deta = DS.dkprll_deta(z, cosmo=cosmo) kprll = dkprll_deta.reshape(-1,1) * cpds[smplng]['lags'] rz_los = cosmo.comoving_distance(z) # in Mpc/h drz_los = FCNST.c * cpds[smplng]['bw_eff']*U.Hz * (1+z)**2 / (CNST.rest_freq_HI * U.Hz) / (cosmo.H0 * cosmo.efunc(z)) # in Mpc/h if units == 'Jy': jacobian1 = 1 / (cpds[smplng]['bw_eff'] * U.Hz) jacobian2 = drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = 1.0 elif units == 'K': beamparms = copy.deepcopy(beamparms_orig) omega_bw = self.beam3Dvol(beamparms, freq_wts=cpds[smplng]['freq_wts']) jacobian1 = 1 / (omega_bw * U.Hz) # The steradian is present but not explicitly assigned jacobian2 = rz_los**2 * drz_los / (cpds[smplng]['bw_eff'] * U.Hz) temperature_from_fluxdensity = wl**2 / (2*FCNST.k_B) else: raise ValueError('Input value for units invalid') factor = jacobian1 * jacobian2 * temperature_from_fluxdensity**2 result[smplng]['z'] = z result[smplng]['kprll'] = kprll result[smplng]['lags'] = NP.copy(cpds[smplng]['lags']) result[smplng]['freq_center'] = cpds[smplng]['freq_center'] result[smplng]['bw_eff'] = cpds[smplng]['bw_eff'] result[smplng]['shape'] = cpds[smplng]['shape'] result[smplng]['freq_wts'] = cpds[smplng]['freq_wts'] result[smplng]['lag_corr_length'] = cpds[smplng]['lag_corr_length'] dpool = 'errinfo' if dpool in cpds[smplng]: result[smplng][dpool] = {} inpshape = list(cpds[smplng][dpool]['dspec0']['mean'].shape) inpshape[1] = lst_ind.size inpshape[2] = day_ind_eicpdiff.size inpshape[3] = triad_ind.size if len(cohax) > 0: nsamples_coh = NP.prod(NP.asarray(inpshape)[NP.asarray(cohax)]) else: nsamples_coh = 1 if len(incohax) > 0: nsamples = NP.prod(NP.asarray(inpshape)[NP.asarray(incohax)]) nsamples_incoh = nsamples * (nsamples - 1) else: nsamples_incoh = 1 twts_multidim_idx = NP.ix_(lst_ind,day_ind_eicpdiff,triad_ind,NP.arange(1)) # shape=(nlst,ndays,ntriads,1) dspec_multidim_idx = NP.ix_(NP.arange(wl.size),lst_ind,day_ind_eicpdiff,triad_ind,NP.arange(inpshape[4])) # shape=(nspw,nlst,ndays,ntriads,nchan) max_wt_in_chan = NP.max(NP.sum(cpds[smplng]['errinfo']['dspec0']['twts'].data, axis=(0,1,2,3))) select_chan = NP.argmax(NP.sum(cpds[smplng]['errinfo']['dspec0']['twts'].data, axis=(0,1,2,3))) twts = {'0': NP.copy(cpds[smplng]['errinfo']['dspec0']['twts'].data[:,:,:,[select_chan]]), '1': NP.copy(cpds[smplng]['errinfo']['dspec1']['twts'].data[:,:,:,[select_chan]])} if nsamples_coh > 1: awts_shape = tuple(NP.ones(cpds[smplng]['errinfo']['dspec']['mean'].ndim, dtype=NP.int)) awts = NP.ones(awts_shape, dtype=NP.complex) awts_shape = NP.asarray(awts_shape) for caxind,caxis in enumerate(cohax): curr_awts_shape = NP.copy(awts_shape) curr_awts_shape[caxis] = -1 awts = awts * autoinfo['wts'][caxind].reshape(tuple(curr_awts_shape)) for stat in ['mean', 'median']: dspec0 = NP.copy(cpds[smplng][dpool]['dspec0'][stat][dspec_multidim_idx]) dspec1 = NP.copy(cpds[smplng][dpool]['dspec1'][stat][dspec_multidim_idx]) if nsamples_coh > 1: if stat == 'mean': dspec0 = NP.sum(twts['0'][NP.newaxis,...] * awts * dspec0, axis=cohax, keepdims=True) / NP.sum(twts['0'][twts_multidim_idx][NP.newaxis,...] * awts, axis=cohax, keepdims=True) dspec1 = NP.sum(twts['1'][NP.newaxis,...] * awts * dspec1, axis=cohax, keepdims=True) / NP.sum(twts['1'][twts_multidim_idx][NP.newaxis,...] * awts, axis=cohax, keepdims=True) else: dspec0 = NP.median(dspec0, axis=cohax, keepdims=True) dspec1 = NP.median(dspec1, axis=cohax, keepdims=True) if nsamples_incoh > 1: expandax_map = {} wts_shape = tuple(NP.ones(dspec0.ndim, dtype=NP.int)) preXwts = NP.ones(wts_shape, dtype=NP.complex) wts_shape = NP.asarray(wts_shape) for incaxind,incaxis in enumerate(xinfo['axes']): curr_wts_shape = NP.copy(wts_shape) curr_wts_shape[incaxis] = -1 preXwts = preXwts * xinfo['wts']['preX'][incaxind].reshape(tuple(curr_wts_shape)) preXwts0 = NP.copy(preXwts) preXwts1 = NP.copy(preXwts) for incax in NP.sort(incohax)[::-1]: dspec0 = NP.expand_dims(dspec0, axis=incax) preXwts0 = NP.expand_dims(preXwts0, axis=incax) if incax == 1: preXwts0_outshape = list(preXwts0.shape) preXwts0_outshape[incax+1] = dspec0.shape[incax+1] preXwts0_outshape = tuple(preXwts0_outshape) preXwts0 =
NP.broadcast_to(preXwts0, preXwts0_outshape)
numpy.broadcast_to
#!/usr/bin/env python # coding: utf-8 # In[21]: #https://stackoverflow.com/questions/10884668/two-sample-kolmogorov-smirnov-test-in-python-scipy #https://www.machinelearningplus.com/machine-learning/evaluation-metrics-classification-models-r/ # Essentials import pandas as pd import numpy as np import time import sys import math from scipy.spatial import distance from scipy.stats import ks_2samp from scipy import spatial # Ignorar ciertos warnings import warnings warnings.filterwarnings(action="ignore") pd.options.display.max_seq_items = 8000 pd.options.display.max_rows = 8000 #arguments of the console #first_arg = sys.argv[1] #first_arg = float(first_arg) # Filtro Noise addition def noisy_filter(data, variable, a): lista_variable = data[variable].tolist() std = np.std(lista_variable, axis=0) noisy_ratings = list() for rating in lista_variable: new_rating = rating +a*std*abs(np.random.normal()) noisy_ratings.append(new_rating) b = "NOISY_" + variable data[b] = noisy_ratings return data def AplicarNoiseFilter(a): # Importar datos originales df = pd.read_csv('dataParaPrivacidad.csv') # Aplica el filtro en las variables correspondientes variablesParaNoise = df.columns[2:-1] for i in variablesParaNoise: df = noisy_filter(df,i,a) # Alista los datos para poder predecir DF_NF = df.iloc[:,[0,1,7,8,9,10]] DF_NF.iloc[:,:] = df.iloc[:,[0,1,7,8,9,10]] # Alista para usar for i in range(2,6): DF_NF.iloc[:,i] = np.log1p(DF_NF.iloc[:,i]) DF_NF.columns = ['LONGI', 'LATIT', 'Salinidad', 'TC', 'Clorofila', 'TSM'] # Importar el Learner import pickle with open('XGBModel.pkl', 'rb') as f: xgbModel = pickle.load(f) with open('RidgeModel.pkl', 'rb') as f: ridgeModel = pickle.load(f) with open('SVRModel.pkl', 'rb') as f: supportVectorRegresorModel = pickle.load(f) with open('LGBMRModel.pkl', 'rb') as f: LGBMRModel = pickle.load(f) with open('StackedModel.pkl', 'rb') as f: stack_genModel = pickle.load(f) # Setear el learner def votingPredictions(X): return ((0.30 * xgbModel.predict(X)) + (0.05 * ridgeModel.predict(X)) + (0.05 * supportVectorRegresorModel.predict(X)) + (0.25 * LGBMRModel.predict(X)) + (0.35 * stack_genModel.predict(np.array(X)))) # Resultados df['MontoPescaNoisy'] = votingPredictions(DF_NF) # Get the Euclidean distance between vectors of real feature vs private vectors df["SquaredDifference"] = (df.NOISY_SALI - df.SALI)**2 + (df.NOISY_TCL - df.TCL)**2 + (df.NOISY_CLO - df.CLO)**2 + (df.NOISY_TSM - df.TSM)**2 df['EuclideanDistance'] = np.sqrt(df[['SquaredDifference']].sum(axis=1)) # Cosimilitud r = [] for i in range(df.shape[0]): r.append(spatial.distance.cosine(df.loc[i,["SALI","TCL","CLO","TSM"]], df.loc[i,["NOISY_SALI","NOISY_TCL","NOISY_CLO","NOISY_TSM"]])) # IL_EucDistance: IL_EucDistance = sum(df.EuclideanDistance) # IL_Cosimilitud: IL_Cosimilitud = sum(r) # DR <NAME>: (1 - sum(abs(P_{verdadera}-V_{calculada})))/n DR_JS = (1 - distance.jensenshannon(df.MontoPescaOriginal, df.MontoPescaNoisy)) # DR <NAME> # DR1: (1 - sum(P_{verdadera}-V_{calculada}))/n DR_KS = (1 - ks_2samp(df.MontoPescaOriginal, df.MontoPescaNoisy)[0]) # Params params = [a] # Resultados d = {'Params':[params],'IL_EucDistance': [IL_EucDistance], 'IL_Cosimilitud': [IL_Cosimilitud], 'DR_JS': [DR_JS], 'DR_KS':[DR_KS]} d = pd.DataFrame(data=d) Results = str(params)+'NoiseAdditionFilter.csv' d.to_csv(Results, index = False) # For executing #if __name__ == "__main__": # AplicarNoiseFilter(first_arg) # In[1]: # Essentials import pandas as pd import numpy as np import time import sys import math from scipy.spatial import distance from scipy.stats import ks_2samp from scipy import spatial # Ignorar ciertos warnings import warnings warnings.filterwarnings(action="ignore") pd.options.display.max_seq_items = 8000 pd.options.display.max_rows = 8000 # In[2]: # Filtro Noise addition def noisy_filter(data, variable, a): lista_variable = data[variable].tolist() std =
np.std(lista_variable, axis=0)
numpy.std
#** # @file cmnedata.py # @author <NAME> <<EMAIL>> # @version 1.0 # @date September, 2017 # # @section LICENSE # # Copyright (C) 2017, <NAME>. All rights reserved. # # @brief CMNEData contains, e.g., data loader #** #%% import os import sys sys.path.append('../helpers') #Add relative path to include modules import numpy as np import random import mne from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator from helpers.cmnesettings import CMNESettings ################################################################################################### # Standardize ################################################################################################### def standardize(mat, mean=None, std=None): """ 0 center and scale data Standardize an np.array to the array mean and standard deviation or specified parameters See https://en.wikipedia.org/wiki/Feature_scaling """ if mean is None: mean = np.mean(mat, axis=1) if std is None: std = np.std(mat, axis=1) data_normalized = (mat.transpose() - mean).transpose() data = (data_normalized.transpose() / std).transpose() return data ################################################################################################### # Reshape with lookback value for LSTM ################################################################################################### # creates lookback values using helper, then reshapes for LSTM def reshape_stc_data(stc, look_back, start=0, step_size=1): samples,n = stc.shape stop = samples - look_back - 1 feature_parts, label_parts = [], [] for i in range(start,stop,step_size): feature_parts.append(stc[i:(i + look_back), :]) # Take just the last estimate as label label_parts.append(stc[i + look_back, :]) return feature_parts, label_parts ################################################################################################### # Reshape with lookback value for LSTM ################################################################################################### # creates lookback values using helper, then reshapes for LSTM def reshape_epoch_stc_data(epoch, stc, look_back): samples_epoch,n = epoch.shape samples_stc,n = stc.shape epoch_parts, stc_parts = [], [] # Make sure that samples are equaly long if samples_epoch != samples_stc: return epoch_parts, stc_parts for i in range(samples_epoch - look_back): epoch_parts.append(epoch[i:(i + look_back), :]) # Take the whole estimate sequence as label #stc_parts.append(stc[i:(i + look_back), :]) # Take just the last estimate as label stc_parts.append(stc[i + look_back - 1, :]) return epoch_parts, stc_parts ################################################################################################### # Reshape with lookback and look into future value for LSTM ################################################################################################### def reshape_future_data(stc, look_back, future_steps=1, start=0, step_size=1): samples,n = stc.shape stop = samples - look_back - 1 - future_steps + 1 feature_parts, label_parts = [], [] for i in range(start,stop,step_size): feature_parts.append(stc[i:(i + look_back), :]) # Take just the last estimate as label label_parts.append(stc[i + look_back : i + look_back + future_steps:1, :].flatten()) return feature_parts, label_parts ################################################################################################### # Create Sequence Parts ################################################################################################### def create_sequence_parts(stc, look_back, start=0, step_size=1): samples,n = stc.shape stop = samples - look_back - 1 stc_sequence_parts = [] for i in range(start,stop,step_size): stc_sequence_parts.append(stc[i:(i + look_back), :]) stc_sequences = np.array(stc_sequence_parts) return stc_sequences ################################################################################################### # CMNEData class ################################################################################################### class CMNEData(object): """the cmne data object Attributes: _cmne_settings: CMNE settings object. _inv_op: The loaded inverse operator. _epochs: The loaded epochs. _num_epochs: Number of available epochs. _train_idcs: Indeces which should be used for training _test_idcs: Indeces which should be used for testing """ _mag_th = 4e-12 #Simulation: 4e-11 _grad_th = 4000e-13 #Simulation: 4000e-12 # Using the same inverse operator when inspecting single trials Vs. evoked _snr = 3.0 # Standard assumption for average data but using it for single trial _lambda2 = 1.0 / _snr ** 2 _method = "dSPM" ############################################################################################### # Constructor ############################################################################################### def __init__(self, cmne_settings): """Return a new CMNEData object.""" self._cmne_settings = cmne_settings ############################################################################################### # Load Data ############################################################################################### def load_data(self, event_id=1, tmin=-0.2, tmax=0.5, train_percentage = 0.85): # Load data inverse_operator = read_inverse_operator(self._cmne_settings.fname_inv()) raw = mne.io.read_raw_fif(self._cmne_settings.fname_raw()) events = mne.read_events(self._cmne_settings.fname_event()) # Set up pick list include = [] # set EEG average reference # raw.set_eeg_reference() # Add a bad channel # raw.info['bads'] += ['EEG 053'] # bads + 1 more # pick MEG channels picks = mne.pick_types( raw.info, meg=True, eeg=self._cmne_settings.meg_and_eeg(), stim=False, eog=False, include=include, exclude='bads') # Read epochs epochs = mne.Epochs( raw, events, event_id, tmin, tmax, baseline=(None, 0), picks=picks, preload=self._cmne_settings.large_memory(), reject=dict(mag=self._mag_th, grad=self._grad_th))#, eog=150e-5))#eog=150e-6)) epochs.drop_bad() self._inv_op = inverse_operator self._epochs = epochs #Count epochs - since they are not preloaded it has to be done with a for loop num_epochs = 0 for epoch in epochs: num_epochs = num_epochs + 1 self._num_epochs = num_epochs whole_list = list(range(num_epochs)) if os.path.isfile(self._cmne_settings.fname_test_idcs()): self._test_idcs = [] with open(self._cmne_settings.fname_test_idcs(), "r") as f: for line in f: self._test_idcs.append(int(line.strip())) self._train_idcs = [item for item in whole_list if item not in self._test_idcs] else: #split train and test random.seed(42) self._train_idcs = random.sample(range(num_epochs), (int)(num_epochs*train_percentage)) self._test_idcs = [item for item in whole_list if item not in self._train_idcs] with open(self._cmne_settings.fname_test_idcs(), "w") as f: for idx in self._test_idcs: f.write(str(idx) +"\n") ############################################################################################### # Generate Input ############################################################################################### def generate_normalized_input(self, look_back=40, batch_size=20): """ Create the normalized input """ nave = 1 #Count epochs num_epochs = 0 for epoch in self._epochs: num_epochs = num_epochs + 1 while True: # select random epochs idx = random.sample(range(num_epochs), batch_size) sel_epochs = self.epochs[idx] stcs = apply_inverse_epochs(sel_epochs, self._inv_op, self._lambda2, self._method, pick_ori="normal", nave=nave) # Attention - just an approximation, since not all stc are considered for the mean and the std stc_data = np.hstack([stc.data for stc in stcs]) stc_mean = np.mean(stc_data, axis=1) stc_std = np.std(stc_data, axis=1) stc_data = None #Attention end for stc in stcs: stc_normalized = standardize(stc.data, mean=stc_mean, std=stc_std) stc_normalized_T = stc_normalized.transpose() feature_list, label_list = reshape_stc_data(stc = stc_normalized_T, look_back = look_back) features = np.array(feature_list) labels = np.array(label_list) yield features, labels ############################################################################################### # Getters and setters ############################################################################################### def epochs(self, idx=None): """ Returns selected epochs, if selection is None then all epochs are returned """ if idx == None: return self._epochs else: return self._epochs[idx] def test_idcs(self): """ Returns selected test indeces """ return self._test_idcs def test_epochs(self, idx=None): """ Returns selected test epochs, if selection is None then all test epochs are returned """ if idx == None: return self._epochs[self._test_idcs] else: return self._epochs[self._test_idcs][idx] def train_idcs(self): """ Returns selected test indeces """ return self._train_idcs def train_epochs(self, idx=None): """ Returns selected test epochs, if selection is None then all test epochs are returned """ if idx == None: return self._epochs[self._train_idcs] else: return self._epochs[self._train_idcs][idx] def inv_op(self): """ Returns the loaded inverse operator """ return self._inv_op def method(self): """ Returns the inverse method """ return self._method def snr(self): """ Returns the datas snr """ return self._snr def lambda2(self): """ Returns the datas snr """ return self._lambda2 def num_epochs(self): """ Returns the datas snr """ return self._num_epochs ################################################################################################### # Create all data at once ################################################################################################### def create_lstm_data(epochs, inverse_operator, lambda2, method, look_back = 1): """ Create the dataset for testing regression models in the CNTK format Y = GQ + E -> features = stc, labels = stc """ nave = 2 # Compute inverse solution and stcs for each epoch # Use the same inverse operator as with evoked data (i.e., set nave) # If you use a different nave, dSPM just scales by a factor sqrt(nave) stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, method, pick_ori="normal", nave=nave) ############################################################################### # Standardize Label and Mean Data feature_data = np.hstack([stc.data for stc in stcs]) feature_mean = np.mean(feature_data, axis=1) feature_std = np.std(feature_data, axis=1) features_normalized = [] labels_normalized = [] for stc in stcs: stc_normalized = standardize(stc.data,mean=feature_mean,std=feature_std) stc_normalized_T = stc_normalized.transpose() feature_parts, label_parts = reshape_stc_data(stc = stc_normalized_T, look_back = look_back) features_normalized.extend(feature_parts) labels_normalized.extend(label_parts) features= np.array(features_normalized) labels = np.array(labels_normalized) return features, labels def create_epoch_stc_data(epochs, inverse_operator, lambda2, method, look_back = 1): """ Create the dataset for testing regression models in the CNTK format Y = GQ + E """ nave = 2 # Compute inverse solution and stcs for each epoch # Use the same inverse operator as with evoked data (i.e., set nave) # If you use a different nave, dSPM just scales by a factor sqrt(nave) stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, method, pick_ori="normal", nave=nave) ############################################################################### # Standardize Label and Mean Data label_data = np.hstack([stc.data for stc in stcs]) label_mean = np.mean(label_data, axis=1) label_std = np.std(label_data, axis=1) feature_data = np.hstack([epoch.data for epoch in epochs]) feature_mean = np.mean(feature_data, axis=1) feature_std = np.std(feature_data, axis=1) epochs_normalized = [] stcs_normalized = [] for epoch,stc in zip(epochs,stcs): stc_normalized = standardize(stc.data,mean=label_mean,std=label_std) stc_normalized_T = stc_normalized.transpose() epoch_normalized = standardize(epoch,mean=feature_mean,std=feature_std) epoch_normalized_T = epoch_normalized.transpose() epoch_parts, stc_parts = reshape_epoch_stc_data(epoch = epoch_normalized_T, stc = stc_normalized_T, look_back = look_back) epochs_normalized.extend(epoch_parts) stcs_normalized.extend(stc_parts) features = np.array(epochs_normalized) labels = np.array(stcs_normalized) return features, labels ################################################################################################### # Generate DNN Batches ################################################################################################### def generate_dnn_batches(epochs, inverse_operator, lambda2, method, batch_size=20): """ Create the DNN Training Batches """ nave = 1 # Compute inverse solution and stcs for each epoch # Use the same inverse operator as with evoked data (i.e., set nave) # If you use a different nave, dSPM just scales by a factor sqrt(nave) stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, method, pick_ori="normal", nave=nave, verbose=None) #Count epochs num_epochs = 0 for epoch in epochs: num_epochs = num_epochs + 1 while True: # select random epochs idx = random.sample(range(num_epochs), batch_size) sel_epochs = epochs[idx] sel_stcs = [stcs[i] for i in idx] ############################################################################### # Standardize Label and Mean Data feature_data = np.hstack([epoch.data for epoch in sel_epochs]) feature_mean = np.mean(feature_data, axis=1) feature_std = np.std(feature_data, axis=1) label_data =
np.hstack([stc.data for stc in sel_stcs])
numpy.hstack
import numpy as np import time import copy import math import scipy import logging logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler("debug.log"), logging.StreamHandler() ] ) # included modules from pynumdiff.finite_difference import first_order as finite_difference import pynumdiff.smooth_finite_difference from pynumdiff.utils import utility as utility from pynumdiff import smooth_finite_difference __friedrichs_kernel__ = utility.__friedrichs_kernel__ __gaussian_kernel__ = utility.__gaussian_kernel__ KERNELS = {'friedrichs': __friedrichs_kernel__, 'gaussian': __gaussian_kernel__} # optional packages warned = False try: import pychebfun except: logging.info('Import Error\nCould not import pychebfun.\nInstall pychebfun (https://github.com/pychebfun/pychebfun/) to use chebfun derivatives.\n') warned = True try: import pydmd.dmdc except: logging.info('Import Error\nCould not import pydmd.\nInstall pydmd (florisvb fork: https://github.com/florisvb/PyDMD) to use dmd derivatives.\n') warned = True try: import cvxpy except: logging.info('Import Error\nCould not import cvxpy.\nInstall cvxpy (http://www.cvxpy.org/install/index.html) to use lineardiff.\nRecommended solver: MOSEK, free academic license available: https://www.mosek.com/products/academic-licenses/ \n') warned = True if warned == True: logging.info('Import Error\nDespite these import errors, you can still use many of the methods without additional installations.\n') #################################################################################################################################################### # Helper functions #################################################################################################################################################### def __slide_function__(func, x, dt, params, window_size, step_size, kernel_name): ''' Slide a smoothing derivative function across a timeseries with specified window size. Inputs ------ func : (function) name of the function to slide x : (np.array of floats, 1xN) time series to differentiate dt : (float) time step Parameters ---------- params : (list) see func for requirements window_size : (int) size of the sliding window step_size : (int) step size for slide (e.g. 1 means slide by 1 step) kernel_name : (string) name of the smoothing kernel (e.g. 'friedrichs' or 'gaussian') Outputs ------- x_hat : estimated (smoothed) x dxdt_hat : estimated derivative of x ''' # get smoothing kernel if not window_size%2: # then make odd window_size += 1 ker = KERNELS[kernel_name](window_size) x_hat_list = [] dxdt_hat_list = [] weight_list = [] for p in range(0, len(x), step_size): # deal with end points start = p- int((window_size-1)/2) end = p+ int((window_size-1)/2)+1 ker_start = 0 ker_end = window_size ker_middle = int((window_size-1)/2) if start < 0: ker_start = np.abs(start) ker_middle = ker_middle - np.abs(start) start = 0 if end > len(x): ker_end = window_size - (end-len(x)) end = len(x) # weights w = ker[ker_start:ker_end] w = w/np.sum(w) # run the function on the window _x = x[start:end] x_hat, dxdt_hat = func(_x, dt, params, options={'weights': w}) # stack results z_x_hat = np.zeros([len(x)]) z_x_hat[start:end] = x_hat x_hat_list.append(z_x_hat) z_dxdt_hat = np.zeros([len(x)]) z_dxdt_hat[start:end] = dxdt_hat dxdt_hat_list.append(z_dxdt_hat) z_weights = np.zeros([len(x)]) z_weights[start:end] = w weight_list.append(z_weights) # column norm weights weights = np.vstack(weight_list) for col in range(weights.shape[1]): weights[:, col] = weights[:, col] / np.sum(weights[:, col]) # stack and weight x_hat and dxdt_hat x_hat = np.vstack(x_hat_list) dxdt_hat = np.vstack(dxdt_hat_list) x_hat = np.sum(weights*x_hat, axis=0) dxdt_hat = np.sum(weights*dxdt_hat, axis=0) return x_hat, dxdt_hat #################################################################################################################################################### # Savitzky-Golay filter #################################################################################################################################################### def savgoldiff(x, dt, params, options={'smooth': True}): ''' Use the Savitzky-Golay to smooth the data and calculate the first derivative. Uses scipy.signal.savgol_filter The Savitzky-Golay is very similar to the sliding polynomial fit, but slightly noisier, and much faster. Inputs ------ x : (np.array of floats, 1xN) time series to differentiate dt : (float) time step Parameters ---------- params : (list) [N, : (int) order of the polynomial window_size, : (int) size of the sliding window, must be odd (if not, 1 is added) smoothing_win] : (int) size of the window used for gaussian smoothing, a good default is = window_size, but smaller for high freq data Outputs ------- x_hat : estimated (smoothed) x dxdt_hat : estimated derivative of x ''' N, window_size, smoothing_win = params if window_size > len(x)-1: window_size = len(x)-1 if smoothing_win > len(x)-1: smoothing_win = len(x)-1 if window_size <= N: window_size = N+1 if not window_size%2: # then make odd window_size += 1 dxdt_hat = scipy.signal.savgol_filter(x, window_size, N, deriv=1) / dt if 1: #options['smooth']: kernel = __gaussian_kernel__(smoothing_win) dxdt_hat = pynumdiff.smooth_finite_difference.__convolutional_smoother__(dxdt_hat, kernel, 1) x_hat = utility.integrate_dxdt_hat(dxdt_hat, dt) x0 = utility.estimate_initial_condition(x, x_hat) x_hat = x_hat + x0 return x_hat, dxdt_hat #################################################################################################################################################### # Polynomial fitting #################################################################################################################################################### def __polydiff__(x, dt, params, options={}): ''' Fit polynomials to the timeseries, and differentiate the polynomials. Inputs ------ x : (np.array of floats, 1xN) time series to differentiate dt : (float) time step Parameters ---------- params : (list) [N] : (int) order of the polynomial options : (dict) {'weights'} : (np.array, optional) weights applied to each point in calculating the polynomial fit. Defaults to 1s if missing. Outputs ------- x_hat : estimated (smoothed) x dxdt_hat : estimated derivative of x ''' if 'weights' in options.keys(): w = options['weights'] else: w =
np.ones_like(x)
numpy.ones_like
# -*- coding: utf-8 -*- """ Authors: <NAME> and <NAME> UNESCO-IHE 2016 Contact: <EMAIL> <EMAIL> Repository: https://github.com/wateraccounting/watools Module: Collect/ETmonitor Restrictions: The data and this python file may not be distributed to others without permission of the WA+ team due data restriction of the ALEXI developers. Description: This script collects ALEXI data from the UNESCO-IHE FTP server. The data has a monthly temporal resolution and a spatial resolution of 0.05 degree. The resulting tiff files are in the WGS84 projection. The data is available between 2003-01-01 till 2014-12-31. Example: from watools.Collect import ALEXI ALEXI.monthly(Dir='C:/Temp/', Startdate='2003-02-24', Enddate='2003-03-09', latlim=[50,54], lonlim=[3,7]) """ from __future__ import print_function # General modules from builtins import str import numpy as np import os import pandas as pd from ftplib import FTP import datetime import math import glob # Water Accounting Modules import watools.WebAccounts as WebAccounts import watools.General.raster_conversions as RC import watools.General.data_conversions as DC def DownloadData(Dir, Startdate, Enddate, latlim, lonlim, TimeStep, Waitbar): """ This scripts downloads ALEXI ET data from the UNESCO-IHE ftp server. The output files display the total ET in mm for a period of one week. The name of the file corresponds to the first day of the week. Keyword arguments: Dir -- 'C:/file/to/path/' Startdate -- 'yyyy-mm-dd' Enddate -- 'yyyy-mm-dd' TimeStep -- 'daily' or 'weekly' (by using here monthly, an older dataset will be used) lonlim -- [ymin, ymax] (values must be between -60 and 70) latlim -- [xmin, xmax] (values must be between -180 and 180) """ # Check the latitude and longitude and otherwise set lat or lon on greatest extent if latlim[0] < -60 or latlim[1] > 70: print('Latitude above 70N or below 60S is not possible. Value set to maximum') latlim[0] = np.max(latlim[0],-60) latlim[1] = np.min(latlim[1],70) if lonlim[0] < -180 or lonlim[1] > 180: print ('Longitude must be between 180E and 180W. Now value is set to maximum') lonlim[0] = np.max(lonlim[0],-180) lonlim[1] = np.min(lonlim[1],180) # Check Startdate and Enddate if not Startdate: if TimeStep == 'weekly': Startdate = pd.Timestamp('2003-01-01') if TimeStep == 'daily': Startdate = pd.Timestamp('2005-01-01') if not Enddate: if TimeStep == 'weekly': Enddate = pd.Timestamp('2015-12-31') if TimeStep == 'daily': Enddate = pd.Timestamp('2016-12-31') # Make a panda timestamp of the date try: Enddate = pd.Timestamp(Enddate) except: Enddate = Enddate if TimeStep == 'weekly': # Define the Startdate of ALEXI DOY = datetime.datetime.strptime(Startdate, '%Y-%m-%d').timetuple().tm_yday Year = datetime.datetime.strptime(Startdate, '%Y-%m-%d').timetuple().tm_year # Change the startdate so it includes an ALEXI date DOYstart = int(math.ceil(DOY/7.0)*7+1) DOYstart = str('%s-%s' %(DOYstart, Year)) Day = datetime.datetime.strptime(DOYstart, '%j-%Y') Month = '%02d' % Day.month Day = '%02d' % Day.day Date = (str(Year) + '-' + str(Month) + '-' + str(Day)) DOY = datetime.datetime.strptime(Date, '%Y-%m-%d').timetuple().tm_yday # The new Startdate Date = pd.Timestamp(Date) # amount of Dates weekly Dates = pd.date_range(Date, Enddate, freq = '7D') # Define directory and create it if not exists output_folder = os.path.join(Dir, 'Evaporation', 'ALEXI', 'Weekly') if not os.path.exists(output_folder): os.makedirs(output_folder) if TimeStep == 'daily': # Define Dates Dates = pd.date_range(Startdate, Enddate, freq = 'D') # Define directory and create it if not exists output_folder = os.path.join(Dir, 'Evaporation', 'ALEXI', 'Daily') if not os.path.exists(output_folder): os.makedirs(output_folder) # Create Waitbar total_amount = len(Dates) if Waitbar == 1: import watools.Functions.Start.WaitbarConsole as WaitbarConsole amount = 0 WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50) if TimeStep == 'weekly': ALEXI_weekly(Date, Enddate, output_folder, latlim, lonlim, Year, Waitbar, total_amount, TimeStep) if TimeStep == 'daily': ALEXI_daily(Dates, output_folder, latlim, lonlim, Waitbar, total_amount, TimeStep) def ALEXI_weekly(Date, Enddate, output_folder, latlim, lonlim, Year, Waitbar, total_amount, TimeStep): # Define the stop conditions Stop = Enddate.toordinal() End_date=0 amount = 0 while End_date == 0: # Date as printed in filename Datesname=Date+pd.DateOffset(days=-7) DirFile= os.path.join(output_folder,'ETa_ALEXI_CSFR_mm-week-1_weekly_%s.%02s.%02s.tif' %(Datesname.strftime('%Y'), Datesname.strftime('%m'), Datesname.strftime('%d'))) # Define end filename filename = "ALEXI_weekly_mm_%s_%s.tif" %(Date.strftime('%j'), Date.strftime('%Y')) # Temporary filename for the downloaded global file local_filename = os.path.join(output_folder, filename) # Create the new date for the next download Datename = (str(Date.strftime('%Y')) + '-' + str(Date.strftime('%m')) + '-' + str(Date.strftime('%d'))) # Define IDs yID = 3000 - np.int16(np.array([np.ceil((latlim[1]+60)*20),np.floor((latlim[0]+60)*20)])) xID = np.int16(np.array([np.floor((lonlim[0])*20),np.ceil((lonlim[1])*20)])+3600) # Download the data from FTP server if the file not exists if not os.path.exists(DirFile): try: Download_ALEXI_from_WA_FTP(local_filename, DirFile, filename, lonlim, latlim, yID, xID, TimeStep) except: print("Was not able to download file with date %s" %Date) # Current DOY DOY = datetime.datetime.strptime(Datename, '%Y-%m-%d').timetuple().tm_yday # Define next day DOY_next = int(DOY + 7) if DOY_next >= 366: DOY_next = 8 Year += 1 DOYnext = str('%s-%s' %(DOY_next, Year)) DayNext = datetime.datetime.strptime(DOYnext, '%j-%Y') Month = '%02d' % DayNext.month Day = '%02d' % DayNext.day Date = (str(Year) + '-' + str(Month) + '-' + str(Day)) # Adjust waitbar if Waitbar == 1: import watools.Functions.Start.WaitbarConsole as WaitbarConsole amount += 1 WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50) # Check if this file must be downloaded Date = pd.Timestamp(Date) if Date.toordinal() > Stop: End_date = 1 def ALEXI_daily(Dates, output_folder, latlim, lonlim, Waitbar, total_amount, TimeStep): amount = 0 for Date in Dates: # Date as printed in filename DirFile= os.path.join(output_folder,'ETa_ALEXI_CSFR_mm-day-1_daily_%d.%02d.%02d.tif' %(Date.year, Date.month, Date.day)) DOY = Date.timetuple().tm_yday # Define end filename filename = "EDAY_CERES_%d%03d.dat.gz" %(Date.year, DOY) # Temporary filename for the downloaded global file local_filename = os.path.join(output_folder, filename) # Define IDs yID = 3000 - np.int16(np.array([
np.ceil((latlim[1]+60)*20)
numpy.ceil
from __future__ import division import itertools import warnings import numpy as np scipy_gaussian_filter = None # expensive from .base import ndfeature, winitfeature, imgfeature from ._gradient import gradient_cython from .windowiterator import WindowIterator, WindowIteratorResult def _np_gradient(pixels): """ This method is used in the case of multi-channel images (not 2D images). The output ordering is identical to the gradient() method, returning a 2 * n_channels image with gradients in order of the first axis derivative over all the channels, then the second etc. For example, in the case of a 3D image with 2 channels, the ordering would be: I[:, 0, 0, 0] = [A_0, B_0, A_1, B_1, A_2, B_2] where A and B are the 'channel' labels (synonymous with RGB for a colour image) and 0,1,2 are the axis labels (synonymous with y,x for a 2D image). """ n_dims = pixels.ndim - 1 grad_per_dim_per_channel = [np.gradient(g, edge_order=1) for g in pixels] # Flatten out the separate dims grad_per_channel = list(itertools.chain.from_iterable( grad_per_dim_per_channel)) # Add a channel axis for broadcasting grad_per_channel = [g[None, ...] for g in grad_per_channel] # Permute the list so it is first axis, second axis, etc grad_per_channel = [grad_per_channel[i::n_dims] for i in range(n_dims)] grad_per_channel = list(itertools.chain.from_iterable(grad_per_channel)) # Concatenate gradient list into an array (the new_image) return np.concatenate(grad_per_channel, axis=0) @ndfeature def gradient(pixels): r""" Calculates the gradient of an input image. The image is assumed to have channel information on the first axis. In the case of multiple channels, it returns the gradient over each axis over each channel as the first axis. The gradient is computed using second order accurate central differences in the interior and first order accurate one-side (forward or backwards) differences at the boundaries. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array where the first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. If the image is 2-dimensional the pixels should be of type float/double (int is not supported). Returns ------- gradient : `ndarray` The gradient over each axis over each channel. Therefore, the first axis of the gradient of a 2D, single channel image, will have length `2`. The first axis of the gradient of a 2D, 3-channel image, will have length `6`, the ordering being ``I[:, 0, 0] = [R0_y, G0_y, B0_y, R0_x, G0_x, B0_x]``. To be clear, all the ``y``-gradients are returned over each channel, then all the ``x``-gradients. """ if (pixels.ndim - 1) == 2: # 2D Image return gradient_cython(pixels) else: return _np_gradient(pixels) @ndfeature def gaussian_filter(pixels, sigma): r""" Calculates the convolution of the input image with a multidimensional Gaussian filter. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. sigma : `float` or `list` of `float` The standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a `list`, or as a single `float`, in which case it is equal for all axes. Returns ------- output_image : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The filtered image has the same type and size as the input ``pixels``. """ global scipy_gaussian_filter if scipy_gaussian_filter is None: from scipy.ndimage import gaussian_filter as scipy_gaussian_filter output = np.empty(pixels.shape, dtype=pixels.dtype) for dim in range(pixels.shape[0]): scipy_gaussian_filter(pixels[dim], sigma, output=output[dim]) return output @winitfeature def hog(pixels, mode='dense', algorithm='dalaltriggs', num_bins=9, cell_size=8, block_size=2, signed_gradient=True, l2_norm_clip=0.2, window_height=1, window_width=1, window_unit='blocks', window_step_vertical=1, window_step_horizontal=1, window_step_unit='pixels', padding=True, verbose=False): r""" Extracts Histograms of Oriented Gradients (HOG) features from the input image. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. mode : {``dense``, ``sparse``}, optional The ``sparse`` case refers to the traditional usage of HOGs, so predefined parameters values are used. The ``sparse`` case of ``dalaltriggs`` algorithm sets ``window_height = window_width = block_size`` and ``window_step_horizontal = window_step_vertical = cell_size``. The ``sparse`` case of ``zhuramanan`` algorithm sets ``window_height = window_width = 3 * cell_size`` and ``window_step_horizontal = window_step_vertical = cell_size``. In the ``dense`` case, the user can choose values for `window_height`, `window_width`, `window_unit`, `window_step_vertical`, `window_step_horizontal`, `window_step_unit` and `padding` to customize the HOG calculation. window_height : `float`, optional Defines the height of the window. The metric unit is defined by `window_unit`. window_width : `float`, optional Defines the width of the window. The metric unit is defined by `window_unit`. window_unit : {``blocks``, ``pixels``}, optional Defines the metric unit of the `window_height` and `window_width` parameters. window_step_vertical : `float`, optional Defines the vertical step by which the window is moved, thus it controls the features' density. The metric unit is defined by `window_step_unit`. window_step_horizontal : `float`, optional Defines the horizontal step by which the window is moved, thus it controls the features' density. The metric unit is defined by `window_step_unit`. window_step_unit : {``pixels``, ``cells``}, optional Defines the metric unit of the `window_step_vertical` and `window_step_horizontal` parameters. padding : `bool`, optional If ``True``, the output image is padded with zeros to match the input image's size. algorithm : {``dalaltriggs``, ``zhuramanan``}, optional Specifies the algorithm used to compute HOGs. ``dalaltriggs`` is the implementation of [1] and ``zhuramanan`` is the implementation of [2]. cell_size : `float`, optional Defines the cell size in pixels. This value is set to both the width and height of the cell. This option is valid for both algorithms. block_size : `float`, optional Defines the block size in cells. This value is set to both the width and height of the block. This option is valid only for the ``dalaltriggs`` algorithm. num_bins : `float`, optional Defines the number of orientation histogram bins. This option is valid only for the ``dalaltriggs`` algorithm. signed_gradient : `bool`, optional Flag that defines whether we use signed or unsigned gradient angles. This option is valid only for the ``dalaltriggs`` algorithm. l2_norm_clip : `float`, optional Defines the clipping value of the gradients' L2-norm. This option is valid only for the ``dalaltriggs`` algorithm. verbose : `bool`, optional Flag to print HOG related information. Returns ------- hog : :map:`Image` or subclass or ``(X, Y, ..., Z, K)`` `ndarray` The HOG features image. It has the same type as the input ``pixels``. The output number of channels in the case of ``dalaltriggs`` is ``K = num_bins * block_size *block_size`` and ``K = 31`` in the case of ``zhuramanan``. Raises ------ ValueError HOG features mode must be either dense or sparse ValueError Algorithm must be either dalaltriggs or zhuramanan ValueError Number of orientation bins must be > 0 ValueError Cell size (in pixels) must be > 0 ValueError Block size (in cells) must be > 0 ValueError Value for L2-norm clipping must be > 0.0 ValueError Window height must be >= block size and <= image height ValueError Window width must be >= block size and <= image width ValueError Window unit must be either pixels or blocks ValueError Horizontal window step must be > 0 ValueError Vertical window step must be > 0 ValueError Window step unit must be either pixels or cells References ---------- .. [1] <NAME> and <NAME>, "Histograms of oriented gradients for human detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. .. [2] <NAME>, <NAME>. "Face detection, pose estimation and landmark localization in the wild", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012. """ # TODO: This is a temporary fix # flip axis pixels = np.rollaxis(pixels, 0, len(pixels.shape)) # Parse options if mode not in ['dense', 'sparse']: raise ValueError("HOG features mode must be either dense or sparse") if algorithm not in ['dalaltriggs', 'zhuramanan']: raise ValueError("Algorithm must be either dalaltriggs or zhuramanan") if num_bins <= 0: raise ValueError("Number of orientation bins must be > 0") if cell_size <= 0: raise ValueError("Cell size (in pixels) must be > 0") if block_size <= 0: raise ValueError("Block size (in cells) must be > 0") if l2_norm_clip <= 0.0: raise ValueError("Value for L2-norm clipping must be > 0.0") if mode == 'dense': if window_unit not in ['pixels', 'blocks']: raise ValueError("Window unit must be either pixels or blocks") window_height_temp = window_height window_width_temp = window_width if window_unit == 'blocks': window_height_temp = window_height * block_size * cell_size window_width_temp = window_width * block_size * cell_size if (window_height_temp < block_size * cell_size or window_height_temp > pixels.shape[0]): raise ValueError("Window height must be >= block size and <= " "image height") if (window_width_temp < block_size*cell_size or window_width_temp > pixels.shape[1]): raise ValueError("Window width must be >= block size and <= " "image width") if window_step_horizontal <= 0: raise ValueError("Horizontal window step must be > 0") if window_step_vertical <= 0: raise ValueError("Vertical window step must be > 0") if window_step_unit not in ['pixels', 'cells']: raise ValueError("Window step unit must be either pixels or cells") # Correct input image_data pixels = np.asfortranarray(pixels) pixels *= 255. # Dense case if mode == 'dense': # Iterator parameters if algorithm == 'dalaltriggs': algorithm = 1 if window_unit == 'blocks': block_in_pixels = cell_size * block_size window_height = np.uint32(window_height * block_in_pixels) window_width = np.uint32(window_width * block_in_pixels) if window_step_unit == 'cells': window_step_vertical = np.uint32(window_step_vertical * cell_size) window_step_horizontal = np.uint32(window_step_horizontal * cell_size) elif algorithm == 'zhuramanan': algorithm = 2 if window_unit == 'blocks': block_in_pixels = 3 * cell_size window_height = np.uint32(window_height * block_in_pixels) window_width = np.uint32(window_width * block_in_pixels) if window_step_unit == 'cells': window_step_vertical = np.uint32(window_step_vertical * cell_size) window_step_horizontal = np.uint32(window_step_horizontal * cell_size) iterator = WindowIterator(pixels, window_height, window_width, window_step_horizontal, window_step_vertical, padding) # Sparse case else: # Create iterator if algorithm == 'dalaltriggs': algorithm = 1 window_size = cell_size * block_size step = cell_size else: algorithm = 2 window_size = 3 * cell_size step = cell_size iterator = WindowIterator(pixels, window_size, window_size, step, step, False) # Print iterator's info if verbose: print(iterator) # Compute HOG hog_descriptor = iterator.HOG(algorithm, num_bins, cell_size, block_size, signed_gradient, l2_norm_clip, verbose) # TODO: This is a temporal fix # flip axis hog_descriptor = WindowIteratorResult( np.ascontiguousarray(np.rollaxis(hog_descriptor.pixels, -1)), hog_descriptor.centres) return hog_descriptor @ndfeature def igo(pixels, double_angles=False, verbose=False): r""" Extracts Image Gradient Orientation (IGO) features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C = 2`` or ``C = 4`` depending on whether double angles are used. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. double_angles : `bool`, optional Assume that ``phi`` represents the gradient orientations. If this flag is ``False``, the features image is the concatenation of ``cos(phi)`` and ``sin(phi)``, thus 2 channels. If ``True``, the features image is the concatenation of ``cos(phi)``, ``sin(phi)``, ``cos(2 * phi)``, ``sin(2 * phi)``, thus 4 channels. verbose : `bool`, optional Flag to print IGO related information. Returns ------- igo : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The IGO features image. It has the same type and shape as the input ``pixels``. The output number of channels depends on the ``double_angles`` flag. Raises ------ ValueError Image has to be 2D in order to extract IGOs. References ---------- .. [1] <NAME>, <NAME> and <NAME>, "Subspace learning from image gradient orientations", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, num. 12, p. 2454--2466, 2012. """ # check number of dimensions if len(pixels.shape) != 3: raise ValueError('IGOs only work on 2D images. Expects image data ' 'to be 3D, channels + shape.') n_img_chnls = pixels.shape[0] # feature channels per image channel feat_chnls = 2 if double_angles: feat_chnls = 4 # compute gradients grad = gradient(pixels) # compute angles grad_orient = np.angle(grad[:n_img_chnls] + 1j * grad[n_img_chnls:]) # compute igo image igo_pixels = np.empty((n_img_chnls * feat_chnls, pixels.shape[1], pixels.shape[2]), dtype=pixels.dtype) if double_angles: dbl_grad_orient = 2 * grad_orient # y angles igo_pixels[:n_img_chnls] = np.sin(grad_orient) igo_pixels[n_img_chnls:n_img_chnls*2] = np.sin(dbl_grad_orient) # x angles igo_pixels[n_img_chnls*2:n_img_chnls*3] = np.cos(grad_orient) igo_pixels[n_img_chnls*3:] = np.cos(dbl_grad_orient) else: igo_pixels[:n_img_chnls] = np.sin(grad_orient) # y igo_pixels[n_img_chnls:] = np.cos(grad_orient) # x # print information if verbose: info_str = "IGO Features:\n" info_str = "{} - Input image is {}W x {}H with {} channels.\n".format( info_str, pixels.shape[2], pixels.shape[1], n_img_chnls) info_str = "{} - Double angles are {}.\n".format( info_str, 'enabled' if double_angles else 'disabled') info_str = "{}Output image size {}W x {}H with {} channels.".format( info_str, igo_pixels.shape[2], igo_pixels.shape[1], n_img_chnls) print(info_str) return igo_pixels @ndfeature def es(pixels, verbose=False): r""" Extracts Edge Structure (ES) features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C = 2``. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either an image object itself or an array where the first axis represents the number of channels. This means an N-dimensional image is represented by an N+1 dimensional array. verbose : `bool`, optional Flag to print ES related information. Returns ------- es : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The ES features image. It has the same type and shape as the input ``pixels``. The output number of channels is ``C = 2``. Raises ------ ValueError Image has to be 2D in order to extract ES features. References ---------- .. [1] <NAME>, <NAME>, "On representing edge structure for model matching", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001. """ # check number of dimensions if len(pixels.shape) != 3: raise ValueError('ES features only work on 2D images. Expects ' 'image data to be 3D, channels + shape.') n_img_chnls = pixels.shape[0] # feature channels per image channel feat_channels = 2 # compute gradients grad = gradient(pixels) # compute magnitude grad_abs = np.abs(grad[:n_img_chnls] + 1j * grad[n_img_chnls:]) # compute es image grad_abs = grad_abs + np.median(grad_abs) es_pixels = np.empty((pixels.shape[0] * feat_channels, pixels.shape[1], pixels.shape[2]), dtype=pixels.dtype) es_pixels[:n_img_chnls] = grad[:n_img_chnls] / grad_abs es_pixels[n_img_chnls:] = grad[n_img_chnls:] / grad_abs # print information if verbose: info_str = "ES Features:\n" info_str = "{} - Input image is {}W x {}H with {} channels.\n".format( info_str, pixels.shape[2], pixels.shape[1], n_img_chnls) info_str = "{}Output image size {}W x {}H with {} channels.".format( info_str, es_pixels.shape[2], es_pixels.shape[1], n_img_chnls) print(info_str) return es_pixels @ndfeature def daisy(pixels, step=1, radius=15, rings=2, histograms=2, orientations=8, normalization='l1', sigmas=None, ring_radii=None, verbose=False): r""" Extracts Daisy features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C`` is the feature channels determined by the input options. Specifically, ``C = (rings * histograms + 1) * orientations``. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. step : `int`, optional The sampling step that defines the density of the output image. radius : `int`, optional The radius (in pixels) of the outermost ring. rings : `int`, optional The number of rings to be used. histograms : `int`, optional The number of histograms sampled per ring. orientations : `int`, optional The number of orientations (bins) per histogram. normalization : [ 'l1', 'l2', 'daisy', None ], optional It defines how to normalize the descriptors If 'l1' then L1-normalization is applied at each descriptor. If 'l2' then L2-normalization is applied at each descriptor. If 'daisy' then L2-normalization is applied at individual histograms. If None then no normalization is employed. sigmas : `list` of `float` or ``None``, optional Standard deviation of spatial Gaussian smoothing for the centre histogram and for each ring of histograms. The `list` of sigmas should be sorted from the centre and out. I.e. the first sigma value defines the spatial smoothing of the centre histogram and the last sigma value defines the spatial smoothing of the outermost ring. Specifying sigmas overrides the `rings` parameter by setting ``rings = len(sigmas) - 1``. ring_radii : `list` of `float` or ``None``, optional Radius (in pixels) for each ring. Specifying `ring_radii` overrides the `rings` and `radius` parameters by setting ``rings = len(ring_radii)`` and ``radius = ring_radii[-1]``. If both sigmas and ring_radii are given, they must satisfy :: len(ring_radii) == len(sigmas) + 1 since no radius is needed for the centre histogram. verbose : `bool` Flag to print Daisy related information. Returns ------- daisy : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The ES features image. It has the same type and shape as the input ``pixels``. The output number of channels is ``C = (rings * histograms + 1) * orientations``. Raises ------ ValueError len(sigmas)-1 != len(ring_radii) ValueError Invalid normalization method. References ---------- .. [1] <NAME>, <NAME> and <NAME>, "Daisy: An efficient dense descriptor applied to wide-baseline stereo", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, num. 5, p. 815-830, 2010. """ from menpo.external.skimage._daisy import _daisy # Parse options if sigmas is not None and ring_radii is not None \ and len(sigmas) - 1 != len(ring_radii): raise ValueError('`len(sigmas)-1 != len(ring_radii)`') if ring_radii is not None: rings = len(ring_radii) radius = ring_radii[-1] if sigmas is not None: rings = len(sigmas) - 1 if sigmas is None: sigmas = [radius * (i + 1) / float(2 * rings) for i in range(rings)] if ring_radii is None: ring_radii = [radius * (i + 1) / float(rings) for i in range(rings)] if normalization is None: normalization = 'off' if normalization not in ['l1', 'l2', 'daisy', 'off']: raise ValueError('Invalid normalization method.') # Compute daisy features daisy_descriptor = _daisy(pixels, step=step, radius=radius, rings=rings, histograms=histograms, orientations=orientations, normalization=normalization, sigmas=sigmas, ring_radii=ring_radii) # print information if verbose: info_str = "Daisy Features:\n" info_str = "{} - Input image is {}W x {}H with {} channels.\n".format( info_str, pixels.shape[2], pixels.shape[1], pixels.shape[0]) info_str = "{} - Sampling step is {}.\n".format(info_str, step) info_str = "{} - Radius of {} pixels, {} rings and {} histograms " \ "with {} orientations.\n".format( info_str, radius, rings, histograms, orientations) if not normalization == 'off': info_str = "{} - Using {} normalization.\n".format(info_str, normalization) else: info_str = "{} - No normalization emplyed.\n".format(info_str) info_str = "{}Output image size {}W x {}H x {}.".format( info_str, daisy_descriptor.shape[2], daisy_descriptor.shape[1], daisy_descriptor.shape[0]) print(info_str) return daisy_descriptor # TODO: Needs fixing ... @winitfeature def lbp(pixels, radius=None, samples=None, mapping_type='riu2', window_step_vertical=1, window_step_horizontal=1, window_step_unit='pixels', padding=True, verbose=False, skip_checks=False): r""" Extracts Local Binary Pattern (LBP) features from the input image. The output image has ``N * C`` number of channels, where ``N`` is the number of channels of the original image and ``C`` is the number of radius/samples values combinations that are used in the LBP computation. Parameters ---------- pixels : :map:`Image` or subclass or ``(C, X, Y, ..., Z)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. This means an N-dimensional image is represented by an N+1 dimensional array. radius : `int` or `list` of `int` or ``None``, optional It defines the radius of the circle (or circles) at which the sampling points will be extracted. The radius (or radii) values must be greater than zero. There must be a radius value for each samples value, thus they both need to have the same length. If ``None``, then ``[1, 2, 3, 4]`` is used. samples : `int` or `list` of `int` or ``None``, optional It defines the number of sampling points that will be extracted at each circle. The samples value (or values) must be greater than zero. There must be a samples value for each radius value, thus they both need to have the same length. If ``None``, then ``[8, 8, 8, 8]`` is used. mapping_type : {``u2``, ``ri``, ``riu2``, ``none``}, optional It defines the mapping type of the LBP codes. Select ``u2`` for uniform-2 mapping, ``ri`` for rotation-invariant mapping, ``riu2`` for uniform-2 and rotation-invariant mapping and ``none`` to use no mapping and only the decimal values instead. window_step_vertical : `float`, optional Defines the vertical step by which the window is moved, thus it controls the features density. The metric unit is defined by `window_step_unit`. window_step_horizontal : `float`, optional Defines the horizontal step by which the window is moved, thus it controls the features density. The metric unit is defined by `window_step_unit`. window_step_unit : {``pixels``, ``window``}, optional Defines the metric unit of the `window_step_vertical` and `window_step_horizontal` parameters. padding : `bool`, optional If ``True``, the output image is padded with zeros to match the input image's size. verbose : `bool`, optional Flag to print LBP related information. skip_checks : `bool`, optional If ``True``, do not perform any validation of the parameters. Returns ------- lbp : :map:`Image` or subclass or ``(X, Y, ..., Z, C)`` `ndarray` The ES features image. It has the same type and shape as the input ``pixels``. The output number of channels is ``C = len(radius) * len(samples)``. Raises ------ ValueError Radius and samples must both be either integers or lists ValueError Radius and samples must have the same length ValueError Radius must be > 0 ValueError Radii must be > 0 ValueError Samples must be > 0 ValueError Mapping type must be u2, ri, riu2 or none ValueError Horizontal window step must be > 0 ValueError Vertical window step must be > 0 ValueError Window step unit must be either pixels or window References ---------- .. [1] <NAME>, <NAME>, and <NAME>, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, num. 7, p. 971-987, 2002. """ if radius is None: radius = range(1, 5) if samples is None: samples = [8]*4 # TODO: This is a temporal fix # flip axis pixels = np.rollaxis(pixels, 0, len(pixels.shape)) if not skip_checks: # Check parameters if ((isinstance(radius, int) and isinstance(samples, list)) or (isinstance(radius, list) and isinstance(samples, int))): raise ValueError("Radius and samples must both be either integers " "or lists") elif isinstance(radius, list) and isinstance(samples, list): if len(radius) != len(samples): raise ValueError("Radius and samples must have the same " "length") if isinstance(radius, int) and radius < 1: raise ValueError("Radius must be > 0") elif isinstance(radius, list) and sum(r < 1 for r in radius) > 0: raise ValueError("Radii must be > 0") if isinstance(samples, int) and samples < 1: raise ValueError("Samples must be > 0") elif isinstance(samples, list) and sum(s < 1 for s in samples) > 0: raise ValueError("Samples must be > 0") if mapping_type not in ['u2', 'ri', 'riu2', 'none']: raise ValueError("Mapping type must be u2, ri, riu2 or " "none") if window_step_horizontal <= 0: raise ValueError("Horizontal window step must be > 0") if window_step_vertical <= 0: raise ValueError("Vertical window step must be > 0") if window_step_unit not in ['pixels', 'window']: raise ValueError("Window step unit must be either pixels or " "window") # Correct input image_data pixels = np.asfortranarray(pixels) # Parse options radius = np.asfortranarray(radius) samples = np.asfortranarray(samples) window_height = np.uint32(2 * radius.max() + 1) window_width = window_height if window_step_unit == 'window': window_step_vertical = np.uint32(window_step_vertical * window_height) window_step_horizontal = np.uint32(window_step_horizontal * window_width) if mapping_type == 'u2': mapping_type = 1 elif mapping_type == 'ri': mapping_type = 2 elif mapping_type == 'riu2': mapping_type = 3 else: mapping_type = 0 # Create iterator object iterator = WindowIterator(pixels, window_height, window_width, window_step_horizontal, window_step_vertical, padding) # Print iterator's info if verbose: print(iterator) # Compute LBP lbp_descriptor = iterator.LBP(radius, samples, mapping_type, verbose) # TODO: This is a temporary fix # flip axis lbp_descriptor = WindowIteratorResult( np.ascontiguousarray(
np.rollaxis(lbp_descriptor.pixels, -1)
numpy.rollaxis
''' Created on: see version log. @author: rigonz coding: utf-8 IMPORTANT: requires py3.6 (rasterio) Script that: 1) reads a series of raster files, 2) runs some checks, 3) makes charts showing the results. The input data corresponds to a region of the world (ESP) and represents the population density (pop/km2). Each file has from a data provider, or different calculation conditions. The checks consist in verifying that the input files refer to the same region and to some intercomparison indicators. The charts show the correlation among the different input data, as tuples associated to the same geographical location. Version log. R0 (20210512): First trials, seems to work well. ''' # %% Imports. import rasterio # IMPORTANT: requires py3.6 import numpy as np from matplotlib import pyplot as plt # %% Directories. RootDirIn = 'D:/0 DOWN/zz EXTSave/GIS/POP/EUR/SHP/' # Filenames: FileNameI1 = RootDirIn + 'WP/ESP_clip_pd_2020_1km_UNadj.tif' FileNameI2 = RootDirIn + 'WP/ESP_clip_ppp_2020_1km_Aggregated_UNadj_d.tif' FileNameI3 = RootDirIn + 'GPW/ESP_clip gpw_v4_population_density_rev11_2020_30_sec.tif' FileNameI4 = RootDirIn + 'GPW/ESP_clip gpw_v4_population_density_adjusted_to_2015_unwpp_country_totals_rev11_2020_30_sec.tif' # %% Read data. # Open files: print('Opening and reading the files...') ds1 = rasterio.open(FileNameI1) ds2 = rasterio.open(FileNameI2) ds3 = rasterio.open(FileNameI3) ds4 = rasterio.open(FileNameI4) # Read data: band1 = ds1.read(1) band2 = ds2.read(1) band3 = ds3.read(1) band4 = ds4.read(1) # %% Check the datasets. print('Checking the data...') # Bounds: if not(ds1.bounds == ds2.bounds and ds2.bounds == ds3.bounds and ds3.bounds == ds4.bounds): print('WARNING: bounds are not the same:') print(ds1.bounds) print(ds2.bounds) print(ds3.bounds) print(ds4.bounds) # Width and height: if not(ds1.width == ds2.width and ds2.width == ds3.width and ds3.width == ds4.width): print('WARNING: widths are not the same:') print(ds1.width) print(ds2.width) print(ds3.width) print(ds4.width) if not(ds1.height == ds2.height and ds2.height == ds3.height and ds3.height == ds4.height): print('WARNING: heights are not the same:') print(ds1.height) print(ds2.height) print(ds3.height) print(ds4.height) # Bands: if not(ds1.indexes[0] == ds2.indexes[0] and ds2.indexes[0] == ds3.indexes[0] and ds3.indexes[0] == ds4.indexes[0]): print('WARNING: bands are not the same:') print(ds1.indexes[0]) print(ds2.indexes[0]) print(ds3.indexes[0]) print(ds4.indexes[0]) # Dimensions: if not(ds1.shape == ds2.shape and ds2.shape == ds3.shape and ds3.shape == ds4.shape): print('WARNING: shapes are not the same:') print(ds1.shape) print(ds2.shape) print(ds3.shape) print(ds4.shape) # CRS: try: if (ds1.crs.data['init'] != 'epsg:4326' or ds2.crs.data['init'] != 'epsg:4326' or ds3.crs.data['init'] != 'epsg:4326' or ds4.crs.data['init'] != 'epsg:4326'): print('WARNING: CRS is not EPSG:4326.') except: print('WARNING: CRS is not available or is not EPSG:4326:') # %% Create new bands. print('Checking the new bands...') # Remain within the boundaries of data: left = max(ds1.bounds.left, ds2.bounds.left, ds3.bounds.left, ds4.bounds.left) top = min(ds1.bounds.top, ds2.bounds.top, ds3.bounds.top, ds4.bounds.top) right = min(ds1.bounds.right, ds2.bounds.right, ds3.bounds.right, ds4.bounds.right) bottom = max(ds1.bounds.bottom, ds2.bounds.bottom, ds3.bounds.bottom, ds4.bounds.bottom) res = 1 / 120. # 30 arc-sec, approx 100 m; should be min() etc. height = int(np.ceil((top - bottom) / res + 1)) width = int(np.ceil((right - left) / res + 1)) res_x = (right - left) / (width - 1) res_y = (top - bottom) / (height - 1) # Check (valid for east + north hemispheres only!): if right > min(ds1.bounds.right, ds2.bounds.right, ds3.bounds.right, ds4.bounds.right): print('WARNING: right boundary exceeded.') if bottom > max(ds1.bounds.bottom, ds2.bounds.bottom, ds3.bounds.bottom, ds4.bounds.bottom): print('WARNING: bottom boundary exceeded.') # Create new bands: print('Creating the new bands...') b1 = np.full((height, width), 0.) b2 = np.full((height, width), 0.) b3 = np.full((height, width), 0.) b4 =
np.full((height, width), 0.)
numpy.full
import numpy as np import tensorflow as tf def build_laplace(n,boundary='0'): if n==1: return np.zeros((1,1),dtype=np.float32) d1 = -2 *
np.ones((n,),dtype=np.float32)
numpy.ones
from abc import ABC, abstractmethod import numpy as np from janus.system import Buffer from copy import deepcopy import mdtraj as md import mendeleev as mdlv class Partition(ABC): nm_to_angstrom = 10.0000000 def __init__(self, trajectory, topology, class_type): self.traj = trajectory self.topology = topology self.class_type = class_type def compute_COM(self, atoms): """ Computes the center of mass of a specified group Parameters ---------- atoms : list indices defining the group to compute the COM for Returns ------- numpy array COM xyz coordinates dict the indices of each atom in the group and the atomic weight for each atom dict the indices of each atom in the group and the weight ratio of each atom to the total weight of the group (sum of all atomic weights) """ xyz =
np.zeros(3)
numpy.zeros
## HEAT DIFFUSION import numpy as np import matplotlib.pyplot as plt import pylan as pn ## grid dx = 0.1 Nx = int(1/dx+1) x =
np.arange(0,1+dx,dx)
numpy.arange
""" Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon Copyright (c) 2012-2017 <NAME> <<EMAIL>> Copyright (c) 2014-2019 <NAME> <<EMAIL>> Copyright (c) 2016 <NAME> <<EMAIL>> Copyright (c) 2016-2019 <NAME> <<EMAIL>> Copyright (c) 2018-2019 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np import types import astropy.units as u from astropy.io import fits from astropy.stats import gaussian_sigma_to_fwhm, gaussian_fwhm_to_sigma from astropy.convolution import convolve, Box1DKernel from os.path import join, abspath, dirname from scipy import interpolate, signal from scipy.optimize import leastsq from . import ABmag_filters, wavelet1D from .arithmetic import ArithmeticMixin from .data import DataArray from .fitting import Gauss1D from .objs import flux2mag __all__ = ('Spectrum', 'vactoair', 'airtovac') def vactoair(vacwl): """Calculate the approximate wavelength in air for vacuum wavelengths. Parameters ---------- vacwl : ndarray Vacuum wavelengths. This uses an approximate formula from the IDL astronomy library https://idlastro.gsfc.nasa.gov/ftp/pro/astro/vactoair.pro """ wave2 = vacwl * vacwl n = 1.0 + 2.735182e-4 + 131.4182 / wave2 + 2.76249e8 / (wave2 * wave2) # Do not extrapolate to very short wavelengths. if not isinstance(vacwl, np.ndarray): if vacwl < 2000: n = 1.0 else: ignore = np.where(vacwl < 2000) n[ignore] = 1.0 return vacwl / n def airtovac(airwl): """Convert air wavelengths to vacuum wavelengths. Parameters ---------- vacwl : ndarray Vacuum wavelengths. This uses the IAU standard as implemented in the IDL astronomy library https://idlastro.gsfc.nasa.gov/ftp/pro/astro/airtovac.pro """ sigma2 = (1e4 / airwl)**2. # Convert to wavenumber squared n = 1.0 + (6.4328e-5 + 2.94981e-2 / (146. - sigma2) + 2.5540e-4 / (41. - sigma2)) if not isinstance(airwl, np.ndarray): if airwl < 2000: n = 1.0 else: ignore = np.where(airwl < 2000) n[ignore] = 1.0 return airwl * n class Spectrum(ArithmeticMixin, DataArray): """Spectrum objects contain 1D arrays of numbers, optionally accompanied by corresponding variances. These numbers represent sample fluxes along a regularly spaced grid of wavelengths. The spectral pixel values and their variances, if any, are available as arrays[q that can be accessed via properties of the Spectrum object called .data and .var, respectively. These arrays are usually masked arrays, which share a boolean masking array that can be accessed via a property called .mask. In principle, these arrays can also be normal numpy arrays without masks, in which case the .mask property holds the value, numpy.ma.nomask. However non-masked arrays are only supported by a subset of mpdaf functions at this time, so masked arrays should be used where possible. When a new Spectrum object is created, the data, variance and mask arrays can either be specified as arguments, or the name of a FITS file can be provided to load them from. Parameters ---------- filename : string An optional FITS file name from which to load the spectrum. None by default. This argument is ignored if the data argument is not None. ext : int or (int,int) or string or (string,string) The optional number/name of the data extension or the numbers/names of the data and variance extensions. wave : `mpdaf.obj.WaveCoord` The wavelength coordinates of the spectrum. unit : str or `astropy.units.Unit` The physical units of the data values. Defaults to `astropy.units.dimensionless_unscaled`. data : float array An optional 1 dimensional array containing the values of each pixel of the spectrum, stored in ascending order of wavelength (None by default). Where given, this array should be 1 dimensional. var : float array An optional 1 dimensional array containing the estimated variances of each pixel of the spectrum, stored in ascending order of wavelength (None by default). Attributes ---------- filename : string The name of the originating FITS file, if any. Otherwise None. unit : `astropy.units.Unit` The physical units of the data values. primary_header : `astropy.io.fits.Header` The FITS primary header instance, if a FITS file was provided. data_header : `astropy.io.fits.Header` The FITS header of the DATA extension. wave : `mpdaf.obj.WaveCoord` The wavelength coordinates of the spectrum. """ # Tell the DataArray base-class that Spectrum objects require 1 dimensional # data arrays and wavelength coordinates. _ndim_required = 1 _has_wave = True def subspec(self, lmin, lmax=None, unit=u.angstrom): """Return the flux at a given wavelength, or the sub-spectrum of a specified wavelength range. A single flux value is returned if the lmax argument is None (the default), or if the wavelengths assigned to the lmin and lmax arguments are both within the same pixel. The value that is returned is the value of the pixel whose wavelength is closest to the wavelength specified by the lmin argument. Note that is a wavelength range is asked for, a view on the original spectrum is returned and both will be modified at the same time. If you need to modify only the sub-spectrum, you'll need to copy() it before. Parameters ---------- lmin : float The minimum wavelength of a wavelength range, or the wavelength of a single pixel if lmax is None. lmax : float or None The maximum wavelength of the wavelength range. unit : `astropy.units.Unit` The wavelength units of the lmin and lmax arguments. The default is angstroms. If unit is None, then lmin and lmax are interpreted as array indexes within the spectrum. Returns ------- out : float or `~mpdaf.obj.Spectrum` """ if self.wave is None: raise ValueError('Operation forbidden without world coordinates ' 'along the spectral direction') if lmax is None: lmax = lmin # Are lmin and lmax array indexes? if unit is None: pix_min = max(0, int(lmin + 0.5)) pix_max = min(self.shape[0], int(lmax + 0.5)) # Convert wavelengths to the nearest spectrum array indexes. else: pix_min = max(0, self.wave.pixel(lmin, nearest=True, unit=unit)) pix_max = min(self.shape[0], self.wave.pixel(lmax, nearest=True, unit=unit) + 1) # If the start and end of the wavelength range select the same pixel, # return just the value of that pixel. if (pix_min + 1) == pix_max: return self[pix_min] # Otherwise return a sub-spectrum. else: return self[pix_min:pix_max] def get_step(self, unit=None): """Return the wavelength step size. Parameters ---------- unit : `astropy.units.Unit` The units of the returned step-size. Returns ------- out : float The width of a spectrum pixel. """ if self.wave is not None: return self.wave.get_step(unit) def get_start(self, unit=None): """Return the wavelength value of the first pixel of the spectrum. Parameters ---------- unit : `astropy.units.Unit` The units of the returned wavelength. Returns ------- out : float The wavelength of the first pixel of the spectrum. """ if self.wave is not None: return self.wave.get_start(unit) def get_end(self, unit=None): """Return the wavelength of the last pixel of the spectrum. Parameters ---------- unit : `astropy.units.Unit` The units of the returned wavelength. Returns ------- out : float The wavelength of the final pixel of the spectrum. """ if self.wave is not None: return self.wave.get_end(unit) def get_range(self, unit=None): """Return the wavelength range (Lambda_min, Lambda_max) of the spectrum. Parameters ---------- unit : `astropy.units.Unit` The units of the returned wavelengths. Returns ------- out : float array The minimum and maximum wavelengths. """ if self.wave is not None: return self.wave.get_range(unit) def mask_region(self, lmin=None, lmax=None, inside=True, unit=u.angstrom): """Mask spectrum pixels inside or outside a wavelength range, [lmin,lmax]. Parameters ---------- lmin : float The minimum wavelength of the range, or None to choose the wavelength of the first pixel in the spectrum. lmax : float The maximum wavelength of the range, or None to choose the wavelength of the last pixel in the spectrum. unit : `astropy.units.Unit` The wavelength units of lmin and lmax. If None, lmin and lmax are assumed to be pixel indexes. inside : bool If True, pixels inside the range [lmin,lmax] are masked. If False, pixels outside the range [lmin,lmax] are masked. """ if self.wave is None: raise ValueError('Operation forbidden without world coordinates ' 'along the spectral direction') else: if lmin is None: pix_min = 0 else: if unit is None: pix_min = max(0, int(lmin + 0.5)) else: pix_min = max(0, self.wave.pixel(lmin, nearest=True, unit=unit)) if lmax is None: pix_max = self.shape[0] else: if unit is None: pix_max = min(self.shape[0], int(lmax + 0.5)) else: pix_max = min(self.shape[0], self.wave.pixel(lmax, nearest=True, unit=unit) + 1) if inside: self.data[pix_min:pix_max] = np.ma.masked else: self.data[:pix_min] = np.ma.masked self.data[pix_max + 1:] = np.ma.masked def _wavelengths_to_slice(self, lmin, lmax, unit): """Return the slice that selects a specified wavelength range. Parameters ---------- lmin : float The minimum wavelength of a wavelength range, or the wavelength of a single pixel if lmax is None. lmax : float or None The maximum wavelength of the wavelength range. unit : `astropy.units.Unit` The wavelength units of the lmin and lmax arguments. The default is angstroms. If unit is None, then lmin and lmax are interpreted as array indexes within the spectrum. Returns ------- out : slice The slice needed to select pixels within the specified wavelength range. """ if unit is not None and self.wave is None: raise ValueError('Operation forbidden without world coordinates ' 'along the spectral direction') # Get the pixel index that corresponds to the minimum wavelength. if lmin is None: i1 = 0 else: if unit is None: if lmin > self.shape[0]: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i1 = max(0, int(lmin + 0.5)) else: i1 = self.wave.pixel(lmin, nearest=False, unit=unit) if i1 > self.shape[0]: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i1 = self.wave.pixel(lmin, nearest=True, unit=unit) # Get the pixel index that corresponds to the maximum wavelength. if lmax is None: i2 = self.shape[0] else: if unit is None: if lmax < 0: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i2 = min(self.shape[0], int(lmax + 0.5)) else: i2 = self.wave.pixel(lmax, nearest=False, unit=unit) if i2 < 0: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i2 = self.wave.pixel(lmax, nearest=True, unit=unit) + 1 return slice(i1, i2) def _interp(self, wavelengths, spline=False): """return the interpolated values corresponding to the wavelength array. Parameters ---------- wavelengths : array of float wavelength values unit : `astropy.units.Unit` Type of the wavelength coordinates spline : bool False: linear interpolation (use `scipy.interpolate.interp1d`), True: spline interpolation (use `scipy.interpolate.splrep` and `scipy.interpolate.splev`). """ lbda = self.wave.coord() data = np.pad(self.data.compressed(), 1, 'edge') w = np.concatenate(([self.get_start() - 0.5 * self.get_step()], np.compress(~self._mask, lbda), [self.get_end() + 0.5 * self.get_step()])) if spline: if self._var is not None: _weight = 1. / np.sqrt(np.abs(self.var.filled(np.inf))) if self.mask is np.ma.nomask: weight = np.empty(self.shape + 2, dtype=float) weight[1:-1] = _weight else: ksel = np.where(self.mask == False) weight = np.empty(np.shape(ksel)[1] + 2) weight[1:-1] = _weight[ksel] weight[0] = weight[1] weight[-1] = weight[-2] else: weight = None tck = interpolate.splrep(w, data, w=weight) return interpolate.splev(wavelengths, tck, der=0) else: f = interpolate.interp1d(w, data) return f(wavelengths) def _interp_data(self, spline=False): """Return data array with interpolated values for masked pixels. Parameters ---------- spline : bool False: linear interpolation (use `scipy.interpolate.interp1d`), True: spline interpolation (use `scipy.interpolate.splrep` and `scipy.interpolate.splev`). """ if np.count_nonzero(self._mask) in (0, self.shape[0]): return self._data lbda = self.wave.coord() wnew = lbda[self._mask] data = self._data.copy() data[self._mask] = self._interp(wnew, spline) return data def interp_mask(self, spline=False): """Interpolate masked pixels. Parameters ---------- spline : bool False: linear interpolation (use `scipy.interpolate.interp1d`), True: spline interpolation (use `scipy.interpolate.splrep` and `scipy.interpolate.splev`). """ self.data = np.ma.masked_invalid(self._interp_data(spline)) def rebin(self, factor, margin='center', inplace=False): """Combine neighboring pixels to reduce the size of a spectrum by an integer factor. Each output pixel is the mean of n pixels, where n is the specified reduction factor. Parameters ---------- factor : int The integer reduction factor by which the spectrum should be shrunk. margin : string in 'center'|'right'|'left'|'origin' When the dimension of the input spectrum is not an integer multiple of the reduction factor, the spectrum is truncated to remove just enough pixels that its length is a multiple of the reduction factor. This sub-spectrum is then rebinned in place of the original spectrum. The margin parameter determines which pixels of the input spectrum are truncated, and which remain. The options are: 'origin' or 'center': The start of the output spectrum is coincident with the start of the input spectrum. 'center': The center of the output spectrum is aligned with the center of the input spectrum, within one pixel. 'right': The end of the output spectrum is coincident with the end of the input spectrum. inplace : bool If False, return a rebinned copy of the spectrum (the default). If True, rebin the original spectrum in-place, and return that. Returns ------- out : Spectrum """ # Delegate the rebinning to the generic DataArray function. return self._rebin(factor, margin, inplace) def _decimation_filter(self, newstep, atten, unit=None): """This is a private function Spectrum.resample(), used to apply a decimation filter prior to resampling. Parameters ---------- step : float The new pixel size along the wavelength axis of the spectrum. atten : float The minimum attenuation (dB), of the antialiasing decimation filter at the Nyquist folding frequency of the new pixel size. Larger attenuations suppress aliasing better at the expense of worsened resolution. A good value to choose is 40dB, which produces a response that is very similar to a blackman filter applied within the Fourier plane, but with less ringing in the image plane. unit : `astropy.units.Unit` The wavelength units of the step argument. A value of None is equivalent to specifying self.wave.unit. """ # Convert the attenuation from dB to a linear scale factor. gcut = 10.0**(-atten / 20.0) # Calculate the Nyquist folding frequency of the new pixel size. nyquist_folding_freq = 0.5 / newstep # Calculate the standard deviation of a Gaussian whose Fourier # transform drops from unity at the center to gcut at the Nyquist # folding frequency. sigma = (0.5 / np.pi / nyquist_folding_freq * np.sqrt(-2.0 * np.log(gcut))) # Convert the standard deviation from wavelength units to input pixels. sigma /= self.get_step(unit=unit) # Choose dimensions for the gaussian filtering kernel. Choose an # extent from -4*sigma to +4*sigma. This truncates the gaussian # where it drops to about 3e-4 of its peak. The following # calculation ensures that the dimensions of the array are odd, so # that the gaussian will be symmetrically sampled either side of a # central pixel. This prevents spectral shifts. gshape = int(np.ceil(4.0 * sigma)) * 2 + 1 # fftconvolve requires that the kernel be no larger than the array # that it is convolving, so reduce the size of the kernel array if # needed. Be careful to choose an odd sized array. n = self.shape[0] if gshape > n: gshape = n if n % 2 != 0 else (n - 1) # Sample the gaussian filter symmetrically around the central pixel. gx = np.arange(gshape, dtype=float) - gshape // 2 gy = np.exp(-0.5 * (gx / sigma)**2) # Area-normalize the gaussian profile. gy /= gy.sum() # Filter the spectrum with the gaussian filter. self.fftconvolve(gy, inplace=True) def resample(self, step, start=None, shape=None, unit=u.angstrom, inplace=False, atten=40.0, cutoff=0.25): """Resample a spectrum to have a different wavelength interval. Parameters ---------- step : float The new pixel size along the wavelength axis of the spectrum. start : float The wavelength at the center of the first pixel of the resampled spectrum. If None (the default) the center of the first pixel has the same wavelength before and after resampling. unit : `astropy.units.Unit` The wavelength units of the step and start arguments. The default is u.angstrom. shape : int The dimension of the array of the new spectrum (ie. the number of spectral pixels). If this is not specified, the shape is selected to encompass the wavelength range from the chosen start wavelength to the ending wavelength of the input spectrum. inplace : bool If False, return a resampled copy of the spectrum (the default). If True, resample the original spectrum in-place, and return that. atten : float The minimum attenuation (dB), of the antialiasing decimation filter at the Nyquist folding frequency of the new pixel size. Larger attenuations suppress aliasing better at the expense of worsened resolution. The default attenuation is 40.0 dB. To disable antialiasing, specify atten=0.0. cutoff : float Mask each output pixel of which at least this fraction of the pixel was interpolated from masked input pixels. Returns ------- out : Spectrum """ out = self if inplace else self.copy() # Don't allow the spectrum to be started beyond the far end of # the spectrum, because this would result in an empty spectrum. if start is not None and start > self.get_end(unit): raise ValueError('The start value is past the end of the ' 'spectrum range') # Get wavelength world coordinates of the output spectrum. newwave = self.wave.resample(step, start, unit) # How many pixels should there be in the resampled spectrum? # If the user didn't specify this, use newwave.shape, which # holds the number of pixels of size 'step' needed to sample # from 'start' to the end of the current wavelength range. if shape is not None: newwave.shape = shape # Get the existing wavelength step size in the new units. oldstep = self.wave.get_step(unit) # If the spectrum is being resampled to a larger pixel size, # then a decimation filter should be applied before # resampling, to ensure that the new pixel size doesn't # undersample rapidly changing features in the spectrum. if step > oldstep and atten > 0.0: out._decimation_filter(step, atten, unit=unit) # Get the data, mask (and variance) arrays, and replace bad pixels with # zeros. if out._mask is not None: # Is out.data a masked array? data = out.data.filled(0.0) if out._var is not None: var = out.var.filled(0.0) else: var = None mask = out._mask else: # Is out.data just a numpy array? mask = ~np.isfinite(out._data) data = out._data.copy() data[mask] = 0.0 if out.var is not None: var = out.var.copy() var[mask] = 0.0 else: var = None # Get the coordinates of the pixels of the input and output spectra. xi = self.wave.coord() xo = newwave.coord() # Get a resampled versions of the data array, optionally the variance # array, and a floating point version of the mask array. Note that the # choice of linear interpolation is required to preserve flux. data = interpolate.griddata(xi, data, xo, method="linear", fill_value=np.nan) if var is not None: var = interpolate.griddata(xi, var, xo, method="linear", fill_value=np.nan) mask = interpolate.griddata(xi, mask.astype(float), xo, method="linear", fill_value=1.0) # Create a new boolean mask in which all pixels that had an integrated # contribution of more than 'cutoff' originally masked pixels are # masked. Note that setting the cutoff to the "obvious" value of zero # results in lots of pixels being masked that are far away from any # masked pixels, due to precision errors in the griddata() # function. Limit the minimum value of the cutoff to avoid this. mask = np.greater(mask, max(cutoff, 1.0e-6)) # If masked arrays were not in use in the original spectrum, fill # bad pixels with NaNs. if out._mask is None: data[mask] = np.nan if var is not None: var[mask] = np.nan mask = None # Install the resampled arrays. out._data = data out._var = var out._mask = mask # Install the new wavelength world coordinates. out.wave = newwave # When up-sampling, decimation filter the output spectrum. The # combination of this and the linear interpolation of the preceding # griddata() produces a much better interpolation than a cubic spline # filter can. In particular, a spline interpolation does not conserve # flux, whereas linear interpolation plus decimation filtering does. if step < oldstep and atten > 0.0: out._decimation_filter(step, atten, unit=unit) return out def mean(self, lmin=None, lmax=None, weight=True, unit=u.angstrom): """Compute the mean flux over a specified wavelength range. Parameters ---------- lmin : float The minimum wavelength of the range, or None to choose the wavelength of the first pixel in the spectrum. lmax : float The maximum wavelength of the range, or None to choose the wavelength of the last pixel in the spectrum. unit : `astropy.units.Unit` The wavelength units of lmin and lmax. If None, lmin and lmax are assumed to be pixel indexes. weight : bool If weight is True, compute the weighted mean, inversely weighting each pixel by its variance. Returns ------- out : (float, float) The mean flux and its error. """ # Don't attempt to perform a weighted mean if there are no variances. if self._var is None: weight = False # Get the slice that selects the specified wavelength range. try: lambda_slice = self._wavelengths_to_slice(lmin, lmax, unit) except ValueError: return (0.0, np.inf) # Obtain the mean flux of the sub-spectrum. if weight: weights = 1.0 / self.var[lambda_slice].filled(np.inf) flux, wsum = np.ma.average(self.data[lambda_slice], weights=weights, returned=True) if self.var is not None: err_flux = np.sqrt( np.ma.sum(self.var[lambda_slice] * weights**2) / wsum**2) else: err_flux = np.inf else: flux, wsum = np.ma.average(self.data[lambda_slice], returned=True) if self.var is not None: err_flux = np.sqrt(
np.ma.sum(self.var[lambda_slice])
numpy.ma.sum
import os import sys from glob import glob from tqdm import tqdm import numpy as np import pandas as pd import SimpleITK as sitk from torch.utils.data import Dataset, DataLoader import nibabel from scipy import ndimage import time import torch import torch.nn as nn import fire import time import pydicom import shutil def read_config_file(config_file): ''' config_file: '../data/config/肝穿病人给放射科和合作者.xlsx' 表头:['编号', '住院号', '姓名', 'series uid', 'Unnamed: 4', '性别1男2女', '年龄', 'MRS脂肪峰面积', '水峰面积', '脂肪含量', 'Fat', 'necrosisfoci', 'ballooning', 'NAS(total)', 'fibrosis', 'NAS大于4', '进展性纤维化', '脂肪肝病理评分'] 此处用到 'series uid', 'fibrosis' debug cmd: read_config_file('../data/config/肝穿病人给放射科和合作者.xlsx') ''' df = pd.read_excel(config_file) series_fib_dict = {} for index, row in df.iterrows(): series_fib_dict[row['series uid']] = int(row['fibrosis']) return series_fib_dict def read_dcm_file(in_dcm_path): series_reader = sitk.ImageSeriesReader() dicomfilenames = series_reader.GetGDCMSeriesFileNames(in_dcm_path) series_reader.SetFileNames(dicomfilenames) series_reader.MetaDataDictionaryArrayUpdateOn() series_reader.LoadPrivateTagsOn() image = series_reader.Execute() return image def split_data_to_two_phase_one_case(series_path, out_dir): ''' debug cmd: split_data_to_two_phase_one_case('../data/images_mr_filtered/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0', '') ''' in_files1 = glob((series_path, '*.dcm')) in_files2 = glob((series_path, '*.DCM')) in_files = in_files1 + in_files2 echo_1_files = [] echo_2_files = [] for infile in in_files: metadata = pydicom.dcmread(infile) if 1 == metadata.EchoNumbers: echo_1_files.append(infile) elif 2 == metadata.EchoNumbers: echo_2_files.append(infile) series_uid = os.path.basename(series_path) out_series_path = os.path.join(out_dir, series_uid) out_echo_1_path = os.path.join(out_series_path, 'echo_1') out_echo_2_path = os.path.join(out_series_path, 'echo_2') os.makedirs(out_series_path, exist_ok=True) os.makedirs(out_echo_1_path, exist_ok=True) os.makedirs(out_echo_2_path, exist_ok=True) assert len(echo_1_files) == len(echo_2_files) for src_file in echo_1_files: dst_file = os.path.join(out_echo_1_path, os.path.basename(src_file)) shutil.copyfile(src_file, dst_file) print('====> copy from {} to {}'.format(src_file, dst_file)) for src_file in echo_2_files: dst_file = os.path.join(out_echo_2_path, os.path.basename(src_file)) shutil.copyfile(src_file, dst_file) print('====> copy from {} to {}'.format(src_file, dst_file)) def split_data_to_two_phase_singletask(in_dir, out_dir, config_file): ''' indir: ../data/images_mr_filtered outdir: ../data/experiment_0/0.ori config_file: '../data/config/肝穿病人给放射科和合作者.xlsx' 根据配置文件确定需要进入后续操作的series,这里为防止文件夹中混入非序列的子文件夹 debug cmd: split_data_to_two_phase_singletask('../data/images_mr_filtered', '../data/experiment_0/0.ori', '../data/config/肝穿病人给放射科和合作者.xlsx') invoke cmd: python FattyLiverDatasets.py split_data_to_two_phase_singletask '../data/images_mr_filtered' '../data/experiment_0/0.ori' '../data/config/肝穿病人给放射科和合作者.xlsx' ''' series_fib_dict = read_config_file(config_file) series_uids = os.listdir(in_dir) series_paths = [] for series_uid in series_uids: if not series_uid in series_fib_dict: continue series_path = os.path.join(in_dir, series_uid) series_paths.append(series_path) split_data_to_two_phase_one_case(series_path, out_dir) def resample_sitkImage_by_spacing(sitkImage, newSpacing, vol_default_value='min', interpolator=sitk.sitkNearestNeighbor): """ :param sitkImage: :param newSpacing: :return: """ if sitkImage == None: return None if newSpacing is None: return None dim = sitkImage.GetDimension() if len(newSpacing) != dim: return None # determine the default value vol_value = 0.0 if vol_default_value == 'min': vol_value = float(np.ndarray.min(sitk.GetArrayFromImage(sitkImage))) elif vol_default_value == 'zero': vol_value = 0.0 elif str(vol_default_value).isnumeric(): vol_value = float(vol_default_value) # calculate new size np_oldSize = np.array(sitkImage.GetSize()) np_oldSpacing = np.array(sitkImage.GetSpacing()) np_newSpacing = np.array(newSpacing) np_newSize = np.divide(np.multiply(np_oldSize, np_oldSpacing), np_newSpacing) newSize = tuple(np_newSize.astype(np.uint).tolist()) # resample sitkImage into new specs transform = sitk.Transform() return sitk.Resample(sitkImage, newSize, transform, interpolator, sitkImage.GetOrigin(), newSpacing, sitkImage.GetDirection(), vol_value, sitkImage.GetPixelID()) def resample_data_one_case(series_path, out_dir, z_mul:int): ''' series_path: ../data/experiment_0/0.ori/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0/11 resample_data_one_case('../data/experiment_0/0.ori/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0/echo_1', '../data/experiment_0/0.ori/1.3.12.2.1107.5.2.30.25245.2015120320185731080640838.0.0.0', 1) ''' beg = time.time() print('====> processing {}'.format(series_path)) image = read_dcm_file(series_path) basename = os.path.basename(series_path) # 1. 保存原始分辨率数据的nii.gz out_raw_file = os.path.join(out_dir, '{}.nii.gz'.format(basename)) # sitk.WriteImage(image, out_raw_file) # 2. resample, base x-spacing # spc = image.GetSpacing() # mults = [1,2,4,8] # for z_mul in mults: # out_resampled_file = os.path.join(out_dir, '{}_z_mul{}.nii.gz'.format(basename, z_mul)) # new_spc = [spc[0]] + [spc[0]] + [spc[0]*z_mul] # resampled_img = resample_sitkImage_by_spacing(image, new_spc, interpolator=sitk.sitkLinear) # sitk.WriteImage(resampled_img, out_resampled_file) end = time.time() print('=====> finish {}, time elapsed is {:.3f}s'.format(series_path, end-beg)) return out_raw_file def resample_data_singletask(series_paths): ''' indir: ../data/experiment_0/0.ori debug cmd: resample_data_singletask('../data/experiment_0/0.ori') invoke cmd: python FattyLiverDatasets.py resample_data_singletask '../data/experiment_0/0.ori' ''' print(series_paths) for series_path in tqdm(series_paths): if not os.path.isdir(series_path): continue echo_1_path = os.path.join(series_path, 'echo_1') echo_2_path = os.path.join(series_path, 'echo_2') out_dir = series_path if not os.path.isdir(echo_1_path): print('{} echo 1 data not exist!'.format(series_path)) continue if not os.path.isdir(echo_2_path): print('{} echo 2 data not exist!'.format(series_path)) continue out_echo_1_file = resample_data_one_case(echo_1_path, out_dir, 1) out_echo_2_file = resample_data_one_case(echo_2_path, out_dir, 1) echo_1_image = sitk.ReadImage(out_echo_1_file) echo_2_image = sitk.ReadImage(out_echo_2_file) echo_1_arr = sitk.GetArrayFromImage(echo_1_image) echo_2_arr = sitk.GetArrayFromImage(echo_2_image) echo_1_arr = np.array(echo_1_arr, dtype=np.int16) echo_2_arr = np.array(echo_2_arr, dtype=np.int16) diff_1_2_arr = echo_1_arr - echo_2_arr diff_1_2_image = sitk.GetImageFromArray(diff_1_2_arr) diff_1_2_image.CopyInformation(echo_1_image) out_diff_file = os.path.join(os.path.dirname(out_echo_1_file), 'diff_1_2.nii.gz') sitk.WriteImage(diff_1_2_image, out_diff_file) def resample_data_multiprocessing(indir, process_num=12): ''' indir: ../data/experiment_0/0.ori invoke cmd: python FattyLiverDatasets.py resample_data_multiprocessing '../data/experiment_0/0.ori' 12 ''' series_uids = os.listdir(indir) series_paths = [os.path.join(indir, i) for i in series_uids] import multiprocessing from multiprocessing import Process multiprocessing.freeze_support() pool = multiprocessing.Pool() results = [] num_per_process = (len(series_paths) + process_num - 1)//process_num resample_data_singletask(series_paths) # for i in range(process_num): # sub_infiles = series_paths[num_per_process*i:min(num_per_process*(i+1), len(series_paths))] # print(sub_infiles) # result = pool.apply_async(resample_data_singletask, args=(sub_infiles)) # results.append(result) # pool.close() # pool.join() def split_data_to_train_val_test(data_root, config_file, outdir, train_ratio, val_ratio): ''' debug cmd: split_data_to_train_val_test('../data/images_mr_filtered', '../data/config/肝穿病人给放射科和合作者.xlsx', '../data/config', 0.7, 0.1) invoke cmd: python FattyLiverDatasets.py split_data_to_train_val_test '../data/images_mr_filtered' '../data/config/肝穿病人给放射科和合作者.xlsx' '../data/config' 0.7 0.1 debug cmd: split_data_to_train_val_test('../data/images_mr_filtered', '../data/config/肝穿病人给放射科和合作者宋筛重复序列终版.xlsx', '../data/config', 0.7, 0.1) invoke cmd: python FattyLiverDatasets.py split_data_to_train_val_test '../data/images_mr_filtered' '../data/config/肝穿病人给放射科和合作者宋筛重复序列终版.xlsx' '../data/config' 0.7 0.1 ''' series_fib_dict = read_config_file(config_file) series_uids = os.listdir(data_root) pairs = [] for series_uid in series_uids: if not series_uid in series_fib_dict: continue pairs.append([series_uid, series_fib_dict[series_uid]]) np.random.shuffle(pairs) train_pos = int(len(pairs)*train_ratio) val_pos = int(len(pairs)*(train_ratio+val_ratio)) train_pairs = pairs[:train_pos] val_pairs = pairs[train_pos:val_pos] test_pairs = pairs[val_pos:] out_config_train_file = os.path.join(outdir, 'config_train.txt') out_config_val_file = os.path.join(outdir, 'config_val.txt') out_config_test_file = os.path.join(outdir, 'config_test.txt') with open(out_config_train_file, 'w') as f: for pair in train_pairs: f.write('{}\t{}\n'.format(pair[0], pair[1])) with open(out_config_val_file, 'w') as f: for pair in val_pairs: f.write('{}\t{}\n'.format(pair[0], pair[1])) with open(out_config_test_file, 'w') as f: for pair in test_pairs: f.write('{}\t{}\n'.format(pair[0], pair[1])) def split_data_to_train_val_test_ratio(data_root, config_file, outdir, train_ratio, val_ratio): ''' debug cmd: split_data_to_train_val_test('../data/images_mr_filtered', '../data/config/肝穿病人给放射科和合作者.xlsx', '../data/config_ratio', 0.7, 0.1) invoke cmd: python FattyLiverDatasets.py split_data_to_train_val_test '../data/images_mr_filtered' '../data/config/肝穿病人给放射科和合作者.xlsx' '../data/config_ratio' 0.7 0.1 debug cmd: split_data_to_train_val_test('../data/images_mr_filtered', '../data/config/肝穿病人给放射科和合作者宋筛重复序列终版.xlsx', '../data/config_ratio', 0.7, 0.1) invoke cmd: python FattyLiverDatasets.py split_data_to_train_val_test '../data/images_mr_filtered' '../data/config/肝穿病人给放射科和合作者宋筛重复序列终版.xlsx' '../data/config_ratio' 0.7 0.1 ====> train pairs label 0 count is 13 ====> train pairs label 1 count is 39 ====> train pairs label 2 count is 41 ====> train pairs label 3 count is 19 ====> train pairs label 4 count is 4 ====> val pairs label 0 count is 2 ====> val pairs label 1 count is 5 ====> val pairs label 2 count is 6 ====> val pairs label 3 count is 3 ====> val pairs label 4 count is 1 ====> test pairs label 0 count is 4 ====> test pairs label 1 count is 12 ====> test pairs label 2 count is 12 ====> test pairs label 3 count is 6 ====> test pairs label 4 count is 2 ''' series_fib_dict = read_config_file(config_file) series_uids = os.listdir(data_root) pairs_0 = [] pairs_1 = [] pairs_2 = [] pairs_3 = [] pairs_4 = [] for series_uid in series_uids: if not series_uid in series_fib_dict: continue if series_fib_dict[series_uid] == 0: pairs_0.append([series_uid, 0]) elif series_fib_dict[series_uid] == 1: pairs_1.append([series_uid, 1]) elif series_fib_dict[series_uid] == 2: pairs_2.append([series_uid, 2]) elif series_fib_dict[series_uid] == 3: pairs_3.append([series_uid, 3]) elif series_fib_dict[series_uid] == 4: pairs_4.append([series_uid, 4]) def inner_split(pairs, train_ratio, val_ratio): np.random.shuffle(pairs) train_pos = int(len(pairs)*train_ratio) val_pos = int(len(pairs)*(train_ratio+val_ratio)) train_pairs = pairs[:train_pos] val_pairs = pairs[train_pos:val_pos] test_pairs = pairs[val_pos:] return train_pairs, val_pairs, test_pairs train_pairs_0, val_pairs_0, test_pairs_0 = inner_split(pairs_0, train_ratio, val_ratio) train_pairs_1, val_pairs_1, test_pairs_1 = inner_split(pairs_1, train_ratio, val_ratio) train_pairs_2, val_pairs_2, test_pairs_2 = inner_split(pairs_2, train_ratio, val_ratio) train_pairs_3, val_pairs_3, test_pairs_3 = inner_split(pairs_3, train_ratio, val_ratio) train_pairs_4, val_pairs_4, test_pairs_4 = inner_split(pairs_4, train_ratio, val_ratio) print('====> train pairs label 0 count is {}'.format(len(train_pairs_0))) print('====> train pairs label 1 count is {}'.format(len(train_pairs_1))) print('====> train pairs label 2 count is {}'.format(len(train_pairs_2))) print('====> train pairs label 3 count is {}'.format(len(train_pairs_3))) print('====> train pairs label 4 count is {}'.format(len(train_pairs_4))) print('====> val pairs label 0 count is {}'.format(len(val_pairs_0))) print('====> val pairs label 1 count is {}'.format(len(val_pairs_1))) print('====> val pairs label 2 count is {}'.format(len(val_pairs_2))) print('====> val pairs label 3 count is {}'.format(len(val_pairs_3))) print('====> val pairs label 4 count is {}'.format(len(val_pairs_4))) print('====> test pairs label 0 count is {}'.format(len(test_pairs_0))) print('====> test pairs label 1 count is {}'.format(len(test_pairs_1))) print('====> test pairs label 2 count is {}'.format(len(test_pairs_2))) print('====> test pairs label 3 count is {}'.format(len(test_pairs_3))) print('====> test pairs label 4 count is {}'.format(len(test_pairs_4))) train_pairs = train_pairs_0 + train_pairs_1 + train_pairs_2 + train_pairs_3 + train_pairs_4 val_pairs = val_pairs_0 + val_pairs_1 + val_pairs_2 + val_pairs_3 + val_pairs_4 test_pairs = test_pairs_0 + test_pairs_1 + test_pairs_2 + test_pairs_3 + test_pairs_4 np.random.shuffle(train_pairs) np.random.shuffle(val_pairs) np.random.shuffle(test_pairs) out_config_train_file = os.path.join(outdir, 'config_train.txt') out_config_val_file = os.path.join(outdir, 'config_val.txt') out_config_test_file = os.path.join(outdir, 'config_test.txt') os.makedirs(outdir, exist_ok=True) with open(out_config_train_file, 'w') as f: for pair in train_pairs: f.write('{}\t{}\n'.format(pair[0], pair[1])) with open(out_config_val_file, 'w') as f: for pair in val_pairs: f.write('{}\t{}\n'.format(pair[0], pair[1])) with open(out_config_test_file, 'w') as f: for pair in test_pairs: f.write('{}\t{}\n'.format(pair[0], pair[1])) class FattyLiverClsDatasets(Dataset): def __init__(self, data_root, config_file, crop_size, scale_size, phase='train'): self.image_files = [] self.labels = [] with open(config_file) as f: for line in f.readlines(): line = line.strip() if line is None or len(line) == 0: continue ss = line.split('\t') self.image_files.append(os.path.join(data_root, ss[0])) self.labels.append(ss[1]) print('====> fatty liver count is:{}'.format(len(self.image_files))) def __getitem__(self, index): image_file = self.image_files[index] label = self.labels[index] image = read_dcm_file(image_file) print(image_file, '\t', image.GetSize()) # arr = sitk.GetArrayFromImage(image) # # 截取5-14层用来训练 # arr_slice = arr[5:15, :, :] def __len__(self): return len(self.image_files) class FattyLiverClsDatasetsDiff3D(Dataset): ''' 输入数据的分辨率由train函数的输入统一到(512, 384, 32), 对应(x,y,z) data_format: diff, phase1, phase2 condition: raw, mask, cut(after mask) ''' def __init__(self, data_root, config_file, crop_size, phase='train'): self.crop_size = crop_size # self.data_format = data_format # self.condition = condition self.image_files = [] self.labels = [] self.masks = [] mask_root = '../data/seg_task/renamed_masks' with open(config_file) as f: for line in f.readlines(): line = line.strip() if line is None or len(line) == 0: continue ss = line.split('\t') image_file = os.path.join(data_root, ss[0]) mask_file = os.path.join(mask_root,ss[0])+'.mha' if os.path.isdir(image_file) and os.path.exists(mask_file): self.image_files.append(image_file) self.labels.append(int(ss[1])) # self.masks.append(mask_file) print('====> fatty liver count is:{}'.format(len(self.image_files))) def __getitem__(self, index): # data_format = self.data_format # condition = self.condition image_path = self.image_files[index] label = self.labels[index] # mask = self.masks[index] echo_1_file = os.path.join(image_path, 'echo_1.nii.gz') echo_2_file = os.path.join(image_path, 'echo_2.nii.gz') image_1 = sitk.ReadImage(echo_1_file) image_2 = sitk.ReadImage(echo_2_file) # mask_image = sitk.ReadImage(mask) arr_1 = sitk.GetArrayFromImage(image_1) arr_2 = sitk.GetArrayFromImage(image_2) # mask_arr = sitk.GetArrayFromImage(mask_image) arr_1 = np.array(arr_1, dtype=np.float32) arr_2 =
np.array(arr_2, dtype=np.float32)
numpy.array
import astropy.io.fits as pf import os import numpy as np from copy import deepcopy from itertools import chain import unittest import healpy as hp import warnings # disable new order warnings in tests warnings.filterwarnings('ignore') class TestSphtFunc(unittest.TestCase): def setUp(self): self.lmax = 64 self.path = os.path.dirname( os.path.realpath( __file__ ) ) self.map1 = [hp.ma(m) for m in hp.read_map(os.path.join(self.path, 'data', 'wmap_band_iqumap_r9_7yr_W_v4_udgraded32.fits'), (0,1,2))] self.map2 = [hp.ma(m) for m in hp.read_map(os.path.join(self.path, 'data', 'wmap_band_iqumap_r9_7yr_V_v4_udgraded32.fits'), (0,1,2))] self.mask = hp.read_map(os.path.join(self.path, 'data', 'wmap_temperature_analysis_mask_r9_7yr_v4_udgraded32.fits')).astype(np.bool) for m in chain(self.map1, self.map2): m.mask = np.logical_not(self.mask) self.cla = hp.read_cl(os.path.join(self.path, 'data', 'cl_wmap_band_iqumap_r9_7yr_W_v4_udgraded32_II_lmax64_rmmono_3iter.fits')) self.cl_fortran_nomask = hp.read_cl(os.path.join(self.path, 'data', 'cl_wmap_band_iqumap_r9_7yr_W_v4_udgraded32_II_lmax64_rmmono_3iter_nomask.fits')) cls_file = pf.open(os.path.join(self.path, 'data', 'cl_wmap_band_iqumap_r9_7yr_W_v4_udgraded32_IQU_lmax64_rmmono_3iter.fits')) # fix for pyfits to read the file with duplicate column names for i in range(2, 6): cls_file[1].header['TTYPE%d' % i] += '-%d' % i cls = cls_file[1].data # order of HEALPIX is TB, EB while in healpy is EB, TB self.cliqu = [np.array(cls.field(i)) for i in (0,1,2,3,5,4)] nside = 32 lmax = 64 fwhm_deg = 7. seed = 12345 np.random.seed(seed) self.mapiqu = hp.synfast(self.cliqu, nside, lmax=lmax, pixwin=False, fwhm=np.radians(fwhm_deg), new=False) def test_anafast(self): cl = hp.anafast(hp.remove_monopole(self.map1[0].filled()), lmax = self.lmax) self.assertEqual(len(cl), 65) np.testing.assert_array_almost_equal(cl, self.cla, decimal=8) def test_anafast_nomask(self): cl = hp.anafast(hp.remove_monopole(self.map1[0].data), lmax = self.lmax) self.assertEqual(len(cl), 65) np.testing.assert_array_almost_equal(cl, self.cl_fortran_nomask, decimal=8) def test_anafast_iqu(self): self.map1[0] = hp.remove_monopole(self.map1[0]) cl = hp.anafast(self.map1, lmax = self.lmax) self.assertEqual(len(cl[0]), 65) self.assertEqual(len(cl), 6) for i in range(6): np.testing.assert_array_almost_equal(cl[i], self.cliqu[i], decimal=8) def test_anafast_xspectra(self): cl = hp.anafast(hp.remove_monopole(self.map1[0]), hp.remove_monopole(self.map2[0]), lmax = self.lmax) self.assertEqual(len(cl), self.lmax+1) clx = hp.read_cl(os.path.join(self.path, 'data', 'cl_wmap_band_iqumap_r9_7yr_WVxspec_v4_udgraded32_II_lmax64_rmmono_3iter.fits')) np.testing.assert_array_almost_equal(cl, clx, decimal=8) def test_synfast(self): nside = 32 lmax = 64 fwhm_deg = 7. seed = 12345 np.random.seed(seed) map_pregen = hp.read_map(os.path.join(self.path, 'data', 'map_synfast_seed%d.fits' % seed), (0,1,2)) sim_map = hp.synfast(self.cliqu, nside, lmax = lmax, pixwin=False, fwhm=
np.radians(fwhm_deg)
numpy.radians
import numpy as np from src.network_elements.network_element import NetworkElement class LayersLinker(NetworkElement): def __init__(self, previous_layer_dimension, next_layer_dimension) -> None: self.previous_layer_dimension = previous_layer_dimension self.next_layer_dimension = next_layer_dimension self.W = self.init_random_uniform_matrix(size=(previous_layer_dimension, next_layer_dimension)) self.B = self.init_random_uniform_matrix(size=(1, next_layer_dimension)) self.previous_layer_activated_output = None self.dLdW = None self.dLdB = None def init_random_uniform_matrix(self, size): low = - np.sqrt(1 / np.sum(size)) high = np.sqrt(1 / np.sum(size)) return np.random.uniform(low=low, high=high, size=size) def init_random_gaussian_matrix(self, size, mean=0.0, variance=1.0): return np.random.normal(loc=mean, scale=np.sqrt(variance), size=size) def forward_propagate(self, A): self.previous_layer_activated_output = A Z = (A @ self.W) + self.B return Z def backward_propagate(self, dLdZ): if self.previous_layer_activated_output is None: raise ValueError("Please forward propagate information before backward propagating.") (batch_size, _) = dLdZ.shape self.dLdW = self.previous_layer_activated_output.T @ dLdZ self.dLdB =
np.ones(batch_size)
numpy.ones
import numpy as np import utils.utils_data as utils_data import utils.utils_video as utils_video import cv2 import time class DataGenerator: def __init__(self, model, config, sess, data_name, shuffle, augment): self.config = config # data_generator receives the model and session because it runs the first part of the model - # mobile_net to return batch features self.model = model self.sess = sess # read classes dict self.label_dict = utils_data.read_classes(config.classInd) self.label_dict_inv = {v: k for k, v in self.label_dict.items()} self.augment = augment # load data here (shuffle inside) if data_name == 'train': data_list = config.train_list elif data_name == 'validate': data_list = config.val_list else: data_list = config.test_list self.lines, self.labels, self.len_lines = utils_data.read_data(data_list, self.label_dict, shuffle, config.data) # feeder state self._curr_line_num = 0 # resets the feeder to the first example def reset_feeder(self): self._curr_line_num = 0 # returns the batch fc and conv features and labels def next_batch(self): time1 = time.time() eod = False batch_frames = np.zeros((self.config.batch_size, self.config.n_steps, self.config.frame_size[0], self.config.frame_size[1], self.config.frame_size[2],), dtype=np.float32) # (8, 40, 224, 224, 3) batch_labels = np.zeros((self.config.batch_size, self.config.n_classes), dtype=np.int8) example_ind = 0 while example_ind < self.config.batch_size: if self.end_of_data(): # if we finished the data, the rest of the batch array is zeros. eod = True break else: # get next path and class curr_video_full_path, curr_video_class = self.get_next_example() # create the label example one_hot = np.zeros(self.config.n_classes, dtype=np.int8) one_hot[self.label_dict[curr_video_class]] = 1 label = np.expand_dims(one_hot, axis=0) # extract frames bit_correct, frames = get_clip_frames(self.config, curr_video_full_path) if bit_correct == 1: print('ERROR: skipping clip...') continue # augment example if required if self.augment: frames = utils_video.augment_frames(frames) # assign to the big array batch_frames[example_ind] = frames batch_labels[example_ind] = label example_ind += 1 time2 = time.time() print("batch_read_time:", '{0:.2f}'.format(time2 - time1), "s") return batch_frames, batch_labels, eod # did we reach the end of the line list? def end_of_data(self): return self._curr_line_num == self.len_lines def get_next_example(self): # returns the video full path, class, first frame to read from line = self.lines[self._curr_line_num] if self.config.data == "UCF": curr_video_full_path, curr_video_class = utils_video.line_to_path(line, self.config.UCF_ARG_path) elif self.config.data == "SDHA": curr_video_full_path, curr_video_class = utils_video.line_to_path_SDHA(line, self.config.SDHA_2010_path) elif self.config.data == "Combined": curr_video_full_path, curr_video_class = utils_video.line_to_path_Combined(line, self.config.Combined_path) elif self.config.data == "IR": curr_video_full_path, curr_video_class = utils_video.line_to_path_IR(line, self.config.IR_path) elif self.config.data == "HMDB": curr_video_full_path, curr_video_class = utils_video.line_to_path_HMDB(line, self.config.HMDB_path, self.label_dict_inv) self.update_state() return curr_video_full_path, curr_video_class def update_state(self): self._curr_line_num += 1 # # use CNN to extract features - these features are then used as input for the LSTM networks # def get_fc_conv_features(model, config, sess, video_path, is_training): # # num_conv_features = (config.conv_input_shape[0], config.conv_input_shape[1], config.channels) # # bit = 0 # capture = cv2.VideoCapture(video_path) # # # array to hold all frame fc features # fc_features = np.zeros((config.n_steps, config.n_fc_inputs)) # # # array to hold all frame conv features # conv_features = np.zeros((config.n_steps,) + num_conv_features) # # frame_num = 0 # # extract features # while (capture.isOpened()) & (frame_num < config.n_steps) & (bit == 0): # flag, frame = capture.read() # if flag == 0: # bit = 1 # print("******ERROR: Could not read frame in " + video_path + " frame_num: " + str(frame_num)) # break # # #name = params['res_vids_path'] + str(frame_num) + 'frame.jpg' # #cv2.imwrite(name, frame) # #cv2.imshow("Vid", frame) # #key_pressed = cv2.waitKey(10) # Escape to exit # # # process frame # centered_image = utils_video.val_reprocess(config, frame) # # # forward vgg (including vgg pre-processing) # #res2, res = self._my_sess.run([self._pool5_features, # # self._fc6_features], {self._input_img: centered_image}) # # res2, res = sess.run([model.mn_layer_15, model.mn_global_pool], # {model.mn_input_img: centered_image, model.is_training: is_training}) # # #pred = sess.run(model_specs['predictions'], {model_specs['input_img']: centered_image}) # #label_map = imagenet.create_readable_names_for_imagenet_labels() # #print("Top 1 prediction: ", pred.argmax(), label_map[pred.argmax()], pred.max()) # # # collect to all video features # fc_features[frame_num, :] = res[0, :] # #np.append(fc_features, res[0, :], axis=0) # conv_features[frame_num, :, :, :] = res2[0, :, :, :] # #np.append(conv_features, res2[0, :, :, :], axis=0) # # #print(np.shape(res)) # #print(np.shape(res2)) # #input_img = sess.run(vgg_extractor.return_input(), {image: img1}) # # frame_num += 1 # #if key_pressed == 27: # # break # # capture.release() # # return bit, fc_features, conv_features # # soft max on output # #res1 = np.exp(res) # #res2 = res1 / np.sum(res1) # #indices = np.argsort(res2) # # print the top 10 predictions # #print(indices[0][-10:]) def get_clip_frames(config, video_path): clip_frames = [] bit = 0 capture = cv2.VideoCapture(video_path) fps = capture.get(cv2.CAP_PROP_FPS) length = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) frame_gap = int(round(fps / config.target_fps)) if config.random_start: start_frame = int(np.random.rand() * (length - int(config.n_steps * frame_gap) - 1)) # skip first frames for j in range(start_frame): flag, frame = capture.read() frame_num = 0 # extract features while (capture.isOpened()) & (int(round(frame_num / frame_gap)) < config.n_steps) & (bit == 0): flag, frame = capture.read() if flag == 0: bit = 1 print("******ERROR: Could not read frame in " + video_path + " frame_num: " + str(frame_num)) break #name = params['res_vids_path'] + str(frame_num) + 'frame.jpg' #cv2.imwrite(name, frame) #cv2.imshow("Vid", frame) #key_pressed = cv2.waitKey(10) # Escape to exit # process frame (according to the correct frame rate) if frame_num % frame_gap == 0: centered_image = utils_video.val_reprocess(config, frame) clip_frames.append(centered_image) #cv2.imshow("Vid", frame) #key_pressed = cv2.waitKey(30) # Escape to exit frame_num += 1 capture.release() frames =
np.array(clip_frames)
numpy.array
import time import numpy as np import yaml import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, accuracy_score, cohen_kappa_score def plot_full_barchart(test_score, n_pilots, title="Test accuracy - BCIC IV 2a", fig=None, ax_idx=0): if fig: ax = fig.get_axes()[ax_idx] else: fig, ax = plt.subplots() w = 0.40 average_kappa = np.mean(test_score['kappa']) average_acc = np.mean(test_score['accuracy']) # Accuracy score ax.bar(x=np.arange(1 + 1.25*w, n_pilots + 1), height=test_score['accuracy'], width=-w, tick_label=range(1, n_pilots+1), alpha=0.9, align='edge') ax.plot([0,n_pilots+1], 2*[average_acc], '--b') ax.set_xlim([1, n_pilots + 1]) ax.set_ylim([0,1]) ax.grid(True, axis='y') ax.set_xlabel('Pilot') ax.set_ylabel('Accuracy / Kappa score') # Kappa score ax.bar(x=np.arange(1 + 1.25*w, n_pilots + 1), height=test_score['kappa'], width=w, color='orange', alpha=0.9, align='edge') ax.plot([0, n_pilots + 1], 2*[average_kappa], '--r') ax.set_title(title) ax.legend(['Average accuracy', 'Average kappa', 'Accuracy score', 'Kappa score']) fig.text(1.01, average_acc-0.01, "{:.2f}".format(average_acc), fontsize='large', color='b', transform = ax.transAxes) fig.text(1.01, average_kappa-0.01, "{:.2f}".format(average_kappa), fontsize='large', color='r', transform = ax.transAxes) return fig def plot_accuracy_barchart(test_score, model_name, n_pilots): plt.figure(figsize=(10,6)) plt.plot([0,n_pilots+1], 2*[np.mean(test_score['accuracy'])], '--r') plt.legend(['Average accuracy']) plt.bar(x=range(1, n_pilots+1), height=test_score['accuracy'], tick_label=range(1, n_pilots+1)) plt.title("Accuracy on test dataset for each pilot - {}".format(model_name)) plt.ylabel("Accuracy") plt.ylim([0, 1]) plt.xlabel("Pilot") plt.xlim([0, n_pilots+1]) plt.grid(True, axis='y') return plt def plot_loss(loss_history, pilot_idx): plt.figure() plt.plot(loss_history.history['loss']) plt.plot(loss_history.history['val_loss']) plt.ylabel("Loss") plt.xlabel("Epochs") plt.title("Training & validation loss - Pilot {}".format(pilot_idx)) plt.legend(['Training loss','Validation loss']); return plt def compute_cm(y_true, y_pred, classes, normalize=False, title=None, fig=None, ax_idx=0): ''' TODO ''' if fig: ax = fig.get_axes()[ax_idx] else: fig, ax = plt.subplots() # Compute confusion matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) ax.set_xticks(ticks=np.arange(cm.shape[1])) ax.set_yticks(ticks=
np.arange(cm.shape[0])
numpy.arange
from __future__ import division import os import re import vtk import sys import csv import math import shutil import random import pickle from random import random import numpy as np import pandas as pd from sympy import * import nibabel as nib from pathlib import Path from numpy import linalg from sklearn import metrics import plotly.express as px import matplotlib.pyplot as plt from collections import namedtuple from nipype.interfaces import fsl import plotly.graph_objects as go from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from nipype.testing import example_data from mpl_toolkits.mplot3d import Axes3D # defining nii to stl conversion def nii_2_mesh(filename_nii, filename_stl, label): try: reader = vtk.vtkNIFTIImageReader() reader.SetFileName(filename_nii) reader.Update() surf = vtk.vtkDiscreteMarchingCubes() surf.SetInputConnection(reader.GetOutputPort()) surf.SetValue(0, label) surf.Update() smoother= vtk.vtkWindowedSincPolyDataFilter() if vtk.VTK_MAJOR_VERSION <= 5: smoother.SetInput(surf.GetOutput()) else: smoother.SetInputConnection(surf.GetOutputPort()) smoother.SetNumberOfIterations(30) smoother.NonManifoldSmoothingOn() smoother.NormalizeCoordinatesOn() smoother.GenerateErrorScalarsOn() smoother.Update() writer = vtk.vtkSTLWriter() writer.SetInputConnection(smoother.GetOutputPort()) writer.SetFileTypeToASCII() writer.SetFileName(filename_stl) writer.Write() except: pass #Ellipsoid tool class EllipsoidTool: def __init__(self): pass def getMinVolEllipse(self, P=None, tolerance=0.01): (N, d) = np.shape(P) d = float(d) Q = np.vstack([np.copy(P.T), np.ones(N)]) QT = Q.T err = 1.0 + tolerance u = (1.0 / N) * np.ones(N) while err > tolerance: V = np.dot(Q, np.dot(np.diag(u), QT)) M = np.diag(np.dot(QT , np.dot(linalg.inv(V), Q))) j = np.argmax(M) maximum = M[j] step_size = (maximum - d - 1.0) / ((d + 1.0) * (maximum - 1.0)) new_u = (1.0 - step_size) * u new_u[j] += step_size err = np.linalg.norm(new_u - u) u = new_u center = np.dot(P.T, u) A = linalg.inv( np.dot(P.T, np.dot(np.diag(u), P)) - np.array([[a * b for b in center] for a in center]) ) / d U, s, rotation = linalg.svd(A) radii = 1.0/np.sqrt(s) return (center, radii, rotation) #Convexhull 2D tool Point = namedtuple('Point', 'x y') class ConvexHull(object): _points = [] _hull_points = [] def __init__(self): pass def add(self, point): self._points.append(point) def _get_orientation(self, origin, p1, p2): difference = ( ((p2.x - origin.x) * (p1.y - origin.y)) - ((p1.x - origin.x) * (p2.y - origin.y)) ) return difference def compute_hull(self): points = self._points start = points[0] min_x = start.x for p in points[1:]: if p.x < min_x: min_x = p.x start = p point = start self._hull_points.append(start) far_point = None while far_point is not start: p1 = None for p in points: if p is point: continue else: p1 = p break far_point = p1 for p2 in points: if p2 is point or p2 is p1: continue else: direction = self._get_orientation(point, far_point, p2) if direction > 0: far_point = p2 self._hull_points.append(far_point) point = far_point def get_hull_points(self): if self._points and not self._hull_points: self.compute_hull() return self._hull_points def display(self): x = [p.x for p in self._points] y = [p.y for p in self._points] plt.plot(x, y, marker='D', linestyle='None') hx = [p.x for p in self._hull_points] hy = [p.y for p in self._hull_points] plt.plot(hx, hy) plt.title('Convex Hull') plt.show() #plane equation for three given points def equation_plane(p1, p2, p3): x1 = p1[0] y1 = p1[1] z1 = p1[2] x2 = p2[0] y2 = p2[1] z2 = p2[2] x3 = p3[0] y3 = p3[1] z3 = p3[2] global a,b,c,d a = ((y2 - y1) * (z3 - z1) - (y3 - y1) * (z2 - z1))/((x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1)) b = ((x3 - x1) * (z2 - z1) - (x2 - x1) * (z3 - z1))/((x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1)) c = 1 d = - a * x1 - b * y1 - c * z1 if __name__ == "__main__": # Before: HD-BET Installation and Identification if not os.path.exists("HD-BET"): os.system("git clone https://github.com/MIC-DKFZ/HD-BET") os.system("cd HD-BET") os.system("pip3 install -e .") os.system("cd ../") introduction = input("\nYou need to give cluster classification number, pre-operative and post-operative SCALP files. MNI152 raw file is optional. Press enter to continue.\n\n") cluster_label = input("\n(REQUIRED) Type in the number you would like to classify the segmented FLAP files with, from 000 to 999. Make sure the number is not repeated in other cluster folders. If repeated, the folder will be overwritten.\n\n") if not os.path.exists('Clusters_' + str(cluster_label)): os.mkdir('Clusters_' + str(cluster_label)) preop_name = input("\n(REQUIRED) Type in the name of the pre-operative SCALP file. Make sure you include nii.gz format.\n\n") postop_name = input("\n(REQUIRED) Type in the name of the post-operative SCALP file. Make sure you include nii.gz format.\n\n") MNI_registration = input("\n(OPTIONAL) Type Y if you would like to register pre-operative and post-operative SCALP files to MNI152 SCALP file. If not, press enter instead. We do not recommend MNI normalization because the predicted flap region size may be insufficient.\n\n") # Optional: Task 0 : MNI Scalp Extraction and Input Normalization # Comment on Task 0 : From testing, Task 0 may not give significant effect on scalp segmentaation. if (MNI_registration == 'Y'): # Task 0.1 : MNI brain segmentation. MNI_original = input("\nType in the name of the unprocessed MNI152 file.\n\n") os.rename(MNI_original, "MNI-template.nii.gz") os.system("hd-bet -i MNI-template.nii.gz -device cpu -mode fast -tta 0") #remove "-device cpu -mode fast -tta 0" if GPU support is available. #install HD-BET from https://github.com/MIC-DKFZ/HD-BET. HD-BET is the most up-to-date brain segmentation algorithm (6/17/21). # Task 0.2 : Making MNI SCALP file. os.remove("MNI-template_bet.nii.gz") os.rename("MNI-template_bet_mask.nii.gz", "MNI-template_BRAINMASK.nii.gz") brain_mask = nib.load('MNI-template_BRAINMASK.nii.gz') MNI_ref = nib.load('MNI-template.nii.gz') brain_mask_A = np.array(brain_mask.dataobj) MNI_ref_A = np.array(MNI_ref.dataobj) # Task 0.2.1 : Dimension check. if(brain_mask_A.shape == MNI_ref_A.shape): for x in range(0, brain_mask_A.shape[0]-1): for y in range(0, brain_mask_A.shape[1]-1): for z in range(0, brain_mask_A.shape[2]-1): if(brain_mask_A[x][y][z] > 0): MNI_ref_A[x][y][z] = 0 else: print("Comparison not possible due to difference in dimensions.") # Task 0.2.2 : Volume Restriction. for x in range(0, MNI_ref_A.shape[0]-1): for y in range(0, MNI_ref_A.shape[1]-1): for z in range(0, MNI_ref_A.shape[2]-1): if(x < ((MNI_ref_A.shape[0]-1)*0.03) or x > ((MNI_ref_A.shape[0]-1)*0.96) or y < ((MNI_ref_A.shape[1]-1)*0.01) or y > ((MNI_ref_A.shape[1]-1)*0.99) or z < ((-(MNI_ref_A.shape[2]-1)*y*0.000275)+85)): MNI_ref_A[x][y][z] = 0 # Task 0.2.3 : Maximum value check. def paraMAX(): M = 0 for x in range(int(0.05*(MNI_ref_A.shape[0]-1)),int(0.95*(MNI_ref_A.shape[0]-1))): for y in range(int(0.05*(MNI_ref_A.shape[1]-1)),int(0.95*(MNI_ref_A.shape[1]-1))): for z in range(int(0.05*(MNI_ref_A.shape[2]-1)),int(0.95*(MNI_ref_A.shape[2]-1))): if(M < MNI_ref_A[x][y][z]): M = MNI_ref_A[x][y][z] return M # Task 0.2.4 : Filtering by maximum threshold. MAX = paraMAX() MAX_thres = 0.225*MAX for x in range(0, MNI_ref_A.shape[0]-1): for y in range(0, MNI_ref_A.shape[1]-1): for z in range(0, MNI_ref_A.shape[2]-1): if(MNI_ref_A[x][y][z] < MAX_thres): MNI_ref_A[x][y][z] = 0 # Task 0.2.5 : Removing non-scalp voxels by area inspection. ns_thres = 0.34*MAX for x in range(1, MNI_ref_A.shape[0]-1): for y in range(1, MNI_ref_A.shape[1]-1): for z in range(1, MNI_ref_A.shape[2]-1): M = 0 for k in range(-1,2): for m in range(-1,2): for n in range(-1,2): if MNI_ref_A[x+k][y+m][z+n] >= M: M = MNI_ref_A[x+k][y+m][z+n] if M < ns_thres: MNI_ref_A[x][y][z] = 0 # Task 0.2.6 : Extraction MNI_scalp_array = nib.Nifti1Image(MNI_ref_A, affine=np.eye(4)) nib.save(MNI_scalp_array, "MNI-template_SCALP.nii.gz") # Task 0.3 : Aligning pre-operative and post-operative SCALP files onto MNI SCALP file. flt1 = fsl.FLIRT(bins=640, cost_func='mutualinfo') flt1.inputs.in_file = preop_name flt1.inputs.reference = 'MNI-template_SCALP.nii.gz' flt1.inputs.output_type = "NIFTI_GZ" flt1.cmdline res = flt1.run() os.remove(str(preop_name[:-7]) + '_flirt.mat') preop_name = str(preop_name[:-7]) + '_flirt.nii.gz' flt2 = fsl.FLIRT(bins=640, cost_func='mutualinfo') flt2.inputs.in_file = postop_name flt2.inputs.reference = 'MNI-template_SCALP.nii.gz' flt2.inputs.output_type = "NIFTI_GZ" flt2.cmdline res = flt2.run() os.remove(str(postop_name[:-7]) + '_flirt.mat') preop_name = str(postop_name[:-7]) + '_flirt.nii.gz' # Task 1 : Intensity Normalization, Difference NIFTI Generation, and Mesh preop = nib.load(preop_name) #might need to change to normalized name A = np.array(preop.dataobj) #might need to change to normalized name postop = nib.load(postop_name) B = np.array(postop.dataobj) normal_diff = np.zeros((A.shape[0],A.shape[1],A.shape[2])) AA = A/(np.max(A)) BB = B/(np.max(B)) MIN_thres = 0.34 # Aligning postoperative SCALP file to preoperative SCALP file lowers accuracy, so it is avoided in this script. Minimum threshold for absolute intensity difference is manually selected after testing with pre-operative and post-operative T1w files (Patient 3) in OPENNEURO Database: https://openneuro.org/datasets/ds001226/versions/1.0.0 and https://openneuro.org/datasets/ds002080/versions/1.0.1. This is subject to change, depending on whether T1w is registered with T2w before analysis or not. However, skull segmentation is better with T1w only (confirmed). for x in range(0,AA.shape[0]-1): for y in range(0,AA.shape[1]-1): for z in range(0,AA.shape[2]-1): if abs(AA[x][y][z]-BB[x][y][z] > MIN_thres) and BB[x][y][z] == 0: normal_diff[x][y][z] = 1 else: normal_diff[x][y][z] = 0 normal_diff_nib = nib.Nifti1Image(normal_diff, affine=np.eye(4)) nib.save(normal_diff_nib, "normalized_difference_MNIenabled.nii.gz") filename_nii = 'normalized_difference_MNIenabled.nii.gz' filename_stl = filename_nii[:-7] + '.stl' label = 1 nii_2_mesh(filename_nii, filename_stl, label) shutil.move('normalized_difference_MNIenabled.stl','Clusters_' + str(cluster_label)) # Completion 1 notified. confirmation1 = input("\nNormalized, unprocessed FLAP File generated and mesh generated (relocated). Press enter to continue.") # Task 2 : DBSCAN Segmentation (C++ implementation) print("\nFor DBSCAN segmentation, epsilon value is 8, and minpoints value is 40. For eps and minpts, edit main.cpp if needed. For size thresholds, edit this script.") a = nib.load('normalized_difference_MNIenabled.nii.gz') A = np.array(a.dataobj) valid_coord = [] for x in range(0,A.shape[0]-1): for y in range(0,A.shape[1]-1): for z in range(0,A.shape[2]-1): if (A[x][y][z] == 1): valid_coord += [[x,y,z]] np.savetxt("valid_coord.csv", valid_coord, delimiter=",") with open('valid_coord.csv', newline='') as csvfile: data = np.array(list(csv.reader(csvfile))) data_float = data.astype(float) add = np.array([[data_float.shape[0], ' ', ' ']]) DBSCAN_prep = np.concatenate((add, data_float)) np.savetxt("valid_coord.dat", DBSCAN_prep, fmt='%s', delimiter=',') os.remove("valid_coord.csv") df = pd.read_csv("valid_coord.dat", sep=";", header=0) df.rename(columns = lambda x: re.sub('\D','',x),inplace=True) df.to_csv("valid_coord_DBSCANprep.dat", sep = ' ', index = False) os.remove("valid_coord.dat") os.system("g++ main.cpp dbscan.cpp -o DBSCANcsv") os.system("./DBSCANcsv") os.remove("valid_coord_DBSCANprep.dat") # Cluster organization (cluster_label, Ashape, and valid_coord given from input) DBSCANraw = np.genfromtxt('DBSCAN_raw.csv') rownum = int(DBSCANraw.shape[0]/4 - 1) cluster_max = 0 for i in range(rownum + 1): if DBSCANraw[4*i + 3] >= cluster_max: cluster_max = int(DBSCANraw[4*i + 3]) cluster_lists = [[] for i in range(cluster_max + 1)] for i in range(rownum + 1): if DBSCANraw[4*i + 3] >= 1: cluster_lists[int(DBSCANraw[4*i + 3])].append([valid_coord[i]]) for r in range(1,cluster_max + 1): cluster_indi = np.array(cluster_lists[r]) cluster_coord = np.zeros((A.shape[0], A.shape[1], A.shape[2])) for s in range(len(cluster_indi)): cluster_coord[cluster_indi[s][0][0],cluster_indi[s][0][1],cluster_indi[s][0][2]] = 1 if len(cluster_indi) >= 8000: cluster_nib = nib.Nifti1Image(cluster_coord, affine=np.eye(4)) nib.save(cluster_nib, "DBSCAN-cluster" + str(r) + ".nii.gz") filename_nii = "DBSCAN-cluster" + str(r) + ".nii.gz" filename_stl = filename_nii[:-7] + '.stl' label = 1 nii_2_mesh(filename_nii, filename_stl, label) shutil.move("DBSCAN-cluster" + str(r) + ".nii.gz", 'Clusters_' + str(cluster_label)) shutil.move("DBSCAN-cluster" + str(r) + ".stl", 'Clusters_' + str(cluster_label)) os.remove("DBSCAN_raw.csv") shutil.move('normalized_difference_MNIenabled.nii.gz','Clusters_' + str(cluster_label)) # Task 3 : K-Means Segmentation filename = input("\nType in the path to the NIFTI file you would like to apply kmeans to. Include nii.gz format for the NIFTI file. For example, if the file is in 'a' folder, type './a/file_name'.\n\n") clusters = input("\nType in the number of clusters you would like to segment in the file. This depends on the file, but usually it is 2 or 3, given that DBSCAN analysis has been done.\n\n") print("\nWorking...\n") a = nib.load(str(filename)) A = np.array(a.dataobj) points = [] for x in range(A.shape[0]): for y in range(A.shape[1]): for z in range(A.shape[2]): if A[x][y][z] == 1: points += [[x,y,z]] points = np.array(points) kmeans = KMeans(n_clusters=int(clusters), random_state=1).fit(points) compiled = [[] for _ in range(int(clusters))] for l in range(len(kmeans.labels_)): compiled[int(kmeans.labels_[l])] += [points[l]] for c in range(int(clusters)): i = np.zeros((A.shape[0],A.shape[1],A.shape[2])) for p in range(len(compiled[c])): i[compiled[c][p][0],compiled[c][p][1],compiled[c][p][2]] = 1 I = nib.Nifti1Image(i, affine=np.eye(4)) nib.save(I, "kmeans_" + str(c+1) + ".nii.gz") filename_nii = "kmeans_" + str(c+1) + ".nii.gz" if not os.path.exists('kmeans_'+str(c+1)): os.mkdir('kmeans_'+str(c+1)) shutil.move("kmeans_" + str(c+1) + ".nii.gz",'kmeans_'+str(c+1)) print("\nK-means segmentation completed.\n") # Task 4 : MNI Polygonalization scalp_input = input("Type in the path to scalp file you desire to polygonalize to MNI space from K-means cluster folder. Please include nii.gz format. If the file is in 'a' directory, type './a/file_name'.\n") MNI_input = input("Type in the reference MNI scalp file. Please include nii.gz format.\n") #loading MNI SCALP template m = nib.load(str(MNI_input)) M = np.array(m.dataobj) #finding ellipsoid center for MNI SCALP template (symbol: O) P = [] for x in range(M.shape[0]): for y in range(M.shape[1]): for z in range(M.shape[2]): if M[x][y][z] != 0: P += [[x,y,z]] P = np.array(P) P_y = [v[1] for v in P] #selecting 25000 points due to limits in RAM. randomlist = random.sample(range(0, len(P)), 25000) Q = [] for i in range(len(randomlist)): Q += [P[randomlist[i]]] Q = np.array(Q) ET = EllipsoidTool() (center, radii, rotation) = ET.getMinVolEllipse(Q, .01) #MNI centerpoint only has x and z coordinates as ellipsoid coordinate to keep respect of y-coordinate symmetry O = [center[0], np.average(P_y), center[2]] #loading kmeans a = nib.load(str(scalp_input)) A = np.array(a.dataobj) #saving kmeans coordinates K_coord = [] for x in range(A.shape[0]): for y in range(A.shape[1]): for z in range(A.shape[2]): if A[x][y][z] != 0: K_coord += [[x,y,z]] #finding different centers of cluster C = [] C_x = [v[0] for v in K_coord] C_y = [v[1] for v in K_coord] C_z = [v[2] for v in K_coord] xx = (max(C_x)+min(C_x))/2 yy = (max(C_y)+min(C_y))/2 zz = (max(C_z)+min(C_z))/2 C_middle = [xx,yy,zz] C_median = [np.median(C_x),np.median(C_y),np.median(C_z)] C_centroid = [np.average(C_x),
np.average(C_y)
numpy.average
import numpy as np # import cupy as np # def softmax_cross_entropy(x, y): # ''' 对输入先进行 softmax 操作后再使用交叉熵求损失 ''' # # softmax forward # x = x - np.max(x) # out = np.exp(x) / np.reshape(np.sum(np.exp(x), 1), (x.shape[0], 1)) # loss, dout = cross_entropy(out, y) # diag = np.zeros((dout.shape[0],dout.shape[1],dout.shape[1])) # for i in range(diag.shape[0]): # diag[i, :, :] = np.diag(out[i]) # # 计算梯度 dout reshape to N x C x 1 * (diag - out reshape to N x C x 1 @ out reshape to N x 1 x C (N=1 时就相当于 <EMAIL>)) -> N x C x C (这个矩阵一行是 yi 对每个 x 的导数,一列是每个 y 对 xi 的导数) -> sum -> N x 1 x C = N x C # dx = np.sum(dout.reshape(dout.shape[0], -1, 1) * (diag - out.reshape((out.shape[0], -1, 1)) @ out.reshape((out.shape[0], 1, -1))), 1) # return loss, dx def cross_entropy(pred, y): ''' 交叉熵 Args: pred: pred 为 softmax 函数的输出结果(这个函数不进行 softmax 操作) y: 正确的标签(标量形式,不是 one-hot 形式) Return: loss: 损失 dpred:损失对输入的导数 ''' # 就是第 label 类的概率变成 -log 然后加起来 # 反向传播就是第 label 类的导数变成 -1/pred,其它都是 0 y = y.astype(np.int) # 限制最小值,免得被 1e-253 之类的极端数值爆掉 pred = np.clip(pred, 1e-10, 1) log_pred = -np.log(pred) loss = np.sum(log_pred[np.arange(0, pred.shape[0]), y]) / pred.shape[0] dpred = np.zeros_like(pred) dpred[np.arange(0, pred.shape[0]), y] = - pred[np.arange(0, pred.shape[0]), y] ** (-1) dpred = dpred / pred.shape[0] return loss, dpred def hinge_loss(scores, y): ''' 合页损失 Args: scores: scores 为最后全连接层的输出结果 y: 正确的标签(标量形式,不是 one-hot 形式) Return: loss: 损失 dscores:损失对输入的导数 ''' y = y.astype(np.int) # 选出 yi score_y = scores[range(y.shape[0]), y] # si - yi + 1 score_plus_1_minus_y = scores + 1 - score_y.reshape((score_y.shape[0], 1)) loss_array = np.maximum(0, score_plus_1_minus_y) loss_array[range(y.shape[0]), y] = 0 # 除的这个主要是为了让 loss 和 dloss 值变小一点,不影响整个 loss 的分布 loss =
np.sum(loss_array)
numpy.sum
""" Inference module for PCM toolbox with main functionality for model fitting and evaluation. @author: jdiedrichsen """ import numpy as np from numpy.linalg import solve, eigh, cholesky from numpy import sum, diag, log, eye, exp, trace, einsum import pandas as pd import PcmPy as pcm from PcmPy.model import IndependentNoise, BlockPlusIndepNoise from PcmPy.optimize import newton def likelihood_individ(theta, M, YY, Z, X=None, Noise = IndependentNoise(), n_channel=1, fit_scale=False, scale_prior = 1e3, return_deriv=0): """Negative Log-Likelihood of the data and derivative in respect to the parameters Parameters: theta (np.array): Vector of (log-)model parameters - these include model, signal, and noise parameters M (PcmPy.model.Model): Model object with predict function YY (2d-np.array): NxN Matrix of outer product of the activity data (Y*Y') Z (2d-np.array): NxQ Design matrix - relating the trials (N) to the random effects (Q) X (np.array): Fixed effects design matrix - will be accounted for by ReML Noise (pcm.Noisemodel): Pcm-noise mode to model block-effects (default: IndepenentNoise) n_channel (int): Number of channels fit_scale (bool): Fit a scaling parameter for the model (default is False) scale_prior (float): Prior variance for log-normal prior on scale parameter return_deriv (int): 0: Only return negative loglikelihood 1: Return first derivative 2: Return first and second derivative (default) Returns: negloglike (double): Negative log-likelihood of the data under a model dLdtheta (1d-np.array): First derivative of negloglike in respect to the parameters ddLdtheta2 (2d-np.array): Second derivative of negloglike in respect to the parameters """ N = YY.shape[0] Q = Z.shape[1] n_param = theta.shape[0] # Get G-matrix and derivative of G-matrix in respect to parameters model_params = theta[range(M.n_param)] G,dGdtheta = M.predict(model_params) # Get the scale parameter and scale G by it if fit_scale: scale_param = theta[M.n_param] indx_scale = M.n_param # Index of scale parameter else: scale_param = 0 Gs = G * exp(scale_param) # Get the noise model parameters noise_params = theta[M.n_param+fit_scale:] # Apply the matrix inversion lemma. The following statement is the same as # V = (Z*Gs*Z' + S(noiseParam)); # iV = pinv(V); Gs = (Gs + Gs.T) / 2 # Symmetrize Glambda, GU = eigh(Gs) idx = Glambda > (10e-10) # Find small eigenvalues Zu = Z @ GU[:, idx] iS = Noise.inverse(noise_params) if type(iS) is np.float64: matrixInv = (diag(1 / Glambda[idx]) / iS + Zu.T @ Zu) iV = (eye(N) - Zu @ solve(matrixInv, Zu.T)) * iS else: matrixInv = (diag(1 / Glambda[idx]) + Zu.T @ iS @ Zu) iV = iS - iS @ Zu @ solve(matrixInv,Zu.T) @ iS # For ReML, compute the modified inverse iVr if X is not None: iVX = iV @ X iVr = iV - iVX @ solve(X.T @ iVX, iVX.T) else: iVr = iV # Computation of (restricted) likelihood ldet = -2 * sum(log(diag(cholesky(iV)))) # Safe computation llik = -n_channel / 2 * ldet - 0.5 * einsum('ij,ij->',iVr, YY) if X is not None: # P/2 log(det(X'V^-1*X)) llik -= n_channel * sum(log(diag(cholesky(X.T @ iV @X)))) # if fit_scale: llik -= scale_param**2 / (2 * scale_prior) # Add prior # If no derivative - exit here if return_deriv == 0: return (-llik,) # Return as tuple for consistency # Calculate the first derivative A = iVr @ Z B = YY @ iVr iVdV = [] # Get the quantity iVdV = inv(V)dVdtheta for model parameters for i in range(M.n_param): iVdV.append(A @ dGdtheta[i,:,:] @ Z.T * exp(scale_param)) # Get iVdV for scaling parameter if fit_scale: iVdV.append(A @ G @ Z.T * exp(scale_param)) # Get iVdV for Noise parameters for j in range(Noise.n_param): dVdtheta = Noise.derivative(noise_params,j) if type(dVdtheta) is np.float64: iVdV.append(iVr * dVdtheta) else: iVdV.append(iVr @ dVdtheta) # Based on iVdV we can get he first derivative dLdtheta = np.zeros((n_param,)) for i in range(n_param): dLdtheta[i] = -n_channel / 2 * trace(iVdV[i]) + 0.5 * einsum('ij,ij->',iVdV[i], B) # Trace([email protected]) if fit_scale: dLdtheta[indx_scale] -= scale_param / scale_prior # If only first derivative, exit here if return_deriv == 1: return (-llik, -dLdtheta) # Calculate expected second derivative d2L = np.zeros((n_param,n_param)) for i in range(n_param): for j in range(i, n_param): d2L[i, j] = -n_channel / 2 * einsum('ij,ji->',iVdV[i],iVdV[j]) # Trace(A@B) d2L[j, i] = d2L[i, j] if fit_scale: d2L[indx_scale, indx_scale] -= 1 / scale_prior if return_deriv == 2: return (-llik, -dLdtheta, -d2L) else: raise NameError('return_deriv needs to be 0, 1 or 2') def likelihood_group(theta, M, YY, Z, X=None, Noise=IndependentNoise(), n_channel=1, fit_scale=True, scale_prior=1e3, return_deriv=0,return_individ=False): """Negative Log-Likelihood of group data and derivative in respect to the parameters Parameters: theta (np.array): Vector of (log-)model parameters consisting of common model parameters (M.n_param or sum of M.common_param), participant-specific parameters (interated by subject), unique model parameters (not in common_param), scale parameter,noise parameters M (pcm.Model): Model object YY (List of np.arrays): List of NxN Matrix of outer product of the activity data (Y*Y') Z (List of 2d-np.array): NxQ Design matrix - relating the trials (N) to the random effects (Q) X (List of np.array): Fixed effects design matrix - will be accounted for by ReML Noise (List of pcm.Noisemodel): Pcm-noise model (default: IndependentNoise) n_channel (List of int): Number of channels fit_scale (bool): Fit a scaling parameter for the model (default is False) scale_prior (float): Prior variance for log-normal prior on scale parameter return_deriv (int): 0: Only return negative likelihood 1: Return first derivative 2: Return first and second derivative (default) return_individ (bool): return individual likelihoods instead of group likelihood return_deriv (int): 0:None, 1:First, 2: second Returns: negloglike: Negative log-likelihood of the data under a model dLdtheta (1d-np.array) First derivative of negloglike in respect to the parameters ddLdtheta2 (2d-np.array) Second derivative of negloglike in respect to the parameters """ n_subj = len(YY) n_param = theta.shape[0] # Determine the common parameters to the group if hasattr(M,'common_param'): common_param = M.common_param else: common_param = np.ones((M.n_param,),dtype=np.bool_) # Get the number of parameters n_common = np.sum(common_param) # Number of common params n_modsu = M.n_param - n_common # Number of subject-specific model params n_scale = int(fit_scale) # Number of scale parameters n_noise = Noise[0].n_param # Number of noise params n_per_subj = n_modsu + n_scale + n_noise # Number of parameters per subj # Generate the indices into the theta vector indx_common = np.array(range(n_common)) indx_subj = np.arange(n_common, n_common + n_subj * n_per_subj, n_per_subj, dtype = int) indx_subj = indx_subj.reshape((1,-1)) indx_modsu = np.zeros((n_modsu,1),dtype = int) + indx_subj indx_scale = np.zeros((n_scale,1),dtype = int) + n_modsu + indx_subj indx_noise = np.array(range(n_noise),dtype = int).T + n_scale + n_modsu + indx_subj # preallocate the arrays nl = np.zeros((n_subj,)) dFdh = np.zeros((n_subj,n_param)) dFdhh = np.zeros((n_subj,n_param,n_param)) # Loop over subjects and get individual likelihoods for s in range(n_subj): # Pick out the correct places for the group parameter vector for each subj indx_model = np.zeros((M.n_param,), dtype=int) indx_model[common_param]=indx_common indx_model[np.logical_not(common_param)]=indx_modsu[:,s] indx = np.concatenate([indx_model, indx_scale[:,s], indx_noise[:,s]]) ths = theta[indx] # Get individual likelihood res = likelihood_individ(ths, M, YY[s], Z[s], X[s], Noise[s], n_channel[s], fit_scale = fit_scale, scale_prior = scale_prior, return_deriv = return_deriv) iS = indx_scale[0,s] nl[s] = res[0] if return_deriv>0: dFdh[s, indx] = res[1] if return_deriv==2: ixgrid = np.ix_([s],indx,indx) dFdhh[ixgrid] = res[2] # Integrate over subjects if return_individ: ra = [nl] else: ra = [np.sum(nl, axis=0)] if return_deriv > 0: ra.append(np.sum(dFdh,axis=0)) # First derivative if return_deriv > 1: ra.append(np.sum(dFdhh,axis=0)) # Second derivative return ra def fit_model_individ(Data, M, fixed_effect='block', fit_scale=False, scale_prior = 1e3, noise_cov=None, algorithm=None, optim_param={}, theta0=None, verbose = True): """Fits Models to a data set inidividually. The model parameters are all individually fit. Parameters: Data (pcm.Dataset or list of pcm.Datasets): List data set has partition and condition descriptors M (pcm.Model or list of pcm.Models): Models to be fitted on the data sets fixed effect: None, 'block', or nd-array. Default ('block') adds an intercept for each partition fit_scale (bool): Fit a additional scale parameter for each subject? Default is set to False. scale_prior (float): Prior variance for log-normal prior on scale parameter algorithm (string): Either 'newton' or 'minimize' - provides over-write for model specific algorithms noise_cov: None (i.i.d), 'block', or optional specific covariance structure of the noise optim_param (dict): Additional paramters to be passed to the optimizer theta0 (list of np.arrays): List of starting values (same format as return argument theta) verbose (bool): Provide printout of progress? Default: True Returns: T (pandas.dataframe): Dataframe with the fields: SN: Subject number likelihood: log-likelihood scale: Scale parameter (if fitscale = 1)-exp(theta_s) noise: Noise parameter- exp(theta_eps) run: Run parameter (if run = 'random') iterations: Number of interations for model fit time: Elapsed time in sec theta (list of np.arrays): List of estimated model parameters, each a #params x #numSubj np.array G_pred (list of np.arrays): List of estimated G-matrices under the model """ # Get the number of subjects if type(Data) is list: n_subj = len(Data) else: n_subj = 1 Data = [Data] # Get the number of models if type(M) in [list,pcm.model.ModelFamily]: n_model = len(M) else: n_model = 1 M = [M] # Get model names m_names = [] for m in range(n_model): m_names.append(M[m].name) # Preallocate output structures iterab = [['likelihood','noise','iterations'],m_names] index = pd.MultiIndex.from_product(iterab, names=['variable', 'model']) T = pd.DataFrame(np.zeros((n_subj, n_model * 3)), columns=index) theta = [None] * n_model # Determine optimal algorithm for each of the models # M = pcm.optimize.best_algorithm(M,algorithm) # Loop over subject and models and provide inidivdual fits for s in range(n_subj): Z,X,YY,n_channel,Noise,G_hat = set_up_fit(Data[s], fixed_effect = fixed_effect, noise_cov = noise_cov) for m in range(n_model): if verbose: print('Fitting Subj',s,'model',m) # Get starting guess for theta0 is not provideddf if (theta0 is None) or (len(theta0) <= m) or (theta0[m].shape[1]<s): M[m].set_theta0(G_hat) th0 = M[m].theta0 if (fit_scale): G_pred, _ = M[m].predict(M[m].theta0) scale0 = get_scale0(G_pred, G_hat) th0 = np.concatenate((th0,scale0)) th0 = np.concatenate((th0,Noise.theta0)) else: th0 = theta0[m][:,s] # Now do the fitting, using the preferred optimization routine if (M[m].algorithm=='newton'): fcn = lambda x: likelihood_individ(x, M[m], YY, Z, X=X, Noise = Noise, fit_scale = fit_scale, scale_prior = scale_prior, return_deriv = 2,n_channel=n_channel) th, l, INFO = newton(th0, fcn, **optim_param) else: raise(NameError('not implemented yet')) if theta[m] is None: theta[m] = np.zeros((th.shape[0],n_subj)) theta[m][:,s] = th T.loc[s,('likelihood',m_names[m])] = l T.loc[s,('iterations',m_names[m])] = INFO['iter']+1 T.loc[s,('noise',m_names[m])] = exp(th[-Noise.n_param]) if fit_scale: T.loc[s,('scale',m_names[m])] = exp(th[M[m].n_param]) return [T,theta] def fit_model_group(Data, M, fixed_effect='block', fit_scale=False, scale_prior = 1e3, noise_cov=None, algorithm=None, optim_param={}, theta0=None, verbose=True): """ Fits PCM models(s) to a group of subjects The model parameters are (by default) shared across subjects. Scale and noise parameters are individual for each subject. Some model parameters can also be made individual by setting M.common_param Parameters: Data (list of pcm.Datasets): List data set has partition and condition descriptors M (pcm.Model or list of pcm.Models): Models to be fitted on the data sets. Optional field M.common_param indicates which model parameters are common to the group (True) and which ones are fit individually (False) fixed effect: None, 'block', or nd-array / list of nd-arrays. Default ('block') add an intercept for each partition fit_scale (bool): Fit a additional scale parameter for each subject? Default is set to False. scale_prior (float): Prior variance for log-normal prior on scale parameter algorithm (string): Either 'newton' or 'minimize' - provides over-write for model specific algorithms noise_cov: None (i.i.d), 'block', or optional specific covariance structure of the noise optim_param (dict): Additional paramters to be passed to the optimizer theta0 (list of np.arrays): List of starting values (same format as return argument theta) verbose (bool): Provide printout of progress? Default: True Returns: T (pandas.dataframe): Dataframe with the fields: SN: Subject number likelihood: log-likelihood scale: Scale parameter (if fitscale = 1)-exp(theta_s) noise: Noise parameter- exp(theta_eps) iterations: Number of interations for model fit time: Elapsed time in sec theta (list of np.arrays): List of estimated model parameters, each a G_pred (list of np.arrays): List of estimated G-matrices under the model """ # Get the number of subjects if type(Data) is list: n_subj = len(Data) else: n_subj = 1 Data = [Data] # Get the number of models if type(M) is list: n_model = len(M) else: n_model = 1 M = [M] # Get model names m_names = [] for m in range(n_model): m_names.append(M[m].name) # Preallocate output structures iterab = [['likelihood','noise','scale','iterations'],m_names] index = pd.MultiIndex.from_product(iterab, names=['variable', 'model']) T = pd.DataFrame(np.zeros((n_subj, n_model * 4)), columns=index) theta = [None] * n_model # Determine optimal algorithm for each of the models # M = pcm.optimize.best_algorithm(M,algorithm) # Prepare the data for all the subjects Z, X, YY, n_channel, Noise, G_hat = set_up_fit_group(Data, fixed_effect = fixed_effect, noise_cov = noise_cov) # Average second moment G_avrg = sum(G_hat, axis=0) / n_subj # Initialize the different indices indx_scale = [None] * n_subj indx_noise = [None] * n_subj for m in range(n_model): if verbose: print('Fitting model',m) # Get starting guess for theta0 is not provided if hasattr(M[m],'common_param'): common = M[m].common_param else: common = np.ones((M[m].n_param,), dtype=np.bool_) M[m].set_theta0(G_avrg) th0 = M[m].theta0[common] for s in range(n_subj): th0 = np.concatenate((th0,M[m].theta0[np.logical_not(common)])) if (fit_scale): indx_scale[s]=th0.shape[0] G0,_ = M[m].predict(M[m].theta0) scale0 = get_scale0(G0, G_hat[s]) th0 = np.concatenate((th0,scale0)) indx_noise[s]=th0.shape[0] th0 = np.concatenate((th0,Noise[s].theta0)) if (theta0 is not None) and (len(theta0) >= m-1): th0 = theta0[m] # Now do the fitting, using the preferred optimization routine if (M[m].algorithm=='newton'): fcn = lambda x: likelihood_group(x, M[m], YY, Z, X=X, Noise = Noise, fit_scale = fit_scale, scale_prior=scale_prior, return_deriv = 2,n_channel=n_channel) theta[m], l, INFO = newton(th0, fcn, **optim_param) else: raise(NameError('not implemented yet')) res = likelihood_group(theta[m], M[m], YY, Z, X=X, Noise = Noise, fit_scale = fit_scale, scale_prior=scale_prior,return_deriv = 0,return_individ=True, n_channel=n_channel) T['likelihood',m_names[m]] = -res[0] T['iterations',m_names[m]] = INFO['iter']+1 T['noise',m_names[m]] = exp(theta[m][indx_noise]) if (fit_scale): T['scale',m_names[m]] = exp(theta[m][indx_scale]) return [T,theta] def fit_model_group_crossval(Data, M, fixed_effect='block', fit_scale=False, scale_prior = 1e3, noise_cov=None, algorithm=None, optim_param={}, theta0=None, verbose=True): """Fits PCM model(sto N-1 subjects and evaluates the likelihood on the Nth subject. Only the common model parameters are shared across subjects.The scale and noise parameters are still fitted to each subject. Some model parameters can also be made individual by setting M.common_param Parameters: Data (list of pcm.Datasets): List data set has partition and condition descriptors M (pcm.Model or list of pcm.Models): Models to be fitted on the data sets. Optional field M.common_param indicates which model parameters are common to the group (True) and which ones are fit individually (False) fixed effect: None, 'block', or nd-array. Default ('block') add an intercept for each partition fit_scale (bool): Fit a additional scale parameter for each subject? Default is set to False. scale_prior (float): Prior variance for log-normal prior on scale parameter algorithm (string): Either 'newton' or 'minimize' - provides over-write for model specific algorithms noise_cov: None (i.i.d), 'block', or optional specific covariance structure of the noise optim_param (dict): Additional paramters to be passed to the optimizer theta0 (list of np.arrays): List of starting values (same format as return argument theta) verbose (bool): Provide printout of progress? Default: True Returns: T (pandas.dataframe): Dataframe with the fields: SN: Subject number likelihood: log-likelihood scale: Scale parameter (if fitscale = 1)-exp(theta_s) noise: Noise parameter- exp(theta_eps) iterations: Number of interations for model fit time: Elapsed time in sec theta (list of np.arrays): List of estimated model parameters - common group parameters come from the training data, scale and noise parameter from the testing data G_pred (list of np.arrays): List of estimated G-matrices under the model """ # Get the number of subjects if type(Data) is list: n_subj = len(Data) else: n_subj = 1 Data = [Data] # Get the number of models if type(M) is list: n_model = len(M) else: n_model = 1 M = [M] # Get model names m_names = [] for m in range(n_model): m_names.append(M[m].name) # Preallocate output structures iterab = [['likelihood','noise','scale'],m_names] index = pd.MultiIndex.from_product(iterab, names=['variable', 'model']) T = pd.DataFrame(np.zeros((n_subj, n_model * 3)), columns=index) theta = [None] * n_model # Determine optimal algorithm for each of the models # M = pcm.optimize.best_algorithm(M,algorithm) Z, X, YY, n_channel, Noise, G_hat = set_up_fit_group(Data, fixed_effect = fixed_effect, noise_cov = None) # Get starting values as for a group fit G_avrg = sum(G_hat, axis=0) / n_subj for m in range(n_model): if verbose: print('Fitting model',m) # Get starting guess for theta0 is not provided if hasattr(M[m],'common_param'): common = M[m].common_param else: common = np.ones((M[m].n_param,), dtype=np.bool_) not_common = np.logical_not(common) n_modsu = np.sum(not_common) # Number of subject-specific parameters M[m].set_theta0(G_avrg) th0 = M[m].theta0[common] # Keep track of what subject the parameter belongs to param_indx = np.ones((np.sum(common),)) * -1 for s in range(n_subj): th0 = np.concatenate((th0,M[m].theta0[not_common])) param_indx = np.concatenate((param_indx,s * np.ones((n_modsu,)))) if (fit_scale): G0,_ = M[m].predict(M[m].theta0) scale0 = get_scale0(G0, G_hat[s]) th0 = np.concatenate((th0,scale0)) param_indx = np.concatenate((param_indx,np.ones((1,)) * s)) th0 = np.concatenate((th0,Noise[s].theta0)) param_indx = np.concatenate((param_indx, s * np.ones((Noise[s].n_param,)))) if (theta0 is not None) and (len(theta0) >= m-1): th0 = theta0[m] # Initialize parameter array for group theta[m] = np.zeros((th0.shape[0],n_subj)) # Loop over subjects can fit the rest to get group parameters for s in range(n_subj): notS = np.arange(n_subj) != s # Get indices of training group pNotS = param_indx != s # Set theta0 and model (for direct estimation) G_avrg = sum(G_hat[notS], axis=0) / n_subj M[m].set_theta0(G_avrg) # Now do the fitting, using the preferred optimization routine if (M[m].algorithm=='newton'): fcn = lambda x: likelihood_group(x, M[m], YY[notS], Z[notS], X=X[notS], Noise = Noise[notS], fit_scale = fit_scale, scale_prior = scale_prior, return_deriv = 2, n_channel=n_channel[notS]) theta[m][:,s], l, INFO = newton(th0, fcn, **optim_param) else: raise(NameError('not implemented yet')) # Evaluate likelihood on the left-out subject if hasattr(M[m],'common_param'): raise(NameError('Group crossval with subject specific params not implemented yet')) else: thm = theta[m][param_indx==-1, s] # Common model parameter G_group, _ = M[m].predict(thm) # Predicted second moment matrix Mindiv = pcm.model.FixedModel('name',G_group) # Make a fixed model p = param_indx == s # Parameters for this subject fcn = lambda x: likelihood_individ(x, Mindiv, YY[s], Z[s], X=X[s], Noise = Noise[s], n_channel=n_channel[s], fit_scale = fit_scale, scale_prior = scale_prior, return_deriv = 2) thi, l, INF2 = newton(th0[p], fcn, **optim_param) # record results into the array T['likelihood',m_names[m]][s] = l if (fit_scale): T['scale',m_names[m]][s] = exp(thi[0]) T['noise',m_names[m]][s] = exp(thi[int(fit_scale)]) return [T,theta] def set_up_fit(Data, fixed_effect = 'block', noise_cov = None): """Utility routine pre-calculates and sets design matrices, etc for the PCM fit Parameters: Data (pcm.dataset): Contains activity data (measurement), and obs_descriptors partition and condition fixed_effect: Can be None, 'block', or a design matrix. 'block' includes an intercept for each partition. noise_cov: Can be None: (i.i.d noise), 'block': a common noise paramter or a List of noise covariances for the different partitions Returns: Z (np.array): Design matrix for random effects X (np.array): Design matrix for fixed effects YY (np.array): Quadratic form of the data (Y Y') Noise (pcm.model.NoiseModel): Noise model G_hat (np.array): Crossvalidated estimate of second moment of U """ # Make design matrix cV = Data.obs_descriptors['cond_vec'] if cV.ndim == 1: Z = pcm.matrix.indicator(cV) elif cV.ndim == 2: Z = cV n_reg = Z.shape[1] # Get data Y = Data.measurements N, n_channel = Y.shape YY = Y @ Y.T # Initialize fixed effects part_vec = Data.obs_descriptors['part_vec'] if fixed_effect is None: X = None elif fixed_effect=='block': X = pcm.matrix.indicator(part_vec) else: X = fixed_effect # Now choose the noise model if noise_cov is None: Noise = IndependentNoise() elif noise_cov == 'block': Noise = BlockPlusIndepNoise(part_vec) else: raise(NameError('Arbitrary covariance matrices are not yet implemented')) # Get a cross-validated estimate of G G_hat, _ = pcm.util.est_G_crossval(Y, Z, part_vec, X = X) # Estimate noise parameters starting values Noise.set_theta0(Y,Z,X) return [Z, X, YY, n_channel, Noise, G_hat] def set_up_fit_group(Data, fixed_effect = 'block', noise_cov = None): """Pre-calculates and sets design matrices, etc for the PCM fit for a full group Parameters: Data (list of pcm.dataset): Contains activity data (measurement), and obs_descriptors partition and condition fixed_effect: Can be None, 'block', or a design matrix. 'block' includes an intercept for each partition. noise_cov: Can be None: (i.i.d noise), 'block': a common noise paramter or a List of noise covariances for the different partitions Returns: Z (np.array): Design matrix for random effects X (np.array): Design matrix for fixed effects YY (np.array): Quadratic form of the data (Y Y') Noise (NoiseModel): Noise model G_hat (np.array): Crossvalidated estimate of second moment of U """ n_subj = len(Data) Z = np.empty((n_subj,),dtype=object) X = np.empty((n_subj,),dtype=object) YY = np.empty((n_subj,),dtype=object) n_channel =
np.zeros((n_subj,),dtype=int)
numpy.zeros
import numpy as np import tensorflow as tf import dirt import skimage.io import skimage import skimage.transform import skimage.color import time import os import scipy import scipy.optimize import skimage.measure from sklearn import linear_model, datasets import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import cv2 from sklearn.utils import check_random_state, check_array, check_consistent_length from sklearn.linear_model import LinearRegression from sklearn.utils.validation import has_fit_parameter import sklearn.linear_model _dynamic_max_trials = sklearn.linear_model.ransac._dynamic_max_trials canvas_width, canvas_height = 960, 640 centre_x, centre_y = 32, 64 square_size = 16 def ransac_fit_with_weights(self, X, y, sample_weight=None, residual_threshold=None): """ Modified sklearn.linear_model.RANSACRegressor.fit() sample_weight is used in sampling base points, fitting the regressor, and calculating score for candidate model """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples: n_samples = %d." % (X.shape[0])) if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if residual_threshold is None: if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.loss == "absolute_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred) else: loss_function = lambda \ y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1) elif self.loss == "squared_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2 else: loss_function = lambda \ y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1) elif callable(self.loss): loss_function = self.loss else: raise ValueError( "loss should be 'absolute_loss', 'squared_loss' or a callable." "Got %s. " % self.loss) random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass estimator_fit_has_sample_weight = has_fit_parameter(base_estimator, "sample_weight") estimator_name = type(base_estimator).__name__ if (sample_weight is not None and not estimator_fit_has_sample_weight): raise ValueError("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) if sample_weight is not None: sample_weight = np.asarray(sample_weight) n_inliers_best = 1 score_best = -np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None weight_inlier_best = None self.n_skips_no_inliers_ = 0 self.n_skips_invalid_data_ = 0 self.n_skips_invalid_model_ = 0 # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape self.n_trials_ = 0 max_trials = self.max_trials while self.n_trials_ < max_trials: self.n_trials_ += 1 if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips: break # choose random sample set #subset_idxs = sample_without_replacement(n_samples, min_samples, # random_state=random_state) # use np.random.choice here since it allows sample with prob subset_idxs = np.random.choice(n_samples, min_samples, False, sample_weight / np.sum(sample_weight)) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): self.n_skips_invalid_data_ += 1 continue # fit model for current random sample set if sample_weight is None: base_estimator.fit(X_subset, y_subset) else: base_estimator.fit(X_subset, y_subset, sample_weight=sample_weight[subset_idxs]) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): self.n_skips_invalid_model_ += 1 continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) residuals_subset = loss_function(y, y_pred) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: self.n_skips_no_inliers_ += 1 continue # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] if sample_weight is None: weight_inlier_subset = None else: weight_inlier_subset = sample_weight[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset, sample_weight[inlier_idxs_subset]) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset weight_inlier_best = weight_inlier_subset max_trials = min( max_trials, _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)) # break if sufficient number of inliers or score is reached if n_inliers_best >= self.stop_n_inliers or \ score_best >= self.stop_score: break # if none of the iterations met the required criteria if inlier_mask_best is None: if ((self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips): raise ValueError( "RANSAC skipped more iterations than `max_skips` without" " finding a valid consensus set. Iterations were skipped" " because each randomly chosen sub-sample failed the" " passing criteria. See estimator attributes for" " diagnostics (n_skips*).") else: raise ValueError( "RANSAC could not find a valid consensus set. All" " `max_trials` iterations were skipped because each" " randomly chosen sub-sample failed the passing criteria." " See estimator attributes for diagnostics (n_skips*).") else: if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips: warnings.warn("RANSAC found a valid consensus set but exited" " early due to skipping more iterations than" " `max_skips`. See estimator attributes for" " diagnostics (n_skips*).", ConvergenceWarning) # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best, weight_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self linear_model.RANSACRegressor.ransac_fit_with_weights = ransac_fit_with_weights def get_dirt_pixels(width=canvas_width, height=canvas_height): square_vertices = tf.constant([[-1, -1, 0, 1], [-1, 1, 0, 1], [1, 1, 0, 1], [1, -1, 0, 1]], dtype=tf.float32) #background = skimage.io.imread('/n/fs/shaderml/datas_oceanic/test_img/test_middle_ground00000.png') #background = tf.constant(skimage.img_as_float(background), dtype=tf.float32) background = tf.zeros([height, width, 3], dtype=tf.float32) camera_pos = tf.placeholder(tf.float32, 8) return dirt.rasterise( vertices=square_vertices, faces=[[0, 1, 2], [0, 2, 3]], vertex_colors=tf.ones([4, 3]), background=background, camera_pos = camera_pos, height=height, width=width, channels=3 ), camera_pos def main(): dir = '/n/fs/shaderml/deeplab-pytorch/result' highlight_dir = '/n/fs/shaderml/drone_videos/drone_frames/ocean3_00/highlight' orig_img_dir = '/n/fs/shaderml/drone_videos/drone_frames/ocean3_00' out_dir = 'horizon_optimize' #files = os.listdir(dir) #files = sorted([os.path.join(dir, file) for file in files if 'coco_stuff' not in file]) files = [os.path.join(dir, '%05d.png' % ind) for ind in range(0, 1860, 11)] #camera_pos_vals = np.load(os.path.join(dir, 'camera_pos_' + name + '.npy')) #render_t = np.load(os.path.join(dir, 'render_t_' + name + '.npy')) #nframes = camera_pos_vals.shape[0] feed_dict_arr = np.zeros(8) feed_dict_arr[1] = 200.0 feed_dict_arr[7] = 0.9 img = np.zeros([640, 960, 3]) nframes = len(files) session = tf.Session() ransac = linear_model.RANSACRegressor(stop_probability=0.995, max_trials=200) line_X = np.arange(960)[:, np.newaxis] with session.as_default(): dirt_node, camera_pos = get_dirt_pixels() for idx in range(nframes): filename = files[idx] print(filename) _, filename_short = os.path.split(filename) filename_only, _ = os.path.splitext(filename_short) orig_img_name = os.path.join(orig_img_dir, filename_short) if not os.path.exists(orig_img_name): raise orig_img = skimage.transform.resize(skimage.io.imread(orig_img_name), (img.shape[0], img.shape[1])) seg = skimage.transform.resize(skimage.io.imread(filename), (img.shape[0], img.shape[1]))[:, :, 0] is_sea_col = np.argmin(seg, axis=0) ransac.fit(line_X, is_sea_col) line_y = ransac.predict(line_X) fig = plt.figure() plt.imshow(orig_img) plt.plot(np.squeeze(line_X), line_y) fig.savefig(os.path.join(out_dir, filename_only + '_ransac_img_comp.png')) plt.close(fig) fig = plt.figure() plt.imshow(seg) plt.plot(
np.squeeze(line_X)
numpy.squeeze
import pandas as pd import numpy as np from sklearn import preprocessing #from sklearn.mixture import GMM from sklearn.mixture import GaussianMixture as GMM from scipy.stats import norm from scipy.spatial.distance import pdist import scipy.cluster.hierarchy as sch from collections import Counter def get_label(table): return table.axes[0], table.axes[1] def sort_feature(data): pds =
np.asarray(data)
numpy.asarray
import csv from re import T import cv2 import os import numpy as np import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras import layers import sklearn from sklearn.model_selection import train_test_split import json import random center_im_list = [] left_im_list = [] right_im_list = [] label_list = [] all_images = [] all_labels = [] #path_prefix = ['./data/new_data', './data/new_data_recovery', './data/new_data_smooth', './data/new_data_curve'] #path_prefix = ['./data/new_data', './data/new_data_recovery', './data/new_data_smooth'] path_prefix = ['./data/data/'] correction = 0.2 # get data from all the three cameras for pp in path_prefix: lines = [] with open(os.path.join(pp, 'driving_log.csv')) as f: reader = csv.reader(f) for l in reader: lines.append(l) for line in lines[1:]: cp = os.path.join(pp, line[0].strip()) lp = os.path.join(pp, line[1].strip()) rp = os.path.join(pp, line[2].strip()) l = float(line[3]) all_images.append(cp) all_labels.append(l) all_images.append(lp) all_labels.append(l + correction) all_images.append(rp) all_labels.append(l - correction) #center_im_list.append(cp) #left_im_list.append(lp) #right_im_list.append(rp) #label_list.append(float(line[3])) def data_generator(samples, batch_size=32): """ assume samples: (img paths, labels) """ X, y = samples num_samples = len(X) while True: X, y = sklearn.utils.shuffle(X, y) for offset in range(0, num_samples, batch_size): X_path_batch = X[offset:offset+batch_size] X_batch = [] y_batch_bef = y[offset:offset+batch_size] y_batch = [] for b_im, b_label in zip(X_path_batch, y_batch_bef): image = cv2.imread(b_im) # random flipping if random.choice((True, False)): image = image[:,::-1,:] b_label = - b_label X_batch.append(image) y_batch.append(b_label) X_batch = np.array(X_batch) X_batch = np.array(X_batch, dtype=np.float32) y_batch =
np.array(y_batch)
numpy.array
############################################################################################################### # Here we define a dummy DockNet for testing purposes only. # # We illustrate what is the expected behavior of a neural network with: # # - input vectors (also called examples) of size 2 # # - an input batch of 2 vectors (a matrix with an input example per column) # # - a single hidden dense layer with 3 neurons (1 neuron per row) and ReLU as activation function # # - an output layer with a single neuron and sigmoid as activation function (for binary classification) # # Note we define all input values an parameters as small integers to ease the manual check of each # # calculation. Each input, output and operation at each step in this file. The diagram below summarizes the # # network structure and notation: # # # # # # Input layer L0 Hidden layer L1 Output layer L2 # # # # example 0 example 1 linear part | activation linear part | activation # # # # -- -- # # | a000 a001 | /-[Z10=X*W10+b10|A10=relu(Z10)]-\ # # | | / \ -- -- # # X = A0 =| | ---[Z11=X*W11+b11|A11=relu(Z11)]---[Z20=A1*W20+b20|A1=sigmoid(Z20)]--| a20 a21 | = Ŷ # # | | \ / -- -- # # | a010 a011 | \-[Z12=X*W12+b12|A12=relu(Z12)]-/ # # -- -- # # # ############################################################################################################### import numpy as np from docknet.function.activation_function import relu, sigmoid, sigmoid_prime, relu_prime ############################################################################################################### # Forward propagation # # # # Given a batch of input vectors, feed them to the network to compute the corresponding outputs # ############################################################################################################### # Dummy input values alij, where l is the layer index (the input layer is layer 0), i is the index of the scalar within # the input vector, and j is the input example index from docknet.function.cost_function import cross_entropy, dcross_entropy_dYcirc a000 = 1 a001 = 2 a010 = 3 a011 = 4 # Dummy layer 0: all input vectors in a single matrix. Each column contains one input vector. X = A0 = np.array([ [a000, a001], [a010, a011] ]) # m is the amount of input vectors m = X.shape[1] # Dummy dataset labels Y = np.array([[0, 1]]) # Dummy parameter values wlij for layer 1, 3 neurons X 2 input values = 6 parameters; l is the layer index, i is the # neuron index, and j is the parameter index within neuron i (one parameter per input number received). w100 = 0.01 w101 = 0.02 w110 = 0.03 w111 = 0.04 w120 = 0.05 w121 = 0.06 # All layer 1 w parameters in a single matrix. Each row contains all the parameters of a single neuron, one parameter # per layer input (since the input vectors contain 2 scalars, layer 1 has 2 inputs). W1 = np.array([ [w100, w101], [w110, w111], [w120, w121] ]) # Dummy bias values bli for layer 1; each neuron has a bias constant that is added, so 3 bias values for 3 neurons; l is # the layer index and i the neuron index. b10 = 0.01 b11 = 0.02 b12 = 0.03 # All layer 1 biases in one single matrix, one per neuron. b1 = np.array([ [b10], [b11], [b12] ]) # Linear computation of layer 1: dot product of W1 and A0 plus bias b1; each column corresponds to the linear # computation of the entire layer for one single input example: Z1 = np.array([ [w100 * a000 + w101 * a010 + b10, w100 * a001 + w101 * a011 + b10], [w110 * a000 + w111 * a010 + b11, w110 * a001 + w111 * a011 + b11], [w120 * a000 + w121 * a010 + b12, w120 * a001 + w121 * a011 + b12] ]) # Activation of layer 1: application of the activation function to each element in Z1; each column corresponds to the # output of the entire layer for one input example: A1 = relu(Z1) a100, a101 = A1[0][0], A1[0][1] a110, a111 = A1[1][0], A1[1][1] a120, a121 = A1[2][0], A1[2][1] # Dummy parameter values for layer 2 with a single neuron for binary: 1 neuron x 3 input values = 3 parameters: w200 = 0.01 w201 = 0.02 w202 = 0.03 # All layer 2 w parameters in a single matrix. Each row contains all the parameters of a single neuron, one parameter # per layer input (since layer 1 has 3 neurons, this layer has 3 inputs). W2 = np.array([ [w200, w201, w202] ]) # Dummy bias value for layer 2 b20 = 0.01 # All layer 2 biases in one single matrix, one per neuron. b2 = np.array([ [b20] ]) # Linear computation of layer 2: dot product of W2 and A1 plus bias b2; each column corresponds to the linear # computation of the entire layer for one single input example: Z2 = np.array([ [w200 * a100 + w201 * a110 + w202 * a120 + b20, w200 * a101 + w201 * a111 + w202 * a121 + b20] ]) # Activation of layer 2 and final network output Ŷ: application of the activation function to each element in Z1: Y_circ = A2 = sigmoid(Z2) # The network output is an horizontal vector with as many scalars as input examples in the input batch: y_circ0, y_circ1 = Y_circ[0][0], Y_circ[0][1] ############################################################################################################### # Backward propagation # # # # After a forward propagation, compute the gradients of the cost function wrt each parameter in the network. # # These gradients are the direction in which the parameters are to be subtracted some amount so that in the # # next iteration the cost is reduced. Forward and backward propagation steps are repeated until finding a set # # of parameter values close enough to a local minimum # # Backward propagation is heavily based on the chain rule: # # # # (f(g(x))' = f'(g(x)) * g'(x) # # # # We start computing the derivative of the cost function J wrt the network output Ŷ, then keep computing the # # derivatives of the cost function wrt each activation, linear part and layer parameters from the previously # # computed derivatives # ############################################################################################################### # The cost function: J = cross_entropy # Gradient of J wrt the network output: dJdY_circ = dcross_entropy_dYcirc(Y_circ, Y) # The network output Ŷ is A2, the activation of the second and last layer dJdA2 = dJdY_circ # Note we compute different derivatives for each input example (1 neuron X 2 inputs = 2 derivatives) dJda200, dJda201 = dJdA2[0][0], dJdA2[0][1] # Backward activation of layer 2 computes dJdZ2 from dJdA2 and Z2 dJdZ2 = dJdA2 * sigmoid_prime(Z2) # Derivatives of J wrt the linear part of the neuron; again 1 neuron X 2 inputs = 2 derivatives dJdz200, dzda201 = dJdZ2[0][0], dJdZ2[0][1] # Average derivatives of J wrt the parameters dJdW2 and dJdb2 inside the linear part of the neuron # Note we compute the averages for all input examples in order to minimize the average cost for all input examples dJdW2 = np.dot(dJdZ2, A1.T) / m # Same amount of derivatives as parameters W in the second layer, that is, 1 neuron X 3 inputs = 3 parameters dJdw200, dJdw201, dJd202 = dJdW2[0][0], dJdW2[0][1], dJdW2[0][2] # Same amount of derivatives as parameters b in the second layer, that is, 1 neuron X 3 inputs = 3 parameters dJdb2 = np.sum(dJdZ2, axis=1, keepdims=True) / m # Derivative of the cost function dJdA1 = np.dot(W2.T, dJdZ2) # Backward activation of layer 1 computes dJdZ1 from dJdA1 and Z1 dJdZ1 = dJdA1 * relu_prime(Z1) # Backward linear computes dJdW1, dJdb1 and dJdA0 from dJdZ1 and A0 dJdW1 =
np.dot(dJdZ1, A0.T)
numpy.dot
from csv import writer from PIL import Image from skimage.metrics import adapted_rand_error as are from skimage.metrics import mean_squared_error as mse from skimage.metrics import structural_similarity as mssim from skimage.metrics import peak_signal_noise_ratio as psnr import numpy as np def write(csv, row): with open(csv, 'a') as f_object: writer_object = writer(f_object) writer_object.writerow(row) f_object.close() def GIF(image_name, csv): path = 'Images/Lossy/' bmp = Image.open('Images/Standard Test Images .BMP/' + image_name + '.bmp') reference = np.array(bmp) # GIF bmp.save(path + image_name + '.gif', save_all=True, append_images=[bmp]) gif = Image.open(path + image_name + '.gif') gif = gif.convert('RGB') test = np.array(gif) if csv == 'Tables/Lossy/ARE.csv': error, precision, recall = are(reference, test) return format(error, '.3f') else: if csv == 'Tables/Lossy/MSE.csv': return format(mse(reference, test), '.3f') else: if csv == 'Tables/Lossy/MSSIM.csv': return format(mssim(reference, test, data_range=reference.max() - reference.min(), multichannel=True), '.3f') else: return format(psnr(reference, test), '.3f') def JPEG(image_name, csv): path = 'Images/Lossy/' # JPEG bmp = Image.open('Images/Standard Test Images .BMP/' + image_name + '.bmp') reference =
np.array(bmp)
numpy.array
from enum import Enum import numpy as np from cvxopt import matrix, solvers from processing import vector_of_quants import math class KnowledgePatternManager: @staticmethod def checkConsistency(knowledgePattern): return KnowledgePatternManager.__getConsistencyChecker(knowledgePattern.type) \ .isConsistent(knowledgePattern) @staticmethod def __getConsistencyChecker(type): if type == KnowledgePatternType.QUANTS: return QuantConsistencyChecker() elif type == KnowledgePatternType.DISJUNCTS: return DisjunctConsistencyChecker() elif type == KnowledgePatternType.CONJUNCTS: return ConjunctConsistencyChecker() else: raise TypeError("Correct type of knowledge pattern") @staticmethod def getProbabilityFormula(knowledgePattern, formulaPattern): size = knowledgePattern.size matrix = MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(size, 2))) intervals = np.array(knowledgePattern.array, dtype=np.double) vector = FormulaManager.getQuantsVector(formulaPattern, int(math.log(size, 2))) return LinearProgrammingProblemSolver.findOptimalFormulaValues(matrix, intervals, size, vector) @staticmethod def __getEvidenceCorrector(type): if type == EvidencePatternType.DETERMINISTIC: return DeterministicEvidenceCorrector() elif type == EvidencePatternType.STOCHASTIC: return StochasticEvidenceCorrector() elif type == EvidencePatternType.INACCURATE: return InaccurateEvidenceCorrector() @staticmethod def correctEvidenceData(knowledgePattern, evidencePattern): return KnowledgePatternManager.__getEvidenceCorrector(evidencePattern.type).getCorrectData(knowledgePattern, evidencePattern) class FormulaManager: @staticmethod def getQuantsVector(formulaPattern, size): return vector_of_quants(formulaPattern.string, size) @staticmethod def getFormulaForOptimise(knowledgePattern, evidencePattern): size = knowledgePattern.size size_evidence = 2**(evidencePattern.size) result_formula = np.zeros(size) vector = EvidenceManager.getSubIdealProbability(evidencePattern) I = MatrixProducer.getConjunctsToQuantsMatrix(evidencePattern.size) ideal = EvidenceManager.getSubIdeal(evidencePattern) for i in range(0, 2**evidencePattern.size): array = [[ideal[i]], [ideal[size_evidence - 1 - i]]] formula = MatrixProducer.getTMatrix(array, int(math.log(size, 2)))[0] formula = np.dot(formula, np.dot(I, vector)[i]) result_formula += formula return result_formula @staticmethod def getConjunctstoQuantsVector(vector): return np.dot(MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(len(vector), 2))), vector) @staticmethod def getFormulaForOptimiseIn(knowledgePattern, evidencePattern): size = knowledgePattern.size matrix = MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(size, 2))) intervals = np.array(knowledgePattern.array, dtype=np.double) matrix_for_opt = FormulaManager.getSubIdealtoIdealMatrix(evidencePattern, knowledgePattern) size_evidence = 2 ** (evidencePattern.size) result_formula_min = np.zeros(2 **evidencePattern.size) result_formula_max = np.zeros(2 **evidencePattern.size) I = MatrixProducer.getConjunctsToQuantsMatrix(evidencePattern.size) ideal = EvidenceManager.getSubIdeal(evidencePattern) for i in range(0, 2**evidencePattern.size): array = [[ideal[i]], [ideal[size_evidence - 1 - i]]] formula = MatrixProducer.getTMatrix(array, int(math.log(size, 2)))[0] prob = LinearProgrammingProblemSolver.findOptimalConjunctsFormulaValues(matrix, intervals, size, formula).array result_formula_min += I[i]*prob[0] result_formula_max += I[i]*prob[1] result = np.vstack([result_formula_min, result_formula_max]) return result @staticmethod def getSubIdealtoIdealMatrix(evidencePattern, knowledgePattern): I = MatrixProducer.getConjunctsToQuantsMatrix(evidencePattern.size) ideal = EvidenceManager.getSubIdeal(evidencePattern) Matrix = np.zeros((2 ** evidencePattern.size, knowledgePattern.size), dtype = np.double) for i in range(0, 2 ** evidencePattern.size): for j in range(0, 2 **evidencePattern.size): Matrix[i][int(ideal[j])] = I[i][j] return Matrix class EvidenceManager: @staticmethod def getConjunctsVector(evidencePattern): arr_conj = [] num_conj = 0 p_arr = evidencePattern.p_array for i in range(len(p_arr)): if p_arr[i] == 0: continue #? num_conj += pow(2, p_arr[i] - 1) arr_conj.append(num_conj) num_conj = 0 m_arr = evidencePattern.m_array for i in range(len(m_arr)): num_conj += pow(2, p_arr[i] - 1) arr_conj.append(num_conj) return np.array(arr_conj) @staticmethod def getProbabilityOfDeterministicEvidence(knowledgePattern, mas): size = knowledgePattern.size matrix = MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(size, 2))) intervals = np.array(knowledgePattern.array, dtype=np.double) vector = MatrixProducer.getTMatrix(mas, int(math.log(size, 2)))[0].tolist() return LinearProgrammingProblemSolver.findOptimalConjunctsFormulaValues(matrix, intervals, size, vector) @staticmethod def getProbabilityofStochasticEvidence(knowledgePattern, evidencePattern): size = knowledgePattern.size matrix = MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(size, 2))) intervals = np.array(knowledgePattern.array, dtype=np.double) vector = FormulaManager.getFormulaForOptimise(knowledgePattern, evidencePattern) return LinearProgrammingProblemSolver.findOptimalConjunctsFormulaValues(matrix, intervals, size, vector) @staticmethod def getProbabilityofInaccurateEvidence(knowledgePattern, evidencePattern): size = evidencePattern.size matrix = MatrixProducer.getConjunctsToQuantsMatrix(evidencePattern.size) vectors = FormulaManager.getFormulaForOptimiseIn(knowledgePattern, evidencePattern) intervals = EvidenceManager.getSubIdealIntervalProbability(evidencePattern) return LinearProgrammingProblemSolver.findOptimalConjunctsFormulaValuesIn(matrix, intervals, size, vectors) @staticmethod def getSubIdealProbability(evidencePattern): vector = np.ones(2 ** evidencePattern.size) array = evidencePattern.arr for i in range(0, 2**evidencePattern.size-1): vector[i+1] = array[i][1] return vector @staticmethod def getSubIdealIntervalProbability(evidencePattern): vector_min = np.ones(2 ** evidencePattern.size) vector_max = np.ones(2 ** evidencePattern.size) array = evidencePattern.arr for i in range(0, 2**evidencePattern.size-1): vector_min[i+1] = array[i][1] vector_max[i+1] = array[i][2] vector = [] vector.append(vector_min) vector.append(vector_max) return vector @staticmethod def getSubIdeal(evidencePattern): vector = np.zeros(2 ** evidencePattern.size) array = evidencePattern.arr for i in range(0, 2**evidencePattern.size-1): vector[i+1] = array[i][0] return vector class EvidencePatternType(Enum): DETERMINISTIC = 'deterministic', STOCHASTIC = 'stochastic', INACCURATE = 'inaccurate' class KnowledgePatternType(Enum): QUANTS = 'quants', DISJUNCTS = 'disjuncts', CONJUNCTS = 'conjuncts' class ConsistencyChecker: @staticmethod def isConsistent(knowledgePattern): raise NotImplementedError("It's a method of abstract class, use appropriate implementation") class EvidenceCorrector: @staticmethod def getCorrextData(knowledgePattern, evidencePattern): raise NotImplementedError("It's a method of abstract class, use appropriate implementation") class DeterministicEvidenceCorrector(EvidenceCorrector): @staticmethod def getCorrectData(knowledgePattern, evidencePattern): # разобраться с 1 и нулем size = knowledgePattern.size matrix = MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(size, 2))) intervals = np.array(knowledgePattern.array, dtype=np.double) return LinearProgrammingProblemSolver.findOptimalEvidenceValues(matrix, intervals, size, MatrixProducer.getEvidencevector(evidencePattern.arr, int(math.log(size, 2))), intervals, MatrixProducer.getTMatrix(evidencePattern.arr, int(math.log(size, 2)))) class StochasticEvidenceCorrector(EvidenceCorrector): @staticmethod def getCorrectData(knowledgePattern, evidencePattern): size = knowledgePattern.size size_evidence = 2 ** (evidencePattern.size) result = [[0, 0] for i in range(knowledgePattern.size)] vector = EvidenceManager.getSubIdealProbability(evidencePattern) #p_ca I = MatrixProducer.getConjunctsToQuantsMatrix(int(math.log(knowledgePattern.size, 2))) I_1 = MatrixProducer.getConjunctsToQuantsMatrix(evidencePattern.size) vector_quants = np.dot(I_1, vector) ideal = EvidenceManager.getSubIdeal(evidencePattern) intervals = np.array(knowledgePattern.array, dtype=np.double) for i in range(0, 2 ** evidencePattern.size): array = [[ideal[i]], [ideal[size_evidence - 1 - i]]] divider = MatrixProducer.getTMatrix(array, int(math.log(size, 2)))[0] numerator = MatrixProducer.getTMatrix(array, int(math.log(size, 2))) ideal_ = LinearProgrammingProblemSolver.findOptimalStochasticEvidenceValues(I, intervals, size, numerator, divider) if len(ideal_) == 0: return EvidenceCorrectorResult(False, []) for j in range(size): result[j][0] += round(vector_quants[i] * ideal_[j][0], 3) result[j][1] += round(vector_quants[i] * ideal_[j][1], 3) if result[0][0] == 0: return EvidenceCorrectorResult(False, []) return EvidenceCorrectorResult(True, result) class InaccurateEvidenceCorrector(EvidenceCorrector): @staticmethod def getCorrectData(knowledgePattern, evidencePattern): size = knowledgePattern.size size_evidence = 2 ** (evidencePattern.size) result_formula_min = np.zeros((size, size_evidence)) result_formula_max =
np.zeros((size, size_evidence))
numpy.zeros
""" Author: <NAME> The notation from "SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace Clustering Algorithms", section 2. x = [x1, x2, ... xd] n+d s_nd = ( ) d Mn: Moment matrix (s_nd, s_nd) v_n(x): veronese map of x: all possible monomials of order n in d variables in lexicographical order """ import numpy as np import torch from scipy.special import comb import matplotlib.pyplot as plt import scipy.stats as ss def generateMoments(hist, ord, d): """ """ # d is the dimension of our data, d is 1 for a scalar s_nd = int(comb(ord//2 + d , d)) z = np.linspace(0.0,1.0,len(hist)) a = np.zeros(ord+1) for i in range(0,ord +1): a[i] = np.sum((z**i)*hist) M = np.zeros((s_nd, s_nd)) for i in range(0, s_nd): for j in range(0, s_nd): M[i,j] = a[i+j] return M def Q(M, z): z = z.reshape(len(z),1) M_inv = np.linalg.inv(M) veronese = np.zeros((len(z), M.shape[0])) for i in range(0, M.shape[0]): veronese[:,i] = (z**i).reshape(len(z)) veronese_T = veronese.T q_eval = np.matmul(veronese,np.matmul(M_inv, veronese_T)) # This was wrong, we just have to keep the i,i value of q_eval q_final = q_eval.diagonal() return q_final if __name__ == "__main__": print('Main') # Code is this main section is intended to test the functions defined above x = np.random.normal(0.5,0.1,20000) hist, x_axis, _ = plt.hist(x, bins = 200) x_axis = x_axis[:-1] hist = hist/
np.sum(hist)
numpy.sum
from ast import Not from dataclasses import dataclass import numpy as np import os import pdb class FrozenClass(object): __is_frozen = False def __setattr__(self, key, value): if self.__is_frozen and not hasattr(self, key): raise TypeError( "Invalid attribute specified for the %r class." % self ) object.__setattr__(self, key, value) def _freeze(self): self.__is_frozen = True @dataclass() class Settings(FrozenClass): """ pyNA settings class """ def __init__(self, case_name, language = 'python', pyNA_directory = '.', engine_file_name = 'Engine_to.csv', trajectory_file_name = 'Trajectory_to.csv', output_directory_name = '', output_file_name = 'Trajectory_stca.sql', ac_name = 'stca', ac_version = '', save_results = False, fan_inlet = False, fan_discharge = False, core = False, jet_mixing = False, jet_shock = False, airframe = False, all_sources = True, fan_igv = False, fan_id = False, observer_lst = ('lateral', 'flyover'), method_core_turb ='GE', fan_BB_method ='geae', fan_RS_method = 'allied_signal', ge_flight_cleanup = 'takeoff', levels_int_metric = 'epnl', engine_mounting = 'underwing', direct_propagation = True, absorption = True, groundeffects = True, lateral_attenuation = False, suppression = True, fan_liner_suppression = True, shielding = True, hsr_calibration = True, validation = True, bandshare = False, TCF800 = True, combination_tones = False, N_shock = 8, dT = 10.0169, sigma = 291.0 * 515.379, a_coh = 0.01, N_f = 24, N_b = 5, n_altitude_absorption = 5, A_e = 10.334 * (0.3048 ** 2), dt_epnl = 0.5, n_harmonics = 10, r_0 = 0.3048, p_ref= 2e-5, x_observer_array = np.array([[12325.*0.3048, 450., 4*0.3048], [21325.*0.3048, 0., 4*0.3048]]), noise_optimization = False, noise_constraint_lateral = 200., PTCB = False, PHLD = False, PKROT = False, TS_to = 1.0, TS_vnrs = 1.0, TS_cutback = None, z_cutback = 500., theta_flaps = 10., theta_slats = -6., n_order = 3, max_iter = 200, tol = 1e-4): """ Initialize pyNA settings class :param case_name: Case name [-] :type case_name: str :param pyNA_directory: Directory where pyNA is installed :type pyNA_directory: str :param engine_file_name: File name of the take-off engine inputs [-] :type engine_file_name: str :param trajectory_file_name: File name of the take-off trajectory [-] :type trajectory_file_name: str :param output_directory_name: Name of the directory of output .sql file [-] :type output_directory_name: str :param output_file_name: Name of the output .sql file [-] :type output_file_name: str :param ac_name: Name of the aircraft [-] :type ac_name: str :param save_results: Flag to save results [-] :type save_results: bool :param fan_inlet: Enable fan inlet noise source [-] :type fan_inlet: bool :param fan_discharge: Enable fan discharge noise source [-] :type fan_discharge: bool :param core: Enable core noise source [-] :type core: bool :param jet_mixing: Enable jet mixing noise source [-] :type jet_mixing: bool :param jet_shock: Enable jet shock noise source [-] :type jet_shock: bool :param airframe: Enable airframe noise source [-] :type airframe: bool :param all_sources: Enable all noise sources [-] :type all_sources: bool :param trajectory_mode: mode for trajectory calculations [-] ('cutback', optimization') :type trajectory_mode: str :param observer_lst: List of observers to analyze [-] ('flyover','lateral','approach', 'contour') :type observer_lst: lst :param method_core_turb: Method to account for turbine transmission in the combustor ('GE', 'PW') [-] :type method_core_turb: str :param fan_BB_method: Method BB (original / allied_signal / geae / kresja) [-] :type fan_BB_method: str :param fan_RS_method: Method RS (original / allied_signal / geae / kresja) [-] :type fan_RS_method: str :param fan_igv: Enable fan inlet guide vanes :type fan_igv: bool :param fan_id: Enable fan inlet distortions :type fan_id: bool :param ge_flight_cleanup: GE flight cleanup switch (none/takeoff/approach) [-] :type ge_flight_cleanup: str :param levels_int_metric: Integrated noise metric [-] :type levels_int_metric: str :param engine_mounting: Engine mounting ('fuselage'/'underwing'/'none') [-] :type engine_mounting: str :param direct_propagation: Flag for direct propagation (including distance and characteristic impedance effects) [-] :type direct_propagation: bool :param absorption: Flag for atmospheric absorption [-] :type absorption: bool :param groundeffects: Flag for ground effects [-] :type groundeffects: bool :param lateral_attenuation: Flag for empirical lateral attenuation effects [-] :type lateral_attenuation: bool :param suppression: Flag for suppression of engine modules [-] :type suppression: bool :param fan_liner_suppression: Flag for fan liner suppression [-] :type fan_liner_suppression: bool :param shielding: Flag for shielding effects (not implemented yet) [-] :type shielding: bool :param hsr_calibration: Flag for HSR-era airframe calibration [-] :type hsr_calibration: bool :param validation: Flag for validation with NASA STCA noise model [-] :type validation: bool :param bandshare: Flag to plot PNLT [-] :type bandshare: bool :param TCF800: Flag for tone penalty addition to PNLT metric; allows any tone below 800Hz to be ignored [-] :type TCF800: bool :param combination_tones: Flag for combination tones int he fan noise model [-] :type combination_tones: bool :param N_shock: Number of shocks in supersonic jet [-] :type N_shock: int :param dT: dT standard atmosphere [K] :type dT: float :param sigma: Specific flow resistance of ground [kg/s m3] :type sigma: float :param a_coh: Incoherence constant [-] :type a_coh: float :param N_f: Number of discrete 1/3 octave frequency bands [-] :type N_f: int :param N_b: Number of bands (propagation) [-] :type N_b: int :param n_altitude_absorption: Number of integration steps in atmospheric propagation [-] :type n_altitude_absorption: int :param A_e: Engine reference area [m2] :type A_e: float :param dt_epnl: Time step of to calculate EPNL from interpolated PNLT data [s] :type dt_epnl: float :param n_harmonics: Number of harmonics to be considered in tones [-] :type n_harmonics: int :param r_0: Distance source observer in source mode [m] :type r_0: float :param p_ref: Reference pressure [Pa] :type p_ref: float :param noise_optimization: Flag to noise-optimize the trajectory [-] :type noise_optimization: bool :param noise_constraint_lateral: Constraint on the lateral noise [EPNdB] :type noise_constraint_lateral: float :param PTCB: Enable PTCB [-] :type PTCB: bool :param PHLD: Enable PHLD [-] :type PHLD: bool :param PKROT: Enable PKROT [-] :type PKROT: bool :param TS_to: Engine TO thrust-setting (values < 1 denote APR) [-] :type TS_to: float :param TS_vnrs: Engine VNRS thrust-setting [-] :type TS_vnrs: float :param TS_cutback: Engine cutback thrust-setting [-] :type TS_cutback: float :param z_cutback: z-location of cutback [m] :type z_cutback: float :param theta_flaps: Flap deflection angles [deg] :type theta_flaps: float :param theta_slats: Slat deflection angles [deg] :type theta_slats: float :param max_iter: Maximum number of iterations for trajectory computations [-] :type max_iter: int :param tol: Tolerance for trajectory computations [-] :type tol: float """ self.case_name = case_name self.language = language self.pyNA_directory = pyNA_directory self.engine_file_name = engine_file_name self.trajectory_file_name = trajectory_file_name self.output_directory_name = output_directory_name self.output_file_name = output_file_name self.ac_name = ac_name self.ac_version = ac_version self.save_results = save_results self.fan_inlet = fan_inlet self.fan_discharge = fan_discharge self.core = core self.jet_mixing = jet_mixing self.jet_shock = jet_shock self.airframe = airframe self.all_sources = all_sources self.observer_lst = observer_lst self.x_observer_array = x_observer_array self.method_core_turb = method_core_turb self.fan_BB_method = fan_BB_method self.fan_RS_method = fan_RS_method self.fan_igv = fan_igv self.fan_id = fan_id self.ge_flight_cleanup = ge_flight_cleanup self.levels_int_metric = levels_int_metric self.engine_mounting = engine_mounting self.direct_propagation = direct_propagation self.absorption = absorption self.groundeffects = groundeffects self.lateral_attenuation = lateral_attenuation self.suppression = suppression self.fan_liner_suppression = fan_liner_suppression self.shielding = shielding self.hsr_calibration = hsr_calibration self.validation = validation self.bandshare = bandshare self.TCF800 = TCF800 self.combination_tones = combination_tones self.N_shock = N_shock self.dT = dT self.sigma = sigma self.a_coh = a_coh self.N_f = N_f self.N_b = N_b self.n_altitude_absorption = n_altitude_absorption self.A_e = A_e self.dt_epnl = dt_epnl self.n_harmonics = n_harmonics self.r_0 = r_0 self.p_ref = p_ref self.noise_optimization = noise_optimization self.noise_constraint_lateral = noise_constraint_lateral self.PTCB = PTCB self.PHLD = PHLD self.PKROT = PKROT self.TS_to = TS_to self.TS_vnrs = TS_vnrs self.TS_cutback = TS_cutback self.z_cutback = z_cutback self.theta_flaps = theta_flaps self.theta_slats = theta_slats self.n_order = n_order self.max_iter = max_iter self.tol = tol # Freeze self.settings self._freeze() def check(self) -> None: """ Check the pyNA settings before a run. :return: None """ # pyNA directory if type(self.pyNA_directory) != str: raise TypeError(self.pyNA_directory, "is not a valid directory location. Specify the name (string).") # Folder and file names if type(self.case_name) != str: raise TypeError(self.case_name, "does not have the correct type for the engine file name. type(settings.case_name) must be str.") if type(self.engine_file_name) != str: raise TypeError(self.engine_file_name, "does not have the correct type for the engine file name. type(settings.engine_file_name) must be str.") if type(self.trajectory_file_name) != str: raise TypeError(self.trajectory_file_name, "does not have the correct type for the trajectory file name. type(settings.trajectory_file_name) must be str.") if type(self.output_directory_name) != str: raise TypeError(self.output_directory_name, "does not have the correct type for the output file name. type(settings.output_directory_name) must be str.") if type(self.output_file_name) != str: raise TypeError(self.output_file_name, "does not have the correct type for the output file name. type(settings.output_file_name) must be str.") if self.ac_name not in ['stca', 'a10']: raise TypeError(self.ac_name, "is not a valid aircraft name. Specify: 'stca', 'stca_verification', 'a10'.") if type(self.ac_version) != str: raise TypeError(self.ac_version, "does not have the correct type for the aircraft version. type (self.ac_version) must be str.") # Flags if type(self.save_results) != bool: raise TypeError(self.save_results, "does not have the correct type. type(settings.save_results) must be bool.") if type(self.fan_inlet) != bool: raise TypeError(self.fan_inlet, "does not have the correct type. type(settings.fan_inlet) must be bool.") if type(self.fan_discharge) != bool: raise TypeError(self.fan_discharge, "does not have the correct type. type(settings.fan_discharge) must be bool.") if type(self.core) != bool: raise TypeError(self.core, "does not have the correct type. type(settings.core) must be bool.") if type(self.jet_mixing) != bool: raise TypeError(self.jet_mixing, "does not have the correct type. type(settings.jet_mixing) must be bool.") if type(self.jet_shock) != bool: raise TypeError(self.jet_shock, "does not have the correct type. type(settings.jet_shock) must be bool.") if type(self.airframe) != bool: raise TypeError(self.airframe, "does not have the correct type. type(settings.airframe) must be bool.") if type(self.all_sources) != bool: raise TypeError(self.all_sources, "does not have the correct type. type(settings.all_sources) must be bool.") if type(self.fan_igv) != bool: raise TypeError(self.fan_igv, "does not have the correct type. type(settings.fan_igv) must be bool.") if type(self.fan_id) != bool: raise TypeError(self.fan_id, "does not have the correct type. type(settings.fan_id) must be bool.") if type(self.direct_propagation) != bool: raise TypeError(self.direct_propagation, "does not have the correct type. type(settings.direct_propagation) must be bool.") if type(self.absorption) != bool: raise TypeError(self.absorption, "does not have the correct type. type(settings.absorption) must be bool.") if type(self.groundeffects) != bool: raise TypeError(self.groundeffects, "does not have the correct type. type(settings.groundeffects) must be bool.") if type(self.lateral_attenuation) != bool: raise TypeError(self.lateral_attenuation, "does not have the correct type. type(settingslateral_attenuation) must be bool.") if type(self.suppression) != bool: raise TypeError(self.suppression, "does not have the correct type. type(settings.suppression) must be bool.") if type(self.fan_liner_suppression) != bool: raise TypeError(self.fan_liner_suppression, "does not have the correct type. type(settings.fan_liner_suppression) must be bool.") if type(self.shielding) != bool: raise TypeError(self.shielding, "does not have the correct type. type(settings.shielding) must be bool.") if type(self.hsr_calibration) != bool: raise TypeError(self.hsr_calibration, "does not have the correct type. type(settings.hsr_calibration) must be bool.") if type(self.validation) != bool: raise TypeError(self.validation, "does not have the correct type. type(settings.validation) must be bool.") if type(self.bandshare) != bool: raise TypeError(self.bandshare, "does not have the correct type. type(settings.bandshare) must be bool.") if type(self.TCF800) != bool: raise TypeError(self.TCF800, "does not have the correct type. type(settings.TCF800) must be bool.") if type(self.combination_tones) != bool: raise TypeError(self.combination_tones, "does not have the correct type. type(settings.combination_tones) must be bool.") if type(self.noise_optimization) != bool: raise TypeError(self.noise_optimization, "does not have the correct type. type(settings.noise_optimization) must be bool.") if type(self.noise_constraint_lateral) not in [float, np.float32, np.float64]: raise TypeError(self.noise_constraint_lateral, "does not have the correct type. type(settings.noise_constraint_lateral) must be [float, np.float32, np.float64]") if type(self.PTCB) != bool: raise TypeError(self.PTCB, "does not have the correct type. type(settings.PTCB) must be bool.") if type(self.PHLD) != bool: raise TypeError(self.PHLD, "does not have the correct type. type(settings.PHLD) must be bool.") if type(self.PKROT) != bool: raise TypeError(self.PKROT, "does not have the correct type. type(settings.PKROT) must be bool.") # Methods if self.method_core_turb not in ['GE', 'PW']: raise ValueError(self.method_core_turb, "is not a valid option for the core turbine attenuation method. Specify: 'GE'/'PW'.") if self.fan_BB_method not in ['original', 'allied_signal', 'geae', 'kresja']: raise ValueError(self.fan_BB_method, "is not a valid option for the fan broadband method. Specify: 'original'/'allied_signal'/'geae'/'kresja'.") if self.fan_RS_method not in ['original', 'allied_signal', 'geae', 'kresja']: raise ValueError(self.fan_RS_method, "is not a valid option for the fan rotor-stator interation method. Specify: 'original'/'allied_signal'/'geae'/'kresja'.") if self.ge_flight_cleanup not in ['none', 'takeoff', 'approach']: raise ValueError(self.ge_flight_cleanup, "is not a valid option for the GE flight clean-up effects method. Specify: 'none'/'takeoff'/'approach'.") if self.levels_int_metric not in ['epnl', 'ipnlt', 'ioaspl', 'sel']: raise ValueError(self.levels_int_metric, "is not a valid option for the integrated noise levels metric. Specify: 'epnl'/'ipnlt'/'ioaspl'/'sel'.") if self.engine_mounting not in ['fuselage', 'underwing', 'none']: raise ValueError(self.engine_mounting, "is not a valid option for the engine mounting description. Specify: 'fuselage', 'underwing', 'none'.") # Values if type(self.N_shock) not in [int, np.int32, np.int64]: raise TypeError(self.N_shock, "does not have the correct type. type(settings.N_shock) must be [int, np.int32, np.int64]") if type(self.dT) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.dT, "does not have the correct type. type(settings.dT) must be [float, np.float32, np.float64]") if type(self.sigma) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.sigma, "does not have the correct type. type(settings.sigma) must be [float, np.float32, np.float64]") if type(self.a_coh) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.a_coh, "does not have the correct type. type(settings.a_coh) must be [float, np.float32, np.float64]") if type(self.N_f) not in [int, np.int32, np.int64]: raise TypeError(self.N_f, "does not have the correct type. type(settings.N_f) must be [int, np.int32, np.int64]") if type(self.N_b) not in [int, np.int32, np.int64]: raise TypeError(self.N_b, "does not have the correct type. type(settings.N_b) must be [int, np.int32, np.int64]") if np.remainder(self.N_b, 2) != 1: raise ValueError("The number of 1/3rd octave frequency sub-bands needs to be odd.") if type(self.n_altitude_absorption) not in [int, np.int32, np.int64]: raise TypeError(self.n_altitude_absorption, "does not have the correct type. type(settings.n_altitude_absorption) must be [int, np.int32, np.int64]") if type(self.n_harmonics) not in [int, np.int32, np.int64]: raise TypeError(self.n_harmonics, "does not have the correct type. type(settings.n_harmonics) must be [int, np.int32, np.int64]") if type(self.A_e) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.A_e, "does not have the correct type. type(settings.A_e) must be [float, np.float32, np.float64]") if type(self.dt_epnl) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.dt_epnl, "does not have the correct type. type(settings.dt_epnl) must be [float, np.float32, np.float64]") if type(self.r_0) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.r_0, "does not have the correct type. type(settings.r_0) must be [float, np.float32, np.float64]") if type(self.p_ref) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.p_ref, "does not have the correct type. type(settings.p_ref) must be [float, np.float32, np.float64]") if type(self.x_observer_array) != np.ndarray: raise TypeError(self.x_observer_array, "does not have the correct type. type(settings.x_observer_array) must be np.ndarray") if self.observer_lst in [('lateral', ), ('flyover', )] and np.shape(self.x_observer_array) != (1,3): raise ValueError("Shape of the x_observer_array must be (1, 3); instead shape is ", np.shape(self.x_observer_array)) elif self.observer_lst in [('lateral', 'flyover', ), ('flyover', 'lateral')] and np.shape(self.x_observer_array) != (2,3): raise ValueError("Shape of the x_observer_array must be (2, 3); instead shape is ", np.shape(self.x_observer_array)) # Trajectory options if type(self.TS_to) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.TS_to, "does not have the correct type. type(settings.TS_to) must be in [float, np.float32, np.float64]") if type(self.TS_vnrs) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.TS_vnrs, "does not have the correct type. type(settings.TS_vnrs) must be in [float, np.float32, np.float64]") NoneType = type(None) if type(self.TS_cutback) not in [NoneType, float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.TS_cutback, "does not have the correct type. type(settings.TS_cutback) must be in [float, np.float32, np.float64]") if type(self.z_cutback) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.z_cutback, "does not have the correct type. type(settings.z_cutback) must be in [float, np.float32, np.float64]") if type(self.theta_flaps) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.theta_flaps, "does not have the correct type. type(settings.theta_flaps) must be np.ndarray") if type(self.theta_slats) not in [float, np.float32, np.float64, int, np.int32, np.int64]: raise TypeError(self.theta_slats, "does not have the correct type. type(settings.theta_slats) must be np.ndarray") if type(self.n_order) not in [int, np.int32, np.int64]: raise TypeError(self.n_order, "does not have the correct type. type(settings.n_order) must be in [int, np.int32, np.int64]") if type(self.max_iter) not in [int, np.int32, np.int64]: raise TypeError(self.max_iter, "does not have the correct type. type(settings.max_iter) must be in [int, np.int32, np.int64]") if type(self.tol) not in [float, np.float32, np.float64]: raise TypeError(self.tol, "does not have the correct type. type(settings.tol) must be in [float, np.float32, np.float64]") # Observer list for observer in self.observer_lst: if observer not in ['lateral','flyover', 'approach', 'contours', 'optimization']: raise ValueError(observer, "is not a valid option for the observer list. Specify any from 'lateral'/'flyover'/'approach'/'contours'/'optimization'") # Language to use to solve components (julia/python) if self.language not in ['python', 'julia']: raise ValueError("Invalid environment variable pyna_language. Specify 'python'/'julia'.") # Set all noise components equal to True if settings.all_sources == True if self.all_sources: self.fan_inlet = True self.fan_discharge = True self.core = True self.jet_mixing = True self.jet_shock = True self.airframe = True # Set lateral and flyover observer locations for nasa_stca_standard trajectory if self.case_name in ['nasa_stca_standard', 'stca_enginedesign_standard']: if self.observer_lst == 'lateral': self.x_observer_array =
np.array([[3756.66, 450., 1.2192]])
numpy.array
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import numpy as np import warnings from math import ceil from math import cos from math import sin from math import tan from math import pi from warnings import warn from pymatgen.symmetry.analyzer import SpacegroupAnalyzer """ Created on March 25, 2013 @author: geoffroy """ class HighSymmKpath: """ This class looks for path along high symmetry lines in the Brillouin Zone. It is based on <NAME>., & <NAME>. (2010). High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010 It should be used with primitive structures that comply with the definition from the paper. The symmetry is determined by spglib through the SpacegroupAnalyzer class. The analyzer can be used to produce the correct primitive structure (method get_primitive_standard_structure(international_monoclinic=False)). A warning will signal possible compatibility problems with the given structure. Args: structure (Structure): Structure object symprec (float): Tolerance for symmetry finding angle_tolerance (float): Angle tolerance for symmetry finding. atol (float): Absolute tolerance used to compare the input structure with the one expected as primitive standard. A warning will be issued if the lattices don't match. """ def __init__(self, structure, symprec=0.01, angle_tolerance=5, atol=1e-8): self._structure = structure self._sym = SpacegroupAnalyzer(structure, symprec=symprec, angle_tolerance=angle_tolerance) self._prim = self._sym \ .get_primitive_standard_structure(international_monoclinic=False) self._conv = self._sym.get_conventional_standard_structure(international_monoclinic=False) self._prim_rec = self._prim.lattice.reciprocal_lattice self._kpath = None # Note: this warning will be issued for space groups 38-41, since the primitive cell must be # reformatted to match Setyawan/Curtarolo convention in order to work with the current k-path # generation scheme. if not np.allclose(self._structure.lattice.matrix, self._prim.lattice.matrix, atol=atol): warnings.warn("The input structure does not match the expected standard primitive! " "The path can be incorrect. Use at your own risk.") lattice_type = self._sym.get_lattice_type() spg_symbol = self._sym.get_space_group_symbol() if lattice_type == "cubic": if "P" in spg_symbol: self._kpath = self.cubic() elif "F" in spg_symbol: self._kpath = self.fcc() elif "I" in spg_symbol: self._kpath = self.bcc() else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "tetragonal": if "P" in spg_symbol: self._kpath = self.tet() elif "I" in spg_symbol: a = self._conv.lattice.abc[0] c = self._conv.lattice.abc[2] if c < a: self._kpath = self.bctet1(c, a) else: self._kpath = self.bctet2(c, a) else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "orthorhombic": a = self._conv.lattice.abc[0] b = self._conv.lattice.abc[1] c = self._conv.lattice.abc[2] if "P" in spg_symbol: self._kpath = self.orc() elif "F" in spg_symbol: if 1 / a ** 2 > 1 / b ** 2 + 1 / c ** 2: self._kpath = self.orcf1(a, b, c) elif 1 / a ** 2 < 1 / b ** 2 + 1 / c ** 2: self._kpath = self.orcf2(a, b, c) else: self._kpath = self.orcf3(a, b, c) elif "I" in spg_symbol: self._kpath = self.orci(a, b, c) elif "C" in spg_symbol or "A" in spg_symbol: self._kpath = self.orcc(a, b, c) else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "hexagonal": self._kpath = self.hex() elif lattice_type == "rhombohedral": alpha = self._prim.lattice.lengths_and_angles[1][0] if alpha < 90: self._kpath = self.rhl1(alpha * pi / 180) else: self._kpath = self.rhl2(alpha * pi / 180) elif lattice_type == "monoclinic": a, b, c = self._conv.lattice.abc alpha = self._conv.lattice.lengths_and_angles[1][0] # beta = self._conv.lattice.lengths_and_angles[1][1] if "P" in spg_symbol: self._kpath = self.mcl(b, c, alpha * pi / 180) elif "C" in spg_symbol: kgamma = self._prim_rec.lengths_and_angles[1][2] if kgamma > 90: self._kpath = self.mclc1(a, b, c, alpha * pi / 180) if kgamma == 90: self._kpath = self.mclc2(a, b, c, alpha * pi / 180) if kgamma < 90: if b * cos(alpha * pi / 180) / c \ + b ** 2 * sin(alpha * pi / 180) ** 2 / a ** 2 < 1: self._kpath = self.mclc3(a, b, c, alpha * pi / 180) if b * cos(alpha * pi / 180) / c \ + b ** 2 * sin(alpha * pi / 180) ** 2 / a ** 2 == 1: self._kpath = self.mclc4(a, b, c, alpha * pi / 180) if b * cos(alpha * pi / 180) / c \ + b ** 2 * sin(alpha * pi / 180) ** 2 / a ** 2 > 1: self._kpath = self.mclc5(a, b, c, alpha * pi / 180) else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "triclinic": kalpha = self._prim_rec.lengths_and_angles[1][0] kbeta = self._prim_rec.lengths_and_angles[1][1] kgamma = self._prim_rec.lengths_and_angles[1][2] if kalpha > 90 and kbeta > 90 and kgamma > 90: self._kpath = self.tria() if kalpha < 90 and kbeta < 90 and kgamma < 90: self._kpath = self.trib() if kalpha > 90 and kbeta > 90 and kgamma == 90: self._kpath = self.tria() if kalpha < 90 and kbeta < 90 and kgamma == 90: self._kpath = self.trib() else: warn("Unknown lattice type %s" % lattice_type) @property def structure(self): """ Returns: The standardized primitive structure """ return self._prim @property def conventional(self): """ Returns: The conventional cell structure """ return self._conv @property def prim(self): """ Returns: The primitive cell structure """ return self._prim @property def prim_rec(self): """ Returns: The primitive reciprocal cell structure """ return self._prim_rec @property def kpath(self): """ Returns: The symmetry line path in reciprocal space """ return self._kpath def get_kpoints(self, line_density=20, coords_are_cartesian=True): """ Returns: the kpoints along the paths in cartesian coordinates together with the labels for symmetry points -Wei """ list_k_points = [] sym_point_labels = [] for b in self.kpath['path']: for i in range(1, len(b)): start = np.array(self.kpath['kpoints'][b[i - 1]]) end = np.array(self.kpath['kpoints'][b[i]]) distance = np.linalg.norm( self._prim_rec.get_cartesian_coords(start) - self._prim_rec.get_cartesian_coords(end)) nb = int(ceil(distance * line_density)) sym_point_labels.extend([b[i - 1]] + [''] * (nb - 1) + [b[i]]) list_k_points.extend( [self._prim_rec.get_cartesian_coords(start) + float(i) / float(nb) * (self._prim_rec.get_cartesian_coords(end) - self._prim_rec.get_cartesian_coords(start)) for i in range(0, nb + 1)]) if coords_are_cartesian: return list_k_points, sym_point_labels else: frac_k_points = [self._prim_rec.get_fractional_coords(k) for k in list_k_points] return frac_k_points, sym_point_labels def cubic(self): self.name = "CUB" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'X': np.array([0.0, 0.5, 0.0]), 'R': np.array([0.5, 0.5, 0.5]), 'M': np.array([0.5, 0.5, 0.0])} path = [["\\Gamma", "X", "M", "\\Gamma", "R", "X"], ["M", "R"]] return {'kpoints': kpoints, 'path': path} def fcc(self): self.name = "FCC" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'K': np.array([3.0 / 8.0, 3.0 / 8.0, 3.0 / 4.0]), 'L': np.array([0.5, 0.5, 0.5]), 'U': np.array([5.0 / 8.0, 1.0 / 4.0, 5.0 / 8.0]), 'W': np.array([0.5, 1.0 / 4.0, 3.0 / 4.0]), 'X': np.array([0.5, 0.0, 0.5])} path = [["\\Gamma", "X", "W", "K", "\\Gamma", "L", "U", "W", "L", "K"], ["U", "X"]] return {'kpoints': kpoints, 'path': path} def bcc(self): self.name = "BCC" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'H': np.array([0.5, -0.5, 0.5]), 'P': np.array([0.25, 0.25, 0.25]), 'N': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "H", "N", "\\Gamma", "P", "H"], ["P", "N"]] return {'kpoints': kpoints, 'path': path} def tet(self): self.name = "TET" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.5, 0.5, 0.5]), 'M': np.array([0.5, 0.5, 0.0]), 'R': np.array([0.0, 0.5, 0.5]), 'X': np.array([0.0, 0.5, 0.0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "X", "M", "\\Gamma", "Z", "R", "A", "Z"], ["X", "R"], ["M", "A"]] return {'kpoints': kpoints, 'path': path} def bctet1(self, c, a): self.name = "BCT1" eta = (1 + c ** 2 / a ** 2) / 4.0 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'M': np.array([-0.5, 0.5, 0.5]), 'N': np.array([0.0, 0.5, 0.0]), 'P': np.array([0.25, 0.25, 0.25]), 'X': np.array([0.0, 0.0, 0.5]), 'Z': np.array([eta, eta, -eta]), 'Z_1': np.array([-eta, 1 - eta, eta])} path = [["\\Gamma", "X", "M", "\\Gamma", "Z", "P", "N", "Z_1", "M"], ["X", "P"]] return {'kpoints': kpoints, 'path': path} def bctet2(self, c, a): self.name = "BCT2" eta = (1 + a ** 2 / c ** 2) / 4.0 zeta = a ** 2 / (2 * c ** 2) kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'N': np.array([0.0, 0.5, 0.0]), 'P': np.array([0.25, 0.25, 0.25]), '\\Sigma': np.array([-eta, eta, eta]), '\\Sigma_1': np.array([eta, 1 - eta, -eta]), 'X': np.array([0.0, 0.0, 0.5]), 'Y': np.array([-zeta, zeta, 0.5]), 'Y_1': np.array([0.5, 0.5, -zeta]), 'Z': np.array([0.5, 0.5, -0.5])} path = [["\\Gamma", "X", "Y", "\\Sigma", "\\Gamma", "Z", "\\Sigma_1", "N", "P", "Y_1", "Z"], ["X", "P"]] return {'kpoints': kpoints, 'path': path} def orc(self): self.name = "ORC" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'R': np.array([0.5, 0.5, 0.5]), 'S': np.array([0.5, 0.5, 0.0]), 'T': np.array([0.0, 0.5, 0.5]), 'U': np.array([0.5, 0.0, 0.5]), 'X': np.array([0.5, 0.0, 0.0]), 'Y': np.array([0.0, 0.5, 0.0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "X", "S", "Y", "\\Gamma", "Z", "U", "R", "T", "Z"], ["Y", "T"], ["U", "X"], ["S", "R"]] return {'kpoints': kpoints, 'path': path} def orcf1(self, a, b, c): self.name = "ORCF1" zeta = (1 + a ** 2 / b ** 2 - a ** 2 / c ** 2) / 4 eta = (1 + a ** 2 / b ** 2 + a ** 2 / c ** 2) / 4 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.5, 0.5 + zeta, zeta]), 'A_1': np.array([0.5, 0.5 - zeta, 1 - zeta]), 'L': np.array([0.5, 0.5, 0.5]), 'T': np.array([1, 0.5, 0.5]), 'X':
np.array([0.0, eta, eta])
numpy.array
# implementing policy gradient using keras import numpy as np import matplotlib.pyplot as plt import gym from tqdm import trange import keras.layers as layers from keras.models import Model from keras.optimizers import Adam import keras.backend as K from keras.initializers import glorot_uniform def get_policy_model(env, hidden_layer_neurons, lr): num_actions = env.action_space.n inp = layers.Input(shape=[1], name='input_x') adv = layers.Input(shape=[1], name="advantages") x = layers.Dense(hidden_layer_neurons, activation='relu', use_bias=False, kernel_initializer=glorot_uniform(seed=42), name="dense_1")(inp) out = layers.Dense(num_actions, activation='softmax', kernel_initializer=glorot_uniform(seed=42), use_bias=False, name="out")(x) def custom_loss(y_true, y_pred): log_lik = K.log(y_true * (y_true - y_pred) + (1 - y_true) * (y_true + y_pred)) return K.mean(log_lik * adv, keepdims=True) model_train = Model(inputs=[inp, adv], outputs=out) model_train.compile(loss=custom_loss, optimizer=Adam(lr)) model_predict = Model(inputs=[inp], outputs=out) return model_train, model_predict def discount_rewards(r, gamma=0.99): prior = 0 out = [] for val in r: new_val = val + prior * gamma out.append(new_val) prior = new_val return np.array(out[::-1]) def score_model(model, num_tests, render=False): scores = [] for _ in range(num_tests): observation = env.reset() reward_sum = 0 while True: if render: env.render() state = np.reshape(observation, [1, dimen]) predict = model.predict([state])[0] action = np.argmax(predict) observation, reward, done, _ = env.step(action) reward_sum += reward if done: break scores.append(reward_sum) env.close() return np.mean(scores) def policy_gradient_nn(env,num_games=100): model_train, model_predict = get_policy_model(env, hidden_layer_neurons, lr) reward = 0 reward_sum = 0 num_actions = env.action_space.n # Placeholders for our observations, outputs and rewards states = np.empty(0).reshape(0,dimen) actions =
np.empty(0)
numpy.empty
''' desisim.quickcat ================ Code for quickly generating an output zcatalog given fiber assignment tiles, a truth catalog, and optionally a previous zcatalog. ''' from __future__ import absolute_import, division, print_function import os import yaml from collections import Counter from pkg_resources import resource_filename from time import asctime import numpy as np from astropy.io import fits from astropy.table import Table, Column, vstack import sys import scipy.special as sp import desisim from desisim.targets import get_simtype import astropy.constants c = astropy.constants.c.to('km/s').value from desitarget.targetmask import desi_mask, bgs_mask, mws_mask from desiutil.log import get_logger log = get_logger() #- redshift errors, zwarn, cata fail rate fractions from #- /project/projectdirs/desi/datachallenge/redwood/spectro/redux/redwood/ #- sigmav = c sigmaz / (1+z) _sigma_v = { # 'ELG': 38.03, # 'LRG': 67.38, 'BGS': 37.70, # 'QSO': 182.16, 'STAR': 51.51, 'WD':54.35, 'SKY': 9999, #- meaningless 'UNKNOWN': 9999, #- meaningless } _zwarn_fraction = { # 'ELG': 0.087, # 'LRG': 0.007, # 'QSO': 0.020, 'BGS': 0.024, 'STAR': 0.345, 'WD':0.094, 'SKY': 1.0, 'UNKNOWN': 1.0, } _cata_fail_fraction = { # 'ELG': 0.020, # 'LRG': 0.002, # 'QSO': 0.012, 'BGS': 0.003, 'STAR': 0.050, 'WD':0.0, 'SKY': 0., 'UNKNOWN': 0., } def get_zeff_obs(simtype, obsconditions): ''' ''' if(simtype=='LRG'): p_v = [1.0, 0.15, -0.5] p_w = [1.0, 0.4, 0.0] p_x = [1.0, 0.06, 0.05] p_y = [1.0, 0.0, 0.08] p_z = [1.0, 0.0, 0.0] sigma_r = 0.02 elif(simtype=='QSO'): p_v = [1.0, -0.2, 0.3] p_w = [1.0, -0.5, 0.6] p_x = [1.0, -0.1, -0.075] p_y = [1.0, -0.08, -0.04] p_z = [1.0, 0.0, 0.0] sigma_r = 0.05 elif(simtype=='ELG'): p_v = [1.0, -0.1, -0.2] p_w = [1.0, 0.25, -0.75] p_x = [1.0, 0.0, 0.05] p_y = [1.0, 0.2, 0.1] p_z = [1.0, -10.0, 300.0] sigma_r = 0.075 else: log.warning('No model for how observing conditions impact {} redshift efficiency'.format(simtype)) return np.ones(len(obsconditions)) ncond = len(np.atleast_1d(obsconditions['AIRMASS'])) # airmass v = obsconditions['AIRMASS'] - np.mean(obsconditions['AIRMASS']) pv = p_v[0] + p_v[1] * v + p_v[2] * (v**2. - np.mean(v**2)) # ebmv if 'EBMV' in obsconditions : w = obsconditions['EBMV'] - np.mean(obsconditions['EBMV']) pw = p_w[0] + p_w[1] * w + p_w[2] * (w**2 - np.mean(w**2)) else : pw = np.ones(ncond) # seeing x = obsconditions['SEEING'] - np.mean(obsconditions['SEEING']) px = p_x[0] + p_x[1]*x + p_x[2] * (x**2 - np.mean(x**2)) # transparency if 'LINTRANS' in obsconditions : y = obsconditions['LINTRANS'] - np.mean(obsconditions['LINTRANS']) py = p_y[0] + p_y[1]*y + p_y[2] * (y**2 - np.mean(y**2)) else : py = np.ones(ncond) # moon illumination fraction z = obsconditions['MOONFRAC'] - np.mean(obsconditions['MOONFRAC']) pz = p_z[0] + p_z[1]*z + p_z[2] * (z**2 - np.mean(z**2)) #- if moon is down phase doesn't matter pz = np.ones(ncond) pz[obsconditions['MOONALT'] < 0] = 1.0 pr = 1.0 + np.random.normal(size=ncond, scale=sigma_r) #- this correction factor can be greater than 1, but not less than 0 pobs = (pv * pw * px * py * pz * pr).clip(min=0.0) return pobs def get_redshift_efficiency(simtype, targets, truth, targets_in_tile, obsconditions, params, ignore_obscondition=False): """ Simple model to get the redshift effiency from the observational conditions or observed magnitudes+redshuft Args: simtype: ELG, LRG, QSO, MWS, BGS targets: target catalog table; currently used only for TARGETID truth: truth table with OIIFLUX, TRUEZ targets_in_tile: dictionary. Keys correspond to tileids, its values are the arrays of targetids observed in that tile. obsconditions: table observing conditions with columns 'TILEID': array of tile IDs 'AIRMASS': array of airmass values on a tile 'EBMV': array of E(B-V) values on a tile 'LINTRANS': array of atmospheric transparency during spectro obs; floats [0-1] 'MOONFRAC': array of moonfraction values on a tile. 'SEEING': array of FWHM seeing during spectroscopic observation on a tile. parameter_filename: yaml file with quickcat parameters ignore_obscondition: if True, no variation of efficiency with obs. conditions (adjustment of exposure time should correct for mean change of S/N) Returns: tuple of arrays (observed, p) both with same length as targets observed: boolean array of whether the target was observed in these tiles p: probability to get this redshift right """ targetid = targets['TARGETID'] n = len(targetid) try: if 'DECAM_FLUX' in targets.dtype.names : true_gflux = targets['DECAM_FLUX'][:, 1] true_rflux = targets['DECAM_FLUX'][:, 2] else: true_gflux = targets['FLUX_G'] true_rflux = targets['FLUX_R'] except: raise Exception('Missing photometry needed to estimate redshift efficiency!') a_small_flux=1e-40 true_gflux[true_gflux<a_small_flux]=a_small_flux true_rflux[true_rflux<a_small_flux]=a_small_flux if (obsconditions is None) or ('OIIFLUX' not in truth.dtype.names): raise Exception('Missing obsconditions and flux information to estimate redshift efficiency') if (simtype == 'ELG'): # Read the model OII flux threshold (FDR fig 7.12 modified to fit redmonster efficiency on OAK) # filename = resource_filename('desisim', 'data/quickcat_elg_oii_flux_threshold.txt') # Read the model OII flux threshold (FDR fig 7.12) filename = resource_filename('desisim', 'data/elg_oii_flux_threshold_fdr.txt') fdr_z, modified_fdr_oii_flux_threshold = np.loadtxt(filename, unpack=True) # Compute OII flux thresholds for truez oii_flux_limit = np.interp(truth['TRUEZ'],fdr_z,modified_fdr_oii_flux_threshold) oii_flux_limit[oii_flux_limit<1e-20]=1e-20 # efficiency is modeled as a function of flux_OII/f_OII_threshold(z) and an arbitrary sigma_fudge snr_in_lines = params["ELG"]["EFFICIENCY"]["SNR_LINES_SCALE"]*7*truth['OIIFLUX']/oii_flux_limit snr_in_continuum = params["ELG"]["EFFICIENCY"]["SNR_CONTINUUM_SCALE"]*true_rflux snr_tot = np.sqrt(snr_in_lines**2+snr_in_continuum**2) sigma_fudge = params["ELG"]["EFFICIENCY"]["SIGMA_FUDGE"] nsigma = 3. simulated_eff = eff_model(snr_tot,nsigma,sigma_fudge) elif(simtype == 'LRG'): r_mag = 22.5 - 2.5*np.log10(true_rflux) sigmoid_cutoff = params["LRG"]["EFFICIENCY"]["SIGMOID_CUTOFF"] sigmoid_fudge = params["LRG"]["EFFICIENCY"]["SIGMOID_FUDGE"] simulated_eff = 1./(1.+np.exp((r_mag-sigmoid_cutoff)/sigmoid_fudge)) log.info("{} eff = sigmoid with cutoff = {:4.3f} fudge = {:4.3f}".format(simtype,sigmoid_cutoff,sigmoid_fudge)) elif(simtype == 'QSO'): zsplit = params['QSO_ZSPLIT'] r_mag = 22.5 - 2.5*np.log10(true_rflux) simulated_eff = np.ones(r_mag.shape) # lowz tracer qsos sigmoid_cutoff = params["LOWZ_QSO"]["EFFICIENCY"]["SIGMOID_CUTOFF"] sigmoid_fudge = params["LOWZ_QSO"]["EFFICIENCY"]["SIGMOID_FUDGE"] ii=(truth['TRUEZ']<=zsplit) simulated_eff[ii] = 1./(1.+np.exp((r_mag[ii]-sigmoid_cutoff)/sigmoid_fudge)) log.info("{} eff = sigmoid with cutoff = {:4.3f} fudge = {:4.3f}".format("LOWZ QSO",sigmoid_cutoff,sigmoid_fudge)) # highz lya qsos sigmoid_cutoff = params["LYA_QSO"]["EFFICIENCY"]["SIGMOID_CUTOFF"] sigmoid_fudge = params["LYA_QSO"]["EFFICIENCY"]["SIGMOID_FUDGE"] ii=(truth['TRUEZ']>zsplit) simulated_eff[ii] = 1./(1.+np.exp((r_mag[ii]-sigmoid_cutoff)/sigmoid_fudge)) log.info("{} eff = sigmoid with cutoff = {:4.3f} fudge = {:4.3f}".format("LYA QSO",sigmoid_cutoff,sigmoid_fudge)) elif simtype == 'BGS': simulated_eff = 0.98 * np.ones(n) elif simtype == 'MWS': simulated_eff = 0.98 * np.ones(n) else: default_zeff = 0.98 log.warning('using default redshift efficiency of {} for {}'.format(default_zeff, simtype)) simulated_eff = default_zeff * np.ones(n) #- Get the corrections for observing conditions per tile, then #- correct targets on those tiles. Parameterize in terms of failure #- rate instead of success rate to handle bookkeeping of targets that #- are observed on more than one tile. #- NOTE: this still isn't quite right since multiple observations will #- be simultaneously fit instead of just taking whichever individual one #- succeeds. if ignore_obscondition : ncond = len(np.atleast_1d(obsconditions['AIRMASS'])) zeff_obs = np.ones(ncond) else : zeff_obs = get_zeff_obs(simtype, obsconditions) pfail = np.ones(n) observed = np.zeros(n, dtype=bool) # More efficient alternative for large numbers of tiles + large target # list, but requires pre-computing the sort order of targetids. # Assume targets['TARGETID'] is unique, so not checking this. sort_targetid = np.argsort(targetid) # Extract the targets-per-tile lists into one huge list. concat_targets_in_tile = np.concatenate([targets_in_tile[tileid] for tileid in obsconditions['TILEID']]) ntargets_per_tile = np.array([len(targets_in_tile[tileid]) for tileid in obsconditions['TILEID']]) # Match entries in each tile list against sorted target list. target_idx = targetid[sort_targetid].searchsorted(concat_targets_in_tile,side='left') target_idx_r = targetid[sort_targetid].searchsorted(concat_targets_in_tile,side='right') del(concat_targets_in_tile) # Flag targets in tiles that do not appear in the target list (sky, # standards). not_matched = target_idx_r - target_idx == 0 target_idx[not_matched] = -1 del(target_idx_r,not_matched) # Not every tile has 5000 targets, so use individual counts to # construct offset of each tile in target_idx. offset = np.concatenate([[0],np.cumsum(ntargets_per_tile[:-1])]) # For each tile, process targets. for i, tileid in enumerate(obsconditions['TILEID']): if ntargets_per_tile[i] > 0: # Quickly get all the matched targets on this tile. targets_this_tile = target_idx[offset[i]:offset[i]+ntargets_per_tile[i]] targets_this_tile = targets_this_tile[targets_this_tile > 0] # List of indices into sorted target list for each observed # source. ii = sort_targetid[targets_this_tile] tmp = (simulated_eff[ii]*zeff_obs[i]).clip(0, 1) pfail[ii] *= (1-tmp) observed[ii] = True simulated_eff = (1-pfail) return observed, simulated_eff # Efficiency model def eff_model(x, nsigma, sigma, max_efficiency=1): return 0.5*max_efficiency*(1.+sp.erf((x-nsigma)/(np.sqrt(2.)*sigma))) def reverse_dictionary(a): """Inverts a dictionary mapping. Args: a: input dictionary. Returns: b: output reversed dictionary. """ b = {} for i in a.items(): try: for k in i[1]: if k not in b.keys(): b[k] = [i[0]] else: b[k].append(i[0]) except: k = i[1] if k not in b.keys(): b[k] = [i[0]] else: b[k].append(i[0]) return b def get_observed_redshifts(targets, truth, targets_in_tile, obsconditions, parameter_filename=None, ignore_obscondition=False): """ Returns observed z, zerr, zwarn arrays given true object types and redshifts Args: targets: target catalog table; currently used only for target mask bits truth: truth table with OIIFLUX, TRUEZ targets_in_tile: dictionary. Keys correspond to tileids, its values are the arrays of targetids observed in that tile. obsconditions: table observing conditions with columns 'TILEID': array of tile IDs 'AIRMASS': array of airmass values on a tile 'EBMV': array of E(B-V) values on a tile 'LINTRANS': array of atmospheric transparency during spectro obs; floats [0-1] 'MOONFRAC': array of moonfraction values on a tile. 'SEEING': array of FWHM seeing during spectroscopic observation on a tile. parameter_filename: yaml file with quickcat parameters ignore_obscondition: if True, no variation of efficiency with obs. conditions (adjustment of exposure time should correct for mean change of S/N) Returns: tuple of (zout, zerr, zwarn) """ if parameter_filename is None : # Load efficiency parameters yaml file parameter_filename = resource_filename('desisim', 'data/quickcat.yaml') params=None with open(parameter_filename,"r") as file : params = yaml.safe_load(file) simtype = get_simtype(np.char.strip(truth['TRUESPECTYPE']), targets['DESI_TARGET'], targets['BGS_TARGET'], targets['MWS_TARGET']) #simtype = get_simtype(np.char.strip(truth['TEMPLATETYPE']), targets['DESI_TARGET'], targets['BGS_TARGET'], targets['MWS_TARGET']) truez = truth['TRUEZ'] targetid = truth['TARGETID'] try: if 'DECAM_FLUX' in targets.dtype.names : true_gflux = targets['DECAM_FLUX'][:, 1] true_rflux = targets['DECAM_FLUX'][:, 2] else: true_gflux = targets['FLUX_G'] true_rflux = targets['FLUX_R'] except: raise Exception('Missing photometry needed to estimate redshift efficiency!') a_small_flux=1e-40 true_gflux[true_gflux<a_small_flux]=a_small_flux true_rflux[true_rflux<a_small_flux]=a_small_flux zout = truez.copy() zerr = np.zeros(len(truez), dtype=np.float32) zwarn = np.zeros(len(truez), dtype=np.int32) objtypes = list(set(simtype)) n_tiles = len(np.unique(obsconditions['TILEID'])) if(n_tiles!=len(targets_in_tile)): raise ValueError('Number of obsconditions {} != len(targets_in_tile) {}'.format(n_tiles, len(targets_in_tile))) for objtype in objtypes: ii=(simtype==objtype) ################################### # redshift errors ################################### if objtype =='ELG' : sigma = params["ELG"]["UNCERTAINTY"]["SIGMA_17"] powerlawindex = params["ELG"]["UNCERTAINTY"]["POWER_LAW_INDEX"] oiiflux = truth['OIIFLUX'][ii]*1e17 zerr[ii] = sigma/(1.e-9+oiiflux**powerlawindex)*(1.+truez[ii]) zout[ii] += np.random.normal(scale=zerr[ii]) log.info("ELG sigma={:6.5f} index={:3.2f} median zerr={:6.5f}".format(sigma,powerlawindex,np.median(zerr[ii]))) elif objtype == 'LRG' : sigma = params["LRG"]["UNCERTAINTY"]["SIGMA_17"] powerlawindex = params["LRG"]["UNCERTAINTY"]["POWER_LAW_INDEX"] zerr[ii] = sigma/(1.e-9+true_rflux[ii]**powerlawindex)*(1.+truez[ii]) zout[ii] += np.random.normal(scale=zerr[ii]) log.info("LRG sigma={:6.5f} index={:3.2f} median zerr={:6.5f}".format(sigma,powerlawindex,np.median(zerr[ii]))) elif objtype == 'QSO' : zsplit = params['QSO_ZSPLIT'] sigma = params["LOWZ_QSO"]["UNCERTAINTY"]["SIGMA_17"] powerlawindex = params["LOWZ_QSO"]["UNCERTAINTY"]["POWER_LAW_INDEX"] jj=ii&(truth['TRUEZ']<=zsplit) zerr[jj] = sigma/(1.e-9+(true_rflux[jj])**powerlawindex)*(1.+truez[jj]) log.info("LOWZ QSO sigma={:6.5f} index={:3.2f} median zerr={:6.5f}".format(sigma,powerlawindex,np.median(zerr[jj]))) sigma = params["LYA_QSO"]["UNCERTAINTY"]["SIGMA_17"] powerlawindex = params["LYA_QSO"]["UNCERTAINTY"]["POWER_LAW_INDEX"] jj=ii&(truth['TRUEZ']>zsplit) zerr[jj] = sigma/(1.e-9+(true_rflux[jj])**powerlawindex)*(1.+truez[jj]) log.info("LYA QSO sigma={:6.5f} index={:3.2f} median zerr={:6.5f}".format(sigma,powerlawindex,np.median(zerr[jj]))) zout[ii] += np.random.normal(scale=zerr[ii]) elif objtype in _sigma_v.keys() : log.info("{} use constant sigmav = {} km/s".format(objtype,_sigma_v[objtype])) ii = (simtype == objtype) zerr[ii] = _sigma_v[objtype] * (1+truez[ii]) / c zout[ii] += np.random.normal(scale=zerr[ii]) else : log.info("{} no redshift error model, will use truth") ################################### # redshift efficiencies ################################### # Set ZWARN flags for some targets # the redshift efficiency only sets warning, but does not impact # the redshift value and its error. was_observed, goodz_prob = get_redshift_efficiency( objtype, targets[ii], truth[ii], targets_in_tile, obsconditions=obsconditions,params=params, ignore_obscondition=ignore_obscondition) n=np.sum(ii) assert len(was_observed) == n assert len(goodz_prob) == n r = np.random.random(len(was_observed)) zwarn[ii] = 4 * (r > goodz_prob) * was_observed ################################### # catastrophic failures ################################### zlim=[0.,3.5] cata_fail_fraction =
np.zeros(n)
numpy.zeros
"""Action selector implementations. Action selectors are objects that when called return a desired action. These actions may be stochastically chosen (e.g. randomly chosen from a list of candidates) depending on the choice of `ActionSelector` implementation, and how it is configured. Examples include the following * `DeterministicActionSelector`: always returns the same (specified) action * `UniformDiscreteActionSelector`: selections an action uniformly at random from a specified discrete action space * `NoisyActionSelector`: uses either a "preferred" action selector (with probability `1 - epsilon`) or a "noise" action selector (with probability `epsilon`) to determine the action. Useful, for example, to implement an epsilon-greedy agent. """ from abc import ABC, abstractmethod from numpy.typing import ArrayLike import numpy as np class ActionSelector(ABC): @abstractmethod def __call__(self): """Returns selected action.""" pass class DeterministicActionSelector(ActionSelector): """Deterministic action selector. Always returns the specified action when called. Args: chosen_action: action to return when called. """ def __init__(self, chosen_action): self.chosen_action = chosen_action def __call__(self): return self.chosen_action class UniformDiscreteActionSelector(ActionSelector): """Uniform discrete action selector. Picks an action from a discrete action space (zero-indexed) of size `n_actions` uniformly at random. Args: n_actions: number of actions to choose from random_state: `None`, `int`, `np.random.Generator`, etc for initialising the random number generator. """ def __init__(self, n_actions: int, *, random_state=None): self.n_actions = n_actions self._rng =
np.random.default_rng(random_state)
numpy.random.default_rng
#! /usr/bin/env python3 """ creates an (d2, w1, w2) "movie" scan """ # --- import -------------------------------------------------------------------------------------- import os import sys import time import numpy as np from matplotlib import pyplot as plt import WrightTools as wt import WrightSim as ws # --- define -------------------------------------------------------------------------------------- here = os.path.abspath(os.path.dirname(__file__)) dt = 50. # pulse duration (fs) slitwidth = 120. # mono resolution (wn) nw = 256 # number of frequency points (w1 and w2) nt = 256 # number of delay points (d2) # --- workspace ----------------------------------------------------------------------------------- # create experiment exp = ws.experiment.builtin('trive') exp.w1.points =
np.linspace(-2.5, 2.5, nw)
numpy.linspace
# -*- coding: utf-8 -*- from numpy.random import random from numpy.linalg import norm from numpy import zeros from numpy import reshape from numpy import column_stack from numpy import logical_not from numpy import logical_and from numpy import array from numpy import pi as PI from numpy import cos from numpy import sin TWOPI = 2.0*PI def unit_vec(num, scale): from numpy.random import normal rnd = normal(size=(num, 3)) d = norm(rnd, axis=1) rnd[:] /= reshape(d, (num, 1)) return rnd*scale def in_circle(n, xx, yy, rr): """ get n random points in a circle. """ rnd = random(size=(n, 3)) t = TWOPI * rnd[:, 0] u = rnd[:, 1:].sum(axis=1) r = zeros(n, 'float') mask = u > 1. xmask = logical_not(mask) r[mask] = 2.-u[mask] r[xmask] = u[xmask] xyp =
reshape(rr * r, (n, 1))
numpy.reshape
import numpy as np import os import argparse import sys """ This set of functions allows to read a binary file containing SPAD measurements using only the file name. The parameters are extracted from the matrix using the tags. The assumpstion is that the parameters are constant and that all the frames are complete. Author: <NAME> """ def file_to_count(fname, datatype=np.uint16): """ Read a bin file and returns an array with the decoded count for each measurement Args: fname: name of the file containing the data Returns: A numpy array of unsigned int16 os size N x 25 where N is the number of measurements """ try: raw = np.fromfile(fname, dtype=">u8") except: print("Error reading binary file") return None elements = raw.shape[0] print(f"Elements: {elements}") positions = int(elements/2) print(f"Positions: {positions}") raw_pos = np.reshape(raw, (positions, 2)) print(f"data table: {raw_pos.shape}") time_per_pixel_tag = np.bitwise_and(raw_pos[:,1], 0b1) idx = np.argmax(time_per_pixel_tag != time_per_pixel_tag[0]) # positions per time time_per_pixel = int(idx) print(f"time per pixel: {time_per_pixel}") frame_tag = np.bitwise_and(np.right_shift(raw_pos[:,1], 2), 0b1) idx = np.argmax(frame_tag != frame_tag[0]) # positions per frame if idx == 0: print("Unique frame") frames = 1 else: frames = positions/idx # TODO: check condition with larger dataset line_tag = np.bitwise_and(np.right_shift(raw_pos[:,1], 1), 0b1) idx = int(np.argmax(line_tag != line_tag[0])/time_per_pixel) # positions per line print(f"Positions per lines: {idx}") x = int(idx) y = int(positions/x/time_per_pixel) print(f"Dimensions: Y:{y}, X:{x}") out = np.zeros((positions , 25), dtype = datatype) matrix_to_count(raw_pos, out) return out, frames, y, x, time_per_pixel def file_to_FCScount(fname, datatype=np.uint16, Npoints=-1, Noffset=0): """ Read a bin file and returns an array with the decoded count for each measurement Args: fname: name of the file containing the data Returns: A numpy array of unsigned int16 os size N x 25 where N is the number of measurements """ try: Npoints = Npoints * 2 NbytesOffset = 16 * Noffset raw = np.fromfile(fname, dtype=">u8", count=Npoints, offset=NbytesOffset) except: print("Error reading binary file") return None elements = raw.shape[0] print(f"Elements: {elements}") positions = int(elements/2) print(f"Positions: {positions}") print("Freeing memory") out = np.zeros((positions , 25), dtype = datatype) print("Done.") raw_pos = np.reshape(raw, (positions, 2)) print(f"data table: {raw_pos.shape}") print("Converting data to counts") matrix_to_count(raw_pos, out) print("Done.") return out def matrix_to_count(values, out): """ Read an array of N measurements and write the count values in the out array Args: values: N x 2 unsigned int array with measurements out: N x 25 unsigned int array for storing results Returns: The matrix out filled with the count """ out[:,0] = np.bitwise_and(np.right_shift(values[:,0], 64 - 59), 0b1111) # 4 bits out[:,1] = np.bitwise_and(np.right_shift(values[:,0], 64 - 55), 0b1111) # 4 bits out[:,2] = np.bitwise_and(np.right_shift(values[:,0], 64 - 51), 0b1111) # 4 bits out[:,3] = np.bitwise_and(np.right_shift(values[:,0], 64 - 47), 0b1111) # 4 bits out[:,4] = np.bitwise_and(np.right_shift(values[:,0], 64 - 43), 0b1111) # 4 bits out[:,5] = np.bitwise_and(np.right_shift(values[:,0], 64 - 39), 0b1111) # 4 bits out[:,6] = np.bitwise_and(np.right_shift(values[:,1], 64 - 59), 0b11111) # 5 bits out[:,7] = np.bitwise_and(np.right_shift(values[:,1], 64 - 54), 0b111111) # 6 bits out[:,8] = np.bitwise_and(np.right_shift(values[:,1], 64 - 48), 0b11111) # 5 bits out[:,9] = np.bitwise_and(np.right_shift(values[:,1], 64 - 43), 0b1111) # 4 bits out[:,10] = np.bitwise_and(np.right_shift(values[:,1], 64 - 39), 0b1111) # 4 bits out[:,11] = np.bitwise_and(np.right_shift(values[:,1], 64 - 35), 0b111111) # 6 bits out[:,12] = np.bitwise_and(np.right_shift(values[:,1], 64 - 29), 0b1111111111) # 10 bits out[:,13] = np.bitwise_and(np.right_shift(values[:,1], 64 - 19), 0b111111) # 6 bits out[:,14] = np.bitwise_and(np.right_shift(values[:,1], 64 - 13), 0b1111) # 4 bits out[:,15] = np.bitwise_and(np.right_shift(values[:,1], 64 - 9), 0b1111) # 4 bits out[:,16] = np.right_shift(values[:,1], 64 - 5) # 5 bits out[:,17] = np.bitwise_and(np.right_shift(values[:,0], 64 - 35), 0b111111) # 6 bits out[:,18] = np.bitwise_and(np.right_shift(values[:,0], 64 - 29), 0b11111) # 5 bits out[:,19] = np.bitwise_and(
np.right_shift(values[:,0], 64 - 24)
numpy.right_shift
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 08:58, 16/03/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% import numpy as np from math import gamma from copy import deepcopy class Problem: ID_MIN_PROB = 0 # min problem ID_MAX_PROB = -1 # max problem ID_TAR = 0 # Index of target (the final fitness) in fitness ID_OBJ = 1 # Index of objective list in fitness DEFAULT_BATCH_IDEA = False DEFAULT_BATCH_SIZE = 10 DEFAULT_LB = -1 DEFAULT_UB = 1 def __init__(self, problem: dict): """ Args: problem (dict): Dict properties of your problem Examples: problem = { "obj_func": your objective function, "lb": list of value "ub": list of value "minmax": "min" or "max" "verbose": True or False "problem_size": int (Optional) "batch_idea": True or False (Optional) "batch_size": int (Optional, smaller than population size) "obj_weight": list weights for all your objectives (Optional, default = [1, 1, ...1]) } """ self.minmax = "min" self.verbose = True self.batch_size = 10 self.batch_idea = False self.n_objs = 1 self.obj_weight = None self.multi_objs = False self.obj_is_list = False self.problem_size, self.lb, self.ub = None, None, None self.__set_parameters__(problem) self.__check_parameters__(problem) self.__check_optional_parameters__(problem) self.__check_objective_function__(problem) def __set_parameters__(self, kwargs): for key, value in kwargs.items(): setattr(self, key, value) def __check_parameters__(self, kwargs): if "lb" in kwargs and "ub" in kwargs: lb, ub = kwargs["lb"], kwargs["ub"] if (lb is None) or (ub is None): if "problem_size" in kwargs: print(f"Default lb={self.DEFAULT_LB}, ub={self.DEFAULT_UB}.") self.problem_size = self.__check_problem_size__(kwargs["problem_size"]) self.lb = self.DEFAULT_LB * np.ones(self.problem_size) self.ub = self.DEFAULT_UB * np.ones(self.problem_size) else: print("If lb, ub are undefined, then you must set problem size to be an integer.") exit(0) else: if isinstance(lb, list) and isinstance(ub, list): if len(lb) == len(ub): if len(lb) == 0: if "problem_size" in kwargs: print(f"Default lb={self.DEFAULT_LB}, ub={self.DEFAULT_UB}.") self.problem_size = self.__check_problem_size__(kwargs["problem_size"]) self.lb = self.DEFAULT_LB * np.ones(self.problem_size) self.ub = self.DEFAULT_UB * np.ones(self.problem_size) else: print("Wrong lower bound and upper bound parameters.") exit(0) elif len(lb) == 1: if "problem_size" in kwargs: self.problem_size = self.__check_problem_size__(kwargs["problem_size"]) self.lb = lb[0] * np.ones(self.problem_size) self.ub = ub[0] *
np.ones(self.problem_size)
numpy.ones
""" The ``image_loader`` module ====================== Contains methods for loading images, cropping, exporting, generating splicing, etc. """ from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import numpy as np import os, os.path import sys import random class Database_loader : """ Class Database_loader ====================== Defines a loading scheme for database """ def __init__(self, directory, size, proportion = 1.0, seed=42, only_green=True, rand_crop = True) : # data init self.dir = directory # directory with the train / test / validation sudirectories self.size = size # size of the sub image that should be croped self.nb_channels = 3 # return only the green channel of the images self.proportion = proportion if(only_green == True) : self.nb_channels = 1 self.file_train = [] # list of the train images : tuple (image name / class) self.file_test = [] # list of the test images : tuple (image name / class) self.file_validation = [] # list of the validation images : tuple (image name / class) self.image_class = ['Real', 'CGG'] # list of the class (label) used in the process self.nb_class = 0 self.train_iterator = 0 # iterator over the train images self.test_iterator = 0 # iterator over the test images self.validation_iterator = 0 # iterator over the validation images self.rand_crop = rand_crop self.load_images(seed) # load the data base def extract_channel(self, rgb_image, channel=1) : if channel > 2 : channel = 2 return rgb_image[:,:,channel] def get_immediate_subdirectories(self,a_dir) : # return the list of sub directories of a directory return [name for name in os.listdir(a_dir) if os.path.isdir(os.path.join(a_dir, name))] def load_images_in_dir(self, dir_name, image_class) : # file extension accepted as image data proportion = self.proportion valid_image_extension = [".jpg",".gif",".png",".tga",".tif", ".JPG", ".jpeg"] file_list = [] for c in image_class : nb_image_per_class = 0 file_list_by_class = [] for filename in os.listdir(dir_name+'/'+c): # check if the file is an image extension = os.path.splitext(filename)[1] if extension.lower() in valid_image_extension: file_list_by_class.append(filename) for i in range(int(len(file_list_by_class)*proportion)): file_list.append((file_list_by_class[i],c)) nb_image_per_class += 1 print(' ',c,nb_image_per_class,'images loaded') return file_list def load_images(self, seed) : # check if train / test / validation directories exists train_dir_name = self.dir + '/train' if not os.path.exists(train_dir_name): print("error: train directory does not exist") sys.exit(0) return validation_dir_name = self.dir + '/validation' if not os.path.exists(validation_dir_name): print("error: validation directory does not exist") sys.exit(0) return test_dir_name = self.dir + '/test' if not os.path.exists(test_dir_name): print("error: test directory does not exist") return [] sys.exit(0) # count number of classes # self.image_class = self.get_immediate_subdirectories(train_dir_name) self.nb_class = len(self.image_class) print(' number of classes :', self.nb_class, ' ', self.image_class) # load image file name and class print("\n train data") self.file_train = self.load_images_in_dir(train_dir_name,self.image_class) print("\n test data") self.file_test = self.load_images_in_dir(test_dir_name,self.image_class) print("\n validation data") self.file_validation = self.load_images_in_dir(validation_dir_name,self.image_class) # shuffle the lists print("\n shuffle lists ...") random.seed(seed) random.shuffle(self.file_train) random.shuffle(self.file_test) random.shuffle(self.file_validation) #print(self.file_train) #print("\n loading done.") def get_next_train(self, crop = True, rand_crop = True, random_flip_flop = False, random_rotate = False, verbose = False) : # load next image (size should be big enough) image = [] while True: # pop file name and class data = self.file_train[self.train_iterator] self.train_iterator += 1 if self.train_iterator >= len(self.file_train) : self.train_iterator = 0 # load image file_name = self.dir + '/train/' + data[1] + '/' + data[0] image = Image.open(file_name) if(verbose) : print(" ", file_name) print( ' index :', self.train_iterator -1) print( ' width :', image.size[0] ) print( ' height :', image.size[1] ) print( ' mode :', image.mode ) print( ' format :', image.format ) # image size test if crop and (image.size[0] <= self.size or image.size[1] <= self.size) : if(verbose) : print('image too small for cropping (train) : ', data[1] + '/' + data[0]) else : break # crop image if crop: if rand_crop: crop_width = random.randint(0, image.size[0]-self.size-1) crop_height = random.randint(0, image.size[1]-self.size-1) else: crop_width = 0 crop_height = 0 box = (crop_width, crop_height, crop_width+self.size, crop_height+self.size) # print('crop ', box) image = image.crop(box) # image transform #image.save(self.dir+'/'+str(self.train_iterator -1)+'.jpg') orientation = [ Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270] flip = [Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM] if (random_flip_flop == True) : if (random.choice([True, False])) : image = image.transpose(random.choice(flip)) if (random_rotate == True) : if (random.choice([True, False])) : image = image.transpose(random.choice(orientation)) #image.save(self.dir+'/tranpose_'+str(self.train_iterator -1)+'.jpg') # convert the image into a array image = np.asarray(image) # extract green if( self.nb_channels == 1 and len(image.shape) > 2) : image = self.extract_channel(image,1) else: image = np.asarray(image) if( self.nb_channels == 1 and len(image.shape) > 2 ) : image = self.extract_channel(image,1) # convert to float image image = image.astype(np.float32) / 255. #image = image.reshape(1, self.size, self.size, 3) if self.size == None: image = image.reshape(image.shape[0], image.shape[1], self.nb_channels) else: image = image.reshape(self.size, self.size, self.nb_channels) # build class label label = np.zeros(len(self.image_class)) pos = self.image_class.index(data[1]) label[pos] = 1.0 # return image and label return (image, label) def get_next_train_batch(self, batch_size = 50, crop = True, random_flip_flop = False, random_rotate = False) : batch_image = np.empty([batch_size, self.size, self.size, self.nb_channels]) batch_label = np.empty([batch_size, self.nb_class]) for i in range(0,batch_size) : data = self.get_next_train(crop, self.rand_crop, random_flip_flop,random_rotate, verbose=False) batch_image[i] = data[0] batch_label[i] = data[1] return (batch_image.astype(np.float32),batch_label) def get_next_test(self, crop = True, rand_crop = True, random_flip_flop = False, random_rotate = False, verbose = False) : # load next image (size should be big enough) image = [] while True: # pop file name and class data = self.file_test[self.test_iterator] self.test_iterator += 1 if self.test_iterator >= len(self.file_test) : self.test_iterator = 0 # load image file_name = self.dir + '/test/' + data[1] + '/' + data[0] image = Image.open(file_name) if(verbose) : print(" ", file_name) print( ' index :', self.train_iterator -1) print( ' width :', image.size[0] ) print( ' height :', image.size[1] ) print( ' mode :', image.mode ) print( ' format :', image.format ) # image size test if crop and (image.size[0] <= self.size or image.size[1] <= self.size) : if(verbose) : print('image too small for cropping (test) : ', data[1] + '/' + data[0]) else : break # crop image if crop: if rand_crop: crop_width = random.randint(0, image.size[0]-self.size-1) crop_height = random.randint(0, image.size[1]-self.size-1) else: crop_width = 0 crop_height = 0 box = (crop_width, crop_height, crop_width+self.size, crop_height+self.size) image = image.crop(box) # image transform #image.save(self.dir+'/'+str(self.train_iterator -1)+'.jpg') orientation = [ Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270] flip = [Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM] if (random_flip_flop == True) : if (random.choice([True, False])) : image = image.transpose(random.choice(flip)) if (random_rotate == True) : if (random.choice([True, False])) : image = image.transpose(random.choice(orientation)) # convert the image into a array image = np.asarray(image) # extract green if( self.nb_channels == 1 and len(image.shape) > 2) : image = self.extract_channel(image,1) else: image = np.asarray(image) if( self.nb_channels == 1 and len(image.shape) > 2 ) : image = self.extract_channel(image,1) # convert to float image image = image.astype(np.float32) / 255. #image = image.reshape(1, self.size, self.size, 3) if self.size == None: image = image.reshape(image.shape[0], image.shape[1], self.nb_channels) else: image = image.reshape(self.size, self.size, self.nb_channels) # buils class label label = np.zeros(len(self.image_class)) pos = self.image_class.index(data[1]) label[pos] = 1.0 # return image and label return (image, label) def get_batch_test(self, batch_size = 50, crop = True, random_flip_flop = False, random_rotate = False) : batch_image = np.empty([batch_size, self.size, self.size, self.nb_channels]) batch_label = np.empty([batch_size, self.nb_class]) for i in range(0,batch_size) : data = self.get_next_test(crop, self.rand_crop, random_flip_flop,random_rotate) batch_image[i] = data[0] batch_label[i] = data[1] return (batch_image.astype(np.float32),batch_label) def get_next_validation(self, crop = True, rand_crop = True, random_flip_flop = False, random_rotate = False, verbose = False) : # load next image (size should be big enough) image = [] while True: # pop file name and class data = self.file_validation[self.validation_iterator] self.validation_iterator += 1 if self.validation_iterator >= len(self.file_validation) : self.validation_iterator = 0 # load image file_name = self.dir + '/validation/' + data[1] + '/' + data[0] image = Image.open(file_name) if(verbose) : print(" ", file_name) print( ' index :', self.train_iterator -1) print( ' width :', image.size[0] ) print( ' height :', image.size[1] ) print( ' mode :', image.mode ) print( ' format :', image.format ) # image size test if crop and (image.size[0] <= self.size or image.size[1] <= self.size) : if(verbose) : print('image too small for cropping (validation) : ', data[1] + '/' + data[0]) else : break if crop: # crop image if rand_crop: crop_width = random.randint(0, image.size[0]-self.size-1) crop_height = random.randint(0, image.size[1]-self.size-1) else: crop_width = 0 crop_height = 0 box = (crop_width, crop_height, crop_width+self.size, crop_height+self.size) image = image.crop(box) # image transform #image.save(self.dir+'/'+str(self.train_iterator -1)+'.jpg') orientation = [ Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270] flip = [Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM] if (random_flip_flop == True) : if (random.choice([True, False])) : image = image.transpose(random.choice(flip)) if (random_rotate == True) : if (random.choice([True, False])) : image = image.transpose(random.choice(orientation)) # convert the image into a array image = np.asarray(image) # extract green if( self.nb_channels == 1 and len(image.shape) > 2) : image = self.extract_channel(image,1) else: image =
np.asarray(image)
numpy.asarray
__author__ = 'wangyi' __emails__ = ['<EMAIL>', '<EMAIL>', #staff email address '<EMAIL>', '<EMAIL>'] # Created on 1st Nov 2017 # Updated on 5th July 2019: # Modified: # costimpl.ConvNet.layers.Layer # costimpl.common.Node # costimpl.common.Graph # costimpl.common.Tensor # costimpl.common.Device # costimpl.common.Protocol # costimpl.common.Randomness.Distribution # costimpl.common.Randomness.IncrDistribution # costimpl.common.Randomness.SparseDistribution # costimpl.common.Randomness.IncrSparseDistribution # tests.test_conv_net # tests.test_kdtree # tests.test_kmean_plus_plus # tests.test_svm # Added: # costimpl.ConvNet.layers.ReluActivation # costimpl.ConvNet.layers.BatchNorm # costimpl.ConvNet.layers.MaxPooling # costimpl.ConvNet.layers.UpSampling # costimpl.ConvNet.layers.Dropout # costimpl.KMenas++.model # costimpl.KdTree.model # costimpl.SVM.model from ..common.node import Node from ..common.device import CPUDevice from .vol import Vol import math import numpy as np class ImproperType(Exception):pass class NotImplemented( Exception):pass class UnSupportedDevice( Exception):pass class UnSupportedAlgorithm( Exception):pass # @todo: TODO Device instance factory def Device(device_type): pass # @todo: TODO Device plural instances factory def Device_plura(device_list): return [] _c = { 'device_types': 'cpu', 'device_list': ['cpu://all'], # ${device_protocol}://, see Protocol parser implementation } class Layer(Node): def __init__(self, inp, Theta, in_num, out_num, name='Layer', device_types=_c['device_types'], device_list=_c['device_list']): # input data might be batch_size * col_size, where a col_size*1 vector isomorphic to input self.in_nm = in_num self.out_nm = out_num # dynamic binding self._forward_call = self.forward1 # check devices self._devices = Device_plura(device_list) if self.isSupported(device_types) else None if self._devices is None: raise UnSupportedDevice("%s not supported yet!" % device_types) super(Layer, self).__init__(name, (inp, Theta, (self.out_nm, self.in_nm+1))) def forward(self, inp): if inp.batch_size == 1: inp.w = inp.w[np.newaxis, ...] inp.grad = inp.grad[np.newaxis, ...] return self._forward_call(inp) def forward1(self, inp): """ Vallina implementation, without further optimization and mainly running in CPU mode :param inp: Vol :return: Vol """ raise NotImplementedError("Not Implemented. Should be implemented in subclass of Layer") def forward2(self, inp): """ Used for a real assigned device, may be called underlying libraries of implementation to achieve that goal :param inp: :return: """ raise NotImplementedError("Not Implemented. Should be implemented in the subclass of Layer") def fn_call_forward_all(self, inp): if isinstance(inp, Layer): inp.add_child(self) return self elif isinstance(inp, Vol): out_vol = self.forward(inp) if len(self.children) == 0: # if no children, return numeric value directly return out_vol rets = [] for childOp in self.children: # bottom-up implementation ret = childOp.fn_call_forward_all(out_vol) rets.append(ret) if len(rets) == 1: # reduce the dimension return rets[0] return rets else: raise ImproperType("Improper type to pass into the layer. Only accept Vol and Layer types!") __call__ = fn_call_forward_all def bp(self, top_layer): """ :param top_layer: subclasses of Layer :return: (nparray, nparray | None, nparray | None) """ raise NotImplementedError("Not Implemented. Should be implemented in subclass of Layer!") def bp_all(self, top_layer): inp_grad, dW, db = self.bp(top_layer) if self.father is not None: return self.father.bp_all(self) else: return inp_grad, dW, db # This method is not efficient and need to be optimized in the future def img2col(self, vol): # img to col: (n, channel, in_nm_h, in_nm_w) => (n, channel * kernel_h * kernel_w, out_nm_h * out_nm_w) X = vol.w convs = self.filters _, kernel_depth, kernel_h, kernel_w = convs.shape l = kernel_depth*kernel_h*kernel_w size1 = (vol.batch_size, self.channel * kernel_h * kernel_w, self.out_nm_h * self.out_nm_w) ret = np.zeros(size1) pad_default_val = 0 try: pad_default_val = self.padding_default_val except: pass # loop through samples for i in range(vol.batch_size): for w0 in range(0, self.out_nm_w): # col first pad_left, pad_right = 0, 0 w1 = -self.pad + w0 * self.strip w2 = w1 + kernel_w if w1 < 0: w1, pad_left= 0, -w1 if w1 >= self.in_nm_w: continue if w2 < 0: continue if w2 > self.in_nm_w: pad_right = w2 - self.in_nm_w for h0 in range(0, self.out_nm_h): pad_top, pad_bottom = 0, 0 h1 = -self.pad + h0 * self.strip h2 = h1 + kernel_h if h1 < 0: h1, pad_top = 0, -h1 if h1 >= self.in_nm_h: continue if h2 < 0: continue if h2 > self.in_nm_h: pad_bottom = h2 - self.in_nm_h kernel_conlv = X[i,:, h1:h2, w1:w2] col = np.pad(kernel_conlv, [(0,0), (pad_top, pad_bottom), (pad_left, pad_right)], mode='constant', constant_values=pad_default_val).flatten() # row-major (C-style) order if len(col) != l: raise Exception("Wrong Padding") ret[i,:,h0 * self.out_nm_w + w0] = col[:] return ret @property def grad(self): return self.filters.grad # @todo : TODO def isSupported(self, device_types): return True class FackedConvLayer(Layer): def __init__(self, inp, Theta): self.inp = inp self.Theta = Theta # The convolution is intensively used for image alike input data. Hence we might have multi-dimensional data. # For the most use cases, three dimensional filters of size P*P*K are applied on multi dimensional input source. # For the input layer , the dimension might range from 2 dimensions to 5 dimensions (LiDar depth info added). # Operation required : (( img2col -> conv -> col2img ) Repeated 2 ~ 3 times -> Pooling -> dropout) Repeated many # times > (upsampling mirror) class ConvLayer(Layer): def __init__(self, spatial_shape, convs, pad=0, strip=2, lr=1.0, bias=None, **kw): # input Vol instance self.inp = None self.channel, self.in_nm_h, self.in_nm_w = spatial_shape # Please refer to this post for details of conv filter paramter definition # Conv optimization: http://mp.weixin.qq.com/s/GKZeTrfTgRXmj29c_XouOQ self.filters = convs # Vol self.pad = pad self.strip = strip self.LAYER_TYPE = 'conv' self.lr = lr K, kernel_depth, kernel_h, kernel_w = convs.shape self.bias = bias # Vol self.out_nm_d = K self.out_nm_w = int(math.floor((self.in_nm_w + self.pad*2 - kernel_w) / self.strip + 1)) self.out_nm_h = int(math.floor((self.in_nm_h + self.pad*2 - kernel_h) / self.strip + 1)) # padding defaults to 0 self.padding_default_val = 0 # output Vol instance self.out = None super(ConvLayer, self).__init__(None, convs, self.channel*self.in_nm_h*self.in_nm_w, K*(kernel_h*kernel_w + 1), name='ConvLayer') # using nested For-Loop to implement raw ConvNet forward. # This is not efficient and left to be improved in the near future # See: https://github.com/karpathy/convnetjs/blob/master/src/convnet_layers_dotproducts.js # https://github.com/costapt/cs231n/blob/master/assignment2/cs231n/im2col.py def forward1(self, inp): """ By applying `img2col` borrowed from caffe, we implemented shared parameters convolution with respect the input. The parameters consist in the layer are K * (kernel_depth * kernel_h * kernel_w + 1). To reduce parameters, we could apply (kernel_h * kernel_w) on original input shifting window and repeated the computation 3 times and sum them into an `aggregated ` super pixel value. We will use this concept in our `SpatialDetectron` algorithm for arbiturary 3d points convolution. :param inp: Vol :return: Vol """ self.inp = inp # Vol n = inp.batch_size # might need to check here convs = self.filters K, kernel_depth, kernel_h, kernel_w = convs.shape size1 = (n, K, self.out_nm_h, self.out_nm_w) ret = np.zeros(size1) # filters to row W_row = convs.w.reshape(K, kernel_depth * kernel_h * kernel_w) # -1 # img to col: (n, channel, in_nm_h, in_nm_w) => (n, kernel_depth * kernel_h * kernel_w, out_nm_h * out_nm_w) X_col = self.img2col(inp) self.X_col = X_col # loop through samples for i in range(n): # (K, kd*kh*kw) mul (kd*kh*hw, oh*ow) out = np.matmul(W_row, X_col[i,:]) + self.bias.w # col2img out.resize(K, self.out_nm_h, self.out_nm_w) ret[i,:] = out[:] self.out = Vol(n, (K, self.out_nm_h, self.out_nm_w), init_gen=ret) return self.out def bp(self, top_layer): """ The algorithm implemented here based on my mathematical interpretation by partial derivatives on both input data and input parameters. By partial derivatives of filters, we concluded that each parameter at (i, kd, kh, kw) is determined by: - X[p, kd, kh + q*strip_h, kw + s*strip_w] : input convolution window box - top_layer.inp.grad[:, i, q, s], where (p, q, s) loop through (K0, out_nm_h, out_nm_w), i loop through K1: Simply put, when (q,s) loop through (out_nm_h, out_nm_w), we actually apply `an altrous conv` to the last layer grad to get the gradient of this conv layer parameters: By partial derivatives with respect to input data -- `self.inp.w`, bp resets `self.inp.grad`. To compute the derivative of self.inp.grad[:, channel, in_nm_h, in_nm_w] denoted as grad[:,k,i,j], first apply algebra replacement to forward convolution index: - i <- kh + q*strip_h - j <- kw + s*strip_w Suppose our `filters = self.convs` which is denoted as W, we derived that perception field `W(kh,kw)` is equal to `W(i-q*strip_h, j-s*strip_w)`, we acutually got a fliped version of original convs In our implementation, we also check whether we the padded index if out of the filter W boundaries. Simply put, when (i,j) loop through (in_nm_h, in_nm_w), we actually apply `a flipped conv` to the last layer grad to get the gradient of input data, and use transposed convolution to update input data. :param top_layer: Layer :return: (nparray, nparray, nparray) """ # bias_grad, partial derivatives of biases # dW, partial derivatives of filters # convol top_layer.grad with inp top_grad = top_layer.inp.grad # work as filters W = self.filters.w K0, kernel_depth, kernel_h, kernel_w = self.filters.shape n, K1, out_nm_h, out_nm_w = top_grad.shape # Partial derivatives of filters: # A naive explanation: # for i in range(K1): # f = top_grad[:,i] # # convolute with inp: # # (n, oh, ow) conv (n, kd*kh*kw, oh, ow) => (K, kd, kh, kw): # for kw in range(kernel_w): # for kh in range(kernel_h): # for kd in range(kernel_depth): # # self.filters_grad[i, kd, kh, kw] += 1/n * # sum_(p,q,s){ X[p, kd, kh + q*strip_h, kw + s*strip_w] * f[q,s] } # pay attention to indice # # Parameters: # i: output data channel index, equal to self.inp.shape[0], denoted as K1 # p: original input batch sample index, equal to top, denoted as K0 # q: out_nm_h index # s: out_nm_w index # Rearrange above loop: self.filters.grad[:] = 0.0 for k in range(K1): f = top_grad[:, k] for kd in range(kernel_depth): for kh in range(kernel_h): for kw in range(kernel_w): uid = (kd*kernel_h+kh)*kernel_w+kw self.filters.grad[k, kd, kh, kw] += np.sum(self.X_col[:,uid] * f.reshape(-1, out_nm_h * out_nm_w)) # partial derivatives of inp # opposite to forward , inp computed in flipped direction # (n, channel, in_nm_h, in_nm_w) <= (n, K , oh, ow) conv flipped(filter) self.inp.grad[:] = 0.0 for k in range(self.channel): for i in range(self.in_nm_h): for j in range(self.in_nm_w): # grad (n, K, oh, ow) conlv flipped(f) (K, kernel_depth, kernel_h, kernel_w) self.conlv(self.inp.grad, top_grad, W, (k,i,j)) # partial derivatives of bias for d in range(K1): f = top_grad[:, d] self.bias.grad[d] = np.sum(f) return self.inp.grad, self.filters.grad, self.bias.grad # Transposed convolution def conlv(self, target, grad, convs, index): ''' Transposed Convolution :param target: np.array, destination :param grad: np.array, top_diff :param convs: np.array, original convolution :param index: tuple, destination index :return: ''' K0, kernel_depth, kernel_h, kernel_w = convs.shape k,i,j = index for h in range(self.out_nm_h): for w in range(self.out_nm_w): if i-h*self.strip+self.pad < 0 or i-h*self.strip+self.pad >= kernel_h or \ j-w*self.strip+self.pad < 0 or j-w*self.strip+self.pad >= kernel_w: continue try: target[:,k,i,j] += np.matmul(grad[:,:,h,w], convs[:, k, i-h*self.strip+self.pad, j-w*self.strip+self.pad]) except Exception as e: raise(e) class FullyCnnLayer(Layer): """ See a naive implementation inspired from my solution submitted to <NAME>'s coursera deeplearning course in 2014 and 2015 where I passed server tests with 100% scores! logistic implementation with L1, L2 normalization experiments solution provided: fully connected neural network implementation solution provided: """ pass class AtrousConvLayer(Layer): """ AtrousConv (also called Dilate Convolution) correspond to the backpropogation algorithm with respect to filters or gradient of them being applied to the input in a forward process. """ pass class BatchNorm(Layer): def __init__(self, frazed=False, gamma=1, beta=0, bn_params={}, mode='trainning'): # input vol instance self.inp = None self.LAYER_TYPE = 'batch_norm' # Not used for the moment TODO self.frazed = frazed # Mask RCNN implementation for details # parameters self.spatial_size = None self.gamma = gamma self.beta = beta # the defaul values borrow from cs231n, I didnt find out reasons why it is good, maybe it is not. self.epilon = bn_params.get('epilon', 1e-5) self.stat_momentum = bn_params.get('stat_momentum', 0.9) # parameters used inside forward operation, needed to be persistent self.running_mean = bn_params.get('running_mean', None) self.running_var = bn_params.get('running_var' , None) # learnable parameters # to make a reasonable difference, W and bias should have the same size of gradient spatial shape # where parital gamma_0 (scalar) = sum_(i) { partial J over partial y_i0 * partial y_i0 over partial gamma_0 } # which means y_i0 can only be computed from gamma_i0 values. Hence if gamma is a scalar equal to gamma_0, that does # not make sense self._param_initialized = False self.W = Vol(1, (1,), init_gen=np.array([self.gamma,])) if
np.isscalar(self.gamma)
numpy.isscalar
import csv import os import timeit import logging import numpy as np from scipy import fftpack as scipyfftpack from scipy import interpolate, optimize import matplotlib.pyplot as plt import matplotlib log = logging.getLogger(__name__) np.seterr(all='raise') log.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) log.addHandler(ch) SFRFILENAME = 'edge_sfr_values.txt' CURRENT_JITTER_CODE_VERSION = 2 MULTIPROCESSING = 8 # Number of processes to use (1 to disable multiprocessing) SAGITTAL = "SAGITTAL" MERIDIONAL = "MERIDIONAL" MEDIAL = "MEDIAL" BOTH_AXES = "BOTH" ALL_THREE_AXES = "ALL THREE AXES" SAGITTAL_COMPLEX = "SAGITTAL_COMPLEX" MERIDIONAL_COMPLEX = "MERIDIONAL_COMPLEX" SAGITTAL_REAL = "SAGITTAL_REAL" MERIDIONAL_REAL = "MERIDIONAL_REAL" SAGITTAL_IMAG = "SAGITTAL_IMAJ" MERIDIONAL_IMAG = "MERIDIONAL_IMAJ" SAGITTAL_ANGLE = "SAGGITAL_ANGLE" MERIDIONAL_ANGLE = "MERIDIONAL_ANGLE" COMPLEX_AXES = [SAGITTAL_COMPLEX, MERIDIONAL_COMPLEX, SAGITTAL_REAL, MERIDIONAL_REAL, SAGITTAL_IMAG, MERIDIONAL_IMAG, SAGITTAL_ANGLE, MERIDIONAL_ANGLE] REAL_AXES = [SAGITTAL_REAL, MERIDIONAL_REAL] IMAG_AXES = [SAGITTAL_IMAG, MERIDIONAL_IMAG, MERIDIONAL_ANGLE, SAGITTAL_ANGLE] SAGITTAL_AXES = [SAGITTAL, SAGITTAL_REAL, SAGITTAL_IMAG, SAGITTAL_COMPLEX, SAGITTAL_ANGLE] MERIDIONAL_AXES = [MERIDIONAL, MERIDIONAL_REAL, MERIDIONAL_IMAG, MERIDIONAL_COMPLEX, MERIDIONAL_ANGLE] POLAR_AXES = [SAGITTAL_ANGLE, MERIDIONAL_ANGLE] COMPLEX_CARTESIAN = 1 COMPLEX_POLAR_TUPLE = 2 COMPLEX_CARTESIAN_REAL_TUPLE = 3 PLOT_ON_FIT_ERROR = True PLOT_MTF50_ERROR = True TRUNCATE_MTF_LOBES = False SFR_HEADER = [ 'blockid', 'edgex', 'edgey', 'edgeangle', 'radialangle' ] FIELD_SMOOTHING_MIN_POINTS = 16 FIELD_SMOOTHING_MAX_RATIO = 0.3 FIELD_SMOOTHING_ORDER = 3 LOW_BENCHMARK_FSTOP = 14 HIGH_BENCHBARK_FSTOP = 2.8 # LOW_BENCHMARK_FSTOP = 32 # HIGH_BENCHBARK_FSTOP = 13 # IMAGE_WIDTH = 8256 IMAGE_WIDTH = 6000 # SENSOR_WIDTH = 0.0357 SENSOR_WIDTH = 0.0236 IMAGE_HEIGHT = IMAGE_WIDTH * 2 / 3 IMAGE_DIAGONAL = (IMAGE_WIDTH**2 + IMAGE_HEIGHT**2)**0.5 DEFAULT_PIXEL_SIZE = SENSOR_WIDTH / IMAGE_WIDTH THETA_BOTTOM_RIGHT = np.arctan(IMAGE_HEIGHT / IMAGE_WIDTH) THETA_TOP_RIGHT = np.pi * 2.0 - THETA_BOTTOM_RIGHT CHART_WIDTH = 18 * 0.0254 # CHART_WIDTH = SENSOR_WIDTH * 33 CHART_DIAGONAL = (CHART_WIDTH ** 2 + (CHART_WIDTH * IMAGE_HEIGHT / IMAGE_WIDTH)**2) ** 0.5 DEFAULT_SENSOR_DIAGONAL = IMAGE_DIAGONAL * DEFAULT_PIXEL_SIZE # LOWAVG_NOMBINS = np.arange(2, 6) LOWAVG_NOMBINS = np.arange(3, 12) ACUTANCE_PRINT_HEIGHT = 0.6 ACUTANCE_VIEWING_DISTANCE = 0.74 CONTOUR2D = 0 PROJECTION3D = 1 SMOOTH2D = 3 DEFAULT_FREQ = -2 MTF50 = -1 AUC = -2 ACUTANCE = -3 LOWAVG = -4 DIFFRACTION_WAVELENGTH = 575e-9 FOCUS_SCALE_COC = "Defocus blur circle diameter (µm)" FOCUS_SCALE_COC_PIXELS = "Defocus blur circle diameter (pixels)" FOCUS_SCALE_FOCUS_SHIFT = "Image-side long. focus shift (µm)" FOCUS_SCALE_SUB_FOCUS_SHIFT = "Subject-side focus shift (mm)" FOCUS_SCALE_RMS_WFE = "RMS Defocus wavefront error (λ)" def CENTRE_WEIGHTED(height): return (1.0 - height) ** 1 def EDGE_WEIGHTED(height): return np.clip(1.1 - np.abs(0.6 - height)*1.4, 0.0001, 1.0) ** 2 def CORNER_WEIGHTED(height): return height ** 1 def EVEN_WEIGHTED(height): return 1.0 def plot_weighting(weightingfn): x = np.linspace(0, 1, 100) plt.plot(x, weightingfn(x)) plt.show() # plot_weighting(EDGE_WEIGHTED) # exit() def EVEN_WEIGHTED(height): return 1.0 def diffraction_mtf(freq, fstop=8, calibration=None): if type(freq) is int and freq == AUC: return diffraction_mtf(np.linspace(0, 0.5-1.0/32, 32), fstop, calibration).mean() if type(freq) is int and freq == ACUTANCE: # print(22, calibration) return calc_acutance(diffraction_mtf(RAW_SFR_FREQUENCIES, fstop, calibration)) mulfreq = np.clip(freq / DEFAULT_PIXEL_SIZE * DIFFRACTION_WAVELENGTH * fstop, 0, 1) if calibration is None: calibration_mul = 1.0 else: interpfn = interpolate.InterpolatedUnivariateSpline(RAW_SFR_FREQUENCIES[:], np.pad(calibration, (0,64-len(calibration)), 'constant', constant_values=0), k=1) calibration_mul = np.clip(interpfn(freq), 1e-6, np.inf) diff = 2.0 / np.pi * (np.arccos(mulfreq) - mulfreq * (1 - mulfreq ** 2) ** 0.5) * calibration_mul return diff * 0.98 + 0.02 def calc_acutance(sfr, print_height=ACUTANCE_PRINT_HEIGHT, viewing_distance=ACUTANCE_VIEWING_DISTANCE): if viewing_distance is None: viewing_distance = max(0.15, print_height ** 0.5) def csf(af): # Contrast sensitivity function return 75 * af ** 0.8 * np.exp(-0.2 * af) if len(sfr) < 64: sfr = np.pad(sfr, (0, 64 - len(sfr)), 'constant', constant_values=0.0) print_cy_per_m = RAW_SFR_FREQUENCIES * 4000 / print_height cy_per_rad = print_cy_per_m * viewing_distance # atan Small angle approximation cy_per_degree = cy_per_rad / 180 * np.pi specific_csf = csf(cy_per_degree) total = (specific_csf * sfr).sum() / specific_csf.sum() return total def gaussian_fourier(c): f = RAW_SFR_FREQUENCIES gauss = np.exp(-f ** 2 * c ** 2 * 0.5) # plt.plot(f, gauss);plt.show() return gauss def pixel_aperture_mtf(freq): freq = np.clip(freq, 0.0001, 1.0) return np.sin(np.pi*freq) / np.pi / freq def tukey(x, alpha): tukey_window = np.cos(np.clip((abs(x) - 1.0 + alpha) * np.pi / alpha, 0, np.pi)) + 1 return tukey_window def calc_image_height(x, y): """ Calculate image height (distance from centre) ranging from 0.0 to 1.0 :param x: x loc(s) :param y: y loc(s) :return: height(s) """ img_height = (((IMAGE_WIDTH / 2) - x) ** 2 + ((IMAGE_HEIGHT / 2) - y) ** 2) ** 0.5 / IMAGE_DIAGONAL * 2 return img_height RAW_SFR_FREQUENCIES = np.array([x / 64 for x in range(64)]) # List of sfr frequencies in cycles/pixel GOOD = [1., 0.98582051, 0.95216779, 0.91605742, 0.88585631, 0.86172936, 0.84093781, 0.82116408, 0.80170952, 0.78201686, 0.76154796, 0.73985244, 0.7166293, 0.69158089, 0.66423885, 0.63510484, 0.60407738, 0.57122645, 0.53737249, 0.50266147, 0.46764089, 0.43269842, 0.39822897, 0.36466347, 0.33236667, 0.30161039, 0.27266122, 0.24569197, 0.2208242, 0.19810618, 0.17752172, 0.15900566, 0.14245044, 0.1277121, 0.11462787, 0.10302666, 0.09274069, 0.08361389, 0.07550579, 0.06829461, 0.06187432, 0.05615253, 0.05104666, 0.04648352, 0.04239983, 0.03874731, 0.03549705, 0.03264138, 0.03019484, 0.0281874, 0.0266599, 0.02565582, 0.02520846, 0.02533362, 0.02601429, 0.02719823, 0.02879615, 0.03068963, 0.03274225, 0.03481336, 0.0367723, 0.03850572, 0.03992789, 0.04098472] def fastgauss(gaussx, a,b,c): return a * np.exp(-(gaussx - b) ** 2 / (2 * c ** 2)) def twogauss(gaussx, a, b, c, peaky): peaky = peaky * np.clip((c - 0.7) / 2.0, 0.0, 1.0) # No peaky at low sigma a1 = 1 / (1 + peaky) a2 = peaky / (1 + peaky) c1 = c * 1.8 c2 = c / 1.4 wide = a1 * np.exp(-(gaussx - b) ** 2 / (2 * c1 ** 2)) narrow = a2 * np.exp(-(gaussx - b) ** 2 / (2 * c2 ** 2)) both = (wide + narrow) * a return both count=0 def cauchy(xin, max, x0, gamma): global count count += 1 # print(count) # print(xin) return max / (1.0 + ((xin - x0) / gamma) ** 2) def c_init(x, y, inc): return y, x, 3.0 * inc def c_bounds(x, y, inc): return ((y * 0.98, x - inc * 2, 0.4 * inc,), (y * 1.15, x + inc * 2, 100.0 * inc,)) cauchy.initial = c_init cauchy.bounds = c_bounds def psysmfit(defocus, defocus_offset, aberr): pupil = NollZernike(Z4=defocus + defocus_offset, dia=10, norm=True, **{zedstr: add}, wavelength=wl, opd_unit="um") m = MTF.from_pupil(pupil, efl=fl) if 0: plt.plot(freqs, m.exact_xy(freqs)) # cauchy.bounds = lambda x, y, inc: (highest_data_y * 0.98, mean_peak_x - x_inc * 2, 0.4 * x_inc,), \ # (highest_data_y * 1.15, mean_peak_x + x_inc * 2, 100.0 * x_inc,) class EXIF: def __init__(self, sfr_pathname=None, exif_pathname=None): self.exif = {"NOTHING HERE FOR SPACE PURPOSES": True} value = "" self.aperture = 1.0 self.focal_length_str = value self.lens_model = value self.max_aperture = value self.distortionexif = value self.ca_exif = value if exif_pathname is None and sfr_pathname is not None: pathsplit = os.path.split(sfr_pathname) fnamesplit = pathsplit[1].split(".") exiffilename = ".".join(fnamesplit[:2]) + ".exif.csv" exif_pathname = os.path.join(pathsplit[0], exiffilename) print(exif_pathname) if exif_pathname is not None: try: print("Tring to open {}".format(exif_pathname)) print(pathsplit) with open(exif_pathname, 'r') as file: print("Found EXIF file") reader = csv.reader(file, delimiter=',', quotechar='|') for row in reader: # if row[0] in self.exif: # self.exif[row[0]+"_dup"] = row[1] # else: # self.exif[row[0]] = row[1] tag, value = row[:2] # print(tag, value) if tag == "Aperture": fl = float(value[:]) self.aperture = 1.25 if fl == 1.2 else fl elif tag == "Focal Length" and "equivalent" not in value: self.focal_length_str = value elif tag == "Lens Model": self.lens_model = value elif tag == "Max Aperture Value": self.max_aperture = value elif tag == "Geometric Distortion Params": self.distortionexif = value elif tag == "Chromatic Aberration Params": self.ca_exif = value except FileNotFoundError: log.warning("No EXIF found") print("Aperture is {}".format(self.aperture)) @property def summary(self): if len(self.exif) is 0: return "No EXIF available" return "{} at {}, f/{}".format(self.lens_model, self.focal_length, self.aperture) @property def angle_of_view(self): sensor_diagonal_m = IMAGE_DIAGONAL * DEFAULT_PIXEL_SIZE focal_length_m = self.focal_length * 1e-3 lens_angle_of_view = 2 * np.arctan(sensor_diagonal_m / focal_length_m / 2) return lens_angle_of_view @property def focal_length(self): return float(self.focal_length_str.split(" ")[0]) @focal_length.setter def focal_length(self, fl): self.focal_length_str = "{} mm".format(fl) @focal_length.setter def focal_length(self, floatin): self.focal_length_str = "{:.1f} mm".format(floatin) def truncate_at_zero(in_sfr): # in_sfr = np.array(in_sfr) + 0.0 # plt.plot(RAW_SFR_FREQUENCIES[:len(in_sfr)], in_sfr) sfr = np.concatenate(([1.0], in_sfr, [0.0])) l = len(sfr) derivative = sfr[1:l] - sfr[:l-1] # plt.plot(RAW_SFR_FREQUENCIES[:l-3], derivative[1:l-2], '--') # plt.plot(RAW_SFR_FREQUENCIES[:l-3], sfr[1:l-2], '--') # plt.hlines([0], 0, 1, linestyles='dotted') # derivative_shift = derivative[:32] # second_der = derivative_shift - derivative[:32] # plt.plot(RAW_SFR_FREQUENCIES[:l-3], derivative[:l-3]) cuts = np.all((derivative[1:l-1] > 0.002, derivative[:l-2] < 0.002, sfr[1:l-1] < 0.13), axis=0) cumsum = np.cumsum(cuts) # plt.plot(RAW_SFR_FREQUENCIES[:l-2], cumsum) out_sfr = in_sfr * (cumsum == 0) + 1e-6 # print(sfr[1:l-1] < 0.08) # print(cuts) # plt.plot(RAW_SFR_FREQUENCIES[:len(in_sfr)], out_sfr-0.01) # plt.show() return out_sfr def fallback_results_path(basepath, number): for n in range(number, 2, -1): path = os.path.join(basepath, "mtfm{}".format(n)) if os.path.exists(path): for entry in os.scandir(path): # if entry.is_file: return path if os.path.exists(basepath): return basepath raise FileNotFoundError("Can't find results at path {}".format(basepath)) COLOURS = ['red', 'orangered', 'darkorange', 'green', 'blue', 'darkviolet', 'deeppink', 'black'] NICECOLOURS = ['red', 'green', 'blue', 'darkviolet'] class Calibrator: def __init__(self): self.calibrations = [] self.averaged = None self.used_calibration = False def add_focusset(self, focusset): self.calibrations.append((focusset.exif, focusset.build_calibration(fstop=None, opt_freq=AUC, plot=False, writetofile=False,use_centre=False))) if focusset.use_calibration: self.used_calibration = True def average_calibrations(self, absolute=False, plot=True, trim=None): if len(self.calibrations) == 0: raise ValueError("No Calibrations!") exifs, tups = zip(*self.calibrations) datas, diffs, cals = zip(*tups) data_stack = np.vstack(datas) diff_stack = np.vstack(diffs) if absolute: stack = diff_stack - data_stack invert = False else: stack = diff_stack / data_stack invert = self.used_calibration if trim is None: trim = not self.used_calibration if invert: if absolute: stack = - stack else: stack = 1 / stack if trim: length = int(len(self.calibrations) * 0.7) else: length = len(self.calibrations) aucs = stack[:, :30].mean(axis=1) sortorder = np.argsort(aucs) use_order = sortorder[:length] sortedstack = stack[use_order, :] weights = np.linspace(1.0, 0, len(sortedstack)) averaged = np.average(sortedstack, axis=0, weights=weights) sortedcallist = [] sortedexif = [] for arg in use_order: sortedcallist.append(self.calibrations[arg]) sortedexif.append(exifs[arg]) print("Averaged {} calibrations".format(len(sortedstack))) order = 0 colour = 0 plt.plot(RAW_SFR_FREQUENCIES[:len(averaged)], averaged, '-', label="Average", color='black') for exif, line in zip(sortedexif, sortedstack): # if exif.aperture != 11.0: # continue color = 'grey' print("Line", exif.summary) print(line) if exif.aperture > 5.5: color = 'red' if exif.aperture > 7.9: color = 'green' if exif.aperture > 10.9: color = 'blue' if exif.aperture > 15.0: color = 'magenta' print(exif.aperture, color) color = (COLOURS*2)[colour] if 1 or order: plt.plot(RAW_SFR_FREQUENCIES[:len(line)], line, '-', label=exif.summary, alpha=0.6, color=color) colour += 1 else: plt.plot(RAW_SFR_FREQUENCIES[:len(line)], line, '-', label=exif.summary, alpha=0.8, color=color) order = (order + 1) % 2 plt.legend() if absolute: plt.ylim(-0.15, 0.15) else: plt.ylim(0, 1.3) plt.xlabel("Spatial Frequency (cy/px)") plt.xlim(0, 0.5) if invert: plt.title("Lens MTF vs Diffraction MTF for EXIF F/ number") if absolute: plt.ylabel("MTF Error (Inverted)") else: plt.ylabel("Relative MTF") else: plt.title("Gain required for Lens MTF to match expected diffraction MTF from EXIF") if absolute: plt.ylabel("MTF Error") else: plt.ylabel("Gain") plt.hlines([1.0], 0, 0.5, linestyles='--', alpha=0.5) plt.grid() plt.show() self.averaged = averaged def write_calibration(self): if self.used_calibration: raise ValueError("Existing calibration was used in at least one FocusSet, run without calibration") with open("calibration.csv", 'w') as csvfile: csvwriter = csv.writer(csvfile, delimiter=',', quotechar='|') csvwriter.writerow(list(RAW_SFR_FREQUENCIES[:len(self.averaged)])) csvwriter.writerow(list(self.averaged)) print("Calibration written!") with open("photopic.csv", 'r') as photopic_file: reader = csv.reader(photopic_file, delimiter=',', quotechar='|') waves, mags = zip(*reader) photopic_fn = interpolate.InterpolatedUnivariateSpline([float(_) for _ in waves], [float(_) for _ in mags], k=1) # plotfreqs = np.linspace(400, 700, 50) # plt.plot(plotfreqs, photopic_fn(plotfreqs)) # plt.show() def convert_complex(tup, type): if type == COMPLEX_CARTESIAN_REAL_TUPLE: return tup if type == COMPLEX_CARTESIAN: return tup[0] + 1j * tup[1] if type == COMPLEX_POLAR_TUPLE: r, i = tup return (r**2 + i**2)**0.5, np.angle(r + 1j * i) def convert_complex_from_polar(tup, type): if type == COMPLEX_CARTESIAN_REAL_TUPLE: return tup[0] * np.cos(tup[1]), tup[0] * np.sin(tup[1]) if type == COMPLEX_CARTESIAN: return tup[0] * np.exp(1j * tup[1]) if type == COMPLEX_POLAR_TUPLE: return tup def tryfloat(inp): try: return float(inp) except ValueError: return inp class FocusSetData: def __init__(self): self.merged_mtf_values = None self.sag_mtf_values = None self.mer_mtf_values = None self.mtf_means = None # self.focus_values = None self.max_pos = None self.weights = None self.exif = None self.cauchy_peak_x = None self.x_loc = None self.y_loc = None self.hints = {} self.wavefront_data = [("", {})] def get_wavefront_data_path(self, seed="less"): try: return "wavefront_results/Seed{}/f{:.2f}/".format(seed, self.exif.aperture) except AttributeError: return "wavefront_results/Seed{}/f{:.2f}/".format(seed, 0) D50 = { 380: 24.875289, 385: 27.563481, 390: 30.251674, 395: 40.040332, 400: 49.828991, 405: 53.442452, 410: 57.055912, 415: 58.804446, 420: 60.552981, 425: 59.410306, 430: 58.267630, 435: 66.782105, 440: 75.296579, 445: 81.505921, 450: 87.715262, 455: 89.377806, 460: 91.040350, 465: 91.389339, 470: 91.738329, 475: 93.587777, 480: 95.437226, 485: 93.832642, 490: 92.228058, 495: 94.083274, 500: 95.938491, 505: 96.364129, 510: 96.789768, 515: 97.020168, 520: 97.250568, 525: 99.719339, 530: 102.188110, 535: 101.500286, 540: 100.812463, 545: 101.578486, 550: 102.344510, 555: 101.172255, 560: 100.000000, 565: 98.856409, 570: 97.712817, 575: 98.290562, 580: 98.868307, 585: 96.143758, 590: 93.419210, 595: 95.490174, 600: 97.561139, 605: 98.335311, 610: 99.109482, 615: 98.982006, 620: 98.854530, 625: 97.185755, 630: 95.516980, 635: 97.061662, 640: 98.606343, 645: 97.006890, 650: 95.407437, 655: 96.649097, 660: 97.890758, 665: 100.274818, 670: 102.658878, 675: 100.722246, 680: 98.785615, 685: 92.936539, 690: 87.087464, 695: 89.179124, 700: 91.270785, 705: 91.925918, 710: 92.581051, 715: 84.591223, 720: 76.601396, 725: 81.418425, 730: 86.235455, 735: 89.262560, 740: 92.289664, 745: 85.138388, 750: 77.987113, 755: 67.745912, 760: 57.504710, 765: 70.080157, 770: 82.655604, 775: 80.341321, 780: 78.027038} nms, spds = zip(*D50.items()) d50_interpolator = interpolate.InterpolatedUnivariateSpline(np.array(nms) * 1e-3, spds, k=1) # import cupy # from cupyx.scipy import fftpack def get_good_fft_sizes(): _all = [] _upto = 2048 _factors = [2, 3, 5] _power_lst = [] for factor in _factors: powers = np.arange(-1, int(np.log(_upto) / np.log(factor) + 1.1)) _power_lst.append(powers) _power_lst = [np.arange(-1, 14), [-1,0,1,2,3,4,5,6], [-1,0,1,2,3]] print(_power_lst) mesh = np.meshgrid(*_power_lst) for powers in zip(*[_.flatten() for _ in mesh]): sum = 1 for power, factor in zip(powers, _factors): # print(factor, power) if power != -1: sum *= factor ** power # print(sum) _all.append(sum) # print() unique = np.unique(_all) unique = unique[unique <= _upto] uniquebig = unique[unique >= 64] for _ in range(2): unique_worth_it = [] best_time = np.inf for size in np.flip(uniquebig): if size % 2 == 1: continue # arr = cupy.ones((size, size)) * 0.2 + 0.1j if size == _upto: runtimes = 3 else: runtimes = 2 for _ in range(runtimes): reps = int(100 * (2048 + 256)**2 / (size+256)**2) # time = timeit.timeit("ndimage.affine_transform(cupy.abs(fftpack.fft(arr))**2, transform, offset, order=1)", number=reps, # setup="from cupyx.scipy import fftpack, ndimage; import cupy;" # "transform = cupy.array([[1.01,0.01],[0.99, -0.01]]);offset=0.01;" # "arr = cupy.ones(({},{}), dtype='complex128') * 0.2 + 0.1j".format(size, size)) / reps * 1000 reps = int(2 * (2048 + 256)**2 / (size+256)**2) # time = timeit.timeit("ndimage.affine_transform(numpy.abs(fftpack.fft(arr))**2, transform, offset, order=1)", number=reps, # setup="from scipy import fftpack, ndimage; import numpy;" # "transform = numpy.array([[1.01,0.01],[0.99, -0.01]]);offset=0.01;" # "arr = numpy.ones(({},{}), dtype='complex128') * 0.2 + 0.1j".format(size, size)) / reps * 1000 time = timeit.timeit("cupy.abs(fftpack.fft(arr))**2", number=reps, setup="from cupyx.scipy import fftpack, ndimage; import cupy;" "transform = cupy.array([[1.01,0.01],[0.99, -0.01]]);offset=0.01;" "arr = cupy.ones(({},{}), dtype='complex128') * 0.2 + 0.1j".format(size, size)) / reps * 1000 # time = timeit.timeit("numpy.abs(fftpack.fft(arr))**2", number=reps, # setup="from scipy import fftpack, ndimage; import numpy;" # "transform = numpy.array([[1.01,0.01],[0.99, -0.01]]);offset=0.01;" # "arr = numpy.ones(({},{}), dtype='complex128') * 0.2 + 0.1j".format(size, size)) / reps * 1000 print("FFT {}, {}s".format(size, time)) if time < best_time: print("Worth it!") best_time = time unique_worth_it.append(size) print(repr(np.array(unique_worth_it))) return uniquebig # CUDA_GOOD_FFT_SIZES = get_good_fft_sizes() # exit() CUDA_GOOD_FFT_SIZES = np.flip(np.array([2048, 2000, 1944, 1920, 1800, 1728, 1620, 1600, 1536, 1500, 1458, 1440, 1350, 1296, 1280, 1200, 1152, 1080, 1024, 1000, 972, 960, 900, 864, 810, 800, 768, 750, 720, 648, 640, 600, 576, 540, 512, 486, 480, 450, 432, 400, 384, 324, 320, 300, 288, 270, 256, 216, 160, 144, 128, 96, 64])) CPU_GOOD_FFT_SIZES = np.flip(np.array([2048, 2000, 1944, 1800, 1728, 1620, 1536, 1500, 1458, 1440, 1350, 1296, 1200, 1152, 1080, 1024, 1000, 972, 900, 864, 810, 768, 750, 720, 648, 640, 600, 576, 540, 512, 500, 486, 480, 450, 432, 400, 384, 360, 324, 320, 300, 288, 270, 256, 250, 240, 216, 200, 192, 180, 162, 160, 150, 144, 128, 120, 108, 100, 96, 90, 80, 72, 64])) # CUDA_GOOD_FFT_SIZES = np.array((768,)) # CPU_GOOD_FFT_SIZES = np.array((256,)) class NoPhaseData(Exception): pass class InvalidFrequency(Exception): pass def _norm_phase_and_magnitude(r, i, x, inc_neg_freqs=False, return_type=COMPLEX_CARTESIAN, plot=False): """ Normalises complex phase in array Zero frequency is assumed to be at index 0 (ie. unshifted) :param r: Real component :param i: Imaginary component (as real float) :param x: Frequencies :param inc_neg_freqs: Includes second half of FFT with neg. frequencies :param return_type: default COMPLEX_CARTESIAN (ie. real + imag * 1j) :return: Normalised result """ # def custom_unwrap(pha): if not inc_neg_freqs: meanlen = len(x) else: meanlen = int(len(x) / 2) mag = (r ** 2 + i ** 2) ** 0.5 phase = np.unwrap(np.angle(r + i*1j)) weights = mag[:meanlen] * np.linspace(1,0,meanlen) weights = np.zeros(meanlen) # weights[1] = 1 weights = mag[:meanlen] ** 2 meanphase = np.average(phase[:meanlen], weights=weights) mean_x = np.average(x[:meanlen], weights=weights) phase_shift = - (meanphase / mean_x) * x if plot: oldphase = phase.copy() phase += phase_shift if inc_neg_freqs and 1: phase[meanlen:] = -np.flip(phase[:meanlen]) # new_meanphase = np.average(phase[:meanlen], weights=weights) # if new_meanphase < 0: # phase *= -1 if x[0] == 0: mag /= mag[0] if plot: plotx = x[:meanlen] if inc_neg_freqs and 0: s = np.fft.fftshift else: s = lambda _: _ fig, (a1, a2) = plt.subplots(1,2) a1.plot(x, s(r), label='real') a1.plot(x, s(i), label='imag') # a1.plot(plotx, weights, label='weights') a1.plot(x, s(mag), label='mag') a2.plot(x, s(oldphase), label='oldphase') a2.plot(x, s(phase), label='newphase') a2.plot(x, s(phase_shift), label="phaseshift") nr, ni = convert_complex_from_polar((mag, phase), COMPLEX_CARTESIAN_REAL_TUPLE) a1.plot(x, s(nr), label="new real") a1.plot(x, s(ni), label="new imag") a1.legend() a2.legend() plt.show() return convert_complex_from_polar((mag, phase), return_type) def ___test_phase_normalisation(): a = fastgauss(np.arange(64)**2, 1.0, 32**2, 14**2) b = np.flip(fastgauss(np.arange(64)**2, 1.0, 32**2, 14**2)) a /= a.max() b /= b.max() a = np.roll(a, -3) b = np.roll(b, 7) ft = np.fft.fft(np.fft.fftshift(a)) ft_b = np.fft.fft(np.fft.fftshift(b)) ftr, fti = normalised_centreing_fft(ft.real, ft.imag, np.arange(64), return_type=COMPLEX_CARTESIAN_REAL_TUPLE, inc_neg_freqs=True, plot=True) ftr_b, fti_b = normalised_centreing_fft(ft_b.real, ft_b.imag, np.arange(64), return_type=COMPLEX_CARTESIAN_REAL_TUPLE, inc_neg_freqs=True, plot=True) plt.plot(a, '--', color="green", alpha=0.5) plt.plot(b, '--', color="gray", alpha=0.5) plt.plot(ftr[:16], color="red", alpha=0.5) plt.plot(fti[:16], color="purple", alpha=0.5) plt.plot(ftr_b[:16], color="orange", alpha=0.5) plt.plot(fti_b[:16], color="blue", alpha=0.5) # plt.plot(ft.real[:16], '--', color="red", alpha=0.5) # plt.plot(ft.imag[:16], '--', color="purple", alpha=0.5) newgauss = np.fft.fftshift(np.fft.ifft(ftr + 1j * fti)) newgauss_b = np.fft.fftshift(np.fft.ifft(ftr_b + 1j * fti_b)) plt.plot(newgauss.real / newgauss.real.max(), color="green", alpha=0.5) plt.plot(newgauss_b.real / newgauss_b.real.max(), color="black", alpha=0.5) plt.show() def normalised_centreing_fft(y, x=None, return_type=COMPLEX_CARTESIAN, engine=np, fftpack=None, plot=False): """ Normalises complex wrapped_phase in array Zero frequency is assumed to be at index 0 (ie. unshifted) :param x: x-axis :param y: input to fft :param return_type: default COMPLEX_CARTESIAN (ie. real + imag * 1j) :return: Normalised result """ if x is None: x = engine.arange(len(y)) if fftpack is None: fftpack = scipyfftpack yzero = (y == 0).sum() == len(y) if yzero: return convert_complex((np.zeros_like(x), np.zeros_like(x)), type=return_type) if y.sum() == 0: mid = x.mean() else: mid = (x * y).sum() / y.sum() ftr = fftpack.fft(engine.fft.fftshift(y)) ftr /= abs(ftr[0]) meanlen = int(len(x) / 2) mag = abs(ftr) phase = engine.angle(ftr) phase_shift = (mid - meanlen) * x if plot: oldphase = phase.copy() phase += phase_shift * engine.pi * 2 / len(x) phase[meanlen:] = -engine.flip(phase[:meanlen], axis=0) if plot: plotx = x[:meanlen] if 0: s = engine.fft.fftshift else: s = lambda _: _ fig, (a1, a2) = plt.subplots(1,2) a1.plot(x, s(ftr.real), label='real') a1.plot(x, s(ftr.imag), label='imag') # a1.plot(plotx, weights, label='weights') a1.plot(x, s(mag), label='mag') a2.plot(x, s(oldphase), label='oldphase') a2.plot(x, s(phase), label='oldwrappedphase') # a2.plot(x, s(wrapped_phase), label='newphase') a2.plot(x, s(phase_shift), label="phaseshift") nr, ni = convert_complex_from_polar((mag, phase), COMPLEX_CARTESIAN_REAL_TUPLE) a1.plot(x, s(nr), label="new real") a1.plot(x, s(ni), label="new imag") a1.legend() a2.legend() plt.show() return convert_complex_from_polar((mag, phase), return_type) def _test_phase_normalisation(): a = fastgauss(np.arange(64)**2, 1.0, 32**2, 14**2) # a = fastgauss(np.arange(64), 1.0, 32, 5) b = fastgauss(np.arange(64)**2, 1.0, 32**2, 14**2) # b = np.flip(fastgauss(np.arange(64), 1.0, 32, 5)) a /= a.max() b /= b.max() a = np.roll(a, -7) b = np.roll(b, 4) ftr, fti = normalised_centreing_fft(np.arange(64), a, return_type=COMPLEX_CARTESIAN_REAL_TUPLE, plot=True) ftr_b, fti_b = normalised_centreing_fft(np.arange(64), b, return_type=COMPLEX_CARTESIAN_REAL_TUPLE, plot=True) plt.plot(a, '--', color="green", alpha=0.5) plt.plot(b, '--', color="gray", alpha=0.5) plt.plot(ftr[:16], color="red", alpha=0.5) plt.plot(fti[:16], color="purple", alpha=0.5) plt.plot(ftr_b[:16], color="orange", alpha=0.5) plt.plot(fti_b[:16], color="blue", alpha=0.5) # plt.plot(ft.real[:16], '--', color="red", alpha=0.5) # plt.plot(ft.imag[:16], '--', color="purple", alpha=0.5) newgauss = np.fft.fftshift(np.fft.ifft(ftr + 1j * fti)) newgauss_b = np.fft.fftshift(np.fft.ifft(ftr_b + 1j * fti_b)) plt.plot(newgauss.real / newgauss.real.max(), color="green", alpha=0.5) plt.plot(newgauss_b.real / newgauss_b.real.max(), color="black", alpha=0.5) plt.show() def __test_normalisation2(): x = np.arange(64) # ga = np.roll(fastgauss(np.arange(64)**2, 1.0, 32**2, 14**2), -2) # gb = np.roll(fastgauss(np.arange(64)**2, 1.0, 32**2, 14**2), 3) ga = np.roll(fastgauss(np.arange(64), 1.0, 32, 3.5), -18) gb = np.roll(fastgauss(np.arange(64), 1.0, 32, 3.5), 2) print((x*ga).sum() / ga.sum()) print((x*gb).sum() / gb.sum()) f, (ax1, ax2) = plt.subplots(1,2) ax1.plot(x, ga, label="ga") ax1.plot(x, gb, label="gb") ffta = np.fft.fft(
np.fft.fftshift(ga)
numpy.fft.fftshift
""" Model predictive control sample code without modeling tool (cvxpy) author: <NAME> """ import cvxpy import numpy as np import matplotlib.pyplot as plt import cvxopt from cvxopt import matrix import scipy.linalg DEBUG_ = False def use_modeling_tool(A, B, N, Q, R, P, x0, umax=None, umin=None, xmin=None, xmax=None): """ solve MPC with modeling tool for test """ (nx, nu) = B.shape # mpc calculation x = cvxpy.Variable(nx, N + 1) u = cvxpy.Variable(nu, N) costlist = 0.0 constrlist = [] for t in range(N): costlist += 0.5 * cvxpy.quad_form(x[:, t], Q) costlist += 0.5 * cvxpy.quad_form(u[:, t], R) constrlist += [x[:, t + 1] == A * x[:, t] + B * u[:, t]] if xmin is not None: constrlist += [x[:, t] >= xmin] if xmax is not None: constrlist += [x[:, t] <= xmax] costlist += 0.5 * cvxpy.quad_form(x[:, N], P) # terminal cost if xmin is not None: constrlist += [x[:, N] >= xmin] if xmax is not None: constrlist += [x[:, N] <= xmax] prob = cvxpy.Problem(cvxpy.Minimize(costlist), constrlist) prob.constraints += [x[:, 0] == x0] # inital state constraints if umax is not None: prob.constraints += [u <= umax] # input constraints if umin is not None: prob.constraints += [u >= umin] # input constraints prob.solve(verbose=True) return x.value, u.value def opt_mpc_with_input_const(A, B, N, Q, R, P, x0, umax=None, umin=None): """ optimize model predictive control only with input constraints (if you want to solve a problem with state constraints, you can use opt_mpc_with_state_const()) return x: state u: input """ (nx, nu) = B.shape # calc AA Ai = A AA = Ai for i in range(2, N + 1): Ai = A * Ai AA = np.vstack((AA, Ai)) # print(AA) # calc BB AiB = B BB = np.kron(np.eye(N), AiB) for i in range(1, N): AiB = A * AiB BB += np.kron(np.diag(np.ones(N - i), -i), AiB) # print(BB) RR = np.kron(np.eye(N), R) QQ = scipy.linalg.block_diag(np.kron(np.eye(N - 1), Q), P) H = (BB.T * QQ * BB + RR) # print(H) gx0 = BB.T * QQ * AA * x0 # print(gx0) P = matrix(H) q = matrix(gx0) if umax is None and umin is None: sol = cvxopt.solvers.qp(P, q) # print(sol) else: G = np.zeros((0, nu * N)) h = np.zeros((0, 1)) if umax is not None: tG = np.eye(N * nu) th = np.kron(np.ones((N * nu, 1)), umax) G = np.vstack([G, tG]) h = np.vstack([h, th]) if umin is not None: tG = np.eye(N * nu) * -1.0 th = np.kron(np.ones((N * nu, 1)), umin * -1.0) G = np.vstack([G, tG]) h = np.vstack([h, th]) G = matrix(G) h = matrix(h) sol = cvxopt.solvers.qp(P, q, G, h) u = np.matrix(sol["x"]) # recover x xx = AA * x0 + BB * u x = np.vstack((x0.T, xx.reshape(N, nx))) return x, u def generate_inequalities_constraints_mat(N, nx, nu, xmin, xmax, umin, umax): """ generate matrices of inequalities constrints return G, h """ G = np.zeros((0, (nx + nu) * N)) h = np.zeros((0, 1)) if umax is not None: tG = np.hstack([np.eye(N * nu), np.zeros((N * nu, nx * N))]) th = np.kron(np.ones((N * nu, 1)), umax) G = np.vstack([G, tG]) h = np.vstack([h, th]) if umin is not None: tG = np.hstack([np.eye(N * nu) * -1.0, np.zeros((N * nu, nx * N))]) th = np.kron(np.ones((N, 1)), umin * -1.0) G = np.vstack([G, tG]) h = np.vstack([h, th]) if xmax is not None: tG = np.hstack([np.zeros((N * nx, nu * N)), np.eye(N * nx)]) th = np.kron(np.ones((N, 1)), xmax) G = np.vstack([G, tG]) h = np.vstack([h, th]) if xmin is not None: tG = np.hstack([np.zeros((N * nx, nu * N)), np.eye(N * nx) * -1.0]) th = np.kron(np.ones((N, 1)), xmin * -1.0) G = np.vstack([G, tG]) h = np.vstack([h, th]) return G, h def opt_mpc_with_state_constr(A, B, N, Q, R, P, x0, xmin=None, xmax=None, umax=None, umin=None): """ optimize MPC problem with state and (or) input constraints return x: state u: input """ (nx, nu) = B.shape H = scipy.linalg.block_diag(np.kron(np.eye(N), R), np.kron( np.eye(N - 1), Q), np.eye(P.shape[0])) # print(H) # calc Ae Aeu = np.kron(np.eye(N), -B) # print(Aeu) # print(Aeu.shape) Aex = scipy.linalg.block_diag(np.eye((N - 1) * nx), P) Aex -= np.kron(np.diag([1.0] * (N - 1), k=-1), A) # print(Aex) # print(Aex.shape) Ae = np.hstack((Aeu, Aex)) # print(Ae.shape) # calc be be = np.vstack((A, np.zeros(((N - 1) * nx, nx)))) * x0 # print(be) np.set_printoptions(precision=3) # print(H.shape) # print(H) # print(np.zeros((N * nx + N * nu, 1))) # print(Ae) # print(be) # === optimization === P = matrix(H) q = matrix(np.zeros((N * nx + N * nu, 1))) A = matrix(Ae) b = matrix(be) if umax is None and umin is None: sol = cvxopt.solvers.qp(P, q, A=A, b=b) else: G, h = generate_inequalities_constraints_mat( N, nx, nu, xmin, xmax, umin, umax) # print(G) # print(h) G = matrix(G) h = matrix(h) sol = cvxopt.solvers.qp(P, q, G, h, A=A, b=b) # print(sol) fx = np.matrix(sol["x"]) # print(fx) u = fx[0:N * nu].reshape(N, nu).T x = fx[-N * nx:].reshape(N, nx).T x = np.hstack((x0, x)) # print(x) # print(u) return x, u def test1(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) # print(A) B = np.matrix([[-1.0], [2.0]]) # print(B) (nx, nu) = B.shape # print(nx, nu) N = 10 # number of horizon Q = np.eye(nx) # print(Q) R = np.eye(nu) # print(R) P = np.eye(nx) # print(P) # umax = 0.7 x0 = np.matrix([[1.0], [2.0]]) # init state x, u = use_modeling_tool(A, B, N, Q, R, P, x0) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru = np.array(u[0, :]).flatten() if DEBUG_: flg, ax = plt.subplots(1) plt.plot(rx1, label="x1") plt.plot(rx2, label="x2") plt.plot(ru, label="u") plt.legend() plt.grid(True) x, u = opt_mpc_with_input_const(A, B, N, Q, R, P, x0) x1 = np.array(x[:, 0]).flatten() x2 = np.array(x[:, 1]).flatten() u = np.array(u).flatten() if DEBUG_: # flg, ax = plt.subplots(1) plt.plot(x1, '*r', label="x1") plt.plot(x2, '*b', label="x2") plt.plot(u, '*k', label="u") plt.legend() plt.grid(True) plt.show() test_output_check(rx1, rx2, ru, x1, x2, u) def test2(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) B = np.matrix([[-1.0], [2.0]]) (nx, nu) = B.shape N = 10 # number of horizon Q = np.eye(nx) R = np.eye(nu) P = np.eye(nx) umax = 0.7 umin = -0.7 x0 = np.matrix([[1.0], [2.0]]) # init state x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umax=umax, umin=umin) # x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umin=umin) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru = np.array(u[0, :]).flatten() if DEBUG_: flg, ax = plt.subplots(1) plt.plot(rx1, label="x1") plt.plot(rx2, label="x2") plt.plot(ru, label="u") plt.legend() plt.grid(True) x, u = opt_mpc_with_input_const(A, B, N, Q, R, P, x0, umax=umax, umin=umin) x1 = np.array(x[:, 0]).flatten() x2 = np.array(x[:, 1]).flatten() u = np.array(u).flatten() if DEBUG_: # flg, ax = plt.subplots(1) plt.plot(x1, '*r', label="x1") plt.plot(x2, '*b', label="x2") plt.plot(u, '*k', label="u") plt.legend() plt.grid(True) plt.show() test_output_check(rx1, rx2, ru, x1, x2, u) def test3(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) B = np.matrix([[-1.0], [2.0]]) (nx, nu) = B.shape N = 10 # number of horizon Q = np.eye(nx) R = np.eye(nu) P = np.eye(nx) umax = 0.7 umin = -0.7 x0 = np.matrix([[1.0], [2.0]]) # init state x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umax=umax, umin=umin) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru = np.array(u[0, :]).flatten() if DEBUG_: flg, ax = plt.subplots(1) plt.plot(rx1, label="x1") plt.plot(rx2, label="x2") plt.plot(ru, label="u") plt.legend() plt.grid(True) x, u = opt_mpc_with_state_constr( A, B, N, Q, R, P, x0, umax=umax, umin=umin) x1 = np.array(x[0, :]).flatten() x2 = np.array(x[1, :]).flatten() u = np.array(u).flatten() if DEBUG_: # flg, ax = plt.subplots(1) plt.plot(x1, '*r', label="x1") plt.plot(x2, '*b', label="x2") plt.plot(u, '*k', label="u") plt.legend() plt.grid(True) plt.show() test_output_check(rx1, rx2, ru, x1, x2, u) def test4(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) B = np.matrix([[-1.0], [2.0]]) (nx, nu) = B.shape N = 10 # number of horizon Q = np.eye(nx) R = np.eye(nu) P = np.eye(nx) x0 = np.matrix([[1.0], [2.0]]) # init state x, u = use_modeling_tool(A, B, N, Q, R, P, x0) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru = np.array(u[0, :]).flatten() if DEBUG_: flg, ax = plt.subplots(1) plt.plot(rx1, label="x1") plt.plot(rx2, label="x2") plt.plot(ru, label="u") plt.legend() plt.grid(True) x, u = opt_mpc_with_state_constr(A, B, N, Q, R, P, x0) x1 = np.array(x[0, :]).flatten() x2 = np.array(x[1, :]).flatten() u = np.array(u).flatten() if DEBUG_: # flg, ax = plt.subplots(1) plt.plot(x1, '*r', label="x1") plt.plot(x2, '*b', label="x2") plt.plot(u, '*k', label="u") plt.legend() plt.grid(True) test_output_check(rx1, rx2, ru, x1, x2, u) if DEBUG_: plt.show() def test5(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) B = np.matrix([[-1.0], [2.0]]) (nx, nu) = B.shape N = 10 # number of horizon Q = np.eye(nx) R = np.eye(nu) P = np.eye(nx) x0 = np.matrix([[1.0], [2.0]]) # init state umax = 0.7 x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umax=umax) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru = np.array(u[0, :]).flatten() if DEBUG_: flg, ax = plt.subplots(1) plt.plot(rx1, label="x1") plt.plot(rx2, label="x2") plt.plot(ru, label="u") plt.legend() plt.grid(True) x, u = opt_mpc_with_state_constr(A, B, N, Q, R, P, x0, umax=umax) x1 = np.array(x[0, :]).flatten() x2 = np.array(x[1, :]).flatten() u = np.array(u).flatten() if DEBUG_: # flg, ax = plt.subplots(1) plt.plot(x1, '*r', label="x1") plt.plot(x2, '*b', label="x2") plt.plot(u, '*k', label="u") plt.legend() plt.grid(True) plt.show() test_output_check(rx1, rx2, ru, x1, x2, u) def test6(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) B = np.matrix([[-1.0], [2.0]]) (nx, nu) = B.shape N = 10 # number of horizon Q = np.eye(nx) R = np.eye(nu) P = np.eye(nx) x0 = np.matrix([[1.0], [2.0]]) # init state umax = 0.7 umin = -0.7 x0 = np.matrix([[1.0], [2.0]]) # init state xmin = np.matrix([[-3.5], [-0.5]]) # state constraints xmax = np.matrix([[3.5], [2.0]]) # state constraints x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umax=umax, umin=umin, xmin=xmin, xmax=xmax) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru = np.array(u[0, :]).flatten() if DEBUG_: flg, ax = plt.subplots(1) plt.plot(rx1, label="x1") plt.plot(rx2, label="x2") plt.plot(ru, label="u") plt.legend() plt.grid(True) x, u = opt_mpc_with_state_constr( A, B, N, Q, R, P, x0, umax=umax, umin=umin, xmin=xmin, xmax=xmax) x1 = np.array(x[0, :]).flatten() x2 = np.array(x[1, :]).flatten() u = np.array(u).flatten() if DEBUG_: # flg, ax = plt.subplots(1) plt.plot(x1, '*r', label="x1") plt.plot(x2, '*b', label="x2") plt.plot(u, '*k', label="u") plt.legend() plt.grid(True) plt.show() test_output_check(rx1, rx2, ru, x1, x2, u) def test7(): print("start!!") A = np.matrix([[0.8, 1.0], [0, 0.9]]) B = np.matrix([[-1.0], [2.0]]) (nx, nu) = B.shape N = 3 # number of horizon Q = np.eye(nx) R = np.eye(nu) P = np.eye(nx) x0 = np.matrix([[1.0], [2.0]]) # init state umax = 0.7 umin = -0.7 x0 = np.matrix([[1.0], [2.0]]) # init state # xmin = np.matrix([[-3.5], [-0.5]]) # state constraints # xmax = np.matrix([[3.5], [2.0]]) # state constraints x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umax=umax, umin=umin) # x, u = use_modeling_tool(A, B, N, Q, R, P, x0, umax=umax, umin=umin, xmin=xmin, xmax=xmax) # x, u = use_modeling_tool(A, B, N, Q, R, P, x0) rx1 = np.array(x[0, :]).flatten() rx2 = np.array(x[1, :]).flatten() ru =
np.array(u[0, :])
numpy.array
from __future__ import division, print_function import vtk import numpy as np from vtkplotter import settings from vtk.util.numpy_support import numpy_to_vtk import vtkplotter.utils as utils import vtkplotter.colors as colors from vtkplotter.actors import Actor, Assembly import vtkplotter.docs as docs __doc__ = ( """ Submodule to generate basic geometric shapes. """ + docs._defs ) __all__ = [ "Point", "Points", "Line", "Tube", "Lines", "Ribbon", "Arrow", "Arrows", "FlatArrow", "Polygon", "Rectangle", "Disc", "Sphere", "Spheres", "Earth", "Ellipsoid", "Grid", "Plane", "Box", "Cube", "Spring", "Cylinder", "Cone", "Pyramid", "Torus", "Paraboloid", "Hyperboloid", "Text", "Latex", "Glyph", "Tensors", ] ######################################################################## def Point(pos=(0, 0, 0), r=12, c="red", alpha=1): """Create a simple point actor.""" if len(pos) == 2: pos = (pos[0], pos[1], 0) actor = Points([pos], r, c, alpha) return actor def Points(plist, r=5, c="gray", alpha=1): """ Build a point ``Actor`` for a list of 2D/3D points. Both shapes (N, 3) or (3, N) are accepted as input - if N>3. For very large point clouds a list of colors and alpha can be assigned to each point in the form `c=[(R,G,B,A), ... ]` where `0 <= R < 256, ... 0 <= A < 256`. :param float r: point radius. :param c: color name, number, or list of [R,G,B] colors of same length as plist. :type c: int, str, list :param float alpha: transparency in range [0,1]. |manypoints.py|_ |lorenz.py|_ |lorenz| """ ################ interpret the input format: n = len(plist) if n == 0: return None elif n == 3: # assume plist is in the format [all_x, all_y, all_z] if utils.isSequence(plist[0]) and len(plist[0]) > 3: plist = tuple(zip(plist[0], plist[1], plist[2])) elif n == 2: # assume plist is in the format [all_x, all_y, 0] if utils.isSequence(plist[0]) and len(plist[0]) > 3: plist = tuple(zip(plist[0], plist[1], [0] * len(plist[0]))) if len(plist[0]) == 2: #make it 3d plist = np.c_[np.array(plist), np.zeros(len(plist))] ################ if ( (utils.isSequence(c) and (len(c) > 3 or len(c[0]) == 4)) or utils.isSequence(alpha) ): actor = _PointsColors(plist, r, c, alpha) else: n = len(plist) # refresh sourcePoints = vtk.vtkPoints() sourceVertices = vtk.vtkCellArray() is3d = len(plist[0]) > 2 if is3d: # its faster for pt in plist: aid = sourcePoints.InsertNextPoint(pt) sourceVertices.InsertNextCell(1) sourceVertices.InsertCellPoint(aid) else: for pt in plist: aid = sourcePoints.InsertNextPoint(pt[0], pt[1], 0) sourceVertices.InsertNextCell(1) sourceVertices.InsertCellPoint(aid) pd = vtk.vtkPolyData() pd.SetPoints(sourcePoints) pd.SetVerts(sourceVertices) if n == 1: # passing just one point pd.GetPoints().SetPoint(0, [0, 0, 0]) else: pd.GetPoints().SetData(numpy_to_vtk(plist, deep=True)) actor = Actor(pd, c, alpha) actor.GetProperty().SetPointSize(r) if n == 1: actor.SetPosition(plist[0]) settings.collectable_actors.append(actor) return actor def _PointsColors(plist, r, cols, alpha): n = len(plist) if n != len(cols): colors.printc("~times mismatch in Points() colors", n, len(cols), c=1) raise RuntimeError() src = vtk.vtkPointSource() src.SetNumberOfPoints(n) src.Update() vgf = vtk.vtkVertexGlyphFilter() vgf.SetInputData(src.GetOutput()) vgf.Update() pd = vgf.GetOutput() pd.GetPoints().SetData(numpy_to_vtk(plist, deep=True)) ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(4) ucols.SetName("pointsRGBA") if utils.isSequence(alpha): if len(alpha) != n: colors.printc("~times mismatch in Points() alphas", n, len(alpha), c=1) raise RuntimeError() alphas = alpha alpha = 1 else: alphas = (alpha,) * n if utils.isSequence(cols): c = None if len(cols[0]) == 4: for i in range(n): # FAST rc,gc,bc,ac = cols[i] ucols.InsertNextTuple4(rc, gc, bc, ac) else: for i in range(n): # SLOW rc,gc,bc = colors.getColor(cols[i]) ucols.InsertNextTuple4(rc*255, gc*255, bc*255, alphas[i]*255) else: c = cols pd.GetPointData().SetScalars(ucols) actor = Actor(pd, c, alpha) actor.mapper.ScalarVisibilityOn() actor.GetProperty().SetInterpolationToFlat() actor.GetProperty().SetPointSize(r) return actor def Glyph(actor, glyphObj, orientationArray=None, scaleByVectorSize=False, tol=0, c=None, alpha=1): """ At each vertex of a mesh, another mesh - a `'glyph'` - is shown with various orientation options and coloring. Color can be specfied as a colormap which maps the size of the orientation vectors in `orientationArray`. :param orientationArray: list of vectors, ``vtkAbstractArray`` or the name of an already existing points array. :type orientationArray: list, str, vtkAbstractArray :param bool scaleByVectorSize: glyph mesh is scaled by the size of the vectors. :param float tol: set a minimum separation between two close glyphs (not compatible with `orientationArray` being a list). |glyphs.py|_ |glyphs_arrows.py|_ |glyphs| |glyphs_arrows| """ cmap = None # user passing a color map to map orientationArray sizes if c in list(colors._mapscales.cmap_d.keys()): cmap = c c = None if tol: actor = actor.clone().clean(tol) poly = actor.polydata() # user is passing an array of point colors if utils.isSequence(c) and len(c) > 3: ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("glyphRGB") for col in c: cl = colors.getColor(col) ucols.InsertNextTuple3(cl[0]*255, cl[1]*255, cl[2]*255) poly.GetPointData().SetScalars(ucols) c = None if isinstance(glyphObj, Actor): glyphObj = glyphObj.clean().polydata() gly = vtk.vtkGlyph3D() gly.SetInputData(poly) gly.SetSourceData(glyphObj) gly.SetColorModeToColorByScalar() if orientationArray is not None: gly.OrientOn() gly.SetScaleFactor(1) if scaleByVectorSize: gly.SetScaleModeToScaleByVector() else: gly.SetScaleModeToDataScalingOff() if isinstance(orientationArray, str): if orientationArray.lower() == "normals": gly.SetVectorModeToUseNormal() else: # passing a name gly.SetInputArrayToProcess(0, 0, 0, 0, orientationArray) gly.SetVectorModeToUseVector() elif isinstance(orientationArray, vtk.vtkAbstractArray): poly.GetPointData().AddArray(orientationArray) poly.GetPointData().SetActiveVectors("glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") gly.SetVectorModeToUseVector() elif utils.isSequence(orientationArray) and not tol: # passing a list actor.addPointVectors(orientationArray, "glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") if cmap: gly.SetColorModeToColorByVector() else: gly.SetColorModeToColorByScalar() gly.Update() pd = gly.GetOutput() gactor = Actor(pd, c, alpha) if cmap: lut = vtk.vtkLookupTable() lut.SetNumberOfTableValues(512) lut.Build() for i in range(512): r, g, b = colors.colorMap(i, cmap, 0, 512) lut.SetTableValue(i, r, g, b, 1) gactor.mapper.SetLookupTable(lut) gactor.mapper.ScalarVisibilityOn() gactor.mapper.SetScalarModeToUsePointData() rng = pd.GetPointData().GetScalars().GetRange() gactor.mapper.SetScalarRange(rng[0], rng[1]) gactor.GetProperty().SetInterpolationToFlat() settings.collectable_actors.append(gactor) return gactor def Tensors(domain, source='ellipsoid', useEigenValues=True, isSymmetric=True, threeAxes=False, scale=1, maxScale=None, length=None, c=None, alpha=1): """Geometric representation of tensors defined on a domain or set of points. Tensors can be scaled and/or rotated according to the source at eache input point. Scaling and rotation is controlled by the eigenvalues/eigenvectors of the symmetrical part of the tensor as follows: For each tensor, the eigenvalues (and associated eigenvectors) are sorted to determine the major, medium, and minor eigenvalues/eigenvectors. The eigenvalue decomposition only makes sense for symmetric tensors, hence the need to only consider the symmetric part of the tensor, which is 1/2*(T+T.transposed()). :param str source: preset type of source shape ['ellipsoid', 'cylinder', 'cube' or any specified ``Actor``] :param bool useEigenValues: color source glyph using the eigenvalues or by scalars. :param bool threeAxes: if `False` scale the source in the x-direction, the medium in the y-direction, and the minor in the z-direction. Then, the source is rotated so that the glyph's local x-axis lies along the major eigenvector, y-axis along the medium eigenvector, and z-axis along the minor. If `True` three sources are produced, each of them oriented along an eigenvector and scaled according to the corresponding eigenvector. :param bool isSymmetric: If `True` each source glyph is mirrored (2 or 6 glyphs will be produced). The x-axis of the source glyph will correspond to the eigenvector on output. :param float length: distance from the origin to the tip of the source glyph along the x-axis :param float scale: scaling factor of the source glyph. :param float maxScale: clamp scaling at this factor. |tensors| |tensors.py|_ """ if 'ellip' in source: src = vtk.vtkSphereSource() src.SetPhiResolution(24) src.SetThetaResolution(12) elif 'cyl' in source: src = vtk.vtkCylinderSource() src.SetResolution(48) src.CappingOn() elif source == 'cube': src = vtk.vtkCubeSource() else: src = source.normalize().polydata(False) src.Update() tg = vtk.vtkTensorGlyph() tg.SetInputData(domain.GetMapper().GetInput()) tg.SetSourceData(src.GetOutput()) if c is None: tg.ColorGlyphsOn() else: tg.ColorGlyphsOff() tg.SetSymmetric(int(isSymmetric)) if length is not None: tg.SetLength(length) if useEigenValues: tg.ExtractEigenvaluesOn() tg.SetColorModeToEigenvalues() else: tg.SetColorModeToScalars() tg.SetThreeGlyphs(threeAxes) tg.ScalingOn() tg.SetScaleFactor(scale) if maxScale is None: tg.ClampScalingOn() maxScale = scale*10 tg.SetMaxScaleFactor(maxScale) tg.Update() tgn = vtk.vtkPolyDataNormals() tgn.SetInputData(tg.GetOutput()) tgn.Update() return Actor(tgn.GetOutput(), c, alpha) def Line(p0, p1=None, c="r", alpha=1, lw=1, dotted=False, res=None): """ Build the line segment between points `p0` and `p1`. If `p0` is a list of points returns the line connecting them. A 2D set of coords can also be passed as p0=[x..], p1=[y..]. :param c: color name, number, or list of [R,G,B] colors. :type c: int, str, list :param float alpha: transparency in range [0,1]. :param lw: line width. :param bool dotted: draw a dotted line :param int res: number of intermediate points in the segment """ # detect if user is passing a 2D ist of points as p0=xlist, p1=ylist: if len(p0) > 3: if not utils.isSequence(p0[0]) and not utils.isSequence(p1[0]) and len(p0)==len(p1): # assume input is 2D xlist, ylist p0 = list(zip(p0, p1)) p1 = None # detect if user is passing a list of points: if utils.isSequence(p0[0]): ppoints = vtk.vtkPoints() # Generate the polyline dim = len((p0[0])) if dim == 2: for i, p in enumerate(p0): ppoints.InsertPoint(i, p[0], p[1], 0) else: ppoints.SetData(numpy_to_vtk(p0, deep=True)) lines = vtk.vtkCellArray() # Create the polyline. lines.InsertNextCell(len(p0)) for i in range(len(p0)): lines.InsertCellPoint(i) poly = vtk.vtkPolyData() poly.SetPoints(ppoints) poly.SetLines(lines) else: # or just 2 points to link lineSource = vtk.vtkLineSource() lineSource.SetPoint1(p0) lineSource.SetPoint2(p1) if res: lineSource.SetResolution(res) lineSource.Update() poly = lineSource.GetOutput() actor = Actor(poly, c, alpha) actor.GetProperty().SetLineWidth(lw) if dotted: actor.GetProperty().SetLineStipplePattern(0xF0F0) actor.GetProperty().SetLineStippleRepeatFactor(1) actor.base = np.array(p0) actor.top = np.array(p1) settings.collectable_actors.append(actor) return actor def Lines(startPoints, endPoints=None, c=None, alpha=1, lw=1, dotted=False, scale=1): """ Build the line segments between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. :param float scale: apply a rescaling factor to the lengths. |lines| .. hint:: |fitspheres2.py|_ """ if endPoints is not None: startPoints = list(zip(startPoints, endPoints)) polylns = vtk.vtkAppendPolyData() for twopts in startPoints: lineSource = vtk.vtkLineSource() lineSource.SetPoint1(twopts[0]) if scale != 1: vers = (np.array(twopts[1]) - twopts[0]) * scale pt2 = np.array(twopts[0]) + vers else: pt2 = twopts[1] lineSource.SetPoint2(pt2) polylns.AddInputConnection(lineSource.GetOutputPort()) polylns.Update() actor = Actor(polylns.GetOutput(), c, alpha) actor.GetProperty().SetLineWidth(lw) if dotted: actor.GetProperty().SetLineStipplePattern(0xF0F0) actor.GetProperty().SetLineStippleRepeatFactor(1) settings.collectable_actors.append(actor) return actor def Tube(points, r=1, c="r", alpha=1, res=12): """Build a tube along the line defined by a set of points. :param r: constant radius or list of radii. :type r: float, list :param c: constant color or list of colors for each point. :type c: float, list |ribbon.py|_ |tube.py|_ |ribbon| |tube| """ ppoints = vtk.vtkPoints() # Generate the polyline ppoints.SetData(numpy_to_vtk(points, deep=True)) lines = vtk.vtkCellArray() lines.InsertNextCell(len(points)) for i in range(len(points)): lines.InsertCellPoint(i) polyln = vtk.vtkPolyData() polyln.SetPoints(ppoints) polyln.SetLines(lines) tuf = vtk.vtkTubeFilter() tuf.CappingOn() tuf.SetNumberOfSides(res) tuf.SetInputData(polyln) if utils.isSequence(r): arr = numpy_to_vtk(np.ascontiguousarray(r), deep=True) arr.SetName("TubeRadius") polyln.GetPointData().AddArray(arr) polyln.GetPointData().SetActiveScalars("TubeRadius") tuf.SetVaryRadiusToVaryRadiusByAbsoluteScalar() else: tuf.SetRadius(r) usingColScals = False if utils.isSequence(c) and len(c) != 3: usingColScals = True cc = vtk.vtkUnsignedCharArray() cc.SetName("TubeColors") cc.SetNumberOfComponents(3) cc.SetNumberOfTuples(len(c)) for i, ic in enumerate(c): r, g, b = colors.getColor(ic) cc.InsertTuple3(i, int(255 * r), int(255 * g), int(255 * b)) polyln.GetPointData().AddArray(cc) c = None tuf.Update() polytu = tuf.GetOutput() actor = Actor(polytu, c, alpha, computeNormals=0) actor.phong() if usingColScals: actor.mapper.SetScalarModeToUsePointFieldData() actor.mapper.ScalarVisibilityOn() actor.mapper.SelectColorArray("TubeColors") actor.mapper.Modified() actor.base = np.array(points[0]) actor.top = np.array(points[-1]) settings.collectable_actors.append(actor) return actor def Ribbon(line1, line2, c="m", alpha=1, res=(200, 5)): """Connect two lines to generate the surface inbetween. |ribbon| |ribbon.py|_ """ if isinstance(line1, Actor): line1 = line1.coordinates() if isinstance(line2, Actor): line2 = line2.coordinates() ppoints1 = vtk.vtkPoints() # Generate the polyline1 ppoints1.SetData(numpy_to_vtk(line1, deep=True)) lines1 = vtk.vtkCellArray() lines1.InsertNextCell(len(line1)) for i in range(len(line1)): lines1.InsertCellPoint(i) poly1 = vtk.vtkPolyData() poly1.SetPoints(ppoints1) poly1.SetLines(lines1) ppoints2 = vtk.vtkPoints() # Generate the polyline2 ppoints2.SetData(numpy_to_vtk(line2, deep=True)) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(len(line2)) for i in range(len(line2)): lines2.InsertCellPoint(i) poly2 = vtk.vtkPolyData() poly2.SetPoints(ppoints2) poly2.SetLines(lines2) # build the lines lines1 = vtk.vtkCellArray() lines1.InsertNextCell(poly1.GetNumberOfPoints()) for i in range(poly1.GetNumberOfPoints()): lines1.InsertCellPoint(i) polygon1 = vtk.vtkPolyData() polygon1.SetPoints(ppoints1) polygon1.SetLines(lines1) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(poly2.GetNumberOfPoints()) for i in range(poly2.GetNumberOfPoints()): lines2.InsertCellPoint(i) polygon2 = vtk.vtkPolyData() polygon2.SetPoints(ppoints2) polygon2.SetLines(lines2) mergedPolyData = vtk.vtkAppendPolyData() mergedPolyData.AddInputData(polygon1) mergedPolyData.AddInputData(polygon2) mergedPolyData.Update() rsf = vtk.vtkRuledSurfaceFilter() rsf.CloseSurfaceOff() rsf.SetRuledModeToResample() rsf.SetResolution(res[0], res[1]) rsf.SetInputData(mergedPolyData.GetOutput()) rsf.Update() actor = Actor(rsf.GetOutput(), c=c, alpha=alpha) settings.collectable_actors.append(actor) return actor def FlatArrow(line1, line2, c="m", alpha=1, tipSize=1, tipWidth=1): """Build a 2D arrow in 3D space by joining two close lines. |flatarrow| |flatarrow.py|_ """ if isinstance(line1, Actor): line1 = line1.coordinates() if isinstance(line2, Actor): line2 = line2.coordinates() sm1, sm2 = np.array(line1[-1]), np.array(line2[-1]) v = (sm1-sm2)/3*tipWidth p1 = sm1+v p2 = sm2-v pm1 = (sm1+sm2)/2 pm2 = (np.array(line1[-2])+np.array(line2[-2]))/2 pm12 = pm1-pm2 tip = pm12/np.linalg.norm(pm12)*
np.linalg.norm(v)
numpy.linalg.norm
import numpy from cryspy import file_to_globaln from cryspy.A_functions_base.function_1_matrices import calc_chi_sq f_name = "main.rcif" mem_obj = file_to_globaln(f_name) mem_obj.calc_fr() density_point = mem_obj.density_point diffrn = mem_obj.diffrn_exp_mnbite diffrn_refln = diffrn.diffrn_refln # Analytical Derivatives fr_e = numpy.array(diffrn_refln.fr, dtype=float) fr_s = numpy.array(diffrn_refln.fr_sigma, dtype=float) crystal = mem_obj.crystals()[0] l_diffrn = mem_obj.experiments() mem_parameters = mem_obj.mem_parameters density_point.volume_unit_cell = crystal.cell.volume density_point.number_unit_cell = \ mem_parameters.points_a * mem_parameters.points_b * \ mem_parameters.points_c chi_iso_ferro = mem_parameters.chi_ferro chi_iso_antiferro = mem_parameters.chi_antiferro points_a = mem_parameters.points_a points_b = mem_parameters.points_b points_c = mem_parameters.points_c prior_density = mem_parameters.prior_density flag_two_channel = mem_parameters.method == "2channel" gof_desired = mem_parameters.gof_desired cell = crystal.cell space_group = crystal.space_group atom_site = crystal.atom_site space_group_symop = space_group.full_space_group_symop atom_site_susceptibility = crystal.atom_site_susceptibility l_magnetic_labes = atom_site_susceptibility.label l_f_nucl, l_v_2d_i, l_fr_e, l_fr_s = [], [], [], [] total_peaks = 0 for diffrn in l_diffrn: diffrn_orient_matrix = diffrn.diffrn_orient_matrix e_up = diffrn_orient_matrix.calc_e_up() setup = diffrn.setup field = float(setup.field) h_loc = (field*e_up[0], field*e_up[1], field*e_up[2]) diffrn_refln = diffrn.diffrn_refln ind_h = numpy.array(diffrn_refln.index_h, dtype=int) ind_k = numpy.array(diffrn_refln.index_k, dtype=int) ind_l = numpy.array(diffrn_refln.index_l, dtype=int) total_peaks += ind_h.size hkl = (ind_h, ind_k, ind_l) fr_e = numpy.array(diffrn_refln.fr, dtype=float) fr_s = numpy.array(diffrn_refln.fr_sigma, dtype=float) v_hkl_perp_2d_i, v_b_ferro, v_b_antiferro = \ density_point.calc_factor_in_front_of_density_for_fm_perp( hkl, space_group_symop, cell, atom_site_susceptibility, h_loc, chi_iso_ferro=chi_iso_ferro, chi_iso_antiferro=chi_iso_antiferro, flag_two_channel=flag_two_channel) f_nucl = crystal.calc_f_nucl(*hkl) l_f_nucl.append(f_nucl) l_v_2d_i.append((v_hkl_perp_2d_i, v_b_ferro, v_b_antiferro)) l_fr_e.append(fr_e) l_fr_s.append(fr_s) def temp_func(numpy_den=None): l_chi_sq, l_der_chi_sq = [], [] l_der_chi_sq_f, l_der_chi_sq_a = [], [] for diffrn, f_nucl, v_2d_i, fr_e, fr_s in \ zip(l_diffrn, l_f_nucl, l_v_2d_i, l_fr_e, l_fr_s): f_m_perp, delta_f_m_perp, delta_f_m_perp_f, delta_f_m_perp_a = \ density_point.calc_fm(*v_2d_i) fr_m, delta_fr_m = diffrn.calc_fr(cell, f_nucl, f_m_perp, delta_f_nucl=None, delta_f_m_perp=delta_f_m_perp) delta_fr_m_f = diffrn.calc_fr(cell, f_nucl, f_m_perp, delta_f_nucl=None, delta_f_m_perp=delta_f_m_perp_f)[1] delta_fr_m_a = diffrn.calc_fr(cell, f_nucl, f_m_perp, delta_f_nucl=None, delta_f_m_perp=delta_f_m_perp_a)[1] diffrn.diffrn_refln.numpy_fr_calc = fr_m chi_sq, der_chi_sq = calc_chi_sq(fr_e, fr_s, fr_m, delta_fr_m) der_chi_sq_f = calc_chi_sq(fr_e, fr_s, fr_m, delta_fr_m_f)[1] der_chi_sq_a = calc_chi_sq(fr_e, fr_s, fr_m, delta_fr_m_a)[1] l_chi_sq.append(chi_sq) l_der_chi_sq.append(der_chi_sq) l_der_chi_sq_f.append(der_chi_sq_f) l_der_chi_sq_a.append(der_chi_sq_a) # print(" ".join([f" {val:10.2f}" for val in l_chi_sq])) return sum(l_chi_sq), sum(l_der_chi_sq), sum(l_der_chi_sq_f), \ sum(l_der_chi_sq_a) chi_sq, delta_chi_sq, delta_chi_sq_f, delta_chi_sq_a = temp_func() print("lengths: ", len(delta_chi_sq), len(density_point.items)) # fr_m = numpy.array(diffrn_refln.fr_calc, dtype=float) # # delta_fr_m = # # chi_sq_0, der_chi_sq = calc_chi_sq(fr_e, fr_s, fr_m, delta_fr_m) # Numerical Derivatives delta_den = 1e-5 atom_label = "Mn1" print("indexes_xyz numerical_deriv analytical_deriv") for item, der_anal, der_anal_f, der_anal_a in zip(density_point.items, delta_chi_sq, delta_chi_sq_f, delta_chi_sq_a): if item.basin_atom_label == atom_label: # Minus delta den_orig = float(item.density) item.density = den_orig - delta_den den_minus = item.density mem_obj.calc_fr() fr_m = numpy.array(diffrn_refln.fr_calc, dtype=float) chi_sq_minus = (numpy.square((fr_e-fr_m)/fr_s)).sum() # Plus delta item.density = den_orig + delta_den den_plus = item.density mem_obj.calc_fr() fr_m = numpy.array(diffrn_refln.fr_calc, dtype=float) chi_sq_plus = (numpy.square((fr_e-fr_m)/fr_s)).sum() delta_chi_sq = (chi_sq_plus-chi_sq_minus)/(den_plus-den_minus) print(f"{item.index_x:3}{item.index_y:3}{item.index_z:3} {delta_chi_sq:12.3f} {der_anal:12.3f}") if abs(der_anal-delta_chi_sq) > 0.002: print("ALARM "+50*"*") item.density = den_orig # Minus delta den_orig = float(item.density_ferro) item.density_ferro = den_orig - delta_den den_minus = item.density_ferro mem_obj.calc_fr() fr_m = numpy.array(diffrn_refln.fr_calc, dtype=float) chi_sq_minus = (numpy.square((fr_e-fr_m)/fr_s)).sum() # Plus delta item.density_ferro = den_orig + delta_den den_plus = item.density_ferro mem_obj.calc_fr() fr_m = numpy.array(diffrn_refln.fr_calc, dtype=float) chi_sq_plus = (numpy.square((fr_e-fr_m)/fr_s)).sum() delta_chi_sq = (chi_sq_plus-chi_sq_minus)/(den_plus-den_minus) print(f" {delta_chi_sq:12.3f} {der_anal_f:12.3f} - ferro") if abs(der_anal_f-delta_chi_sq) > 0.002: print("ALARM "+50*"*") item.density_ferro = den_orig # Minus delta den_orig = float(item.density_antiferro) item.density_antiferro = den_orig - delta_den den_minus = item.density_antiferro mem_obj.calc_fr() fr_m = numpy.array(diffrn_refln.fr_calc, dtype=float) chi_sq_minus = (numpy.square((fr_e-fr_m)/fr_s)).sum() # Plus delta item.density_antiferro = den_orig + delta_den den_plus = item.density_antiferro mem_obj.calc_fr() fr_m =
numpy.array(diffrn_refln.fr_calc, dtype=float)
numpy.array
""" Volatility processes for ARCH model estimation. All volatility processes must inherit from :class:`VolatilityProcess` and provide the same methods with the same inputs. """ from __future__ import annotations from abc import ABCMeta, abstractmethod import itertools import operator from typing import TYPE_CHECKING, List, Optional, Sequence, Tuple, Union, cast from warnings import warn import numpy as np from numpy.random import RandomState from scipy.special import gammaln from arch.typing import ( ArrayLike1D, Float64Array, ForecastingMethod, Int32Array, RNGType, ) from arch.univariate.distribution import Normal from arch.utility.array import AbstractDocStringInheritor, ensure1d from arch.utility.exceptions import InitialValueWarning, initial_value_warning if TYPE_CHECKING: from arch.univariate import recursions_python as rec else: try: from arch.univariate import recursions as rec except ImportError: from arch.univariate import recursions_python as rec __all__ = [ "GARCH", "ARCH", "HARCH", "ConstantVariance", "EWMAVariance", "RiskMetrics2006", "EGARCH", "FIGARCH", "FixedVariance", "BootstrapRng", "MIDASHyperbolic", "VolatilityProcess", ] def _common_names(p: int, o: int, q: int) -> List[str]: names = ["omega"] names.extend(["alpha[" + str(i + 1) + "]" for i in range(p)]) names.extend(["gamma[" + str(i + 1) + "]" for i in range(o)]) names.extend(["beta[" + str(i + 1) + "]" for i in range(q)]) return names class BootstrapRng(object): """ Simple fake RNG used to transform bootstrap-based forecasting into a standard simulation forecasting problem Parameters ---------- std_resid : ndarray Array containing standardized residuals start : int Location of first forecast random_state : RandomState, optional NumPy RandomState instance """ def __init__( self, std_resid: Float64Array, start: int, random_state: Optional[RandomState] = None, ) -> None: if start <= 0 or start > std_resid.shape[0]: raise ValueError("start must be > 0 and <= len(std_resid).") self.std_resid: Float64Array = std_resid self.start: int = start self._index = start if random_state is None: self._random_state = RandomState() elif isinstance(random_state, RandomState): self._random_state = random_state else: raise TypeError("random_state must be a NumPy RandomState instance.") @property def random_state(self) -> RandomState: return self._random_state def rng(self) -> RNGType: def _rng(size: Union[int, Tuple[int, ...]]) -> Float64Array: if self._index >= self.std_resid.shape[0]: raise IndexError("not enough data points.") index = self._random_state.random_sample(size) int_index = np.floor((self._index + 1) * index) int_index = int_index.astype(np.int64) self._index += 1 return self.std_resid[int_index] return _rng def ewma_recursion( lam: float, resids: Float64Array, sigma2: Float64Array, nobs: int, backcast: float ) -> Float64Array: """ Compute variance recursion for EWMA/RiskMetrics Variance Parameters ---------- lam : float Smoothing parameter resids : ndarray Residuals to use in the recursion sigma2 : ndarray Conditional variances with same shape as resids nobs : int Length of resids backcast : float Value to use when initializing the recursion """ # Throw away bounds var_bounds = np.ones((nobs, 2)) * np.array([-1.0, 1.7e308]) rec.garch_recursion( np.array([0.0, 1.0 - lam, lam]), resids ** 2.0, resids, sigma2, 1, 0, 1, nobs, backcast, var_bounds, ) return sigma2 class VarianceForecast(object): _forecasts = None _forecast_paths = None def __init__( self, forecasts: Float64Array, forecast_paths: Optional[Float64Array] = None, shocks: Optional[Float64Array] = None, ) -> None: self._forecasts = forecasts self._forecast_paths = forecast_paths self._shocks = shocks @property def forecasts(self) -> Optional[Float64Array]: return self._forecasts @property def forecast_paths(self) -> Optional[Float64Array]: return self._forecast_paths @property def shocks(self) -> Optional[Float64Array]: return self._shocks class VolatilityProcess(metaclass=ABCMeta): """ Abstract base class for ARCH models. Allows the conditional mean model to be specified separately from the conditional variance, even though parameters are estimated jointly. """ _updatable: bool = True def __init__(self) -> None: self._num_params = 0 self._name = "" self.closed_form: bool = False self._normal = Normal() self._min_bootstrap_obs = 100 self._start = 0 self._stop = -1 self._volatility_updater: Optional[rec.VolatilityUpdater] = None def __str__(self) -> str: return self.name def __repr__(self) -> str: return self.__str__() + ", id: " + hex(id(self)) @property def name(self) -> str: """The name of the volatilty process""" return self._name @property def start(self) -> int: """Index to use to start variance subarray selection""" return self._start @start.setter def start(self, value: int) -> None: self._start = value @property def stop(self) -> int: """Index to use to stop variance subarray selection""" return self._stop @stop.setter def stop(self, value: int) -> None: self._stop = value @property def num_params(self) -> int: """The number of parameters in the model""" return self._num_params @property def updateable(self) -> bool: """Flag indicating that the volatility process supports update""" return self._updatable @property def volatility_updater(self) -> rec.VolatilityUpdater: """ Get the volatility updater associated with the volatility process Returns ------- VolatilityUpdater The updater class Raises ------ NotImplementedError If the process is not updateable """ if not self._updatable or self._volatility_updater is None: raise NotImplementedError("Subclasses may optionally implement") assert self._volatility_updater is not None return self._volatility_updater def update( self, index: int, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> float: """ Compute the variance for a single observation Parameters ---------- index : int The numerical index of the variance to compute variance_params : ndarray The variance model parameters resids : The residual array. Only uses ``resids[:index]`` when computing ``sigma2[index]`` sigma2 : ndarray The array containing the variances. Only uses ``sigma2[:index]`` when computing ``sigma2[index]``. The computed value is stored in ``sigma2[index]``. backcast : {float, ndarray} Value to use when initializing the recursion var_bounds : ndarray Array containing columns of lower and upper bounds Returns ------- float The variance computed for location ``index`` """ raise NotImplementedError("Subclasses may optionally implement") @abstractmethod def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: """ Verify the requested forecasting method as valid for the specification Parameters ---------- method : str Forecasting method horizon : int Forecast horizon Raises ------ NotImplementedError * If method is not known or not supported """ def _one_step_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, horizon: int, start_index: int, ) -> Tuple[Float64Array, Float64Array]: """ One-step ahead forecast Parameters ---------- parameters : ndarray Parameters required to forecast the volatility model resids : ndarray Residuals to use in the recursion backcast : float Value to use when initializing the recursion var_bounds : ndarray Array containing columns of lower and upper bounds horizon : int Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon]. Returns ------- sigma2 : ndarray t element array containing the one-step ahead forecasts forecasts : ndarray t by horizon array containing the one-step ahead forecasts in the first location """ t = resids.shape[0] _resids = np.concatenate((resids, [0])) _var_bounds = np.concatenate((var_bounds, [[0, np.inf]])) sigma2 = np.zeros(t + 1) self.compute_variance(parameters, _resids, sigma2, backcast, _var_bounds) forecasts = np.zeros((t - start_index, horizon)) forecasts[:, 0] = sigma2[start_index + 1 :] sigma2 = sigma2[:-1] return sigma2, forecasts @abstractmethod def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: """ Analytic multi-step volatility forecasts from the model Parameters ---------- parameters : ndarray Parameters required to forecast the volatility model resids : ndarray Residuals to use in the recursion backcast : float Value to use when initializing the recursion var_bounds : ndarray Array containing columns of lower and upper bounds start : int Index of the first observation to use as the starting point for the forecast. Default is 0. horizon : int Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon]. Returns ------- forecasts : VarianceForecast Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths. """ @abstractmethod def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: """ Simulation-based volatility forecasts from the model Parameters ---------- parameters : ndarray Parameters required to forecast the volatility model resids : ndarray Residuals to use in the recursion backcast : float Value to use when initializing the recursion. The backcast is assumed to be appropriately transformed so that it can be used without modification, e.g., log of the variance backcast in an EGARCH model. var_bounds : ndarray Array containing columns of lower and upper bounds start : int Index of the first observation to use as the starting point for the forecast. Default is 0. horizon : int Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon]. simulations : int Number of simulations to run when computing the forecast using either simulation or bootstrap. rng : callable Callable random number generator required if method is 'simulation'. Must take a single shape input and return random samples numbers with that shape. Returns ------- forecasts : VarianceForecast Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths. """ def _bootstrap_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, random_state: Optional[RandomState], ) -> VarianceForecast: """ Simulation-based volatility forecasts using model residuals Parameters ---------- parameters : ndarray Parameters required to forecast the volatility model resids : ndarray Residuals to use in the recursion backcast : {float, ndarray} Value to use when initializing the recursion var_bounds : ndarray Array containing columns of lower and upper bounds start : int Index of the first observation to use as the starting point for the forecast. Default is 0. horizon : int Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon]. simulations : int Number of simulations to run when computing the forecast using either simulation or bootstrap. random_state : {RandomState, None} NumPy RandomState instance to use in the BootstrapRng Returns ------- forecasts : VarianceForecast Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths. """ sigma2 = np.empty_like(resids) self.compute_variance(parameters, resids, sigma2, backcast, var_bounds) std_resid = resids / np.sqrt(sigma2) if start < self._min_bootstrap_obs: raise ValueError( "start must include more than {0} " "observations".format(self._min_bootstrap_obs) ) rng = BootstrapRng(std_resid, start, random_state=random_state).rng() return self._simulation_forecast( parameters, resids, backcast, var_bounds, start, horizon, simulations, rng ) def variance_bounds(self, resids: Float64Array, power: float = 2.0) -> Float64Array: """ Construct loose bounds for conditional variances. These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values. Parameters ---------- resids : ndarray Approximate residuals to use to compute the lower and upper bounds on the conditional variance power : float, optional Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares. Returns ------- var_bounds : ndarray Array containing columns of lower and upper bounds with the same number of elements as resids """ nobs = resids.shape[0] tau = min(75, nobs) w = 0.94 ** np.arange(tau) w = w / sum(w) var_bound = np.zeros(nobs) initial_value = w.dot(resids[:tau] ** 2.0) ewma_recursion(0.94, resids, var_bound, resids.shape[0], initial_value) var_bounds = np.vstack((var_bound / 1e6, var_bound * 1e6)).T var = resids.var() min_upper_bound = 1 + (resids ** 2.0).max() lower_bound, upper_bound = var / 1e8, 1e7 * (1 + (resids ** 2.0).max()) var_bounds[var_bounds[:, 0] < lower_bound, 0] = lower_bound var_bounds[var_bounds[:, 1] < min_upper_bound, 1] = min_upper_bound var_bounds[var_bounds[:, 1] > upper_bound, 1] = upper_bound if power != 2.0: var_bounds **= power / 2.0 return np.ascontiguousarray(var_bounds) @abstractmethod def starting_values(self, resids: Float64Array) -> Float64Array: """ Returns starting values for the ARCH model Parameters ---------- resids : ndarray Array of (approximate) residuals to use when computing starting values Returns ------- sv : ndarray Array of starting values """ def backcast(self, resids: Float64Array) -> Union[float, Float64Array]: """ Construct values for backcasting to start the recursion Parameters ---------- resids : ndarray Vector of (approximate) residuals Returns ------- backcast : float Value to use in backcasting in the volatility recursion """ tau = min(75, resids.shape[0]) w = 0.94 ** np.arange(tau) w = w / sum(w) return float(np.sum((resids[:tau] ** 2.0) * w)) def backcast_transform( self, backcast: Union[float, Float64Array] ) -> Union[float, Float64Array]: """ Transformation to apply to user-provided backcast values Parameters ---------- backcast : {float, ndarray} User-provided ``backcast`` that approximates sigma2[0]. Returns ------- backcast : {float, ndarray} Backcast transformed to the model-appropriate scale """ if np.any(backcast < 0): raise ValueError("User backcast value must be strictly positive.") return backcast @abstractmethod def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: """ Returns bounds for parameters Parameters ---------- resids : ndarray Vector of (approximate) residuals Returns ------- bounds : list[tuple[float,float]] List of bounds where each element is (lower, upper). """ @abstractmethod def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: """ Compute the variance for the ARCH model Parameters ---------- parameters : ndarray Model parameters resids : ndarray Vector of mean zero residuals sigma2 : ndarray Array with same size as resids to store the conditional variance backcast : {float, ndarray} Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components. var_bounds : ndarray Array containing columns of lower and upper bounds """ @abstractmethod def constraints(self) -> Tuple[Float64Array, Float64Array]: """ Construct parameter constraints arrays for parameter estimation Returns ------- A : ndarray Parameters loadings in constraint. Shape is number of constraints by number of parameters b : ndarray Constraint values, one for each constraint Notes ----- Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0 """ def forecast( self, parameters: ArrayLike1D, resids: Float64Array, backcast: Union[Float64Array, float], var_bounds: Float64Array, start: Optional[int] = None, horizon: int = 1, method: ForecastingMethod = "analytic", simulations: int = 1000, rng: Optional[RNGType] = None, random_state: Optional[RandomState] = None, ) -> VarianceForecast: """ Forecast volatility from the model Parameters ---------- parameters : {ndarray, Series} Parameters required to forecast the volatility model resids : ndarray Residuals to use in the recursion backcast : float Value to use when initializing the recursion var_bounds : ndarray, 2-d Array containing columns of lower and upper bounds start : {None, int} Index of the first observation to use as the starting point for the forecast. Default is len(resids). horizon : int Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon]. method : {'analytic', 'simulation', 'bootstrap'} Method to use when producing the forecast. The default is analytic. simulations : int Number of simulations to run when computing the forecast using either simulation or bootstrap. rng : callable Callable random number generator required if method is 'simulation'. Must take a single shape input and return random samples numbers with that shape. random_state : RandomState, optional NumPy RandomState instance to use when method is 'bootstrap' Returns ------- forecasts : VarianceForecast Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths. Raises ------ NotImplementedError * If method is not supported ValueError * If the method is not known Notes ----- The analytic ``method`` is not supported for all models. Attempting to use this method when not available will raise a ValueError. """ parameters = np.asarray(parameters) method_name = method.lower() if method_name not in ("analytic", "simulation", "bootstrap"): raise ValueError("{0} is not a known forecasting method".format(method)) if not isinstance(horizon, (int, np.integer)) or horizon < 1: raise ValueError("horizon must be an integer >= 1.") self._check_forecasting_method(cast(ForecastingMethod, method_name), horizon) start = len(resids) - 1 if start is None else start if method_name == "analytic": return self._analytic_forecast( parameters, resids, backcast, var_bounds, start, horizon ) elif method == "simulation": # TODO: This looks like a design flaw.It is optional above but then must # be present. This happens because the caller of this function is # expected to know when to provide the rng or not assert rng is not None return self._simulation_forecast( parameters, resids, backcast, var_bounds, start, horizon, simulations, rng, ) else: if start < 10 or (horizon / start) >= 0.2: raise ValueError( "Bootstrap forecasting requires at least 10 initial " "observations, and the ratio of horizon-to-start < 20%." ) return self._bootstrap_forecast( parameters, resids, backcast, var_bounds, start, horizon, simulations, random_state, ) @abstractmethod def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: """ Simulate data from the model Parameters ---------- parameters : {ndarray, Series} Parameters required to simulate the volatility model nobs : int Number of data points to simulate rng : callable Callable function that takes a single integer input and returns a vector of random numbers burn : int, optional Number of additional observations to generate when initializing the simulation initial_value : {float, ndarray}, optional Scalar or array of initial values to use when initializing the simulation Returns ------- resids : ndarray The simulated residuals variance : ndarray The simulated variance """ def _gaussian_loglikelihood( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> float: """ Private implementation of a Gaussian log-likelihood for use in constructing starting values or other quantities that do not depend on the distribution used by the model. """ sigma2 = np.zeros_like(resids) self.compute_variance(parameters, resids, sigma2, backcast, var_bounds) return float(self._normal.loglikelihood([], resids, sigma2)) @abstractmethod def parameter_names(self) -> List[str]: """ Names of model parameters Returns ------- names : list (str) Variables names """ class ConstantVariance(VolatilityProcess, metaclass=AbstractDocStringInheritor): r""" Constant volatility process Notes ----- Model has the same variance in all periods """ def __init__(self) -> None: super().__init__() self._num_params = 1 self._name = "Constant Variance" self.closed_form: bool = True def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: sigma2[:] = parameters[0] return sigma2 def starting_values(self, resids: Float64Array) -> Float64Array: return np.array([resids.var()]) def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: parameters = ensure1d(parameters, "parameters", False) errors = rng(nobs + burn) sigma2 = np.ones(nobs + burn) * parameters[0] data = np.sqrt(sigma2) * errors return data[burn:], sigma2[burn:] def constraints(self) -> Tuple[Float64Array, Float64Array]: return np.ones((1, 1)), np.zeros(1) def backcast_transform( self, backcast: Union[float, Float64Array] ) -> Union[float, Float64Array]: backcast = super().backcast_transform(backcast) return backcast def backcast(self, resids: Float64Array) -> Union[float, Float64Array]: return float(resids.var()) def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: v = float(resids.var()) return [(v / 100000.0, 10.0 * (v + float(resids.mean()) ** 2.0))] def parameter_names(self) -> List[str]: return ["sigma2"] def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: t = resids.shape[0] forecasts = np.full((t - start, horizon), np.nan) forecasts[:, :] = parameters[0] forecast_paths = None return VarianceForecast(forecasts, forecast_paths) def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: t = resids.shape[0] forecasts = np.empty((t - start, horizon)) forecast_paths = np.empty((t - start, simulations, horizon)) shocks = np.empty((t - start, simulations, horizon)) for i in range(t - start): shocks[i, :, :] = np.sqrt(parameters[0]) * rng((simulations, horizon)) forecasts[:, :] = parameters[0] forecast_paths[:, :, :] = parameters[0] return VarianceForecast(forecasts, forecast_paths, shocks) class GARCH(VolatilityProcess, metaclass=AbstractDocStringInheritor): r""" GARCH and related model estimation The following models can be specified using GARCH: * ARCH(p) * GARCH(p,q) * GJR-GARCH(p,o,q) * AVARCH(p) * AVGARCH(p,q) * TARCH(p,o,q) * Models with arbitrary, pre-specified powers Parameters ---------- p : int Order of the symmetric innovation o : int Order of the asymmetric innovation q : int Order of the lagged (transformed) conditional variance power : float, optional Power to use with the innovations, abs(e) ** power. Default is 2.0, which produces ARCH and related models. Using 1.0 produces AVARCH and related models. Other powers can be specified, although these should be strictly positive, and usually larger than 0.25. Examples -------- >>> from arch.univariate import GARCH Standard GARCH(1,1) >>> garch = GARCH(p=1, q=1) Asymmetric GJR-GARCH process >>> gjr = GARCH(p=1, o=1, q=1) Asymmetric TARCH process >>> tarch = GARCH(p=1, o=1, q=1, power=1.0) Notes ----- In this class of processes, the variance dynamics are .. math:: \sigma_{t}^{\lambda}=\omega + \sum_{i=1}^{p}\alpha_{i}\left|\epsilon_{t-i}\right|^{\lambda} +\sum_{j=1}^{o}\gamma_{j}\left|\epsilon_{t-j}\right|^{\lambda} I\left[\epsilon_{t-j}<0\right]+\sum_{k=1}^{q}\beta_{k}\sigma_{t-k}^{\lambda} """ def __init__(self, p: int = 1, o: int = 0, q: int = 1, power: float = 2.0) -> None: super().__init__() self.p: int = int(p) self.o: int = int(o) self.q: int = int(q) self.power: float = power self._num_params = 1 + p + o + q if p < 0 or o < 0 or q < 0: raise ValueError("All lags lengths must be non-negative") if p == 0 and o == 0: raise ValueError("One of p or o must be strictly positive") if power <= 0.0: raise ValueError( "power must be strictly positive, usually larger than 0.25" ) self._name = self._generate_name() self._volatility_updater = rec.GARCHUpdater(self.p, self.o, self.q, self.power) def __str__(self) -> str: descr = self.name if self.power != 1.0 and self.power != 2.0: descr = descr[:-1] + ", " else: descr += "(" for k, v in (("p", self.p), ("o", self.o), ("q", self.q)): if v > 0: descr += k + ": " + str(v) + ", " descr = descr[:-2] + ")" return descr def variance_bounds(self, resids: Float64Array, power: float = 2.0) -> Float64Array: return super().variance_bounds(resids, self.power) def _generate_name(self) -> str: p, o, q, power = self.p, self.o, self.q, self.power # noqa: F841 if power == 2.0: if o == 0 and q == 0: return "ARCH" elif o == 0: return "GARCH" else: return "GJR-GARCH" elif power == 1.0: if o == 0 and q == 0: return "AVARCH" elif o == 0: return "AVGARCH" else: return "TARCH/ZARCH" else: if o == 0 and q == 0: return "Power ARCH (power: {0:0.1f})".format(self.power) elif o == 0: return "Power GARCH (power: {0:0.1f})".format(self.power) else: return "Asym. Power GARCH (power: {0:0.1f})".format(self.power) def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: v = float(np.mean(abs(resids) ** self.power)) bounds = [(1e-8 * v, 10.0 * float(v))] bounds.extend([(0.0, 1.0)] * self.p) for i in range(self.o): if i < self.p: bounds.append((-1.0, 2.0)) else: bounds.append((0.0, 2.0)) bounds.extend([(0.0, 1.0)] * self.q) return bounds def constraints(self) -> Tuple[Float64Array, Float64Array]: p, o, q = self.p, self.o, self.q k_arch = p + o + q # alpha[i] >0 # alpha[i] + gamma[i] > 0 for i<=p, otherwise gamma[i]>0 # beta[i] >0 # sum(alpha) + 0.5 sum(gamma) + sum(beta) < 1 a = np.zeros((k_arch + 2, k_arch + 1)) for i in range(k_arch + 1): a[i, i] = 1.0 for i in range(o): if i < p: a[i + p + 1, i + 1] = 1.0 a[k_arch + 1, 1:] = -1.0 a[k_arch + 1, p + 1 : p + o + 1] = -0.5 b = np.zeros(k_arch + 2) b[k_arch + 1] = -1.0 return a, b def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: # fresids is abs(resids) ** power # sresids is I(resids<0) power = self.power fresids = np.abs(resids) ** power sresids = np.sign(resids) p, o, q = self.p, self.o, self.q nobs = resids.shape[0] rec.garch_recursion( parameters, fresids, sresids, sigma2, p, o, q, nobs, backcast, var_bounds ) inv_power = 2.0 / power sigma2 **= inv_power return sigma2 def backcast_transform( self, backcast: Union[float, Float64Array] ) -> Union[float, Float64Array]: backcast = super().backcast_transform(backcast) return np.sqrt(backcast) ** self.power def backcast(self, resids: Float64Array) -> Union[float, Float64Array]: power = self.power tau = min(75, resids.shape[0]) w = 0.94 ** np.arange(tau) w = w / sum(w) backcast = np.sum((abs(resids[:tau]) ** power) * w) return float(backcast) def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: parameters = ensure1d(parameters, "parameters", False) p, o, q, power = self.p, self.o, self.q, self.power errors = rng(nobs + burn) if initial_value is None: scale = np.ones_like(parameters) scale[p + 1 : p + o + 1] = 0.5 persistence = np.sum(parameters[1:] * scale[1:]) if (1.0 - persistence) > 0: initial_value = parameters[0] / (1.0 - persistence) else: warn(initial_value_warning, InitialValueWarning) initial_value = parameters[0] sigma2 = np.zeros(nobs + burn) data = np.zeros(nobs + burn) fsigma = np.zeros(nobs + burn) fdata = np.zeros(nobs + burn) max_lag = np.max([p, o, q]) fsigma[:max_lag] = initial_value sigma2[:max_lag] = initial_value ** (2.0 / power) data[:max_lag] = np.sqrt(sigma2[:max_lag]) * errors[:max_lag] fdata[:max_lag] = abs(data[:max_lag]) ** power for t in range(max_lag, nobs + burn): loc = 0 fsigma[t] = parameters[loc] loc += 1 for j in range(p): fsigma[t] += parameters[loc] * fdata[t - 1 - j] loc += 1 for j in range(o): fsigma[t] += parameters[loc] * fdata[t - 1 - j] * (data[t - 1 - j] < 0) loc += 1 for j in range(q): fsigma[t] += parameters[loc] * fsigma[t - 1 - j] loc += 1 sigma2[t] = fsigma[t] ** (2.0 / power) data[t] = errors[t] * np.sqrt(sigma2[t]) fdata[t] = abs(data[t]) ** power return data[burn:], sigma2[burn:] def starting_values(self, resids: Float64Array) -> Float64Array: p, o, q = self.p, self.o, self.q power = self.power alphas = [0.01, 0.05, 0.1, 0.2] gammas = alphas abg = [0.5, 0.7, 0.9, 0.98] abgs = list(itertools.product(*[alphas, gammas, abg])) target = np.mean(abs(resids) ** power) scale = np.mean(resids ** 2) / (target ** (2.0 / power)) target *= scale ** (power / 2) svs = [] var_bounds = self.variance_bounds(resids) backcast = self.backcast(resids) llfs = np.zeros(len(abgs)) for i, values in enumerate(abgs): alpha, gamma, agb = values sv = (1.0 - agb) * target * np.ones(p + o + q + 1) if p > 0: sv[1 : 1 + p] = alpha / p agb -= alpha if o > 0: sv[1 + p : 1 + p + o] = gamma / o agb -= gamma / 2.0 if q > 0: sv[1 + p + o : 1 + p + o + q] = agb / q svs.append(sv) llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds) loc = np.argmax(llfs) return svs[int(loc)] def parameter_names(self) -> List[str]: return _common_names(self.p, self.o, self.q) def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: if horizon == 1: return if method == "analytic" and self.power != 2.0: raise ValueError( "Analytic forecasts not available for horizon > 1 when power != 2" ) return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: sigma2, forecasts = self._one_step_forecast( parameters, resids, backcast, var_bounds, horizon, start ) if horizon == 1: return VarianceForecast(forecasts) t = resids.shape[0] p, o, q = self.p, self.o, self.q omega = parameters[0] alpha = parameters[1 : p + 1] gamma = parameters[p + 1 : p + o + 1] beta = parameters[p + o + 1 :] m = np.max([p, o, q]) _resids = np.zeros(m + horizon) _asym_resids = np.zeros(m + horizon) _sigma2 = np.zeros(m + horizon) for i in range(start, t): if i - m + 1 >= 0: _resids[:m] = resids[i - m + 1 : i + 1] _asym_resids[:m] = _resids[:m] * (_resids[:m] < 0) _sigma2[:m] = sigma2[i - m + 1 : i + 1] else: # Back-casting needed _resids[: m - i - 1] = np.sqrt(backcast) _resids[m - i - 1 : m] = resids[0 : i + 1] _asym_resids = cast(np.ndarray, _resids * (_resids < 0)) _asym_resids[: m - i - 1] = np.sqrt(0.5 * backcast) _sigma2[:m] = backcast _sigma2[m - i - 1 : m] = sigma2[0 : i + 1] for h in range(0, horizon): fcast_loc = i - start forecasts[fcast_loc, h] = omega start_loc = h + m - 1 for j in range(p): forecasts[fcast_loc, h] += alpha[j] * _resids[start_loc - j] ** 2 for j in range(o): forecasts[fcast_loc, h] += ( gamma[j] * _asym_resids[start_loc - j] ** 2 ) for j in range(q): forecasts[fcast_loc, h] += beta[j] * _sigma2[start_loc - j] _resids[h + m] = np.sqrt(forecasts[fcast_loc, h]) _asym_resids[h + m] = np.sqrt(0.5 * forecasts[fcast_loc, h]) _sigma2[h + m] = forecasts[fcast_loc, h] return VarianceForecast(forecasts) def _simulate_paths( self, m: int, parameters: Float64Array, horizon: int, std_shocks: Float64Array, scaled_forecast_paths: Float64Array, scaled_shock: Float64Array, asym_scaled_shock: Float64Array, ) -> Tuple[Float64Array, Float64Array, Float64Array]: power = self.power p, o, q = self.p, self.o, self.q omega = parameters[0] alpha = parameters[1 : p + 1] gamma = parameters[p + 1 : p + o + 1] beta = parameters[p + o + 1 :] shock = np.empty_like(scaled_forecast_paths) for h in range(horizon): loc = h + m - 1 scaled_forecast_paths[:, h + m] = omega for j in range(p): scaled_forecast_paths[:, h + m] += alpha[j] * scaled_shock[:, loc - j] for j in range(o): scaled_forecast_paths[:, h + m] += ( gamma[j] * asym_scaled_shock[:, loc - j] ) for j in range(q): scaled_forecast_paths[:, h + m] += ( beta[j] * scaled_forecast_paths[:, loc - j] ) shock[:, h + m] = std_shocks[:, h] * scaled_forecast_paths[:, h + m] ** ( 1.0 / power ) lt_zero = shock[:, h + m] < 0 scaled_shock[:, h + m] = np.abs(shock[:, h + m]) ** power asym_scaled_shock[:, h + m] = scaled_shock[:, h + m] * lt_zero forecast_paths = scaled_forecast_paths[:, m:] ** (2.0 / power) return np.asarray(np.mean(forecast_paths, 0)), forecast_paths, shock[:, m:] def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: sigma2, forecasts = self._one_step_forecast( parameters, resids, backcast, var_bounds, horizon, start ) t = resids.shape[0] paths = np.empty((t - start, simulations, horizon)) shocks = np.empty((t - start, simulations, horizon)) power = self.power m = np.max([self.p, self.o, self.q]) scaled_forecast_paths = np.zeros((simulations, m + horizon)) scaled_shock = np.zeros((simulations, m + horizon)) asym_scaled_shock = np.zeros((simulations, m + horizon)) for i in range(start, t): std_shocks = rng((simulations, horizon)) if i - m < 0: scaled_forecast_paths[:, :m] = backcast ** (power / 2.0) scaled_shock[:, :m] = backcast ** (power / 2.0) asym_scaled_shock[:, :m] = (0.5 * backcast) ** (power / 2.0) # Use actual values where available count = i + 1 scaled_forecast_paths[:, m - count : m] = sigma2[:count] ** ( power / 2.0 ) scaled_shock[:, m - count : m] = np.abs(resids[:count]) ** power asym = np.abs(resids[:count]) ** power * (resids[:count] < 0) asym_scaled_shock[:, m - count : m] = asym else: scaled_forecast_paths[:, :m] = sigma2[i - m + 1 : i + 1] ** ( power / 2.0 ) scaled_shock[:, :m] = np.abs(resids[i - m + 1 : i + 1]) ** power asym_scaled_shock[:, :m] = scaled_shock[:, :m] * ( resids[i - m + 1 : i + 1] < 0 ) f, p, s = self._simulate_paths( m, parameters, horizon, std_shocks, scaled_forecast_paths, scaled_shock, asym_scaled_shock, ) loc = i - start forecasts[loc, :], paths[loc], shocks[loc] = f, p, s return VarianceForecast(forecasts, paths, shocks) class HARCH(VolatilityProcess, metaclass=AbstractDocStringInheritor): r""" Heterogeneous ARCH process Parameters ---------- lags : {list, array, int} List of lags to include in the model, or if scalar, includes all lags up the value Examples -------- >>> from arch.univariate import HARCH Lag-1 HARCH, which is identical to an ARCH(1) >>> harch = HARCH() More useful and realistic lag lengths >>> harch = HARCH(lags=[1, 5, 22]) Notes ----- In a Heterogeneous ARCH process, variance dynamics are .. math:: \sigma_{t}^{2}=\omega + \sum_{i=1}^{m}\alpha_{l_{i}} \left(l_{i}^{-1}\sum_{j=1}^{l_{i}}\epsilon_{t-j}^{2}\right) In the common case where lags=[1,5,22], the model is .. math:: \sigma_{t}^{2}=\omega+\alpha_{1}\epsilon_{t-1}^{2} +\alpha_{5} \left(\frac{1}{5}\sum_{j=1}^{5}\epsilon_{t-j}^{2}\right) +\alpha_{22} \left(\frac{1}{22}\sum_{j=1}^{22}\epsilon_{t-j}^{2}\right) A HARCH process is a special case of an ARCH process where parameters in the more general ARCH process have been restricted. """ def __init__(self, lags: Union[int, Sequence[int]] = 1) -> None: super().__init__() if np.isscalar(lags): lag_val = operator.index(lags) lags = list(range(1, lag_val + 1)) lags_arr = ensure1d(lags, "lags") self.lags: Int32Array = np.array(lags_arr, dtype=np.int32) self._num_lags = lags_arr.shape[0] self._num_params = self._num_lags + 1 self._name = "HARCH" self._volatility_updater = rec.HARCHUpdater(self.lags) def __str__(self) -> str: descr = self.name + "(lags: " descr += ", ".join([str(lag) for lag in self.lags]) descr += ")" return descr def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: lags = self.lags k_arch = lags.shape[0] bounds = [(0.0, 10 * float(np.mean(resids ** 2.0)))] bounds.extend([(0.0, 1.0)] * k_arch) return bounds def constraints(self) -> Tuple[Float64Array, Float64Array]: k_arch = self._num_lags a = np.zeros((k_arch + 2, k_arch + 1)) for i in range(k_arch + 1): a[i, i] = 1.0 a[k_arch + 1, 1:] = -1.0 b = np.zeros(k_arch + 2) b[k_arch + 1] = -1.0 return a, b def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: lags = self.lags nobs = resids.shape[0] rec.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, var_bounds ) return sigma2 def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: parameters = ensure1d(parameters, "parameters", False) lags = self.lags errors = rng(nobs + burn) if initial_value is None: if (1.0 - np.sum(parameters[1:])) > 0: initial_value = parameters[0] / (1.0 - np.sum(parameters[1:])) else: warn(initial_value_warning, InitialValueWarning) initial_value = parameters[0] sigma2 = np.empty(nobs + burn) data = np.empty(nobs + burn) max_lag = np.max(lags) sigma2[:max_lag] = initial_value data[:max_lag] = np.sqrt(initial_value) for t in range(max_lag, nobs + burn): sigma2[t] = parameters[0] for i in range(lags.shape[0]): param = parameters[1 + i] / lags[i] for j in range(lags[i]): sigma2[t] += param * data[t - 1 - j] ** 2.0 data[t] = errors[t] * np.sqrt(sigma2[t]) return data[burn:], sigma2[burn:] def starting_values(self, resids: Float64Array) -> Float64Array: k_arch = self._num_lags alpha = 0.9 sv = (1.0 - alpha) * resids.var() * np.ones((k_arch + 1)) sv[1:] = alpha / k_arch return sv def parameter_names(self) -> List[str]: names = ["omega"] lags = self.lags names.extend(["alpha[" + str(lags[i]) + "]" for i in range(self._num_lags)]) return names def _harch_to_arch(self, params: Float64Array) -> Float64Array: arch_params = np.zeros((1 + int(self.lags.max()))) arch_params[0] = params[0] for param, lag in zip(params[1:], self.lags): arch_params[1 : lag + 1] += param / lag return arch_params def _common_forecast_components( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], horizon: int, ) -> Tuple[float, Float64Array, Float64Array]: arch_params = self._harch_to_arch(parameters) t = resids.shape[0] m = int(self.lags.max()) resids2 = np.empty((t, m + horizon)) resids2[:m, :m] = backcast sq_resids = resids ** 2.0 for i in range(m): resids2[m - i - 1 :, i] = sq_resids[: (t - (m - i - 1))] const = arch_params[0] arch = arch_params[1:] return const, arch, resids2 def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: const, arch, resids2 = self._common_forecast_components( parameters, resids, backcast, horizon ) m = int(self.lags.max()) resids2 = resids2[start:] arch_rev = arch[::-1] for i in range(horizon): resids2[:, m + i] = const + resids2[:, i : (m + i)].dot(arch_rev) return VarianceForecast(resids2[:, m:].copy()) def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: const, arch, resids2 = self._common_forecast_components( parameters, resids, backcast, horizon ) t, m = resids.shape[0], int(self.lags.max()) paths = np.empty((t - start, simulations, horizon)) shocks = np.empty((t - start, simulations, horizon)) temp_resids2 = np.empty((simulations, m + horizon)) arch_rev = arch[::-1] for i in range(start, t): std_shocks = rng((simulations, horizon)) temp_resids2[:, :] = resids2[i : (i + 1)] path_loc = i - start for j in range(horizon): paths[path_loc, :, j] = const + temp_resids2[:, j : (m + j)].dot( arch_rev ) shocks[path_loc, :, j] = std_shocks[:, j] * np.sqrt( paths[path_loc, :, j] ) temp_resids2[:, m + j] = shocks[path_loc, :, j] ** 2.0 return VarianceForecast(np.asarray(paths.mean(1)), paths, shocks) class MIDASHyperbolic(VolatilityProcess, metaclass=AbstractDocStringInheritor): r""" MIDAS Hyperbolic ARCH process Parameters ---------- m : int Length of maximum lag to include in the model asym : bool Flag indicating whether to include an asymmetric term Examples -------- >>> from arch.univariate import MIDASHyperbolic 22-lag MIDAS Hyperbolic process >>> harch = MIDASHyperbolic() Longer 66-period lag >>> harch = MIDASHyperbolic(m=66) Asymmetric MIDAS Hyperbolic process >>> harch = MIDASHyperbolic(asym=True) Notes ----- In a MIDAS Hyperbolic process, the variance evolves according to .. math:: \sigma_{t}^{2}=\omega+ \sum_{i=1}^{m}\left(\alpha+\gamma I\left[\epsilon_{t-j}<0\right]\right) \phi_{i}(\theta)\epsilon_{t-i}^{2} where .. math:: \phi_{i}(\theta) \propto \Gamma(i+\theta)/(\Gamma(i+1)\Gamma(\theta)) where :math:`\Gamma` is the gamma function. :math:`\{\phi_i(\theta)\}` is normalized so that :math:`\sum \phi_i(\theta)=1` References ---------- .. [*] Foroni, Claudia, and <NAME>. "A survey of Econometric Methods for Mixed-Frequency Data". Norges Bank. (2013). .. [*] Sheppard, Kevin. "Direct volatility modeling". Manuscript. (2018). """ def __init__(self, m: int = 22, asym: bool = False) -> None: super().__init__() self.m: int = int(m) self._asym = bool(asym) self._num_params = 3 + self._asym self._name = "MIDAS Hyperbolic" self._volatility_updater = rec.MIDASUpdater(self.m, self._asym) def __str__(self) -> str: descr = self.name descr += "(lags: {0}, asym: {1}".format(self.m, self._asym) return descr def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: bounds = [(0.0, 10 * float(np.mean(resids ** 2.0)))] # omega bounds.extend([(0.0, 1.0)]) # 0 <= alpha < 1 if self._asym: bounds.extend([(-1.0, 2.0)]) # -1 <= gamma < 2 bounds.extend([(0.0, 1.0)]) # theta return bounds def constraints(self) -> Tuple[Float64Array, Float64Array]: """ Constraints Notes ----- Parameters are (omega, alpha, gamma, theta) A.dot(parameters) - b >= 0 1. omega >0 2. alpha>0 or alpha + gamma > 0 3. alpha<1 or alpha+0.5*gamma<1 4. theta > 0 5. theta < 1 """ symm = not self._asym k = 3 + self._asym a = np.zeros((5, k)) b = np.zeros(5) # omega a[0, 0] = 1.0 # alpha >0 or alpha+gamma>0 # alpha<1 or alpha+0.5*gamma<1 if symm: a[1, 1] = 1.0 a[2, 1] = -1.0 else: a[1, 1:3] = 1.0 a[2, 1:3] = [-1, -0.5] b[2] = -1.0 # theta a[3, k - 1] = 1.0 a[4, k - 1] = -1.0 b[4] = -1.0 return a, b def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: nobs = resids.shape[0] weights = self._weights(parameters) if not self._asym: params = np.zeros(3) params[:2] = parameters[:2] else: params = parameters[:3] rec.midas_recursion(params, weights, resids, sigma2, nobs, backcast, var_bounds) return sigma2 def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: parameters = ensure1d(parameters, "parameters", False) if self._asym: omega, alpha, gamma = parameters[:3] else: omega, alpha = parameters[:2] gamma = 0 weights = self._weights(parameters) aw = weights * alpha gw = weights * gamma errors = rng(nobs + burn) if initial_value is None: if (1.0 - alpha - 0.5 * gamma) > 0: initial_value = parameters[0] / (1.0 - alpha - 0.5 * gamma) else: warn(initial_value_warning, InitialValueWarning) initial_value = parameters[0] m = weights.shape[0] burn = max(burn, m) sigma2 = np.empty(nobs + burn) data = np.empty(nobs + burn) sigma2[:m] = initial_value data[:m] = np.sqrt(initial_value) for t in range(m, nobs + burn): sigma2[t] = omega for i in range(m): if t - 1 - i < m: coef = aw[i] + 0.5 * gw[i] else: coef = aw[i] + gw[i] * (data[t - 1 - i] < 0) sigma2[t] += coef * data[t - 1 - i] ** 2.0 data[t] = errors[t] * np.sqrt(sigma2[t]) return data[burn:], sigma2[burn:] def starting_values(self, resids: Float64Array) -> Float64Array: theta = [0.1, 0.5, 0.8, 0.9] alpha = [0.8, 0.9, 0.95, 0.98] var = (resids ** 2).mean() var_bounds = self.variance_bounds(resids) backcast = self.backcast(resids) llfs = [] svs = [] for a, t in itertools.product(alpha, theta): gamma = [0.0] if self._asym: gamma.extend([0.5, 0.9]) for g in gamma: total = a + g / 2 o = (1 - min(total, 0.99)) * var if self._asym: sv = np.array([o, a, g, t]) else: sv = np.array([o, a, t]) svs.append(sv) llf = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds) llfs.append(llf) loc = np.argmax(llfs) return svs[int(loc)] def parameter_names(self) -> List[str]: names = ["omega", "alpha", "theta"] if self._asym: names.insert(2, "gamma") return names def _weights(self, params: Float64Array) -> Float64Array: m = self.m # Prevent 0 theta = max(params[-1], np.finfo(np.float64).eps) j = np.arange(1.0, m + 1) w = gammaln(theta + j) - gammaln(j + 1) - gammaln(theta) w = np.exp(w) return w / w.sum() def _common_forecast_components( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], horizon: int, ) -> Tuple[int, Float64Array, Float64Array, Float64Array, Float64Array]: if self._asym: omega, alpha, gamma = parameters[:3] else: omega, alpha = parameters[:2] gamma = 0.0 weights = self._weights(parameters) aw = weights * alpha gw = weights * gamma t = resids.shape[0] m = self.m resids2 = np.empty((t, m + horizon)) resids2[:m, :m] = backcast indicator = np.empty((t, m + horizon)) indicator[:m, :m] = 0.5 sq_resids = resids ** 2.0 for i in range(m): resids2[m - i - 1 :, i] = sq_resids[: (t - (m - i - 1))] indicator[m - i - 1 :, i] = resids[: (t - (m - i - 1))] < 0 return omega, aw, gw, resids2, indicator def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: omega, aw, gw, resids2, indicator = self._common_forecast_components( parameters, resids, backcast, horizon ) m = self.m resids2 = resids2[start:].copy() aw_rev = aw[::-1] gw_rev = gw[::-1] for i in range(horizon): resids2[:, m + i] = omega + resids2[:, i : (m + i)].dot(aw_rev) if self._asym: resids2_ind = resids2[:, i : (m + i)] * indicator[:, i : (m + i)] resids2[:, m + i] += resids2_ind.dot(gw_rev) indicator[:, m + i] = 0.5 return VarianceForecast(resids2[:, m:].copy()) def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: omega, aw, gw, resids2, indicator = self._common_forecast_components( parameters, resids, backcast, horizon ) t = resids.shape[0] m = self.m shocks = np.empty((t - start, simulations, horizon)) paths = np.empty((t - start, simulations, horizon)) temp_resids2 = np.empty((simulations, m + horizon)) temp_indicator = np.empty((simulations, m + horizon)) aw_rev = aw[::-1] gw_rev = gw[::-1] for i in range(start, t): std_shocks = rng((simulations, horizon)) temp_resids2[:, :] = resids2[i : (i + 1)] temp_indicator[:, :] = indicator[i : (i + 1)] path_loc = i - start for j in range(horizon): paths[path_loc, :, j] = omega + temp_resids2[:, j : (m + j)].dot(aw_rev) if self._asym: temp_resids2_ind = ( temp_resids2[:, j : (m + j)] * temp_indicator[:, j : (m + j)] ) paths[path_loc, :, j] += temp_resids2_ind.dot(gw_rev) shocks[path_loc, :, j] = std_shocks[:, j] * np.sqrt( paths[path_loc, :, j] ) temp_resids2[:, m + j] = shocks[path_loc, :, j] ** 2.0 temp_indicator[:, m + j] = (shocks[path_loc, :, j] < 0).astype( np.double ) return VarianceForecast(np.asarray(paths.mean(1)), paths, shocks) class ARCH(GARCH): r""" ARCH process Parameters ---------- p : int Order of the symmetric innovation Examples -------- ARCH(1) process >>> from arch.univariate import ARCH ARCH(5) process >>> arch = ARCH(p=5) Notes ----- The variance dynamics of the model estimated .. math:: \sigma_t^{2}=\omega+\sum_{i=1}^{p}\alpha_{i}\epsilon_{t-i}^{2} """ def __init__(self, p: int = 1) -> None: super().__init__(p, 0, 0, 2.0) self._num_params = p + 1 def starting_values(self, resids: Float64Array) -> Float64Array: p = self.p alphas = np.arange(0.1, 0.95, 0.05) svs = [] backcast = self.backcast(resids) llfs = alphas.copy() var_bounds = self.variance_bounds(resids) for i, alpha in enumerate(alphas): sv = (1.0 - alpha) * resids.var() * np.ones((p + 1)) sv[1:] = alpha / p svs.append(sv) llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds) loc = np.argmax(llfs) return svs[int(loc)] class EWMAVariance(VolatilityProcess, metaclass=AbstractDocStringInheritor): r""" Exponentially Weighted Moving-Average (RiskMetrics) Variance process Parameters ---------- lam : {float, None}, optional Smoothing parameter. Default is 0.94. Set to None to estimate lam jointly with other model parameters Examples -------- Daily RiskMetrics EWMA process >>> from arch.univariate import EWMAVariance >>> rm = EWMAVariance(0.94) Notes ----- The variance dynamics of the model .. math:: \sigma_t^{2}=\lambda\sigma_{t-1}^2 + (1-\lambda)\epsilon^2_{t-1} When lam is provided, this model has no parameters since the smoothing parameter is treated as fixed. Set lam to ``None`` to jointly estimate this parameter when fitting the model. """ def __init__(self, lam: Optional[float] = 0.94) -> None: super().__init__() self.lam: Optional[float] = lam self._estimate_lam = lam is None self._num_params = 1 if self._estimate_lam else 0 if lam is not None and not 0.0 < lam < 1.0: raise ValueError("lam must be strictly between 0 and 1") self._name = "EWMA/RiskMetrics" self._volatility_updater = rec.EWMAUpdater(self.lam) def __str__(self) -> str: if self._estimate_lam: descr = self.name + "(lam: Estimated)" else: assert self.lam is not None descr = self.name + "(lam: " + "{0:0.2f}".format(self.lam) + ")" return descr def starting_values(self, resids: Float64Array) -> Float64Array: if self._estimate_lam: return np.array([0.94]) return np.array([]) def parameter_names(self) -> List[str]: if self._estimate_lam: return ["lam"] return [] def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: if self._estimate_lam: return [(0, 1)] return [] def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: lam = parameters[0] if self._estimate_lam else self.lam return ewma_recursion(lam, resids, sigma2, resids.shape[0], float(backcast)) def constraints(self) -> Tuple[Float64Array, Float64Array]: if self._estimate_lam: a = np.ones((1, 1)) b = np.zeros((1,)) return a, b return np.empty((0, 0)), np.empty((0,)) def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: parameters = ensure1d(parameters, "parameters", False) errors = rng(nobs + burn) if initial_value is None: initial_value = 1.0 sigma2 = np.zeros(nobs + burn) data = np.zeros(nobs + burn) sigma2[0] = initial_value data[0] = np.sqrt(sigma2[0]) if self._estimate_lam: lam = parameters[0] else: lam = self.lam one_m_lam = 1.0 - lam for t in range(1, nobs + burn): sigma2[t] = lam * sigma2[t - 1] + one_m_lam * data[t - 1] ** 2.0 data[t] = np.sqrt(sigma2[t]) * errors[t] return data[burn:], sigma2[burn:] def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: _, forecasts = self._one_step_forecast( parameters, resids, backcast, var_bounds, horizon, start_index=start ) for i in range(1, horizon): forecasts[:, i] = forecasts[:, 0] return VarianceForecast(forecasts) def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: one_step = self._analytic_forecast( parameters, resids, backcast, var_bounds, start, 1 ) t = resids.shape[0] paths = np.empty((t - start, simulations, horizon)) shocks = np.empty((t - start, simulations, horizon)) if self._estimate_lam: lam = parameters[0] else: lam = self.lam assert one_step.forecasts is not None for i in range(start, t): std_shocks = rng((simulations, horizon)) path_loc = i - start paths[path_loc, :, 0] = one_step.forecasts[path_loc] shocks[path_loc, :, 0] = ( np.sqrt(one_step.forecasts[path_loc]) * std_shocks[:, 0] ) for h in range(1, horizon): paths[path_loc, :, h] = (1 - lam) * shocks[ path_loc, :, h - 1 ] ** 2.0 + lam * paths[path_loc, :, h - 1] shocks[path_loc, :, h] = ( np.sqrt(paths[path_loc, :, h]) * std_shocks[:, h] ) return VarianceForecast(np.asarray(paths.mean(1)), paths, shocks) class RiskMetrics2006(VolatilityProcess, metaclass=AbstractDocStringInheritor): """ RiskMetrics 2006 Variance process Parameters ---------- tau0 : {int, float}, optional Length of long cycle. Default is 1560. tau1 : {int, float}, optional Length of short cycle. Default is 4. kmax : int, optional Number of components. Default is 14. rho : float, optional Relative scale of adjacent cycles. Default is sqrt(2) Examples -------- Daily RiskMetrics 2006 process >>> from arch.univariate import RiskMetrics2006 >>> rm = RiskMetrics2006() Notes ----- The variance dynamics of the model are given as a weighted average of kmax EWMA variance processes where the smoothing parameters and weights are determined by tau0, tau1 and rho. This model has no parameters since the smoothing parameter is fixed. """ def __init__( self, tau0: float = 1560, tau1: float = 4, kmax: int = 14, rho: float = 1.4142135623730951, ) -> None: super().__init__() self.tau0: float = tau0 self.tau1: float = tau1 self.kmax: int = kmax self.rho: float = rho self._num_params = 0 if tau0 <= tau1 or tau1 <= 0: raise ValueError("tau0 must be greater than tau1 and tau1 > 0") if tau1 * rho ** (kmax - 1) > tau0: raise ValueError("tau1 * rho ** (kmax-1) smaller than tau0") if not kmax >= 1: raise ValueError("kmax must be a positive integer") if not rho > 1: raise ValueError("rho must be a positive number larger than 1") self._name = "RiskMetrics2006" self._volatility_updater = rec.RiskMetrics2006Updater( self.kmax, self._ewma_combination_weights(), self._ewma_smoothing_parameters(), ) def __str__(self) -> str: descr = self.name descr += ( f"(tau0: {self.tau0:0.1f}, tau1: {self.tau1:0.1f}, " f"kmax: {self.kmax:d}, rho: {self.rho:0.3f}" ) descr += ")" return descr def _ewma_combination_weights(self) -> Float64Array: """ Returns ------- weights : ndarray Combination weights for EWMA components """ tau0, tau1, kmax, rho = self.tau0, self.tau1, self.kmax, self.rho taus = tau1 * (rho ** np.arange(kmax)) w = 1 - np.log(taus) / np.log(tau0) w = w / w.sum() return w def _ewma_smoothing_parameters(self) -> Float64Array: tau1, kmax, rho = self.tau1, self.kmax, self.rho taus = tau1 * (rho ** np.arange(kmax)) mus = cast(Float64Array, np.exp(-1.0 / taus)) return mus def backcast(self, resids: Float64Array) -> Union[float, Float64Array]: """ Construct values for backcasting to start the recursion Parameters ---------- resids : ndarray Vector of (approximate) residuals Returns ------- backcast : ndarray Backcast values for each EWMA component """ nobs = resids.shape[0] mus = self._ewma_smoothing_parameters() resids2 = resids ** 2.0 backcast = np.zeros(mus.shape[0]) for k in range(int(self.kmax)): mu = mus[k] end_point = int(max(min(np.floor(np.log(0.01) / np.log(mu)), nobs), k)) weights = mu ** np.arange(end_point) weights = weights / weights.sum() backcast[k] = weights.dot(resids2[:end_point]) return backcast def backcast_transform( self, backcast: Union[float, Float64Array] ) -> Union[float, Float64Array]: backcast = super().backcast_transform(backcast) mus = self._ewma_smoothing_parameters() backcast_arr = np.asarray(backcast) if backcast_arr.ndim == 0: backcast_arr = cast(np.ndarray, backcast * np.ones(mus.shape[0])) if backcast_arr.shape[0] != mus.shape[0] and backcast_arr.ndim != 0: raise ValueError( "User backcast must be either a scalar or an vector containing the " "number of\ncomponent EWMAs in the model." ) return backcast_arr def starting_values(self, resids: Float64Array) -> Float64Array: return np.empty((0,)) def parameter_names(self) -> List[str]: return [] def variance_bounds(self, resids: Float64Array, power: float = 2.0) -> Float64Array: return np.ones((resids.shape[0], 1)) * np.array( [-1.0, np.finfo(np.float64).max] ) def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: return [] def constraints(self) -> Tuple[Float64Array, Float64Array]: return np.empty((0, 0)), np.empty((0,)) def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: nobs = resids.shape[0] kmax = self.kmax w = self._ewma_combination_weights() mus = self._ewma_smoothing_parameters() sigma2_temp = np.zeros_like(sigma2) backcast = cast(Float64Array, backcast) for k in range(kmax): mu = mus[k] ewma_recursion(mu, resids, sigma2_temp, nobs, backcast[k]) if k == 0: sigma2[:] = w[k] * sigma2_temp else: sigma2 += w[k] * sigma2_temp return sigma2 def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: errors = rng(nobs + burn) kmax = self.kmax w = self._ewma_combination_weights() mus = self._ewma_smoothing_parameters() if initial_value is None: initial_value = 1.0 sigma2s = np.zeros((nobs + burn, kmax)) sigma2s[0, :] = initial_value sigma2 = np.zeros(nobs + burn) data = np.zeros(nobs + burn) data[0] = np.sqrt(initial_value) sigma2[0] = w.dot(sigma2s[0]) for t in range(1, nobs + burn): sigma2s[t] = mus * sigma2s[t - 1] + (1 - mus) * data[t - 1] ** 2.0 sigma2[t] = w.dot(sigma2s[t]) data[t] = np.sqrt(sigma2[t]) * errors[t] return data[burn:], sigma2[burn:] def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: _, forecasts = self._one_step_forecast( parameters, resids, backcast, var_bounds, horizon, start_index=start ) for i in range(1, horizon): forecasts[:, i] = forecasts[:, 0] return VarianceForecast(forecasts) def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: kmax = self.kmax w = self._ewma_combination_weights() mus = self._ewma_smoothing_parameters() backcast = cast(Float64Array, np.asarray(backcast)) t = resids.shape[0] paths = np.empty((t - start, simulations, horizon)) shocks = np.empty((t - start, simulations, horizon)) temp_paths = np.empty((kmax, simulations, horizon)) # We use the transpose here to get C-contiguous arrays component_one_step = np.empty((kmax, t + 1)) _resids = np.ascontiguousarray(resids) for k in range(kmax): mu = mus[k] ewma_recursion(mu, _resids, component_one_step[k, :], t + 1, backcast[k]) # Transpose to be (t+1, kmax) component_one_step = component_one_step.T for i in range(start, t): std_shocks = rng((simulations, horizon)) for k in range(kmax): temp_paths[k, :, 0] = component_one_step[i, k] path_loc = i - start paths[path_loc, :, 0] = w.dot(temp_paths[:, :, 0]) shocks[path_loc, :, 0] = std_shocks[:, 0] * np.sqrt(paths[path_loc, :, 0]) for j in range(1, horizon): for k in range(kmax): mu = mus[k] temp_paths[k, :, j] = ( mu * temp_paths[k, :, j - 1] + (1 - mu) * shocks[path_loc, :, j - 1] ** 2.0 ) paths[path_loc, :, j] = w.dot(temp_paths[:, :, j]) shocks[path_loc, :, j] = std_shocks[:, j] * np.sqrt( paths[path_loc, :, j] ) return VarianceForecast(np.asarray(paths.mean(1)), paths, shocks) class EGARCH(VolatilityProcess, metaclass=AbstractDocStringInheritor): r""" EGARCH model estimation Parameters ---------- p : int Order of the symmetric innovation o : int Order of the asymmetric innovation q : int Order of the lagged (transformed) conditional variance Examples -------- >>> from arch.univariate import EGARCH Symmetric EGARCH(1,1) >>> egarch = EGARCH(p=1, q=1) Standard EGARCH process >>> egarch = EGARCH(p=1, o=1, q=1) Exponential ARCH process >>> earch = EGARCH(p=5) Notes ----- In this class of processes, the variance dynamics are .. math:: \ln\sigma_{t}^{2}=\omega +\sum_{i=1}^{p}\alpha_{i} \left(\left|e_{t-i}\right|-\sqrt{2/\pi}\right) +\sum_{j=1}^{o}\gamma_{j} e_{t-j} +\sum_{k=1}^{q}\beta_{k}\ln\sigma_{t-k}^{2} where :math:`e_{t}=\epsilon_{t}/\sigma_{t}`. """ def __init__(self, p: int = 1, o: int = 0, q: int = 1) -> None: super().__init__() self.p: int = int(p) self.o: int = int(o) self.q: int = int(q) self._num_params = 1 + p + o + q if p < 0 or o < 0 or q < 0: raise ValueError("All lags lengths must be non-negative") if p == 0 and o == 0: raise ValueError("One of p or o must be strictly positive") self._name = "EGARCH" if q > 0 else "EARCH" # Helpers for fitting variance self._arrays: Optional[Tuple[Float64Array, Float64Array, Float64Array]] = None self._volatility_updater = rec.EGARCHUpdater(self.p, self.o, self.q) def __str__(self) -> str: descr = self.name + "(" for k, v in (("p", self.p), ("o", self.o), ("q", self.q)): if v > 0: descr += k + ": " + str(v) + ", " descr = descr[:-2] + ")" return descr def variance_bounds(self, resids: Float64Array, power: float = 2.0) -> Float64Array: return super().variance_bounds(resids, 2.0) def bounds(self, resids: Float64Array) -> List[Tuple[float, float]]: v = np.mean(resids ** 2.0) log_const = np.log(10000.0) lnv = np.log(v) bounds = [(lnv - log_const, lnv + log_const)] bounds.extend([(-np.inf, np.inf)] * (self.p + self.o)) bounds.extend([(0.0, float(self.q))] * self.q) return bounds def constraints(self) -> Tuple[Float64Array, Float64Array]: p, o, q = self.p, self.o, self.q k_arch = p + o + q a = np.zeros((1, k_arch + 1)) a[0, p + o + 1 :] = -1.0 b = np.zeros((1,)) b[0] = -1.0 return a, b def compute_variance( self, parameters: Float64Array, resids: Float64Array, sigma2: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, ) -> Float64Array: p, o, q = self.p, self.o, self.q nobs = resids.shape[0] if (self._arrays is not None) and (self._arrays[0].shape[0] == nobs): lnsigma2, std_resids, abs_std_resids = self._arrays else: lnsigma2 = np.empty(nobs) abs_std_resids = np.empty(nobs) std_resids = np.empty(nobs) self._arrays = (lnsigma2, abs_std_resids, std_resids) rec.egarch_recursion( parameters, resids, sigma2, p, o, q, nobs, backcast, var_bounds, lnsigma2, std_resids, abs_std_resids, ) return sigma2 def backcast_transform( self, backcast: Union[float, Float64Array] ) -> Union[float, Float64Array]: backcast = super().backcast_transform(backcast) return float(np.log(backcast)) def backcast(self, resids: Float64Array) -> Union[float, Float64Array]: return float(np.log(super().backcast(resids))) def simulate( self, parameters: Union[Sequence[Union[int, float]], ArrayLike1D], nobs: int, rng: RNGType, burn: int = 500, initial_value: Union[None, float, Float64Array] = None, ) -> Tuple[Float64Array, Float64Array]: parameters = ensure1d(parameters, "parameters", False) p, o, q = self.p, self.o, self.q errors = rng(nobs + burn) if initial_value is None: if q > 0: beta_sum = np.sum(parameters[p + o + 1 :]) else: beta_sum = 0.0 if beta_sum < 1: initial_value = parameters[0] / (1.0 - beta_sum) else: warn(initial_value_warning, InitialValueWarning) initial_value = parameters[0] sigma2 = np.zeros(nobs + burn) data = np.zeros(nobs + burn) lnsigma2 = np.zeros(nobs + burn) abserrors = cast(Float64Array, np.abs(errors)) norm_const = np.sqrt(2 / np.pi) max_lag = np.max([p, o, q]) lnsigma2[:max_lag] = initial_value sigma2[:max_lag] = np.exp(initial_value) data[:max_lag] = errors[:max_lag] * np.sqrt(sigma2[:max_lag]) for t in range(max_lag, nobs + burn): loc = 0 lnsigma2[t] = parameters[loc] loc += 1 for j in range(p): lnsigma2[t] += parameters[loc] * (abserrors[t - 1 - j] - norm_const) loc += 1 for j in range(o): lnsigma2[t] += parameters[loc] * errors[t - 1 - j] loc += 1 for j in range(q): lnsigma2[t] += parameters[loc] * lnsigma2[t - 1 - j] loc += 1 sigma2 = cast(Float64Array, np.exp(lnsigma2)) data = errors * np.sqrt(sigma2) return data[burn:], sigma2[burn:] def starting_values(self, resids: Float64Array) -> Float64Array: p, o, q = self.p, self.o, self.q alphas = [0.01, 0.05, 0.1, 0.2] gammas = [-0.1, 0.0, 0.1] betas = [0.5, 0.7, 0.9, 0.98] agbs = list(itertools.product(*[alphas, gammas, betas])) target = np.log(np.mean(resids ** 2)) svs = [] var_bounds = self.variance_bounds(resids) backcast = self.backcast(resids) llfs = np.zeros(len(agbs)) for i, values in enumerate(agbs): alpha, gamma, beta = values sv = (1.0 - beta) * target * np.ones(p + o + q + 1) if p > 0: sv[1 : 1 + p] = alpha / p if o > 0: sv[1 + p : 1 + p + o] = gamma / o if q > 0: sv[1 + p + o : 1 + p + o + q] = beta / q svs.append(sv) llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds) loc = np.argmax(llfs) return svs[int(loc)] def parameter_names(self) -> List[str]: return _common_names(self.p, self.o, self.q) def _check_forecasting_method( self, method: ForecastingMethod, horizon: int ) -> None: if method == "analytic" and horizon > 1: raise ValueError("Analytic forecasts not available for horizon > 1") return def _analytic_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, ) -> VarianceForecast: _, forecasts = self._one_step_forecast( parameters, resids, backcast, var_bounds, horizon, start ) return VarianceForecast(forecasts) def _simulation_forecast( self, parameters: Float64Array, resids: Float64Array, backcast: Union[float, Float64Array], var_bounds: Float64Array, start: int, horizon: int, simulations: int, rng: RNGType, ) -> VarianceForecast: sigma2, forecasts = self._one_step_forecast( parameters, resids, backcast, var_bounds, horizon, start ) t = resids.shape[0] p, o, q = self.p, self.o, self.q m = np.max([p, o, q]) lnsigma2 = cast(Float64Array, np.log(sigma2)) e = resids / np.sqrt(sigma2) lnsigma2_mat = np.full((t, m), backcast) e_mat = np.zeros((t, m)) abs_e_mat = np.full((t, m), np.sqrt(2 / np.pi)) for i in range(m): lnsigma2_mat[m - i - 1 :, i] = lnsigma2[: (t - (m - 1) + i)] e_mat[m - i - 1 :, i] = e[: (t - (m - 1) + i)] abs_e_mat[m - i - 1 :, i] = np.abs(e[: (t - (m - 1) + i)]) paths =
np.empty((t - start, simulations, horizon))
numpy.empty
#!/usr/bin/env python import pickle import datetime import numpy as np import os data_filename = "/Yep/data/exp_data_%s.pckl" pay_methods = ["Compte Commun", "Cash", "Card Tony", "Card AC", "Cheques Repas"] benefs = ["Both", "Tony", "AC"] types = ["Groceries", "Car", "Holidays", "Restos", "Health", "Telecom", "Fast Food", "Epargne", "Insurance", "Gifts", "Books", "Entertainment", "Actis", "Work", "Drank & Drugs", "Cat", "Extra", "Clothing", "Appart"] def get_year_month_day(date_str): fields = date_str.split('-') return [int(fields[0]), int(fields[1]), int(fields[2])] class exp_handler: def __init__(self, user): self.user = user try: f = open(data_filename % self.user, 'rb') self.dic = pickle.load(f) f.close() except IOError: self.dic = {'Date' : [], 'Type' : [], 'Method': [], 'Benef': [], 'Amount' : np.array([])} def update_dic(self, colname, data): self.dic[colname].append(data) def get_types(self): return types def get_benefs(self): return benefs def get_pay_methods(self): return pay_methods def get_dic(self): return self.dic def save_data(self, dic=None): if dic is None: dic = self.dic f = open(data_filename % self.user, 'wb') pickle.dump(dic, f) f.close() os.sync() def add_new_exp(self, date_str, amount_float, exp_type, pay_method, benef): self.today = datetime.date(get_year_month_day(date_str)[0], get_year_month_day(date_str)[1], get_year_month_day(date_str)[2]) self.update_dic('Date', self.today) self.update_dic('Type', exp_type) self.update_dic('Method', pay_method) self.update_dic('Benef', benef) self.dic['Amount'] =
np.append(self.dic['Amount'], amount_float)
numpy.append
# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Applies online refinement while running inference. Instructions: Run static inference first before calling this script. Make sure to point output_dir to the same folder where static inference results were saved previously. For example use, please refer to README. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import datetime import os import random from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf import model import nets import reader import util gfile = tf.gfile SAVE_EVERY = 1 # Defines the interval that predictions should be saved at. SAVE_PREVIEWS = True # If set, while save image previews of depth predictions. FIXED_SEED = 8964 # Fixed seed for repeatability. flags.DEFINE_string('output_dir', None, 'Directory to store predictions. ' 'Assumes that regular inference has been executed before ' 'and results were stored in this folder.') flags.DEFINE_string('data_dir', None, 'Folder pointing to preprocessed ' 'triplets to fine-tune on.') flags.DEFINE_string('triplet_list_file', None, 'Text file containing paths to ' 'image files to process. Paths should be relative with ' 'respect to the list file location. Every line should be ' 'of the form [input_folder_name] [input_frame_num] ' '[output_path], where [output_path] is optional to specify ' 'a different path to store the prediction.') flags.DEFINE_string('triplet_list_file_remains', None, 'Optional text file ' 'containing relative paths to image files which should not ' 'be fine-tuned, e.g. because of missing adjacent frames. ' 'For all files listed, the static prediction will be ' 'copied instead. File can be empty. If not, every line ' 'should be of the form [input_folder_name] ' '[input_frame_num] [output_path], where [output_path] is ' 'optional to specify a different path to take and store ' 'the unrefined prediction from/to.') flags.DEFINE_string('model_ckpt', None, 'Model checkpoint to optimize.') flags.DEFINE_string('ft_name', '', 'Optional prefix for temporary files.') flags.DEFINE_string('file_extension', 'png', 'Image data file extension.') flags.DEFINE_float('learning_rate', 0.0001, 'Adam learning rate.') flags.DEFINE_float('beta1', 0.9, 'Adam momentum.') flags.DEFINE_float('reconstr_weight', 0.85, 'Frame reconstruction loss weight.') flags.DEFINE_float('ssim_weight', 0.15, 'SSIM loss weight.') flags.DEFINE_float('smooth_weight', 0.01, 'Smoothness loss weight.') flags.DEFINE_float('icp_weight', 0.0, 'ICP loss weight.') flags.DEFINE_float('size_constraint_weight', 0.0005, 'Weight of the object ' 'size constraint loss. Use only with motion handling.') flags.DEFINE_integer('batch_size', 1, 'The size of a sample batch') flags.DEFINE_integer('img_height', 128, 'Input frame height.') flags.DEFINE_integer('img_width', 416, 'Input frame width.') flags.DEFINE_integer('seq_length', 3, 'Number of frames in sequence.') flags.DEFINE_enum('architecture', nets.RESNET, nets.ARCHITECTURES, 'Defines the architecture to use for the depth prediction ' 'network. Defaults to ResNet-based encoder and accompanying ' 'decoder.') flags.DEFINE_boolean('imagenet_norm', True, 'Whether to normalize the input ' 'images channel-wise so that they match the distribution ' 'most ImageNet-models were trained on.') flags.DEFINE_float('weight_reg', 0.05, 'The amount of weight regularization to ' 'apply. This has no effect on the ResNet-based encoder ' 'architecture.') flags.DEFINE_boolean('exhaustive_mode', False, 'Whether to exhaustively warp ' 'from any frame to any other instead of just considering ' 'adjacent frames. Where necessary, multiple egomotion ' 'estimates will be applied. Does not have an effect if ' 'compute_minimum_loss is enabled.') flags.DEFINE_boolean('random_scale_crop', False, 'Whether to apply random ' 'image scaling and center cropping during training.') flags.DEFINE_bool('depth_upsampling', True, 'Whether to apply depth ' 'upsampling of lower-scale representations before warping to ' 'compute reconstruction loss on full-resolution image.') flags.DEFINE_bool('depth_normalization', True, 'Whether to apply depth ' 'normalization, that is, normalizing inverse depth ' 'prediction maps by their mean to avoid degeneration towards ' 'small values.') flags.DEFINE_bool('compute_minimum_loss', True, 'Whether to take the ' 'element-wise minimum of the reconstruction/SSIM error in ' 'order to avoid overly penalizing dis-occlusion effects.') flags.DEFINE_bool('use_skip', True, 'Whether to use skip connections in the ' 'encoder-decoder architecture.') flags.DEFINE_bool('joint_encoder', False, 'Whether to share parameters ' 'between the depth and egomotion networks by using a joint ' 'encoder architecture. The egomotion network is then ' 'operating only on the hidden representation provided by the ' 'joint encoder.') flags.DEFINE_float('egomotion_threshold', 0.01, 'Minimum egomotion magnitude ' 'to apply finetuning. If lower, just forwards the ordinary ' 'prediction.') flags.DEFINE_integer('num_steps', 20, 'Number of optimization steps to run.') flags.DEFINE_boolean('handle_motion', True, 'Whether the checkpoint was ' 'trained with motion handling.') flags.DEFINE_bool('flip', False, 'Whether images should be flipped as well as ' 'resulting predictions (for test-time augmentation). This ' 'currently applies to the depth network only.') FLAGS = flags.FLAGS flags.mark_flag_as_required('output_dir') flags.mark_flag_as_required('data_dir') flags.mark_flag_as_required('model_ckpt') flags.mark_flag_as_required('triplet_list_file') def main(_): """Runs fine-tuning and inference. There are three categories of images. 1) Images where we have previous and next frame, and that are not filtered out by the heuristic. For them, we will use the fine-tuned predictions. 2) Images where we have previous and next frame, but that were filtered out by our heuristic. For them, we will use the ordinary prediction instead. 3) Images where we have at least one missing adjacent frame. For them, we will use the ordinary prediction as indicated by triplet_list_file_remains (if provided). They will also not be part of the generated inference list in the first place. Raises: ValueError: Invalid parameters have been passed. """ if FLAGS.handle_motion and FLAGS.joint_encoder: raise ValueError('Using a joint encoder is currently not supported when ' 'modeling object motion.') if FLAGS.handle_motion and FLAGS.seq_length != 3: raise ValueError('The current motion model implementation only supports ' 'using a sequence length of three.') if FLAGS.handle_motion and not FLAGS.compute_minimum_loss: raise ValueError('Computing the minimum photometric loss is required when ' 'enabling object motion handling.') if FLAGS.size_constraint_weight > 0 and not FLAGS.handle_motion: raise ValueError('To enforce object size constraints, enable motion ' 'handling.') if FLAGS.icp_weight > 0.0: raise ValueError('ICP is currently not supported.') if FLAGS.compute_minimum_loss and FLAGS.seq_length % 2 != 1: raise ValueError('Compute minimum loss requires using an odd number of ' 'images in a sequence.') if FLAGS.compute_minimum_loss and FLAGS.exhaustive_mode: raise ValueError('Exhaustive mode has no effect when compute_minimum_loss ' 'is enabled.') if FLAGS.img_width % (2 ** 5) != 0 or FLAGS.img_height % (2 ** 5) != 0: logging.warn('Image size is not divisible by 2^5. For the architecture ' 'employed, this could cause artefacts caused by resizing in ' 'lower dimensions.') if FLAGS.output_dir.endswith('/'): FLAGS.output_dir = FLAGS.output_dir[:-1] # Create file lists to prepare fine-tuning, save it to unique_file. unique_file_name = (str(datetime.datetime.now().date()) + '_' + str(datetime.datetime.now().time()).replace(':', '_')) unique_file = os.path.join(FLAGS.data_dir, unique_file_name + '.txt') with gfile.FastGFile(FLAGS.triplet_list_file, 'r') as f: files_to_process = f.readlines() files_to_process = [line.rstrip() for line in files_to_process] files_to_process = [line for line in files_to_process if len(line)] logging.info('Creating unique file list %s with %s entries.', unique_file, len(files_to_process)) with gfile.FastGFile(unique_file, 'w') as f_out: fetches_network = FLAGS.num_steps * FLAGS.batch_size fetches_saves = FLAGS.batch_size * int(np.floor(FLAGS.num_steps/SAVE_EVERY)) repetitions = fetches_network + 3 * fetches_saves for i in range(len(files_to_process)): for _ in range(repetitions): f_out.write(files_to_process[i] + '\n') # Read remaining files. remaining = [] if gfile.Exists(FLAGS.triplet_list_file_remains): with gfile.FastGFile(FLAGS.triplet_list_file_remains, 'r') as f: remaining = f.readlines() remaining = [line.rstrip() for line in remaining] remaining = [line for line in remaining if len(line)] logging.info('Running fine-tuning on %s files, %s files are remaining.', len(files_to_process), len(remaining)) # Run fine-tuning process and save predictions in id-folders. tf.set_random_seed(FIXED_SEED)
np.random.seed(FIXED_SEED)
numpy.random.seed
from random import random import pybullet as p import pybullet_data import numpy as np from scipy.spatial.transform import Rotation as R import cv2 as cv from tf_agents.environments import py_environment from tf_agents.environments import tf_py_environment from tf_agents.specs import array_spec from tf_agents.trajectories import time_step as ts from env.objs import plane, ohmni, obstacle VELOCITY_COEFFICIENT = 10 class Env: def __init__(self, gui=False, num_of_obstacles=20, dst_rad=3, image_shape=(96, 96)): # Env constants self.gui = gui self.timestep = 0.1 self._left_wheel_id = 0 self._right_wheel_id = 1 # Env specs self.image_shape = image_shape self.num_of_obstacles = num_of_obstacles self.dst_rad = dst_rad self.destination = np.array([3, 0], dtype=np.float32) # Init self.client_id = self._init_ws() def _init_ws(self): """ Create server and start, there are two modes: 1. GUI: it visualizes the environment and allow controlling ohmni via sliders. 2. Headless: by running everything in background, it's suitable for ai/ml/rl development. """ # Init server client_id = p.connect(p.GUI if self.gui else p.DIRECT) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setTimeStep(self.timestep, physicsClientId=client_id) p.configureDebugVisualizer( p.COV_ENABLE_GUI, 0, physicsClientId=client_id) # Return return client_id def _randomize_destination(self): x = random() * self.dst_rad * (-1 if random() > 0.5 else 1) y = random() * self.dst_rad * (-1 if random() > 0.5 else 1) # vibe = random() * 4 * (-1 if random() > 0.5 else 1) # Level 1 # destination = np.array([5, vibe], dtype=np.float32) # Level 1 destination = np.array([x, y], dtype=np.float32) # Level 2 p.addUserDebugLine( np.append(destination, 0.), # From np.append(destination, 3.), # To [1, 0, 0], # Red physicsClientId=self.client_id ) return destination def _build(self): """ Including plane, ohmni, obstacles into the environment """ # Add gravity p.setGravity(0, 0, -10, physicsClientId=self.client_id) # Add plane and ohmni plane(self.client_id) ohmni_id, _capture_image = ohmni(self.client_id) # Add obstacles at random positions # vibe = random() * 1.5 * (-1 if random() > 0.5 else 1) # Level 1 # obstacle(self.client_id, pos=[3+vibe, 0, 0.5]) # Level 1 for _ in range(self.num_of_obstacles): # Level 2 obstacle(self.client_id, avoids=[ [0, 0], self.destination]) # Level 2 # Return return ohmni_id, _capture_image def _reset(self): """ Remove all objects, then rebuild them """ p.resetSimulation(physicsClientId=self.client_id) self.destination = self._randomize_destination() self.ohmni_id, self._capture_image = self._build() def capture_image(self): """ Get image from navigation camera """ if self._capture_image is None: raise ValueError('_capture_image is undefined') return self._capture_image(self.image_shape) def getContactPoints(self): """ Get Ohmni contacts """ return p.getContactPoints(self.ohmni_id, physicsClientId=self.client_id) def getBasePositionAndOrientation(self): """ Get Ohmni position and orientation """ return p.getBasePositionAndOrientation(self.ohmni_id, physicsClientId=self.client_id) def reset(self): """ Reset the environment """ self._reset() def step(self, action): """ Controllers for left/right wheels which are separate """ # Normalize velocities [left_wheel, right_wheel] = action left_wheel = left_wheel * VELOCITY_COEFFICIENT right_wheel = right_wheel * VELOCITY_COEFFICIENT # Step p.setJointMotorControl2(self.ohmni_id, self._left_wheel_id, p.VELOCITY_CONTROL, targetVelocity=left_wheel, physicsClientId=self.client_id) p.setJointMotorControl2(self.ohmni_id, self._right_wheel_id, p.VELOCITY_CONTROL, targetVelocity=right_wheel, physicsClientId=self.client_id) p.stepSimulation(physicsClientId=self.client_id) class PyEnv(py_environment.PyEnvironment): def __init__(self, gui=False, image_shape=(96, 96)): super(PyEnv, self).__init__() # Parameters self.image_shape = image_shape self.input_shape = self.image_shape + (4,) self.max_steps = 500 self._fix_vanish_hyperparam = 0.15 self._num_of_obstacles = 25 self._dst_rad = 6 # Actions self._num_values = 5 self._values = np.linspace(-1, 1, self._num_values) self._actions = np.transpose([ np.tile(self._values, self._num_values), np.repeat(self._values, self._num_values) ]) self._num_actions = len(self._actions) # PyEnvironment variables self._action_spec = array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=self._num_actions - 1, name='action') self._observation_spec = array_spec.BoundedArraySpec( shape=self.input_shape, dtype=np.float32, minimum=0, maximum=1, name='observation') # Init bullet server self._env = Env( gui, num_of_obstacles=self._num_of_obstacles, dst_rad=self._dst_rad, image_shape=self.image_shape ) # Internal states self._state = None self._episode_ended = False self._num_steps = 0 # Reset self._reset() def _get_image_state(self): _, _, rgb_img, _, seg_img = self._env.capture_image() img = np.array(rgb_img, dtype=np.float32) / 255 # We add a constant to fix the problem of black pixels which vanish all the parameters mask = np.minimum( seg_img + self._fix_vanish_hyperparam, 1 - self._fix_vanish_hyperparam, dtype=np.float32) mask = cv.cvtColor(mask, cv.COLOR_GRAY2RGB) return img, mask def _get_pose_state(self): position, orientation = self._env.getBasePositionAndOrientation() position = np.array(position, dtype=np.float32) destination_posistion = np.append(self._env.destination, 0.) rotation = R.from_quat( [-orientation[0], -orientation[1], -orientation[2], orientation[3]]) rel_position = rotation.apply(destination_posistion - position) _pose = rel_position[0:2] cosine_sim = np.dot([1, 0], _pose) / \ (np.linalg.norm([1, 0]) * np.linalg.norm(_pose)) return _pose.astype(dtype=np.float32), cosine_sim def _is_finished(self): """ Compute the distance from agent to destination """ position, _ = self._env.getBasePositionAndOrientation() position = np.array(position[0:2], dtype=np.float32) distance = np.linalg.norm(position - self._env.destination) return distance < 0.5 def _is_fatal(self): """ Predict a fall """ position, orientation = self._env.getBasePositionAndOrientation() position = np.array(position, dtype=np.float32) # Ohmni exceeds the number of steps if self._num_steps > self.max_steps: return True # Ohmni felt out of the environment if abs(position[2]) >= 0.5: return True # Ohmni is falling down if abs(orientation[0]) > 0.2 or abs(orientation[1]) > 0.2: return True return False def _is_collided(self): """ Predict collisions """ collision = self._env.getContactPoints() for contact in collision: # Contact with things different from floor if contact[2] != 0: return True return False def _compute_reward(self): """ Compute reward and return (<stopped>, <reward>) """ # Reaching the destination pose, cosine_sim = self._get_pose_state() if self._is_finished(): return True, 10 # Dead if self._is_fatal(): return True, -10 # Colliding if self._is_collided(): return False, -0.1 # Ohmni on his way return False, (cosine_sim - min(1, np.linalg.norm(pose)/10))/20 def _reset(self): """ Reset environment""" self._env.reset() self._state = None self._episode_ended = False self._num_steps = 0 self.set_state() return ts.restart(self._state) def action_spec(self): """ Return action specs """ return self._action_spec def observation_spec(self): """ Return observation specs """ return self._observation_spec def get_info(self): return {} def get_state(self): return self._state def set_state(self, state=None): # Gamifying (h, w) = self.image_shape _, mask = self._get_image_state() # Image state pose, _ = self._get_pose_state() # Pose state cent = np.array([w / 2, h / 2], dtype=np.float32) dest = -pose * 32 + cent # Transpose/Scale/Tranform color = min(10, np.linalg.norm(pose))/20 + 0.25 # [0.25, 0.75] mask = cv.line(mask, (int(cent[1]), int(cent[0])), (int(dest[1]), int(dest[0])), (color, color, color), thickness=3) observation = cv.cvtColor(mask, cv.COLOR_RGB2GRAY) observation = np.reshape(observation, self.image_shape + (1,)) # Set state if self._state is None: init_state = observation (_, _, stack_channel) = self.input_shape for _ in range(stack_channel - 1): init_state = np.append(init_state, observation, axis=2) self._state =
np.array(init_state, dtype=np.float32)
numpy.array
#!/usr/bin/python3 # number of output figures = 1 import matplotlib as mpl import numpy as np from helper.figure import Figure import helper.grid import helper.plot def isParent1D(l1, i1, l2, i2): if l1 + 1 == l2: if l1 == 0: if i2 == 1: return True else: if i2 in [2*i1-1, 2*i1+1]: return True return False def getParentDimension(l1, i1, l2, i2): t = l1.shape[0] parentDimension = None for t in range(d): if isParent1D(l1[t], i1[t], l2[t], i2[t]): if parentDimension is not None: return None parentDimension = t else: if (l1[t] != l2[t]) or (i1[t] != i2[t]): return None return parentDimension def plotLine(ax, xx, yy, l, n, colormap="viridis", maxIntensity=1): #ax.plot(xx, yy, "k-") N = xx.shape[0] segments = [np.array([[xx[k], yy[k]], [xx[k+1], yy[k+1]]]) for k in range(N - 1)] lineCollection = mpl.collections.LineCollection( segments, cmap=colormap, norm=mpl.colors.Normalize(0, 1)) t = maxIntensity * np.linspace(0, 1, n+1) tt = np.linspace(t[l], t[l+1], N) lineCollection.set_array(tt) ax.add_collection(lineCollection) n = 4 d = 2 b = 1 grid = helper.grid.RegularSparseBoundary(n, d, b) X, L, I = grid.generate() K = np.lexsort((*L.T, np.sum(L, axis=1))) X, L, I = X[K,:], L[K,:], I[K,:] N = X.shape[0] fig = Figure.create(figsize=(3, 3), scale=1.5) ax = fig.gca() angle = 35 / 180 * np.pi colormap = mpl.cm.get_cmap("Blues_r") maxIntensity = 0.55 normalize = mpl.colors.Normalize(0, n / maxIntensity) for k1 in range(N): for k2 in range(N): parentDimension = getParentDimension(L[k1,:], I[k1,:], L[k2,:], I[k2,:]) if parentDimension is not None: l = L[k1,parentDimension] nn = int(125 * np.linalg.norm(X[k2,:] - X[k1,:])) tt = np.linspace(0, 1, nn) XX = helper.plot.getQuadraticBezierCurveViaAngle( X[k1,:], X[k2,:], angle, tt) XX = XX[:-2,:] curPlotLine = (lambda ax, xx, yy: plotLine(ax, xx, yy,
np.sum(L[k1,:])
numpy.sum
# -*- coding: utf-8 -*- import numpy as np import cv2 # landmarks line mask def generate_mask(image, landmarks): ''' generate face mask according to landmarks Args: image: numpy.ndarray landmarks: 68x2 numpy.ndarray Return: a mask map with ''' # layer1: line # layer2: region without expansion # layer3: wider mask linemask = generate_line_mask(image, landmarks) regionmask = generate_region_mask(image, landmarks) widermask = generate_wider_mask(image, landmarks) mask = np.stack([linemask, regionmask, widermask]).transpose(1, 2, 0) # return channel: BGR(linemask, regionmask, widermask)channel0: return mask def generate_line_mask(image, landmarks): linemask = image.copy() # np.zeros_like(image).astype(np.uint8) # face linemask = connect_line(linemask, landmarks[0:17]) # eyebow linemask = connect_line(linemask, landmarks[17:22]) linemask = connect_line(linemask, landmarks[22:27]) # nose linemask = connect_line(linemask, np.vstack([landmarks[27:31], landmarks[33]])) linemask = connect_line(linemask, landmarks[31:36]) # eyes linemask = connect_line(linemask, np.vstack([landmarks[36:42], landmarks[36]])) linemask = connect_line(linemask, np.vstack([landmarks[42:48], landmarks[42]])) # mouth linemask = connect_line(linemask, np.vstack([landmarks[48:60], landmarks[48]])) linemask = connect_line(linemask, np.vstack([landmarks[60:68], landmarks[60]])) return linemask def connect_line(input, landmarks): img = input.copy() size= len(landmarks) for i in range(0, size-1): img = cv2.line(img, (landmarks[i, 0], landmarks[i, 1]), (landmarks[i+1, 0], landmarks[i+1, 1]), (255, 255, 255), 1, cv2.LINE_AA) return img # face landmarks origin def generate_region_mask(image, landmarks): regionmask =
np.zeros_like(image[:, :, 0])
numpy.zeros_like
import numpy as np import os import pickle import matplotlib.pyplot as plt import keras from keras.models import load_model from keras import datasets import math from PIL import Image import mnist_manifold import mnist_model import warnings warnings.filterwarnings("ignore") ''' Load MNIST model, manifold model, and transformed adversarial examples Loop through adversarial examples, find prediction, adjust prediction based on manifold and norms Report statistics ''' PATH_TO_MODEL = "models/mnist_model.h5" PATH_TO_DATA = "datasets/test" def l1(point, manifold): l1_distances = [ abs(point[0] - man_point[0]) + abs(point[1] - man_point[1]) for man_point in manifold ] return np.mean(l1_distances) def l2(point, manifold): l2_distances = [ np.sqrt( (point[0] - man_point[0]) * (point[0] - man_point[0]) + (point[1] - man_point[1]) * (point[1] - man_point[1]) ) for man_point in manifold ] return np.mean(l2_distances) def fractional_norm(point, manifold, denominator): frac_distances = [ ( (point[0] - man_point[0]) ** (1 / denominator) + (point[1] - man_point[1]) ** (1 / denominator) ) ** denominator for man_point in manifold ] return np.nanmean(frac_distances) def similarity(point, manifold, method, denominator=1): distance = 0.0 if method == "L1": distance = l1(point, manifold) elif method == "L2": distance = l2(point, manifold) elif method == "fraction": distance = fractional_norm(point, manifold, denominator) return distance def mnist_preprocessing(): (x_train, y_train), (x_test, y_test) = datasets.mnist.load_data() color_list = [ "red", "orange", "yellow", "lime", "green", "cyan", "blue", "purple", "fuchsia", "peru", ] colors = [color_list[y_train[j]] for j in range(len(y_train))] x_train, y_train, x_test, y_test, input_shape = mnist_model.preprocessing( x_train, y_train, x_test, y_test ) x_test = x_test[:500] y_test = y_test[:500] return x_test, y_test, colors def setup_model(): model = load_model(PATH_TO_MODEL) model = mnist_manifold.convert_to_model(model) model.trainable = True model.compile( loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=["accuracy"], ) return model def pred_confidence(model, example, label): orig_confs = model.predict(example) pred = np.argmax(orig_confs) pred_conf = orig_confs[0, pred] print(label + " prediction: " + str(pred) + " with confidence: " + str(pred_conf)) return pred def main(): # load data, manifold, and embedding x_test, y_test, colors = mnist_preprocessing() manifold = np.load( os.path.join(os.path.dirname(__file__), "mnist-ptsne-20000-2d.npy") ) embedding = pickle.load( open(os.path.join(os.path.dirname(__file__), "mnist-ptsne-20000-2d.pkl"), "rb") ) # for later statistical analysis net_incorrect = 0 net_correct = 0 net_incorrect_sim_incorrect = 0 net_incorrect_sim_correct = 0 net_correct_sim_incorrect = 0 net_correct_sim_correct = 0 if os.path.exists(PATH_TO_MODEL): model = setup_model() # how good the model is without adversarial examples score = model.evaluate(x_test, y_test, verbose=0) print("Original test loss:", score[0]) print("Original test accuracy:", score[1]) adversarials = [] for i in range(0, 500): adversarial = np.load(os.path.join(PATH_TO_DATA, str(i) + ".npy")) # adversarial = np.random.randint(2, size=(1, 28, 28, 1)) adversarials.append(adversarial) adv_pred = pred_confidence(model, adversarial, "Adversarial") orig_pred = pred_confidence(model, np.array([x_test[i]]), "Original") print("Ground truth: " + str(np.argmax(y_test[i]))) adv_mx = embedding.transform( adversarial.reshape(1, adversarial.shape[1] * adversarial.shape[2]) ) int_labels =
np.argmax(y_test, axis=1)
numpy.argmax
from redback.constants import * from redback.transient_models.magnetar_models import magnetar_only, basic_magnetar, _evolving_gw_and_em_magnetar import numpy as np from astropy.cosmology import Planck18 as cosmo # noqa from scipy.interpolate import interp1d from collections import namedtuple import astropy.units as uu # noqa import astropy.constants as cc # noqa from redback.utils import calc_kcorrected_properties, interpolated_barnes_and_kasen_thermalisation_efficiency, \ electron_fraction_from_kappa, citation_wrapper from redback.sed import blackbody_to_flux_density def _ejecta_dynamics_and_interaction(time, mej, beta, ejecta_radius, kappa, n_ism, magnetar_luminosity, pair_cascade_switch, use_gamma_ray_opacity, **kwargs): """ :param time: time in source frame :param mej: ejecta mass in solar masses :param beta: initial ejecta velocity in c :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param magnetar_luminosity: evaluated magnetar luminosity in source frame :param pair_cascade_switch: whether to account for pair cascade losses :param use_gamma_ray_opacity: whether to use gamma ray opacity to calculate thermalisation efficiency :param kwargs: Additional parameters :param kappa_gamma: Gamma-ray opacity for leakage efficiency, only used if use_gamma_ray_opacity = True :param thermalisation_efficiency: magnetar thermalisation efficiency only used if use_gamma_ray_opacity = False :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :return: named tuple with 'lorentz_factor', 'bolometric_luminosity', 'comoving_temperature', 'radius', 'doppler_factor', 'tau', 'time', 'kinetic_energy', 'erad_total', 'thermalisation_efficiency' """ mag_lum = magnetar_luminosity ejecta_albedo = kwargs.get('ejecta_albedo', 0.5) pair_cascade_fraction = kwargs.get('pair_cascade_fraction', 0.05) mej = mej * solar_mass lorentz_factor = [] radius = [] doppler_factor = [] lbol_ejecta = [] lbol_rest = [] comoving_temperature = [] tau = [] teff = [] internal_energy = 0.5 * beta ** 2 * mej * speed_of_light ** 2 comoving_volume = (4 / 3) * np.pi * ejecta_radius ** 3 gamma = 1 / np.sqrt(1 - beta ** 2) t0_comoving = 1.3 tsigma_comoving = 0.11 for i in range(len(time)): beta = np.sqrt(1 - 1 / gamma ** 2) doppler_factor_temp = 1 / (gamma * (1 - beta)) if i > 0: dt = time[i] - time[i - 1] gamma = gamma + dgamma_dt * dt ejecta_radius = ejecta_radius + drdt * dt comoving_volume = comoving_volume + dcomoving_volume_dt * dt internal_energy = internal_energy + dinternal_energy_dt * dt swept_mass = (4 / 3) * np.pi * ejecta_radius ** 3 * n_ism * proton_mass comoving_pressure = internal_energy / (3 * comoving_volume) comoving_time = doppler_factor_temp * time[i] comoving_dvdt = 4 * np.pi * ejecta_radius ** 2 * beta * speed_of_light rad_denom = (1 / 2) - (1 / 3.141592654) * np.arctan((comoving_time - t0_comoving) / tsigma_comoving) comoving_radiative_luminosity = (4 * 10 ** 49 * (mej / (2 * 10 ** 33) * 10 ** 2) * rad_denom ** 1.3) tau_temp = kappa * (mej / comoving_volume) * (ejecta_radius / gamma) if tau_temp <= 1: comoving_emitted_luminosity = (internal_energy * speed_of_light) / (ejecta_radius / gamma) comoving_temp_temperature = (internal_energy / (radiation_constant * comoving_volume)) ** (1./4.) else: comoving_emitted_luminosity = (internal_energy * speed_of_light) / (tau_temp * ejecta_radius / gamma) comoving_temp_temperature = (internal_energy / (radiation_constant * comoving_volume * tau_temp)) ** (1./4.) emitted_luminosity = comoving_emitted_luminosity * doppler_factor_temp ** 2 vej = ((1 / gamma) ** 2 + 1) ** 0.5 * speed_of_light if use_gamma_ray_opacity: kappa_gamma = kwargs["kappa_gamma"] prefactor = 3 * kappa_gamma * mej / (4 * np.pi * vej**2) thermalisation_efficiency = 1 - np.exp(-prefactor * time[i] ** -2) else: thermalisation_efficiency = kwargs["thermalisation_efficiency"] drdt = (beta * speed_of_light) / (1 - beta) dswept_mass_dt = 4 * np.pi * ejecta_radius ** 2 * n_ism * proton_mass * drdt dedt = thermalisation_efficiency * mag_lum[ i] + doppler_factor_temp ** 2 * comoving_radiative_luminosity - doppler_factor_temp ** 2 * comoving_emitted_luminosity comoving_dinternal_energydt = thermalisation_efficiency * doppler_factor_temp ** (-2) * mag_lum[ i] + comoving_radiative_luminosity - comoving_emitted_luminosity - comoving_pressure * comoving_dvdt dcomoving_volume_dt = comoving_dvdt * doppler_factor_temp dinternal_energy_dt = comoving_dinternal_energydt * doppler_factor_temp dgamma_dt = (dedt - gamma * doppler_factor_temp * comoving_dinternal_energydt - ( gamma ** 2 - 1) * speed_of_light ** 2 * dswept_mass_dt) / ( mej * speed_of_light ** 2 + internal_energy + 2 * gamma * swept_mass * speed_of_light ** 2) lorentz_factor.append(gamma) lbol_ejecta.append(comoving_emitted_luminosity) lbol_rest.append(emitted_luminosity) comoving_temperature.append(comoving_temp_temperature) radius.append(ejecta_radius) tau.append(tau_temp) doppler_factor.append(doppler_factor_temp) teff.append(thermalisation_efficiency) lorentz_factor = np.array(lorentz_factor) v0 = ((1/lorentz_factor)**2 + 1)**0.5 * speed_of_light bolometric_luminosity = np.array(lbol_rest) radius = np.array(radius) if pair_cascade_switch: tlife_t = (0.6/(1 - ejecta_albedo))*(pair_cascade_fraction/0.1)**0.5 * (mag_lum/1.0e45)**0.5 \ * (v0/(0.3*speed_of_light))**(0.5) * (time/86400)**(-0.5) bolometric_luminosity = bolometric_luminosity / (1.0 + tlife_t) comoving_temperature = (bolometric_luminosity / (4.0 * np.pi * np.array(radius) ** (2.0) * sigma_sb)) ** (0.25) dynamics_output = namedtuple('dynamics_output', ['lorentz_factor', 'bolometric_luminosity', 'comoving_temperature', 'radius', 'doppler_factor', 'tau', 'time', 'kinetic_energy', 'erad_total', 'thermalisation_efficiency']) dynamics_output.lorentz_factor = lorentz_factor dynamics_output.bolometric_luminosity = bolometric_luminosity dynamics_output.comoving_temperature = np.array(comoving_temperature) dynamics_output.radius = radius dynamics_output.doppler_factor = np.array(doppler_factor) dynamics_output.tau = tau dynamics_output.time = time dynamics_output.kinetic_energy = (lorentz_factor - 1)*mej*speed_of_light**2 dynamics_output.erad_total = np.trapz(bolometric_luminosity, x=time) dynamics_output.thermalisation_efficiency = teff return dynamics_output def _comoving_blackbody_to_flux_density(dl, frequency, radius, temperature, doppler_factor): """ :param dl: luminosity distance in cm :param frequency: frequency to calculate in Hz - Must be same length as time array or a single number :param radius: ejecta radius in cm :param temperature: comoving temperature in K :param doppler_factor: doppler_factor :return: flux_density """ ## adding units back in to ensure dimensions are correct frequency = frequency * uu.Hz radius = radius * uu.cm dl = dl * uu.cm temperature = temperature * uu.K planck = cc.h.cgs speed_of_light = cc.c.cgs boltzmann_constant = cc.k_B.cgs num = 2 * np.pi * planck * frequency ** 3 * radius ** 2 denom = dl ** 2 * speed_of_light ** 2 * doppler_factor ** 2 frac = 1. / (np.exp((planck * frequency) / (boltzmann_constant * temperature * doppler_factor)) - 1) flux_density = num / denom * frac return flux_density def _comoving_blackbody_to_luminosity(frequency, radius, temperature, doppler_factor): """ :param frequency: frequency to calculate in Hz - Must be same length as time array or a single number :param radius: ejecta radius in cm :param temperature: comoving temperature in K :param doppler_factor: doppler_factor :return: luminosity """ ## adding units back in to ensure dimensions are correct frequency = frequency * uu.Hz radius = radius * uu.cm temperature = temperature * uu.K planck = cc.h.cgs speed_of_light = cc.c.cgs boltzmann_constant = cc.k_B.cgs num = 8 * np.pi ** 2 * planck * frequency ** 4 * radius ** 2 denom = speed_of_light ** 2 * doppler_factor ** 2 frac = 1. / (np.exp((planck * frequency) / (boltzmann_constant * temperature * doppler_factor)) - 1) luminosity = num / denom * frac return luminosity @citation_wrapper('https://ui.adsabs.harvard.edu/abs/2013ApJ...776L..40Y/abstract') def basic_mergernova(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, p0, logbp, mass_ns, theta_pb, thermalisation_efficiency, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param p0: initial spin period in seconds :param bp: polar magnetic field strength in Gauss :param mass_ns: mass of neutron star in solar masses :param theta_pb: angle between spin and magnetic field axes :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is False :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ pair_cascade_switch = kwargs.get('pair_cascade_switch', False) frequency = kwargs['frequency'] time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value bp = 10**logbp magnetar_luminosity = basic_magnetar(time=time_temp, p0=p0, bp=bp, mass_ns=mass_ns, theta_pb=theta_pb) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, thermalisation_efficiency=thermalisation_efficiency, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=False, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value @citation_wrapper('Sarin et al. in prep.') def general_mergernova(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ frequency = kwargs['frequency'] pair_cascade_switch = kwargs.get('pair_cascade_switch', True) time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value magnetar_luminosity = magnetar_only(time=time_temp, l0=l0, tau=tau_sd, nn=nn) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, thermalisation_efficiency=thermalisation_efficiency, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=False, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value @citation_wrapper('Sarin et al. in prep.') def general_mergernova_thermalisation(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, kappa_gamma, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param kappa_gamma: gamma-ray opacity used to calculate magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ frequency = kwargs['frequency'] pair_cascade_switch = kwargs.get('pair_cascade_switch', True) time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value magnetar_luminosity = magnetar_only(time=time_temp, l0=l0, tau=tau_sd, nn=nn) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, kappa_gamma=kappa_gamma, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=True, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value @citation_wrapper('Sarin et al. in prep.') def general_mergernova_evolution(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, logbint, logbext, p0, chi0, radius, logmoi, kappa_gamma, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param logbint: log10 internal magnetic field in G :param logbext: log10 external magnetic field in G :param p0: spin period in s :param chi0: initial inclination angle :param radius: radius of NS in KM :param logmoi: log10 moment of inertia of NS :param kappa_gamma: gamma-ray opacity used to calculate magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ frequency = kwargs['frequency'] pair_cascade_switch = kwargs.get('pair_cascade_switch', True) time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value bint = 10 ** logbint bext = 10 ** logbext radius = radius * km_cgs moi = 10 ** logmoi output = _evolving_gw_and_em_magnetar(time=time_temp, bint=bint, bext=bext, p0=p0, chi0=chi0, radius=radius, moi=moi) magnetar_luminosity = output.Edot_d output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, kappa_gamma=kappa_gamma, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=True, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value def _trapped_magnetar_lum(time, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs): """ :param time: time in source frame :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: 'output_format' - whether to output flux density or AB magnitude :param kwargs: 'frequency' in Hertz to evaluate the mergernova emission - use a typical X-ray frequency :return: luminosity """ time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) magnetar_luminosity = magnetar_only(time=time_temp, l0=l0, tau=tau_sd, nn=nn) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, thermalisation_efficiency=thermalisation_efficiency, pair_cascade_switch=False, use_gamma_ray_opacity=False) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) tau_func = interp1d(time_temp, y=output.tau) temp = temp_func(time) rad = rad_func(time) df = d_func(time) optical_depth = tau_func(time) frequency = kwargs['frequency'] trapped_ejecta_lum = _comoving_blackbody_to_luminosity(frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) lsd = magnetar_only(time, l0=l0, tau=tau_sd, nn=nn) lum = np.exp(-optical_depth) * lsd + trapped_ejecta_lum return lum def _trapped_magnetar_flux(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, photon_index, **kwargs): """ :param time: time in observer frame in seconds :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: 'output_format' - whether to output flux density or AB magnitude :param kwargs: 'frequency' in Hertz to evaluate the mergernova emission - use a typical X-ray frequency :param kwargs: 'photon_index' used to calculate k correction and convert from luminosity to flux :return: integrated flux """ frequency = kwargs['frequency'] frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) kwargs['frequency'] = frequency lum = _trapped_magnetar_lum(time, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs) dl = cosmo.luminosity_distance(redshift).cgs.value kcorr = (1. + redshift) ** (photon_index - 2) flux = lum / (4 * np.pi * dl ** 2 * kcorr) return flux @citation_wrapper('https://ui.adsabs.harvard.edu/abs/2017ApJ...835....7S/abstract') def trapped_magnetar(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs): """ :param time: time in source frame or observer frame depending on output format in seconds :param redshift: redshift - not used if evaluating luminosity :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: 'output_format' - whether to output luminosity or flux :param kwargs: 'frequency' in Hertz to evaluate the mergernova emission - use a typical X-ray frequency :param kwargs: 'photon_index' only used if calculating the flux lightcurve :return: luminosity or integrated flux """ if kwargs['output_format'] == 'luminosity': return _trapped_magnetar_lum(time, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs) elif kwargs['output_format'] == 'flux': return _trapped_magnetar_flux(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs) def _general_metzger_magnetar_driven_kilonova_model(time, mej, vej, beta, kappa, magnetar_luminosity, use_gamma_ray_opacity, **kwargs): """ :param time: time array to evaluate model on in source frame in seconds :param redshift: redshift :param mej: ejecta mass in solar masses :param vej: minimum initial velocity :param beta: velocity power law slope (M=v^-beta) :param kappa: opacity :param magnetar_luminosity: evaluated magnetar luminosity in source frame :param pair_cascade_switch: whether to account for pair cascade losses :param use_gamma_ray_opacity: whether to use gamma ray opacity to calculate thermalisation efficiency :param kwargs: Additional parameters :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param kappa_gamma: Gamma-ray opacity for leakage efficiency, only used if use_gamma_ray_opacity = True :param thermalisation_efficiency: magnetar thermalisation efficiency only used if use_gamma_ray_opacity = False :param neutron_precursor_switch: whether to have neutron precursor emission, default True :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param magnetar_heating: whether magnetar heats all layers or just the bottom layer. :param vmax: maximum initial velocity of mass layers, default is 0.7c :return: named tuple with 'lorentz_factor', 'bolometric_luminosity', 'temperature', 'r_photosphere', 'kinetic_energy','erad_total', 'thermalisation_efficiency' """ pair_cascade_switch = kwargs.get('pair_cascade_switch', True) ejecta_albedo = kwargs.get('ejecta_albedo', 0.5) pair_cascade_fraction = kwargs.get('pair_cascade_fraction', 0.01) neutron_precursor_switch = kwargs.get('neutron_precursor_switch', True) magnetar_heating = kwargs.get('magnetar_heating', 'first_layer') vmax = kwargs.get('vmax', 0.7) tdays = time/day_to_s time_len = len(time) mass_len = 200 # set up kilonova physics av, bv, dv = interpolated_barnes_and_kasen_thermalisation_efficiency(mej, vej) # thermalisation from Barnes+16 e_th = 0.36 * (np.exp(-av * tdays) + np.log1p(2.0 * bv * tdays ** dv) / (2.0 * bv * tdays ** dv)) electron_fraction = electron_fraction_from_kappa(kappa) t0 = 1.3 #seconds sig = 0.11 #seconds tau_neutron = 900 #seconds # convert to astrophysical units m0 = mej * solar_mass v0 = vej * speed_of_light ek_tot_0 = 0.5 * m0 * v0 ** 2 # set up mass and velocity layers vmin = vej vel = np.linspace(vmin, vmax, mass_len) m_array = mej * (vel/vmin)**(-beta) v_m = vel * speed_of_light # set up arrays time_array = np.tile(time, (mass_len, 1)) e_th_array = np.tile(e_th, (mass_len, 1)) edotr = np.zeros((mass_len, time_len)) time_mask = time > t0 time_1 = time_array[:, time_mask] time_2 = time_array[:, ~time_mask] edotr[:,time_mask] = 2.1e10 * e_th_array[:, time_mask] * ((time_1/ (3600. * 24.)) ** (-1.3)) edotr[:, ~time_mask] = 4.0e18 * (0.5 - (1. / np.pi) * np.arctan((time_2 - t0) / sig)) ** (1.3) * e_th_array[:,~time_mask] lsd = magnetar_luminosity # set up empty arrays energy_v =
np.zeros((mass_len, time_len))
numpy.zeros
from ._contents import Contents import copy import numbers import numpy as np import more_itertools class Arraytainer(Contents, np.lib.mixins.NDArrayOperatorsMixin): _arrays = (np.ndarray,) # # Constructor Methods # def __init__(self, contents, convert_arrays=True, greedy=False, nested=True): # All arraytainers must minimally comprise of a list: if not isinstance(contents, (list, dict, tuple, Arraytainer)): contents = [contents] # To prevent array converter converting outer list to array: greedy=True if convert_arrays: contents = self._convert_contents_to_arrays(contents, greedy) super().__init__(contents, nested, greedy=greedy) #convert_arrays=convert_arrays @classmethod def from_array(cls, array, shapes, order='C', convert_arrays=True, greedy=False, nested=True): # Concatenate shapes tuple into a single arraytainer: if not isinstance(shapes, tuple): shapes = tuple([shapes]) shapes = cls._concatenate_elements_to_array(shapes) if not isinstance(shapes, Arraytainer): raise ValueError('shapes must container at least one arraytainer.') # Ensure correct number of elements in array: total_size = np.prod(shapes).sum_all() if total_size != array.size: raise ValueError(f'Array contains {array.size} elements, but shapes ' f'contains {total_size} elements.') vector = array.flatten(order=order) contents = cls._create_contents_from_vector(vector, shapes, order) return cls(contents, convert_arrays, greedy, nested) @classmethod def _concatenate_elements_to_array(cls, val_tuple): val_list = list(val_tuple) for idx, val_i in enumerate(val_list): if not isinstance(val_i, (Arraytainer, *cls._arrays)): val_i = cls._convert_to_array(val_i) # Shape arrays must have at least one dimension for concatenate: if val_i.ndim == 0: val_i = val_i[None] elif isinstance(val_i, Arraytainer): # 0 dimensional arrays in arraytainer cause concatenate to throw errors: val_i = np.atleast_1d(val_i) val_list[idx] = val_i return np.concatenate(val_list) @classmethod def _create_contents_from_vector(cls, vector, shapes, order, elem_idx=None, first_call=True): if elem_idx is None: elem_idx = 0 new_contents = {} for key, shape in shapes.items(): if isinstance(shape, Arraytainer): new_contents[key], elem_idx = cls._create_contents_from_vector(vector, shape, order, elem_idx, first_call=False) else: array_vals, elem_idx = cls._extract_array_vals(vector, elem_idx, shape) new_contents[key] = array_vals.reshape(shape, order=order) if shapes._type is list: new_contents = list(new_contents.values()) if first_call: output = new_contents else: output = (new_contents, elem_idx) return output @staticmethod def _extract_array_vals(vector, elem_idx, shape): # Jaxtainer version of this method uses jnp methods instead of np: num_elem = np.prod(shape) array_vals = vector[elem_idx:elem_idx+num_elem] elem_idx += num_elem return array_vals, elem_idx # # Array Conversion Methods # @staticmethod def _convert_to_array(val): # Note that Jaxtainer uses jnp.array: return np.array(val) def _convert_contents_to_arrays(self, contents, greedy): contents = self._unpack_if_arraytainer(contents) if isinstance(contents, tuple): contents = list(contents) contents_iter = contents.items() if isinstance(contents, dict) else enumerate(contents) for key, val in contents_iter: val = self._unpack_if_arraytainer(val) if isinstance(val, dict): contents[key] = self._convert_contents_to_arrays(val, greedy) elif isinstance(val, (list, tuple)): # Check before altering contents on val: any_arrays_in_val = any(isinstance(val_i, self._arrays) for val_i in val) # List of numbers should be directly converted to an array: if all(isinstance(val_i, numbers.Number) for val_i in val): converted_vals = self._convert_to_array(val) else: converted_vals = self._convert_contents_to_arrays(val, greedy) if not greedy and self._can_combine_list_into_single_array(converted_vals, any_arrays_in_val): converted_vals = self._convert_to_array(converted_vals) contents[key] = converted_vals else: contents[key] = self._convert_to_array(val) return contents @staticmethod def _unpack_if_arraytainer(val): if isinstance(val, Arraytainer): val = val.unpack() return val def _can_combine_list_into_single_array(self, converted_list, any_arrays_in_val): can_convert = not any_arrays_in_val and \ self._all_elems_are_arrays(converted_list) and \ self._all_arrays_of_equal_shape(converted_list) return can_convert def _all_elems_are_arrays(self, converted_list): return all(isinstance(val_i, self._arrays) for val_i in converted_list) def _all_arrays_of_equal_shape(self, converted_list): # Converted list could be empty: if converted_list: first_array_shape = converted_list[0].shape all_equal = all(array_i.shape == first_array_shape for array_i in converted_list) else: all_equal = True return all_equal # # Getter Methods # def __getitem__(self, key): if isinstance(key, self._arrays) or self._is_slice(key): item = self._get_with_array(key) else: item = super().__getitem__(key, greedy=True) return item def _get_with_array(self, array_key): item = {key: self._contents[key][array_key] for key in self.keys()} if self._type is list: item = list(item.values()) return self.__class__(item, greedy=True) # # Setter Methods # def update(self, new_elem, *key_iterable): new_elem = self._convert_to_array_or_arraytainer(new_elem) super().update(new_elem, *key_iterable) def assign(self, new_val, *key_iterable): new_val = self._convert_to_array_or_arraytainer(new_val) super().assign(new_val, *key_iterable) def _convert_to_array_or_arraytainer(self, val): if isinstance(val, numbers.Number): val = self._convert_to_array(val) if not isinstance(val, self._arrays): val = self.__class__(val) return val def __setitem__(self, key, new_value): if isinstance(key, self._arrays) or self._is_slice(key): self._set_with_array(key) elif isinstance(key, Arraytainer): self._set_with_arraytainer(key, new_value) else: super().__setitem__(key, new_value) @staticmethod def _is_slice(val): if isinstance(val, slice): is_slice = True # Slices accross multiple dimensions appear as tuples of ints/slices/Nones (e.g. my_array[3, 1:2, :]) elif isinstance(val, tuple) and all(isinstance(val_i, (type(None), slice, int)) for val_i in val): is_slice = True elif val is None: is_slice = True else: is_slice = False return is_slice def _set_with_array(self, array_key, new_value): for key in self.keys(): value_i = new_value[key] if isinstance(new_value, Arraytainer) else new_value # Note that Jaxtainers use different _set_array_values method: self._set_array_values(key, array_key, value_i) def _set_array_values(self, key, idx, new_value): self._contents[key][idx] = new_value def _set_with_arraytainer(self, arraytainer_key, new_value): for key, val in arraytainer_key.items(): new_value_i = new_value[key] if isinstance(new_value, Arraytainer) else new_value if isinstance(val, self._arrays): self._set_array_values(key, val, new_value_i) else: self._contents[key][val] = new_value_i # # Array Methods and Properties # @property def T(self): return np.transpose(self) def all(self): for key in self.keys(): # Numpy/Jax arrays also have an 'all' method: if not self.contents[key].all(): return False return True def any(self): for key in self.keys(): if self.contents[key].any(): return True return False def sum(self): return sum(self.values()) def sum_arrays(self): return sum(self.list_elements()) def sum_all(self): arraytainer_of_scalars = np.sum(self) return sum(arraytainer_of_scalars.list_elements()) def get_shape(self, return_tuples=False): shapes = {} for key, val in self.items(): shapes[key] = val.shape if self._type is list: shapes = list(shapes.values()) if not return_tuples: shapes = self.__class__(shapes, greedy=True) return shapes # # Array-Like Methods # @property def shape(self): return self.get_shape() @property def ndim(self): return np.ndim(self) @property def sizes(self): return np.prod(self.shape) @property def size(self): size = self.sizes.sum_all() if isinstance(size, self._arrays): size = size.item() return size def reshape(self, *new_shapes, order='C'): new_shapes = self._concatenate_elements_to_array(new_shapes) return np.reshape(self, new_shapes, order=order) def flatten(self, order='C', return_array=True): output = np.squeeze(np.ravel(self, order=order)) if return_array: # Zero-dimensional elements cause concatenate to throw error: elem_list = output.list_elements() for idx, elem in enumerate(elem_list): if elem.ndim == 0: elem_list[idx] = elem[None] output =
np.concatenate(elem_list)
numpy.concatenate
#!/usr/bin/env python # # Created by: <NAME>, April 2002 # from __future__ import division, print_function, absolute_import __usage__ = """ Build linalg: python setup.py build Run tests if scipy is installed: python -c 'import scipy;scipy.linalg.test()' """ import math import numpy as np from numpy.testing import (TestCase, run_module_suite, assert_equal, assert_almost_equal, assert_array_almost_equal, assert_raises, assert_) from scipy.linalg import _fblas as fblas, get_blas_funcs try: from scipy.linalg import _cblas as cblas except ImportError: cblas = None def test_get_blas_funcs(): # check that it returns Fortran code for arrays that are # fortran-ordered f1, f2, f3 = get_blas_funcs( ('axpy', 'axpy', 'axpy'), (np.empty((2,2), dtype=np.complex64, order='F'), np.empty((2,2), dtype=np.complex128, order='C')) ) # get_blas_funcs will choose libraries depending on most generic # array assert_equal(f1.typecode, 'z') assert_equal(f2.typecode, 'z') if cblas is not None: assert_equal(f1.module_name, 'cblas') assert_equal(f2.module_name, 'cblas') # check defaults. f1 = get_blas_funcs('rotg') assert_equal(f1.typecode, 'd') # check also dtype interface f1 = get_blas_funcs('gemm', dtype=np.complex64) assert_equal(f1.typecode, 'c') f1 = get_blas_funcs('gemm', dtype='F') assert_equal(f1.typecode, 'c') # extended precision complex f1 = get_blas_funcs('gemm', dtype=np.longcomplex) assert_equal(f1.typecode, 'z') # check safe complex upcasting f1 = get_blas_funcs('axpy', (np.empty((2,2), dtype=np.float64), np.empty((2,2), dtype=np.complex64)) ) assert_equal(f1.typecode, 'z') def test_get_blas_funcs_alias(): # check alias for get_blas_funcs f, g = get_blas_funcs(('nrm2', 'dot'), dtype=np.complex64) assert f.typecode == 'c' assert g.typecode == 'c' f, g, h = get_blas_funcs(('dot', 'dotc', 'dotu'), dtype=np.float64) assert f is g assert f is h class TestCBLAS1Simple(TestCase): def test_axpy(self): for p in 'sd': f = getattr(cblas,p+'axpy',None) if f is None: continue assert_array_almost_equal(f([1,2,3],[2,-1,3],a=5),[7,9,18]) for p in 'cz': f = getattr(cblas,p+'axpy',None) if f is None: continue assert_array_almost_equal(f([1,2j,3],[2,-1,3],a=5),[7,10j-1,18]) class TestFBLAS1Simple(TestCase): def test_axpy(self): for p in 'sd': f = getattr(fblas,p+'axpy',None) if f is None: continue assert_array_almost_equal(f([1,2,3],[2,-1,3],a=5),[7,9,18]) for p in 'cz': f = getattr(fblas,p+'axpy',None) if f is None: continue assert_array_almost_equal(f([1,2j,3],[2,-1,3],a=5),[7,10j-1,18]) def test_copy(self): for p in 'sd': f = getattr(fblas,p+'copy',None) if f is None: continue assert_array_almost_equal(f([3,4,5],[8]*3),[3,4,5]) for p in 'cz': f = getattr(fblas,p+'copy',None) if f is None: continue assert_array_almost_equal(f([3,4j,5+3j],[8]*3),[3,4j,5+3j]) def test_asum(self): for p in 'sd': f = getattr(fblas,p+'asum',None) if f is None: continue assert_almost_equal(f([3,-4,5]),12) for p in ['sc','dz']: f = getattr(fblas,p+'asum',None) if f is None: continue assert_almost_equal(f([3j,-4,3-4j]),14) def test_dot(self): for p in 'sd': f = getattr(fblas,p+'dot',None) if f is None: continue assert_almost_equal(f([3,-4,5],[2,5,1]),-9) def test_complex_dotu(self): for p in 'cz': f = getattr(fblas,p+'dotu',None) if f is None: continue assert_almost_equal(f([3j,-4,3-4j],[2,3,1]),-9+2j) def test_complex_dotc(self): for p in 'cz': f = getattr(fblas,p+'dotc',None) if f is None: continue assert_almost_equal(f([3j,-4,3-4j],[2,3j,1]),3-14j) def test_nrm2(self): for p in 'sd': f = getattr(fblas,p+'nrm2',None) if f is None: continue assert_almost_equal(f([3,-4,5]),math.sqrt(50)) for p in ['c', 'z', 'sc','dz']: f = getattr(fblas,p+'nrm2',None) if f is None: continue assert_almost_equal(f([3j,-4,3-4j]),math.sqrt(50)) def test_scal(self): for p in 'sd': f = getattr(fblas,p+'scal',None) if f is None: continue assert_array_almost_equal(f(2,[3,-4,5]),[6,-8,10]) for p in 'cz': f = getattr(fblas,p+'scal',None) if f is None: continue assert_array_almost_equal(f(3j,[3j,-4,3-4j]),[-9,-12j,12+9j]) for p in ['cs','zd']: f = getattr(fblas,p+'scal',None) if f is None: continue assert_array_almost_equal(f(3,[3j,-4,3-4j]),[9j,-12,9-12j]) def test_swap(self): for p in 'sd': f = getattr(fblas,p+'swap',None) if f is None: continue x,y = [2,3,1],[-2,3,7] x1,y1 = f(x,y) assert_array_almost_equal(x1,y) assert_array_almost_equal(y1,x) for p in 'cz': f = getattr(fblas,p+'swap',None) if f is None: continue x,y = [2,3j,1],[-2,3,7-3j] x1,y1 = f(x,y) assert_array_almost_equal(x1,y) assert_array_almost_equal(y1,x) def test_amax(self): for p in 'sd': f = getattr(fblas,'i'+p+'amax') assert_equal(f([-2,4,3]),1) for p in 'cz': f = getattr(fblas,'i'+p+'amax') assert_equal(f([-5,4+3j,6]),1) #XXX: need tests for rot,rotm,rotg,rotmg class TestFBLAS2Simple(TestCase): def test_gemv(self): for p in 'sd': f = getattr(fblas,p+'gemv',None) if f is None: continue assert_array_almost_equal(f(3,[[3]],[-4]),[-36]) assert_array_almost_equal(f(3,[[3]],[-4],3,[5]),[-21]) for p in 'cz': f = getattr(fblas,p+'gemv',None) if f is None: continue assert_array_almost_equal(f(3j,[[3-4j]],[-4]),[-48-36j]) assert_array_almost_equal(f(3j,[[3-4j]],[-4],3,[5j]),[-48-21j]) def test_ger(self): for p in 'sd': f = getattr(fblas,p+'ger',None) if f is None: continue assert_array_almost_equal(f(1,[1, 2],[3,4]),[[3,4],[6,8]]) assert_array_almost_equal(f(2,[1, 2, 3],[3,4]),[[6,8],[12,16],[18,24]]) assert_array_almost_equal(f(1,[1, 2],[3,4], a=[[1,2],[3,4]] ),[[4,6],[9,12]]) for p in 'cz': f = getattr(fblas,p+'geru',None) if f is None: continue assert_array_almost_equal(f(1,[1j, 2],[3,4]),[[3j,4j],[6,8]]) assert_array_almost_equal(f(-2,[1j, 2j, 3j],[3j,4j]),[[6,8],[12,16],[18,24]]) for p in 'cz': for name in ('ger', 'gerc'): f = getattr(fblas,p+name,None) if f is None: continue assert_array_almost_equal(f(1,[1j, 2],[3,4]),[[3j,4j],[6,8]]) assert_array_almost_equal(f(2,[1j, 2j, 3j],[3j,4j]),[[6,8],[12,16],[18,24]]) class TestFBLAS3Simple(TestCase): def test_gemm(self): for p in 'sd': f = getattr(fblas,p+'gemm',None) if f is None: continue assert_array_almost_equal(f(3,[3],[-4]),[[-36]]) assert_array_almost_equal(f(3,[3],[-4],3,[5]),[-21]) for p in 'cz': f = getattr(fblas,p+'gemm',None) if f is None: continue assert_array_almost_equal(f(3j,[3-4j],[-4]),[[-48-36j]]) assert_array_almost_equal(f(3j,[3-4j],[-4],3,[5j]),[-48-21j]) def _get_func(func, ps='sdzc'): """Just a helper: return a specified BLAS function w/typecode.""" for p in ps: f = getattr(fblas, p+func, None) if f is None: continue yield f class TestBLAS3Symm(TestCase): def setUp(self): self.a = np.array([[1., 2.], [0., 1.]]) self.b = np.array([[1., 0., 3.], [0., -1., 2.]]) self.c = np.ones((2,3)) self.t = np.array([[2., -1., 8.], [3., 0., 9.]]) def test_symm(self): for f in _get_func('symm'): res = f(a=self.a, b=self.b, c=self.c, alpha=1., beta=1.) assert_array_almost_equal(res, self.t) res = f(a=self.a.T, b=self.b, lower=1, c=self.c, alpha=1., beta=1.) assert_array_almost_equal(res, self.t) res = f(a=self.a, b=self.b.T, side=1, c=self.c.T, alpha=1., beta=1.) assert_array_almost_equal(res, self.t.T) def test_summ_wrong_side(self): f = getattr(fblas, 'dsymm', None) if f is not None: assert_raises(Exception, f, **{'a': self.a, 'b': self.b, 'alpha': 1, 'side': 1}) # `side=1` means C <- B*A, hence shapes of A and B are to be # compatible. Otherwise, f2py exception is raised def test_symm_wrong_uplo(self): """SYMM only considers the upper/lower part of A. Hence setting wrong value for `lower` (default is lower=0, meaning upper triangle) gives a wrong result. """ f = getattr(fblas,'dsymm',None) if f is not None: res = f(a=self.a, b=self.b, c=self.c, alpha=1., beta=1.) assert np.allclose(res, self.t) res = f(a=self.a, b=self.b, lower=1, c=self.c, alpha=1., beta=1.) assert not np.allclose(res, self.t) class TestBLAS3Syrk(TestCase): def setUp(self): self.a = np.array([[1., 0.], [0., -2.], [2., 3.]]) self.t = np.array([[1., 0., 2.], [0., 4., -6.], [2., -6., 13.]]) self.tt = np.array([[5., 6.], [6., 13.]]) def test_syrk(self): for f in _get_func('syrk'): c = f(a=self.a, alpha=1.) assert_array_almost_equal(np.triu(c), np.triu(self.t)) c = f(a=self.a, alpha=1., lower=1) assert_array_almost_equal(np.tril(c), np.tril(self.t)) c0 = np.ones(self.t.shape) c = f(a=self.a, alpha=1., beta=1., c=c0) assert_array_almost_equal(np.triu(c), np.triu(self.t+c0)) c = f(a=self.a, alpha=1., trans=1) assert_array_almost_equal(np.triu(c), np.triu(self.tt)) #prints '0-th dimension must be fixed to 3 but got 5', FIXME: suppress? # FIXME: how to catch the _fblas.error? def test_syrk_wrong_c(self): f = getattr(fblas, 'dsyrk', None) if f is not None: assert_raises(Exception, f, **{'a': self.a, 'alpha': 1., 'c': np.ones((5, 8))}) # if C is supplied, it must have compatible dimensions class TestBLAS3Syr2k(TestCase): def setUp(self): self.a = np.array([[1., 0.], [0., -2.], [2., 3.]]) self.b = np.array([[0., 1.], [1., 0.], [0, 1.]]) self.t = np.array([[0., -1., 3.], [-1., 0., 0.], [3., 0., 6.]]) self.tt = np.array([[0., 1.], [1., 6]]) def test_syr2k(self): for f in _get_func('syr2k'): c = f(a=self.a, b=self.b, alpha=1.) assert_array_almost_equal(np.triu(c), np.triu(self.t)) c = f(a=self.a, b=self.b, alpha=1., lower=1) assert_array_almost_equal(np.tril(c), np.tril(self.t)) c0 = np.ones(self.t.shape) c = f(a=self.a, b=self.b, alpha=1., beta=1., c=c0) assert_array_almost_equal(np.triu(c), np.triu(self.t+c0)) c = f(a=self.a, b=self.b, alpha=1., trans=1) assert_array_almost_equal(np.triu(c), np.triu(self.tt)) #prints '0-th dimension must be fixed to 3 but got 5', FIXME: suppress? def test_syr2k_wrong_c(self): f = getattr(fblas, 'dsyr2k', None) if f is not None: assert_raises(Exception, f, **{'a': self.a, 'b': self.b, 'alpha': 1., 'c': np.zeros((15, 8))}) # if C is supplied, it must have compatible dimensions class TestSyHe(TestCase): """Quick and simple tests for (zc)-symm, syrk, syr2k.""" def setUp(self): self.sigma_y = np.array([[0., -1.j], [1.j, 0.]]) def test_symm_zc(self): for f in _get_func('symm', 'zc'): # NB: a is symmetric w/upper diag of ONLY res = f(a=self.sigma_y, b=self.sigma_y, alpha=1.) assert_array_almost_equal(np.triu(res), np.diag([1, -1])) def test_hemm_zc(self): for f in _get_func('hemm', 'zc'): # NB: a is hermitian w/upper diag of ONLY res = f(a=self.sigma_y, b=self.sigma_y, alpha=1.) assert_array_almost_equal(np.triu(res), np.diag([1, 1])) def test_syrk_zr(self): for f in _get_func('syrk', 'zc'): res = f(a=self.sigma_y, alpha=1.) assert_array_almost_equal(np.triu(res), np.diag([-1, -1])) def test_herk_zr(self): for f in _get_func('herk', 'zc'): res = f(a=self.sigma_y, alpha=1.) assert_array_almost_equal(np.triu(res), np.diag([1, 1])) def test_syr2k_zr(self): for f in _get_func('syr2k', 'zc'): res = f(a=self.sigma_y, b=self.sigma_y, alpha=1.) assert_array_almost_equal(np.triu(res), 2.*
np.diag([-1, -1])
numpy.diag
#!/usr/bin/env python ############################################################################## # # QUANTINUUM LLC CONFIDENTIAL & PROPRIETARY. # This work and all information and expression are the property of # Quantinuum LLC, are Quantinuum LLC Confidential & Proprietary, # contain trade secrets and may not, in whole or in part, be licensed, # used, duplicated, disclosed, or reproduced for any purpose without prior # written permission of Quantinuum LLC. # # In the event of publication, the following notice shall apply: # (c) 2022 Quantinuum LLC. All Rights Reserved. # ############################################################################## ''' Preset optimization passes. ''' from typing import Union import numpy as np # transpile options from qiskit.circuit import QuantumCircuit, QuantumRegister from qiskit.transpiler import Layout from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler import PassManager from qiskit.circuit.library import SwapGate, CXGate from qiskit.circuit.library import RXXGate, RYYGate, RZZGate from qiskit.quantum_info.operators import Operator from qiskit.quantum_info.synthesis import TwoQubitBasisDecomposer from qiskit.quantum_info.synthesis.two_qubit_decompose import TwoQubitWeylDecomposition from qiskit.extensions import UnitaryGate from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.passes import Unroller, Optimize1qGates from qiskit.transpiler.passes import BarrierBeforeFinalMeasurements, RemoveDiagonalGatesBeforeMeasure from qiskit.transpiler.passes import Collect2qBlocks, ConsolidateBlocks def preset_passes(optimization_level: str, transpile_options: dict): """ Preset pass options. Args: optimization_level: 'low' = combine SQ gates, relabel qubits to avoid first transport 'medium' = low + combine adjacent SU(4) blocks 'high' = medium + approximate blocks 'rob' = SU(4) gates with robustness to rotation errors (untested) 0, 1, 2 = standard qiskit level of optimization transpile_options: dictionary of othe transpiler options for 'high' or 'rob' Returns: (PassManager): PassManager object for compilation """ pm = PassManager() if optimization_level == 'low': pm.append([ Unroller(['u1','u2','u3','cx']), Optimize1qGates(), RemoveDiagonalGatesBeforeMeasure(), BarrierBeforeFinalMeasurements() ]) elif optimization_level == 'medium': pm.append([ Unroller(['u1','u2','u3','cx']), Collect2qBlocks(), ConsolidateBlocks(), Unroller(['u1','u2','u3','cx']), Optimize1qGates(), RemoveDiagonalGatesBeforeMeasure(), BarrierBeforeFinalMeasurements() ]) elif optimization_level == 'high': pm.append([ Unroller(['u1','u2','u3','cx']), Collect2qBlocks(), ApproxBlocks(**transpile_options), Optimize1qGates(), RemoveDiagonalGatesBeforeMeasure(), BarrierBeforeFinalMeasurements() ]) else: ValueError('Invalid optimization_level selected.') return pm class ApproxBlocks(TransformationPass): """ Replace each block with approximate version Based on ConsolidateBlocks pass """ def __init__(self, tol: float, mirror: bool = False, arbitrary_angles: bool = False, comp_method: str = 'fid', kak_basis_gate = CXGate(), force_consolidate: bool = False): """ Args: tol: tolerance of approximation mirror: if true then check same SU(4) approx with flipped qubits arbitrary_angles: if true then use arbitrary angles comp_method: function used to compare approximations kak_basis_gate: gate used in decomposition """ super().__init__() self.decomposer = TwoQubitBasisDecomposer(kak_basis_gate) self.tol = tol self.mirror = mirror self.comp_method = comp_method self.arbitrary_angles = arbitrary_angles self.force_consolidate = force_consolidate def run(self, dag): """Run the ConsolidateBlocks pass on `dag`. Iterate over each block and replace it with an equivalent Unitary on the same wires. """ new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) # compute ordered indices for the global circuit wires global_index_map = {wire: idx for idx, wire in enumerate(dag.qubits)} qubit_map = {wire: wire for wire in dag.qubits} blocks = self.property_set['block_list'] # just to make checking if a node is in any block easier all_block_nodes = {nd for bl in blocks for nd in bl} for node in dag.topological_op_nodes(): if node not in all_block_nodes: # need to add this node to find out where in the list it goes preds = [nd for nd in dag.predecessors(node) if nd.type == 'op'] block_count = 0 while preds: if block_count < len(blocks): block = blocks[block_count] # if any of the predecessors are in the block, remove them preds = [p for p in preds if p not in block] else: # should never occur as this would mean not all # nodes before this one topologically had been added # so not all predecessors were removed raise TranspilerError( "Not all predecessors removed due to error" " in topological order" ) block_count += 1 # we have now seen all predecessors # so update the blocks list to include this block blocks = blocks[:block_count] + [[node]] + blocks[block_count:] # create the dag from the updated list of blocks basis_gate_name = self.decomposer.gate.name for block in blocks: if len(block) == 1 and block[0].name != 'cx': # an intermediate node that was added into the overall list new_dag.apply_operation_back( block[0].op, [qubit_map[q] for q in block[0].qargs], block[0].cargs, block[0].condition ) else: # find the qubits involved in this block block_qargs = set() for nd in block: block_qargs |= set(nd.qargs) # convert block to a sub-circuit, then simulate unitary and add block_width = len(block_qargs) q = QuantumRegister(block_width) subcirc = QuantumCircuit(q) block_index_map = self._block_qargs_to_indices( block_qargs, global_index_map ) inv_block_index_map = { val:key for key, val in block_index_map.items() } basis_count = 0 for nd in block: if nd.op.name == basis_gate_name: basis_count += 1 subcirc.append(nd.op, [q[block_index_map[i]] for i in nd.qargs]) unitary = UnitaryGate(Operator(subcirc)) # simulates the circuit qc, flip_qubits = mirror_decomposer( unitary.to_matrix(), self.tol, self.mirror, self.arbitrary_angles, self.comp_method, self.decomposer ) if not (self.force_consolidate or unitary.num_qubits > 2): for inst in qc.data: qubit_list = [qubit.index for qubit in inst[1]] new_dag.apply_operation_back( inst[0], [qubit_map[inv_block_index_map[i]] for i in qubit_list] ) if flip_qubits: qubits = ( qubit_map[inv_block_index_map[1]], qubit_map[inv_block_index_map[0]] ) qubit_map.update({ inv_block_index_map[0]: qubits[0], inv_block_index_map[1]: qubits[1] }) else: for nd in block: new_dag.apply_operation_back( nd.op, [qubit_map[q] for q in nd.qargs], nd.cargs, nd.condition ) return new_dag def _block_qargs_to_indices(self, block_qargs, global_index_map): """ Map each qubit in block_qargs to its wire position among the block's wires. Args: block_qargs (list): list of qubits that a block acts on global_index_map (dict): mapping from each qubit in the circuit to its wire position within that circuit Returns: dict: mapping from qarg to position in block """ block_indices = [global_index_map[q] for q in block_qargs] ordered_block_indices = sorted(block_indices) block_positions = {q: ordered_block_indices.index(global_index_map[q]) for q in block_qargs} return block_positions def mirror_decomposer(U: np.ndarray, fidelity: float, mirror: bool, arbitrary_angles: bool, comp_method: str, basis_decomp: TwoQubitBasisDecomposer): """ Decompose unitary in standard and mirror option and return most efficient. Args: U: unitary to decomposer fidelity: tolerance fidelity of decomposition mirror: option to allow search over U * SWAP in addition arbitrary_angles: option to do decomposition with arbitrary angles comp_method: method used to compare decompositions basis_decomp: SU(4) decomposition object Returns: (QuantumCircuit): circuit describing decoposition """ target_decomposed = TwoQubitWeylDecomposition(U) decomp_success = comparison_func( target_decomposed, basis_decomp, fidelity, comp_method ) if mirror: target_decomposed_rev = TwoQubitWeylDecomposition( SwapGate().to_matrix().dot(U) ) #traces = get_traces(target_decomposed_rev) #expected_fidelities += [fidelity_comp(trace_to_fid(traces[i]), fidelity, i) for i in range(4)] decomp_success += comparison_func( target_decomposed_rev, basis_decomp, fidelity, comp_method ) best_decomp = np.argmax(decomp_success) if best_decomp >= 4: flip_future = True best_decomp = best_decomp % 4 target_decomposed = target_decomposed_rev else: flip_future = False return_circuit = write_circuit( best_decomp, basis_decomp, target_decomposed, arbitrary_angles ) return return_circuit, flip_future def write_circuit(best_decomp: int, decomp: TwoQubitBasisDecomposer, target_decomposed: TwoQubitWeylDecomposition, arbitrary_angles: bool): """ Make qiskit circuit out of selected decomp. Args: best_decomp: index for decomposition based on criteria decomp: decomposition object target_decomposed: decomposition of target unitary arbitrary_angles: option if using arbitrary angles Returns: (QuantumCircuit): Circuit describing target_decomposed """ q = QuantumRegister(2) qc = QuantumCircuit(q) pm = PassManager() pm.append(Optimize1qGates()) if not arbitrary_angles: decomposition = decomp.decomposition_fns[best_decomp](target_decomposed) decomposition_euler = [decomp._decomposer1q(x) for x in decomposition] for i in range(best_decomp): qc.compose(decomposition_euler[2*i], [q[0]], inplace=True) qc.compose(decomposition_euler[2*i+1], [q[1]], inplace=True) qc.append(decomp.gate, [q[0], q[1]]) qc.compose(decomposition_euler[2*best_decomp], [q[0]], inplace=True) qc.compose(decomposition_euler[2*best_decomp+1], [q[1]], inplace=True) elif arbitrary_angles: gate_list = [RXXGate, RYYGate, RZZGate] tq_angles = [-target_decomposed.a, -target_decomposed.b, -target_decomposed.c] qc.compose(decomp._decomposer1q(target_decomposed.K2r), [q[0]], inplace=True) qc.compose(decomp._decomposer1q(target_decomposed.K2l), [q[1]], inplace=True) for i in range(best_decomp): qc.append(gate_list[i](2*tq_angles[i]), [q[0], q[1]]) qc.compose(decomp._decomposer1q(target_decomposed.K1r), [q[0]], inplace=True) qc.compose(decomp._decomposer1q(target_decomposed.K1l), [q[1]], inplace=True) qc_new = pm.run(qc) return qc_new def comparison_func(target: TwoQubitWeylDecomposition, basis: TwoQubitBasisDecomposer, base_fid: float, comp_method: str): """ Decompose traces for arbitrary angle rotations. This assumes that the tq angles go from highest to lowest. """ dep_param = (4 * base_fid - 1)/3 if comp_method == 'fid': traces = fixed_traces(target, basis) values = [((abs(tr)**2 - 1) * dep_param**i + 1)/ 16 for i, tr in enumerate(traces)] elif comp_method == 'arb_fid': traces = arb_traces(target) values = [((abs(tr)**2 - 1) * dep_param**i + 1)/ 16 for i, tr in enumerate(traces)] elif comp_method == 'arb_total': traces = arb_traces(target) total_angles = [ 0, abs(target.a), abs(target.a) + abs(target.b), abs(target.a) + abs(target.b) + abs(target.c) ] values = [((abs(tr)**2 - 1) * dep_param**(a/np.pi) + 1)/ 16 for a, tr in zip(total_angles, traces)] elif comp_method == 'arb_total_quad': traces = arb_traces(target) total_angles = [ 0, abs(target.a), abs(target.a) + abs(target.b), abs(target.a) + abs(target.b) + abs(target.c) ] values = [((abs(tr)**2 - 1) * dep_param**((a/np.pi)**2) + 1) / 16 for a, tr in zip(total_angles, traces)] elif comp_method == 'arb_total_sqrt': traces = arb_traces(target) total_angles = [ 0, abs(target.a), abs(target.a) + abs(target.b), abs(target.a) + abs(target.b) + abs(target.c) ] values = [((abs(tr)**2 - 1) * dep_param**(np.sqrt(a/np.pi)) + 1) / 16 for a, tr in zip(total_angles, traces)] elif comp_method == 'total_angle': traces = arb_traces(target) # negate to find smallest total angle (uses max later) values = [-10, -10, -10, -abs(target.a) - abs(target.b) - abs(target.c)] return values def arb_traces(target: TwoQubitWeylDecomposition): """Returns normalized traces for arbitrary angle decomps.""" traces = [ 4*(np.cos(target.a)*np.cos(target.b)*np.cos(target.c) + 1j*np.sin(target.a)*np.sin(target.b)*np.sin(target.c)), 4*(np.cos(target.b)*np.cos(target.c)), 4*np.cos(target.c), 4 ] return traces def fixed_traces(target: TwoQubitWeylDecomposition, basis: TwoQubitBasisDecomposer): """Returns traces for fixed angle decomps.""" traces = [ 4*(np.cos(target.a)*np.cos(target.b)*
np.cos(target.c)
numpy.cos
# -*- coding: utf-8 -*- """Trajectory cleaner This module relies heavily on the example scripts in the Example gallery of the Mayavi documentation link : https://tinyurl.com/p6ecx6n Created on Mon Mar 19 13:17:09 2018 @author: tbeleyur """ import easygui as eg import numpy as np import pandas as pd from traits.api import HasTraits, Range, Instance, \ on_trait_change from traitsui.api import View, Item, Group from mayavi import mlab from mayavi.core.api import PipelineBase from mayavi.core.ui.api import MayaviScene, SceneEditor, \ MlabSceneModel from tvtk.api import tvtk class TrajAssigner(HasTraits): ''' Creates a Mayavi Visualisation window with options to : 1) Display a time range of the trajectory datasets 2) View trajectory point information when a point is left-button clicked 3) Re-assign the *labelled* trajectory points when the point is right-button clicked. If 'Cancel' is pressed OR the window is closed then the trajectory tag is set to nan. Usage : # Initiate a TrajCleaner instance traj_cleaner = TrajCleaner() # assign the labelled and known trajectory datasets to the instance traj_cleaner.knwntraj_data = kn_data traj_cleaner.labtraj_data = lab_data # begin the Mayavi interactive visualisation traj_cleaner.configure_traits() # After checking the trajectory assignment close the # Mayavi window and save the labld_traj pd.DataFrame to a csv traj_cleaner.labld_traj.to_csv('labelled_traj_verified.csv') User-controlled parameters : tag_offset : the distance between the numeric trajectory tag and the displayed trajectory points tag_size : size of the numeric trajectory tag ''' Time_range_start = Range(0, 30.0, 0.000) Time_range_end = Range(0, 30.0, 29.99) scene = Instance(MlabSceneModel, ()) labld_glyphs = None known_glyphs = None outline = None labld_glyphcolors = None trajtags = [0, 1, 2] tag_size = 0.05 tag_offset = 2*10**-2 @on_trait_change('scene.activated') def setup(self): print('running setup') self.generate_color_and_size() self.fig = mlab.figure(figure=mlab.gcf()) self.fig.scene.interactor.interactor_style = tvtk.InteractorStyleTerrain() self.update_plot() # The general mouse based clicker - which reveals point information # of the known and labelled datapoints self.info_picker = self.fig.on_mouse_pick(self.view_point_information) self.info_picker.tolerance = 0.01 # picker which allows to re-assign the point trajectory number self.reassign_picker = self.fig.on_mouse_pick(self.reassign_callback, type='point', button='Right') self.reassign_picker.tolerance = 0.01 # outline which indicates which point has been clicked on self.outline = mlab.outline(line_width=3, color=(0.9, 0.9, 0.9)) self.outline.outline_mode = 'cornered' self.outline.bounds = (0.05, 0.05, 0.05, 0.05, 0.05, 0.05) self.click_text = mlab.text(0.8, 0.8, 'STARTING INFO') self.traj_text = mlab.text(0.8, 0.6, 'Trajectory number') self.pointtype_text = mlab.text(0.8, 0.87, 'Point Type') self.pointtype_info = mlab.text(0.8, 0.82, '') mlab.axes() @on_trait_change(['Time_range_start', 'Time_range_end']) def update_plot(self): '''Makes a 3d plot with known/verified trajecory points as circles and the corresponding auto/manually labelled points as squares. TODO: 1) allow for interactive choosing of points even with tsubsetting - DONE 2) the POINTCOLORS should remain the same Instance parameters used : knwn_trajdata : pd.DataFrame with following columns: x_knwn,y_knwn,z_knwn,t_knwn, traj_num lab_trajdata : pd.DataFrame with following columns: x,y,z,t,traj_num ''' print('updating plotted data') self.tsubset_knwntraj = self.subset_in_time(self.knwntraj_data) self.tsubset_labldtraj = self.subset_in_time(self.labtraj_data, False) self.x_knwn, self.y_knwn, self.z_knwn = conv_to_XYZ(self.tsubset_knwntraj[['x_knwn', 'y_knwn', 'z_knwn']]) self.x, self.y, self.z = conv_to_XYZ(self.tsubset_labldtraj[['x', 'y', 'z']]) #set colors for each point self.known_glyphcolors = np.array(self.tsubset_knwntraj['colors']) self.labld_glyphcolors = np.array(self.tsubset_labldtraj['colors']) # verified points if self.known_glyphs is None: # if the glyphs are being called the first time self.known_glyphs = mlab.points3d(self.x_knwn, self.y_knwn, self.z_knwn, scale_factor=0.05, mode='sphere', colormap='hsv', figure=self.fig) # thanks goo.gl/H9mdao self.known_glyphs.glyph.scale_mode = 'scale_by_vector' self.known_glyphs.mlab_source.dataset.point_data.scalars = self.known_glyphcolors else: # only change the traits of the object while keeping its # identity in the scene self.known_glyphs.mlab_source.reset(x=self.x_knwn, y=self.y_knwn, z=self.z_knwn, scale_factor=0.05, mode='sphere', colormap='hsv', figure=self.fig) self.known_glyphs.glyph.scale_mode = 'scale_by_vector' self.known_glyphs.mlab_source.dataset.point_data.scalars = self.known_glyphcolors #auto/manually labelled points which need to be checked if self.labld_glyphs is None: self.labld_glyphs = mlab.points3d(self.x, self.y, self.z, scale_factor=0.05, mode='cube', colormap='hsv', figure=self.fig) self.labld_glyphs.glyph.scale_mode = 'scale_by_vector' self.labld_glyphs.mlab_source.dataset.point_data.scalars = self.labld_glyphcolors else: self.labld_glyphs.mlab_source.reset(x=self.x, y=self.y, z=self.z, scale_factor=0.05, mode='cube', colormap='hsv', figure=self.fig, scalars=self.labld_glyphcolors) self.labld_glyphs.glyph.scale_mode = 'scale_by_vector' self.labld_glyphs.mlab_source.dataset.point_data.scalars = self.labld_glyphcolors # get the xyz points of the plotted points self.labld_points = self.labld_glyphs.glyph.glyph_source.glyph_source.output.points.to_array() self.knwn_points = self.known_glyphs.glyph.glyph_source.glyph_source.output.points.to_array() self.create_trajectorytags() #mlab.gcf().scene.disable_render = False #mlab.draw(figure=self.fig) def view_point_information(self, picker): '''Callback function when a glyph is left-button clicked. Information on the xyz and time of recording/emission is displayed ''' #print('MOUSE CALLBACK') self.click_text.text = '' all_glyphs = [self.known_glyphs.actor.actors, self.labld_glyphs.actor.actors] closest_glyph = [picker.actor in disp_glyphs for disp_glyphs in all_glyphs] all_pointsxyz = [self.knwn_points, self.labld_points] try: which_glyph = int(np.argwhere(closest_glyph)) points_xyz = all_pointsxyz[which_glyph] except: return() if which_glyph == 0: time_col = 't_knwn' elif which_glyph == 1: time_col = 't' if picker.actor in all_glyphs[which_glyph]: point_id = picker.point_id/points_xyz.shape[0] # If the no points have been selected, we have '-1' if point_id != -1: # Retrieve the coordinnates coorresponding to that data # point if which_glyph == 0: #print('known point chosen') x_pt, y_pt, z_pt = self.x_knwn[point_id], self.y_knwn[point_id], self.z_knwn[point_id] pt_type = 'Known' else: #print('labelled point chosen') x_pt, y_pt, z_pt = self.x[point_id], self.y[point_id], self.z[point_id] pt_type = 'Labelled' # Move the outline to the data point. self.outline.bounds = (x_pt-0.05, x_pt+0.05, y_pt-0.05, y_pt+0.05, z_pt-0.05, z_pt+0.05) self.outline.visible = True #display the x,y,z and time info on the selected point # if which_glyph == 0: time_stamp = np.around(self.tsubset_knwntraj[time_col][point_id], 4) traj_num = self.tsubset_knwntraj['traj_num'][point_id] else: time_stamp = np.around(self.tsubset_labldtraj[time_col][point_id], 4) traj_num = self.tsubset_labldtraj['traj_num'][point_id] self.click_text.text = str([np.around(x_pt, 2), np.around(y_pt, 2), np.around(z_pt, 2), time_stamp]) #display the trajectory number of the selected point self.traj_text.text = 'Traj number: ' + str(traj_num) self.pointtype_info.text = pt_type else: print('failed :', point_id) def reassign_callback(self, picker): """ Picker callback: this get called when on pick events. A user prompt appears when the picker is triggered for entry of the trajectory number. Input >=1 and <=99 is expected. If the trajectory number needs to be set to a NaN, then simply click on 'Cancel' """ if picker.actor in self.labld_glyphs.actor.actors: point_id = picker.point_id/self.labld_points.shape[0] # If the no points have been selected, we have '-1' if point_id != -1: # Retrieve the coordinnates coorresponding to that data # point print('labelled point chosen') x_pt, y_pt, z_pt = self.x[point_id], self.y[point_id], self.z[point_id] # Move the outline to the data point. self.outline.bounds = (x_pt-0.15, x_pt+0.15, y_pt-0.15, y_pt+0.15, z_pt-0.15, z_pt+0.15) self.outline.visible = True try: new_trajnum = eg.integerbox('Please enter the re-assigned trajectory number', lowerbound=1, upperbound=99, default=None) print('New traj num', new_trajnum) self.trajectory_reassignment(new_trajnum, point_id) except: print('Unable to re-assign point') def subset_in_time(self, traj_df, known=True): '''Make a subset of the knwon and labelled trajectory datasets such that the points displayed fall wihtin the start and end time of the user input. Parameters: traj_df : pd.DataFrame with at least one column named either 't' or 't_knwn' known : Boolean. Defaults to True. If True: the column used for subsetting should be called 't' If False: the column used for subsetting should be called 't_knwn' Returns: tsubset_df : pd.DataFrame with at least one column named either 't' or 't_knwn'. See 'known'. ''' colname = {True:'t_knwn', False:'t'} if self.Time_range_end <= self.Time_range_start: print('invalid Time range!') return(None) try: time_after = traj_df[colname[known]] >= self.Time_range_start time_before = traj_df[colname[known]] <= self.Time_range_end tsubset_df = traj_df[(time_after) & (time_before)] tsubset_df = tsubset_df.reset_index(drop=True) return(tsubset_df) except: print('Wrong time ranges !! ') # The layout of the dialog created view = View(Item('scene', editor=SceneEditor(scene_class=MayaviScene), height=250, width=300, show_label=False), Group('_', 'Time_range_start', 'Time_range_end'), resizable=True) def identify_orig_rowindex(self, orig_df, df_row): '''When a point has been chosen for trajectory re-assignment, find its original row index in the dataset and change the value there Parameters: orig_df : pd.DataFrame with multiple rows and columns df_row : 1 x Ncolumns pd.DataFrame. Returns: orig_index : int. Row index of the original DataFrame pd1 with values that match df_row ''' x_match = orig_df['x'] == df_row.x y_match = orig_df['y'] == df_row.y z_match = orig_df['z'] == df_row.z try: row_index = orig_df.loc[x_match & y_match & z_match].index return(row_index) except: print('Matching row not found !! Returning None') def generate_color_and_size(self): for each_trajtype in [self.knwntraj_data, self.labtraj_data]: each_trajtype['colors'] = each_trajtype['traj_num'].apply(assign_colors_float, 1) each_trajtype['size'] = np.tile(0.05, each_trajtype.shape[0]) self.end_time = np.max([np.max(self.labtraj_data['t']), np.max(self.knwntraj_data['t_knwn'])]) def trajectory_reassignment(self, new_trajnum, pt_id): '''Re-assigns the trajectory number of a labelled point in the original labld_traj pd.DataFrame Parameters: new_trajnum: int. New trajectory number pt_id : int. row number of the tsubset_labdtraj which needs to be accessed ''' self.current_row = self.tsubset_labldtraj.loc[pt_id] orig_index = self.identify_orig_rowindex(self.labtraj_data, self.current_row) try: self.labtraj_data['traj_num'][orig_index] = new_trajnum print('Trajectory succesfully re-assigned for point #'+str(orig_index)) self.generate_color_and_size() self.update_plot() except: print('Unable to re-assign !!') def create_trajectorytags(self): '''Make a label which shows the trajectory number for each plotted point ''' for each_tag in self.trajtags: try: each_tag.visible = False # clear out all traj labels except: print('Could not set each_tag.visible to False') pass self.trajtags[:] = [] known_data = self.tsubset_knwntraj[['x_knwn', 'y_knwn', 'z_knwn', 'traj_num']] labld_data = self.tsubset_labldtraj[['x', 'y', 'z', 'traj_num']] for point_collection in [known_data, labld_data]: for i, each_row in point_collection.iterrows(): try: trajtag = mlab.text3d(each_row.x_knwn + self.tag_offset, each_row.y_knwn + self.tag_offset, each_row.z_knwn + self.tag_offset, str(each_row.traj_num), scale=self.tag_size, figure=mlab.gcf()) except: trajtag = mlab.text3d(each_row.x+ self.tag_offset, each_row.y+ self.tag_offset, each_row.z+ self.tag_offset, str(each_row.traj_num), scale=self.tag_size, figure=mlab.gcf()) self.trajtags.append(trajtag) num_colors = 20 traj_2_color_float = {i+1 : (i+0.01)/num_colors for i in range(1, num_colors+1)} def assign_colors_float(X): '''Outputs a float value between 0 and 1 at ''' try: color = traj_2_color_float[X] return(color) except: color = 0.99 return(color) def conv_to_XYZ(pd_df): ''' Parameters: pd_df : npoints x 3 columns with some kind of xyz data Returns: x,y,z : 3 columns of npoints length each ''' xyz_dict = {} for i, axis in enumerate(['x', 'y', 'z']): xyz_dict[axis] = np.array(pd_df.iloc[:, i]) return(xyz_dict['x'], xyz_dict['y'], xyz_dict['z']) if __name__ == '__main__': lin_inc = np.linspace(0,1.5,25) lin_inc = np.random.normal(0,1,lin_inc.size) xyz =
np.column_stack((lin_inc,lin_inc,lin_inc))
numpy.column_stack
# model.distributions.py # copyright 2021 <NAME> import numpy as np import pymc3 as pm from scipy import stats, special import theano.tensor as tt from pymc3.distributions.dist_math import bound, logpow, alltrue_elemwise from pymc3.distributions.continuous import assert_negative_support, PositiveContinuous from pymc3.distributions.distribution import draw_values, generate_samples from pymc3.theanof import floatX RANDOM_SEED = 42 rng = np.random.default_rng(seed=RANDOM_SEED) # NOTE hack to clip values away from {0, 1} for invcdfs # Whilst value = {0, 1} is theoretically allowed, is seems to cause a # numeric compuational issue somewhere in tt.erfcinv which throws infs. # This screws up the downstream, so clip slightly away from {0, 1} CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS = 1e-15 #1e-18 too small def boundzero_numpy(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, 0.) def boundzero_theano(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return tt.switch(alltrue_elemwise(conditions), vals, 0.) def boundlog_numpy(vals, *conditions): """ Bound log unit distribution params, return -inf for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, -np.inf) def logpow_numpy(x, m): """ Copy from pymc3 Safe calc log(x**m) since m*log(x) will fail when m, x = 0. """ return np.where(x == 0, np.where(m == 0, 0.0, -np.inf), m * np.log(x)) class Gamma(pm.Gamma): """Inherit the pymc class, add cdf and invcdf """ def __init__(self): raise NotImplementedError( """Consider that InvCDF is hard to calculate: even scipy uses C functions Recommend use different dist in practice""") class GammaNumpy(): """Gamma PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations used in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation Ref: https://en.wikipedia.org/wiki/Gamma_distribution Params: x > 0, u in [0, 1], a (shape) > 0, b (rate) > 0 """ def __init__(self): self.name = 'Gamma' self.notation = {'notation': r'x \sim Gamma(\alpha, \beta)'} self.dist_natural = { 'pdf': r'f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{- \beta x}', 'cdf': r'F(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)', 'invcdf': r'F^{-1}(u \mid \alpha, \beta) = '} self.dist_log = { 'logpdf': r'\log f(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \beta^{\alpha} + \log x^{\alpha-1} - \beta x', 'logcdf': r'\log F(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \gamma(\alpha, \beta x)', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, \beta) = '} self.conditions = { 'parameters': r'\alpha > 0 \, \text{(shape)}, \; \beta > 0 \, \text{(rate)}', 'support': r'x \in (0, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r'\frac{\alpha}{\beta}', 'mode': r'\frac{\alpha - 1}{\beta}, \; \text{for} \alpha \geq 1', 'variance': r'\frac{\alpha}{\beta^{2}}' } def pdf(self, x, a, b): """Gamma PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2595 """ fn = (1 / special.gamma(a)) * np.power(b, a) * np.power(x, a-1) * np.exp(-b * x) return boundzero_numpy(fn, a > 0, b > 0, x >= 0) def cdf(self, x, a, b): """Gamma CDF: where $\gamma(a, bx)$ is lower incomplete gamma function [0, lim) compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2602 """ # fn = (1 / special.gamma(a)) * special.gammainc(a, b * x) fn = special.gammainc(a, b * x) return boundzero_numpy(fn, a > 0, b > 0, x >= 0) def invcdf(self, u, a, b): """Gamma Inverse CDF aka PPF: compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2608 see sc.gammainc() """ raise NotImplementedError('TODO gamma inverse CDF') def logpdf(self, x, a, b): """Gamma log PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2599 """ fn = -special.gammaln(a) + logpow_numpy(b, a) + logpow_numpy(x, a-1) - b * x return boundlog_numpy(fn, a > 0, b > 0, x > 0) def logcdf(self, x, a, b): """Gamma log CDF: where $\gamma(a, bx)$ is lower incomplete gamma function [0, lim) compare to https://github.com/pymc-devs/pymc3/blob/41a25d561b3aa40c75039955bf071b9632064a66/pymc3/distributions/continuous.py#L2614 """ return boundlog_numpy((-special.gammaln(a)) + special.gammainc(a, b * x), a > 0, b > 0, x > 0) def loginvcdf(self, u, a, b): """Gamma log Inverse CDF aka log PPF: see sc.gammaincinv() """ raise NotImplementedError('TODO gamma log inverse CDF') class Gumbel(pm.Gumbel): """Inherit the pymc class, add cdf, logcdf and invcdf, loginvcdf Also clobber logp (!) """ def __init__(self, *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) def logp(self, value): """ JS patch refactored code to align with other distributions Calculate log-probability of Gumbel distribution at specified value. z = (x - mu) / b pdf = (1 / b) * exp(-z - exp(-z)) logpdf = -log(b) - z - exp(-z) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ mu = self.mu beta = self.beta z = (value - mu) / beta logp = -tt.log(beta) - z - tt.exp(-z) return bound(logp, beta > 0) def logcdf(self, value): """ JS patch refactored code to align with other distributions cdf = exp(-exp(-(X - mu) / b)) logcdf = -exp(-(X-mu)/b) Compute the log of the cumulative distribution function for Gumbel distribution at the specified value. Parameters ---------- value: numeric Value(s) for which log CDF is calculated. If the log CDF for multiple values are desired the values must be provided in a numpy array or theano tensor. Returns ------- TensorVariable """ beta = self.beta mu = self.mu logcdf = -tt.exp(-(value - mu)/beta) return bound(logcdf, beta > 0) def loginvcdf(self, value): """ JS new function invcdf = mu - b * log(-log(u)) loginvcdf = log(mu) + log(1 - (b * log(-log(u))/mu)) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ beta = self.beta mu = self.mu loginvcdf = tt.log(mu) + tt.log(1 - (beta * tt.log(-tt.log(value))/mu)) return bound(loginvcdf, beta > 0) class InverseWeibull(PositiveContinuous): r""" Inverse Weibull log-likelihood, the reciprocal of the Weibull distribution, also known as the Fréchet distribution, a special case of the generalized extreme value distribution. See scipy for reference https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html https://github.com/scipy/scipy/blob/v1.6.0/scipy/stats/_continuous_distns.py The pdf of this distribution is .. math:: f(x \mid \alpha, s, m) = \frac{\alpha }{s}} \; \left({\frac{x-m}{s}}\right)^{{-1-\alpha }}\;e^{{-({\frac{x-m}{s}})^{{-\alpha }}} .. plot:: import matplotlib.pyplot as plt import numpy as np import scipy.stats as st plt.style.use('seaborn-darkgrid') x = np.linspace(0, 3, 500) alphas = [1., 2., 3., 3.] betas = [1., 1., 1., .5] for a, b in zip(alphas, betas): pdf = st.invgamma.pdf(x, a, scale=b) plt.plot(x, pdf, label=r'$\alpha$ = {}, $\beta$ = {}'.format(a, b)) plt.xlabel('x', fontsize=12) plt.ylabel('f(x)', fontsize=12) plt.legend(loc=1) plt.show() ======== ====================================================== Support :math:`x \in (-\infty, \infty)` Mean :math:`{\begin{cases}\ m+s\Gamma \left(1-{\frac {1}{\alpha }}\right)&{\text{for }}\alpha >1\\\ \infty &{\text{otherwise}}\end{cases}}` Variance :math:`{\begin{cases}\ s^{2}\left(\Gamma \left(1-{\frac {2}{\alpha }}\right)-\left(\Gamma \left(1-{\frac{1}{\alpha }}\right)\right)^{2}\right)&{\text{for }}\alpha >2\\\ \infty &{\text{otherwise}}\end{cases}}` ======== ====================================================== Parameters ---------- alpha: float Shape parameter (alpha > 0). s: float Scale parameter (s > 0), default = 1 ## m: float ## Location parameter (mu in (-inf, inf)), default = 0 """ def __init__(self, alpha=None, s=1., *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) self.s = s = tt.as_tensor_variable(floatX(s)) self.mode = s * tt.power(alpha / (1. + alpha), 1. / alpha) assert_negative_support(alpha, "alpha", "InverseWeibull") assert_negative_support(s, "s", "InverseWeibull") def _distr_parameters_for_repr(self): return ["alpha", 's'] def random(self, point=None, size=None): """ Draw random values from InverseWeibull PDF distribution. Parameters ---------- point: dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size: int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ alpha, s = draw_values([self.alpha, self.s], point=point, size=size) return generate_samples(stats.invweibull.rvs, c=alpha, scale=s, loc=0., dist_shape=self.shape, size=size) def logp(self, value): """ Calculate log-probability of InverseWeibull distribution at specified value. pdf: https://www.wolframalpha.com/input/?i=%28a%2Fs%29+*+%28x%2Fs%29**%28-1-a%29+*+exp%28-%28x%2Fs%29**-a%29 alt form according to WA: a e^(-(s/x)^a) s^a x^(-1 - a) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ alpha = self.alpha s = self.s return bound( ( tt.log(alpha) - tt.log(s) + logpow(s / value, 1. + alpha) - tt.power(s / value, alpha) # this term grossly dominates if alpha >> 2 ), value > 0., alpha > 0., s > 0. ) def cdf(self, value): """InverseWeibull CDF""" alpha = self.alpha s = self.s fn = tt.exp(-tt.power(value / s, -alpha)) return boundzero_theano(fn, alpha > 0, s > 0, value > 0) def logcdf(self, value): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ alpha = self.alpha s = self.s fn = -tt.power(value / s, -alpha) return bound(fn, alpha > 0, s > 0, value > 0) def invcdf(self, value): """InverseWeibull Inverse CDF aka PPF""" alpha = self.alpha s = self.s value = tt.clip(value, CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS, 1-CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS) fn = s * tt.power(-tt.log(value), -1. / alpha) return boundzero_theano(fn, alpha > 0, s > 0, value >= 0, value <= 1) def loginvcdf(self, value): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ alpha = self.alpha s = self.s fn = tt.log(s) - (1./ alpha ) * tt.log(-tt.log(value)) return bound(fn, alpha > 0, s > 0, value >= 0, value <= 1) class InverseWeibullNumpy(): """Inverse Weibull PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation NOTE: I'm lazy and have set m=0 throughout: this suits my usecase anyhow Ref: https://en.wikipedia.org/wiki/Fréchet_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html?highlight=inverse%20weibull Params: alpha (shape) > 0, s (scale) > 0, m (location of minimum) = 0 Support: x > 0, u in [0, 1] """ def __init__(self): self.name = 'InverseWeibull' self.notation = {'notation': r'x \sim InverseWeibull(\alpha, s, m=0)'} self.dist_natural = { 'pdf': r"""f(x \mid \alpha, s, m=0) = \frac{\alpha}{s} \; \left( \frac{x}{s} \right)^{-1-\alpha} \; \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)""", 'cdf': r'F(x \mid \alpha, s, m=0) = \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)', 'invcdf': r"""F^{-1}(u \mid \alpha, s, m=0) = s \log(u)^{-\frac{1}{\alpha}}"""} self.dist_log = { 'logpdf': r"""\log f(x \mid \alpha, s, m=0) = \log{\alpha} - (1+\alpha)\log{x} + \alpha \log{s} - \left( \frac{x}{s} \right)^{-\alpha}""", 'logcdf': r'\log F(x \mid \alpha, s, m=0) = - \left( \frac{x}{s} \right)^{-\alpha}', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, s, m=0) = \log(s) - \frac{1}{\alpha} * \log(-\log(u))'} self.conditions = { 'parameters': r"""\alpha > 0 \, \text{(shape)}, \; s > 0 \, \text{(scale, default } s=1 \text{)}, \; m \in (-\infty, \infty) \, \text{(location of minimum, default } m=0 \text{)}""", 'support': r'x \in (m, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r""" \begin{cases} m + s \Gamma \left( 1 - \frac{1}{\alpha} \right) & \text{for } \alpha > 1 \\ \infty & \text{otherwise} \\ \end{cases}""", 'mode': r'm + s \left( \frac{\alpha}{1+\alpha} \right)^{1/\alpha}', 'variance': r""" \begin{cases} s^{2} \left( \Gamma \left( 1-\frac{2}{\alpha} \right) - \left( \Gamma \left( 1-\frac{1}{\alpha} \right) \right)^{2} \right) & \text{for } \alpha > 2 \\ \infty & \text{otherwise} \end{cases}""" } def pdf(self, x, a, s): """InverseWeibull PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3919 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( (a/s) * np.power(x/s, -1.-a) * np.exp(-np.power(x/s, -a)) ) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def cdf(self, x, a, s): """InverseWeibull CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3926 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.exp(-np.power(x/s, -a)) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def invcdf(self, u, a, s): """InverseWeibull Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3930 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = s * np.power(-np.log(u), -1./a) return boundzero_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) def logpdf(self, x, a, s): """InverseWeibull log PDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( np.log(a) - np.log(s) + logpow_numpy(x/s, -1.-a) - np.power(x/s, -a) # this term grossly dominates if a >> 2 ) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def logcdf(self, x, a, s): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = -np.power(x/s, -a) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def loginvcdf(self, u, a, s): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.log(s) - (1./a) * np.log(-np.log(u)) return boundlog_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) class ZeroInflatedInverseWeibull(PositiveContinuous): r""" ZeroInflatedInvserseWeibull log-likelihood WIP! Mixture model to allow for observations dominated by zeros such as sev also see + McElreath 2014, http://xcelab.net/rmpubs/Mcelreath%20Koster%202014.pdf, https://github.com/rmcelreath/mcelreath-koster-human-nature-2014 + Jones 2013, https://royalsocietypublishing.org/doi/10.1098/rspb.2013.1210 + https://stackoverflow.com/questions/42409761/pymc3-nuts-has-difficulty-sampling-from-a-hierarchical-zero-inflated-gamma-mode The pmf of this distribution is .. math:: f(x \mid \psi, \alpha, s) = \left\{ \begin{array}{l} (1 - \psi), & \text{if } x = 0 \\ \psi \, \text{InverseWeibull}(\alpha, s), & \text{if } x > 0 \end{array} \right. ======== ========================== Support :math:`x \in \mathbb{N}_0` Mean :math:`\psi \, \text{InverseWeibull}(\mu, \sigma)` Variance :math: TODO ======== ========================== Parameters ---------- psi: float Expected proportion of InverseWeibull variates (0 <= psi <= 1) alpha: float s: float """ def __init__(self, psi, alpha, s, *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) self.psi = psi = tt.as_tensor_variable(floatX(psi)) self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) self.s = s = tt.as_tensor_variable(floatX(s)) self.invweibull = InverseWeibull.dist(alpha=alpha, s=s) # TODO #self.mean = self.psi * self.invweibull.mean self.mode = self.psi * self.invweibull.mode assert_negative_support(alpha, "alpha", "ZeroInflatedInverseWeibull") assert_negative_support(s, "s", "ZeroInflatedInverseWeibull") # def _random(self, psi, size=None): # """Note by definition any rvs_ from invweibull that are zero will # correctly remain zero, covering the case x = 0""" # rvs_ = self.invweibull.random(size=size) # return rvs_ * psi def _random(self, psi, size=None): """Inputs are numpy arrays""" rvs_ = self.invweibull.random(size=size) pi = stats.binom(n=np.repeat([1], len(psi)), p=psi).rvs(len(psi)) return rvs_ * pi def random(self, point=None, size=None): """ Draw random values from ZeroInflatedInverseWeibull PDF distribution. Parameters ---------- point: dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size: int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ psi, alpha, s = draw_values([self.psi, self.alpha, self.s], point=point, size=size) return generate_samples(self._random, psi, dist_shape=self.shape, size=size) def logp(self, value): """LogPDF""" psi = self.psi logp_ = tt.switch(tt.neq(value, 0), # or use tt.gt(value, 0), dunno which faster tt.log(psi) + self.invweibull.logp(value), tt.log1p(-psi)) return bound(logp_, value >=0, psi > 0, psi < 1) def cdf(self, value): """CDF""" psi = self.psi cdf_ = (1. - psi) * 1 + psi * self.invweibull.cdf(value) return boundzero_theano(cdf_, value >=0, psi > 0, psi < 1) def invcdf(self, value): """InvCDF aka PPF""" psi = self.psi invcdf_ = self.invweibull.invcdf((value + psi - 1) / psi) return boundzero_theano(invcdf_, value>=0, value<=1, psi > 0, psi < 1) class ZeroInflatedInverseWeibullNumpy(): """Zero-inflated Inverse Weibull PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these ? seems rare NOTE: I'm lazy and have set m=0 throughout: this suits my usecase anyhow Ref: https://en.wikipedia.org/wiki/Fréchet_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html?highlight=inverse%20weibull Params: 0 < psi < 1 (prop invweibull), alpha (shape) > 0, s (scale) > 0, m (location of minimum) = 0 Support: x > 0, u in [0, 1] """ def __init__(self): self.name = 'InverseWeibull' self.notation = {'notation': r'x \sim InverseWeibull(\alpha, s, m=0)'} self.dist_natural = { 'pdf': r"""f(x \mid \alpha, s, m=0) = \frac{\alpha}{s} \; \left( \frac{x}{s} \right)^{-1-\alpha} \; \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)""", 'cdf': r'F(x \mid \alpha, s, m=0) = \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)', 'invcdf': r"""F^{-1}(u \mid \alpha, s, m=0) = s \log(u)^{-\frac{1}{\alpha}}"""} self.dist_log = { 'logpdf': r"""\log f(x \mid \alpha, s, m=0) = \log{\alpha} - (1+\alpha)\log{x} + \alpha \log{s} - \left( \frac{x}{s} \right)^{-\alpha}""", 'logcdf': r'\log F(x \mid \alpha, s, m=0) = - \left( \frac{x}{s} \right)^{-\alpha}', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, s, m=0) = \log(s) - \frac{1}{\alpha} * \log(-\log(u))'} self.conditions = { 'parameters': r"""\alpha > 0 \, \text{(shape)}, \; s > 0 \, \text{(scale, default } s=1 \text{)}, \; m \in (-\infty, \infty) \, \text{(location of minimum, default } m=0 \text{)}""", 'support': r'x \in (m, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r""" \begin{cases} m + s \Gamma \left( 1 - \frac{1}{\alpha} \right) & \text{for } \alpha > 1 \\ \infty & \text{otherwise} \\ \end{cases}""", 'mode': r'm + s \left( \frac{\alpha}{1+\alpha} \right)^{1/\alpha}', 'variance': r""" \begin{cases} s^{2} \left( \Gamma \left( 1-\frac{2}{\alpha} \right) - \left( \Gamma \left( 1-\frac{1}{\alpha} \right) \right)^{2} \right) & \text{for } \alpha > 2 \\ \infty & \text{otherwise} \end{cases}""" } def pdf(self, x, a, s): """InverseWeibull PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3919 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( (a/s) * np.power(x/s, -1.-a) * np.exp(-np.power(x/s, -a)) ) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def cdf(self, x, a, s): """InverseWeibull CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3926 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.exp(-np.power(x/s, -a)) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def invcdf(self, u, a, s): """InverseWeibull Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3930 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = s * np.power(-np.log(u), -1./a) return boundzero_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) def logpdf(self, x, a, s): """InverseWeibull log PDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( np.log(a) - np.log(s) + logpow_numpy(x/s, -1.-a) - np.power(x/s, -a) # this term grossly dominates if a >> 2 ) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def logcdf(self, x, a, s): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = -np.power(x/s, -a) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def loginvcdf(self, u, a, s): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ a =
np.array(a)
numpy.array
import h5py import numpy as np import datetime import matplotlib.pyplot as plt from matplotlib import dates import pyresample as pr from scipy.spatial import cKDTree from pyproj import Proj from scipy.interpolate import interp1d import scipy import pandas as pd import netCDF4 def apr3tocit(apr3filename,fl,sphere_size,psd_filename_2ds,psd_filename_HVPS,query_k = 1,plotson=False,QC=False,slimfast=True,cit_aver=False,cit_aver2=False, attenuation_correct=False,O2H2O={},per_for_atten = 50, return_indices=False,BB=True,bbguess=500, cal_adj_bool = False,cal_adj=0, cloudtop=True,rollfix=True): """ ================= This function finds either the closest gate or averages over a number of gates (query_k) nearest to the citation aircraft in the radar volume of the APR3. It can return a dict of the original full length arrays and the matched arrays. ===== Vars: ===== apr3filename = str, filename of the apr hdf file fl = awot object, the citation awot object sphere_size = int, maximum distance allowed in the kdTree search psd_filename_2ds = str, filename of the processed 2DS file psd_filename_HVPS = str, filename of the processed HVPS3 file query_k = int, number of gates considered in the average (if 1, use closest) plotson = boolean, will create some premade plots that describe the matched data QC = boolean, will apply a simple QC method: eliminates any gate within 0.5 km to the surface and the outliers (plus/minus 1.5IQR) slimfast = boolean, will not save original data. Cuts down on output file size by only outputting the matched data and the citation data. cit_aver = boolean, averages the ciation data varibles using a 5 second moving average (there is overlap) cit_aver2 = boolean, averages the ciation data varibles using a 5 second discrete average (there is NO overlap) O2H20 = dict, data from sounding to correct for attenuation from O2 and H2O vapor attenuation_correct = boolean, corrects for attenuation using LWC prof and Sounding. Uses 50th percentile of LWC Prof per_for_atten = int, the percentile for the supercooled liquid water profile used in the attenuation correction. return_indeices of matches = boolean, returns the matched gates in 1d coords BB = boolean, mask gates from the BB and lower. Masks data using the BB_alt algorithm bbguess = int, give your first guess of where the Bright Band is to assist the BB_alt algorithm cal_adj_bool = bool, turn on calibration adjustment or not. cal_adj = array, array of the adjustment needed for correct calibration between frequencies. [ka_adj, w_adj] cloudtop = bool, eliminates sensativity issues with the Ku-band data (~ < 10 dBZ) by masking out the cloudtop noise using a gausian filter rollfix = bool, turn on or off the masking of data where the plane is rolling more than 10 degrees (can change the degree of degrees). ================= """ #get citation times (datetimes) cit_time = fl['time']['data'] #Eliminate BB? if BB: #Get rid of anything below the melting level + 250 m apr = apr3read(apr3filename) #there are two methods to this. One is more conservative (using mean Ku) the other more intense with LDR Ku #apr = BB_alt(apr,bbguess) #old if cloudtop: print('Removing cloudtop noise..') apr = cloudtopmask(apr) ###new BB tech 2/27/18 RJC print('Removing BB and below') apr = mask_surf(apr) apr['ldr'] = np.ma.masked_where(apr['Ku'].mask,apr['ldr']) #find bb profs bb = precip_echo_filt3D(apr['ldr'],thresh=7) ind1 = np.where(bb[12,:] == 1) #BB profiles based on LDR top_a = find_bb(apr,ind1) bb_long = extend_bb(ind1,apr['timedates'][12,:],top_a) apr['Ku'][:,:,:] = np.ma.masked_where(apr['alt_gate'][:,:,:] <= bb_long,apr['Ku'][:,:,:]) apr['Ka'] = np.ma.masked_where(apr['Ku'].mask,apr['Ka']) apr['W'] = np.ma.masked_where(apr['Ku'].mask,apr['W']) ### #correct for attenuation using SLW and Ku if attenuation_correct: print('correcting for attenuation...') apr = atten_cor3(apr,fl,per_for_atten,O2H2O,lwc_alt=False) print('corrected.') maxchange = apr['maxchange'] elif attenuation_correct: print('correcting for attenuation...') apr = atten_cor2(apr3filename,fl,per_for_atten,O2H2O,lwc_alt=False) print('corrected.') maxchange = apr['maxchange'] else: apr = apr3read(apr3filename) if cloudtop: print('Removing cloudtop noise..') apr = cloudtopmask(apr) if cal_adj_bool: print('adding calibration means...') # These values come from the analysis preformed by 3 reasearch groups: NASA JPL, University of Leister, and the University of Illinois. Techniques use sigma_0 of the ocean surface, comparision of frequencies at low Z and numerical simulations of particles.(error/uncertainty:+- 0.5 dB) apr['Ku'] = apr['Ku'] + 0.8 apr['Ka'] = apr['Ka'] + 1 #Whh is the only one with a time varient calibration adjustment apr['W'] = apr['W'] + cal_adj #While calibrating the data, radar artifacts showed up when the roll of the aircraft was > 10degrees. if rollfix: roll = apr['roll'] roll3d = np.zeros(apr['Ku'].shape) for i in np.arange(0,apr['Ku'].shape[1]): for j in np.arange(0,apr['Ku'].shape[2]): roll3d[:,i,j] = roll[i,j] apr['Ku'] = np.ma.masked_where(np.abs(roll3d) > 10, apr['Ku']) apr['Ka'] = np.ma.masked_where(np.abs(roll3d) > 10, apr['Ka']) apr['W'] = np.ma.masked_where(np.abs(roll3d) > 10, apr['W']) #Get APR3 times (datetimes) time_dates = apr['timedates'][:,:] #fix a few radar files where w-band disapears if time_dates[12,0] >= datetime.datetime(2015,12,18,6,58): for i in np.arange(0,time_dates.shape[0]): for j in np.arange(0,550): temp = np.ma.masked_where(time_dates[12,:] >= datetime.datetime(2015,12,18,7,6),apr['W'][j,i,:]) apr['W'][j,i,:] = temp if time_dates[12,0] >= datetime.datetime(2015,12,1,23,43,48) and time_dates[12,0] <=datetime.datetime(2015,12,1,23,43,49): for i in np.arange(0,time_dates.shape[0]): for j in np.arange(0,550): temp = np.ma.masked_where(time_dates[12,:] >= datetime.datetime(2015,12,2,0,1,40),apr['W'][j,i,:]) apr['W'][j,i,:] = temp #Check if radar file is large enought to use (50 gates is arbitrary) if time_dates[12,:].shape[0] < 50: print('Limited radar gates in time') #return # #Load PSD dtime_psd,ND,dD,midpoints = PSD_load(psd_filename_2ds,psd_filename_HVPS,day = time_dates[0,0].day,month=time_dates[0,0].month) # #Make ND a masked array (i.e. get rid of nans from loading it in) ind = np.isnan(ND) ND = np.ma.masked_where(ind,ND) #for plotting routine fontsize=14 # #Varibles needed for the kdtree leafsize = 16 query_eps = 0 query_p=2 query_distance_upper_bound = sphere_size query_n_jobs =1 Barnes = True K_d = sphere_size # #Pre-Determine arrays Ku_gate = np.ma.array([]) Ka_gate = np.ma.array([]) W_gate = np.ma.array([]) DFR_gate = np.ma.array([]) DFR2_gate = np.ma.array([]) DFR3_gate = np.ma.array([]) lon_c = np.ma.array([]) lat_c =
np.ma.array([])
numpy.ma.array
from __future__ import print_function import numpy as np import cv2 import math #global fg-bg subtractor based on Mixture of 2 Gaussians for modelling fg-bg clusters fgbg = cv2.createBackgroundSubtractorMOG2(history=50) def init_xywh_kalman(): #creating kalman with states = [x,y,w,h,vx,vy,vw,vh] #measurement = [x,y,w,h] kalman = cv2.KalmanFilter(8, 4) # velocity of x&y is twice that w&h to model larger deviations prior over translation than scale kalman.transitionMatrix = np.array([ [1.,0.,0.,0., .01,0.,0.,0.], [0.,1.,0.,0., 0.,.01,0.,0.], [0.,0.,1.,0., 0.,0.,.005,0.], [0.,0.,0.,1., 0.,0.,0.,.005], # [0.,0.,0.,0., 1.,0.,0.,0.], [0.,0.,0.,0., 0.,1.,0.,0.], [0.,0.,0.,0., 0.,0.,1.,0.], [0.,0.,0.,0., 0.,0.,0.,1.], ],dtype=np.float32) kalman.measurementMatrix =
np.array([ [1.,0.,0.,0., 0.,0.,0.,0.], [0.,1.,0.,0., 0.,0.,0.,0.], [0.,0.,1.,0., 0.,0.,0.,0.], [0.,0.,0.,1., 0.,0.,0.,0.], ], dtype=np.float32)
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import json import cv2 import numpy as np import math import tensorflow as tf import multiprocessing from Architecture import Architecture from Architecture import FeaturePredictionType from RenderPasses import RenderPasses from Naming import Naming from OpenEXRDirectory import OpenEXRDirectory parser = argparse.ArgumentParser(description='Prediction for the DeepDenoiser.') parser.add_argument( 'json_filename', help='The json specifying all the relevant details.') parser.add_argument( '--input', type=str, help='Make a prediction for the files in this directory.') parser.add_argument( '--tile_size', default=128, help='Width and heights of the tiles into which the image is split before denoising.') parser.add_argument( '--tile_overlap_size', default=14, help='Border size of the tiles that is overlapping to avoid artifacts.') parser.add_argument( '--threads', default=multiprocessing.cpu_count() + 1, help='Number of threads to use.') parser.add_argument( '--data_format', type=str, default='channels_first', choices=['channels_first', 'channels_last'], help='A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible ' 'with CPU. If left unspecified, the data format will be chosen ' 'automatically based on whether TensorFlow was built for CPU or GPU.') class FeatureLoader: def __init__(self, feature_prediction): self.feature_prediction = feature_prediction def add_to_parse_dictionary(self, dictionary): if self.feature_prediction.load_data: dictionary[Naming.source_feature_name(self.feature_prediction.name, index=0)] = tf.FixedLenFeature([], tf.string) def deserialize(self, parsed_features, height, width): if self.feature_prediction.load_data: internal_source = tf.decode_raw( parsed_features[Naming.source_feature_name(self.feature_prediction.name, index=0)], tf.float32) #internal_source = tf.reshape(internal_source, [height, width, self.feature_prediction.number_of_channels]) internal_source = tf.reshape(internal_source, [height, width, 3]) self.source = internal_source def add_to_sources_dictionary(self, sources, height, width): if self.feature_prediction.load_data: sources[Naming.source_feature_name(self.feature_prediction.name, index=0)] = self.source else: assert self.feature_prediction.feature_prediction_type != FeaturePredictionType.AUXILIARY source = tf.ones([height, width, self.feature_prediction.number_of_channels]) if self.feature_prediction.feature_prediction_type != FeaturePredictionType.COLOR: # Direct and indirect need to be 0.5. source = tf.scalar_mul(0.5, source) sources[Naming.source_feature_name(self.feature_prediction.name, index=0)] = source def input_fn_tfrecords( files, features_loader, feature_flags, tiles_height_width, batch_size, threads, data_format='channels_last'): def fast_feature_parser(serialized_example): # Load all the required indices. features = {} for feature_loader in features_loader: feature_loader.add_to_parse_dictionary(features) parsed_features = tf.parse_single_example(serialized_example, features) for feature_loader in features_loader: feature_loader.deserialize(parsed_features, tiles_height_width, tiles_height_width) # Prepare the examples. sources = {} for feature_loader in features_loader: feature_loader.add_to_sources_dictionary(sources, tiles_height_width, tiles_height_width) if feature_flags != None: feature_flags.add_to_source_dictionary(sources, tiles_height_width, tiles_height_width) return sources def feature_parser(serialized_example): dataset = None # Load all the required indices. features = {} for feature_loader in features_loader: feature_loader.add_to_parse_dictionary(features) parsed_features = tf.parse_single_example(serialized_example, features) for feature_loader in features_loader: feature_loader.deserialize(parsed_features, tiles_height_width, tiles_height_width) # Prepare the examples. sources = {} for feature_loader in features_loader: feature_loader.add_to_sources_dictionary(sources, tiles_height_width, tiles_height_width) if feature_flags != None: feature_flags.add_to_source_dictionary(sources, tiles_height_width, tiles_height_width) if dataset == None: dataset = tf.data.Dataset.from_tensors((sources)) else: dataset = dataset.concatenate(tf.data.Dataset.from_tensors((sources))) return dataset dataset = tf.data.TFRecordDataset(files, compression_type=None, buffer_size=None, num_parallel_reads=threads) dataset = dataset.map(map_func=fast_feature_parser, num_parallel_calls=threads) #dataset = dataset.flat_map(map_func=feature_parser) dataset = dataset.batch(batch_size) prefetch_buffer_size = 5 dataset = dataset.prefetch(buffer_size=prefetch_buffer_size) iterator = dataset.make_one_shot_iterator() features = iterator.get_next() return features def slow_direct_input_fn_predict(features_list, height, width): dataset = None for features in features_list: for feature_name in features: image = features[feature_name] image = tf.convert_to_tensor(image, np.float32) if len(image.shape) == 2: image = tf.reshape(image, [-1, height, width, 1]) else: image = tf.reshape(image, [-1, height, width, 3]) features[feature_name] = image current_dataset = tf.data.Dataset.from_tensor_slices(features) if dataset == None: dataset = current_dataset else: dataset = dataset.concatenate(current_dataset) dataset = dataset.batch(1) iterator = dataset.make_one_shot_iterator() result = iterator.get_next() return result def model_fn(features, labels, mode, params): architecture = params['architecture'] predictions = architecture.predict(features, mode) if mode == tf.estimator.ModeKeys.PREDICT: predictions = predictions[0] return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) def main(parsed_arguments): # Eager execution was faster, but the reason was no clear. (DeepBlender) tf.enable_eager_execution() if not isinstance(parsed_arguments.threads, int): parsed_arguments.threads = int(parsed_arguments.threads) try: architecture_json_filename = parsed_arguments.json_filename architecture_json_content = open(architecture_json_filename, 'r').read() parsed_architecture_json = json.loads(architecture_json_content) except: print('Expected a valid architecture json file.') assert os.path.isdir(parsed_arguments.input) if not isinstance(parsed_arguments.tile_size, int): parsed_arguments.tile_size = int(parsed_arguments.tile_size) if not isinstance(parsed_arguments.tile_overlap_size, int): parsed_arguments.tile_overlap_size = int(parsed_arguments.tile_overlap_size) tile_size = parsed_arguments.tile_size tile_overlap_size = parsed_arguments.tile_overlap_size data_format = parsed_arguments.data_format architecture = Architecture(parsed_architecture_json, source_data_format='channels_last', data_format=data_format) if architecture.data_format == 'channels_first': use_CPU_only = False else: use_CPU_only = True height = None width = None exr_files = OpenEXRDirectory._exr_files(parsed_arguments.input) features = {} required_features = architecture.auxiliary_features + architecture.feature_predictions for feature_prediction in required_features: exr_loaded = False if feature_prediction.load_data: for exr_file in exr_files: if feature_prediction.name in exr_file: image = OpenEXRDirectory._load_exr(exr_file) # HACK: Assume just one source input! features[Naming.source_feature_name(feature_prediction.name, index=0)] = image exr_loaded = True if height == None: height = image.shape[0] width = image.shape[1] else: assert height == image.shape[0] assert width == image.shape[1] break else: image = tf.ones([height, width, feature_prediction.number_of_channels]) if feature_prediction.feature_prediction_type != FeaturePredictionType.COLOR: # Direct and indirect need to be 0.5. image = tf.scalar_mul(0.5, image) features[Naming.source_feature_name(feature_prediction.name, index=0)] = image exr_loaded = True if not exr_loaded: # TODO: Improve (DeepBlender) raise Exception('Image for \'' + feature_prediction.name + '\' could not be loaded or does not exist.') smaller_side_length = min(height, width) if smaller_side_length < 16: raise Exception('The image needs to have at least a side length of 16 pixels.') if smaller_side_length < tile_size: ratio = tile_overlap_size / tile_size tile_size = smaller_side_length tile_overlap_size = int(tile_size * ratio) # Split the images into tiles. iteration_delta = tile_size - (2 * tile_overlap_size) width_count = width - (2 * tile_overlap_size) - (2 * iteration_delta) width_count = width_count / iteration_delta width_count = math.ceil(width_count) + 2 height_count = height - (2 * tile_overlap_size) - (2 * iteration_delta) height_count = height_count / iteration_delta height_count = math.ceil(height_count) + 2 tiled_features_grid = [[None for _ in range(width_count) ] for _ in range(height_count)] for height_index in range(height_count): if height_index == 0: lower_height = 0 upper_height = tile_size elif height_index == height_count - 1: upper_height = height lower_height = upper_height - tile_size else: lower_height = height_index * iteration_delta upper_height = lower_height + tile_size for width_index in range(width_count): if width_index == 0: lower_width = 0 upper_width = tile_size elif width_index == width_count - 1: upper_width = width lower_width = upper_width - tile_size else: lower_width = width_index * iteration_delta upper_width = lower_width + tile_size tiled_features = {} for feature_name in features: feature = features[feature_name] tiled_feature = feature[lower_height:upper_height, lower_width:upper_width] tiled_features[feature_name] = tiled_feature tiled_features_grid[height_index][width_index] = tiled_features # We don't need the features anymore. features = None # Directly predicting the results by creating a dataset from the tiled features resulted # in a huge computational overhead. # Converting the tiled features to tfrecords and predicting with a tfrecords dataset # is a questionable approach, but it is significantly faster. use_tfrecords = True if use_tfrecords: temporary_tfrecords_filename = './tmp.tfrecords' tfrecords_writer = tf.python_io.TFRecordWriter(temporary_tfrecords_filename) for height_index in range(height_count): for width_index in range(width_count): tiled_features = tiled_features_grid[height_index][width_index] serializable_features = {} for tiled_feature_name in tiled_features: tiled_feature = tiled_features[tiled_feature_name] tiled_feature = tf.train.Feature( bytes_list=tf.train.BytesList(value=[tf.compat.as_bytes(tiled_feature.tostring())])) serializable_features[tiled_feature_name] = tiled_feature example = tf.train.Example(features=tf.train.Features(feature=serializable_features)) tfrecords_writer.write(example.SerializeToString()) tfrecords_writer.close() if use_CPU_only: session_config = tf.ConfigProto(device_count = {'GPU': 0}) else: session_config = tf.ConfigProto() use_XLA = True if use_XLA: session_config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 run_config = tf.estimator.RunConfig(session_config=session_config) estimator = tf.estimator.Estimator( model_fn=model_fn, model_dir=architecture.model_directory, config=run_config, params={'architecture': architecture}) if use_tfrecords: features_loader = [] required_features = architecture.auxiliary_features + architecture.feature_predictions for feature_prediction in required_features: features_loader.append(FeatureLoader(feature_prediction)) tfrecords_files = [os.path.abspath(temporary_tfrecords_filename)] batch_size = 1 threads = 1 predictions = estimator.predict(input_fn=lambda: input_fn_tfrecords( tfrecords_files, features_loader, architecture.feature_flags, tile_size, batch_size, threads)) else: tiled_features_list = [] for height_index in range(height_count): for width_index in range(width_count): tiled_features = tiled_features_grid[height_index][width_index] tiled_features_list.append(tiled_features) predictions = estimator.predict(input_fn=lambda: slow_direct_input_fn_predict(tiled_features_list, tile_size, tile_size)) for height_index in range(height_count): for width_index in range(width_count): tiled_features_grid[height_index][width_index] = next(predictions) predictions = {} for feature_prediction_tuple in architecture.feature_prediction_tuples: for feature_prediction in feature_prediction_tuple.feature_predictions: if feature_prediction.load_data: horizontal_feature_stripes = [] for height_index in range(height_count): horizontal_feature_elements = [] for width_index in range(width_count): tiled_predictions = tiled_features_grid[height_index][width_index] prediction_name = Naming.feature_prediction_name(feature_prediction.name) prediction = tiled_predictions[prediction_name] lower_height = 0 upper_height = tile_size lower_width = 0 upper_width = tile_size if width_index != 0 and width_index != width_count - 1: lower_width = tile_overlap_size upper_width = upper_width - tile_overlap_size elif width_index == 0 and width_index == width_count - 1: pass elif width_index == 0: upper_width = upper_width - tile_overlap_size else: assert width_index == width_count - 1 existing_width = tile_overlap_size + ((width_count - 1) * (tile_size - (2 * tile_overlap_size))) remaining_width = width - existing_width lower_width = upper_width - remaining_width if height_index != 0 and height_index != height_count - 1: lower_height = tile_overlap_size upper_height = upper_height - tile_overlap_size elif height_index == 0 and height_index == height_count - 1: pass elif height_index == 0: upper_height = upper_height - tile_overlap_size else: assert height_index == height_count - 1 existing_height = tile_overlap_size + ((height_count - 1) * (tile_size - (2 * tile_overlap_size))) remaining_height = height - existing_height lower_height = upper_height - remaining_height prediction = prediction[lower_height:upper_height, lower_width:upper_width] horizontal_feature_elements.append(prediction) if len(horizontal_feature_elements) > 1: horizontal_feature_stripe = np.concatenate(horizontal_feature_elements, 1) else: horizontal_feature_stripe = horizontal_feature_elements[0] horizontal_feature_stripes.append(horizontal_feature_stripe) if len(horizontal_feature_stripes) > 1: prediction = np.concatenate(horizontal_feature_stripes, 0) else: prediction = horizontal_feature_stripes[0] prediction_name = Naming.feature_prediction_name(feature_prediction.name) predictions[prediction_name] = prediction diffuse_direct = predictions[Naming.feature_prediction_name(RenderPasses.DIFFUSE_DIRECT)] diffuse_indirect = predictions[Naming.feature_prediction_name(RenderPasses.DIFFUSE_INDIRECT)] diffuse_color = predictions[Naming.feature_prediction_name(RenderPasses.DIFFUSE_COLOR)] glossy_direct = predictions[Naming.feature_prediction_name(RenderPasses.GLOSSY_DIRECT)] glossy_indirect = predictions[Naming.feature_prediction_name(RenderPasses.GLOSSY_INDIRECT)] glossy_color = predictions[Naming.feature_prediction_name(RenderPasses.GLOSSY_COLOR)] subsurface_direct = predictions[Naming.feature_prediction_name(RenderPasses.SUBSURFACE_DIRECT)] subsurface_indirect = predictions[Naming.feature_prediction_name(RenderPasses.SUBSURFACE_INDIRECT)] subsurface_color = predictions[Naming.feature_prediction_name(RenderPasses.SUBSURFACE_COLOR)] transmission_direct = predictions[Naming.feature_prediction_name(RenderPasses.TRANSMISSION_DIRECT)] transmission_indirect = predictions[Naming.feature_prediction_name(RenderPasses.TRANSMISSION_INDIRECT)] transmission_color = predictions[Naming.feature_prediction_name(RenderPasses.TRANSMISSION_COLOR)] volume_direct = predictions[Naming.feature_prediction_name(RenderPasses.VOLUME_DIRECT)] volume_indirect = predictions[Naming.feature_prediction_name(RenderPasses.VOLUME_INDIRECT)] environment = predictions[Naming.feature_prediction_name(RenderPasses.ENVIRONMENT)] emission = predictions[Naming.feature_prediction_name(RenderPasses.EMISSION)] alpha = predictions[Naming.feature_prediction_name(RenderPasses.ALPHA)] # Combined features diffuse = np.multiply(diffuse_color, np.add(diffuse_direct, diffuse_indirect)) glossy = np.multiply(glossy_color, np.add(glossy_direct, glossy_indirect)) subsurface = np.multiply(subsurface_color, np.add(subsurface_direct, subsurface_indirect)) transmission = np.multiply(transmission_color, np.add(transmission_direct, transmission_indirect)) # Combined image image = np.add(diffuse, glossy) image = np.add(image, subsurface) image = np.add(image, transmission) image = np.add(image, volume_direct) image = np.add(image, volume_indirect) image = np.add(image, environment) image = np.add(image, emission) # TODO: Alpha currently ignored for the combined image. (DeepBlender) # Store as npy to open in Blender. np.save(parsed_arguments.input + '/' + RenderPasses.COMBINED + '.npy', image) np.save(parsed_arguments.input + '/' + RenderPasses.DIFFUSE_DIRECT + '.npy', diffuse_direct) np.save(parsed_arguments.input + '/' + RenderPasses.DIFFUSE_INDIRECT + '.npy', diffuse_indirect) np.save(parsed_arguments.input + '/' + RenderPasses.DIFFUSE_COLOR + '.npy', diffuse_color) np.save(parsed_arguments.input + '/' + RenderPasses.GLOSSY_DIRECT + '.npy', glossy_direct) np.save(parsed_arguments.input + '/' + RenderPasses.GLOSSY_INDIRECT + '.npy', glossy_indirect)
np.save(parsed_arguments.input + '/' + RenderPasses.GLOSSY_COLOR + '.npy', glossy_color)
numpy.save
import collections import configparser import csv import datetime import gzip import itertools import json import logging import pathlib import pickle import urllib.request from typing import Tuple import foolbox import numpy as np import sklearn.metrics as metrics logger = logging.getLogger(__name__) class AverageMeter(object): """ Computes and stores the average and current value. """ def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n if self.count > 0: self.avg = self.sum / self.count def save_zip(object, path, protocol=0): """ Saves a compressed object to disk """ # Create the folder, if necessary pathlib.Path(path).parent.mkdir(parents=True, exist_ok=True) file = gzip.GzipFile(path, 'wb') pickled = pickle.dumps(object, protocol) file.write(pickled) file.close() def load_zip(path): """ Loads a compressed object from disk """ file = gzip.GzipFile(path, 'rb') buffer = b"" while True: data = file.read() if data == b"": break buffer += data object = pickle.loads(buffer) file.close() return object def lp_norm(array, p): # L_infinity: Maximum difference if np.isinf(p): value = np.max(np.abs(array)) # No normalisation for L-inf # L_0: Count of different values elif p == 0: value = np.count_nonzero(np.reshape(array, -1)) # L_p: p-root of the sum of diff^p else: value = np.power(np.sum(np.power(
np.abs(array)
numpy.abs
from __future__ import absolute_import, division, print_function, unicode_literals from keras.utils import to_categorical import numpy as np import tensorflow as tf import datetime import scipy.io as sio import math from matplotlib.pyplot import pause import os import glob class CFA_process: # sets neighbor indexes for k-regular networks (number of neighbors is 'neighbors' def get_connectivity(self, ii_saved_local, neighbors, devices): if (ii_saved_local == 0): sets_neighbors_final = np.arange(ii_saved_local + 1, ii_saved_local + neighbors + 1) elif (ii_saved_local == devices - 1): sets_neighbors_final = np.arange(ii_saved_local - neighbors, ii_saved_local) elif (ii_saved_local >= math.ceil(neighbors / 2)) and ( ii_saved_local <= devices - math.ceil(neighbors / 2) - 1): sets_neighbors = np.arange(ii_saved_local - math.floor(neighbors / 2), ii_saved_local + math.floor(neighbors / 2) + 1) # print("set_neighbors:", sets_neighbors) index_ii =
np.where(sets_neighbors == ii_saved_local)
numpy.where
# Code from Hayes 2016- k- fingerprinting import math import numpy as np # re-seed the generator #np.random.seed(1234) #1. dictionary_() will extract features and write them to a target file (kFPdict) in the data folder #2. calls RF_openworld(), which starts by dividing kFPdict into training and testing sets #3. # -1 is IN, 1 is OUT #file format: "direction time size" """Feeder functions""" def neighborhood(iterable): iterator = iter(iterable) prev = (0) item = next(iterator) # throws StopIteration if empty. for nex in iterator: yield (prev,item,nex) prev = item item = nex yield (prev,item,None) def chunkIt(seq, num): avg = len(seq) / float(num) out = [] last = 0.0 while last < len(seq): out.append(seq[int(last):int(last + avg)]) last += avg return out """Non-feeder functions""" def get_pkt_list(trace_data): first_line = trace_data[0].rstrip() first_line = first_line.split("\t") first_time = float(first_line[0]) dta = [] for line in trace_data: if "##HOST_FTS" in line: continue a = line.rstrip() b = a.split("\t") if "e-" in b[0]: dr = b[1] print("Exponent in total seconds: ", b) b = [0.0, dr] #print(b, float(b[0])- first_time) if float(b[1]) > 0: #dta.append(((float(b[0])- first_time), abs(int(b[2])), 1)) dta.append(((float(b[0])- first_time), 1)) else: #dta.append(((float(b[1]) - first_time), abs(int(b[2])), -1)) dta.append(((float(b[0]) - first_time), -1)) return dta def In_Out(list_data): In = [] Out = [] for p in list_data: if p[1] == -1: In.append(p) if p[1] == 1: Out.append(p) return In, Out ############### TIME FEATURES ##################### def inter_pkt_time(list_data): times = [x[0] for x in list_data] temp = [] #print(times) #print(times[1:]+[times[0]]) for elem,next_elem in zip(times, times[1:]+[times[0]]): temp.append(next_elem-elem) return temp[:-1] def interarrival_times(list_data): In, Out = In_Out(list_data) IN = inter_pkt_time(In) OUT = inter_pkt_time(Out) TOTAL = inter_pkt_time(list_data) return IN, OUT, TOTAL def interarrival_maxminmeansd_stats(list_data): interstats = [] In, Out, Total = interarrival_times(list_data) if In and Out: avg_in = sum(In)/float(len(In)) avg_out = sum(Out)/float(len(Out)) avg_total = sum(Total)/float(len(Total)) interstats.append((max(In), max(Out), max(Total), avg_in, avg_out, avg_total,
np.std(In)
numpy.std
""" Train a logistic regression model. Input: data: Output: params: parameters of logistic regression model """ import os import pandas as pd from bokeh.plotting import figure import torch import torch.nn as nn import torch.utils.data from torch.nn.utils import weight_norm from torch.nn import ReLU import numpy as np import streamlit as st import yaml import pickle from pathlib import Path, PurePath import argparse from datetime import datetime from collections import OrderedDict serverdir = Path(os.path.realpath(__file__)).parent.parent he_for_medical_data = serverdir.parent.parent def generate_random_data(num_data_samp, data_dim): "Generate some random data for log reg." a = np.random.rand(data_dim)+5 x_noise = 0.1*np.random.randn(num_data_samp,1) x = 10*np.random.rand(num_data_samp,data_dim) - 5 b = np.array([-np.dot(a,x[row,...])-x_noise[row,...] for row in range(0,num_data_samp)]) b = np.exp(b) y_float = 1/(1+b) y = np.rint(y_float) return {"x": x, "y": y} class poly(nn.Module): """Polynomial activation function. degreelist: list of powers of the polynomial. """ def __init__(self, degreelist): super(poly,self).__init__() self.degreelist = degreelist p = len(degreelist) arr = np.ones(p,dtype=np.float32) coeff = torch.nn.Parameter(torch.tensor(arr), requires_grad=True) self.register_parameter("coefficients", coeff) def forward(self,x): out = [torch.pow(x,n) for n in self.degreelist] shape = x.shape out = torch.cat([j.reshape(*shape,1) for j in out],dim=-1) out = out * self.coefficients out = out.sum(-1) return out class fully_conn(nn.Module): """Creates a fully connected neural network according to specs. input_size: features length layers: list of how many neurons per layer activation: "relu" or "poly" degrees: optional. If choosing activation=poly you must specify degress. The activation polynomial will have trainable coefficients but only for the degrees specified. E.g.: [2,3]-> activation= ax^2 +bx^3. """ def __init__(self, input_size, layers, activation, degrees = None): super(fully_conn, self).__init__() network = [("weightedLinear0", weight_norm(nn.Linear(input_size,layers[0])))] numlayer = len(layers) if activation == "relu": if numlayer > 1: Relu = ("relu0", ReLU()) network.append(Relu) for i in range(numlayer-1): l = (f"weightedLinear{i+1}", weight_norm(nn.Linear(layers[i],layers[i+1]))) if i < numlayer-2: Relu = (f"relu{i+1}", ReLU()) network.extend([l, Relu]) else: network.append(l) if activation == "poly": if numlayer > 1: Poly = (f"poly0", poly(degrees)) network.append(Poly) p = len(degrees) for i in range(numlayer-1): l = (f"weightedLinear{i+1}",weight_norm(nn.Linear(layers[i],layers[i+1]))) if i < numlayer-2: Poly = (f"poly{i+1}", poly(degrees)) network.extend([l,Poly]) else: network.append(l) self.nnet = nn.Sequential(OrderedDict(network)) def forward(self,x): logits = self.nnet(x) return logits def predict(self,x): return torch.sigmoid(self.forward(x)) class logreg(nn.Module): def __init__(self, input_size, classes): super(logreg, self).__init__() linear = nn.Linear(input_size, classes) self.logistic_reg = weight_norm(linear,name = "weight") def forward(self, x): return self.logistic_reg(x) def predict(self,x): return torch.sigmoid(self.forward(x)) def train(config, train_data, model, optimizer_state=None): """ Training for mortality models. config: dict of learning parameters train_dict: dict {"x":ndarray, "y": ndarray} """ num_epochs = config["num_epochs"] batch_size = config["batch_size"] lr = config["learning_rate"] train_x = train_data["train_x"] train_y = train_data["train_y"] test_x = train_data["test_x"] test_y = train_data["test_y"] train_tensors = torch.utils.data.TensorDataset(train_x,train_y) train_loader = torch.utils.data.DataLoader(train_tensors, batch_size = batch_size, shuffle = True, ) optimizer = torch.optim.Adam(model.parameters(),lr = lr) if optimizer_state != None: optimizer.load_state_dict(optimizer_state) loss_values = [] pd_loss_value = pd.DataFrame(columns = ["loss", "test_loss","step"]) round = 0 placeholderpath = st.empty() placeholdergraph = st.empty() placeholder = st.empty() for epoch in range(num_epochs): for (x,y) in train_loader: outputs = model(x) optimizer.zero_grad() loss = torch.nn.functional.binary_cross_entropy_with_logits(outputs,y) loss.backward() optimizer.step() if round % 50 == 0: pred = model(test_x) test_loss = torch.nn.functional.binary_cross_entropy_with_logits(pred,test_y) print(f"epoch: {epoch}/{num_epochs}; step: {round}; loss: {loss}; test_loss: {test_loss}") lossdict = {"epoch": epoch, "step": round, "loss": loss.detach().numpy(), "test_loss": test_loss.detach().numpy(), } loss_values.append(lossdict) pd_loss_value = pd_loss_value.append(lossdict,ignore_index=True) #df = pd_loss_value[["loss","test_loss","step"]].set_index('step') p = figure(title="Loss/test loss") p.line(pd_loss_value.step,pd_loss_value.loss,line_width=2, color="firebrick", legend="loss") p.line(pd_loss_value.step,pd_loss_value.test_loss, line_width=2, legend="test_loss") placeholdergraph.bokeh_chart(p) placeholder.table(pd_loss_value) round+=1 return model, optimizer, loss_values, placeholderpath def convert_mortality_data(train_dict, test=False): """Converts mortality data dictionary with keys ("train", "test") or just ("test") for testing only when train == False. """ #Hack for now if "test_x" in train_dict.keys(): if test == False: train_dict["train_x"] = torch.Tensor(train_dict["train_x"].values) train_dict["train_y"] = torch.Tensor(train_dict["train_y"].values).unsqueeze_(1) train_dict["test_x"] = torch.Tensor(train_dict["test_x"].values) train_dict["test_y"] = torch.Tensor(train_dict["test_y"].values).unsqueeze_(1) else: if test == False: trainset = train_dict.pop("train") train_dict["train_x"] = torch.Tensor(trainset.drop(columns = ["expire"]).values) train_dict["train_y"] = torch.Tensor(trainset.expire.values).unsqueeze_(1) testset = train_dict.pop("test") train_dict["test_x"] = torch.Tensor(testset.drop(columns = ["expire"]).values) train_dict["test_y"] = torch.Tensor(testset.expire.values).unsqueeze_(1) train_dict["num_features"] = train_dict["test_x"].shape[1] return train_dict def main(modeldir = None, datadir = None, continuetrain = None, test = False): #Get all parsed arguments modeldir = serverdir.joinpath("model_params",modeldir) data_pickle = he_for_medical_data.joinpath("data",datadir,"train_dict.pkl") #moved data path #Load the training configs cfgs = modeldir.joinpath("configs.yaml") try: with open(cfgs) as f: configs = yaml.load(f,Loader = yaml.FullLoader) except FileNotFoundError as e: raise ValueError("There was a problem finding configs.yaml.") except Exception as e: raise ValueError(f"There was an exception: {e}") #Load the data try: with open(data_pickle,'rb') as f: data_dict = pickle.load(f) except Exception as e: raise ValueError(f"There was an exception raised when trying to load the data: {e}") #Turn data into torch.tensor. For the future: can remove this to processing pipeline. try: train_data = convert_mortality_data(data_dict, test = test) except Exception as e: raise ValueError(f"There was an issue with the data format: {e}") #Put together the model either nn or logreg modeltype = configs["modeltype"] if modeltype == "nn": try: layers = configs["layers"] activation = configs["activation"] degrees = configs["degrees"] input_size = train_data["num_features"] model = fully_conn(input_size, layers, activation, degrees=degrees, ) except Exception as e: raise ValueError(f"The model couldn't load: {e}") if modeltype == "logreg": try: layers = configs["layers"] input_size = train_data["num_features"] model = logreg(input_size, layers) except Exception as e: raise ValueError(f"The model couldn't load: {e}") #Initialize model with pretrained params to continue training or test ... if continuetrain == True or test == True: list_of_paths = modeldir.glob("*") paths = sorted(list_of_paths, key=lambda p: p.stat().st_ctime) paths.reverse() for path in paths: if path.name[0:5] == "model": latest_path = path break checkpoint = torch.load(latest_path) model_state = checkpoint["model_state_dict"] optimizer_state = checkpoint["optimizer_state_dict"] model.load_state_dict(model_state) else: optimizer_state = None #Predict only if test == True: test_x = train_data["test_x"] test_y = train_data["test_y"].squeeze().numpy() st.write("Model loaded. Now making predictions...") y = model.predict(test_x).squeeze().detach().numpy() predictions =
np.stack([test_y, y], axis=-1)
numpy.stack
# 1. 배열 만들기 import numpy as np a = np.array([[1, 2], [3, 4]]) print(a) # 2. 사칙 연산 print('====================================================================================================') print('== 문제 1. 아래의 a 배열에 모든 원소에 5를 더한 결과를 출력하시오!') print('====================================================================================================\n') a = np.array([[1, 2], [3, 4]]) print(a + 5) print('====================================================================================================') print('== 문제 2. 아래의 배열의 원소들의 평균값을 출력하시오!') print('====================================================================================================\n') a = np.array([1,2,4,5,5,7,10,13,18,21]) print(np.mean(a)) print('====================================================================================================') print('== 문제 3. a 배열의 중앙값을 출력하시오!') print('====================================================================================================\n') print(np.median(a)) print('====================================================================================================') print('== 문제 4. a 배열의 최대값과 최소값을 출력하시오!') print('====================================================================================================\n') print(np.max(a), np.min(a)) print('====================================================================================================') print('== 문제 5. a 배열의 표준편차와 분산을 출력하시오!') print('====================================================================================================\n') print(
np.std(a)
numpy.std
# -*- coding: utf-8 -*- # # Copyright (c) 2018, the cclib development team # # This file is part of cclib (http://cclib.github.io) and is distributed under # the terms of the BSD 3-Clause License. """Löwdin population analysis.""" import random import numpy from cclib.method.population import Population class LPA(Population): """The Löwdin population analysis""" def __init__(self, *args): # Call the __init__ method of the superclass. super(LPA, self).__init__(logname="LPA", *args) def __str__(self): """Return a string representation of the object.""" return "LPA of %s" % (self.data) def __repr__(self): """Return a representation of the object.""" return 'LPA("%s")' % (self.data) def calculate(self, indices=None, x=0.5, fupdate=0.05): """Perform a calculation of Löwdin population analysis. Inputs: indices - list of lists containing atomic orbital indices of fragments x - overlap matrix exponent in wavefunxtion projection (x=0.5 for Lowdin) """ unrestricted = (len(self.data.mocoeffs) == 2) nbasis = self.data.nbasis # Determine number of steps, and whether process involves beta orbitals. self.logger.info("Creating attribute aoresults: [array[2]]") alpha = len(self.data.mocoeffs[0]) self.aoresults = [ numpy.zeros([alpha, nbasis], "d") ] nstep = alpha if unrestricted: beta = len(self.data.mocoeffs[1]) self.aoresults.append(numpy.zeros([beta, nbasis], "d")) nstep += beta # intialize progress if available if self.progress: self.progress.initialize(nstep) if hasattr(self.data, "aooverlaps"): S = self.data.aooverlaps elif hasattr(self.data, "fooverlaps"): S = self.data.fooverlaps # Get eigenvalues and matrix of eigenvectors for transformation decomposition (U). # Find roots of diagonal elements, and transform backwards using eigevectors. # We need two matrices here, one for S^x, another for S^(1-x). # We don't need to invert U, since S is symmetrical. eigenvalues, U = numpy.linalg.eig(S) UI = U.transpose() Sdiagroot1 = numpy.identity(len(S))*numpy.power(eigenvalues, x) Sdiagroot2 = numpy.identity(len(S))*numpy.power(eigenvalues, 1-x) Sroot1 = numpy.dot(U, numpy.dot(Sdiagroot1, UI)) Sroot2 = numpy.dot(U, numpy.dot(Sdiagroot2, UI)) step = 0 for spin in range(len(self.data.mocoeffs)): for i in range(len(self.data.mocoeffs[spin])): if self.progress and random.random() < fupdate: self.progress.update(step, "Lowdin Population Analysis") ci = self.data.mocoeffs[spin][i] temp1 = numpy.dot(ci, Sroot1) temp2 = numpy.dot(ci, Sroot2) self.aoresults[spin][i] = numpy.multiply(temp1, temp2).astype("d") step += 1 if self.progress: self.progress.update(nstep, "Done") retval = super(LPA, self).partition(indices) if not retval: self.logger.error("Error in partitioning results") return False # Create array for charges. self.logger.info("Creating fragcharges: array[1]") size = len(self.fragresults[0][0]) self.fragcharges = numpy.zeros([size], "d") alpha = numpy.zeros([size], "d") if unrestricted: beta = numpy.zeros([size], "d") for spin in range(len(self.fragresults)): for i in range(self.data.homos[spin] + 1): temp = numpy.reshape(self.fragresults[spin][i], (size,)) self.fragcharges = numpy.add(self.fragcharges, temp) if spin == 0: alpha = numpy.add(alpha, temp) elif spin == 1: beta = numpy.add(beta, temp) if not unrestricted: self.fragcharges =
numpy.multiply(self.fragcharges, 2)
numpy.multiply
""" Contours analysis based mainly on moments """ # Import required packages: import numpy as np import cv2 from matplotlib import pyplot as plt # the aspect ratio is defined as: width/height def aspect_ratio(contour): """Returns the aspect ratio of the contour based on the dimensions of the bounding rect""" x, y, w, h = cv2.boundingRect(contour) res = float(w) / h return res def roundness(contour, moments): """Calculates the roundness of a contour""" length = cv2.arcLength(contour, True) k = (length * length) / (moments['m00'] * 4 * np.pi) return k def eccentricity_from_ellipse(contour): """Calculates the eccentricity fitting an ellipse from a contour""" (x, y), (MA, ma), angle = cv2.fitEllipse(contour) a = ma / 2 b = MA / 2 ecc = np.sqrt(a ** 2 - b ** 2) / a return ecc def eccentricity_from_moments(moments): """Calculates the eccentricity from the moments of the contour""" a1 = (moments['mu20'] + moments['mu02']) / 2 a2 = np.sqrt(4 * moments['mu11'] ** 2 + (moments['mu20'] - moments['mu02']) ** 2) / 2 ecc =
np.sqrt(1 - (a1 - a2) / (a1 + a2))
numpy.sqrt
import pandas as pd from datetime import datetime, timedelta import random import numpy as np import yfinance as yf class Env: def __init__(self, Enviorment, ticker=None): self.switch_eviorment(Enviorment, ticker=ticker) #setup enviorment variables def switch_eviorment(self, Enviorment, ticker=None): print('Settting Up Enviorment ;)') eviorment_dictionary ={ "Standard": 0 , "Days":1, "Trading":2} while (Enviorment not in eviorment_dictionary): Enviorment= str(input("Enter the enviorment your want to choose\n")) self.typee = eviorment_dictionary.get(Enviorment) if(ticker == None ): self.ticker= str(input('Ticker of stock (All Caps)\n')) else: self.ticker = ticker not_done=True while (not_done): try: yf.download(self.ticker, (datetime.now()-timedelta(days = 7)) , (datetime.now())) not_done=False except: self.ticker= str(input('Enter Valid ticker of stock (All Caps)\n')) #get date frame with specifications def setdf(self, start_date=None, end_date=None, agent_memory=None, days_ahead=None): if (self.typee!=4): if(self.typee==1): if not all([start_date, end_date, agent_memory, days_ahead]): print('Some info missing, please enter it below \n') else: if not all([start_date, end_date, agent_memory]): print('Some info missing, please enter it below \n') if(start_date == None ): self.start_date = datetime.strptime(str(input("Start date: Year-Month-Day (ex. '2007-01-01') \n")), '%Y-%m-%d') else: self.start_date = start_date if(end_date == None ): end = str(input("End date: Year-Month-Day (ex. '2007-01-01') or 'now' for current date \n")) if end != 'now': self.end_date = datetime.strptime(end, '%Y-%m-%d') else: self.end_date = datetime.now() else: if(type(end_date) is str): self.end_date = datetime.now() else: self.end_date = end_date if(agent_memory == None ): self.agent_memory = int(input('Agent memory: days\n')) else: self.agent_memory = agent_memory if(self.typee == 0 or self.typee == 2): self.days_ahead = 1 elif(self.typee == 1): if(days_ahead == None): self.days_ahead = int(input('Days ahead to predict\n')) else: self.days_ahead = days_ahead self.df = yf.download(self.ticker, self.start_date, self.end_date) #Data comes as as: [High, Low, Open, Close, Volume, Adj Close] numpy array #Used to predict close of next day #returns data as needed def getdata(self, shuffle=True, seed= 42): datalist=[] anslist =[] if(self.typee == 0): for i in range(len(self.df)-self.agent_memory): datalist.append(self.df.iloc[i:i+self.agent_memory].to_numpy()) anslist.append(self.df.iloc[i+self.agent_memory, 3]) elif(self.typee == 1): for i in range(len(self.df)-(self.agent_memory+self.days_ahead)+1): datalist.append(self.df.iloc[i:i+self.agent_memory].to_numpy()) anslist.append(self.df.iloc[i+self.agent_memory:i+self.agent_memory+self.days_ahead , 3].to_numpy().reshape(self.days_ahead,1)) if(shuffle): shufflelist = list(zip(datalist, anslist)) random.seed(seed) random.shuffle(shufflelist) datalist, anslist = zip(*shufflelist) return datalist, anslist #data with train_test split def train_test(self, test_percent=None, shuffle = True, seed = 42, start_date=None, end_date=None, agent_memory=None, days_ahead=None): self.setdf(start_date, end_date, agent_memory, days_ahead) if (test_percent == None or test_percent >=1): test_percent =.20 datalist , anslist = self.getdata(shuffle = shuffle, seed=seed) test_data = np.asarray(datalist[int(len(datalist)*(1-test_percent)):]) train_data = np.asarray(datalist[:int(len(datalist)*(1-test_percent))]) test_ans = np.asarray(anslist[int(len(anslist)*(1-test_percent)):]) train_ans = np.asarray(anslist[:int(len(anslist)*(1-test_percent))]) return train_data, test_data, train_ans,test_ans #data to test with if needed def get_testdata(self, start_date=None, end_date =None, agent_memory=None, days_ahead=None, shuffle = True, seed=42): self.setdf(start_date, end_date, agent_memory, days_ahead) datalist , anslist = self.getdata(shuffle = shuffle, seed=seed) return np.asarray(datalist),
np.asarray(anslist)
numpy.asarray
#!/usr/bin/python # -*- coding: utf-8 -*- # Get basic statistics describing the database # Compare a structure to a database from tqdm.autonotebook import tqdm import logging from pymatgen import Structure from pymatgen.analysis.graphs import StructureGraph from pymatgen.analysis.local_env import JmolNN from .utils import ( get_structure_list, get_rmsd, closest_index, tanimoto_distance, get_number_bins, ) import random from scipy.spatial import distance from sklearn.linear_model import HuberRegressor from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error from sklearn.metrics.pairwise import euclidean_distances from scipy.stats import ( pearsonr, ks_2samp, mannwhitneyu, ttest_ind, anderson_ksamp, gmean, kurtosis, mode, variation, skew, normaltest, kruskal, median_absolute_deviation, ) import numpy as np import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt from scipy import ndimage import concurrent.futures from functools import partial from numba import jit logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("RemoveDuplicates") logger.setLevel(logging.DEBUG) # ToDo (maybe) make sure that input data is numeric? # Todo: grid search for kernel width in MMD test class Statistics: def __init__(self): pass @staticmethod def _get_one_graph_comparison( structure_list_a: list, structure_list_b: list, _ ) -> float: """ Args: structure_list_a (list): list of paths to structures structure_list_b (list): list of paths to structures _: Returns: Jaccard distance between two random structure graphs """ logger.debug("i am in the graph comparison routine") try: random_selection_1 = random.sample(structure_list_a, 1)[0] random_selection_2 = random.sample(structure_list_b, 1)[0] crystal_a = Structure.from_file(random_selection_1) crystal_b = Structure.from_file(random_selection_2) nn_strategy = JmolNN() sgraph_a = StructureGraph.with_local_env_strategy(crystal_a, nn_strategy) sgraph_b = StructureGraph.with_local_env_strategy(crystal_b, nn_strategy) return sgraph_a.diff(sgraph_b, strict=False)["dist"] except Exception: return np.nan @staticmethod @jit def euclidean_distance(u: np.ndarray, v: np.ndarray) -> float: """ Args: u: v: Returns: """ return np.linalg.norm(u - v) @staticmethod def _randomized_graphs( structure_list_a: list, structure_list_b: list, iterations: int = 5000, njobs: int = 2, ) -> list: """ Randomly sample structures from the structure list and compare their Jaccard graph distance. Args: structure_list_a (list): list of paths to structures structure_list_b (list): list of paths to structures iterations (int): Number of comparisons (sampling works with replacement, i.e. the same pair might be sampled several times). njobs (int): the maximum number of workers Returns: list of length iterations of the Jaccard distances """ diffs = [] get_one_graph_comparison_partial = partial( Statistics._get_one_graph_comparison, structure_list_a, structure_list_b ) with concurrent.futures.ProcessPoolExecutor(max_workers=njobs) as executor: logger.debug("iterating for graph comparisons") for diff in tqdm( executor.map(get_one_graph_comparison_partial, range(iterations)), total=len(range(iterations)), ): diffs.append(diff) return diffs @staticmethod def _get_one_randomized_structure_property( structure_list_a: list, structure_list_b: list, feature: str, _ ) -> float: """ Returns difference between the selected property for two random structures. Args: structure_list_a (list): list of paths (str) to structures structure_list_b (list): list of paths (str) to structures feature (str): feature that shall be compared, available are 'density', 'num_sites' and 'volume _: Returns: difference of feature for two randomly selected structures """ try: random_selection_1 = random.sample(structure_list_a, 1)[0] random_selection_2 = random.sample(structure_list_b, 1)[0] crystal_a = Structure.from_file(random_selection_1) crystal_b = Structure.from_file(random_selection_2) if feature == "density": diff = np.abs(crystal_a.density - crystal_b.density) elif feature == "num_sites": diff = np.abs(crystal_a.num_sites - crystal_b.num_sites) elif feature == "volume": diff = np.abs(crystal_a.volume - crystal_b.volume) return diff except Exception: return np.nan @staticmethod def _randomized_structure_property( structure_list_a: list, structure_list_b: list, feature: str = "density", iterations: int = 5000, njobs: int = 2, ) -> list: """ Args: structure_list_a (list): list of paths to structures structure_list_b (list): list of paths to structures feature (str): property that is used for the structure comparisons, available options are density, num_sites, volume. Default is density. iterations (int): number of comparisons (sampling works with replacement, i.e. the same pair might be sampled several times). njobs (int): the maximum number of concurrent workers Returns: list with rmsds """ diffs = [] get_one_randomized_structure_property_partial = partial( Statistics._get_one_randomized_structure_property, structure_list_a, structure_list_b, feature, ) with concurrent.futures.ProcessPoolExecutor(max_workers=njobs) as executor: logger.debug("iterating for graph comparisons") for diff in tqdm( executor.map( get_one_randomized_structure_property_partial, range(iterations) ), total=len(range(iterations)), ): diffs.append(diff) return diffs @staticmethod def _get_one_rmsd(structure_list_a: list, structure_list_b: list, _) -> float: logger.debug("i am in the _get_one_rmsd routine") try: random_selection_1 = random.sample(structure_list_a, 1)[0] random_selection_2 = random.sample(structure_list_b, 1)[0] a = get_rmsd(random_selection_1, random_selection_2) return a except Exception as e: logger.error("Exception %s occured", e) return np.nan @staticmethod def _randomized_rmsd( structure_list_a: list, structure_list_b: list, iterations: float = 5000, njobs: int = 2, ) -> list: """ Args: structure_list_a (list): list of paths to structures structure_list_b (list): list of paths to structures iterations (int): number of comparisons (sampling works with replacement, i.e. the same pair might be sampled several times). njobs (int): the maximum number of concurrent workers Returns: """ rmsds = [] with concurrent.futures.ProcessPoolExecutor(max_workers=njobs) as executor: logger.debug("iterating for rmsd comparisons") get_one_rmsd_partial = partial( Statistics._get_one_rmsd, structure_list_a, structure_list_b ) for rmsd in tqdm( executor.map(get_one_rmsd_partial, range(iterations)), total=len(range(iterations)), ): rmsds.append(rmsd) return rmsds @staticmethod def optimal_knn(data, max_cluster: int = 20): """ use silhouette scores to find the optimal number of clusters. we use silhouette scores as they are easier to use in a algorithm than the "elbow criterion" Args: data (np.array): data matrix max_cluster (int): maximum number of clusters. Optimization will happen for all cluster numbers k in (2, min(len(data), max_cluster)) Returns: """ from sklearn.metrics import silhouette_score from sklearn.preprocessing import StandardScaler logger.debug("searching for optimal knn clustering") silhouette_scores = [] n_clusters = [] # avoid that k > len(data) upper_boundary = np.min([len(data), max_cluster]) sc = StandardScaler() data = sc.fit_transform(data) for n_cluster in range(2, upper_boundary): kmeans = KMeans(n_clusters=n_cluster).fit(data) label = kmeans.labels_ sil_coeff = silhouette_score(data, label, metric="euclidean") silhouette_scores.append(sil_coeff) n_clusters.append(n_cluster) optimal_n_cluster = n_clusters[np.argmax(silhouette_scores)] kmeans = KMeans(n_clusters=optimal_n_cluster).fit(data) logger.info("found optimal knn clustering with %s clusters", optimal_n_cluster) return kmeans, optimal_n_cluster @staticmethod def trimean(data): """ Args: data: numeric data Returns: trimean (float) for data """ q1 = np.quantile(data, 0.25) q3 = np.quantile(data, 0.75) return (q1 + 2 *
np.median(data)
numpy.median
import numpy as np from ...dimensions.dim_linear import DimLinear from ...dimensions.dim_angular import DimAngular from ...dimensions import DimDegree from ...dimensions import DimRadian from ..cross_sect_base import CrossSectBase, CrossSectToken __all__ = ['CrossSectOuterRotor'] class CrossSectOuterRotor(CrossSectBase): def __init__(self, **kwargs: any) -> None: ''' Initialization function for Outer Rotor class. This function takes in arguments and saves the information passed to private variable to make them read-only Parameters ---------- **kwargs : any DESCRIPTION. Keyword arguments provided to the initialization function. The following argument names have to be included in order for the code to execute: name, dim_l, dim_t, dim_theta, location. Returns ------- None ''' self._create_attr(kwargs) super()._validate_attr() self._validate_attr() @property def dim_alpha_rs(self): return self._dim_alpha_rs @property def dim_alpha_rm(self): return self._dim_alpha_rm @property def dim_r_ro(self): return self._dim_r_ro @property def dim_d_rp(self): return self._dim_d_rp @property def dim_d_ri(self): return self._dim_d_ri @property def dim_d_rs(self): return self._dim_d_rs @property def dim_p(self): return self._dim_p @property def dim_S(self): return self._dim_S def draw(self, drawer): alpha_rs = DimRadian(self.dim_alpha_rs) alpha_rm = DimRadian(self.dim_alpha_rm) r_ro = self.dim_r_ro d_rp = self.dim_d_rp d_ri = self.dim_d_ri d_rs = self.dim_d_rs pole_pair = self.dim_p segments = self.dim_S alpha_total = DimRadian(DimDegree(180 / pole_pair)) # outer arc r = r_ro x1 = r * np.cos(alpha_total / 2) y1 = r * np.sin(alpha_total / 2) # inner arc between poles r = r_ro - d_ri - d_rp x2 = r * np.cos(alpha_rm / 2) y2 = r * np.sin(alpha_rm / 2) x3 = r * np.cos(alpha_total / 2) y3 = r * np.sin(alpha_total / 2) # line containing region between poles r = r_ro - d_ri x4 = r *
np.cos(alpha_rm / 2)
numpy.cos
"""Generate coil geometries. This module provides functions to generate various coil geometries that can be used in conjuction with the eppy module to calculate eddy currents in flat plates. """ import numpy as np import numpy.typing as npt # ---------------------------------------------------------------------- # User defined types # ArrayFloat = npt.NDArray[np.float_] def straight_wire(start: ArrayFloat, end: ArrayFloat, n: int=40) -> tuple[ArrayFloat, ArrayFloat]: """Return position vectors and line segments for straight line. Parameters ---------- start : ndarray(dtype=float, dim=1) Coordinate of start point (x, y, z). end : ndarray(dtype=float, dim=1) Coordinate of end point (x, y, z). n : int, defaults to 40 Number of line segments. Returns ------- R : ndarray(dtype=float, dim=2) Array of position vectors for each small line segment. dl : ndarray(dtype=float, dim=2) Array of line segment vectors. """ points = np.array([start, end]) line = np.array([0, 1]) line = line[None, :] L = np.linalg.norm(end - start) esize = L/n R, dl = coil_segments(points, esize, lines=line) return R, dl def circular_coil(center: ArrayFloat, radius: float, plane: str="XY", n: int=40) -> tuple[ArrayFloat, ArrayFloat]: """Return position vectors and line segments for circular coil. Parameters ---------- center : ndarray(dtype=float, dim=1) Coordinate of the center (x, y, z). radius : float Radius of the circular coil. plane : {'XY', 'YZ'}, defaults to 'XY' Plane in which the circular coil is defined. n : int, defaults to 40 Number of line segments. Returns ------- R : ndarray(dtype=float, dim=2) Array of position vectors for each small line segment. dl : ndarray(dtype=float, dim=2) Array of line segment vectors. """ P = np.zeros((3, 3)) if plane == "XY": P[0] = center + np.array([radius, 0, 0]) P[1] = center + np.array([0, radius, 0]) P[2] = center - np.array([radius, 0, 0]) elif plane == "YZ": P[0] = center + np.array([0, radius, 0]) P[1] = center + np.array([0, 0, radius]) P[2] = center -
np.array([0, radius, 0])
numpy.array
# Copyright (C) 2020 <NAME> # All rights reserved. # # This file is part of phono3py. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys import time import numpy as np from phonopy.phonon.degeneracy import degenerate_sets from phono3py.phonon3.conductivity import (Conductivity, all_bands_exist, unit_to_WmK) from phono3py.phonon3.conductivity import write_pp as _write_pp from phono3py.phonon3.collision_matrix import CollisionMatrix from phono3py.phonon.grid import get_grid_points_by_rotations from phono3py.file_IO import (write_kappa_to_hdf5, write_collision_to_hdf5, read_collision_from_hdf5, write_collision_eigenvalues_to_hdf5, write_unitary_matrix_to_hdf5, read_pp_from_hdf5) from phonopy.units import THzToEv, Kb def get_thermal_conductivity_LBTE( interaction, temperatures=None, sigmas=None, sigma_cutoff=None, is_isotope=False, mass_variances=None, grid_points=None, boundary_mfp=None, # in micrometre solve_collective_phonon=False, is_reducible_collision_matrix=False, is_kappa_star=True, gv_delta_q=1e-4, # for group velocity is_full_pp=False, pinv_cutoff=1.0e-8, pinv_solver=0, # default: dsyev in lapacke write_collision=False, read_collision=False, write_kappa=False, write_pp=False, read_pp=False, write_LBTE_solution=False, compression="gzip", input_filename=None, output_filename=None, log_level=0): if temperatures is None: _temperatures = [300, ] else: _temperatures = temperatures if sigmas is None: sigmas = [] if log_level: print("-" * 19 + " Lattice thermal conducitivity (LBTE) " + "-" * 19) print("Cutoff frequency of pseudo inversion of collision matrix: %s" % pinv_cutoff) if read_collision: temps = None else: temps = _temperatures lbte = Conductivity_LBTE( interaction, grid_points=grid_points, temperatures=temps, sigmas=sigmas, sigma_cutoff=sigma_cutoff, is_isotope=is_isotope, mass_variances=mass_variances, boundary_mfp=boundary_mfp, solve_collective_phonon=solve_collective_phonon, is_reducible_collision_matrix=is_reducible_collision_matrix, is_kappa_star=is_kappa_star, gv_delta_q=gv_delta_q, is_full_pp=is_full_pp, read_pp=read_pp, pp_filename=input_filename, pinv_cutoff=pinv_cutoff, pinv_solver=pinv_solver, log_level=log_level) if read_collision: read_from = _set_collision_from_file( lbte, interaction.bz_grid, indices=read_collision, is_reducible_collision_matrix=is_reducible_collision_matrix, filename=input_filename, log_level=log_level) if not read_from: print("Reading collision failed.") return False if log_level: temps_read = lbte.temperatures if len(temps_read) > 5: text = (" %.1f " * 5 + "...") % tuple(temps_read[:5]) text += " %.1f" % temps_read[-1] else: text = (" %.1f " * len(temps_read)) % tuple(temps_read) print("Temperature: " + text) for i in lbte: if write_pp: _write_pp(lbte, interaction, i, filename=output_filename, compression=compression) if write_collision: _write_collision( lbte, interaction, i=i, is_reducible_collision_matrix=is_reducible_collision_matrix, is_one_gp_colmat=(grid_points is not None), filename=output_filename) lbte.delete_gp_collision_and_pp() # Write full collision matrix if write_LBTE_solution: if ((read_collision and all_bands_exist(interaction) and read_from == "grid_points" and grid_points is None) or (not read_collision)): _write_collision(lbte, interaction, filename=output_filename) if grid_points is None and all_bands_exist(interaction): lbte.set_kappa_at_sigmas() if write_kappa: _write_kappa( lbte, interaction.primitive.volume, is_reducible_collision_matrix=is_reducible_collision_matrix, write_LBTE_solution=write_LBTE_solution, pinv_solver=pinv_solver, compression=compression, filename=output_filename, log_level=log_level) return lbte def _write_collision(lbte, interaction, i=None, is_reducible_collision_matrix=False, is_one_gp_colmat=False, filename=None): grid_points = lbte.get_grid_points() temperatures = lbte.temperatures sigmas = lbte.get_sigmas() sigma_cutoff = lbte.get_sigma_cutoff_width() gamma = lbte.gamma gamma_isotope = lbte.gamma_isotope collision_matrix = lbte.collision_matrix mesh = lbte.mesh_numbers if i is not None: gp = grid_points[i] if is_one_gp_colmat: igp = 0 else: if is_reducible_collision_matrix: igp = interaction.bz_grid.bzg2grg[gp] else: igp = i if all_bands_exist(interaction): for j, sigma in enumerate(sigmas): if gamma_isotope is not None: gamma_isotope_at_sigma = gamma_isotope[j, igp] else: gamma_isotope_at_sigma = None write_collision_to_hdf5( temperatures, mesh, gamma=gamma[j, :, igp], gamma_isotope=gamma_isotope_at_sigma, collision_matrix=collision_matrix[j, :, igp], grid_point=gp, sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename) else: for j, sigma in enumerate(sigmas): for k, bi in enumerate(interaction.band_indices): if gamma_isotope is not None: gamma_isotope_at_sigma = gamma_isotope[j, igp, k] else: gamma_isotope_at_sigma = None write_collision_to_hdf5( temperatures, mesh, gamma=gamma[j, :, igp, k], gamma_isotope=gamma_isotope_at_sigma, collision_matrix=collision_matrix[j, :, igp, k], grid_point=gp, band_index=bi, sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename) else: for j, sigma in enumerate(sigmas): if gamma_isotope is not None: gamma_isotope_at_sigma = gamma_isotope[j] else: gamma_isotope_at_sigma = None write_collision_to_hdf5(temperatures, mesh, gamma=gamma[j], gamma_isotope=gamma_isotope_at_sigma, collision_matrix=collision_matrix[j], sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename) def _write_kappa(lbte, volume, is_reducible_collision_matrix=False, write_LBTE_solution=False, pinv_solver=None, compression="gzip", filename=None, log_level=0): temperatures = lbte.temperatures sigmas = lbte.get_sigmas() sigma_cutoff = lbte.get_sigma_cutoff_width() mesh = lbte.mesh_numbers weights = lbte.get_grid_weights() frequencies = lbte.get_frequencies() ave_pp = lbte.get_averaged_pp_interaction() qpoints = lbte.get_qpoints() kappa = lbte.kappa kappa_RTA = lbte.get_kappa_RTA() gamma = lbte.gamma gamma_isotope = lbte.gamma_isotope gv = lbte.get_group_velocities() f_vector = lbte.get_f_vectors() gv_by_gv = lbte.get_gv_by_gv() mode_cv = lbte.get_mode_heat_capacities() mode_kappa = lbte.get_mode_kappa() mode_kappa_RTA = lbte.get_mode_kappa_RTA() mfp = lbte.get_mean_free_path() coleigs = lbte.get_collision_eigenvalues() # After kappa calculation, the variable is overwritten by unitary matrix unitary_matrix = lbte.collision_matrix if is_reducible_collision_matrix: frequencies = lbte.get_frequencies_all() else: frequencies = lbte.get_frequencies() for i, sigma in enumerate(sigmas): if gamma_isotope is not None: gamma_isotope_at_sigma = gamma_isotope[i] else: gamma_isotope_at_sigma = None write_kappa_to_hdf5(temperatures, mesh, frequency=frequencies, group_velocity=gv, gv_by_gv=gv_by_gv, mean_free_path=mfp[i], heat_capacity=mode_cv, kappa=kappa[i], mode_kappa=mode_kappa[i], kappa_RTA=kappa_RTA[i], mode_kappa_RTA=mode_kappa_RTA[i], f_vector=f_vector, gamma=gamma[i], gamma_isotope=gamma_isotope_at_sigma, averaged_pp_interaction=ave_pp, qpoint=qpoints, weight=weights, sigma=sigma, sigma_cutoff=sigma_cutoff, kappa_unit_conversion=unit_to_WmK / volume, compression=compression, filename=filename, verbose=log_level) if coleigs is not None: write_collision_eigenvalues_to_hdf5(temperatures, mesh, coleigs[i], sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename, verbose=log_level) if write_LBTE_solution: if pinv_solver is not None: solver = _select_solver(pinv_solver) if solver in [1, 2, 3, 4, 5]: write_unitary_matrix_to_hdf5( temperatures, mesh, unitary_matrix=unitary_matrix, sigma=sigma, sigma_cutoff=sigma_cutoff, solver=solver, filename=filename, verbose=log_level) def _set_collision_from_file(lbte, bz_grid, indices='all', is_reducible_collision_matrix=False, filename=None, log_level=0): sigmas = lbte.get_sigmas() sigma_cutoff = lbte.get_sigma_cutoff_width() mesh = lbte.mesh_numbers grid_points = lbte.get_grid_points() indices = indices if len(sigmas) > 1: gamma = [] collision_matrix = [] read_from = None if log_level: print("---------------------- Reading collision data from file " "----------------------") sys.stdout.flush() for j, sigma in enumerate(sigmas): collisions = read_collision_from_hdf5(mesh, indices=indices, sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename, verbose=(log_level > 0)) if log_level: sys.stdout.flush() if collisions: (colmat_at_sigma, gamma_at_sigma, temperatures) = collisions if len(sigmas) == 1: collision_matrix = colmat_at_sigma gamma = np.zeros((1,) + gamma_at_sigma.shape, dtype='double', order='C') gamma[0] = gamma_at_sigma else: collision_matrix.append(colmat_at_sigma) gamma.append(gamma_at_sigma) read_from = "full_matrix" else: vals = _allocate_collision(True, mesh, sigma, sigma_cutoff, grid_points, indices, is_reducible_collision_matrix, filename) if vals: colmat_at_sigma, gamma_at_sigma, temperatures = vals else: if log_level: print("Collision at grid point %d doesn't exist." % grid_points[0]) vals = _allocate_collision(False, mesh, sigma, sigma_cutoff, grid_points, indices, is_reducible_collision_matrix, filename) if vals: colmat_at_sigma, gamma_at_sigma, temperatures = vals else: if log_level: print("Collision at (grid point %d, band index %d) " "doesn't exist." % (grid_points[0], 1)) return False for i, gp in enumerate(grid_points): if not _collect_collision_gp(colmat_at_sigma, gamma_at_sigma, temperatures, mesh, sigma, sigma_cutoff, i, gp, bz_grid.bzg2grg, indices, is_reducible_collision_matrix, filename, log_level): num_band = colmat_at_sigma.shape[3] for j in range(num_band): if not _collect_collision_band( colmat_at_sigma, gamma_at_sigma, temperatures, mesh, sigma, sigma_cutoff, i, gp, bz_grid.bzg2grg, j, indices, is_reducible_collision_matrix, filename, log_level): return False if len(sigmas) == 1: gamma = gamma_at_sigma collision_matrix = colmat_at_sigma else: gamma.append(gamma_at_sigma[0]) collision_matrix.append(colmat_at_sigma[0]) read_from = "grid_points" if len(sigmas) > 1: temperatures = np.array(temperatures, dtype='double', order='C') gamma = np.array(gamma, dtype='double', order='C') collision_matrix = np.array(collision_matrix, dtype='double', order='C') lbte.set_gamma(gamma) lbte.set_collision_matrix(collision_matrix) # lbte.set_temperatures invokes allocation of arrays. So this must # be called after setting collision_matrix for saving memory # space. lbte.set_temperatures(temperatures) return read_from def _allocate_collision(for_gps, mesh, sigma, sigma_cutoff, grid_points, indices, is_reducible_collision_matrix, filename): num_mesh_points = np.prod(mesh) if for_gps: collision = read_collision_from_hdf5(mesh, indices=indices, grid_point=grid_points[0], sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename, verbose=False) else: collision = read_collision_from_hdf5(mesh, indices=indices, grid_point=grid_points[0], band_index=0, sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename, verbose=False) if collision is None: return False num_temp = len(collision[2]) # This is to treat indices="all". if is_reducible_collision_matrix: if for_gps: num_band = collision[0].shape[4] # for gps (s,T,b,irgp,b) else: num_band = collision[0].shape[3] # for bands (s,T,irgp,b) gamma_at_sigma = np.zeros( (1, num_temp, num_mesh_points, num_band), dtype='double', order='C') colmat_at_sigma = np.zeros( (1, num_temp, num_mesh_points, num_band, num_mesh_points, num_band), dtype='double', order='C') else: if for_gps: num_band = collision[0].shape[5] # for gps (s,T,b0,3,irgp,b,3) else: num_band = collision[0].shape[4] # for bands (s,T,3,irgp,b,3) gamma_at_sigma = np.zeros( (1, num_temp, len(grid_points), num_band), dtype='double', order='C') colmat_at_sigma = np.zeros( (1, num_temp, len(grid_points), num_band, 3, len(grid_points), num_band, 3), dtype='double', order='C') temperatures = np.zeros(num_temp, dtype='double', order='C') return colmat_at_sigma, gamma_at_sigma, temperatures def _collect_collision_gp(colmat_at_sigma, gamma_at_sigma, temperatures, mesh, sigma, sigma_cutoff, i, gp, bzg2grg, indices, is_reducible_collision_matrix, filename, log_level): collision_gp = read_collision_from_hdf5( mesh, indices=indices, grid_point=gp, sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename, verbose=(log_level > 0)) if log_level: sys.stdout.flush() if not collision_gp: return False (colmat_at_gp, gamma_at_gp, temperatures_at_gp) = collision_gp if is_reducible_collision_matrix: igp = bzg2grg[gp] else: igp = i gamma_at_sigma[0, :, igp] = gamma_at_gp colmat_at_sigma[0, :, igp] = colmat_at_gp[0] temperatures[:] = temperatures_at_gp return True def _collect_collision_band(colmat_at_sigma, gamma_at_sigma, temperatures, mesh, sigma, sigma_cutoff, i, gp, bzg2grg, j, indices, is_reducible_collision_matrix, filename, log_level): collision_band = read_collision_from_hdf5( mesh, indices=indices, grid_point=gp, band_index=j, sigma=sigma, sigma_cutoff=sigma_cutoff, filename=filename, verbose=(log_level > 0)) if log_level: sys.stdout.flush() if collision_band is False: return False (colmat_at_band, gamma_at_band, temperatures_at_band) = collision_band if is_reducible_collision_matrix: igp = bzg2grg[gp] else: igp = i gamma_at_sigma[0, :, igp, j] = gamma_at_band colmat_at_sigma[0, :, igp, j] = colmat_at_band[0] temperatures[:] = temperatures_at_band return True def _select_solver(pinv_solver): try: import phono3py._phono3py as phono3c default_solver = phono3c.default_colmat_solver() except ImportError: print("Phono3py C-routine is not compiled correctly.") default_solver = 4 solver_numbers = (1, 2, 3, 4, 5, 6) solver = pinv_solver if solver == 0: # default solver if default_solver in (4, 5, 6): try: import scipy.linalg except ImportError: solver = 1 else: solver = default_solver else: solver = default_solver elif solver not in solver_numbers: solver = default_solver return solver def diagonalize_collision_matrix(collision_matrices, i_sigma=None, i_temp=None, pinv_solver=0, log_level=0): """Diagonalize collision matrices. Note ---- collision_matricies is overwritten by eigenvectors. Parameters ---------- collision_matricies : ndarray, optional Collision matrix. This ndarray has to have the following size and flags. shapes: (sigmas, temperatures, prod(mesh), num_band, prod(mesh), num_band) (sigmas, temperatures, ir_grid_points, num_band, 3, ir_grid_points, num_band, 3) (size, size) dtype='double', order='C' i_sigma : int, optional Index of BZ integration methods, tetrahedron method and smearing method with widths. Default is None. i_temp : int, optional Index of temperature. Default is None. pinv_solver : int, optional Diagnalization solver choice. log_level : int, optional Verbosity level. Smaller is more quiet. Default is 0. Returns ------- w : ndarray, optional Eigenvalues. shape=(size_of_collision_matrix,), dtype='double' """ start = time.time() # Matrix size of collision matrix to be diagonalized. # The following value is expected: # ir-colmat: num_ir_grid_points * num_band * 3 # red-colmat: num_mesh_points * num_band shape = collision_matrices.shape if len(shape) == 6: size = shape[2] * shape[3] assert size == shape[4] * shape[5] elif len(shape) == 8: size = np.prod(shape[2:5]) assert size == np.prod(shape[5:8]) elif len(shape) == 2: size = shape[0] assert size == shape[1] solver = _select_solver(pinv_solver) # [1] dsyev: safer and slower than dsyevd and smallest memory usage # [2] dsyevd: faster than dsyev and largest memory usage if solver in [1, 2]: if log_level: routine = ['dsyev', 'dsyevd'][solver - 1] sys.stdout.write("Diagonalizing by lapacke %s... " % routine) sys.stdout.flush() import phono3py._phono3py as phono3c w = np.zeros(size, dtype='double') if i_sigma is None: _i_sigma = 0 else: _i_sigma = i_sigma if i_temp is None: _i_temp = 0 else: _i_temp = i_temp phono3c.diagonalize_collision_matrix(collision_matrices, w, _i_sigma, _i_temp, 0.0, (solver + 1) % 2, 0) # only diagonalization elif solver == 3: # np.linalg.eigh depends on dsyevd. if log_level: sys.stdout.write("Diagonalizing by np.linalg.eigh... ") sys.stdout.flush() col_mat = collision_matrices[i_sigma, i_temp].reshape( size, size) w, col_mat[:] = np.linalg.eigh(col_mat) elif solver == 4: # fully scipy dsyev if log_level: sys.stdout.write("Diagonalizing by " "scipy.linalg.lapack.dsyev... ") sys.stdout.flush() import scipy.linalg col_mat = collision_matrices[i_sigma, i_temp].reshape( size, size) w, _, info = scipy.linalg.lapack.dsyev(col_mat.T, overwrite_a=1) elif solver == 5: # fully scipy dsyevd if log_level: sys.stdout.write("Diagonalizing by " "scipy.linalg.lapack.dsyevd... ") sys.stdout.flush() import scipy.linalg col_mat = collision_matrices[i_sigma, i_temp].reshape( size, size) w, _, info = scipy.linalg.lapack.dsyevd(col_mat.T, overwrite_a=1) if log_level: print("[%.3fs]" % (time.time() - start)) sys.stdout.flush() return w class Conductivity_LBTE(Conductivity): def __init__(self, interaction, grid_points=None, temperatures=None, sigmas=None, sigma_cutoff=None, is_isotope=False, mass_variances=None, boundary_mfp=None, # in micrometre solve_collective_phonon=False, is_reducible_collision_matrix=False, is_kappa_star=True, gv_delta_q=None, # finite difference for group veolocity is_full_pp=False, read_pp=False, pp_filename=None, pinv_cutoff=1.0e-8, pinv_solver=0, log_level=0): self._pp = None self._temperatures = None self._sigmas = None self._sigma_cutoff = None self._is_kappa_star = None self._gv_delta_q = None self._is_full_pp = None self._log_level = None self._primitive = None self._dm = None self._frequency_factor_to_THz = None self._cutoff_frequency = None self._boundary_mfp = None self._point_operations = None self._rotations_cartesian = None self._grid_points = None self._grid_weights = None self._bz_grid = None self._ir_grid_points = None self._ir_grid_weights = None self._kappa = None self._mode_kappa = None self._kappa_RTA = None self._mode_kappa_RTA = None self._read_gamma = False self._read_gamma_iso = False self._frequencies = None self._cv = None self._gv = None self._f_vectors = None self._gv_sum2 = None self._mfp = None self._gamma = None self._gamma_iso = None self._averaged_pp_interaction = None self._conversion_factor = None self._is_isotope = None self._isotope = None self._mass_variances = None self._grid_point_count = None self._collision_eigenvalues = None Conductivity.__init__(self, interaction, grid_points=grid_points, temperatures=temperatures, sigmas=sigmas, sigma_cutoff=sigma_cutoff, is_isotope=is_isotope, mass_variances=mass_variances, boundary_mfp=boundary_mfp, is_kappa_star=is_kappa_star, gv_delta_q=gv_delta_q, is_full_pp=is_full_pp, log_level=log_level) self._is_reducible_collision_matrix = is_reducible_collision_matrix self._solve_collective_phonon = solve_collective_phonon if not self._is_kappa_star: self._is_reducible_collision_matrix = True self._collision_matrix = None self._read_pp = read_pp self._pp_filename = pp_filename self._pinv_cutoff = pinv_cutoff self._pinv_solver = pinv_solver if grid_points is None: self._all_grid_points = True else: self._all_grid_points = False if self._temperatures is not None: self._allocate_values() def set_kappa_at_sigmas(self): if len(self._grid_points) != len(self._ir_grid_points): print("Collision matrix is not well created.") import sys sys.exit(1) else: weights = self._prepare_collision_matrix() self._set_kappa_at_sigmas(weights) def set_collision_matrix(self, collision_matrix): self._collision_matrix = collision_matrix def get_f_vectors(self): return self._f_vectors @property def collision_matrix(self): return self._collision_matrix def get_collision_matrix(self): return self.collision_matrix def get_collision_eigenvalues(self): return self._collision_eigenvalues def get_mean_free_path(self): return self._mfp def get_frequencies_all(self): return self._frequencies[self._bz_grid.grg2bzg] def get_kappa_RTA(self): return self._kappa_RTA def get_mode_kappa_RTA(self): return self._mode_kappa_RTA def delete_gp_collision_and_pp(self): """Deallocate large arrays""" self._collision.delete_integration_weights() self._pp.delete_interaction_strength() def _run_at_grid_point(self): """Calculate properties at a grid point""" i = self._grid_point_count self._show_log_header(i) gp = self._grid_points[i] if not self._all_grid_points: self._collision_matrix[:] = 0 if not self._read_gamma: self._collision.set_grid_point(gp) if self._log_level: print("Number of triplets: %d" % len(self._pp.get_triplets_at_q()[0])) self._set_collision_matrix_at_sigmas(i) if self._is_reducible_collision_matrix: i_data = self._bz_grid.bzg2grg[gp] else: i_data = i self._set_harmonic_properties(i, i_data) self._set_gv_by_gv(i, i_data) if self._isotope is not None: gamma_iso = self._get_gamma_isotope_at_sigmas(i) band_indices = self._pp.band_indices self._gamma_iso[:, i_data, :] = gamma_iso[:, band_indices] if self._log_level: self._show_log(i) def _allocate_values(self): """Allocate arrays.""" num_band0 = len(self._pp.band_indices) num_band = len(self._primitive) * 3 num_temp = len(self._temperatures) if self._is_reducible_collision_matrix: self._allocate_reducible_colmat_values( num_temp, num_band0, num_band) else: self._allocate_ir_colmat_values(num_temp, num_band0, num_band) def _allocate_local_values(self, num_temp, num_band0, num_grid_points): """Allocate grid point local arrays.""" self._kappa = np.zeros((len(self._sigmas), num_temp, 6), dtype='double', order='C') self._kappa_RTA = np.zeros((len(self._sigmas), num_temp, 6), dtype='double', order='C') self._gv = np.zeros((num_grid_points, num_band0, 3), dtype='double', order='C') self._f_vectors = np.zeros((num_grid_points, num_band0, 3), dtype='double', order='C') self._gv_sum2 = np.zeros((num_grid_points, num_band0, 6), dtype='double', order='C') self._mfp = np.zeros((len(self._sigmas), num_temp, num_grid_points, num_band0, 3), dtype='double', order='C') self._cv = np.zeros((num_temp, num_grid_points, num_band0), dtype='double', order='C') if self._is_full_pp: self._averaged_pp_interaction = np.zeros( (num_grid_points, num_band0), dtype='double', order='C') if self._gamma is None: self._gamma = np.zeros((len(self._sigmas), num_temp, num_grid_points, num_band0), dtype='double', order='C') if self._isotope is not None: self._gamma_iso = np.zeros((len(self._sigmas), num_grid_points, num_band0), dtype='double', order='C') self._mode_kappa = np.zeros((len(self._sigmas), num_temp, num_grid_points, num_band0, 6), dtype='double') self._mode_kappa_RTA = np.zeros((len(self._sigmas), num_temp, num_grid_points, num_band0, 6), dtype='double') def _allocate_reducible_colmat_values(self, num_temp, num_band0, num_band): """Allocate arrays for reducilble collision matrix.""" num_mesh_points = np.prod(self._pp.mesh_numbers) if self._all_grid_points: num_stored_grid_points = num_mesh_points else: num_stored_grid_points = 1 self._allocate_local_values(num_temp, num_band0, num_mesh_points) self._collision = CollisionMatrix( self._pp, is_reducible_collision_matrix=True, log_level=self._log_level) if self._collision_matrix is None: self._collision_matrix = np.empty( (len(self._sigmas), num_temp, num_stored_grid_points, num_band0, num_mesh_points, num_band), dtype='double', order='C') self._collision_matrix[:] = 0 self._collision_eigenvalues = np.zeros( (len(self._sigmas), num_temp, num_mesh_points * num_band), dtype='double', order='C') def _allocate_ir_colmat_values(self, num_temp, num_band0, num_band): """Allocate arrays for ir collision matrix.""" num_ir_grid_points = len(self._ir_grid_points) num_grid_points = len(self._grid_points) if self._all_grid_points: num_stored_grid_points = num_grid_points else: num_stored_grid_points = 1 self._allocate_local_values(num_temp, num_band0, num_grid_points) self._rot_grid_points = np.zeros( (num_ir_grid_points, len(self._point_operations)), dtype='int_') for i, ir_gp in enumerate(self._ir_grid_points): self._rot_grid_points[i] = get_grid_points_by_rotations( ir_gp, self._bz_grid) self._collision = CollisionMatrix( self._pp, rotations_cartesian=self._rotations_cartesian, num_ir_grid_points=num_ir_grid_points, rot_grid_points=self._rot_grid_points, log_level=self._log_level) if self._collision_matrix is None: self._collision_matrix = np.empty( (len(self._sigmas), num_temp, num_stored_grid_points, num_band0, 3, num_ir_grid_points, num_band, 3), dtype='double', order='C') self._collision_matrix[:] = 0 self._collision_eigenvalues = np.zeros( (len(self._sigmas), num_temp, num_ir_grid_points * num_band * 3), dtype='double', order='C') def _set_collision_matrix_at_sigmas(self, i): """Calculate collision matrices at grid point i : int Grid point count. """ for j, sigma in enumerate(self._sigmas): if self._log_level: text = "Calculating collision matrix with " if sigma is None: text += "tetrahedron method." else: text += "sigma=%s" % sigma if self._sigma_cutoff is None: text += "." else: text += "(%4.2f SD)." % self._sigma_cutoff print(text) self._collision.set_sigma(sigma, sigma_cutoff=self._sigma_cutoff) self._collision.set_integration_weights() if self._read_pp: pp, _g_zero = read_pp_from_hdf5( self._pp.mesh_numbers, grid_point=self._grid_points[i], sigma=sigma, sigma_cutoff=self._sigma_cutoff, filename=self._pp_filename, verbose=(self._log_level > 0)) _, g_zero = self._collision.get_integration_weights() if self._log_level: if len(self._sigmas) > 1: print("Multiple sigmas or mixing smearing and " "tetrahedron method is not supported.") if _g_zero is not None and (_g_zero != g_zero).any(): raise ValueError("Inconsistency found in g_zero.") self._collision.set_interaction_strength(pp) elif j != 0 and (self._is_full_pp or self._sigma_cutoff is None): if self._log_level: print("Existing ph-ph interaction is used.") else: if self._log_level: print("Calculating ph-ph interaction...") self._collision.run_interaction(is_full_pp=self._is_full_pp) if self._is_full_pp and j == 0: self._averaged_pp_interaction[i] = ( self._pp.get_averaged_interaction()) for k, t in enumerate(self._temperatures): self._collision.set_temperature(t) self._collision.run() if self._all_grid_points: if self._is_reducible_collision_matrix: i_data = self._bz_grid.bzg2grg[self._grid_points[i]] else: i_data = i else: i_data = 0 self._gamma[j, k, i_data] = ( self._collision.get_imag_self_energy()) self._collision_matrix[j, k, i_data] = ( self._collision.get_collision_matrix()) def _prepare_collision_matrix(self): """Prepare collision matrix to be solved.""" if self._is_reducible_collision_matrix: if self._is_kappa_star: self._average_collision_matrix_by_degeneracy() num_mesh_points = np.prod(self._pp.mesh_numbers) num_rot = len(self._point_operations) rot_grid_points = np.zeros( (num_rot, num_mesh_points), dtype='int_') # Ir-grid points and rot_grid_points in generalized regular grid ir_gr_grid_points = np.array( self._bz_grid.bzg2grg[self._ir_grid_points], dtype='int_') for i in range(num_mesh_points): rot_grid_points[:, i] = self._bz_grid.bzg2grg[ get_grid_points_by_rotations(self._bz_grid.grg2bzg[i], self._bz_grid)] self._expand_collisions(ir_gr_grid_points, rot_grid_points) self._expand_local_values(ir_gr_grid_points, rot_grid_points) self._combine_reducible_collisions() weights = np.ones(np.prod(self._pp.mesh_numbers), dtype='int_') self._symmetrize_collision_matrix() else: self._combine_collisions() weights = self._get_weights() for i, w_i in enumerate(weights): for j, w_j in enumerate(weights): self._collision_matrix[:, :, i, :, :, j, :, :] *= w_i * w_j self._average_collision_matrix_by_degeneracy() self._symmetrize_collision_matrix() return weights def _set_kappa_at_sigmas(self, weights): """Calculate thermal conductivity""" for j, sigma in enumerate(self._sigmas): if self._log_level: text = "----------- Thermal conductivity (W/m-k) " if sigma: text += "for sigma=%s -----------" % sigma else: text += "with tetrahedron method -----------" print(text) sys.stdout.flush() for k, t in enumerate(self._temperatures): if t > 0: self._set_kappa_RTA(j, k, weights) w = diagonalize_collision_matrix( self._collision_matrix, i_sigma=j, i_temp=k, pinv_solver=self._pinv_solver, log_level=self._log_level) self._collision_eigenvalues[j, k] = w self._set_kappa(j, k, weights) if self._log_level: print(("#%6s " + " %-10s" * 6) % ("T(K)", "xx", "yy", "zz", "yz", "xz", "xy")) print(("%7.1f " + " %10.3f" * 6) % ((t,) + tuple(self._kappa[j, k]))) print((" %6s " + " %10.3f" * 6) % (("(RTA)",) + tuple(self._kappa_RTA[j, k]))) print("-" * 76) sys.stdout.flush() if self._log_level: print('') def _combine_collisions(self): """Include diagonal elements into collision matrix.""" num_band = len(self._primitive) * 3 for j, k in list(np.ndindex( (len(self._sigmas), len(self._temperatures)))): for i, ir_gp in enumerate(self._ir_grid_points): for r, r_gp in zip( self._rotations_cartesian, self._rot_grid_points[i]): if ir_gp != r_gp: continue main_diagonal = self._get_main_diagonal(i, j, k) for l in range(num_band): self._collision_matrix[ j, k, i, l, :, i, l, :] += main_diagonal[l] * r def _combine_reducible_collisions(self): """Include diagonal elements into collision matrix.""" num_band = len(self._primitive) * 3 num_mesh_points = np.prod(self._pp.mesh_numbers) for j, k in list( np.ndindex((len(self._sigmas), len(self._temperatures)))): for i in range(num_mesh_points): main_diagonal = self._get_main_diagonal(i, j, k) for l in range(num_band): self._collision_matrix[ j, k, i, l, i, l] += main_diagonal[l] def _expand_collisions(self, ir_gr_grid_points, rot_grid_points): """Fill elements of full collision matrix by symmetry""" start = time.time() if self._log_level: sys.stdout.write("- Expanding properties to all grid points ") sys.stdout.flush() try: import phono3py._phono3py as phono3c phono3c.expand_collision_matrix(self._collision_matrix, ir_gr_grid_points, rot_grid_points) except ImportError: print("Phono3py C-routine is not compiled correctly.") for i, ir_gp in enumerate(ir_gr_grid_points): multi = (rot_grid_points[:, ir_gp] == ir_gp).sum() colmat_irgp = self._collision_matrix[:, :, ir_gp, :, :, :].copy() colmat_irgp /= multi self._collision_matrix[:, :, ir_gp, :, :, :] = 0 for j, r in enumerate(self._rotations_cartesian): gp_r = rot_grid_points[j, ir_gp] for k in range(num_mesh_points): gp_c = rot_grid_points[j, k] self._collision_matrix[:, :, gp_r, :, gp_c, :] += ( colmat_irgp[:, :, :, k, :]) if self._log_level: print("[%.3fs]" % (time.time() - start)) sys.stdout.flush() def _expand_local_values(self, ir_gr_grid_points, rot_grid_points): """Fill elements of local properties at grid points""" for i, ir_gp in enumerate(ir_gr_grid_points): gv_irgp = self._gv[ir_gp].copy() self._gv[ir_gp] = 0 cv_irgp = self._cv[:, ir_gp, :].copy() self._cv[:, ir_gp, :] = 0 gamma_irgp = self._gamma[:, :, ir_gp, :].copy() self._gamma[:, :, ir_gp, :] = 0 multi = (rot_grid_points[:, ir_gp] == ir_gp).sum() if self._gamma_iso is not None: gamma_iso_irgp = self._gamma_iso[:, ir_gp, :].copy() self._gamma_iso[:, ir_gp, :] = 0 for j, r in enumerate(self._rotations_cartesian): gp_r = rot_grid_points[j, ir_gp] self._gamma[:, :, gp_r, :] += gamma_irgp / multi if self._gamma_iso is not None: self._gamma_iso[:, gp_r, :] += gamma_iso_irgp / multi self._gv[gp_r] += np.dot(gv_irgp, r.T) / multi self._cv[:, gp_r, :] += cv_irgp / multi def _get_weights(self): """Returns weights used for collision matrix and |X> and |f> self._rot_grid_points : ndarray shape=(ir_grid_points, point_operations), dtype='int_' r_gps : grid points of arms of k-star with duplicates len(r_gps) == order of crystallographic point group len(unique(r_gps)) == number of arms of the k-star Returns ------- weights : list sqrt(g_k)/|g|, where g is the crystallographic point group and g_k is the number of arms of k-star. """ weights = [] n = float(self._rot_grid_points.shape[1]) for r_gps in self._rot_grid_points: weights.append(np.sqrt(len(np.unique(r_gps)) / n)) sym_broken = False for gp in np.unique(r_gps): if (len(
np.where(r_gps == gp)
numpy.where
""" Compare various IIR filters """ import numpy as np from scipy import signal import matplotlib.pyplot as plt def freq2rad(freq, fs): return freq * np.pi / (fs/2) def rad2freq(rad, fs): return rad * (fs/2) / np.pi # MAIN PARAMETER pole_coef = 0.95 fs = 16000 # prepare figure ALPHA = 0.8 f_max = 4000 plt.figure() # simple filter b =
np.array([1, -1])
numpy.array
import pandas as pd from sklearn.utils import shuffle from sklearn.cross_validation import train_test_split import numpy as np df = pd.read_csv('Iris.csv') df = df.drop(['Id'],axis=1) target = df['Species'] s = set() for val in target: s.add(val) s = list(s) rows = list(range(100,150)) df = df.drop(df.index[rows]) import matplotlib.pyplot as plt x = df['SepalLengthCm'] y = df['PetalLengthCm'] setosa_x = x[:50] setosa_y = y[:50] versicolor_x = x[50:] versicolor_y = y[50:] plt.figure(figsize=(8,6)) plt.scatter(setosa_x,setosa_y,marker='+',color='green') plt.scatter(versicolor_x,versicolor_y,marker='_',color='red') plt.show() ### ## Drop rest of the features and extract the target values df = df.drop(['SepalWidthCm','PetalWidthCm'],axis=1) Y = [] target = df['Species'] for val in target: if(val == 'Iris-setosa'): Y.append(-1) else: Y.append(1) df = df.drop(['Species'],axis=1) X = df.values.tolist() ## Shuffle and split the data into training and test set X, Y = shuffle(X,Y) x_train = [] y_train = [] x_test = [] y_test = [] x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size=0.9) x_train = np.array(x_train) y_train = np.array(y_train) x_test = np.array(x_test) y_test = np.array(y_test) ## Support Vector Machine #import numpy as np train_f1 = x_train[:,0] train_f2 = x_train[:,1] train_f1 = train_f1.reshape(90,1) train_f2 = train_f2.reshape(90,1) w1 = np.zeros((90,1)) w2 = np.zeros((90,1)) epochs = 1 alpha = 0.0001 while(epochs < 10000): y = w1 * train_f1 + w2 * train_f2 prod = y * y_train print(epochs) count = 0 for val in prod: if(val >= 1): cost = 0 w1 = w1 - alpha * (2 * 1/epochs * w1) w2 = w2 - alpha * (2 * 1/epochs * w2) else: cost = 1 - val w1 = w1 + alpha * (train_f1[count] * y_train[count] - 2 * 1/epochs * w1) w2 = w2 + alpha * (train_f2[count] * y_train[count] - 2 * 1/epochs * w2) count += 1 epochs += 1 from sklearn.metrics import accuracy_score ## Clip the weights index = list(range(10,90)) w1 = np.delete(w1,index) w2 =
np.delete(w2,index)
numpy.delete
import numpy as np import torch import torch.nn as nn from scipy.stats import multivariate_normal from ..components.snake import Snake _nine_offsets = [ ( 0, 0), ( 1, 1), ( 0, 1), (-1, 1), (-1, 0), (-1, -1), ( 0, -1), ( 1, -1), ( 1, 0), ] class GaussianField(): def __init__(self, diam, cov=0.05): assert (diam % 2 == 1), 'diam must be an odd' self.diam = diam self.cov = cov # .05 leaves about 95% prob mass within central block # only consider the 3x3 region self.increment = 1 / diam # compute 3 units self.l, self.r = -1.5, 1.5 self.field_shape = (3 * diam, 3 * diam) self.unit_area = self.increment ** 2 self.prob_field = self.compute_prob_field() def compute_prob_field(self): cov = self.cov increment = self.increment l, r = self.l, self.r cov_mat = np.array([ [cov, 0], [0, cov] ]) rv = multivariate_normal([0, 0], cov_mat) half_increment = increment / 2 xs, ys = np.mgrid[ l + half_increment: r: increment, l + half_increment: r: increment ] # use half increment to make things properly centered pos = np.dstack((xs, ys)) prob_field = rv.pdf(pos).astype(np.float32) assert prob_field.shape == self.field_shape return prob_field @torch.no_grad() def compute_local_mass(self): kernel_size = self.diam pad = (kernel_size - 1) // 2 prob_field = self.prob_field conv = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=kernel_size, padding=pad, bias=False ) # do not use cuda for now; no point conv.weight.data.copy_(torch.tensor(1.0)) prob_field = torch.as_tensor( prob_field, device=conv.weight.device )[(None,) * 2] # [1, 1, h, w] local_sum = conv(prob_field).squeeze().cpu().numpy() local_sum = local_sum * self.unit_area return local_sum class MakeProbTsr(): ''' make a prob tsr of shape [h, w, num_votes] filled with the corresponding spatial voting prob ''' def __init__(self, spec, diam, grid_spec, vote_mask, var=0.05): # indices grid of shape [2, H, W], where first dim is y, x; swap them # obtain [H, W, 2] where last channel is (y, x) self.spec = spec self.diam = diam self.vote_mask = vote_mask self.var = var # process grid spec to 0 based indexing and change radius to diam radius = (diam - 1) // 2 center =
np.array((radius, radius))
numpy.array
# -*- coding: utf-8 -*- """ Created on Fri Mar 31 12:37:00 2017 @author: <NAME> Either you can import CSVConverter or design your own which provides API parse() which inturn returns a two dimensional array of input data where each row is an array(size 5, 4 columns of attributes and 5th column is class name) of attributes of type float/int. Module CSVConverter.py kept seperate to reduce dependency on storage structure of data set. """ import CSVConverter as source import numpy import math training_set = [] testing_set = [] classes = ["I. setosa","I. versicolor","I. virginica"] attribute_size = 4 class_size = 3; X = [] Y = [] mean_and_varience_array = [] def loadData() : print("\n------------------------[loadData()-------------------------"); data_set = source.parse() print("\nSource data set size:{0}".format(len(data_set))) index = 0 for row in data_set: index+=1 #Every 3rd row is a testing set... if(index%3==0): testing_set.append(row); #Rest are training set.. else: training_set.append(row); print("\nTesting set size:{0}".format(len(testing_set))) print("Training set size:{0}".format(len(training_set))) print("------------------------loadData()]-------------------------\n\n"); def model() : print("\n------------------------[Model-------------------------"); global X global Y global mean_and_varience_array for row in training_set: X.append(row[:-1]) Y.append(row[-1]) X = numpy.asarray(X) Y = numpy.asarray(Y) X = X.astype(numpy.float) [m, n] = X.shape #Mannually classifying: class1 = X[0:34] class2 = X[34:67] class3 = X[67:100] classes = [class1,class2,class3] print("Training set size m:{0}".format(len(training_set))) print("Training set attribute_size:{0}".format(attribute_size)) # calculate Mean & Varience: for classIndex in range(0,class_size) : mean_and_varience_array.append([]) for sample in range(0,n) : mean = numpy.mean(classes[classIndex][:,sample]) varience = numpy.var(classes[classIndex][:,sample]) mean_and_varience_array[classIndex].append([mean, varience]) print("\nmean & varience for class-{0}'s attributes:\n{1}".format(classIndex,mean_and_varience_array[classIndex])) print("------------------------Model]-------------------------\n"); def computeProb(mean,varience,attribute) : exponent = math.exp(-(math.pow(attribute-mean,2)/(2*varience))) return (1.0 / (math.sqrt((2.0*math.pi) * varience))) * exponent def classify() : print("\n\n------------------------[Classify-------------------------"); test_set_size = len(testing_set) correct_prediction_count = 0 probabilityOfEachClass = 1/float(class_size) for testItem in testing_set: class_probability_of_item = [] for classIndex in range(0,class_size) : #Attribute-1 probAttribute1 = computeProb(mean_and_varience_array[classIndex][0][0],mean_and_varience_array[classIndex][0][1],numpy.float(testItem[0])) #Attribute-2 probAttribute2 = computeProb(mean_and_varience_array[classIndex][1][0],mean_and_varience_array[classIndex][1][1],numpy.float(testItem[1])) #Attribute-3 probAttribute3 = computeProb(mean_and_varience_array[classIndex][2][0],mean_and_varience_array[classIndex][2][1],numpy.float(testItem[2])) #Attribute-4 probAttribute4 = computeProb(mean_and_varience_array[classIndex][3][0],mean_and_varience_array[classIndex][3][1],numpy.float(testItem[3])) #Total proability of class - classIndex: classProbability = probAttribute1 * probAttribute2 * probAttribute3 * probAttribute4 * probabilityOfEachClass class_probability_of_item.append(classProbability) #Now, get most probable class index.. maxProbValue = max(class_probability_of_item) maxProbClassIndex = class_probability_of_item.index(maxProbValue) # print("{0} vs {1}".format(classes[maxProbClassIndex],testItem[4])) if(classes[maxProbClassIndex] == testItem[4]) : correct_prediction_count += 1 #Calculate percentage of right classifications.. correctnessPercentage = correct_prediction_count/float(test_set_size) * 100 print('\nCorrectness of classifying testing set : {0}%'.format(correctnessPercentage)) print("------------------------Classify]-------------------------\n"); def predict(predictItemAttributes) : print("\n\n------------------------[predict-------------------------"); print("\npredictItemAttributes: {0}".format(predictItemAttributes)) if(len(predictItemAttributes) == attribute_size): probabilityOfEachClass = 1/float(class_size) class_probability_of_item = [] for classIndex in range(0,class_size) : #Attribute-1 probAttribute1 = computeProb(mean_and_varience_array[classIndex][0][0],mean_and_varience_array[classIndex][0][1],numpy.float(predictItemAttributes[0])) #Attribute-2 probAttribute2 = computeProb(mean_and_varience_array[classIndex][1][0],mean_and_varience_array[classIndex][1][1],numpy.float(predictItemAttributes[1])) #Attribute-3 probAttribute3 = computeProb(mean_and_varience_array[classIndex][2][0],mean_and_varience_array[classIndex][2][1],
numpy.float(predictItemAttributes[2])
numpy.float
import numpy as np from sklearn.model_selection import StratifiedKFold, train_test_split, GroupShuffleSplit, ShuffleSplit from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, roc_curve from sklearn.ensemble import RandomForestClassifier def block_hour(dataset, labels, patient_id_array, hours=4): new_dataset = [] for column in dataset.T: new_feature = [] new_labels = [] for patient_id in np.unique(patient_id_array): print("Patient ID: ", patient_id) patient_index = np.where(patient_id_array == patient_id)[0] patient = dataset[patient_index] patient_labels = labels[patient_index] for i in range(len(patient_labels) - hours): if 1 in patient_labels[i:i + hours]: num = 1 else: num = 0 new_feature.append(column[i:i + hours]) new_labels.append(num) new_dataset.append(np.array(new_feature)) return np.array(new_dataset), np.array(new_labels) features = np.nan_to_num(np.load('Datasets/training_1_nanfill.npy')) labels = np.load('Datasets/training_1_Y.npy') patient_id = np.load('Datasets/training_1_patient.npy') X, y = block_hour(features, labels, patient_id, 4) # X, y = features, labels subs = ['MEAN', 'NORMAL', 'ZERO'] i = 0 acc = {} f1 = {} auc = {} skf = StratifiedKFold(n_splits=10) acc[subs[i]] = [] f1[subs[i]] = [] auc[subs[i]] = [] res = [] y_test_all = [] for train_index, test_index in skf.split(X[0], y): print("TRAIN:", train_index, "TEST:", test_index) aux_res = [] for feature in X: X_train, X_test = feature[train_index], feature[test_index] y_train, y_test = y[train_index], y[test_index] elf = RandomForestClassifier(n_estimators=20) print("Start training...") elf = elf.fit(X_train, y_train) print("Start testing...") pred = elf.predict_proba(X_test)[:, 1] results = elf.predict(X_test) aux_res.append(pred) print(subs[i], " Accuracy: ", accuracy_score(results, y_test)) print(subs[i], "F1-Score: ", f1_score(results, y_test)) res.append(pred) y_test_all.append(y_test) acc[subs[i]].append(accuracy_score(results, y_test)) f1[subs[i]].append(f1_score(results, y_test)) auc[subs[i]].append(roc_auc_score(y_test, pred)) print(subs[i], " Accuracy: ", accuracy_score(results, y_test)) print(subs[i], "F1-Score: ", f1_score(results, y_test)) print(subs[i], "AUC: ", auc) res = np.concatenate(res) y_test_all = np.concatenate(y_test_all) fpr, tpr, thresholds = roc_curve(y_test_all, res, pos_label=1) threshold = 0 accuracy = [] f1_score_list = [] step = 0.001 for threshold in np.arange(0, 1, step): print(threshold) new_results = np.zeros(len(res)) new_results[np.where(res > threshold)[0]] = 1 new_results[
np.where(res <= threshold)
numpy.where
import geotiler import geopy.distance import math import matplotlib.pyplot as plt import numpy as np class DeadEndIdentification(object): r"""Dead end identification based on coordinates. Date: 2021 Author: <NAME> License: MIT Attributes: None Description: This module is intended to be used for the identification and visualization of dead ends in an exercise. Dead end is a part of an exercise, where an athlete suddenly makes a U-turn and takes the same path as before the U-turn is conducted (in the opposite direction). """ def __init__(self, positions, distances, tolerance_degrees=5, tolerance_position=5, minimum_distance=500) -> None: """Initialization of the object. return: None """ self.reorganize_exercise_data(np.array(positions), np.array(distances), interval_distance=10) # Reorganizing the exercise data in order to achieve better results. self.reorganize_exercise_data(self.positions, self.distances, interval_distance=1) # Reorganizing the exercise data in order to achieve better results. self.tolerance_degrees = tolerance_degrees self.tolerance_position = tolerance_position self.minimum_distance = minimum_distance def reorganize_exercise_data(self, positions, distances, interval_distance=1) -> None: """Exercise is reorganized in the way that the trackpoints are organized in a constant interval of distance. return: None """ distance = distances[-1] self.distances = np.arange(math.ceil(distance)) self.positions = np.empty((0, 2), float) j = 0 for i in np.arange(np.shape(self.distances)[0] - 1): while i > distances[j + 1]: j += 1 position1 = positions[j] position2 = positions[j + 1] distance1 = distances[j] distance2 = distances[j + 1] if distance2 - distance1 == 0.0: self.positions = np.append(self.positions, [np.array([position1[0], position1[1]])], axis=0) else: multiplying_factor = (i - distance1) / (distance2 - distance1) self.positions = np.append(self.positions, [np.array([position1[0] + multiplying_factor * (position2[0] - position1[0]), position1[1] + multiplying_factor * (position2[1] - position1[1])])], axis=0) self.positions = self.positions[::interval_distance] self.distances = self.distances[::interval_distance] def is_dead_end(self, azimuth1, azimuth2, tolerance_azimuth) -> bool: """Checking if two azimuths represent a part of a dead end allowing the given tolerance. return: bool """ if abs(180 - abs(azimuth1 - azimuth2)) < tolerance_azimuth: return True return False def long_enough_to_be_a_dead_end(self, distance1, distance2) -> bool: """Checking whether a dead end is long enough to be a dead end. return: bool """ if distance2 - distance1 < self.minimum_distance: return False return True def really_is_dead_end(self, position1, position2, tolerance_coordinates) -> bool: """Checking whether a dead end really is a dead end. return: bool """ print(geopy.distance.distance(position1, position2).m) if geopy.distance.distance(position1, position2).m < tolerance_coordinates: return True return False def identify_dead_ends(self) -> None: """Identifying dead ends of the exercise. return: None """ azimuths = np.array([]) self.dead_ends = np.empty((0, 2), int) # Calculating the azimuths between the pairs of positions. # https://www.omnicalculator.com/other/azimuth#how-to-calculate-the-azimuth-from-latitude-and-longitude for i in np.arange(1, np.shape(self.positions)[0]): latitude1 = self.positions[i - 1][0] latitude2 = self.positions[i][0] longitude1 = self.positions[i - 1][1] longitude2 = self.positions[i][1] longitude_difference = longitude2 - longitude1 azimuth = math.atan2(math.sin(longitude_difference) * math.cos(latitude2), math.cos(latitude1) * math.sin(latitude2) - math.sin(latitude1) * math.cos(latitude2) * math.cos(longitude_difference)) azimuth *= 180 / math.pi # Converting the azimuth to degrees. # If the azimuth's value is negative, the conversion to a positive value is crucial in the next step of the algorithm. if azimuth < 0: azimuth += 360 azimuths = np.append(azimuths, azimuth) # Checking for dead ends in the exercise. i = 50 while i < np.shape(azimuths)[0]: print(f"\rProgress: {100 * i // np.shape(azimuths)[0]} %", end='') for j in np.arange(50): try: if self.is_dead_end(azimuths[i - j - 1], azimuths[i + j], self.tolerance_degrees): previous = i - j - 2 next = i + j + 1 while self.is_dead_end(azimuths[previous], azimuths[next], self.tolerance_degrees): previous -= 1 next += 1 if np.array([previous, next]) not in self.dead_ends: if self.long_enough_to_be_a_dead_end(self.distances[previous], self.distances[next]): # and self.really_is_dead_end(self.distances[previous], self.distances[next], self.tolerance_position): self.dead_ends = np.append(self.dead_ends, [np.array([previous, next])], axis=0) # i += next - previous except: pass i += 1 print(self.dead_ends) # Merging the dead ends. i = 1 number_of_dead_ends = np.shape(self.dead_ends)[0] while i < number_of_dead_ends: last_element = self.dead_ends[i - 1][-1] # Retrieving the last index in the previous interval. first_element = self.dead_ends[i][0] # Retrieving the first index in the current interval. # If the distance between two dead ends is less than 300 meters, the two dead ends are combined. if first_element - last_element < 300: self.dead_ends[i - 1][1] = self.dead_ends[i][1] self.dead_ends = np.delete(self.dead_ends, i, 0) # Current interval is removed from the list number_of_dead_ends -= 1 else: i += 1 print(self.dead_ends) # Removing the dead ends which are too short to be counted as dead ends. # i = 0 # while i < np.shape(self.dead_ends)[0]: # if not self.long_enough_to_be_a_dead_end(self.distances[self.dead_ends[i][0]], self.distances[self.dead_ends[i][1]]): # self.dead_ends = np.delete(self.dead_ends, i, 0) # i -= 1 # i += 1 # Removing the dead ends which are not dead ends. i = 0 while i < np.shape(self.dead_ends)[0]: print(np.linalg.norm(self.positions[self.dead_ends[i][0]] - self.positions[self.dead_ends[i][1]])) if np.linalg.norm(self.positions[self.dead_ends[i][0]] - self.positions[self.dead_ends[i][1]]) > self.tolerance_position: self.dead_ends = np.delete(self.dead_ends, i, 0) i -= 1 i += 1 print(self.dead_ends) print("\rProgress: 100 %") def draw_map(self) -> None: """ Visualization of the exercise with dead ends. return: None """ if
np.shape(self.positions)
numpy.shape
import datajoint as dj import numpy as np from . import experiment, get_schema_name, foraging_analysis from .model.bandit_model_comparison import BanditModelComparison schema = dj.schema(get_schema_name('foraging_model')) @schema class ModelClass(dj.Lookup): definition = """ model_class: varchar(32) # e.g. LossCounting, RW1972, Hattori2019 --- desc='': varchar(100) """ contents = [ ['LossCounting', 'Count the number of losses and switch when the number exceeds a threshold'], ['RW1972', 'Rescorla–Wagner model (single learnig rate)'], ['LNP', 'Linear-nonlinear-Possion (exponential recency-weighted average)'], ['Bari2019', 'Bari et al 2019 (different learning rates for chosen/unchosen)'], ['Hattori2019', 'Hattori et al 2019 (different learning rates for rew/unrew/unchosen)'], ] @schema class ModelParam(dj.Lookup): definition = """ model_param: varchar(32) # e.g. learn_rate, epsilon, w_tau1 --- param_notation: varchar(32) # r'$\tau_1$' """ contents = [ ['loss_count_threshold_mean', r'$\mu_{LC}$'], ['loss_count_threshold_std', r'$\sigma_{LC}$'], ['tau1', r'$\tau_1$'], ['tau2', r'$\tau_2$'], ['w_tau1', r'$w_{\tau_1}$'], ['learn_rate', r'$\alpha$'], ['learn_rate_rew', r'$\alpha_{rew}$'], ['learn_rate_unrew', r'$\alpha_{unr}$'], ['forget_rate', r'$\delta$'], ['softmax_temperature', r'$\sigma$'], ['epsilon', r'$\epsilon$'], ['biasL', r'$b_L$'], ['biasR', r'$b_R$'], ['choice_step_size', r'$\alpha_c$'], ['choice_softmax_temperature', r'$\sigma_c$'], ] @schema class Model(dj.Manual): definition = """ model_id: int --- -> ModelClass model_notation: varchar(500) n_params: int # Effective param count is_bias: bool is_epsilon_greedy: bool is_softmax: bool is_choice_kernel: bool desc='': varchar(500) # Long name fit_cmd: blob # Fitting command compatible with the Dynamic-Foraing repo """ class Param(dj.Part): definition = """ -> master -> ModelParam --- param_idx: int # To keep params the same order as the original definition in MODELS, hence `fit_result.x` param_lower_bound: float param_higher_bound: float """ @classmethod def load_models(cls): # Original definition from the Dynamic-Foraging repo, using the format: [forager, [para_names], [lower bounds], [higher bounds], desc(optional)] MODELS = [ # No bias ['LossCounting', ['loss_count_threshold_mean', 'loss_count_threshold_std'], [0, 0], [40, 10], 'LossCounting: mean, std, no bias'], ['RW1972_epsi', ['learn_rate', 'epsilon'], [0, 0], [1, 1], 'SuttonBarto: epsilon, no bias'], ['RW1972_softmax', ['learn_rate', 'softmax_temperature'], [0, 1e-2], [1, 15], 'SuttonBarto: softmax, no bias'], ['LNP_softmax', ['tau1', 'softmax_temperature'], [1e-3, 1e-2], [100, 15], 'Sugrue2004, Corrado2005: one tau, no bias'], ['LNP_softmax', ['tau1', 'tau2', 'w_tau1', 'softmax_temperature'], [1e-3, 1e-1, 0, 1e-2], [15, 40, 1, 15], 'Corrado2005, Iigaya2019: two taus, no bias'], ['Bari2019', ['learn_rate', 'forget_rate', 'softmax_temperature'], [0, 0, 1e-2], [1, 1, 15], 'RL: chosen, unchosen, softmax, no bias'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'softmax_temperature'], [0, 0, 1e-2], [1, 1, 15], 'RL: rew, unrew, softmax, no bias'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature'], [0, 0, 0, 1e-2], [1, 1, 1, 15], 'RL: rew, unrew, unchosen, softmax, no bias'], # With bias ['RW1972_epsi', ['learn_rate', 'epsilon', 'biasL'], [0, 0, -0.5], [1, 1, 0.5], 'SuttonBarto: epsilon'], ['RW1972_softmax', ['learn_rate', 'softmax_temperature', 'biasL'], [0, 1e-2, -5], [1, 15, 5], 'SuttonBarto: softmax'], ['LNP_softmax', ['tau1', 'softmax_temperature', 'biasL'], [1e-3, 1e-2, -5], [100, 15, 5], 'Sugrue2004, Corrado2005: one tau'], ['LNP_softmax', ['tau1', 'tau2', 'w_tau1', 'softmax_temperature', 'biasL'], [1e-3, 1e-1, 0, 1e-2, -5], [15, 40, 1, 15, 5], 'Corrado2005, Iigaya2019: two taus'], ['Bari2019', ['learn_rate', 'forget_rate', 'softmax_temperature', 'biasL'], [0, 0, 1e-2, -5], [1, 1, 15, 5], 'RL: chosen, unchosen, softmax'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'softmax_temperature', 'biasL'], [0, 0, 1e-2, -5], [1, 1, 15, 5], 'RL: rew, unrew, softmax'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature', 'biasL'], [0, 0, 0, 1e-2, -5], [1, 1, 1, 15, 5], '(full Hattori) RL: rew, unrew, unchosen, softmax'], # With bias and choice kernel ['RW1972_softmax_CK', ['learn_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 1e-2, -5, 0, 1e-2], [1, 15, 5, 1, 20], 'SuttonBarto: softmax, choice kernel'], ['LNP_softmax_CK', ['tau1', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [1e-3, 1e-2, -5, 0, 1e-2], [100, 15, 5, 1, 20], 'Sugrue2004, Corrado2005: one tau, choice kernel'], ['LNP_softmax_CK', ['tau1', 'tau2', 'w_tau1', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [1e-3, 1e-1, 0, 1e-2, -5, 0, 1e-2], [15, 40, 1, 15, 5, 1, 20], 'Corrado2005, Iigaya2019: two taus, choice kernel'], ['Bari2019_CK', ['learn_rate', 'forget_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 1e-2, -5, 0, 1e-2], [1, 1, 15, 5, 1, 20], 'RL: chosen, unchosen, softmax, choice kernel'], ['Hattori2019_CK', ['learn_rate_rew', 'learn_rate_unrew', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 1e-2, -5, 0, 1e-2], [1, 1, 15, 5, 1, 20], 'RL: rew, unrew, softmax, choice kernel'], ['Hattori2019_CK', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 0, 1e-2, -5, 0, 1e-2], [1, 1, 1, 15, 5, 1, 20], 'Hattori + choice kernel'], ['Hattori2019_CK', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 0, 1e-2, -5, 1, 1e-2], [1, 1, 1, 15, 5, 1, 20], 'choice_step_size fixed at 1 --> Bari 2019: only the last choice matters'], ] # Parse and insert MODELS for model_id, model in enumerate(MODELS): # Insert Model model_class = [mc for mc in ModelClass.fetch("model_class") if mc in model[0]][0] is_bias = True if any(['bias' in param for param in model[1]]) else False is_epsilon_greedy = True if 'epsilon' in model[1] else False is_softmax = True if 'softmax_temperature' in model[1] else False is_choice_kernel = True if 'choice_step_size' in model[1] else False n_params = 0 param_notation = [] # Insert Model for param, lb, ub in zip(*model[1:4]): if lb < ub: n_params += 1 # Only count effective params param_notation.append((ModelParam & f'model_param="{param}"').fetch1("param_notation")) else: param_notation.append((ModelParam & f'model_param="{param}"').fetch1("param_notation") + f'= {lb}') param_notation = ', '.join(param_notation) model_notation = f'{model[0]} ({param_notation})' desc = model[4] if len(model) == 5 else '' # model[0] + ': ' + ', '.join(model[1]) # Use the user-defined string if exists Model.insert1(dict(model_id=model_id, model_class=model_class, model_notation=model_notation, n_params=n_params, is_bias=is_bias, is_epsilon_greedy=is_epsilon_greedy, is_softmax=is_softmax, is_choice_kernel=is_choice_kernel, desc=desc, fit_cmd=model[:4]), skip_duplicates=True) # Insert Model.Param for idx, (param, lb, ub) in enumerate(zip(*model[1:4])): # The result table should save both effective and fixed params Model.Param.insert1(dict(model_id=model_id, model_param=param, param_idx=idx, param_lower_bound=lb, param_higher_bound=ub), skip_duplicates=True) return @schema class FittedSessionModel(dj.Computed): definition = """ -> experiment.Session -> Model --- n_trials: int n_params: int log_likelihood: float # raw log likelihood of the model aic: float # AIC bic: float # BIC lpt: float # Likelihood-Per-Trial raw lpt_aic: float # Likelihood-Per-Trial with AIC penalty lpt_bic: float # Likelihood-Per-Trial with AIC penalty prediction_accuracy: float # non-cross-validated prediction accuracy cross_valid_accuracy_fit: float # cross-validated accuracy (fitting set) cross_valid_accuracy_test: float # cross-validated accuracy (testing set) cross_valid_accuracy_test_bias_only = NULL: float # accuracy predicted only by bias (testing set) """ key_source = (foraging_analysis.SessionTaskProtocol() & 'session_task_protocol = 100' & 'session_real_foraging' ) * Model() #& (experiment.Session & 'session_date > "2021-01-01"') class FittedParam(dj.Part): definition = """ -> master -> Model.Param --- fitted_value: float """ class PredictiveChoiceProb(dj.Part): definition = """ # Could be used to compute latent value Q (for models that have Q). Ignored trial skipped. -> master -> experiment.SessionTrial -> experiment.WaterPort --- choice_prob: float """ def make(self, key): choice_history, reward_history, p_reward, q_choice_outcome = get_session_history(key) model_str = (Model & key).fetch('fit_cmd') # --- Actual fitting --- model_comparison_this = BanditModelComparison(choice_history, reward_history, model=model_str) model_comparison_this.fit(pool='', plot_predictive=None, if_verbose=False) # Parallel on sessions, not on DE model_comparison_this.cross_validate(pool='', k_fold=2, if_verbose=False) # ------ Grab results ---- fit_result = model_comparison_this.results_raw[0] cross_valid_result = model_comparison_this.prediction_accuracy_CV.iloc[0] # Insert session fitted stats self.insert1(dict(**key, n_trials=fit_result.n_trials, n_params=fit_result.k_model, log_likelihood=fit_result.log_likelihood, aic=fit_result.AIC, bic=fit_result.BIC, lpt=fit_result.LPT, lpt_aic=fit_result.LPT_AIC, lpt_bic=fit_result.LPT_BIC, prediction_accuracy=fit_result.prediction_accuracy, cross_valid_accuracy_fit=np.mean(cross_valid_result.prediction_accuracy_fit), cross_valid_accuracy_test=
np.mean(cross_valid_result.prediction_accuracy_test)
numpy.mean
from scipy.stats import norm, poisson import numpy as np def weiner_process(m, N, t0, T): """ Function for modelling a Weiner process Parameters: m (int): number of sample paths N (int): number of approximation points t0 (float): simulation start time T (float): simulation end time Returns: trajectories (numpy.ndarray): a matrix with m lines and N columns where each line corresponds to a different sample path of a Weiner process from t0 to T, approximated at N points time (numpy.ndarray): an array equal to numpy.linspace(t0, T, N) """ dt = (T - t0) / (N - 1) trajectories =
np.zeros((m, N))
numpy.zeros
#!/usr/bin/python # vim: set expandtab ts=4 sw=4: # %% ----------------------------------------------------- # # This script loads the EMD analyses from one run of the LFP data and creates # figures 6 and 8. Figure 6 shows a segment of the time-series and associated # EMD metrics and figure 8 shows the single cycle representation of around 2000 # cycles. # %% ----------------------------------------------------- # Imports and definitions import os import emd import h5py import sails import pandas import numpy as np from scipy import ndimage import matplotlib.pyplot as plt from emd_waveform_utils import config import matplotlib matplotlib.rc('font', serif=config['fontname']) # %% ------------------------------------------------------ emd.logger.set_up(level='DEBUG') run = 2 run_name = config['recordings'][2] datafile = os.path.join(config['analysisdir'], run_name + '.hdf5') F = h5py.File(datafile, 'r') sample_rate = 1250 imf = F['imf'][...] IP = F['IP'][...] IA = F['IA'][...] IF = F['IF'][...] speed = F['speed'][...] metricfile = os.path.join(config['analysisdir'], run_name + '.csv') df = pandas.read_csv(metricfile) # Carrier frequency histogram definition edges, bins = emd.spectra.define_hist_bins(2, 128, 128, 'log') plot_inds = np.arange(7500+1250, 7500+1250+4*1250) # %% ------------------------------------------ # Create graphical abstract TINY_SIZE = 6 SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=SMALL_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=TINY_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=TINY_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title frames = True def remove_frames(ax, tags=['top', 'right']): for tag in tags: ax.spines[tag].set_visible(False) start = 41000 inds = np.arange(start, start+1250*1).astype(int) tt = np.linspace(0, 1, len(inds)) plt.figure(figsize=(14, 10)) ax1 = plt.axes([0.05, .775, .125, .1], frameon=frames) ax2 = plt.axes([.308, .725, .125, .2], frameon=frames) ax3 = plt.axes([.5666, .725, .125, .2], frameon=frames) ax4 = plt.axes([.825, .725, .125, .2], frameon=frames) ax5 = plt.axes([.06, .35, .2, .125], frameon=frames) ax1.plot(tt, imf[inds, :].sum(axis=1), 'k') ax1.plot(tt, np.zeros_like(tt)-500, 'k', linewidth=0.5) remove_frames(ax1, tags=['top', 'right', 'bottom']) ax1.set_xlim(tt[0], tt[-1]) ax1.set_xticks([0, 0.5, 1]) ax1.set_xlabel('Time (secs)') ax1.set_ylabel(r'Amp ($\mu V$)') ax1.spines['left'].set_bounds(-500, 500) ax1.set_yticks([-500, 0, 500]) remove_frames(ax2, tags=['top', 'right', 'bottom', 'left']) ax2.set_xlim(tt[0], tt[-1]) ax2.set_xticks([0, 0.5, 1]) for ii in range(4): ax2.plot(tt, np.zeros_like(tt)-ii*500, 'k', linewidth=0.5) ax2.plot((0, 0), (-200-ii*500, 200-ii*500), 'k') ax2.text(-.015, 200-ii*500, '200', va='center', ha='right', fontsize=TINY_SIZE) ax2.text(-.015, -200-ii*500, '-200', va='center', ha='right', fontsize=TINY_SIZE) ax2.set_yticks([]) ax2.plot(tt, imf[inds, 2:6] - np.arange(0, 2000, 500)[None, :]) ax2.set_ylabel(r'Amp ($\mu V$)', labelpad=20) ax2.set_xlabel('Time (secs)') ip = IP[inds, 5] ip[np.gradient(ip) < -2] = np.nan remove_frames(ax3, tags=['top', 'right', 'left']) ax3.set_yticks([]) ax3.plot(tt, ip) ax3.set_xlim(tt[0], tt[-1]) ax3.set_xticks([0, 0.5, 1]) ax3.set_xlabel('Time (secs)') ax3.plot(tt, IF[inds, 5]-14) ax3.plot((0, 0), (0, np.pi*2), 'k') ax3.plot((0, 0), (4-14, 10-14), 'k') ax3.text(-.015, np.pi*2, r'2$\pi$', va='center', ha='right', fontsize=TINY_SIZE) ax3.text(-.015, 0, r'0', va='center', ha='right', fontsize=TINY_SIZE) ax3.text(-.015, 10-14, '10', va='center', ha='right', fontsize=TINY_SIZE) ax3.text(-.015, 7-14, '7', va='center', ha='right', fontsize=TINY_SIZE) ax3.text(-.015, 4-14, '4', va='center', ha='right', fontsize=TINY_SIZE) ax3.text(-.1, 7-14, 'Instantaneous\nFrequency (Hz)', va='center', ha='right', fontsize=SMALL_SIZE, rotation=90) ax3.text(-.1, np.pi, 'Instantaneous\nPhase (rads)', va='center', ha='right', fontsize=SMALL_SIZE, rotation=90) inds = np.arange(start, start+1250*4).astype(int) tt = np.linspace(0, 4, len(inds)) ax4.fill_between(tt, speed[inds], 0, alpha=0.5) ax4.plot((tt[0], tt[-1]), (2, 2), 'k--') ii = imf[inds, 5]/100 - 3.5 ax4.plot(tt, ii, 'k') ii[speed[inds] > 2] = np.nan ax4.plot(tt, ii, 'r') ax4.set_xlabel('Time (secs)') ax4.set_xlim(tt[0], tt[-1]) ax4.set_xticks([0, 1, 2, 3, 4]) ax4.set_yticks([]) remove_frames(ax4, tags=['top', 'right', 'left']) ax4.plot((0, 0), (0, 5), 'k') ax4.plot((0, 0), (-5.5, -1.5), 'k') ax4.text(-.03, 0, '0', va='center', ha='right', fontsize=TINY_SIZE) ax4.text(-.03, 2, '2', va='center', ha='right', fontsize=TINY_SIZE) ax4.text(-.03, 4, '4', va='center', ha='right', fontsize=TINY_SIZE) ax4.text(-.015, -1.5, '200', va='center', ha='right', fontsize=TINY_SIZE) ax4.text(-.015, -3.5, '0', va='center', ha='right', fontsize=TINY_SIZE) ax4.text(-.015, -5.5, '-200', va='center', ha='right', fontsize=TINY_SIZE) ax4.text(-.4, -3.5, 'Amp. ($\mu$V)', va='center', ha='right', fontsize=SMALL_SIZE, rotation=90) ax4.text(-.4, 2.5, 'Movement\nSpeed (cm/s)', va='center', ha='right', fontsize=SMALL_SIZE, rotation=90) start = 41000 inds = np.arange(start, start+1250*1).astype(int) tt = np.linspace(0, 4, len(inds)) C = emd.cycles.Cycles(IP[inds, 5], compute_timings=True) C.compute_cycle_metric('peak', imf[inds, 5], emd.cycles.cf_peak_sample) C.compute_cycle_metric('desc', imf[inds, 5], emd.cycles.cf_descending_zero_sample) C.compute_cycle_metric('trough', imf[inds, 5], emd.cycles.cf_trough_sample) df_abs = C.get_metric_dataframe() ax5.plot(imf[inds, 5], 'k') for ii in range(1, len(df_abs)-1): st = df_abs['start_sample'].values[ii] pk = st + df_abs['peak'].values[ii] ax5.plot(pk, imf[inds[int(pk)], 5], '^r') tr = st + df_abs['trough'].values[ii] ax5.plot(tr, imf[inds[int(tr)], 5], 'vb') asc = st + df_abs['desc'].values[ii] ax5.plot(asc, imf[inds[int(asc)], 5], 'oc') desc = st ax5.plot(desc, imf[inds[int(desc)], 5], 'om') if ii == 1: plt.legend(['Oscillation', 'Peak', 'Trough', 'Descending Zero', 'Ascending Zero'], frameon=False, bbox_to_anchor=(0.5, -1), loc='center') remove_frames(ax5, tags=['top', 'right']) ax5.set_xlim(tt[0], tt[-1]) ax5.set_xticks(np.linspace(0, len(tt), 5)) ax5.set_xticklabels(np.arange(5)) ax5.set_xlabel('Time (secs)') ax5.set_ylabel(r'Amp ($\mu V$)') ax5.spines['left'].set_bounds(-300, 300) ax6 = plt.axes([0.35, 0.42, 0.1, 0.1]) ax7 = plt.axes([0.35, 0.2, 0.1, 0.2]) ax8 = plt.axes([0.495, 0.42, 0.1, 0.1]) ax9 = plt.axes([0.495, 0.2, 0.1, 0.2]) pa = emd.cycles.phase_align(IP[inds, 5], IF[inds, 5], cycles=C) cind = (3, 7) ax6.plot(imf[inds[C._slice_cache[cind[0]]], 5], 'r') ax6.plot(imf[inds[C._slice_cache[cind[1]]], 5], 'b') remove_frames(ax6, tags=['top', 'right', 'bottom']) ax6.set_ylabel(r'Amp ($\mu V$)') ax6.set_xticks([]) ax6.spines['left'].set_bounds(-200, 200) ax7.plot(IF[inds[C._slice_cache[cind[0]]], 5], 'r') ax7.plot(IF[inds[C._slice_cache[cind[1]]], 5], 'b') remove_frames(ax7, tags=['top', 'right']) ax7.set_xlabel('Time (secs)') ax7.set_ylabel('Instantaneous\nFrequency (Hz)', rotation=90, fontsize=SMALL_SIZE) ax8.plot(np.sin(2*np.pi*np.linspace(0, 1)), 'r') ax8.plot(np.sin(2*np.pi*np.linspace(0, 1)), 'b--') remove_frames(ax8, tags=['top', 'right', 'bottom']) ax8.set_ylabel(r'Amp (a.u.)') ax8.set_xticks([]) ax8.spines['left'].set_bounds(-1, 1) ax9.plot(pa[0][:, cind[0]], 'r') ax9.plot(pa[0][:, cind[1]], 'b') remove_frames(ax9, tags=['top', 'right']) ax9.set_xlabel('Phase (rads)') ax9.set_xticks(np.linspace(0, 48, 3)) ax9.set_xticklabels(['0', r'$\pi$', r'2$\pi$']) inds = np.arange(start, start+1250*12).astype(int) C = emd.cycles.Cycles(IP[inds, 5], compute_timings=True) pa, _ = emd.cycles.phase_align(IP[inds, 5], IF[inds, 5], cycles=C) pa = pa[:, np.isfinite(pa.mean(axis=0))] goods = np.logical_and((pa.min(axis=0) > 3), (pa.mean(axis=0) <10)) ax10 = plt.axes([0.675, 0.25, .1, .25]) im = ax10.pcolormesh(pa[:, goods].T, vmin=5, vmax=12) cb = plt.colorbar(im) cb.set_label('Instantaneous\nFrequency (Hz)') ax10.set_xlabel('Phase (rads)') ax10.set_xticks(np.linspace(0, 48, 3)) ax10.set_xticklabels(['0', r'$\pi$', r'2$\pi$']) ax10.set_ylabel('Cycles') ax11 = plt.axes([0.9, 0.425, 0.093, 0.12]) ax12 = plt.axes([0.9, 0.25, 0.093, 0.12]) ax13 = plt.axes([0.9, 0.075, 0.093, 0.12]) samples_per_cycle = 480 ncycles = 6 ph = np.linspace(0, np.pi*2*ncycles, samples_per_cycle*ncycles) t = np.linspace(0, ncycles, samples_per_cycle*ncycles) basis = np.c_[np.zeros_like(ph), 0.9*np.cos(2*np.pi*1*t)[:, None], -0.9*np.cos(2*np.pi*1*t)[:, None], 1.55*np.sin(2*np.pi*1*t)[:, None], -1.55*np.sin(2*np.pi*1*t)[:, None], np.sin(2*np.pi*2*t)[:, None], -0.8*np.sin(2*np.pi*2*t)[:, None]] basis = basis * 1/4 phs = ph[:, None] + basis X = np.sin(phs) IP2, IF2, IA2 = emd.spectra.frequency_transform(X, samples_per_cycle, 'hilbert') cycles = emd.cycles.get_cycle_vector(IP2, return_good=True) lin_inds = cycles[:, 0] == 1 inds = cycles[:, 1] == 2 ax11.plot(np.linspace(0, 1, inds.sum()), np.sin(phs[inds, 1])) inds = cycles[:, 2] == 2 ax11.plot(np.linspace(0, 1, inds.sum()), np.sin(phs[inds, 2])) remove_frames(ax11, tags=['top', 'right']) ax11.set_yticks([-1, 0, 1]) ax11.set_ylabel('Amp (a.u.)') ax11.set_xlim(0, 1) ax11.set_xticks([0, 1]) ax11.set_title('Motif 1', fontsize=MEDIUM_SIZE) ax11.spines['left'].set_bounds(-1, 1) inds = cycles[:, 3] == 2 ax12.plot(np.linspace(0, 1, inds.sum()), np.sin(phs[inds, 3])) inds = cycles[:, 4] == 2 ax12.plot(np.linspace(0, 1, inds.sum()), np.sin(phs[inds, 4])) remove_frames(ax12, tags=['top', 'right']) ax12.set_yticks([-1, 0, 1]) ax12.set_xlim(0, 1) ax12.set_ylabel('Amp (a.u.)') ax12.set_xticks([0, 1]) ax12.set_title('Motif 2', fontsize=MEDIUM_SIZE) ax12.spines['left'].set_bounds(-1, 1) inds = cycles[:, 5] == 2 ax13.plot(np.linspace(0, 1, inds.sum()), np.sin(phs[inds, 5])) inds = cycles[:, 6] == 2 ax13.plot(np.linspace(0, 1, inds.sum()), np.sin(phs[inds, 6])) remove_frames(ax13, tags=['top', 'right']) ax13.set_xlabel('Cycle Duration', fontsize=SMALL_SIZE) ax13.set_yticks([-1, 0, 1]) ax13.set_ylabel('Amp (a.u.)') ax13.set_xlim(0, 1) ax13.set_xticks([0, 1]) ax13.set_title('Motif 3', fontsize=MEDIUM_SIZE) ax13.spines['left'].set_bounds(-1, 1) outname = os.path.join(config['figdir'], 'emd_fig1_graphicalabstract.png') plt.savefig(outname, dpi=300, transparent=True) plt.style.use('default') # %% ------------------------------------------ # Create figure 5 time-series width = config['3col_width'] / 25.4 height = width * .6 plot_horiz = True sparse_horiz = True plot_vert = True fontsize_side = 'large' fontsize_tick = 10 horiz_width = .35 inds = np.arange(20230, 20000+1250*3).astype(int) start = 193000 start = 41000 inds = np.arange(start, start+1250*2.8).astype(int) cmap = plt.cm.Set1 cols = cmap(np.linspace(0, 1, 8)) cols[4, :] = [.5, .5, .2, 1] indx = [5, 1, 2, 3, 4, 0, 6, 7] cols = cols[indx, :] plt.figure(figsize=(width*2, height*2)) plt.axes([.08, .025, .95, .95], frameon=False) plt.xticks([]) plt.yticks([]) # Plot Data plt.plot(imf[inds, :6].sum(axis=1), color=[.2, .2, .2], linewidth=.5) plt.plot(imf[inds, 5], color=cols[5, :], linewidth=1) plt.plot([0, 0], [-350, 350], 'k') plt.text(-250, 80, 'LFP', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center') plt.text(-250, 600, 'Cycle No', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center') plt.text(-250, -80, 'Theta', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center', color='r') plt.plot([1.9*1250, 2.9*1250], [800, 800], 'k') plt.text(2.4*1250, 825, '1 Second', horizontalalignment='center', verticalalignment='bottom', fontsize=fontsize_side) # Plot IMFs step = -500 labels = ['IMF1', 'IMF2', 'IMF3', 'IMF4', 'IMF5', 'IMF6', 'IMF7+'] for ii in range(7): yind = -300*(1+ii)+step if plot_horiz: plt.plot([-10, len(inds)], [yind, yind], color=[.7, .7, .7], linewidth=horiz_width) plt.plot([-10, 0], [yind, yind], 'k') if ii < 6: plt.plot(.5*imf[inds, ii]+yind, color=cols[ii, :]) else: plt.plot(.5*imf[inds, ii:].sum(axis=1)+yind, color=cols[ii, :]) plt.text(-22, yind, labels[ii], fontsize=fontsize_tick, verticalalignment='center', horizontalalignment='right') plt.plot([0, 0], [-2800, -600], 'k') plt.text(-275, -300*(1+3)+step, 'IMFs', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center') # Instantaneous Phase labels = [r'$-\pi$', r'$0$', r'$\pi$'] for ii in range(3): yind = -3500+ii*75*((2*np.pi)/2) if sparse_horiz and ii == 1: plt.plot([-10, len(inds)], [yind, yind], color=[.7, .7, .7], linewidth=horiz_width) elif plot_horiz and not sparse_horiz: plt.plot([-10, len(inds)], [yind, yind], color=[.7, .7, .7], linewidth=horiz_width) plt.plot([-10, 0], [yind, yind], color='k') plt.text(-22, yind, labels[ii], fontsize=fontsize_tick, verticalalignment='center', horizontalalignment='right') plt.plot([0, 0], [-3500, -3500+2*np.pi*75], 'k') ip = IP[inds, 5] naninds = np.where(np.diff(ip) < -5.5)[0]+1 ip[naninds] = np.nan plt.plot(ip*75 - 3500, linewidth=1.5) plt.text(-300, -3500+1*75*((2*np.pi)/2), 'Instantaneous\nPhase (rads)', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center') # Instantaneous Frequency if_to_plot = IF[inds, 5] ymin_f = np.nanmin(np.round(if_to_plot)) ymin = np.nanmin(ymin_f*40 - 4200) ymax_f = np.nanmax(np.round(if_to_plot)) ymax = np.nanmin(ymax_f*40 - 4200) plt.plot([0, 0], [ymin, ymax], 'k') indx = np.linspace(ymin, ymax, 3) indx_f = np.linspace(ymin_f, ymax_f, 3) for ii in range(3): if sparse_horiz and ii == 1: plt.plot([-10, len(inds)], [indx[ii], indx[ii]], color=[.7, .7, .7], linewidth=horiz_width) elif plot_horiz and not sparse_horiz: plt.plot([-10, len(inds)], [indx[ii], indx[ii]], color=[.7, .7, .7], linewidth=horiz_width) plt.plot([-10, 0], [indx[ii], indx[ii]], color='k') plt.text(-22, indx[ii], indx_f[ii], fontsize=fontsize_tick, verticalalignment='center', horizontalalignment='right') plt.plot(if_to_plot*40 - 4200) plt.text(-300, indx[1], 'Instantaneous\nFrequency (Hz)', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center') # Plot cycle bounds and compute within cycle frequency variability cycles_to_plot = emd.cycles.get_cycle_vector(IP[inds, 5, None]) cycle_starts = np.where(np.diff(cycles_to_plot, axis=0))[0] cm = np.zeros_like(inds)*np.nan cv = np.zeros_like(inds)*np.nan for ii in range(len(cycle_starts)): if plot_vert: plt.plot((cycle_starts[ii], cycle_starts[ii]), (-4600, 350), color=[.8, .8, .8], linewidth=.5) if ii < len(cycle_starts)-1: cm[cycle_starts[ii]:cycle_starts[ii+1]] = IF[inds[cycle_starts[ii]:cycle_starts[ii+1]], 5].mean() cv[cycle_starts[ii]:cycle_starts[ii+1]] = IF[inds[cycle_starts[ii]:cycle_starts[ii+1]], 5].std() plt.text((cycle_starts[ii]+cycle_starts[ii+1])/2, 600, ii+1, fontsize=fontsize_tick, verticalalignment='center', horizontalalignment='center') # Within cycle frequency variability plt.fill_between(np.arange(len(inds)), cv*1e2 - 4600, np.ones_like(inds)-4601) plt.plot((0, 0), (-4601, -4601+300), 'k') plt.plot([-15, len(inds)], (-4601, -4601), color=[.7, .7, .7], linewidth=.5) indx = np.linspace(0, 3, 4)*1e2 - 4600 indx_lab = np.round(np.linspace(0, 3, 4), 2).astype(int) for ii in range(4): if plot_horiz and sparse_horiz is False: plt.plot([-10, len(inds)], (indx[ii], indx[ii]), color=[.7, .7, .7], linewidth=horiz_width) elif ii == 0: plt.plot([-10, len(inds)], (indx[ii], indx[ii]), color=[.7, .7, .7], linewidth=horiz_width) plt.plot((-10, 0), (-4601+100*ii, -4601+100*ii), 'k') plt.text(-22, indx[ii], indx_lab[ii], fontsize=fontsize_tick, verticalalignment='center', horizontalalignment='right') plt.text(-300, indx[1:3].mean(), 'Instantaneous\nFrequency\nStd-Dev', fontsize=fontsize_side, verticalalignment='center', horizontalalignment='center') outname = os.path.join(config['figdir'], 'emd_fig6_real_sift.png') plt.savefig(outname, dpi=300, transparent=True) # %% -------------------------------------------------------------------- # Create figure 5 - Supplemental inds2 = inds[:600] tx = np.linspace(0, 2, 512) plt.figure(figsize=(14, 10)) plt.subplots_adjust(hspace=0.3) # Harmonic plt.subplot(221) a = np.sin(2*np.pi*tx) b = np.sin(2*np.pi*2*tx) plt.plot(tx, a) plt.plot(tx, b) plt.plot(tx, a+b-3) plt.ylim(-5, 3) plt.legend(['Base Signal', 'High Freq Signal', 'Summed Signal'], frameon=False, fontsize='large') for tag in ['top', 'right', 'left']: plt.gca().spines[tag].set_visible(False) plt.yticks([]) plt.title('Simulation A') plt.xlabel('Time (Seconds)') plt.subplot(222) b = 0.2*np.sin(2*np.pi*2*tx) plt.plot(tx, a) plt.plot(tx, b) plt.plot(tx, a+b-3) plt.ylim(-5, 3) plt.legend(['Base Signal', 'Harmonic', 'Summed Signal'], frameon=False, fontsize='large') for tag in ['top', 'right', 'left']: plt.gca().spines[tag].set_visible(False) plt.yticks([]) plt.title('Simulation B') plt.xlabel('Time (Seconds)') plt.subplot(212) plt.plot(imf[inds2, :].sum(axis=1), label='Raw Signal') plt.plot(imf[inds2, 5]-500, label='IMF-6') plt.plot(imf[inds2, 4]-500, label='IMF-5') plt.plot(imf[inds2, 4]+imf[inds2, 5]-1000, label='IMF-5 + IMF-6') plt.legend(frameon=False, fontsize='large') for tag in ['top', 'right', 'left']: plt.gca().spines[tag].set_visible(False) plt.yticks([]) plt.xticks(np.arange(5)*125, np.arange(5)*100) plt.xlabel('Time (milliseconds)') plt.title('Real Data') outname = os.path.join(config['figdir'], 'emd_fig6_supplemental_zoom.png') plt.savefig(outname, dpi=300, transparent=True) # %% -------------------------------------------------------------------- # Create figure 6 - spectra edges, bins = emd.spectra.define_hist_bins(2, 35, 64, 'linear') cwt = sails.wavelet.morlet(imf[inds, :6].sum(axis=1), bins, sample_rate, normalise='simple', ret_mode='amplitude') hht = emd.spectra.hilberthuang(IF[inds, :6], IA[inds, :6], edges, mode='amplitude') hht = ndimage.gaussian_filter(hht, 1) t = np.arange(len(inds)) plt.figure(figsize=(width*1.925, height*1.25)) plt.axes([.13, .55, .855, .425], frameon=True) pcm = plt.pcolormesh(t, bins, hht, cmap='hot_r') for ii in range(len(cycle_starts)): if plot_vert: plt.plot((cycle_starts[ii], cycle_starts[ii]), (2, 100), color=[.8, .8, .8], linewidth=.5) plt.ylim(2, 35) plt.xticks(np.arange(0, len(inds), sample_rate/2), []) plt.ylabel('Frequency (Hz)') for tag in ['top', 'right']: plt.gca().spines[tag].set_visible(False) plt.ylabel('Frequency (Hz)'); plt.xlabel('') ax = plt.axes([.97, .65, .015, .3]) cb = plt.colorbar(pcm, cax=ax) ax.yaxis.set_ticks_position('left') cb.set_label('Power') plt.axes([.13, .095, .855, .425], frameon=True) pcm = plt.pcolormesh(t, bins, cwt, cmap='hot_r') for ii in range(len(cycle_starts)): if plot_vert: plt.plot((cycle_starts[ii], cycle_starts[ii]), (2, 100), color=[.8, .8, .8], linewidth=.5) plt.ylim(2, 35) plt.xticks(np.arange(0, len(inds), sample_rate/2), np.arange(0, len(inds), sample_rate/2)/sample_rate) plt.ylabel('Frequency (Hz)') plt.xlabel('Time (seconds)') for tag in ['top', 'right']: plt.gca().spines[tag].set_visible(False) plt.ylabel('Frequency (Hz)'); plt.xlabel('Time (seconds)') ax = plt.axes([.97, .195, .015, .3]) cb = plt.colorbar(pcm, cax=ax) ax.yaxis.set_ticks_position('left') cb.set_label('Power') outname = os.path.join(config['figdir'], 'emd_fig6_real_sift_spec.png') plt.savefig(outname, dpi=300, transparent=True) # %% -------------------------------------------------------------------- # Create Figure 8 def decorate_ax(ax): for tag in ['top', 'right']: ax.spines[tag].set_visible(False) waveform = F['zc_waveform'][...] instfreq = F['zc_instfreq'][...] pa = F['pa'][...] ctrl = np.c_[np.zeros_like(df['start_sample']), df['peak_sample'], df['desc_sample'], df['trough_sample'], df['duration_samples']] ctrl_mets = np.c_[df['peak2trough'], df['asc2desc']].T I = np.argsort(ctrl[:, 4])[::-1] segments = np.zeros((ctrl.shape[0], 400))*np.nan for ii in range(ctrl.shape[0]): for jj in range(1, ctrl.shape[1]): segments[ii, int(np.round(ctrl[ii, jj-1])):int(np.round(ctrl[ii, jj]))] = jj # Remove cycles with ambiguous peaks goods = np.setdiff1d(np.arange(segments.shape[0]), np.where(segments[:, 0]==4)[0]) segments = segments[goods, :] I = np.argsort(ctrl[goods, 4])[::-1] ctrl_mets = ctrl_mets[:, goods] pa = pa[:, goods] instfreq = instfreq[:, goods] trim = 2700 # Can't see anything if we plot every cycle... I = I[:-trim] width = config['2col_width'] / 25.4 height = config['3col_width'] / 25.4 # Figure start plt.figure(figsize=(width*2, height*2)) # Plot control point segments plt.axes([.1, .1, .2, .65]) plt.pcolormesh(segments[I, :]) plt.xticks(np.linspace(0, 200, 5), (np.linspace(0, 200, 5)/sample_rate*1000).astype(int)) plt.xlabel('Time (ms)') plt.xlim(0, 250) plt.ylabel('# Cycle (Sorted by duration)') decorate_ax(plt.gca()) plt.axes([.1, .775, .144, .075], frameon=False) plt.xticks([]); plt.yticks([]) cols = plt.cm.viridis(np.linspace(0, 1, 4)) for ii in range(4): xvals = np.linspace(0, .25)+.25*ii plt.plot(xvals, np.sin(2*np.pi*xvals), linewidth=3, color=cols[ii, :]) # Plot control point metrics plt.axes([.31, .1, .1, .65]) plt.plot(ctrl_mets[0][I], np.arange(len(ctrl_mets[0])-trim), '.') plt.plot(ctrl_mets[1][I], np.arange(len(ctrl_mets[0])-trim), '.') plt.plot(np.zeros_like(ctrl_mets[1][I]), np.arange(len(ctrl_mets[0])-trim), 'k', linewidth=.5) plt.xlim(0, 1) plt.ylim(0, len(ctrl_mets[0])-trim) plt.yticks([]) decorate_ax(plt.gca()) plt.gca().spines['left'].set_visible(False) plt.axes([.31, .775, .1, .15]) plt.hist(ctrl_mets[0][I], np.linspace(-1, 1), alpha=.5) plt.hist(ctrl_mets[1][I], np.linspace(-1, 1), alpha=.5) plt.xticks(np.linspace(-.25, .25, 3), []) plt.legend(['Peak/Trough', 'Ascent/Descent'], frameon=False, fontsize=8, loc='center', bbox_to_anchor=(0.5, 0.5, 1, 1)) decorate_ax(plt.gca()) plt.xlim(0, 1) plt.ylim(0, 800) plt.title('Control-Point Ratios\n') # Plot temporally aligned instantaneous frequency plt.axes([.5, .1, .2, .65]) plt.pcolormesh(instfreq[:, I].T, vmin=6, vmax=14) decorate_ax(plt.gca()) plt.xticks(np.linspace(0, 200, 5), (np.linspace(0, 200, 5)/sample_rate*1000).astype(int)) plt.xlabel('Time (ms)') plt.xlim(0, 250) plt.axes([.5, .775, .2, .15]) plt.plot(np.nanmean(instfreq, axis=1)) decorate_ax(plt.gca()) plt.title('Cycle-Onset Aligned\nInst. Freq') plt.xticks(np.linspace(0, 200, 5), []) plt.xlim(0.60) # Plot phase aligned instantaneous frequency plt.axes([.75, .1, .2, .65]) pcm = plt.pcolormesh(pa[:, I].T, vmin=6, vmax=14) plt.xticks(np.arange(5)*12, ['-pi', '-pi/2', '0', 'pi/2', 'pi']) plt.xlabel('Theta Phase') plt.yticks(np.arange(8)*200, []) plt.axes([.75, .775, .2, .15]) plt.plot(np.nanmean(pa, axis=1)) plt.xlim(0, 48) decorate_ax(plt.gca()) plt.xticks(np.arange(5)*12, []) plt.title('Phase-Aligned\nInst. Freq') # Inst. freq colourbar ax = plt.axes([.685, .45, .015, .18]) cb = plt.colorbar(pcm, cax=ax) ax.yaxis.set_ticks_position('left') plt.title('Instantaneous\nFrequency (Hz)', fontsize=9) outname = os.path.join(config['figdir'], 'emd_fig8_real_phasealign.png') plt.savefig(outname, dpi=300, transparent=True) # %% -------------------------------------------------------------------- # Create Figure 8 - REVISED def decorate_ax(ax): for tag in ['top', 'right']: ax.spines[tag].set_visible(False) waveform = F['zc_waveform'][...] instfreq = F['zc_instfreq'][...] pa = F['pa'][...] ctrl = np.c_[np.zeros_like(df['start_sample']), df['peak_sample'], df['desc_sample'], df['trough_sample'], df['duration_samples']] ctrl_mets = np.c_[df['peak2trough'], df['asc2desc']].T I = np.argsort(ctrl[:, 4])[::-1] segments = np.zeros((ctrl.shape[0], 400))*np.nan for ii in range(ctrl.shape[0]): for jj in range(1, ctrl.shape[1]): segments[ii, int(np.round(ctrl[ii, jj-1])):int(np.round(ctrl[ii, jj]))] = jj # Remove cycles with ambiguous peaks goods = np.setdiff1d(np.arange(segments.shape[0]), np.where(segments[:, 0]==4)[0]) segments = segments[goods, :] I = np.argsort(ctrl[goods, 4])[::-1] ctrl_mets = ctrl_mets[:, goods] pa = pa[:, goods] instfreq = instfreq[:, goods] trim = 2700 # Can't see anything if we plot every cycle... I = I[:-trim] I2 = I[::15] width = config['2col_width'] / 25.4 height = config['3col_width'] / 25.4 col_height = 0.45 top_height = 0.3 # Figure start plt.figure(figsize=(width*3, height*2)) # Plot control point segments plt.axes([.1, .1, .2, col_height]) #plt.pcolormesh(segments[I2, :]) plt.plot(ctrl[I2, 1], np.arange(len(I2)), '^') plt.plot(ctrl[I2, 2], np.arange(len(I2)), 'x') plt.plot(ctrl[I2, 3], np.arange(len(I2)), 'v') plt.plot(ctrl[I2, 4], np.arange(len(I2)), '.') plt.legend(['Peak', 'Desc', 'Trough', 'Asc'], frameon=False, loc='center', bbox_to_anchor=(0.4, 0.2, 1, 1)) plt.xticks(np.linspace(0, 200, 5), (np.linspace(0, 200, 5)/sample_rate*1000).astype(int)) plt.xlabel('Time (ms)') plt.xlim(0, 250) plt.ylim(0, len(I2)) plt.ylabel('# Cycle (Sorted by duration)') decorate_ax(plt.gca()) plt.axes([.1, .6, .2, top_height-0.05]) plt.plot((0.5, 0.5), (0, 800), 'k--') plt.hist(ctrl_mets[0][I], np.linspace(-1, 1), alpha=.5) plt.hist(ctrl_mets[1][I], np.linspace(-1, 1), alpha=.5) #plt.xticks(np.linspace(-.25, .25, 3)) plt.legend(['Sinusoid', 'Peak/Trough', 'Ascent/Descent'], frameon=False, fontsize=10, loc='center', bbox_to_anchor=(0.5, 0.4, 1, 1)) decorate_ax(plt.gca()) plt.xlim(0, 1) plt.ylim(0, 800) plt.title('Control-Point Ratios\n') plt.xlabel('Ratio') plt.ylabel('Num Cycles') # Plot temporally aligned instantaneous frequency plt.axes([.425, .1, .2, col_height]) plt.imshow(instfreq[:, I2].T, interpolation='nearest', vmin=6, vmax=12, origin='lower', aspect='auto') decorate_ax(plt.gca()) plt.xticks(np.linspace(0, 200, 5), (np.linspace(0, 200, 5)/sample_rate*1000).astype(int)) plt.xlabel('Time (ms)') plt.xlim(0, 250) plt.axes([.425, .6, .2, top_height/2]) mn = np.nanmean(instfreq[:, I], axis=1) sem = np.nanstd(instfreq[:, I], axis=1) sem = sem / np.sqrt(np.sum(np.isnan(instfreq[:, I])==False, axis=1)) plt.errorbar(np.arange(313), mn, yerr=sem, errorevery=4) decorate_ax(plt.gca()) plt.xticks(np.linspace(0, 200, 5), (np.linspace(0, 200, 5)/sample_rate*1000).astype(int)) plt.xlim(0, 250) plt.legend(['Avg IF (std-error of mean)'], loc='center', bbox_to_anchor=(0.3, 0.5, 1, 1), frameon=False) plt.ylabel('Instantaneous\nFrequency (Hz)') plt.axes([.425, .8, .2, 0.075]) plt.plot(np.nanmean(waveform[:, I], axis=1), 'k') for tag in ['top', 'right', 'bottom']: plt.gca().spines[tag].set_visible(False) plt.xticks([]) plt.ylim(-200, 200) plt.xlim(0, 250) plt.legend(['Avg Waveform'], loc='center', bbox_to_anchor=(0.3, 0.5, 1, 1), frameon=False) plt.ylabel(r'Amplitude ($\mu$V)') plt.title('Cycle-Onset Alignment\n\n')#\nInstantaneous. Frequency\n(std-error of mean)') # Plot phase aligned instantaneous frequency plt.axes([.75, .1, .2, col_height]) pcm = plt.imshow(pa[:, I2].T, interpolation='nearest', vmin=6, vmax=12, origin='lower', aspect='auto') plt.xticks(np.arange(5)*12, ['-pi', '-pi/2', '0', 'pi/2', 'pi']) plt.xlabel('Theta Phase (rads)') decorate_ax(plt.gca()) plt.axes([.75, .6, .2, top_height/2]) mn = np.nanmean(pa[:, I], axis=1) sem = np.nanstd(pa[:, I], axis=1) /
np.sqrt(I.shape[0])
numpy.sqrt
import numpy as np from tqdm import tqdm import utils.helper as hlp def slidewindow(ts, horizon=.2, stride=0.2): xf = [] yf = [] for i in range(0, ts.shape[0], int(stride * ts.shape[0])): horizon1 = int(horizon * ts.shape[0]) if (i + horizon1 + horizon1 <= ts.shape[0]): xf.append(ts[i:i + horizon1,0]) yf.append(ts[i + horizon1:i + horizon1 + horizon1, 0]) xf = np.asarray(xf) yf = np.asarray(yf) return xf, yf def cutPF(ts, perc=.5): seq_len = ts.shape[0] new_ts = ts.copy() t=int(perc*seq_len) return new_ts[:t, ...], new_ts[t:, ...] def cutout(ts, perc=.1): seq_len = ts.shape[0] new_ts = ts.copy() win_len = int(perc * seq_len) start = np.random.randint(0, seq_len-win_len-1) end = start + win_len start = max(0, start) end = min(end, seq_len) # print("[INFO] start={}, end={}".format(start, end)) new_ts[start:end, ...] = 0 # return new_ts, ts[start:end, ...] return new_ts def cut_piece2C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len/(2*2) if perc<1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len-win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1-start2)<(win_class): label=0 else: label=1 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece3C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len/(2*3) if perc<1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len-win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1-start2)<(win_class): label=0 elif abs(start1-start2)<(2*win_class): label=1 else: label=2 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece4C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 4) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 else: label = 3 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece5C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 5) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 else: label = 4 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece6C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 6) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 elif abs(start1 - start2) < (5 * win_class): label = 4 else: label = 5 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece7C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 7) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 elif abs(start1 - start2) < (5 * win_class): label = 4 elif abs(start1 - start2) < (6 * win_class): label = 5 else: label = 6 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece8C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 8) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 elif abs(start1 - start2) < (5 * win_class): label = 4 elif abs(start1 - start2) < (6 * win_class): label = 5 elif abs(start1 - start2) < (7 * win_class): label = 6 else: label = 7 return ts[start1:end1, ...], ts[start2:end2, ...], label def jitter(x, sigma=0.03): # https://arxiv.org/pdf/1706.00527.pdf return x + np.random.normal(loc=0., scale=sigma, size=x.shape) def scaling(x, sigma=0.1): # https://arxiv.org/pdf/1706.00527.pdf factor = np.random.normal(loc=1., scale=sigma, size=(x.shape[0],x.shape[2])) return np.multiply(x, factor[:,np.newaxis,:]) def rotation(x): flip = np.random.choice([-1, 1], size=(x.shape[0],x.shape[2])) rotate_axis = np.arange(x.shape[2]) np.random.shuffle(rotate_axis) return flip[:,np.newaxis,:] * x[:,:,rotate_axis] def scaling_s(x, sigma=0.1, plot=False): # https://arxiv.org/pdf/1706.00527.pdf factor = np.random.normal(loc=1., scale=sigma, size=(1, x.shape[1])) x_ = np.multiply(x, factor[:, :]) if plot: hlp.plot1d(x, x_, save_file='aug_examples/scal.png') return x_ def rotation_s(x, plot=False): flip = np.random.choice([-1], size=(1, x.shape[1])) rotate_axis = np.arange(x.shape[1]) np.random.shuffle(rotate_axis) x_ = flip[:, :] * x[:, rotate_axis] if plot: hlp.plot1d(x, x_, save_file='aug_examples/rotation_s.png') return x_ def rotation2d(x, sigma=0.2): thetas = np.random.normal(loc=0, scale=sigma, size=(x.shape[0])) c = np.cos(thetas) s = np.sin(thetas) ret = np.zeros_like(x) for i, pat in enumerate(x): rot = np.array(((c[i], -s[i]), (s[i], c[i]))) ret[i] = np.dot(pat, rot) return ret def permutation(x, max_segments=5, seg_mode="equal"): orig_steps = np.arange(x.shape[1]) num_segs = np.random.randint(1, max_segments, size=(x.shape[0])) ret = np.zeros_like(x) for i, pat in enumerate(x): if num_segs[i] > 1: if seg_mode == "random": split_points = np.random.choice(x.shape[1]-2, num_segs[i]-1, replace=False) split_points.sort() splits = np.split(orig_steps, split_points) else: splits = np.array_split(orig_steps, num_segs[i]) warp = np.concatenate(np.random.permutation(splits)).ravel() ret[i] = pat[warp] else: ret[i] = pat return ret def magnitude_warp(x, sigma=0.2, knot=4): from scipy.interpolate import CubicSpline orig_steps = np.arange(x.shape[1]) random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2])) warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T ret = np.zeros_like(x) for i, pat in enumerate(x): li = [] for dim in range(x.shape[2]): li.append(CubicSpline(warp_steps[:, dim], random_warps[i, :, dim])(orig_steps)) warper = np.array(li).T ret[i] = pat * warper return ret def magnitude_warp_s(x, sigma=0.2, knot=4, plot=False): from scipy.interpolate import CubicSpline orig_steps = np.arange(x.shape[0]) random_warps = np.random.normal(loc=1.0, scale=sigma, size=(1, knot + 2, x.shape[1])) warp_steps = (np.ones((x.shape[1], 1)) * (np.linspace(0, x.shape[0] - 1., num=knot + 2))).T li = [] for dim in range(x.shape[1]): li.append(CubicSpline(warp_steps[:, dim], random_warps[0, :, dim])(orig_steps)) warper = np.array(li).T x_ = x * warper if plot: hlp.plot1d(x, x_, save_file='aug_examples/magnitude_warp_s.png') return x_ def time_warp(x, sigma=0.2, knot=4): from scipy.interpolate import CubicSpline orig_steps = np.arange(x.shape[1]) random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2])) warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T ret = np.zeros_like(x) for i, pat in enumerate(x): for dim in range(x.shape[2]): time_warp = CubicSpline(warp_steps[:,dim], warp_steps[:,dim] * random_warps[i,:,dim])(orig_steps) scale = (x.shape[1]-1)/time_warp[-1] ret[i,:,dim] = np.interp(orig_steps, np.clip(scale*time_warp, 0, x.shape[1]-1), pat[:,dim]).T return ret def time_warp_s(x, sigma=0.2, knot=4, plot=False): from scipy.interpolate import CubicSpline orig_steps = np.arange(x.shape[0]) random_warps = np.random.normal(loc=1.0, scale=sigma, size=(1, knot + 2, x.shape[1])) warp_steps = (np.ones((x.shape[1], 1)) * (np.linspace(0, x.shape[0] - 1., num=knot + 2))).T ret = np.zeros_like(x) for dim in range(x.shape[1]): time_warp = CubicSpline(warp_steps[:, dim], warp_steps[:, dim] * random_warps[0, :, dim])(orig_steps) scale = (x.shape[0] - 1) / time_warp[-1] ret[:, dim] = np.interp(orig_steps, np.clip(scale * time_warp, 0, x.shape[0] - 1), x[:, dim]).T if plot: hlp.plot1d(x, ret, save_file='aug_examples/time_warp_s.png') return ret def window_slice(x, reduce_ratio=0.9): # https://halshs.archives-ouvertes.fr/halshs-01357973/document target_len = np.ceil(reduce_ratio*x.shape[1]).astype(int) if target_len >= x.shape[1]: return x starts = np.random.randint(low=0, high=x.shape[1]-target_len, size=(x.shape[0])).astype(int) ends = (target_len + starts).astype(int) ret = np.zeros_like(x) for i, pat in enumerate(x): for dim in range(x.shape[2]): ret[i,:,dim] = np.interp(np.linspace(0, target_len, num=x.shape[1]), np.arange(target_len), pat[starts[i]:ends[i],dim]).T return ret def window_slice_s(x, reduce_ratio=0.9): # https://halshs.archives-ouvertes.fr/halshs-01357973/document target_len = np.ceil(reduce_ratio * x.shape[0]).astype(int) if target_len >= x.shape[0]: return x starts = np.random.randint(low=0, high=x.shape[0] - target_len, size=(1)).astype(int) ends = (target_len + starts).astype(int) ret = np.zeros_like(x) for dim in range(x.shape[1]): ret[:, dim] = np.interp(np.linspace(0, target_len, num=x.shape[0]), np.arange(target_len), x[starts[0]:ends[0], dim]).T return ret def window_warp(x, window_ratio=0.1, scales=[0.5, 2.]): # https://halshs.archives-ouvertes.fr/halshs-01357973/document warp_scales = np.random.choice(scales, x.shape[0]) warp_size = np.ceil(window_ratio*x.shape[1]).astype(int) window_steps = np.arange(warp_size) window_starts = np.random.randint(low=1, high=x.shape[1]-warp_size-1, size=(x.shape[0])).astype(int) window_ends = (window_starts + warp_size).astype(int) ret = np.zeros_like(x) for i, pat in enumerate(x): for dim in range(x.shape[2]): start_seg = pat[:window_starts[i],dim] window_seg = np.interp(np.linspace(0, warp_size-1, num=int(warp_size*warp_scales[i])), window_steps, pat[window_starts[i]:window_ends[i],dim]) end_seg = pat[window_ends[i]:,dim] warped = np.concatenate((start_seg, window_seg, end_seg)) ret[i,:,dim] = np.interp(np.arange(x.shape[1]), np.linspace(0, x.shape[1]-1., num=warped.size), warped).T return ret def window_warp_s(x, window_ratio=0.1, scales=[0.5, 2.]): # https://halshs.archives-ouvertes.fr/halshs-01357973/document warp_scales = np.random.choice(scales, 1) warp_size = np.ceil(window_ratio * x.shape[0]).astype(int) window_steps = np.arange(warp_size) window_starts = np.random.randint(low=1, high=x.shape[0] - warp_size - 1, size=(1)).astype(int) window_ends = (window_starts + warp_size).astype(int) ret =
np.zeros_like(x)
numpy.zeros_like
# coding: utf-8 # ## AI for Medicine Course 1 Week 1 lecture exercises # <a name="counting-labels"></a> # # Counting labels # # As you saw in the lecture videos, one way to avoid having class imbalance impact the loss function is to weight the losses differently. To choose the weights, you first need to calculate the class frequencies. # # For this exercise, you'll just get the count of each label. Later on, you'll use the concepts practiced here to calculate frequencies in the assignment! # In[1]: # Import the necessary packages import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: # Read csv file containing training datadata train_df = pd.read_csv("nih/train-small.csv") # In[4]: # Count up the number of instances of each class (drop non-class columns from the counts) class_counts = train_df.sum().drop(['Image','PatientId']) print(class_counts) # In[ ]: for column in class_counts.keys(): print(f"The class {column} has {train_df[column].sum()} samples") # In[ ]: # Plot up the distribution of counts sns.barplot(class_counts.values, class_counts.index, color='b') plt.title('Distribution of Classes for Training Dataset', fontsize=15) plt.xlabel('Number of Patients', fontsize=15) plt.ylabel('Diseases', fontsize=15) plt.show() # <a name="weighted-loss"></a> # # Weighted Loss function # # Below is an example of calculating weighted loss. In the assignment, you will calculate a weighted loss function. This sample code will give you some intuition for what the weighted loss function is doing, and also help you practice some syntax you will use in the graded assignment. # # For this example, you'll first define a hypothetical set of true labels and then a set of predictions. # # Run the next cell to create the 'ground truth' labels. # In[ ]: # Generate an array of 4 binary label values, 3 positive and 1 negative y_true = np.array( [[1], [1], [1], [0]]) print(f"y_true: \n{y_true}") # ### Two models # To better understand the loss function, you will pretend that you have two models. # - Model 1 always outputs a 0.9 for any example that it's given. # - Model 2 always outputs a 0.1 for any example that it's given. # In[ ]: # Make model predictions that are always 0.9 for all examples y_pred_1 = 0.9 * np.ones(y_true.shape) print(f"y_pred_1: \n{y_pred_1}") print() y_pred_2 = 0.1 * np.ones(y_true.shape) print(f"y_pred_2: \n{y_pred_2}") # ### Problems with the regular loss function # The learning goal here is to notice that with a regular loss function (not a weighted loss), the model that always outputs 0.9 has a smaller loss (performs better) than model 2. # - This is because there is a class imbalance, where 3 out of the 4 labels are 1. # - If the data were perfectly balanced, (two labels were 1, and two labels were 0), model 1 and model 2 would have the same loss. Each would get two examples correct and two examples incorrect. # - However, since the data is not balanced, the regular loss function implies that model 1 is better than model 2. # ### Notice the shortcomings of a regular non-weighted loss # # See what loss you get from these two models (model 1 always predicts 0.9, and model 2 always predicts 0.1), see what the regular (unweighted) loss function is for each model. # In[ ]: loss_reg_1 = -1 * np.sum(y_true * np.log(y_pred_1)) + -1 * np.sum((1 - y_true) * np.log(1 - y_pred_1)) print(f"loss_reg_1: {loss_reg_1:.4f}") # In[ ]: loss_reg_2 = -1 * np.sum(y_true * np.log(y_pred_2)) + -1 * np.sum((1 - y_true) * np.log(1 - y_pred_2)) print(f"loss_reg_2: {loss_reg_2:.4f}") # In[ ]: print(f"When the model 1 always predicts 0.9, the regular loss is {loss_reg_1:.4f}") print(f"When the model 2 always predicts 0.1, the regular loss is {loss_reg_2:.4f}") # Notice that the loss function gives a greater loss when the predictions are always 0.1, because the data is imbalanced, and has three labels of `1` but only one label for `0`. # # Given a class imbalance with more positive labels, the regular loss function implies that the model with the higher prediction of 0.9 performs better than the model with the lower prediction of 0.1 # ### How a weighted loss treats both models the same # With a weighted loss function, you will get the same weighted loss when the predictions are all 0.9 versus when the predictions are all 0.1. # - Notice how a prediction of 0.9 is 0.1 away from the positive label of 1. # - Also notice how a prediction of 0.1 is 0.1 away from the negative label of 0 # - So model 1 and 2 are "symmetric" along the midpoint of 0.5, if you plot them on a number line between 0 and 1. # ### Weighted Loss Equation # Calculate the loss for the zero-th label (column at index 0) # # - The loss is made up of two terms. To make it easier to read the code, you will calculate each of these terms separately. We are giving each of these two terms a name for explanatory purposes, but these are not officially called $loss_{pos}$ or $loss_{neg}$ # # - $loss_{pos}$: we'll use this to refer to the loss where the actual label is positive (the positive examples). # - $loss_{neg}$: we'll use this to refer to the loss where the actual label is negative (the negative examples). # # $$ loss^{(i)} = loss_{pos}^{(i)} + los_{neg}^{(i)} $$ # # $$loss_{pos}^{(i)} = -1 \times weight_{pos}^{(i)} \times y^{(i)} \times log(\hat{y}^{(i)})$$ # # $$loss_{neg}^{(i)} = -1 \times weight_{neg}^{(i)} \times (1- y^{(i)}) \times log(1 - \hat{y}^{(i)})$$ # Since this sample dataset is small enough, you can calculate the positive weight to be used in the weighted loss function. To get the positive weight, count how many NEGATIVE labels are present, divided by the total number of examples. # # In this case, there is one negative label, and four total examples. # # Similarly, the negative weight is the fraction of positive labels. # # Run the next cell to define positive and negative weights. # In[ ]: # calculate the positive weight as the fraction of negative labels w_p = 1/4 # calculate the negative weight as the fraction of positive labels w_n = 3/4 print(f"positive weight w_p: {w_p}") print(f"negative weight w_n {w_n}") # ### Model 1 weighted loss # Run the next two cells to calculate the two loss terms separately. # # Here, `loss_1_pos` and `loss_1_neg` are calculated using the `y_pred_1` predictions. # In[ ]: # Calculate and print out the first term in the loss function, which we are calling 'loss_pos' loss_1_pos = -1 * np.sum(w_p * y_true * np.log(y_pred_1 )) print(f"loss_1_pos: {loss_1_pos:.4f}") # In[ ]: # Calculate and print out the second term in the loss function, which we're calling 'loss_neg' loss_1_neg = -1 * np.sum(w_n * (1 - y_true) * np.log(1 - y_pred_1 )) print(f"loss_1_neg: {loss_1_neg:.4f}") # In[ ]: # Sum positive and negative losses to calculate total loss loss_1 = loss_1_pos + loss_1_neg print(f"loss_1: {loss_1:.4f}") # ### Model 2 weighted loss # # Now do the same calculations for when the predictions are from `y_pred_2'. Calculate the two terms of the weighted loss function and add them together. # In[ ]: # Calculate and print out the first term in the loss function, which we are calling 'loss_pos' loss_2_pos = -1 * np.sum(w_p * y_true * np.log(y_pred_2)) print(f"loss_2_pos: {loss_2_pos:.4f}") # In[ ]: # Calculate and print out the second term in the loss function, which we're calling 'loss_neg' loss_2_neg = -1 * np.sum(w_n * (1 - y_true) * np.log(1 - y_pred_2)) print(f"loss_2_neg: {loss_2_neg:.4f}") # In[ ]: # Sum positive and negative losses to calculate total loss when the prediction is y_pred_2 loss_2 = loss_2_pos + loss_2_neg print(f"loss_2: {loss_2:.4f}") # ### Compare model 1 and model 2 weighted loss # In[ ]: print(f"When the model always predicts 0.9, the total loss is {loss_1:.4f}") print(f"When the model always predicts 0.1, the total loss is {loss_2:.4f}") # ### What do you notice? # Since you used a weighted loss, the calculated loss is the same whether the model always predicts 0.9 or always predicts 0.1. # # You may have also noticed that when you calculate each term of the weighted loss separately, there is a bit of symmetry when comparing between the two sets of predictions. # In[ ]: print(f"loss_1_pos: {loss_1_pos:.4f} \t loss_1_neg: {loss_1_neg:.4f}") print() print(f"loss_2_pos: {loss_2_pos:.4f} \t loss_2_neg: {loss_2_neg:.4f}") # Even though there is a class imbalance, where there are 3 positive labels but only one negative label, the weighted loss accounts for this by giving more weight to the negative label than to the positive label. # ### Weighted Loss for more than one class # # In this week's assignment, you will calculate the multi-class weighted loss (when there is more than one disease class that your model is learning to predict). Here, you can practice working with 2D numpy arrays, which will help you implement the multi-class weighted loss in the graded assignment. # # You will work with a dataset that has two disease classes (two columns) # In[ ]: # View the labels (true values) that you will practice with y_true = np.array( [[1,0], [1,0], [1,0], [1,0], [0,1] ]) y_true # ### Choosing axis=0 or axis=1 # You will use `numpy.sum` to count the number of times column `0` has the value 0. # First, notice the difference when you set axis=0 versus axis=1 # In[ ]: # See what happens when you set axis=0 print(f"using axis = 0 {np.sum(y_true,axis=0)}") # Compare this to what happens when you set axis=1 print(f"using axis = 1 {np.sum(y_true,axis=1)}") # Notice that if you choose `axis=0`, the sum is taken for each of the two columns. This is what you want to do in this case. If you set `axis=1`, the sum is taken for each row. # ### Calculate the weights # Previously, you visually inspected the data to calculate the fraction of negative and positive labels. Here, you can do this programmatically. # In[ ]: # set the positive weights as the fraction of negative labels (0) for each class (each column) w_p =
np.sum(y_true == 0,axis=0)
numpy.sum
import json import bz2 import gzip import _pickle as cPickle import gym import numpy as np import quaternion import skimage.morphology import habitat from envs.utils.fmm_planner import FMMPlanner from constants import coco_categories import envs.utils.pose as pu class ObjectGoal_Env(habitat.RLEnv): """The Object Goal Navigation environment class. The class is responsible for loading the dataset, generating episodes, and computing evaluation metrics. """ def __init__(self, args, rank, config_env, dataset): self.args = args self.rank = rank super().__init__(config_env, dataset) # Loading dataset info file self.split = config_env.DATASET.SPLIT self.episodes_dir = config_env.DATASET.EPISODES_DIR.format( split=self.split) if args.custom_eps: with open("{}/train_episode_data.json".format(args.custom_eps), 'r') as f: episodes_all = json.load(f) self.episodes_all = {} for ep in episodes_all: if ep["scene"] in self.episodes_all: self.episodes_all[ep["scene"]].append(ep) else: self.episodes_all[ep["scene"]] = [ep] dataset_info_file = self.episodes_dir + \ "{split}_info.pbz2".format(split=self.split) with bz2.BZ2File(dataset_info_file, 'rb') as f: self.dataset_info = cPickle.load(f) # Specifying action and observation space self.action_space = gym.spaces.Discrete(3) self.observation_space = gym.spaces.Box(0, 255, (3, args.frame_height, args.frame_width), dtype='uint8') # Initializations self.episode_no = 0 # Scene info self.last_scene_path = None self.scene_path = None self.scene_name = None # Episode Dataset info self.eps_data = None self.eps_data_idx = None self.gen_ep_idx = 1 self.gt_planner = None self.object_boundary = None self.goal_idx = None self.goal_name = None self.map_obj_origin = None self.starting_loc = None self.starting_distance = None if args.eval and args.shuffle: self.shuffled_indices = np.arange(args.num_eval_episodes) np.random.shuffle(self.shuffled_indices) # Episode tracking info self.curr_distance = None self.prev_distance = None self.timestep = None self.stopped = None self.path_length = None self.last_sim_location = None self.trajectory_states = [] self.info = {} self.info['distance_to_goal'] = None self.info['spl'] = None self.info['success'] = None def load_new_episode(self): """The function loads a fixed episode from the episode dataset. This function is used for evaluating a trained model on the val split. """ args = self.args self.scene_path = self.habitat_env.sim.config.SCENE scene_name = self.scene_path.split("/")[-1].split(".")[0] if self.scene_path != self.last_scene_path: if not args.testset: episodes_file = self.episodes_dir + \ "content/{}_episodes.json.gz".format(scene_name) print("Loading episodes from: {}".format(episodes_file)) with gzip.open(episodes_file, 'r') as f: self.eps_data = json.loads( f.read().decode('utf-8'))["episodes"] else: episodes_file = self.episodes_dir + \ "content/{}_test_episodes.json".format(scene_name) print("Loading episodes from: {}".format(episodes_file)) with open(episodes_file, 'r') as f: self.eps_data = json.load(f) self.eps_data_idx = 0 self.last_scene_path = self.scene_path # Load episode info if self.args.shuffle: episode = self.eps_data[self.shuffled_indices[self.eps_data_idx]] else: episode = self.eps_data[self.eps_data_idx] self.info["episode_data"] = episode self.eps_data_idx += 1 self.eps_data_idx = self.eps_data_idx % len(self.eps_data) pos = episode["start_position"] rot = quaternion.from_float_array(episode["start_rotation"]) goal_name = episode["object_category"] goal_idx = episode["object_id"] floor_idx = episode["floor_id"] # Load scene info scene_info = self.dataset_info[scene_name] sem_map = scene_info[floor_idx]['sem_map'] map_obj_origin = scene_info[floor_idx]['origin'] # Setup ground truth planner object_boundary = args.success_dist map_resolution = args.map_resolution selem = skimage.morphology.disk(2) traversible = skimage.morphology.binary_dilation( sem_map[0], selem) != True traversible = 1 - traversible planner = FMMPlanner(traversible) selem = skimage.morphology.disk( int(object_boundary * 100. / map_resolution)) goal_map = skimage.morphology.binary_dilation( sem_map[goal_idx + 1], selem) != True goal_map = 1 - goal_map planner.set_multi_goal(goal_map) # Get starting loc in GT map coordinates x = -pos[2] y = -pos[0] min_x, min_y = map_obj_origin / 100.0 map_loc = int((-y - min_y) * 20.), int((-x - min_x) * 20.) self.gt_planner = planner self.starting_loc = map_loc self.object_boundary = object_boundary self.goal_idx = goal_idx self.goal_name = goal_name self.map_obj_origin = map_obj_origin self.starting_distance = self.gt_planner.fmm_dist[self.starting_loc]\ / 20.0 + self.object_boundary self.info["episode_data"]["shortest_dist"] = self.starting_distance self.prev_distance = self.starting_distance self._env.sim.set_agent_state(pos, rot) self.info["sim_pos"] = pos self.info["sim_rot"] = rot self.info["scene"] = scene_name self.info["floor_idx"] = floor_idx # The following two should match approximately #print(self.starting_loc) #print(self.sim_continuous_to_sim_map(self.get_sim_location())) self.info['gt_pos'] = self.sim_continuous_to_sim_map(self.get_sim_location()) obs = self._env.sim.get_observations_at(pos, rot) return obs def load_incomplete_episode(self): args = self.args self.scene_path = self.habitat_env.sim.config.SCENE scene_name = self.scene_path.split("/")[-1].split(".")[0] if self.scene_path != self.last_scene_path: print("Loading episodes from: {}".format(scene_name)) self.eps_data_idx = 0 self.last_scene_path = self.scene_path episode = self.episodes_all[scene_name][self.eps_data_idx] self.info["episode_data"] = episode self.eps_data_idx += 1 self.eps_data_idx = self.eps_data_idx % len(self.episodes_all[scene_name]) pos = episode["sim_pos"] rot = quaternion.from_rotation_vector(episode["sim_rot"]) goal_name = episode["goal_name"] goal_idx = episode["goal_cat_id"] floor_idx = episode["floor_idx"] # Load scene info scene_info = self.dataset_info[scene_name] sem_map = scene_info[floor_idx]['sem_map'] map_obj_origin = scene_info[floor_idx]['origin'] # Setup ground truth planner object_boundary = args.success_dist map_resolution = args.map_resolution selem = skimage.morphology.disk(2) traversible = skimage.morphology.binary_dilation( sem_map[0], selem) != True traversible = 1 - traversible planner = FMMPlanner(traversible) selem = skimage.morphology.disk( int(object_boundary * 100. / map_resolution)) goal_map = skimage.morphology.binary_dilation( sem_map[goal_idx + 1], selem) != True goal_map = 1 - goal_map planner.set_multi_goal(goal_map) # Get starting loc in GT map coordinates x = -pos[2] y = -pos[0] min_x, min_y = map_obj_origin / 100.0 map_loc = int((-y - min_y) * 20.), int((-x - min_x) * 20.) self.gt_planner = planner self.starting_loc = map_loc self.object_boundary = object_boundary self.goal_idx = goal_idx self.goal_name = goal_name self.map_obj_origin = map_obj_origin self.starting_distance = self.gt_planner.fmm_dist[self.starting_loc]\ / 20.0 + self.object_boundary self.info["episode_data"]["shortest_dist"] = self.starting_distance self.prev_distance = self.starting_distance self._env.sim.set_agent_state(pos, rot) self.info["sim_pos"] = pos self.info["sim_rot"] = rot # The following two should match approximately #print(self.starting_loc) #print(self.sim_continuous_to_sim_map(self.get_sim_location())) self.info['gt_pos'] = self.sim_continuous_to_sim_map(self.get_sim_location()) obs = self._env.sim.get_observations_at(pos, rot) return obs def generate_new_episode(self): """The function generates a random valid episode. This function is used for training a model on the train split. """ args = self.args self.scene_path = self.habitat_env.sim.config.SCENE scene_name = self.scene_path.split("/")[-1].split(".")[0] scene_info = self.dataset_info[scene_name] map_resolution = args.map_resolution floor_idx = np.random.randint(len(scene_info.keys())) floor_height = scene_info[floor_idx]['floor_height'] sem_map = scene_info[floor_idx]['sem_map'] map_obj_origin = scene_info[floor_idx]['origin'] cat_counts = sem_map.sum(2).sum(1) possible_cats = list(np.arange(6)) for i in range(6): if cat_counts[i + 1] == 0: possible_cats.remove(i) object_boundary = args.success_dist loc_found = False while not loc_found: if len(possible_cats) == 0: print("No valid objects for {}".format(floor_height)) eps = eps - 1 continue goal_idx = np.random.choice(possible_cats) for key, value in coco_categories.items(): if value == goal_idx: goal_name = key selem = skimage.morphology.disk(2) traversible = skimage.morphology.binary_dilation( sem_map[0], selem) != True traversible = 1 - traversible planner = FMMPlanner(traversible) selem = skimage.morphology.disk( int(object_boundary * 100. / map_resolution)) goal_map = skimage.morphology.binary_dilation( sem_map[goal_idx + 1], selem) != True goal_map = 1 - goal_map planner.set_multi_goal(goal_map) m1 = sem_map[0] > 0 m2 = planner.fmm_dist > (args.min_d - object_boundary) * 20.0 m3 = planner.fmm_dist < (args.max_d - object_boundary) * 20.0 possible_starting_locs = np.logical_and(m1, m2) possible_starting_locs = np.logical_and( possible_starting_locs, m3) * 1. if possible_starting_locs.sum() != 0: loc_found = True else: print("Invalid object: {} / {} / {}".format( scene_name, floor_height, goal_name)) possible_cats.remove(goal_idx) scene_info[floor_idx]["sem_map"][goal_idx + 1, :, :] = 0. self.dataset_info[scene_name][floor_idx][ "sem_map"][goal_idx + 1, :, :] = 0. loc_found = False while not loc_found: pos = self._env.sim.sample_navigable_point() x = -pos[2] y = -pos[0] min_x, min_y = map_obj_origin / 100.0 map_loc = int((-y - min_y) * 20.), int((-x - min_x) * 20.) if abs(pos[1] - floor_height) < args.floor_thr / 100.0 and \ possible_starting_locs[map_loc[0], map_loc[1]] == 1: loc_found = True agent_state = self._env.sim.get_agent_state(0) rotation = agent_state.rotation rvec = quaternion.as_rotation_vector(rotation) rvec[1] = np.random.rand() * 2 * np.pi rot = quaternion.from_rotation_vector(rvec) self.gt_planner = planner self.starting_loc = map_loc self.object_boundary = object_boundary self.goal_idx = goal_idx self.goal_name = goal_name self.map_obj_origin = map_obj_origin self.starting_distance = self.gt_planner.fmm_dist[self.starting_loc] \ / 20.0 + self.object_boundary self.prev_distance = self.starting_distance self._env.sim.set_agent_state(pos, rot) self.info["sim_pos"] = pos self.info["sim_rot"] = quaternion.as_float_array(rot) self.info["episode_id"] = self.gen_ep_idx self.gen_ep_idx += 1 self.info["scene"] = scene_name self.info["floor_idx"] = floor_idx self.info["goal_name"] = goal_name # The following two should match approximately # print(starting_loc) # print(self.sim_continuous_to_sim_map(self.get_sim_location())) self.info['gt_pos'] = self.sim_continuous_to_sim_map(self.get_sim_location()) obs = self._env.sim.get_observations_at(pos, rot) return obs def sim_map_to_sim_continuous(self, coords): """Converts ground-truth 2D Map coordinates to absolute Habitat simulator position and rotation. """ agent_state = self._env.sim.get_agent_state(0) y, x = coords min_x, min_y = self.map_obj_origin / 100.0 cont_x = x / 20. + min_x cont_y = y / 20. + min_y agent_state.position[0] = cont_y agent_state.position[2] = cont_x rotation = agent_state.rotation rvec = quaternion.as_rotation_vector(rotation) if self.args.train_single_eps: rvec[1] = 0.0 else: rvec[1] = np.random.rand() * 2 * np.pi rot = quaternion.from_rotation_vector(rvec) return agent_state.position, rot def sim_continuous_to_sim_map(self, sim_loc): """Converts absolute Habitat simulator pose to ground-truth 2D Map coordinates. """ x, y, o = sim_loc min_x, min_y = self.map_obj_origin / 100.0 x, y = int((-x - min_x) * 20.), int((-y - min_y) * 20.) o = np.rad2deg(o) + 180.0 return y, x, o def reset(self): """Resets the environment to a new episode. Returns: obs (ndarray): RGBD observations (4 x H x W) info (dict): contains timestep, pose, goal category and evaluation metric info """ args = self.args new_scene = self.episode_no % args.num_train_episodes == 0 self.episode_no += 1 # Initializations self.timestep = 0 self.stopped = False self.path_length = 1e-5 self.trajectory_states = [] if new_scene: obs = super().reset() self.scene_name = self.habitat_env.sim.config.SCENE print("Changing scene: {}/{}".format(self.rank, self.scene_name)) self.scene_path = self.habitat_env.sim.config.SCENE if args.gen_episode: obs = self.generate_new_episode() elif args.custom_eps: obs = self.load_incomplete_episode() elif self.split == "val": obs = self.load_new_episode() else: obs = self.generate_new_episode() rgb = obs['rgb'].astype(np.uint8) depth = obs['depth'] state =
np.concatenate((rgb, depth), axis=2)
numpy.concatenate
from . import Image import matplotlib.pyplot as plt import numpy as np import re from astropy.time import Time from astropy import units as u from astropy.coordinates import SkyCoord from .fluxes import ApertureFluxes from . import viz from astropy.io import fits from .telescope import Telescope from . import utils from astroquery.mast import Catalogs from astropy.wcs import WCS, utils as wcsutils import pandas as pd from scipy.stats import binned_statistic from .blocks.psf import Gaussian2D, Moffat2D,cutouts from .console_utils import INFO_LABEL from astropy.stats import sigma_clipped_stats from astropy.io.fits.verify import VerifyWarning from datetime import datetime import warnings from .blocks.registration import distances import requests import shutil from pathlib import Path from . import twirl import io from .utils import fast_binning, z_scale from .console_utils import info warnings.simplefilter('ignore', category=VerifyWarning) class Observation(ApertureFluxes): """ Class to load and analyze photometry products Parameters ---------- photfile : str path of the `.phot` file to load """ def __init__(self, photfile, ignore_time=False): super().__init__(photfile) utils.remove_sip(self.xarray.attrs) self.phot = photfile self.telescope = Telescope.from_name(self.telescope) self.gaia_data = None self.tic_data = None self.wcs = WCS(utils.remove_arrays(self.xarray.attrs)) self._meridian_flip = None has_bjd = hasattr(self.xarray, "bjd_tdb") if has_bjd: has_bjd = ~np.all(self.xarray.bjd_tdb.isnull().values) if not has_bjd: try: self.compute_bjd() if not ignore_time: print(f"{INFO_LABEL} Time converted to BJD TDB") except: if not ignore_time: print(f"{INFO_LABEL} Could not convert time to BJD TDB") def _check_stack(self): assert 'stack' in self.xarray is not None, "No stack found" # Loaders and savers (files and data) # ------------------------------------ def __copy__(self): copied = Observation(self.xarray.copy(), ignore_time=True) copied.phot = self.phot copied.telescope = self.telescope copied.gaia_data = self.gaia_data copied.tic_data = self.tic_data copied.wcs = self.wcs return copied def copy(self): return self.__copy__() def to_csv(self, destination, sep=" "): """Export a typical csv of the observation's data Parameters ---------- destination : str Path of the csv file to save sep : str, optional separation string within csv, by default " " """ df = pd.DataFrame( { "BJD-TDB" if self.time_format == "bjd_tdb" else "JD-UTC": self.time, "DIFF_FLUX": self.diff_flux, "ERROR": self.diff_error, "dx_MOVE": self.dx, "dy_MOVE": self.dy, "FWHM": self.fwhm, "FWHMx": self.fwhm, "FWHMy": self.fwhm, "SKYLEVEL": self.sky, "AIRMASS": self.airmass, "EXPOSURE": self.exptime, } ) df.to_csv(destination, sep=sep, index=False) def save(self, destination=None): """Save current observation Parameters ---------- destination : str, optional path to phot file, by default None """ self.xarray.to_netcdf(self.phot if destination is None else destination) info(f"saved {self.phot}") def export_stack(self, destination, **kwargs): """Export stack to FITS file Parameters ---------- destination : str path of FITS to export """ header = {name: value for name, value in self.xarray.attrs.items() if name.isupper()} data = self.stack hdul = fits.HDUList([fits.PrimaryHDU(data=data, header=fits.Header(header))]) hdul.writeto(destination, **kwargs) def import_stack(self, fitsfile): """Import FITS as stack to current obs (including WCS) - do not forget to save to keep it Parameters ---------- fitsfile : str path of FITS stack to import """ data = fits.getdata(fitsfile) header = fits.getheader(fitsfile) self.wcs = WCS(header) self.xarray.attrs.update(utils.header_to_cdf4_dict(header)) self.xarray["stack"] = (('w', 'h'), data) # Convenience # ----------- @property def skycoord(self): """astropy SkyCoord object for the target """ return SkyCoord(self.RA, self.DEC, frame='icrs', unit=(self.telescope.ra_unit, self.telescope.dec_unit)) @property def simbad_url(self): """ [notebook feature] clickable simbad query url for specified target """ from IPython.core.display import display, HTML display(HTML('<a href="{}">{}</a>'.format(self.simbad, self.simbad))) @property def simbad(self): """ simbad query url for specified target """ return f"http://simbad.u-strasbg.fr/simbad/sim-coo?Coord={self.RA}+{self.DEC}&CooFrame=FK5&CooEpoch=2000&CooEqui=" \ "2000&CooDefinedFrames=none&Radius=2&Radius.unit=arcmin&submit=submit+query&CoordList=" @property def denominator(self): """A conveniant name for the observation: {telescope}_{date}_{name}_{filter} Returns ------- [type] [description] """ return f"{self.telescope.name}_{self.date}_{self.name}_{self.filter}" @property def meridian_flip(self): """Meridian flip time. Supposing EAST and WEST encode orientation """ if self._meridian_flip is not None: return self._meridian_flip else: has_flip = hasattr(self.xarray, "flip") if has_flip: try: np.all(np.isnan(self.flip)) return None except TypeError: pass if has_flip: if "WEST" in self.flip: flip = (self.flip.copy() == "WEST").astype(int) diffs = np.abs(np.diff(flip)) if np.any(diffs): self._meridian_flip = self.time[np.argmax(diffs).flatten()] else: self._meridian_flip = None return self._meridian_flip else: return None else: return None # TESS specific methods # -------------------- @property def tic_id(self): """TIC id from digits found in target name """ try: nb = re.findall('\d*\.?\d+', self.name) df = pd.read_csv("https://exofop.ipac.caltech.edu/tess/download_toi?toi=%s&output=csv" % nb[0]) tic = df["TIC ID"][0] return f"{tic}" except KeyError: print('TIC ID not found') return None @property def gaia_from_toi(self): """Gaia id from TOI id if TOI is in target name """ if self.tic_id is not None: tic_id = ("TIC " + self.tic_id) catalog_data = Catalogs.query_object(tic_id, radius=.001, catalog="TIC") return f"{catalog_data['GAIA'][0]}" else: return None @property def tfop_prefix(self): return f"TIC{self.tic_id}_{self.date}_{self.telescope.name}_{self.filter}" # Methods # ------- def compute_bjd(self, version="prose"): """Compute BJD_tdb based on current time Once this is done self.time is BJD tdb and time format can be checked in self.time_format. Note that half the exposure time is added to the JD times before conversion. The precision of the returned time is not guaranteed, especially with "prose" method (~30ms). "eastman" option accuracy is 20ms. See http://astroutils.astronomy.ohio-state.edu/time/utc2bjd.html for more details. Parameters ---------- version : str, optiona - "prose": uses an astropy method - "eastman": uses the web applet http://astroutils.astronomy.ohio-state.edu (Eastman et al. 2010) [requires an internet connection] by default "prose" """ assert self.telescope is not None assert self.skycoord is not None exposure_days = self.xarray.exposure.values/60/60/24 # For backward compatibility # -------------------------- if "time_format" not in self.xarray.attrs: self.xarray.attrs["time_format"] = "jd_utc" self.xarray["jd_utc"] = ("time", self.time) if "jd_utc" not in self: self.xarray["jd_utc"] = ("time", self.jd) self.xarray.drop("jd") # ------------------------- if version == "prose": time = Time(self.jd_utc + exposure_days/2, format="jd", scale="utc", location=self.telescope.earth_location).tdb light_travel_tbd = time.light_travel_time(self.skycoord, location=self.telescope.earth_location) bjd_time = (time + light_travel_tbd).value elif version == "eastman": bjd_time = utils.jd_to_bjd(self.jd_utc + exposure_days/2, self.skycoord.ra.deg, self.skycoord.dec.deg) self.xarray = self.xarray.assign_coords(time=bjd_time) self.xarray["bjd_tdb"] = ("time", bjd_time) self.xarray.attrs["time_format"] = "bjd_tdb" # Catalog queries # --------------- def query_gaia(self, limit=-1, cone_radius=None): """Query gaia catalog for stars in the field """ from astroquery.gaia import Gaia Gaia.ROW_LIMIT = limit header = self.xarray.attrs shape = self.stack.shape if cone_radius is None: cone_radius = np.sqrt(2) * np.max(shape) * self.telescope.pixel_scale / 120 coord = self.skycoord radius = u.Quantity(cone_radius, u.arcminute) gaia_query = Gaia.cone_search_async(coord, radius, verbose=False, ) self.gaia_data = gaia_query.get_results() self.gaia_data.sort("phot_g_mean_flux", reverse=True) delta_years = (utils.datetime_to_years(datetime.strptime(self.date, "%Y%m%d")) - \ self.gaia_data["ref_epoch"].data.data) * u.year dra = delta_years * self.gaia_data["pmra"].to(u.deg / u.year) ddec = delta_years * self.gaia_data["pmdec"].to(u.deg / u.year) skycoords = SkyCoord( ra=self.gaia_data['ra'].quantity + dra, dec=self.gaia_data['dec'].quantity + ddec, pm_ra_cosdec=self.gaia_data['pmra'], pm_dec=self.gaia_data['pmdec'], radial_velocity=self.gaia_data['radial_velocity'], obstime=Time(2015.0, format='decimalyear')) gaias = np.array(wcsutils.skycoord_to_pixel(skycoords, self.wcs)).T gaias[np.any(np.isnan(gaias), 1), :] = [0, 0] self.gaia_data["x"], self.gaia_data["y"] = gaias.T inside = np.all((np.array([0, 0]) < gaias) & (gaias < np.array(self.stack.shape)), 1) self.gaia_data = self.gaia_data[np.argwhere(inside).squeeze()] w, h = self.stack.shape if np.abs(np.mean(self.gaia_data["x"])) > w or np.abs(np.mean(self.gaia_data["y"])) > h: warnings.warn("Catalog stars seem out of the field. Check that your stack is solved and that telescope " "'ra_unit' and 'dec_unit' are well set") def query_tic(self,cone_radius=None): """Query TIC catalog (through MAST) for stars in the field """ from astroquery.mast import Catalogs header = self.xarray.attrs shape = self.stack.shape if cone_radius is None: cone_radius = np.sqrt(2) * np.max(shape) * self.telescope.pixel_scale / 120 coord = self.skycoord radius = u.Quantity(cone_radius, u.arcminute) self.tic_data = Catalogs.query_region(coord, radius, "TIC", verbose=False) self.tic_data.sort("Jmag") skycoords = SkyCoord( ra=self.tic_data['ra'], dec=self.tic_data['dec'], unit="deg") self.tic_data["x"], self.tic_data["y"] = np.array(wcsutils.skycoord_to_pixel(skycoords, self.wcs)) w, h = self.stack.shape if np.abs(np.mean(self.tic_data["x"])) > w or np.abs(np.mean(self.tic_data["y"])) > h: warnings.warn("Catalog stars seem out of the field. Check that your stack is solved and that telescope " "'ra_unit' and 'dec_unit' are well set") @property def gaia_target(self): return None @gaia_target.setter def gaia_target(self, gaia_id): """Set target with a gaia id Parameters ---------- gaia_id : int gaia id """ if self.gaia_data is None: self.query_gaia() _ = self.gaia_data.to_pandas()[["source_id", "x", "y"]].to_numpy() ids = _[:, 0] positions = _[:, 1:3] gaia_i = np.argmin(np.abs(gaia_id - ids)) self.target = np.argmin(np.power(positions[gaia_i, :] - self.stars[:, ::-1], 2).sum(1)) # Plot # ---- def show(self, size=10, flip=False, zoom=False, contrast=0.05, wcs=False, cmap="Greys_r", sigclip=None,vmin=None,vmax=None): """Show stack image Parameters ---------- size : int, optional size of the square figure, by default 10 flip : bool, optional , by default False zoom : bool, optional whether to include a zoom inlay in the image, by default False contrast : float, optional contrast for the Zscale of image, by default 0.05 wcs : bool, optional whether to show grid ans axes to world coordinate """ if self.target == -1: zoom = False self._check_stack() fig = plt.figure(figsize=(size, size)) fig.patch.set_facecolor('white') image = self.stack.copy() if flip: image = image[::-1, ::-1] if sigclip is not None: mean, median, std = sigma_clipped_stats(image) image[image - median < 2 * std] = median if wcs: ax = plt.subplot(projection=self.wcs, label='overlays') else: ax = fig.add_subplot(111) if all([vmin, vmax]) is False: _ = ax.imshow(utils.z_scale(image,c=contrast), cmap=cmap, origin="lower") else: _ = ax.imshow(image, cmap=cmap, origin="lower",vmin=vmin,vmax=vmax) if wcs: ax.coords.grid(True, color='white', ls='solid', alpha=0.3) ax.coords[0].set_axislabel('Galactic Longitude') ax.coords[1].set_axislabel('Galactic Latitude') overlay = ax.get_coords_overlay('fk5') overlay.grid(color='white', ls='--', alpha=0.3) overlay[0].set_axislabel('Right Ascension (J2000)') overlay[1].set_axislabel('Declination (J2000)') def _check_show(self, **kwargs): axes = plt.gcf().axes if len(axes) == 0: self.show(**kwargs) def show_stars(self, size=10, view=None, n=None, flip=False, comp_color="yellow", color=[0.51, 0.86, 1.], stars=None, legend=True, **kwargs): """Show detected stars over stack image Parameters ---------- size : int, optional size of the square figure, by default 10 flip : bool, optional whether to flip image, by default False view : str, optional "all" to see all stars OR "reference" to have target and comparison stars hilighted, by default None n : int, optional max number of stars to show, by default None, Raises ------ AssertionError [description] """ self._check_show(flip=flip, size=size, **kwargs) if stars is None: stars = self.stars if n is not None: if view == "reference": raise AssertionError("'n_stars' kwargs is incompatible with 'reference' view that will display all stars") else: n = len(stars) stars = stars[0:n] if view is None: view = "reference" if 'comps' in self else "all" image_size = np.array(np.shape(self.stack))[::-1] if flip: stars = np.array(image_size) - stars if view == "all": viz.plot_marks(*stars.T, np.arange(len(stars)), color=color) if "stars" in self.xarray: others = np.arange(n, len(self.stars)) others = np.setdiff1d(others, self.target) viz.plot_marks(*self.stars[others].T, alpha=0.4, color=color) elif view == "reference": x = self.xarray.isel(apertures=self.aperture) assert 'comps' in self, "No differential photometry" comps = x.comps.values others = np.setdiff1d(np.arange(len(stars)), x.comps.values) others = np.setdiff1d(others, self.target) _ = viz.plot_marks(*stars[self.target], self.target, color=color) _ = viz.plot_marks(*stars[comps].T, comps, color=comp_color) _ = viz.plot_marks(*stars[others].T, alpha=0.4, color=color) if legend: colors = [comp_color, color] texts = ["Comparison stars", "Target"] viz.circles_legend(colors, texts) def show_gaia(self, color="yellow", alpha=1, n=None, idxs=True, limit=-1, fontsize=8, align=False): """Overlay Gaia objects on stack image Parameters ---------- color : str, optional color of marks and font, by default "lightblue" alpha : int, optional opacity of marks and font, by default 1 n : int, optional max number of stars to show, by default None, by default None for all stars idxs : bool, optional wether to show gaia ids, by default True """ self._check_show() if self.gaia_data is None: self.query_gaia(limit=limit) gaias = np.vstack([self.gaia_data["x"].data, self.gaia_data["y"].data]).T defined = ~np.any(np.isnan(gaias), 1) gaias = gaias[defined] labels = self.gaia_data["source_id"].data.astype(str)[defined] if align: X = twirl.find_transform(gaias[0:30], self.stars, n=15) gaias = twirl.affine_transform(X)(gaias) labels = [f"{_id[0:len(_id) // 2]}\n{_id[len(_id) // 2::]}" for _id in labels] _ = viz.plot_marks(*gaias.T, labels if idxs else None, color=color, alpha=alpha, n=n, position="top", fontsize=fontsize) def show_tic(self, color="white", alpha=1, n=None, idxs=True, align=True): """Overlay TIC objects on stack image Parameters ---------- color : str, optional color of marks and font, by default "lightblue" alpha : int, optional opacity of marks and font, by default 1 n : int, optional max number of stars to show, by default None, by default None for all stars idxs : bool, optional wether to show TIC ids, by default True """ self._check_show() if self.tic_data is None: self.query_tic() x = self.tic_data["x"].data y = self.tic_data["y"].data tics = np.vstack([x, y]).T ID = self.tic_data["ID"].data if align: X = twirl.find_transform(tics[0:30], self.stars, n=15) tics = twirl.affine_transform(X)(tics) _ = viz.plot_marks(*tics.T, ID if idxs else None, color=color, alpha=alpha, n=n, position="top", fontsize=9, offset=10) def show_cutout(self, star=None, size=200, marks=True,**kwargs): """ Show a zoomed cutout around a detected star or coordinates Parameters ---------- star : [type], optional detected star id or (x, y) coordinate, by default None size : int, optional side size of square cutout in pixel, by default 200 """ if star is None: x, y = self.stars[self.target] elif isinstance(star, int): x, y = self.stars[star] elif isinstance(star, (tuple, list, np.ndarray)): x, y = star else: raise ValueError("star type not understood") self.show(**kwargs) plt.xlim(np.array([-size / 2, size / 2]) + x) plt.ylim(np.array([-size / 2, size / 2]) + y) if marks: idxs = np.argwhere(np.max(np.abs(self.stars - [x, y]), axis=1) < size).squeeze() viz.plot_marks(*self.stars[idxs].T, label=idxs) def plot_comps_lcs(self, n=15, ylim=(0.98, 1.02)): """Plot comparison stars light curves along target star light curve Parameters ---------- n : int, optional Number max of comparison to show, by default 5 ylim : tuple, optional ylim of the plot, by default (0.98, 1.02) """ idxs = [self.target, *self.xarray.comps.isel(apertures=self.aperture).values[0:n]] lcs = [self.xarray.diff_fluxes.isel(star=i, apertures=self.aperture).values for i in idxs] if ylim is None: ylim = (self.diff_flux.min() * 0.99, self.diff_flux.max() * 1.01) offset = ylim[1] - ylim[0] if len(plt.gcf().axes) == 0: plt.figure(figsize=(5, 10)) for i, lc in enumerate(lcs): color = "grey" if i != 0 else "black" viz.plot(self.time, lc - i * offset, bincolor=color) plt.annotate(idxs[i], (self.time.min() + 0.005, 1 - i * offset + offset / 3)) plt.ylim(1 - (i + 0.5) * offset, ylim[1]) plt.title("Comparison stars", loc="left") plt.grid(color="whitesmoke") plt.tight_layout() def plot_psf_fit(self, size=21, cmap="inferno", c="blueviolet", model=Gaussian2D): """Plot a 2D gaussian fit of the global psf (extracted from stack fits) Parameters ---------- size : int, optional square size of extracted PSF, by default 21 cmap : str, optional color map of psf image, by default "inferno" c : str, optional color of model plot line, by default "blueviolet" model : prose.blocks, optional a PsfFit block, by default Gaussian2D Returns ------- dict PSF fit info (theta, std_x, std_y, fwhm_x, fwhm_y) """ psf_fit = model() image = Image(data=self.stack, stars_coords=self.stars, header=self.xarray.attrs) psf_fit.run(image) if len(plt.gcf().get_axes()) == 0: plt.figure(figsize=(12, 4)) viz.plot_marginal_model(psf_fit.epsf, psf_fit.optimized_model, cmap=cmap, c=c) return {"theta": image.theta, "std_x": image.psf_sigma_x, "std_y": image.psf_sigma_y, "fwhm_x": image.fwhmx, "fwhm_y": image.fwhmy } def plot_star_psf(self,star=None,cutout_size=21,print_values=True,plot=True): if star is None: star = self.target cutout = cutouts(self.stack, [self.stars[star]], size=cutout_size) psf_fit = Moffat2D(cutout_size=cutout_size) params = ['fwhmx =', 'fwhmy =', 'theta ='] values = [] for i in range(len(params)): if print_values is True: print(params[i], psf_fit(cutout.data[0])[i]) values.append(psf_fit(cutout.data[0])[i]) if plot is True: viz.plot_marginal_model(psf_fit.epsf, psf_fit.optimized_model) return values def plot_rms(self, bins=0.005): """Plot binned rms of lightcurves vs the CCD equation Parameters ---------- bins : float, optional bin size used to compute error, by default 0.005 (in days) """ self._check_diff() viz.plot_rms( self.diff_fluxes, self.lcs, bins=bins, target=self.target["id"], highlights=self.comparison_stars) def plot_systematics(self, fields=None, ylim=(0.98, 1.02)): """Plot systematics measurements along target light curve Parameters ---------- fields : list of str, optional list of systematic to include (must be in self), by default None ylim : tuple, optional plot ylim, by default (0.98, 1.02) """ if fields is None: fields = ["dx", "dy", "fwhm", "airmass", "sky"] flux = self.diff_flux.copy() flux /= np.nanmean(flux) if ylim is None: ylim = (flux.nanmin() * 0.99, flux.nanmax() * 1.01) offset = ylim[1] - ylim[0] if len(plt.gcf().axes) == 0: plt.figure(figsize=(5 ,10)) viz.plot(self.time, flux, bincolor="black") for i, field in enumerate(fields): if field in self: scaled_data = self.xarray[field].values.copy() scaled_data = np.nan_to_num(scaled_data, -1) scaled_data[scaled_data - np.nanmean(scaled_data) > 5*np.nanstd(scaled_data)] = -1 scaled_data = scaled_data - np.median(scaled_data) scaled_data = scaled_data / np.std(scaled_data) scaled_data *= np.std(flux) scaled_data += 1 - (i + 1) * offset viz.plot(self.time, scaled_data, bincolor="grey") plt.annotate(field, (self.time.min() + 0.005, 1 - (i + 1) * offset + offset / 3)) else: i -= 1 plt.ylim(1 - (i + 1.5) * offset, ylim[1]) plt.title("Systematics", loc="left") plt.grid(color="whitesmoke") plt.tight_layout() def plot_raw_diff(self): """Plot raw target flux and differantial flux """ plt.subplot(211) plt.title("Differential lightcurve", loc="left") self.plot() plt.grid(color="whitesmoke") plt.subplot(212) plt.title("Normalized flux", loc="left") flux = self.xarray.raw_fluxes.isel(star=self.target, apertures=self.aperture).values plt.plot(self.time, flux, ".", ms=3, label="target", c="C0") if 'alc' in self: plt.plot(self.time, self.xarray.alc.isel(apertures=self.aperture).values*np.median(flux), ".", ms=3, c="k", label="artifical star") plt.legend() plt.grid(color="whitesmoke") plt.xlim([np.min(self.time), np.max(self.time)]) plt.tight_layout() def plot_precision(self, bins=0.005, aperture=None): """Plot observation precision estimate against theorethical error (background noise, photon noise and CCD equation) Parameters ---------- bins : float, optional bin size used to estimate error, by default 0.005 (in days) aperture : int, optional chosen aperture, by default None """ n_bin = int(bins / (np.mean(self.exptime) / (60 * 60 * 24))) assert len(self.time) > n_bin, "Your 'bins' size is less than the total exposure" x = self.xarray.isel(apertures=self.aperture if aperture is None else aperture).copy() fluxes = x.raw_fluxes.values errors = x.raw_errors.values mean_fluxes = np.mean(fluxes, axis=1) mean_errors = np.mean(errors, axis=1) error_estimate = [np.median(binned_statistic(self.time, f, statistic='std', bins=n_bin)[0]) for f in fluxes] area = x.apertures_area[0].values # ccd_equation = phot_prose.telescope.error( # prose_fluxes, tp_area, np.mean(self.sky), np.mean(self.exptime), np.mean(self.airmass)) ccd_equation = (mean_errors / mean_fluxes) inv_snr_estimate = error_estimate / mean_fluxes positive_est = inv_snr_estimate > 0 mean_fluxes = mean_fluxes[positive_est] inv_snr_estimate = inv_snr_estimate[positive_est] ccd_equation = ccd_equation[positive_est] sorted_fluxes_idxs = np.argsort(mean_fluxes) plt.plot(np.log(mean_fluxes), inv_snr_estimate, ".", alpha=0.5, ms=2, c="k", label=f"flux rms ({0.005 * (60 * 24):.1f} min bins)") plt.plot(np.log(mean_fluxes)[sorted_fluxes_idxs], (np.sqrt(mean_fluxes) / mean_fluxes)[sorted_fluxes_idxs], "--", c="k", label="photon noise", alpha=0.5) plt.plot(np.log(mean_fluxes)[sorted_fluxes_idxs], (np.sqrt(np.mean(self.sky) * area) / mean_fluxes)[sorted_fluxes_idxs], c="k", label="background noise", alpha=0.5) # plt.plot(np.log(prose_fluxes)[s], (prose_e/prose_fluxes)[s], label="CCD equation") plt.plot(np.log(mean_fluxes)[sorted_fluxes_idxs], ccd_equation[sorted_fluxes_idxs], label="CCD equation") plt.legend() plt.ylim( 0.5 * np.percentile(inv_snr_estimate, 2), 1.5 * np.percentile(inv_snr_estimate, 98)) plt.xlim(np.min(np.log(mean_fluxes)), np.max(np.log(mean_fluxes))) plt.yscale("log") plt.xlabel("log(ADU)") plt.ylabel("$SNR^{-1}$") plt.title("Photometric precision (raw fluxes)", loc="left") def plot_meridian_flip(self): """Plot meridian flip line over existing axe """ if self.meridian_flip is not None: plt.axvline(self.meridian_flip, c="k", alpha=0.15) _, ylim = plt.ylim() plt.text(self.meridian_flip, ylim, "meridian flip ", ha="right", rotation="vertical", va="top", color="0.7") def plot(self, star=None, meridian_flip=True, bins=0.005, color="k", std=True): """Plot observation light curve Parameters ---------- star : [type], optional [description], by default None meridian_flip : bool, optional whether to show meridian flip, by default True bins : float, optional bin size in same unit as Observation.time, by default 0.005 color : str, optional binned points color, by default "k" std : bool, optional whether to see standard deviation of bins as error bar, by default True, otherwise theoretical error bat is shown """ super().plot(star=star, bins=bins, color=color, std=std) if meridian_flip: self.plot_meridian_flip() def plot_psf(self, star=None, n=40, zscale=False, aperture=None, rin=None, rout=None): """Plot star cutout overalid with aperture and radial flux. Parameters ---------- star : int or list like, optional if int: star to plot cutout on, if list like (tuple, np.ndarray) of size 2: coords of cutout, by default None n : int, optional cutout width and height, by default 40 zscale : bool, optional whether to apply a zscale to cutout image, by default False aperture : float, optional radius of aperture to display, by default None corresponds to best target aperture rin : [type], optional radius of inner annulus to display, by default None corresponds to inner radius saved rout : [type], optional radius of outer annulus to display, by default None corresponds to outer radius saved """ n /= np.sqrt(2) if isinstance(star, (tuple, list, np.ndarray)): x, y = star else: if star is None: star = 0 assert isinstance(star, int), "star must be star coordinates or integer index" x, y = self.stars[star] Y, X = np.indices(self.stack.shape) cutout_mask = (np.abs(X - x + 0.5) < n) & (np.abs(Y - y + 0.5) < n) inside = np.argwhere((cutout_mask).flatten()).flatten() radii = (np.sqrt((X - x) ** 2 + (Y - y) ** 2)).flatten()[inside] idxs = np.argsort(radii) radii = radii[idxs] pixels = self.stack.flatten()[inside] pixels = pixels[idxs] binned_radii, binned_pixels, _ = fast_binning(radii, pixels, bins=1) fig = plt.figure(figsize=(9.5, 4)) fig.patch.set_facecolor('xkcd:white') _ = plt.subplot(1, 5, (1, 3)) plt.plot(radii, pixels, "o", fillstyle='none', c="0.7", ms=4) plt.plot(binned_radii, binned_pixels, c="k") plt.xlabel("distance from center (pixels)") plt.ylabel("ADUs") _, ylim = plt.ylim() if "apertures_radii" in self and self.aperture != -1: apertures = self.apertures_radii[:, 0] aperture = apertures[self.aperture] if "annulus_rin" in self: if rin is None: rin = self.annulus_rin.mean() if rout is None: rout = self.annulus_rout.mean() if aperture is not None: plt.xlim(0) plt.text(aperture, ylim, "APERTURE", ha="right", rotation="vertical", va="top") plt.axvline(aperture, c="k", alpha=0.1) plt.axvspan(0, aperture, color="0.9", alpha=0.1) if rin is not None: plt.axvline(rin, color="k", alpha=0.2) if rout is not None: plt.axvline(rout, color="k", alpha=0.2) if rin is not None: plt.axvspan(rin, rout, color="0.9", alpha=0.2) _ = plt.text(rout, ylim, "ANNULUS", ha="right", rotation="vertical", va="top") n = np.max([np.max(radii), rout +2 if rout else 0]) plt.xlim(0, n) ax2 = plt.subplot(1, 5, (4, 5)) im = self.stack[int(y - n):int(y + n), int(x - n):int(x + n)] if zscale: im = z_scale(im) plt.imshow(im, cmap="Greys_r", aspect="auto", origin="lower") plt.axis("off") if aperture is not None: ax2.add_patch(plt.Circle((n, n), aperture, ec='grey', fill=False, lw=2)) if rin is not None: ax2.add_patch(plt.Circle((n, n), rin, ec='grey', fill=False, lw=2)) if rout is not None: ax2.add_patch(plt.Circle((n, n), rout, ec='grey', fill=False, lw=2)) ax2.text(0.05, 0.05, f"{star}", fontsize=12, color="white", transform=ax2.transAxes) plt.tight_layout() def plot_systematics_signal(self, systematics, signal=None, ylim=None, offset=None, figsize=(6, 7)): """Plot a systematics and signal model over diff_flux. systeamtics + signal is plotted on top, signal alone on detrended data on bottom Parameters ---------- systematics : np.ndarray signal : np.ndarray ylim : tuple, optional ylim of the plot, by default None, using the dispersion of y offset : tuple, optional offset between, by default None figsize : tuple, optional figure size as in in plt.figure, by default (6, 7) """ viz.plot_systematics_signal(self.time, self.diff_flux, systematics, signal, ylim=ylim, offset=offset, figsize=figsize) self.plot_meridian_flip() plt.legend() self.xlabel() plt.ylabel("diff. flux") plt.tight_layout() viz.paper_style() def xlabel(self): """Plot xlabel (time) according to its units """ plt.xlabel(self.time_format.upper().replace("_", "-")) def where(self, condition): """return filtered observation given a boolean mask of time Parameters ---------- condition : [type] [description] Returns ------- [type] [description] """ new_obs = self.copy() new_obs.xarray = new_obs.xarray.sel(time=self.time[condition]) return new_obs def keep_good_stars(self, lower_threshold=3., upper_threshold=35000., trim=10, keep=None, inplace=True): """Keep only stars with a median flux higher than `threshold`*sky. This action will reorganize stars indexes (target id will be recomputed) and reset the differential fluxes to raw. Parameters ---------- lower_threshold : float threshold for which stars with flux/sky > threshold are kept, default is 3 trim : float value in pixels above which stars are kept, default is 10 to avoid stars too close to the edge keep : int or list number of stars to exclude (starting from 0 if int). inplace: bool whether to replace current object or return a new one """ good_stars = np.argwhere((np.median(self.peaks, 1)/np.median(self.sky) > lower_threshold) & (np.median(self.peaks, 1) < upper_threshold)).squeeze() mask = np.any(np.abs(self.stars[good_stars] - max(self.stack.shape) / 2) > (max(self.stack.shape) - 2 * trim) / 2, axis=1) bad_stars = np.argwhere(mask == True).flatten() final_stars = np.delete(good_stars, bad_stars) if isinstance(keep,int): final_stars = np.concatenate([final_stars,np.arange(0,keep+1)],axis=0) final_stars = np.unique(final_stars) if isinstance(keep,list): final_stars = np.concatenate([final_stars,keep ], axis=0) final_stars =
np.unique(final_stars)
numpy.unique
#!/usr/bin/env python3 """Where library module including functions for GNSS modeling Example: -------- from where.lib import gnss ... Description: ------------ This module will provide functions for GNSS modeling. TODO: How to move routines to Midgard? ======================================== check_satellite_eclipse(dset) findsun(time) -> Midgard: planetary_motion? gsdtime_sun(time) -> Midgard: planetary_motion? get_earth_rotation(dset) -> Midgard: PosVel (see function) get_code_observation(dset) -> Midgard: gnss get_flight_time(dset) -> Midgard: PosVel (see function) obstype_to_freq(sys, obstype) -> Midgard: gnss get_initial_flight_time(dset, sat_clock_corr=None, rel_clock_corr=None) -> Midgard: gnss get_line_of_sight(dset) -> Midgard: Position library get_rinex_file_version(file_key, file_vars) -> Is that needed in the future? gpssec2jd(wwww, sec) -> in time.gps_ws Example: from where.data import time t = time.Time([2000, 2000, 2000, 2004], [0, 100000, 200000, 86400], fmt="gps_ws", scale="gps") t.gps_ws jd2gps(jd) -> in time linear_combination(dset) -> Midgard: gnss llh2xyz(lat, lon, h) -> midgard.math.transformation.llh2trs plot_skyplot(dset) -> Midgard: plot Should we more specific in using arguments, that instead of using 'dset'? -> Maybe """ # Standard library imports from typing import Tuple # External library imports import numpy as np import matplotlib.pyplot as plt # Migard imports from midgard.collections import enums from midgard.math.constant import constant # Where imports from where.lib import config from where.lib import log from where.lib import mathp from where.lib import rotation from where.data.time import TimeDelta def check_satellite_eclipse(dset): """Check if a satellite is an eclipse TODO: Check if a better algorithm exists (e.g. based on beta angle). Args: dset(Dataset): Model data """ cos_gamma = np.einsum( "ij,ij->i", mathp.unit_vector(dset.sat_posvel.itrs_pos), dset.sat_posvel.itrs_pos_sun ) # TODO: dot product -> better solution dot() function in mathp h = np.linalg.norm(dset.sat_posvel.itrs_pos, axis=1) * np.sqrt(1.0 - cos_gamma ** 2) satellites_in_eclipse = list() for satellite in dset.unique("satellite"): idx = dset.filter(satellite=satellite) satellite_eclipse = np.logical_and(cos_gamma[idx] < 0, h[idx] < constant.a) if np.any(satellite_eclipse == True): satellites_in_eclipse.append(satellite) return satellites_in_eclipse def findsun(time): """Obtains the position vector of the Sun in relation to Earth (in ECEF). This routine is a reimplementation of routine findSun() in model.c of gLAB 3.0.0 software. Args: time(Time): Time object Returns: numpy.ndarray: Sun position vector given in ECEF [m] """ AU = 1.495_978_70e8 gstr, slong, sra, sdec = gsdtime_sun(time) sun_pos_x = np.cos(np.deg2rad(sdec)) * np.cos(np.deg2rad(sra)) * AU sun_pos_y = np.cos(np.deg2rad(sdec)) * np.sin(np.deg2rad(sra)) * AU sun_pos_z = np.sin(np.deg2rad(sdec)) * AU sun_pos_eci = np.vstack((sun_pos_x, sun_pos_y, sun_pos_z)).T # Rotate from inertial to non inertial system (ECI to ECEF) sun_pos_ecef = (rotation.R3(np.deg2rad(gstr)) @ sun_pos_eci.T)[:, :, 0] # remove 1 dimension return sun_pos_ecef def gsdtime_sun(time): """Get position of the sun (low-precision) This routine is a reimplementation of routine GSDtime_sun() in model.c of gLAB 3.0.0 software. Args: time(Time): Time object Returns: tuple: with following entries =============== =============== ================================================================================== Elements Type Description =============== =============== ================================================================================== gstr numpy.ndarray GMST0 (to go from ECEF to inertial) [deg] slong numpy.ndarray Sun longitude [deg] sra numpy.ndarray Sun right Ascension [deg] sdec numpy.ndarray Sun declination in [deg] =============== =============== ================================================================================== """ jd = time.mjd_int - 15019.5 frac = time.jd_frac vl = np.mod(279.696_678 + 0.985_647_335_4 * jd, 360) gstr = np.mod(279.690_983 + 0.985_647_335_4 * jd + 360 * frac + 180, 360) g = np.deg2rad(np.mod(358.475_845 + 0.985_600_267 * jd, 360)) slong = vl + (1.91946 - 0.004_789 * jd / 36525) * np.sin(g) + 0.020_094 * np.sin(2 * g) obliq = np.deg2rad(23.45229 - 0.013_012_5 * jd / 36525) slp = np.deg2rad(slong - 0.005_686) sind = np.sin(obliq) * np.sin(slp) cosd = np.sqrt(1 - sind * sind) sdec = np.rad2deg(np.arctan2(sind, cosd)) sra = 180 - np.rad2deg(np.arctan2(sind / cosd / np.tan(obliq), -np.cos(slp) / cosd)) return gstr, slong, sra, sdec # TODO: pv.trs.observed - pv.trs # calculate property 'observed' = rotation.R3(rotation_angle[idx]).dot(dset.sat_posvel.itrs_pos[idx]) # def get_earth_rotation(posvel: PositionVelocityArray, flight_time: np.ndarray): def get_earth_rotation(dset): """Get corrections for satellite position and velocity by Earth rotation In a Earth-fixed reference system the Earth's rotation has to be applied, which accounts for time effect of Earth rotation during the signal propagates from the satellite to the receiver. Eq. 5.11 in :cite:`subirana2013` is used for correcting the satellite position and velocity in the Dataset field 'sat_posvel' about the Earth's rotation effect. Args: dset(Dataset): Model data Returns: tuple: with following entries =============== =============== ================================================================================== Elements Type Description =============== =============== ================================================================================== sat_pos numpy.ndarray Satellite position vector corrections in ITRS and [m] vel_pos numpy.ndarray Satellite velocity corrections in ITRS and [m/s] =============== =============== ================================================================================== """ sat_pos = np.zeros((dset.num_obs, 3)) sat_vel = np.zeros((dset.num_obs, 3)) flight_time = get_flight_time(dset) rotation_angle = flight_time * constant.omega sat_pos = ( rotation.R3(rotation_angle) @ dset.sat_posvel.trs.pos.val[:, :, None] - dset.sat_posvel.trs.pos.val[:, :, None] ) sat_vel = ( rotation.R3(rotation_angle) @ dset.sat_posvel.trs.vel.val[:, :, None] - dset.sat_posvel.trs.vel.val[:, :, None] ) return sat_pos[:, :, 0], sat_vel[:, :, 0] def get_code_observation(dset): """Get pseudo-range (code) observations depending on given observation types The first element of the observation type variable `dset.meta['obstypes'][sys]` is selected as observation for single frequency solution. The order of the observation type variable `dset.meta['obstypes'][sys]` depends on the priority list given in the configuration file and the given observations. The ionospheric-free linear combination is applied for dual frequency solution. Args: dset: Dataset Returns: numpy.ndarray: Pseudo-range (code) observation choosen depending on priority list and for dual frequency solution given as ionospheric-free linear combination """ freq_type = config.tech.freq_type.str code_obs = np.zeros(dset.num_obs) if freq_type == "single": for sys in dset.unique("system"): idx = dset.filter(system=sys) obstypes = dset.meta["obstypes"][sys] # TODO: Exists a better solution. Complete routine should be named get_observation(dset). if dset.vars["pipeline"] == "gnss_spv": obstype = None for type_ in obstypes: if type_.startswith("D"): obstype = type_ break if not obstype: log.fatal(f"No Doppler observations are defined for {sys}: {', '.join(obstypes)}") else: obstype = obstypes[0] code_obs = dset.obs[obstype][idx] elif freq_type == "dual": code_obs, _ = linear_combination("ionosphere-free", dset) else: log.fatal( "Configuration option 'freq_type = {}' is not valid (Note: Triple frequency solution is not " "in use.).", freq_type, ) return code_obs # TODO: Connect needed between station and satellite position # Already part of Position library: posistion.distance / constant.c def get_flight_time(dset): """Get flight time of GNSS signal between satellite and receiver Args: dset(Dataset): Model data Return: numpy.ndarray: Flight time of GNSS signal between satellite and receiver in [s] """ from where.models.delay import gnss_range # Local import to avoid cyclical import # Get geometric range between satellite and receiver position geometric_range = gnss_range.gnss_range(dset) return geometric_range / constant.c def obstype_to_freq(sys, obstype): """Get GNSS frequency based on given GNSS observation type Args: sys(str): GNSS identifier (e.g. 'E', 'G', ...) obstype(str): Observation type (e.g. 'L1', 'P1', 'C1X', ...) Return: float: GNSS frequency in [Hz] """ try: freq = getattr(enums, "gnss_freq_" + sys)[getattr(enums, "gnss_num2freq_" + sys)["f" + obstype[1]]] except KeyError: log.fatal(f"Frequency for GNSS '{sys}' and observation type '{obstype}' is not defined.") return freq def get_initial_flight_time(dset, sat_clock_corr=None, rel_clock_corr=None): r"""Get initial flight time of GNSS signal between satellite and receiver In the following it will be described, how the satellite transmission time is determined. The GNSS receiver registers the observation time, i.e. when the satellite signal is tracked by the receiver. In addition the pseudorange :math:`P_r^s` between the satellite and the receiver is observed by the GNSS receiver. The first guess of time of transmission :math:`t^s` can be determined if we subtract from the receiver time :math:`t_r` the time of flight of the GNSS signal based on the pseudorange as follows: .. math:: t_0^s = t_r - \frac{P_r^s}{c} with the speed of light :math:`c` and the flight time of the GNSS signal fromt the satellite to the receiver :math:`\frac{P_r^s}{c}`, which is determined in this function. The time of satellite transmission has to be corrected like: .. math:: \Delta t^s = t_0^s - \Delta t_{sv} - \Delta t_r, with the satellite clock correction :math:`\Delta t_{sv}`: .. math:: \Delta t_{sv} = a_0 + a_1 (t_0^s) + a_2 (t_0^s)^2, and the relativistic correction due to orbit eccentricity :math:`\Delta t_r`. The satellite clock correction and the relativistic eccentricity correction are applied, if this information is already available by the routine call. Args: dset (Dataset): Model data. sat_clock_corr (numpy.ndarray): Satellite clock correction rel_clock_corr (numpy.ndarray): Relativistic clock correction due to orbit eccentricity corrections for each observation Return: TimeDelta: Flight time of GNSS signal between satellite and receiver """ # Note: It can be that the observation table 'obs' is not given. For example if different orbit solutions are # compared, it is not necessary to read GNSS observation data. In this case the Dataset time entries # are not corrected for time of flight determined based on pseudorange observations. Instead the given # Dataset time entries are directly used. flight_time = np.zeros(dset.num_obs) if "obs" in dset.fields: for sys in dset.unique("system"): # Get code observation type defined by given observation and observation type priority list # Note: First element of GNSS observation type list should be used. obstype = dset.meta["obstypes"][sys][0] log.debug( f"Code observation '{obstype}' for GNSS '{sys}' is selected for determination of initial flight time." ) idx = dset.filter(system=sys) flight_time[idx] = dset.obs[obstype][idx] / constant.c if sat_clock_corr is not None: flight_time += sat_clock_corr / constant.c if rel_clock_corr is not None: flight_time += rel_clock_corr / constant.c return TimeDelta(flight_time, fmt="seconds", scale="gps") # TODO: already in Position via 'direction' def get_line_of_sight(dset): """Get the Line of Sight vector from receiver to satellite in the ITRS. """ # TODO: Other solution dset.site_pos.convert_gcrs_to_itrs(dset.site_pos.direction) return mathp.unit_vector(dset.sat_posvel.itrs_pos - dset.site_pos.itrs) def get_rinex_file_version(file_key=None, file_vars=None, file_path=None): """ Get RINEX file version for a given file key Args: file_key: File key defined in files.conf file (e.g. given for RINEX navigation or observation file) file_vars: Variables needed to identify RINEX file based on definition in files.conf file. file_path (pathlib.PosixPath): File path to broadcast orbit file. Returns: tuple: with following elements =============== ================================================================================== Elements Description =============== ================================================================================== version RINEX file version filepath RINEX file path =============== ================================================================================== """ file_vars = dict() if file_vars is None else file_vars if file_path is None: file_path = config.files.path(file_key, file_vars=file_vars) with config.files.open_path(file_path, mode="rt") as infile: try: version = infile.readline().split()[0] except IndexError: log.fatal(f"Could not find Rinex version in file {file_path}") return version, file_path def gpssec2jd(wwww, sec): """ FUNCTION: gpsSec2jd(wwww,sec) PURPOSE: Conversion from GPS week and second to Julian Date (JD) RETURN: (float) jd_day, jd_frac - Julian Day and fractional part INPUT: (int) wwww, (float) sec - GPS week and second """ SEC_OF_DAY = 86400.0 JD_1980_01_06 = 2_444_244 # Julian date of 6-Jan-1980 + 0.5 d # .. Determine GPS day wd = np.floor((sec + 43200.0) / 3600.0 / 24.0) # 0.5 d = 43200.0 s # .. Determine remainder fracSec = sec + 43200.0 - wd * 3600.0 * 24.0 # .. Conversion GPS week and day to from Julian Date (JD) jd_day = wwww * 7.0 + wd + JD_1980_01_06 jd_frac = fracSec / SEC_OF_DAY return jd_day, jd_frac def jd2gps(jd): """ FUNCTION: jd2gps(jd) PURPOSE: Conversion from Julian Date (JD) to GPS week and day (started 6-Jan-1980). RETURN: (int) wwww, wd, frac - GPS week, GPS day and fractional part / GPS seconds INPUT: (float) jd - Julian Date """ JD_1980_01_06 = 2_444_244.5 # Julian date of 6-Jan-1980 if np.any(jd < JD_1980_01_06): log.fatal("Julian Day exceeds the GPS time start date of 6-Jan-1980 (JD 2444244.5).") # .. Conversion from Julian Date (JD) to GPS week and day wwww =
np.floor((jd - JD_1980_01_06) / 7)
numpy.floor
import numpy as np import tensorflow as tf import tensorflow_probability as tfp from tqdm import tqdm import ExpUtils as util class MFNN: def __init__(self, config, TF_GPU_USAGE=0.25): self.config = config self.SynData = self.config['SynData'] self.dim = self.SynData.dim self.M = self.SynData.Nfid self.MfData = self.SynData.data self.encode = self.config['feature'] # Train/Test Input/Output holders self.tf_Xtrain_list = [] self.tf_ytrain_list = [] self.tf_Xtest_list = [] self.tf_ytest_list = [] for m in range(self.M): self.tf_Xtrain_list.append(tf.compat.v1.placeholder(util.tf_type, [None, self.dim])) self.tf_ytrain_list.append(tf.compat.v1.placeholder(util.tf_type, [None, 1])) self.tf_Xtest_list.append(tf.compat.v1.placeholder(util.tf_type, [None, self.dim])) self.tf_ytest_list.append(tf.compat.v1.placeholder(util.tf_type, [None, 1])) # Linear Mapping Weights self.tf_Wvar_Chol_list = [] for m in range(self.M): Km = self.encode['Klist'][m] scale=1.0 # initialize with smaller values when there are numerical erros Lm = tf.linalg.band_part(scale*tf.Variable(tf.eye(Km+1), dtype=util.tf_type), -1, 0) self.tf_Wvar_Chol_list.append(Lm) # self.tf_W_list = [] self.tf_Wm_list = [] for m in range(self.M): Km = self.encode['Klist'][m] dist_noise = tfp.distributions.MultivariateNormalDiag(loc=tf.zeros([Km+1]), scale_diag=tf.ones([Km+1])) Wm = tf.Variable(tf.random.truncated_normal([Km+1,1]), dtype=util.tf_type) self.tf_Wm_list.append(Wm) self.tf_W_list.append(Wm+self.tf_Wvar_Chol_list[m]@tf.reshape(dist_noise.sample(),[-1,1])) # noise prior self.tf_log_gam_a = tf.Variable(-10, dtype=util.tf_type) self.tf_log_gam_b = tf.Variable(-10, dtype=util.tf_type) self.noise_gam_prior = tfp.distributions.Gamma( tf.exp(self.tf_log_gam_a), tf.exp(self.tf_log_gam_b) ) # noise observations self.tf_tau_list = [] for m in range(self.M): logtau_m = tf.Variable(0.0, dtype=util.tf_type) self.tf_tau_list.append(tf.exp(logtau_m)) # initialize NN self.mf_encode_list = self.init_feature_encode(self.encode) # concatenate NN with linear projection self.mf_outputs, self.mf_aug_features = self.init_mf_outputs(self.tf_Xtrain_list, self.tf_W_list) self.mf_pred_outputs, self.mf_pred_aug_features = self.init_mf_outputs(self.tf_Xtest_list, self.tf_W_list) self.expect_llh = self.eval_expect_llh() self.KL = self.eval_divergence() # negative evidence lower bound self.nelbo = -(self.expect_llh - self.KL) self.optimizer = tf.compat.v1.train.AdamOptimizer(self.config['learning_rate']) self.minimizer = self.optimizer.minimize(self.nelbo) self.Xquery = tf.Variable(tf.random.uniform(minval=self.SynData.lb, maxval=self.SynData.ub, shape=[1,self.dim]), dtype=util.tf_type) self.tf_Ws_list = [] for m in range(self.M): Km = self.encode['Klist'][m] self.tf_Ws_list.append(tf.compat.v1.placeholder(util.tf_type, [Km+1, 1])) self.ws_fstar, self.ws_aug_feature = self.mf_output(self.Xquery, self.M-1, self.tf_Ws_list) self.nfstar = -tf.squeeze(self.ws_fstar) self.nfstar_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.nfstar, method='L-BFGS-B', var_to_bounds={self.Xquery: [self.SynData.lb, self.SynData.ub]}, var_list=[self.Xquery], options={'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'eps':self.config['Fstar']['rate'], 'ftol' : 1.0 * np.finfo(float).eps},) # finding inference maximum self.Xinfer = tf.Variable(tf.random.uniform(minval=self.SynData.lb, maxval=self.SynData.ub, shape=[1,self.dim]), dtype=util.tf_type) self.infer_star, self.infer_aug_feature = self.mf_output(self.Xinfer, self.M-1, self.tf_W_list) self.neg_infer_maximum = -tf.squeeze(self.infer_star) self.neg_infer_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.neg_infer_maximum, method='L-BFGS-B', var_to_bounds={self.Xinfer: [self.SynData.lb, self.SynData.ub]}, var_list=[self.Xinfer], options={'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'eps':self.config['Infer']['rate'], 'ftol' : 1.0 * np.finfo(float).eps},) gpu_options =tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=TF_GPU_USAGE) self.sess = tf.compat.v1.Session( config=tf.compat.v1.ConfigProto( allow_soft_placement=True, log_device_placement=True, gpu_options=gpu_options, ) ) self.sess.run(tf.compat.v1.global_variables_initializer()) def init_feature_encode(self, encode): """Initialize the feature encoding(NN) weights and biases""" feature_encode_list = [] for m in range(self.M): if m == 0: layers = [self.dim] + encode['hlayers'][m] + [encode['Klist'][m]] else: layers = [self.dim+1] + encode['hlayers'][m] + [encode['Klist'][m]] # end if nn = util.EncodeNN(layers, init=encode['init'], activation=encode['activation']) feature_encode_list.append(nn) # end for return feature_encode_list def mf_output(self, X, m, Wlist): # base fidelity feature = self.mf_encode_list[0].forward(X) augment_feature = tf.pad(feature, tf.constant([[0,0],[0,1]]), constant_values=1.0) output = tf.matmul(augment_feature, Wlist[0]) for l in range(1, m+1): augment_input = tf.concat([output, X], axis=1) feature = self.mf_encode_list[l].forward(augment_input) augment_feature = tf.pad(feature, tf.constant([[0,0],[0,1]]), constant_values=1.0) output = tf.matmul(augment_feature, Wlist[l]) # end for return output, augment_feature def init_mf_outputs(self, Xlist, Wlist): outputs = [] features = [] for m in range(self.M): output, feature = self.mf_output(Xlist[m], m, Wlist) outputs.append(output) features.append(feature) return outputs, features def eval_divergence(self): expect = [] for m in range(self.M): Km = self.encode['Klist'][m] Lm = self.tf_Wvar_Chol_list[m] mu = self.tf_W_list[m] log_det_Lm = -0.5*tf.reduce_sum(tf.math.log(tf.square(tf.linalg.diag_part(Lm)))) log_expect_m = -0.5*(Km+1)*tf.math.log(2*np.pi) -\ 0.5*(tf.linalg.trace(tf.matmul(Lm, tf.transpose(Lm))) + tf.reduce_sum(mu*mu)) expect.append(log_det_Lm - log_expect_m) return tf.add_n(expect) def eval_expect_llh(self): expect = [] Nlist = self.config['SynData'].Ntrain_list for m in range(self.M): Nm = Nlist[m] phi_m = self.mf_aug_features[m] mu_m = self.tf_W_list[m] Lm = self.tf_Wvar_Chol_list[m] tau_m = self.tf_tau_list[m] ym = self.tf_ytrain_list[m] LmLmT = tf.matmul(Lm, tf.transpose(Lm)) mumuT = tf.matmul(mu_m, tf.transpose(mu_m)) tr_phi_Lm_mu = tf.linalg.trace(tf.transpose(phi_m) @ phi_m @ (LmLmT + mumuT)) ym_phi_mu = tf.squeeze(ym*ym - 2*ym*tf.matmul(phi_m, mu_m)) expect_m = 0.5*Nm*tf.math.log(tau_m) - 0.5*tau_m*(tf.reduce_sum(ym_phi_mu) + tr_phi_Lm_mu) +\ self.noise_gam_prior.log_prob(tau_m) expect.append(expect_m) # end for return tf.add_n(expect) def train(self): hist_train_err = [] hist_test_err = [] fdict = {} for m in range(self.M): Dm = self.MfData[m] fdict[self.tf_Xtrain_list[m]] = Dm['Xtrain'] fdict[self.tf_ytrain_list[m]] = Dm['ytrain'] fdict[self.tf_Xtest_list[m]] = Dm['Xtest'] for it in tqdm(range(self.config['epochs'] + 1)): self.sess.run(self.minimizer, feed_dict = fdict) if it % 100 == 0: nelbo = self.sess.run(self.nelbo, feed_dict=fdict) mf_pred = self.sess.run(self.mf_pred_outputs, feed_dict=fdict) mf_pred_train = self.sess.run(self.mf_outputs, feed_dict=fdict) if self.config['verbose']: print('it %d: nelbo = %.5f' % (it, nelbo)) for m in range(self.M): pred_m = mf_pred[m] pred_m_train = mf_pred_train[m] ground_ytest = self.MfData[m]['ytest'] ground_ytrain = self.MfData[m]['ytrain'] err_test = np.sqrt(np.mean(np.square(pred_m - ground_ytest))) err_train = np.sqrt(np.mean(np.square(pred_m_train - ground_ytrain))) hist_train_err.append(err_train) hist_test_err.append(err_test) if self.config['verbose'] or it == self.config['epochs']: print(' - fid %d: train_nrmse = %.5f, test_nrmse = %.5f' % (m, err_train, err_test)) Fstar, Xstar = self.collect_fstar() infer_opt, infer_optser = self.eval_infer_opt() return Fstar, infer_optser, self.sess def collect_fstar(self): Wpost = [] Lpost = [] for m in range(self.M): Wpost.append(self.sess.run(self.tf_W_list[m])) Lpost.append(self.sess.run(self.tf_Wvar_Chol_list[m])) Fstar = [] Xstar = [] for s in range(self.config['Fstar']['Ns']): fdict = {} for m in range(self.M): Ws = np.random.multivariate_normal(np.squeeze(Wpost[m]), np.matmul(Lpost[m], Lpost[m].T)) fdict[self.tf_Ws_list[m]] = Ws.reshape([-1,1]) Fs = [] Xs = [] for t in range(self.config['Fstar']['RandomStart']): self.sess.run(tf.compat.v1.variables_initializer(var_list=[self.Xquery])) self.nfstar_optimizer.minimize(self.sess, feed_dict=fdict) fstar = -self.sess.run(self.nfstar, feed_dict=fdict) xstar = self.sess.run(self.Xquery, feed_dict=fdict) Fs.append(fstar) Xs.append(xstar) argx = np.argmax(np.array(Fs)) Fstar.append(Fs[argx]) Xstar.append(Xs[argx]) return Fstar, Xstar def eval_infer_opt(self): infer_opt = [] infer_optser = [] for t in range(self.config['Infer']['RandomStart']): self.sess.run(tf.compat.v1.variables_initializer(var_list=[self.Xinfer])) self.neg_infer_optimizer.minimize(self.sess) infer_fstar = -self.sess.run(self.neg_infer_maximum) infer_xstar = self.sess.run(self.Xinfer) infer_opt.append(infer_fstar) infer_optser.append(infer_xstar) argx = np.argmax(
np.array(infer_opt)
numpy.array
# flake8: noqa: F821,F841 import itertools import re from typing import Optional, Union import numpy as np import pytest import torch from numpy.random import RandomState import triton import triton._C.libtriton.triton as _triton import triton.language as tl from triton.code_gen import JITFunction, TensorWrapper, reinterpret int_dtypes = ['int8', 'int16', 'int32', 'int64'] uint_dtypes = ['uint8', 'uint16', 'uint32', 'uint64'] float_dtypes = ['float16', 'float32', 'float64'] dtypes = int_dtypes + uint_dtypes + float_dtypes def _bitwidth(dtype: str) -> int: # ex.: "int64" -> 64 return int(re.search(r'(\d+)$', dtype).group(1)) def numpy_random(shape, dtype_str, rs: Optional[RandomState] = None, low=None, high=None): """ Override `rs` if you're calling this function twice and don't want the same result for both calls. """ if isinstance(shape, int): shape = (shape, ) if rs is None: rs = RandomState(seed=17) dtype = getattr(np, dtype_str) if dtype_str in int_dtypes + uint_dtypes: iinfo = np.iinfo(getattr(np, dtype_str)) low = iinfo.min if low is None else max(low, iinfo.min) high = iinfo.max if high is None else min(high, iinfo.max) x = rs.randint(low, high, shape, dtype=dtype) x[x == 0] = 1 # Hack. Never return zero so tests of division don't error out. return x elif dtype_str in float_dtypes: return rs.normal(0, 1, shape).astype(dtype) else: raise RuntimeError(f'Unknown dtype {dtype_str}') def to_triton(x: np.ndarray, device='cuda') -> Union[TensorWrapper, torch.Tensor]: t = x.dtype.name if t in uint_dtypes: signed_type_name = t.lstrip('u') # e.g. "uint16" -> "int16" x_signed = x.astype(getattr(np, signed_type_name)) return reinterpret(torch.tensor(x_signed, device=device), getattr(tl, t)) else: return torch.tensor(x, device=device) def torch_dtype_name(dtype) -> str: if isinstance(dtype, triton.language.dtype): return dtype.name elif isinstance(dtype, torch.dtype): # 'torch.int64' -> 'int64' m = re.match(r'^torch\.(\w+)$', str(dtype)) return m.group(1) else: raise TypeError(f'not a triton or torch dtype: {type(dtype)}') def to_numpy(x): if isinstance(x, TensorWrapper): return x.base.cpu().numpy().astype(getattr(np, torch_dtype_name(x.dtype))) elif isinstance(x, torch.Tensor): return x.cpu().numpy() else: raise ValueError(f"Not a triton-compatible tensor: {x}") def patch_kernel(template, to_replace): kernel = triton.JITFunction(template.fn) for key, value in to_replace.items(): kernel.src = kernel.src.replace(key, value) return kernel @pytest.mark.parametrize("dtype_x", [dtype_x for dtype_x in dtypes]) def test_empty_kernel(dtype_x, device='cuda'): SIZE = 128 @triton.jit def kernel(X, SIZE: tl.constexpr): pass x = to_triton(numpy_random(SIZE, dtype_str=dtype_x), device=device) kernel[(1, )](x, SIZE=SIZE, num_warps=4) # generic test functions def _test_unary(dtype_x, expr, numpy_expr=None, device='cuda'): SIZE = 128 # define the kernel / launch-grid @triton.jit def kernel(Z, X, SIZE: tl.constexpr): off = tl.arange(0, SIZE) x = tl.load(X + off) z = GENERATE_TEST_HERE tl.store(Z + off, z) kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': expr}) # inputs x = numpy_random(SIZE, dtype_str=dtype_x) if 'log' in expr: x = np.abs(x) + 0.01 # reference result z_ref = eval(expr if numpy_expr is None else numpy_expr) # triton result x_tri = to_triton(x, device=device) z_tri = to_triton(np.empty_like(z_ref), device=device) kernel[(1, )](z_tri, x_tri, SIZE=SIZE, num_warps=4) # compare np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01) def _binary_op_dtype_override(a: str, b: str) -> Optional[np.dtype]: """ Given two dtype strings, returns the numpy dtype Triton thinks binary operations on the two types should return. Returns None if the return value matches numpy. This is generally needed because Triton and pytorch return narrower floating point types than numpy in mixed operations, and because Triton follows C/C++ semantics around mixed signed/unsigned operations, and numpy/pytorch do not. """ overrides = { ('float16', 'int16'): np.float16, ('float16', 'int32'): np.float16, ('float16', 'int64'): np.float16, ('float16', 'uint16'): np.float16, ('float16', 'uint32'): np.float16, ('float16', 'uint64'): np.float16, ('int8', 'uint8'): np.uint8, ('int8', 'uint16'): np.uint16, ('int8', 'uint32'): np.uint32, ('int8', 'uint64'): np.uint64, ('int16', 'uint16'): np.uint16, ('int16', 'uint32'): np.uint32, ('int16', 'uint64'): np.uint64, ('int32', 'uint32'): np.uint32, ('int32', 'uint64'): np.uint64, ('int64', 'uint64'): np.uint64, } key = (a, b) if a < b else (b, a) return overrides.get(key) def _test_binary(dtype_x, dtype_y, expr, numpy_expr=None, mode_x='real', mode_y='real', device='cuda', y_low=None, y_high=None): SIZE = 128 # define the kernel / launch-grid @triton.jit def kernel(Z, X, Y, SIZE: tl.constexpr): off = tl.arange(0, SIZE) x = tl.load(X + off) y = tl.load(Y + off) z = GENERATE_TEST_HERE tl.store(Z + off, z) kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': expr}) # inputs rs = RandomState(17) x = numpy_random(SIZE, dtype_str=dtype_x, rs=rs) y = numpy_random(SIZE, dtype_str=dtype_y, rs=rs, low=y_low, high=y_high) if mode_x == 'nan': x[:] = float('nan') if mode_y == 'nan': y[:] = float('nan') # reference result z_ref = eval(expr if numpy_expr is None else numpy_expr) dtype_z = _binary_op_dtype_override(dtype_x, dtype_y) if dtype_z is not None: z_ref = z_ref.astype(dtype_z) # triton result x_tri = to_triton(x, device=device) y_tri = to_triton(y, device=device) z_tri = to_triton(np.empty(SIZE, dtype=z_ref.dtype), device=device) kernel[(1, )](z_tri, x_tri, y_tri, SIZE=SIZE, num_warps=4) np.testing.assert_allclose(z_ref, to_numpy(z_tri), err_msg=expr, rtol=0.01) def _mod_operation_ill_conditioned(dtype_x, dtype_y) -> bool: # The result of x % y is ill-conditioned if x % y is much smaller than x. # pytorch/CUDA has slightly different (probably better) rounding on # remainders than stock LLVM. We currently don't expect to match it # bit-for-bit. return (dtype_x, dtype_y) in [ ('int32', 'float16'), ('int32', 'float32'), ('int64', 'float16'), ('int64', 'float32'), ('int64', 'float64'), ('uint16', 'float16'), ('uint16', 'float32'), ('uint32', 'float16'), ('uint32', 'float32'), ('uint64', 'float16'), ('uint64', 'float32'), ('uint64', 'float64'), ] # --------------- # test binary ops # --------------- @pytest.mark.parametrize("dtype_x, dtype_y, op", [ (dtype_x, dtype_y, op) for op in ['+', '-', '*', '/', '%'] for dtype_x in dtypes for dtype_y in dtypes ]) def test_bin_op(dtype_x, dtype_y, op, device='cuda'): expr = f' x {op} y' if op == '%' and dtype_x in int_dtypes + uint_dtypes and dtype_y in int_dtypes + uint_dtypes: # LLVM has 'numpy.fmod', not 'numpy.remainder', semantics on integer remainders. numpy_expr = 'np.fmod(x, y)' elif op in ('/', '%') and dtype_x in ('int16', 'float16') and dtype_y in ('int16', 'float16'): # Triton promotes 16-bit floating-point / and % to 32-bit because there # are no native div or FRem operations on float16. Since we have to # convert anyway, we may as well take the accuracy bump. numpy_expr = f'x.astype(np.float32) {op} y.astype(np.float32)' elif (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)): numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})' elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)): numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})' else: numpy_expr = None if op == '%' and _mod_operation_ill_conditioned(dtype_x, dtype_y): with pytest.raises(AssertionError, match='Not equal to tolerance'): _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device) elif (op in ('%', '/') and ((dtype_x in int_dtypes and dtype_y in uint_dtypes) or (dtype_x in uint_dtypes and dtype_y in int_dtypes))): with pytest.raises(triton.code_gen.CompilationError) as exc_info: _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device) assert re.match('Cannot use .* because they have different signedness', str(exc_info.value.__cause__)) else: _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device) @pytest.mark.parametrize("dtype_x, dtype_y", [(dtype_x, dtype_y) for dtype_x in int_dtypes for dtype_y in int_dtypes] + [(dtype_x, dtype_y) for dtype_x in uint_dtypes for dtype_y in uint_dtypes] ) def test_floordiv(dtype_x, dtype_y, device='cuda'): # Triton has IEEE, not numpy/torch, semantics for %, and those carry # through to //, so we have to use a nonstandard expression to get a # reference result for //. expr = 'x // y' numpy_expr = '((x - np.fmod(x, y)) / y)' _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device) # --------------- # test bitwise ops # --------------- @pytest.mark.parametrize("dtype_x, dtype_y, op", [ (dtype_x, dtype_y, op) for op in ['&', '|', '^'] for dtype_x in dtypes for dtype_y in dtypes ]) def test_bitwise_op(dtype_x, dtype_y, op, device='cuda'): expr = f'x {op} y' if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)): numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})' elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)): numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})' else: numpy_expr = None if 'float' in dtype_x + dtype_y: with pytest.raises(triton.code_gen.CompilationError) as exc_info: _test_binary(dtype_x, dtype_y, expr, numpy_expr='np.array([])', device=device) # The CompilationError must have been caused by a C++ exception with this text. assert re.match('invalid operands of type', str(exc_info.value.__cause__)) else: _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device) @pytest.mark.parametrize("dtype_x, dtype_y, op", [ (dtype_x, dtype_y, op) for op in ['<<', '>>'] for dtype_x in int_dtypes + uint_dtypes for dtype_y in int_dtypes + uint_dtypes ]) def test_shift_op(dtype_x, dtype_y, op, device='cuda'): expr = f'x {op} y' bw = max(_bitwidth(dtype_x), _bitwidth(dtype_y)) dtype_z = f'uint{bw}' numpy_expr = f'x.astype(np.{dtype_z}) {op} y.astype(np.{dtype_z})' _test_binary(dtype_x, dtype_y, expr, numpy_expr, device=device, y_low=0, y_high=65) # --------------- # test compare ops # --------------- ops = ['==', '!=', '>', '<', '>=', '<='] @pytest.mark.parametrize("dtype_x, dtype_y, op, mode_x, mode_y", # real [ (dtype_x, dtype_y, op, 'real', 'real') for op in ops for dtype_x in dtypes for dtype_y in dtypes ] + # NaNs [('float32', 'float32', op, mode_x, mode_y) for op in ops for mode_x, mode_y in [('nan', 'real'), ('real', 'nan'), ('nan', 'nan')] ]) def test_compare_op(dtype_x, dtype_y, op, mode_x, mode_y, device='cuda'): expr = f'x {op} y' if (dtype_x in uint_dtypes and dtype_y in int_dtypes and _bitwidth(dtype_x) >= _bitwidth(dtype_y)): numpy_expr = f'x.astype(np.{dtype_x}) {op} y.astype(np.{dtype_x})' elif (dtype_y in uint_dtypes and dtype_x in int_dtypes and _bitwidth(dtype_y) >= _bitwidth(dtype_x)): numpy_expr = f'x.astype(np.{dtype_y}) {op} y.astype(np.{dtype_y})' else: numpy_expr = None _test_binary(dtype_x, dtype_y, expr, numpy_expr, mode_x=mode_x, mode_y=mode_y, device=device) # --------------- # test unary ops # --------------- @pytest.mark.parametrize("dtype_x, expr", [ (dtype_x, ' -x') for dtype_x in dtypes ] + [ (dtype_x, ' ~x') for dtype_x in int_dtypes ]) def test_unary_op(dtype_x, expr, device='cuda'): _test_unary(dtype_x, expr, device=device) # ---------------- # test math ops # ---------------- # @pytest.mark.paramterize("expr", [ # 'exp', 'log', 'cos', 'sin' # ]) @pytest.mark.parametrize("expr", [ 'exp', 'log', 'cos', 'sin' ]) def test_math_op(expr, device='cuda'): _test_unary('float32', f'tl.{expr}(x)', f'np.{expr}(x) ', device=device) # ---------------- # test indexing # ---------------- def make_ptr_str(name, shape): rank = len(shape) offsets = [] stride = 1 for i in reversed(range(rank)): idx = ', '.join([':' if ii == i else 'None' for ii in range(rank)]) offsets += [f'tl.arange(0, {shape[i]})[{idx}]*{stride}'] stride *= shape[i] return f"{name} + {' + '.join(offsets)}" @pytest.mark.parametrize("expr, dtype_str", [ (f'x[{s}]', d) for s in ['None, :', ':, None', 'None, :, :', ':, :, None'] for d in ['int32', 'uint32', 'uint16'] ]) def test_index1d(expr, dtype_str, device='cuda'): rank_x = expr.count(':') rank_y = expr.count(',') + 1 shape_x = [32 for _ in range(rank_x)] shape_z = [32 for _ in range(rank_y)] # Triton kernel @triton.jit def kernel(Z, X, SIZE: tl.constexpr): m = tl.arange(0, SIZE) n = tl.arange(0, SIZE) x = tl.load(X_PTR_EXPR) z = GENERATE_TEST_HERE tl.store(Z_PTR_EXPR, z) to_replace = { 'X_PTR_EXPR': make_ptr_str('X', shape_x), 'Z_PTR_EXPR': make_ptr_str('Z', shape_z), 'GENERATE_TEST_HERE': expr, } kernel = patch_kernel(kernel, to_replace) # torch result x = numpy_random(shape_x, dtype_str=dtype_str) y = np.zeros(shape_z, dtype=getattr(np, dtype_str)) z_ref = eval(expr) + y # triton result z_tri = to_triton(np.empty_like(z_ref), device=device) x_tri = to_triton(x) kernel[(1, )](z_tri, x_tri, num_warps=1, SIZE=shape_x[0]) # compare assert (z_ref == to_numpy(z_tri)).all() # --------------- # test tuples # --------------- @triton.jit def fn(a, b): return a + b, \ a - b, \ a * b def test_tuples(): device = 'cuda' @triton.jit def with_fn(X, Y, A, B, C): x = tl.load(X) y = tl.load(Y) a, b, c = fn(x, y) tl.store(A, a) tl.store(B, b) tl.store(C, c) @triton.jit def without_fn(X, Y, A, B, C): x = tl.load(X) y = tl.load(Y) a, b, c = x + y, x - y, x * y tl.store(A, a) tl.store(B, b) tl.store(C, c) x = torch.tensor([1.3], device=device, dtype=torch.float32) y = torch.tensor([1.9], device=device, dtype=torch.float32) a_tri = torch.tensor([0], device=device, dtype=torch.float32) b_tri = torch.tensor([0], device=device, dtype=torch.float32) c_tri = torch.tensor([0], device=device, dtype=torch.float32) for kernel in [with_fn, without_fn]: kernel[(1, )](x, y, a_tri, b_tri, c_tri, num_warps=1) a_ref, b_ref, c_ref = x + y, x - y, x * y assert a_tri == a_ref assert b_tri == b_ref assert c_tri == c_ref # --------------- # test atomics # --------------- @pytest.mark.parametrize("op, dtype_x_str, mode", itertools.chain.from_iterable([ [ ('add', 'float16', mode), ('add', 'uint32', mode), ('add', 'int32', mode), ('add', 'float32', mode), ('max', 'uint32', mode), ('max', 'int32', mode), ('max', 'float32', mode), ('min', 'uint32', mode), ('min', 'int32', mode), ('min', 'float32', mode), ] for mode in ['all_neg', 'all_pos', 'min_neg', 'max_pos']])) def test_atomic_rmw(op, dtype_x_str, mode, device='cuda'): n_programs = 5 # triton kernel @triton.jit def kernel(X, Z): pid = tl.program_id(0) x = tl.load(X + pid) old = GENERATE_TEST_HERE kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': f'tl.atomic_{op}(Z, x)'}) numpy_op = {'add': np.sum, 'max': np.max, 'min': np.min}[op] max_neutral = float('-inf') if dtype_x_str in float_dtypes else np.iinfo(getattr(np, dtype_x_str)).min min_neutral = float('inf') if dtype_x_str in float_dtypes else np.iinfo(getattr(np, dtype_x_str)).max neutral = {'add': 0, 'max': max_neutral, 'min': min_neutral}[op] # triton result rs = RandomState(17) x = numpy_random((n_programs, ), dtype_str=dtype_x_str, rs=rs) if mode == 'all_neg': x = -np.abs(x) if mode == 'all_pos': x = np.abs(x) if mode == 'min_neg': idx = rs.randint(n_programs, size=(1, )).item() x[idx] = -np.max(np.abs(x)) - 1 if mode == 'max_pos': idx = rs.randint(n_programs, size=(1, )).item() x[idx] = np.max(np.abs(x)) + 1 x_tri = to_triton(x, device=device) z_tri = to_triton(np.array([neutral], dtype=getattr(np, dtype_x_str)), device=device) kernel[(n_programs, )](x_tri, z_tri) # torch result z_ref = numpy_op(x).astype(getattr(np, dtype_x_str)) # compare exact = op not in ['add'] if exact: assert z_ref.item() == to_numpy(z_tri).item() else: np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01) # --------------- # test cast # --------------- @pytest.mark.parametrize("dtype_x, dtype_z, bitcast", [ (dtype_x, dtype_z, False) for dtype_x in dtypes for dtype_z in dtypes ] + [ ('float32', 'bfloat16', False), ('bfloat16', 'float32', False), ('float32', 'int32', True), ] + [ (f'uint{x}', f'int{x}', True) for x in [8, 16, 32, 64] ] + [ (f'int{x}', f'uint{x}', True) for x in [8, 16, 32, 64] ]) def test_cast(dtype_x, dtype_z, bitcast, device='cuda'): # This is tricky because numpy doesn't have bfloat, and torch doesn't have uints. x0 = 43 if dtype_x in int_dtypes else 43.5 if dtype_x.startswith('bfloat'): x_tri = torch.tensor([x0], dtype=getattr(torch, dtype_x), device=device) else: x = np.array([x0], dtype=getattr(np, dtype_x)) x_tri = to_triton(x) # triton kernel @triton.jit def kernel(X, Z, BITCAST: tl.constexpr): x = tl.load(X) z = x.to(Z.dtype.element_ty, bitcast=BITCAST) tl.store(Z, z) # triton result if dtype_z.startswith('bfloat'): z_tri = torch.empty((1,), dtype=getattr(torch, dtype_z), device=device) else: z_tri = to_triton(np.empty((1, ), dtype=getattr(np, dtype_z)), device=device) kernel[(1, )](x_tri, z_tri, BITCAST=bitcast) # torch result if dtype_z.startswith('bfloat') or dtype_x.startswith('bfloat'): assert bitcast is False z_ref = x_tri.to(z_tri.dtype) assert z_tri == z_ref else: if bitcast: z_ref = x.view(getattr(np, dtype_z)) else: z_ref = x.astype(getattr(np, dtype_z)) assert to_numpy(z_tri) == z_ref def test_f8_f16_roundtrip(): """Tests that converting an f8 to f16 and back to f8 doesn't change its value""" @triton.jit def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr): offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements input = tl.load(input_ptr + offsets, mask=mask) output = input tl.store(output_ptr + offsets, output, mask=mask) f8_tensor = torch.tensor(range(-128, 128), dtype=torch.int8, device='cuda') f8 = triton.reinterpret(f8_tensor, tl.float8) n_elements = f8_tensor.numel() f16 = torch.empty_like(f8_tensor, dtype=torch.float16) grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) copy_kernel[grid](f8, f16, n_elements, BLOCK_SIZE=1024) f8_output_tensor = torch.empty_like(f16, dtype=torch.int8) f8_output = triton.reinterpret(f8_output_tensor, tl.float8) copy_kernel[grid](f16, f8_output, n_elements, BLOCK_SIZE=1024) assert torch.all(f8_tensor == f8_output_tensor) def test_f16_to_f8_rounding(): """Takes all float16s, converts them to float8 and back to float16. Checks that the absolute error is the minimum over all float8. Or the same explanation a bit mathier: for all f16 |f16 - fromf8(tof8(f16))| == min over all f8 |f16 - fromf8(f8)|""" @triton.jit def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr): offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements input = tl.load(input_ptr + offsets, mask=mask) output = input tl.store(output_ptr + offsets, output, mask=mask) # torch.view with a dtype isn't supported in triton's torch yet so use numpy's view f16_input_np = ( np.array( range(-int(2 ** (16 - 1)), int(2 ** (16 - 1))), dtype=np.int16, ) .view(np.float16) ) f16_input = torch.tensor(f16_input_np, dtype=torch.float16, device='cuda') n_elements = f16_input.numel() f8_output_tensor = torch.empty_like(f16_input, dtype=torch.int8) f8_output = triton.reinterpret(f8_output_tensor, tl.float8) grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) copy_kernel[grid](f16_input, f8_output, n_elements, BLOCK_SIZE=1024) f16_output = torch.empty_like(f16_input, dtype=torch.float16) copy_kernel[grid](f8_output, f16_output, n_elements, BLOCK_SIZE=1024) abs_error = torch.abs(f16_input - f16_output) all_f8_vals_tensor = torch.tensor(range(2 ** 8), dtype=torch.uint8, device='cuda') all_f8_vals = triton.reinterpret(all_f8_vals_tensor, tl.float8) all_f8_vals_in_f16 = torch.empty_like(all_f8_vals_tensor, dtype=torch.float16) copy_kernel[grid](all_f8_vals, all_f8_vals_in_f16, n_elements=256, BLOCK_SIZE=1024) all_finite_f8_vals_in_f16 = all_f8_vals_in_f16[ torch.isfinite(all_f8_vals_in_f16) ] min_error = torch.min( torch.abs( f16_input.reshape((-1, 1)) - all_finite_f8_vals_in_f16.reshape((1, -1)) ), dim=1, )[0] # 1.9375 is float8 max mismatch = torch.logical_and( abs_error != min_error, torch.logical_and(torch.isfinite(f16_input), torch.abs(f16_input) < 1.9375) ) assert torch.all( torch.logical_not(mismatch) ), f"f16_input[mismatch]={f16_input[mismatch]} f16_output[mismatch]={f16_output[mismatch]} abs_error[mismatch]={abs_error[mismatch]} min_error[mismatch]={min_error[mismatch]}" # --------------- # test reduce # --------------- @pytest.mark.parametrize("dtype_str, shape", [(dtype, shape) for dtype in dtypes for shape in [128, 512]]) def test_reduce1d(dtype_str, shape, device='cuda'): # triton kernel @triton.jit def kernel(X, Z, BLOCK: tl.constexpr): x = tl.load(X + tl.arange(0, BLOCK)) tl.store(Z, tl.sum(x, axis=0)) rs = RandomState(17) x = numpy_random((shape,), dtype_str=dtype_str, rs=rs) # numpy result z_ref = np.sum(x).astype(getattr(np, dtype_str)) # triton result x_tri = to_triton(x, device=device) z_tri = to_triton(numpy_random((1,), dtype_str=dtype_str, rs=rs), device=device) kernel[(1,)](x_tri, z_tri, BLOCK=shape) # compare np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01) reduce_configs1 = [ (dtype, (1, 1024), axis) for dtype in ['float32', 'uint32'] for axis in [1] ] reduce_configs2 = [ ('float32', shape, 1) for shape in [(2, 32), (4, 128), (32, 64), (64, 128), (128, 256), (32, 1024)] ] @pytest.mark.parametrize("dtype_str, shape, axis", reduce_configs1 + reduce_configs2) def test_reduce2d(dtype_str, shape, axis, device='cuda'): # triton kernel @triton.jit def kernel(X, Z, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, AXIS: tl.constexpr): range_m = tl.arange(0, BLOCK_M) range_n = tl.arange(0, BLOCK_N) x = tl.load(X + range_m[:, None] * BLOCK_N + range_n[None, :]) z = tl.sum(x, axis=AXIS) tl.store(Z + range_m, z) # input x = numpy_random(shape, dtype_str=dtype_str) # triton result x_tri = to_triton(x) z_tri = to_triton(np.empty((shape[0],), dtype=getattr(np, dtype_str)), device=device) kernel[(1,)](x_tri, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis) # numpy reference result z_ref = np.sum(x, axis=axis).astype(x.dtype) # compare np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01) # --------------- # test permute # --------------- @pytest.mark.parametrize("dtype_str, shape, perm", [(dtype, shape, perm) for dtype in ['float32'] for shape in [(128, 128)] for perm in [(1, 0)]]) def test_permute(dtype_str, shape, perm, device='cuda'): # triton kernel @triton.jit def kernel(X, stride_xm, stride_xn, Z, stride_zm, stride_zn, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): off_m = tl.arange(0, BLOCK_M) off_n = tl.arange(0, BLOCK_N) Xs = X + off_m[:, None] * stride_xm + off_n[None, :] * stride_xn Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn tl.store(Zs, tl.load(Xs)) # input x = numpy_random(shape, dtype_str=dtype_str) # triton result z_tri = to_triton(
np.empty_like(x)
numpy.empty_like
# -*- coding: UTF-8 -* """ Transform the classification score (especially the one of the SVM) """ import numpy from pySPACE.missions.nodes.base_node import BaseNode from pySPACE.resources.data_types.prediction_vector import PredictionVector class EmptyBinException(Exception): pass class PlattsSigmoidFitNode(BaseNode): """ Map prediction scores to probability estimates with a sigmoid fit This node uses a sigmoid fit to map a prediction score to a class probability estimate, i.e. a value between 0 and 1, where e.g. 0.5 means 50% probability of the positive class which must not necessarily correspond to a SVM score of 0. For more information see 'Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods' (Platt) 1999. The parametric form of the sigmoid function is: .. math:: P(c|x) =\\text{appr } P_{A,B}(s(x)) = \\frac{1}{1+e^{As(x)+B}} where c is the actual class, x the data, s(x) the prediction score and A and B are calculated through the training examples. .. note:: Learning this transformation on the same training data than the classifier was trained is not recommended for non-linear kernels (due to over-fitting). The best parameter setting z*=(A*,B*) is determined by solving the following regularized maximum likelihood problem: .. math:: \\min F(z)= - \\sum_{i=1}^l{(t_i \\log(p_i) + (1-t_i) \\log(1-p_i))}, for :math:`p_i=P_{A,B}(s(x_i))` and :math:`t_i` are target probabilities defined according to *priors* and :math:`c_i`. The implementation is improved to ensure convergence and to avoid numerical difficulties (see 'A Note on Platt's Probabilistic Outputs for Support Vector Machines' (HT Lin, RC Weng) 2007). **Parameters** :priors: A tuple that consists the number of examples expected for each class (first element negative class, second element positive class). If the parameter is not specified, the numbers in the training set are used. (*optional, default: None*) :class_labels: Determines the order of classes, i.e. the mapping of class labels onto integers. The first element of the list should be the negative class, the second should be the positive class. If this parameter is not specified, the order is determined based on the order of occurrence in the training data (which is more or less arbitrary). (*optional, default: []*) :oversampling: If True different class distributions are balanced by oversampling and random drawing where appropriate (if the overrepresented class is not divisible by the underrepresented class). (*optional, default: False*) :store_plots: If True 'reliable diagrams' of the training and test data are stored. A discretization of the scores is made to calculate empirical probabilities. The number of scores per bin is displayed on every data point in the figure and shows how accurate the estimate is (the higher the number the better). If the fit is reliable the empirical probabilities should scatter around the diagonal in the right plots. Although the store variable is set to True if this variable is set. :store_probabilities: If True the calculated probability and the corresponding label for each prediction is pickeled and saved in the results directory. Although the store variable is set to True if this variable is set. (*optional, default: False*) :store: If True store_plots and store_probabilities are set to True. This is the "simple" way to store both the plots and the probabilities. **Exemplary Call** .. code-block:: yaml - node : PSF parameters : class_labels : ['Target','Standard'] """ def __init__(self, priors = None, class_labels = [], oversampling = False, store_plots = False, store_probabilities = False, **kwargs): super(PlattsSigmoidFitNode, self).__init__(**kwargs) if ( store_plots or store_probabilities ): self.store = True elif(self.store): store_plots = True store_probabilities = True self.set_permanent_attributes(priors = priors, class_labels = class_labels, oversampling = oversampling, scores = [], labels = [], probabilities = [], store_plots = store_plots, store_probabilities = store_probabilities) def is_trainable(self): return True def is_supervised(self): return True def _train(self, data, class_label): """ Collect SVM output and true labels. """ self._train_phase_started = True self.scores.append(data.prediction) if class_label not in self.class_labels: self.class_labels.append(class_label) self.labels.append(self.class_labels.index(class_label)) def _stop_training(self): """ Compute parameter A and B for sigmoid fit.""" def func_value(s,t,a,b): """ Compute the function value avoiding 'catastrophic cancellation'. -(t_i log(p_i) + (1-t_i)log(1- p_i)) = t_i log(1+exp(as_i+b)) + (t_i-1)((as_i+b)-log(1+exp(as_i+b))) = t_i log(1+exp(as_i+b)) + (t_i-1)(as_i+b) - t_i log(1+exp(as_i+b)) + log(1+exp(as_i+b)) = (t_i-1)(as_i+b) + log(1+exp(as_i+b)) * = t_i(as_i+b) + log(exp(-as_i-b)) + log(1+exp(as_i+b)) = t_i(as_i+b) + log((1+exp(as_i+b))/exp(as_i+b)) = t_i(as_i+b) + log(1+exp(-as_i-b)) ** """ fapb = s*a+b # * is used if fapb[i]<0, ** otherwise f = sum([(t[i]-1)*fapb[i] + numpy.log1p(numpy.exp(fapb[i])) if fapb[i]<0 \ else t[i]*fapb[i] + numpy.log1p(numpy.exp(-fapb[i])) \ for i in range(len(fapb))]) return f self._log("Performing training of sigmoid mapping.") if self.oversampling: # first assume that the negative class is the overrepresented class overrepresented_inst = [score for score,label in \ zip(self.scores,self.labels) if label==0] underrepresented_inst = [score for score,label in \ zip(self.scores,self.labels) if label==1] if len(overrepresented_inst) != len(underrepresented_inst): # check if assumption was correct if len(overrepresented_inst) < len(underrepresented_inst): tmp = overrepresented_inst overrepresented_inst = underrepresented_inst underrepresented_inst = tmp oversampling_factor = len(overrepresented_inst) / \ len(underrepresented_inst) self.scores.extend((oversampling_factor-1)*underrepresented_inst) self.labels.extend((oversampling_factor-1) * \ len(underrepresented_inst) * range(1,2)) if len(overrepresented_inst) % len(underrepresented_inst) != 0: num_draw_random = len(overrepresented_inst) - \ oversampling_factor * len(underrepresented_inst) # Randomizer has to be fixed for reproducibility import random randomizer = random.Random(self.run_number) for i in range(num_draw_random): selected_score=randomizer.choice(underrepresented_inst) self.scores.append(selected_score) underrepresented_inst.remove(selected_score) self.labels.extend(num_draw_random * range(1,2)) if self.priors == None: self.priors = (self.labels.count(0),self.labels.count(1)) self.scores = numpy.array(self.scores) # Parameter settings maxiter = 100 # Maximum number of iterations minstep = 1.0e-10 # Minimum step taken in line search sigma = 1.0e-12 # Set to any value > 0 # Construct initial value: target support in array targets, hiTarget = (self.priors[1]+1.0)/(self.priors[1]+2.0) loTarget = 1/(self.priors[0]+2.0) h = (loTarget,hiTarget) targets = numpy.array([h[index] for index in self.labels]) # initial function value in fval self.A = 0 self.B = numpy.log((self.priors[0]+1.0)/(self.priors[1]+1.0)) fval = func_value(self.scores,targets,self.A,self.B) for it in range(maxiter): # update gradient and Hessian (use H' = H + sigma I) h11 = h22 = sigma h21 = g1 = g2 = 0.0 fApB = self.scores*self.A+self.B pq= numpy.array([[1/(1.0+numpy.exp(fApB[i])), numpy.exp(fApB[i])/(1.0+numpy.exp(fApB[i]))] if fApB[i]<0 \ else [numpy.exp(-fApB[i])/(1.0+numpy.exp(-fApB[i])), 1/(1.0+numpy.exp(-fApB[i]))] \ for i in range(len(fApB))]) d1 = targets - pq[:,0] d2 = pq[:,0] * pq[:,1] h11 = sum(self.scores**2*d2) h21 = sum(self.scores*d2) h22 = sum(d2) g1 = sum(self.scores*d1) g2 = sum(d1) # stopping criteria: if gradient is really tiny, stop if (abs(g1) < 1.0e-5) and (abs(g2) < 1.0e-5): break # finding Newton direction: -inv(H')*g det = h11*h22-h21**2 dA = -(h22*g1-h21*g2)/det dB = -(-h21*g1+h11*g2)/det gd = g1*dA+g2*dB # line search stepsize = 1 while stepsize >= minstep: newA = self.A+stepsize*dA newB = self.B+stepsize*dB newf = func_value(self.scores,targets,newA,newB) # check sufficient decrease if (newf < fval+0.0001*stepsize*gd): self.A = newA self.B = newB fval = newf break else: stepsize /= 2.0 if stepsize < minstep: import logging self._log("Line search fails. A= "+str(self.A)+" B= " \ +str(self.B)+" g1= "+str(g1)+" g2= "+str(g2) \ +" dA= "+str(dA)+" dB= "+str(dB)+" gd= "+str(gd), level = logging.WARNING) break if it>=maxiter-1: import logging self._log("Reaching maximal iterations. g1= "+str(g1)+" g2= " \ +str(g2), level=logging.WARNING) self._log("Finished training of sigmoid mapping in %d iterations." % it) # Clean up of not needed variables self.scores = [] self.labels = [] def _execute(self, x): """ Evaluate each prediction with the sigmoid mapping learned.""" fApB = x.prediction * self.A + self.B if fApB<0: new_prediction=1/(1.0+numpy.exp(fApB)) else: new_prediction=numpy.exp(-fApB)/(numpy.exp(-fApB)+1.0) # enforce mapping to interval [0,1] new_prediction = max(0,min(1,new_prediction)) new_label = self.class_labels[0] if new_prediction <= 0.5 \ else self.class_labels[1] # Safe the new calculated probabilities if self.store_probabilities: self.probabilities.append( [new_prediction , new_label] ) return PredictionVector(label=new_label, prediction=new_prediction, predictor=x.predictor) def _discretize(self, predictions, labels, bins=12): """ Discretize predictions into bins. Return bin scores and 2d list of discretized labels. """ while(True): try: cut = (abs(predictions[0])+ abs(predictions[-1]))/bins current_bin=0 l_discrete={0:[]} bin_scores = [predictions[0]+cut/2.0] for p,l in zip(predictions,labels): if p > predictions[0]+cut*(current_bin+2): raise EmptyBinException("One bin without any examples!") if p > predictions[0]+cut*(current_bin+1): current_bin += 1 bin_scores.append(bin_scores[-1]+cut) l_discrete[current_bin]=[l] else: l_discrete[current_bin].append(l) if len(l_discrete)==bins+1: l_discrete[bins-1].extend(l_discrete[bins]) del l_discrete[bins] del bin_scores[-1] bin_scores[-1]= bin_scores[-1]-cut/2.0 + \ (predictions[-1]-(bin_scores[-1]-cut/2.0))/2.0 except EmptyBinException: if bins>1: bins-=1 else: raise Exception("Could not discretize data!") else: return bin_scores, l_discrete def _empirical_probability(self, l_discrete): """ Return dictionary of empirical class probabilities for discretized label list.""" plot_emp_prob = {} len_list = {} for label in range(len(self.class_labels)): plot_emp_prob[label]=[] len_list[label]=[] for score_list in l_discrete.values(): len_list[label].append(len(score_list)) plot_emp_prob[label].append(score_list.count(label)/ \ float(len(score_list))) return len_list, plot_emp_prob def store_state(self, result_dir, index=None): """ Stores plots of score distribution and sigmoid fit or/and the calculated probabilities with the corresponding label. .. todo:: change plot calculations to upper if else syntax .. todo:: add the corresponding data point to the saved probabilities """ if self.store : # Create the directory for the stored results from pySPACE.tools.filesystem import create_directory import os node_dir = os.path.join(result_dir, self.__class__.__name__) create_directory(node_dir) # Safe the probabilities in a pickle file if( self.store_probabilities ): import pickle f_name=node_dir + "/probabilities_%d.pickle" % self.current_split pickle.dump(self.probabilities, open(f_name,'w')) if self.store_plots: # reliable plot of training (before sigmoid fit) sort_index = numpy.argsort(self.scores) labels = numpy.array(self.labels)[sort_index] predictions = numpy.array(self.scores)[sort_index] plot_scores_train,l_discrete_train=self._discretize(predictions, labels) len_list_train, plot_emp_prob_train = self._empirical_probability(l_discrete_train) # training data after sigmoid fit fApB = predictions * self.A + self.B new_predictions = [(int(fApB[i]<0)+int(fApB[i]>=0)*numpy.exp(-fApB[i]))/ \ (1.0+numpy.exp((-1)**int(fApB[i]>=0)*fApB[i])) \ for i in range(len(fApB))] plot_scores_train_fit, l_discrete_train_fit = \ self._discretize(new_predictions,labels) len_list_train_fit, plot_emp_prob_train_fit = \ self._empirical_probability(l_discrete_train_fit) # test data before sigmoid fit test_scores = [] test_labels = [] for data, label in self.input_node.request_data_for_testing(): test_scores.append(data.prediction) test_labels.append(self.class_labels.index(label)) sort_index = numpy.argsort(test_scores) labels = numpy.array(test_labels)[sort_index] predictions = numpy.array(test_scores)[sort_index] plot_scores_test,l_discrete_test = self._discretize(predictions, labels) len_list_test, plot_emp_prob_test = self._empirical_probability(l_discrete_test) # test data after sigmoid fit fApB = predictions * self.A + self.B new_predictions = [(int(fApB[i]<0)+int(fApB[i]>=0)*numpy.exp(-fApB[i]))/ \ (1.0+numpy.exp((-1)**int(fApB[i]>=0)*fApB[i])) \ for i in range(len(fApB))] plot_scores_test_fit, l_discrete_test_fit = \ self._discretize(new_predictions,labels) len_list_test_fit, plot_emp_prob_test_fit = \ self._empirical_probability(l_discrete_test_fit) import pylab from matplotlib.transforms import offset_copy pylab.close() fig = pylab.figure(figsize=(10,10)) ax = pylab.subplot(2,2,1) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x,y,s in zip(plot_scores_train,plot_emp_prob_train[1],len_list_train[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_train[0],plot_scores_train[-1]),(0,1),'-') x = numpy.arange(plot_scores_train[0],plot_scores_train[-1],.02) y = 1/(1+numpy.exp(self.A*x+self.B)) pylab.plot(x,y,'-') pylab.xlim(plot_scores_train[0],plot_scores_train[-1]) pylab.ylim(0,1) pylab.xlabel("SVM prediction Score (training data)") pylab.ylabel("Empirical Probability") ax = pylab.subplot(2,2,2) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x, y, s in zip(plot_scores_train_fit, plot_emp_prob_train_fit[1], len_list_train_fit[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_train_fit[0],plot_scores_train_fit[-1]),(0,1),'-') pylab.xlim(plot_scores_train_fit[0],plot_scores_train_fit[-1]) pylab.ylim(0,1) pylab.xlabel("SVM Probability (training data)") pylab.ylabel("Empirical Probability") ax = pylab.subplot(2,2,3) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x,y,s in zip(plot_scores_test,plot_emp_prob_test[1],len_list_test[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_test[0],plot_scores_test[-1]),(0,1),'-') x = numpy.arange(plot_scores_test[0],plot_scores_test[-1],.02) y = 1/(1+numpy.exp(self.A*x+self.B)) pylab.plot(x,y,'-') pylab.xlim(plot_scores_test[0],plot_scores_test[-1]) pylab.ylim(0,1) pylab.xlabel("SVM prediction Scores (test data)") pylab.ylabel("Empirical Probability") ax = pylab.subplot(2,2,4) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x, y, s in zip(plot_scores_test_fit, plot_emp_prob_test_fit[1], len_list_test_fit[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_test_fit[0],plot_scores_test_fit[-1]),(0,1),'-') pylab.xlim(plot_scores_test_fit[0],plot_scores_test_fit[-1]) pylab.ylim(0,1) pylab.xlabel("SVM Probability (test data)") pylab.ylabel("Empirical Probability") pylab.savefig(node_dir + "/reliable_diagrams_%d.png" % self.current_split) class SigmoidTransformationNode(BaseNode): """ Transform score to interval [0,1] with a sigmoid function The new decision border will be at 0.5. .. warning:: This is NOT a probability mapping and parameters should be set for the function. This node is intended to be externally optimized, such that it generalizes the threshold optimization for soft metrics. The used sigmoid fit function is :math:`\\frac{1}{1+e^{Ax+B}}`. It is 0.5 at :math:`x = -\\frac{B}{A}`. **Parameters** :A: Scaling of prediction value. See above. (*optional, default: -1*) :B: Shifting of scaled prediction. See above. (*optional, default: 0*) :offset: Has the meaning of :math:`-\\frac{B}{A}` and replaces the parameter B if used. (*optional, default: None*) :class_labels: Determines the order of classes, i.e. the mapping of class labels onto integers. The first element of the list should be the negative class, the second should be the positive class. In the context positive should be the class mapped greater than 0.5 and the other class should be the negative one. If the original prediction value had the same orientation, *A* should be chosen negative. (*optional, default: ['Standard','Target']*) **Exemplary Call** .. code-block:: yaml - node : SigTrans parameters : class_labels : ['Standard','Target'] """ input_types=["PredictionVector"] def __init__(self, class_labels = ['Standard','Target'], A = -1, B = 0, offset = None, **kwargs): super(SigmoidTransformationNode, self).__init__(**kwargs) if not(offset is None): B = -A *offset self.set_permanent_attributes(class_labels = class_labels, A = A, B = B) def is_trainable(self): return False def is_supervised(self): return False def _execute(self, data): """ Evaluate each prediction with the sigmoid mapping learned. """ # code simply copied from PlattsSigmoidFitNode fur eventual future changes fApB = data.prediction * self.A + self.B if fApB<0: new_prediction=1/(1.0+numpy.exp(fApB)) else: new_prediction=numpy.exp(-fApB)/(numpy.exp(-fApB)+1.0) # enforce mapping to interval [0,1] new_prediction = max(0,min(1,new_prediction)) new_label = self.class_labels[0] if new_prediction <= 0.5 \ else self.class_labels[1] return PredictionVector(label=new_label, prediction=new_prediction, predictor=data.predictor) class LinearTransformationNode(BaseNode): """ Scaling and offset shift, and relabeling due to new decision boundary Having a prediction value x it is mapped to (x+*offset*)*scaling*. If the result is lower than the *decision boundary* it is mapped to the first class label for the negative class and otherwise to the second positive class. **Parameters** :class labels: This mandatory parameter defines the ordering of class labels for the mapping after the transformation. If this parameter is not specified, the label remains unchanged. This is for example feasible for regression mappings. .. note:: This parameter could be also used to change class label strings, but this would probably cause problems in the evaluation step. (*recommended, default: None*) :offset: Shift of the prediction value. (*optional, default: 0*) :scaling: Scaling factor applied after offset shift. (*optional, default: 1*) :decision_boundary: Everything lower this value is classified as class one and everything else as class two. By default no labels are changed. **Exemplary Call** .. code-block:: yaml - node : LinearTransformation parameters : class_labels : ['Standard', 'Target'] offset : 1 scaling : 42 decision_boundary : 3 """ def __init__(self, class_labels=None, offset=0, scaling=1, decision_boundary=None, **kwargs): super(LinearTransformationNode, self).__init__(**kwargs) if class_labels is None or decision_boundary is None: decision_boundary = None class_labels = None self.set_permanent_attributes(class_labels=class_labels, scaling=scaling, offset=offset, decision_boundary=decision_boundary, ) def _execute(self, x): """ (x+o)*s < d """ p = x.prediction prediction = (p+self.offset)*self.scaling if self.decision_boundary is None: label = x.label elif self.decision_boundary < prediction: label = self.class_labels[0] else: label = self.class_labels[1] return PredictionVector(prediction=prediction, label=label, predictor=x.predictor) class LinearFitNode(BaseNode): """ Linear mapping between score and [0,1] This node maps the unbounded SVM score linear to bound it between [0,1]. If the result can be interpreted as probability can be seen in the reliable diagrams. **Parameters** :class_labels: Determines the order of classes, i.e. the mapping of class labels onto integers. The first element of the list should be the negative class, the second should be the positive class. If this parameter is not specified, the order is determined based on the order of occurrence in the training data (which is more or less arbitrary). (*optional, default: []*) :store: If True 'reliable diagrams' of the training and test data are stored. A discretization of the scores is made to calculate empirical probabilities. The number of scores per bin is displayed on every data point in the figure and shows how accurate the estimate is (the higher the number the better). If the fit is reliable the empirical probabilities should scatter around the diagonal in the right plots. **Exemplary Call** .. code-block:: yaml - node : LinearFit parameters : class_labels : ['Standard','Target'] """ def __init__(self, class_labels = [], **kwargs): super(LinearFitNode, self).__init__(**kwargs) self.set_permanent_attributes(class_labels = class_labels, scores = [], labels = []) def is_trainable(self): return True def is_supervised(self): return True def _train(self, data, class_label): """ Collect SVM output and true labels. """ self._train_phase_started = True self.scores.append(data.prediction) if class_label not in self.class_labels: self.class_labels.append(class_label) self.labels.append(self.class_labels.index(class_label)) def _stop_training(self): """ Compute max range of the score according to the class.""" positive_inst = [score for score,label in \ zip(self.scores,self.labels) if label==1] negative_inst = [score for score,label in \ zip(self.scores,self.labels) if label==0] self.max_range = (abs(min(negative_inst)),max(positive_inst)) def _execute(self, x): """ Evaluate each prediction with the linear mapping learned.""" if x.prediction < -1.0*self.max_range[0]: new_prediction = 0.0 elif x.prediction < self.max_range[1]: new_prediction = (x.prediction + \ self.max_range[self.class_labels.index(x.label)]) / \ (2.0 * self.max_range[self.class_labels.index(x.label)]) else: new_prediction = 1.0 return PredictionVector(label=x.label, prediction=new_prediction, predictor=x.predictor) def _discretize(self, predictions, labels, bins=12): """ Discretize predictions into bins. Return bin scores and 2d list of discretized labels. """ while(True): try: cut = (abs(predictions[0])+ abs(predictions[-1]))/bins current_bin=0 l_discrete={0:[]} bin_scores = [predictions[0]+cut/2.0] for p,l in zip(predictions,labels): if p > predictions[0]+cut*(current_bin+2): raise EmptyBinException("One bin without any examples!") if p > predictions[0]+cut*(current_bin+1): current_bin += 1 bin_scores.append(bin_scores[-1]+cut) l_discrete[current_bin]=[l] else: l_discrete[current_bin].append(l) if len(l_discrete)==bins+1: l_discrete[bins-1].extend(l_discrete[bins]) del l_discrete[bins] del bin_scores[-1] bin_scores[-1]= bin_scores[-1]-cut/2.0 + \ (predictions[-1]-(bin_scores[-1]-cut/2.0))/2.0 except EmptyBinException: if bins>1: bins-=1 else: raise Exception("Could not discretize data!") else: return bin_scores, l_discrete def _empirical_probability(self, l_discrete): """ Return dictionary of empirical class probabilities for discretized label list.""" plot_emp_prob = {} len_list = {} for label in range(len(self.class_labels)): plot_emp_prob[label]=[] len_list[label]=[] for score_list in l_discrete.values(): len_list[label].append(len(score_list)) plot_emp_prob[label].append(score_list.count(label)/ \ float(len(score_list))) return len_list, plot_emp_prob def store_state(self, result_dir, index=None): """ Stores plots of score distribution and sigmoid fit. """ if self.store : # reliable plot of training (before linear fit) sort_index = numpy.argsort(self.scores) labels = numpy.array(self.labels)[sort_index] predictions = numpy.array(self.scores)[sort_index] plot_scores_train,l_discrete_train=self._discretize(predictions, labels) len_list_train, plot_emp_prob_train = self._empirical_probability(l_discrete_train) # training data after linear fit new_predictions = [] for score in predictions: if score < 0.0: new_predictions.append((score + self.max_range[0]) / \ (2.0 * self.max_range[0])) else: new_predictions.append((score + self.max_range[1]) / \ (2.0 * self.max_range[1])) plot_scores_train_fit, l_discrete_train_fit = \ self._discretize(new_predictions,labels) len_list_train_fit, plot_emp_prob_train_fit = \ self._empirical_probability(l_discrete_train_fit) # test data before sigmoid fit test_scores = [] test_labels = [] for data, label in self.input_node.request_data_for_testing(): test_scores.append(data.prediction) test_labels.append(self.class_labels.index(label)) sort_index =
numpy.argsort(test_scores)
numpy.argsort
import os import glob import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image import torch.utils.data as data from xml.etree.ElementTree import parse from matplotlib.patches import Rectangle from dataset.trasform import transform class VOC_Dataset(data.Dataset): class_names = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') def __init__(self, root="D:\Data\VOC_ROOT", split='TRAIN'): super(VOC_Dataset, self).__init__() root = os.path.join(root, split) self.img_list = sorted(glob.glob(os.path.join(root, '*/JPEGImages/*.jpg'))) self.anno_list = sorted(glob.glob(os.path.join(root, '*/Annotations/*.xml'))) self.class_dict = {class_name: i for i, class_name in enumerate(self.class_names)} self.class_dict_inv = {i : class_name for i, class_name in enumerate(self.class_names)} self.split = split self.img_size = 416 def __getitem__(self, idx): visualize = False # load img image = Image.open(self.img_list[idx]).convert('RGB') # load labels boxes, labels, is_difficult = self.parse_voc(self.anno_list[idx]) # load img name for string img_name = os.path.basename(self.anno_list[idx]).split('.')[0] img_name_to_ascii = [ord(c) for c in img_name] # load img width and height img_width, img_height = float(image.size[0]), float(image.size[1]) # convert to tensor boxes = torch.FloatTensor(boxes) labels = torch.LongTensor(labels) difficulties = torch.ByteTensor(is_difficult) # (n_objects) img_name = torch.FloatTensor([img_name_to_ascii]) additional_info = torch.FloatTensor([img_width, img_height]) # data augmentation image, boxes, labels, difficulties = transform(image, boxes, labels, difficulties, self.split) # visualization if visualize: mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) # tensor to img img_vis = np.array(image.permute(1, 2, 0), np.float32) # C, W, H # img_vis += np.array([123, 117, 104], np.float32) img_vis *= std img_vis += mean img_vis = np.clip(img_vis, 0, 1) plt.figure('img') plt.imshow(img_vis) print('num objects : {}'.format(len(boxes))) for i in range(len(boxes)): print(boxes[i], labels[i]) plt.gca().add_patch(Rectangle((boxes[i][0] * self.img_size, boxes[i][1] * self.img_size), boxes[i][2] * self.img_size - boxes[i][0] * self.img_size, boxes[i][3] * self.img_size - boxes[i][1] * self.img_size, linewidth=1, edgecolor='r', facecolor='none')) plt.text(boxes[i][0] * self.img_size - 10, boxes[i][1] * self.img_size - 10, str(self.class_dict_inv[labels[i].item()]), bbox=dict(boxstyle='round4', color='grey')) plt.show() if self.split == "TEST": return image, boxes, labels, difficulties, img_name, additional_info # for evaluations return image, boxes, labels, difficulties def __len__(self): return len(self.img_list) def set_image_size(self, img_size): self.img_size = img_size def parse_voc(self, xml_file_path): tree = parse(xml_file_path) root = tree.getroot() boxes = [] labels = [] is_difficult = [] for obj in root.iter("object"): # stop 'name' tag name = obj.find('./name') class_name = name.text.lower().strip() labels.append(self.class_dict[class_name]) # stop to bbox tag bbox = obj.find('./bndbox') x_min = bbox.find('./xmin') y_min = bbox.find('./ymin') x_max = bbox.find('./xmax') y_max = bbox.find('./ymax') # from str to int x_min = float(x_min.text) - 1 y_min = float(y_min.text) - 1 x_max = float(x_max.text) - 1 y_max = float(y_max.text) - 1 boxes.append([x_min, y_min, x_max, y_max]) # is_difficult is_difficult_str = obj.find('difficult').text is_difficult.append(int(is_difficult_str) if is_difficult_str else 0) return (np.array(boxes, dtype=np.float32),
np.array(labels, dtype=np.int64)
numpy.array
import numpy as np # get_bin_digits(6) -> array([0, 1, 1]) # get_bin_digits(6, 5) -> array([0, 1, 1, 0, 0]) def get_bin_digits(num, min_digits = None): digits =
np.array([], dtype=int)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den =
N.array([2,2,2])
numpy.array