prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import print_function from __future__ import division from collections import namedtuple import logging import numpy as np from scipy.optimize import minimize import open3d as o3 from . import features as ft from . import cost_functions as cf from .log import log class L2DistRegistration(object): """L2 distance registration class This algorithm expresses point clouds as mixture gaussian distributions and performs registration by minimizing the distance between two distributions. Args: source (numpy.ndarray): Source point cloud data. feature_gen (probreg.features.Feature): Generator of mixture gaussian distribution. cost_fn (probreg.cost_functions.CostFunction): Cost function to caliculate L2 distance. sigma (float, optional): Scaling parameter for L2 distance. delta (float, optional): Annealing parameter for optimization. use_estimated_sigma (float, optional): If this flag is True, sigma estimates from the source point cloud. """ def __init__(self, source, feature_gen, cost_fn, sigma=1.0, delta=0.9, use_estimated_sigma=True): self._source = source self._feature_gen = feature_gen self._cost_fn = cost_fn self._sigma = sigma self._delta = delta self._use_estimated_sigma = use_estimated_sigma self._callbacks = [] if not self._source is None and self._use_estimated_sigma: self._estimate_sigma(self._source) def set_source(self, source): self._source = source if self._use_estimated_sigma: self._estimate_sigma(self._source) def set_callbacks(self, callbacks): self._callbacks.extend(callbacks) def _estimate_sigma(self, data): ndata, dim = data.shape data_hat = data -
np.mean(data, axis=0)
numpy.mean
import numpy as np import matplotlib.pyplot as plt from os import makedirs from os.path import isfile, exists from scipy.constants import mu_0 # from numba import njit def calcDipolMomentAnalytical(remanence, volume): """ Calculating the magnetic moment from the remanence in T and the volume in m^3""" m = remanence * volume / mu_0 # [A * m^2] return m def plotSimple(data, FOV, fig, ax, cbar=True, **args): """ Generate simple colorcoded plot of 2D grid data with contour. Returns axes object.""" im = ax.imshow(data, extent=FOV, origin="lower", **args) cs = ax.contour(data, colors="k", extent=FOV, origin="lower", linestyles="dotted") class nf(float): def __repr__(self): s = f"{self:.1f}" return f"{self:.0f}" if s[-1] == "0" else s cs.levels = [nf(val) for val in cs.levels] if plt.rcParams["text.usetex"]: fmt = r"%r" else: fmt = "%r" ax.clabel(cs, cs.levels, inline=True, fmt=fmt, fontsize=10) if cbar == True: fig.colorbar(im, ax=ax) return im def centerCut(field, axis): """return a slice of the data at the center for the specified axis""" dims = np.shape(field) return np.take(field, indices=int(dims[axis] / 2), axis=axis) def isHarmonic(field, sphericalMask, shellMask): """Checks if the extrema of the field are in the shell.""" fullField = np.multiply(field, sphericalMask) # [T] reducedField = np.multiply(field, shellMask) if int(ptpPPM(fullField)) > int(ptpPPM(reducedField)): print( "ptpPPM of field:", ptpPPM(fullField), "ptpPPM on surface", ptpPPM(reducedField), ) print("Masked field is NOT a harmonic function...") return False else: print( "ptpPPM of field:", ptpPPM(fullField), "ptpPPM on surface", ptpPPM(reducedField), ) print("Masked field is harmonic.") sizeSpherical = int(np.nansum(sphericalMask)) sizeShell = int(np.nansum(shellMask)) print( "Reduced size of field from {} to {} ({}%)".format( sizeSpherical, sizeShell, int(100 * sizeShell / sizeSpherical) ) ) return True def genQmesh(field, resolution): """Generate a mesh of quadratic coordinates""" mask = np.zeros(np.shape(field)) xAxis = np.linspace( -(np.size(field, 0) - 1) * resolution / 2, (np.size(field, 0) - 1) * resolution / 2, np.size(field, 0), ) yAxis = np.linspace( -(np.size(field, 1) - 1) * resolution / 2, (np.size(field, 1) - 1) * resolution / 2, np.size(field, 1), ) zAxis = np.linspace( -(np.size(field, 2) - 1) * resolution / 2, (np.size(field, 2) - 1) * resolution / 2, np.size(field, 2), ) xAxis, yAxis, zAxis = np.meshgrid(xAxis, yAxis, zAxis) xAxisSquare = np.square(xAxis) yAxisSquare = np.square(yAxis) zAxisSquare = np.square(zAxis) return mask, xAxisSquare, yAxisSquare, zAxisSquare def genMask( field, resolution, diameter=False, shellThickness=False, axis=False, debug=False ): """Generate a mask for a spherical shell""" mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) if (shellThickness != False) and (diameter != False): if debug == True: print( "Creating shell mask. (resolution = {}, diameter = {}, shellThickness = {})".format( resolution, diameter, shellThickness ) ) print("The shell is added inside the sphere surface!") rAxisSquare = xAxisSquare + yAxisSquare + zAxisSquare innerRadiusSquare = (diameter / 2 - shellThickness) ** 2 outerRadiusSquare = (diameter / 2) ** 2 mask[ (rAxisSquare <= outerRadiusSquare) & (rAxisSquare >= innerRadiusSquare) ] = 1 mask[mask == 0] = "NaN" return mask def genSphericalMask(field, diameter, resolution): """generate spherical mask with >>diameter<< for a >>field<< and a given >>resolution<< """ mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) mask[xAxisSquare + yAxisSquare + zAxisSquare <= (diameter / 2) ** 2] = 1 mask[mask == 0] = "NaN" return mask def genSliceMask(field, diameter, resolution, axis="x"): """generate mask for a circular slice with >>diameter<< for a >>field<< and a given >>resolution<< Every input variable has to have the same unit (mm or m or ...) """ mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) if axis == "z": mask[ (xAxisSquare + yAxisSquare <= (diameter / 2) ** 2) & (zAxisSquare == 0) ] = 1 if axis == "y": mask[ (xAxisSquare + zAxisSquare <= (diameter / 2) ** 2) & (yAxisSquare == 0) ] = 1 if axis == "x": mask[ (yAxisSquare + zAxisSquare <= (diameter / 2) ** 2) & (xAxisSquare == 0) ] = 1 mask[mask == 0] = "NaN" return mask def genEllipseSliceMask(field, a, b, resolution, axis="x"): """generate mask for a circulat slice with >>diameter<< for a >>field<< and a given >>resolution<< Every input variable has to have the same unit (mm or m or ...) """ # generate spherical mask mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution) if axis == "z": mask[ (xAxisSquare / (a / 2) ** 2 + yAxisSquare / (b / 2) ** 2 <= 1) & (zAxisSquare == 0) ] = 1 elif axis == "y": mask[ (xAxisSquare / (a / 2) ** 2 + zAxisSquare / (b / 2) ** 2 <= 1) & (yAxisSquare == 0) ] = 1 elif axis == "x": mask[ (yAxisSquare / (a / 2) ** 2 + zAxisSquare / (b / 2) ** 2 <= 1) & (xAxisSquare == 0) ] = 1 mask[mask == 0] = "NaN" return mask def ptpPPM(field): """Calculate the peak-to-peak homogeneity in ppm.""" return 1e6 * (np.nanmax(field) - np.nanmin(field)) / np.nanmean(field) def saveParameters(parameters, folder): """Saving a dict to the file parameters.npy . If the file exist it is beeing updated, if the parameters are not stored already. __future__: Fix usecase: Some parameters are in dict which are identical to the stored ones and some are new! """ try: print("Saving parameters to file...", end=" ") print("\x1b[6;30;42m", *parameters.keys(), "\x1b[0m", end=" ") oldParameters = loadParameters(folder) if parameters.items() <= oldParameters.items(): print(" ... the parameters are already saved and identical.") elif set(parameters).issubset( set(oldParameters) ): # here just keys are compared! print( " ...\x1b[6;37;41m" + " parameters are NOT saved. Other parameters are stored. Please cleanup! " + "\x1b[0m" ) else: oldParameters.update(parameters) np.save(folder + "/parameters", oldParameters) print(" ... added.") except FileNotFoundError or AttributeError: np.save(folder + "/parameters", parameters) oldParameters = parameters # print('The following parameters are currently stored:\n', *oldParameters.keys()) def loadParameters(folder): return np.load(folder + "/parameters.npy", allow_pickle=True).item() def loadParameter(key, folder): return loadParameters(folder)[key] def displayParameters(folder): print(loadParameters(folder)) def createShimfieldsShimRingV2( numMagnets=(32, 44), rings=4, radii=(0.074, 0.097), zRange=(-0.08, -0.039, 0.039, 0.08), resolution=1000, kValue=2, simDimensions=(0.04, 0.04, 0.04), numRotations=2, ): """ Calculating the magnetic field distributions for a single or multiple Halbach Rings. This has to be multiplied with the magnetic moment amplitude of a magnet to get the real distribution For every magnet position we set 4 different rotations: 0°, 45°, 90°, 135°. This has to be considered in the cost function otherwise two magnets are placed in one position resolution is the amount of sample points times data points in one dimension """ mu = mu_0 # positioning of the magnets in a circle if len(zRange) == 2: rings = np.linspace(zRange[0], zRange[1], rings) elif rings == len(zRange): rings = np.array(zRange) else: print("No clear definition how to place shims...") rotation_elements = np.linspace(0, np.pi, numRotations, endpoint=False) # create array to store field data count = 0 if type(numMagnets) in (list, tuple): totalNumMagnets = np.sum(numMagnets) * np.size(rings) * numRotations else: totalNumMagnets = numMagnets * np.size(rings) * numRotations * len(radii) print(totalNumMagnets, numMagnets, np.size(rings),
np.size(numRotations)
numpy.size
from win32api import GetSystemMetrics print("Width =", GetSystemMetrics(0)) print("Height =", GetSystemMetrics(1)) # -*- coding: utf-8 -*- # # This file is part of PyGaze - the open-source toolbox for eye tracking # # PyGazeAnalyser is a Python module for easily analysing eye-tracking data # Copyright (C) 2014 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # Gaze Plotter # # Produces different kinds of plots that are generally used in eye movement # research, e.g. heatmaps, scanpaths, and fixation locations as overlays of # images. # # version 2 (02 Jul 2014) __author__ = "<NAME>" # native import os # external import numpy import matplotlib from matplotlib import pyplot, image from PIL import Image # # # # # # LOOK # COLOURS # all colours are from the Tango colourmap, see: # http://tango.freedesktop.org/Tango_Icon_Theme_Guidelines#Color_Palette COLS = { "butter": [ '#fce94f', '#edd400', '#c4a000'], "orange": [ '#fcaf3e', '#f57900', '#ce5c00'], "chocolate": [ '#e9b96e', '#c17d11', '#8f5902'], "chameleon": [ '#8ae234', '#73d216', '#4e9a06'], "skyblue": [ '#729fcf', '#3465a4', '#204a87'], "plum": [ '#ad7fa8', '#75507b', '#5c3566'], "scarletred":[ '#ef2929', '#cc0000', '#a40000'], "aluminium": [ '#eeeeec', '#d3d7cf', '#babdb6', '#888a85', '#555753', '#2e3436'], } # # FONT # FONT = {'family': 'Windows', # 'size': 15} # matplotlib.rc('font', **FONT) # # # # # # FUNCTIONS NEW def draw_fixations_new(fix, dispsize, imagefile=None, durationsize=True, durationcolour=True, alpha=0.5, savefilename=None): """Draws circles on the fixation locations, optionally on top of an image, with optional weigthing of the duration for circle size and colour arguments fixations - a list of fixation ending events from a single trial, as produced by edfreader.read_edf, e.g. edfdata[trialnr]['events']['Efix'] dispsize - tuple or list indicating the size of the display, e.g. (1024,768) keyword arguments imagefile - full path to an image file over which the heatmap is to be laid, or None for no image; NOTE: the image may be smaller than the display size, the function assumes that the image was presented at the centre of the display (default = None) durationsize - Boolean indicating whether the fixation duration is to be taken into account as a weight for the circle size; longer duration = bigger (default = True) durationcolour - Boolean indicating whether the fixation duration is to be taken into account as a weight for the circle colour; longer duration = hotter (default = True) alpha - float between 0 and 1, indicating the transparancy of the heatmap, where 0 is completely transparant and 1 is completely untransparant (default = 0.5) savefilename - full path to the file in which the heatmap should be saved, or None to not save the file (default = None) returns fig - a matplotlib.pyplot Figure instance, containing the fixations """ # FIXATIONS # fix = parse_fixations(fixations) # IMAGE fig, ax = draw_display(dispsize, imagefile=imagefile) # CIRCLES # duration weigths if durationsize: siz = 100 * (fix['dur']/30.0) else: siz = 100 * numpy.median(fix['dur']/30.0) if durationcolour: col = fix['dur'] else: col = COLS['chameleon'][2] # draw circles ax.scatter(fix['x'], fix['y'], s=siz, c=col, marker='o', cmap='jet', alpha=alpha, zorder=2 ) for i, txt in enumerate( range(0, len(fix['x']) )): ax.annotate(txt, xy= (fix['x'][i], fix['y'][i]), ha='center') pyplot.plot(fix['x'],fix['y'], lw=2, zorder=1) # ax.set_axis_bgcolor("lightslategray") # FINISH PLOT # invert the y axis, as (0,0) is top left on a display ax.invert_yaxis() # save the figure if a file name was provided if savefilename != None: fig.savefig(savefilename) #, transparent=True, edgecolor=None) # pyplot.show() return fig # # # # # # FUNCTIONS NEW def draw_heatmap_new(fix, dispsize, imagefile=None, durationweight=True, alpha=0.5, savefilename=None): """Draws a heatmap of the provided fixations, optionally drawn over an image, and optionally allocating more weight to fixations with a higher duration. arguments fixations - a list of fixation ending events from a single trial, as produced by edfreader.read_edf, e.g. edfdata[trialnr]['events']['Efix'] dispsize - tuple or list indicating the size of the display, e.g. (1024,768) keyword arguments imagefile - full path to an image file over which the heatmap is to be laid, or None for no image; NOTE: the image may be smaller than the display size, the function assumes that the image was presented at the centre of the display (default = None) durationweight - Boolean indicating whether the fixation duration is to be taken into account as a weight for the heatmap intensity; longer duration = hotter (default = True) alpha - float between 0 and 1, indicating the transparancy of the heatmap, where 0 is completely transparant and 1 is completely untransparant (default = 0.5) savefilename - full path to the file in which the heatmap should be saved, or None to not save the file (default = None) returns fig - a matplotlib.pyplot Figure instance, containing the heatmap """ # FIXATIONS # fix = parse_fixations(fixations) # IMAGE fig, ax = draw_display(dispsize, imagefile=imagefile) # HEATMAP # Gaussian gwh = 200 gsdwh = gwh/6 gaus = gaussian(gwh,gsdwh) # matrix of zeroes strt = int(gwh/2) heatmapsize = int(dispsize[1] + 2*strt), int(dispsize[0] + 2*strt) # print(list(heatmapsize)) heatmap = numpy.zeros(heatmapsize, dtype=float) # create heatmap for i in range(0,len(fix['dur'])): # get x and y coordinates x = int(strt + fix['x'][i] - int(gwh/2)) y = int(strt + fix['y'][i] - int(gwh/2)) # correct Gaussian size if either coordinate falls outside of # display boundaries if (not 0 < x < dispsize[0]) or (not 0 < y < dispsize[1]): hadj=[0,gwh];vadj=[0,gwh] if 0 > x: hadj[0] = abs(x) x = 0 elif dispsize[0] < x: hadj[1] = int(gwh - int(x-dispsize[0])) if 0 > y: vadj[0] = abs(y) y = 0 elif dispsize[1] < y: vadj[1] = int(gwh - int(y-dispsize[1])) # add adjusted Gaussian to the current heatmap try: heatmap[y:y+vadj[1],x:x+hadj[1]] += gaus[vadj[0]:vadj[1],hadj[0]:hadj[1]] * fix['dur'][i] except: # fixation was probably outside of display pass else: # add Gaussian to the current heatmap heatmap[y:y+gwh,x:x+gwh] += gaus * fix['dur'][i] # resize heatmap heatmap = heatmap[strt:dispsize[1]+strt,strt:dispsize[0]+strt] # remove zeros lowbound = numpy.mean(heatmap[heatmap>0]) heatmap[heatmap<lowbound] = numpy.NaN # draw heatmap on top of image ax.imshow(heatmap, cmap='jet', alpha=alpha) # FINISH PLOT # invert the y axis, as (0,0) is top left on a display ax.invert_yaxis() # save the figure if a file name was provided if savefilename != None: fig.savefig(savefilename) #, facecolor='w', edgecolor=None) # fig.show() # pyplot.waitforbuttonpress() return fig # # # # # # HELPER FUNCTIONS def draw_display(dispsize, imagefile=None): """Returns a matplotlib.pyplot Figure and its axes, with a size of dispsize, a black background colour, and optionally with an image drawn onto it arguments dispsize - tuple or list indicating the size of the display, e.g. (1024,768) keyword arguments imagefile - full path to an image file over which the heatmap is to be laid, or None for no image; NOTE: the image may be smaller than the display size, the function assumes that the image was presented at the centre of the display (default = None) returns fig, ax - matplotlib.pyplot Figure and its axes: field of zeros with a size of dispsize, and an image drawn onto it if an imagefile was passed """ # construct screen (black background) screen = numpy.zeros((dispsize[1],dispsize[0],3), dtype='float32') # if an image location has been passed, draw the image if imagefile != None: # check if the path to the image exists if not os.path.isfile(imagefile): raise Exception("ERROR in draw_display: imagefile not found at '%s'" % imagefile) Image.open(imagefile).convert('RGB').save(imagefile) # load image img = image.imread(imagefile) # flip image over the horizontal axis # (do not do so on Windows, as the image appears to be loaded with # the correct side up there; what's up with that? :/) if not os.name == 'nt': img =
numpy.flipud(img)
numpy.flipud
import numpy as np from scipy.stats import expon from pfb.opt.power_method import power_method from pfb.opt.pcg import pcg from pfb.opt.primal_dual import primal_dual from pfb.operators.psi import DaskPSI from pfb.operators.psf import PSF from pfb.prox.prox_21 import prox_21 from pfb.utils.fits import save_fits from pfb.utils.misc import Gaussian2D import pyscilog log = pyscilog.get_logger('SARA') def resid_func(x, dirty, hessian, mask, beam, wsum): """ Returns the unattenuated residual """ residual = dirty - hessian(mask(beam(x)))/wsum residual_mfs =
np.sum(residual, axis=0)
numpy.sum
from stats import * import pandas as pd import numpy as np import copy from scipy.stats import t class Regression(): def __init__(self): self.stats = Stats() def regress(self, reg_name, data, y_name, beta_names, min_val = 0, max_val = None, constant = True): self.min_val = 0 if max_val != None: self.max_val = max_val else: self.max_val = len(data) self.reg_name = reg_name self.data = copy.copy(data) self.y_name = y_name self.beta_names = copy.copy(beta_names) if constant: self.add_constant() self.build_matrices() self.calculate_regression_stats() self.build_summary() def add_constant(self): self.data["Constant"] = 1 self.beta_names.append("Constant") def build_matrices(self): # Transform dataframes to matrices self.y = np.matrix(self.data[self.y_name]\ [self.min_val:self.max_val]).getT() # create standard array of X values self.X = self.data[self.beta_names].values # create standard array of X values self.X = np.matrix(self.X) self.X_transpose = np.matrix(self.X).getT() #(X'X)^-1 X_transp_X = np.matmul(self.X_transpose, self.X) X_transp_X_Inv = X_transp_X.getI() #X'Y X_transp_y = np.matmul(self.X_transpose, self.y) self.Betas =
np.matmul(X_transp_X_Inv, X_transp_y)
numpy.matmul
"""Test functionality related to glm module.""" import os import pathlib import datetime import logging from unittest.mock import patch, call, MagicMock import numpy import pandas import pytest from .conftest import _mk_test_files from . import utils def test_get_basedir(tmp_path, monkeypatch): """Test getting the GLM basedir.""" from sattools.glm import get_dwd_glm_basedir monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) for m in ("C", "F"): d = get_dwd_glm_basedir(m) assert d == pathlib.Path(tmp_path / "nas" / "GLM-processed" / f"{m:s}" / "1min") for m in ("M1", "M2"): d = get_dwd_glm_basedir(m, lat=45, lon=-55.3) assert d == pathlib.Path(tmp_path / "nas" / "GLM-processed" / f"{m:s}" / "45.0_-55.3" / "1min") with pytest.raises(ValueError): d = get_dwd_glm_basedir("invalid") def test_get_pattern(tmp_path, monkeypatch): """Test getting GLM pattern.""" from sattools.glm import get_pattern_dwd_glm monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) for m in "CF": p = get_pattern_dwd_glm(m) assert p == str(pathlib.Path( tmp_path / "nas" / "GLM-processed" / f"{m:s}" / "1min" / "{year}/{month}/{day}/{hour}/" f"OR_GLM-L2-GLM{m:s}-M3_G16_" "s{year}{doy}{hour}{minute}{second}*_" "e{end_year}{end_doy}{end_hour}{end_minute}{end_second}*_c*.nc")) for i in (1, 2): # NB: until the fix for # https://github.com/deeplycloudy/glmtools/issues/73 the output # filenames always show M1 as the sector p = get_pattern_dwd_glm(f"M{i:d}", lat=45, lon=-55.3) assert p == str(pathlib.Path( tmp_path / "nas" / "GLM-processed" / f"M{i:d}" / "45.0_-55.3" / "1min" / "{year}/{month}/{day}/{hour}/" "OR_GLM-L2-GLMM1-M3_G16_" "s{year}{doy}{hour}{minute}{second}*_" "e{end_year}{end_doy}{end_hour}{end_minute}{end_second}*_c*.nc")) @patch("appdirs.user_cache_dir") @patch("s3fs.S3FileSystem") def test_ensure_glm_lcfa(sS, au, lcfa_pattern, lcfa_files, tmp_path, caplog, monkeypatch): """Test ensuring GLM LCFA is created.""" from sattools.glm import ensure_glm_lcfa_for_period from fsspec.implementations.local import LocalFileSystem from typhon.files.fileset import NoFilesError monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) au.return_value = str(tmp_path / "whole-file-cache") sS.return_value = LocalFileSystem() with patch("sattools.glm.pattern_s3_glm_lcfa", lcfa_pattern): # test that I'm raising a FileNotFoundError if unexpectedly no file # created where expected with patch("fsspec.implementations.cached.WholeFileCacheFileSystem"): with pytest.raises(FileNotFoundError): for _ in ensure_glm_lcfa_for_period( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0)): pass with caplog.at_level(logging.DEBUG): files = list(ensure_glm_lcfa_for_period( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0))) assert (f"Downloading {tmp_path!s}/lcfa-fake/" f"lcfa-fake-19000101000000-000100.nc" in caplog.text) assert (f"Writing to {tmp_path!s}/" f"whole-file-cache/lcfa-fake-19000101000000-000100.nc" in caplog.text) assert len(files) == 6 assert files == [ pathlib.Path( tmp_path / "whole-file-cache" / f"lcfa-fake-1900010100{m:>02d}00-00{m+1:>02d}00.nc") for m in range(6)] for f in files: assert f.exists() files = list(ensure_glm_lcfa_for_period( datetime.datetime(1900, 1, 1, 0, 1, 0), datetime.datetime(1900, 1, 1, 0, 2, 0))) assert len(files) == 1 assert files == [ pathlib.Path( tmp_path / "whole-file-cache" / "lcfa-fake-19000101000100-000200.nc")] with pytest.raises(NoFilesError): next(ensure_glm_lcfa_for_period( datetime.datetime(1900, 1, 2, 0, 0, 0), datetime.datetime(1900, 1, 2, 0, 1, 0))) @patch("sattools.glm.run_glmtools") @patch("appdirs.user_cache_dir") @patch("s3fs.S3FileSystem") def test_ensure_glm(sS, au, sgr, glm_files, lcfa_pattern, lcfa_files, tmp_path, monkeypatch): """Test ensuring GLM GLMC is calculated.""" from sattools.glm import ensure_glm_for_period from sattools.glm import get_pattern_dwd_glm from fsspec.implementations.local import LocalFileSystem monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) au.return_value = str(tmp_path / "whole-file-cache") sS.return_value = LocalFileSystem() with patch("sattools.glm.pattern_s3_glm_lcfa", lcfa_pattern): with pytest.raises(RuntimeError): # files not created when testing next(ensure_glm_for_period( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0), sector="C")) sgr.assert_has_calls( [call([tmp_path / "whole-file-cache" / f"lcfa-fake-1900010100{m:>02d}00-00{m+1:>02d}00.nc"], max_files=60, sector="C") for m in (2, 4)]) def fake_run(files, max_files, sector="C", lat=None, lon=None): """Create files when testing.""" _mk_test_files(get_pattern_dwd_glm(sector, lat=lat, lon=lon), (0, 1, 2, 3, 4, 5, 6)) sgr.side_effect = fake_run g = ensure_glm_for_period( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0), sector="C") fi = next(g) assert isinstance(fi, str) assert os.fspath(fi) == os.fspath( tmp_path / "nas" / "GLM-processed" / "C" / "1min" / "1900" / "01" / "01" / "00" / "OR_GLM-L2-GLMC-M3_G16_s1900001000000*_e1900001000100*_c*.nc") g = ensure_glm_for_period( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0), sector="M1", lat=10, lon=20) fi = next(g) assert os.fspath(fi) == os.fspath( tmp_path / "nas" / "GLM-processed" / "M1" / "10.0_20.0" / "1min" / "1900" / "01" / "01" / "00" / "OR_GLM-L2-GLMM1-M3_G16_s1900001000000*_e1900001000100*_c*.nc") def test_find_coverage(glm_files, tmp_path, monkeypatch): """Test finding GLM time coverage.""" from sattools.glm import find_glm_coverage monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) covered = list(find_glm_coverage( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0), sector="C")) pI = pandas.Interval pT = pandas.Timestamp assert covered == [ pI(pT("1900-01-01T00:00:00"), pT("1900-01-01T00:01:00")), pI(pT("1900-01-01T00:01:00"), pT("1900-01-01T00:02:00")), pI(pT("1900-01-01T00:03:00"), pT("1900-01-01T00:04:00")), pI(pT("1900-01-01T00:05:00"), pT("1900-01-01T00:06:00"))] covered = list(find_glm_coverage( datetime.datetime(1900, 1, 2, 3, 4, 5), datetime.datetime(1900, 5, 4, 3, 2, 1), sector="C")) assert covered == [] covered = list(find_glm_coverage( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 6, 0), sector="F")) assert covered == [ pI(pT("1900-01-01T00:00:00"), pT("1900-01-01T00:01:00")), pI(pT("1900-01-01T00:02:00"), pT("1900-01-01T00:03:00")), pI(pT("1900-01-01T00:05:00"), pT("1900-01-01T00:06:00"))] covered = list(find_glm_coverage( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 9, 0), sector="M1", lat=1.2, lon=2.3)) assert covered == [ pI(pT("1900-01-01T00:00:00"), pT("1900-01-01T00:01:00")), pI(pT("1900-01-01T00:05:00"), pT("1900-01-01T00:06:00")), pI(pT("1900-01-01T00:08:00"), pT("1900-01-01T00:09:00"))] covered = list(find_glm_coverage( datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 9, 0), sector="M2", lat=1.2, lon=2.3)) assert covered == [ pI(pT("1900-01-01T00:00:00"), pT("1900-01-01T00:01:00")), pI(pT("1900-01-01T00:02:00"), pT("1900-01-01T00:03:00")), pI(pT("1900-01-01T00:04:00"), pT("1900-01-01T00:05:00"))] def test_find_gaps(glm_files, monkeypatch, tmp_path): """Test finding GLM time coverage gaps.""" from sattools.glm import find_glm_coverage_gaps monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) pI = pandas.Interval pT = pandas.Timestamp gaps = list(find_glm_coverage_gaps( datetime.datetime(1900, 1, 1, 0, 0), datetime.datetime(1900, 1, 1, 0, 8), sector="C")) assert gaps == [ pI(pT("1900-01-01T00:02:00"), pT("1900-01-01T00:03:00")), pI(pT("1900-01-01T00:04:00"), pT("1900-01-01T00:05:00")), pI(pT("1900-01-01T00:06:00"), pT("1900-01-01T00:08:00"))] gaps = list(find_glm_coverage_gaps( datetime.datetime(1900, 1, 2, 0, 0), datetime.datetime(1900, 1, 2, 0, 8), sector="C")) assert gaps == [ pI(pT("1900-01-02T00:00:00"), pT("1900-01-02T00:08:00"))] gaps = list(find_glm_coverage_gaps( datetime.datetime(1900, 1, 1, 0, 0), datetime.datetime(1900, 1, 1, 0, 2), sector="C")) assert gaps == [] gaps = list(find_glm_coverage_gaps( datetime.datetime(1900, 1, 1, 0, 0), datetime.datetime(1900, 1, 1, 0, 8), sector="F")) assert gaps == [ pI(pT("1900-01-01T00:01:00"), pT("1900-01-01T00:02:00")), pI(pT("1900-01-01T00:03:00"), pT("1900-01-01T00:05:00")), pI(pT("1900-01-01T00:06:00"), pT("1900-01-01T00:08:00"))] gaps = list(find_glm_coverage_gaps( datetime.datetime(1900, 1, 1, 0, 0), datetime.datetime(1900, 1, 1, 0, 10), sector="M1", lat=1.2, lon=2.3)) assert gaps == [ pI(pT("1900-01-01T00:01:00"), pT("1900-01-01T00:05:00")), pI(pT("1900-01-01T00:06:00"), pT("1900-01-01T00:08:00")), pI(pT("1900-01-01T00:09:00"), pT("1900-01-01T00:10:00"))] gaps = list(find_glm_coverage_gaps( datetime.datetime(1900, 1, 1, 0, 0), datetime.datetime(1900, 1, 1, 0, 10), sector="M2", lat=1.2, lon=2.3)) assert gaps == [ pI(pT("1900-01-01T00:01:00"), pT("1900-01-01T00:02:00")), pI(pT("1900-01-01T00:03:00"), pT("1900-01-01T00:04:00")), pI(pT("1900-01-01T00:05:00"), pT("1900-01-01T00:10:00"))] def test_run_glmtools(tmp_path, caplog, monkeypatch): """Test running glmtools.""" from sattools.glm import run_glmtools monkeypatch.setenv("NAS_DATA", str(tmp_path / "nas")) with patch("sattools.glm.load_file") as sgl: mocks = [MagicMock() for _ in range(5)] sgl.return_value.grid_setup.return_value = mocks with caplog.at_level(logging.INFO): run_glmtools( [tmp_path / "lcfa1.nc", tmp_path / "lcfa2.nc"], sector="F") assert (f"Running glmtools for {(tmp_path / 'lcfa1.nc')!s} " f"{(tmp_path / 'lcfa2.nc')!s}" in caplog.text) mocks[0].assert_called_once() # confirm we passed the correct sector assert (cal := sgl().create_parser().parse_args.call_args_list [0][0][0])[ cal.index("--goes_sector") + 1] == "full" # try with meso sector, requiring lat/lon run_glmtools( [tmp_path / "lcfa1.nc", tmp_path / "lcfa2.nc"], sector="M1", lat=45, lon=-120) assert (cal := sgl().create_parser().parse_args.call_args_list [-1][0][0])[ cal.index("--goes_sector") + 1] == "meso" assert cal[cal.index("--ctr_lat") + 1] == "45.00" assert cal[cal.index("--ctr_lon") + 1] == "-120.00" # try with splitting mocks[0].reset_mock() run_glmtools([tmp_path / "lcfa1.nc", tmp_path / "lcfa2.nc"], max_files=1) assert mocks[0].call_count == 2 @patch("importlib.util.spec_from_file_location", autospec=True) @patch("importlib.util.module_from_spec", autospec=True) def test_load_file(ium, ius): """Test loading file as module.""" from sattools.glm import load_file load_file("module", "/dev/null") def test_get_integrated_glm(tmp_path): """Test getting integrated GLM.""" from sattools.glm import get_integrated_scene fake_glm = utils.create_fake_glm_for_period( tmp_path, datetime.datetime(1900, 1, 1, 0, 0, 0), datetime.datetime(1900, 1, 1, 0, 4, 0), "C") sc = get_integrated_scene(fake_glm) numpy.testing.assert_array_equal( sc["flash_extent_density"],
numpy.full((10, 10), 5)
numpy.full
from time import time import numpy as np import lptml import itertools import csv from sklearn import datasets from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import ShuffleSplit from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score import pandas as pd import scipy.io as sio run_mlwga = False previous_solution = [] def split_pca_learn_metric(x, y, PCA_dim_by, repetitions, t_size, lptml_iterations, S, D, ut, lt, run_hadoop=False, num_machines=10, label_noise=0, rand_state=-1): experiment_results = {} global previous_solution d = len(x[0]) if rand_state < 0: ss = ShuffleSplit(test_size=1-t_size, n_splits=repetitions) else: ss = ShuffleSplit(test_size=1 - t_size, n_splits=repetitions, random_state=rand_state) for train_index, test_index in ss.split(x): x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] # add label noise by re-sampling a fraction of the training labels if label_noise > 0: all_labels = np.unique(y_train) np.random.seed(rand_state) nss = ShuffleSplit(test_size=label_noise/100, n_splits=1, random_state=rand_state) for no_noise, yes_noise in nss.split(y_train): for i in yes_noise: y_train[i] = np.random.choice(np.setdiff1d(all_labels, y_train[i]), 1); np.random.seed(None) for reduce_dim_by in PCA_dim_by: print("Reducing dimension by", reduce_dim_by) dimensions = d - reduce_dim_by if reduce_dim_by > 0: pca = PCA(n_components=dimensions) x_pca_train = pca.fit(x_train).transform(x_train) x_pca_test = pca.fit(x_test).transform(x_test) else: x_pca_train = x_train x_pca_test = x_test if (ut == 0) and (lt == 0): distances = [] all_pairs = [] for pair_of_indexes in itertools.combinations(range(0, min(1000, len(x_pca_train))), 2): all_pairs.append(pair_of_indexes) distances.append(np.linalg.norm(x_pca_train[pair_of_indexes[0]] - x_pca_train[pair_of_indexes[1]])) u = np.percentile(distances, 10) l = np.percentile(distances, 90) else: u = ut l = lt previous_solution = [] # replace use of d by dim from here previous_t = 0 for target_iteration in lptml_iterations: t = target_iteration - previous_t previous_t = t print("Algorithm t=", lptml_iterations) if str(reduce_dim_by) not in experiment_results.keys(): experiment_results[str(reduce_dim_by)] = {str(target_iteration): []} else: if str(target_iteration) not in experiment_results[str(reduce_dim_by)].keys(): experiment_results[str(reduce_dim_by)][str(target_iteration)] = [] iteration_results = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] print('u', u, 'l', l) start_time = time() if run_mlwga: if len(S) > 0: sim = [] dis = [] # select those pairs in S & D that are in the training set for j in range(len(S)): if ((S[j][0] - 1) in train_index) and ((S[j][1] - 1) in train_index): # print("here", np.where(train_index == S[j][0])) sim.append([np.where(train_index == (S[j][0] - 1))[0][0], np.where(train_index == (S[j][1] - 1))[0][0]]) # print(S[j]) for j in range(len(D)): if ((D[j][0] - 1) in train_index) and ((D[j][1] - 1) in train_index): # print(train_index) dis.append([np.where(train_index == (D[j][0] - 1))[0][0], np.where(train_index == (D[j][1] - 1))[0][0]]) # print(D[j]) G = lptml.fit(x_pca_train, y_train, u, l, t, sim, dis, run_hadoop=run_hadoop, num_machines=num_machines, initial_solution=previous_solution) else: G = lptml.fit(x_pca_train, y_train, u, l, t, run_hadoop=run_hadoop, num_machines=num_machines, initial_solution=previous_solution, random_seed=rand_state) previous_solution = np.dot(np.transpose(G), G) else: G = np.identity(len(x_pca_train[1])) elapsed_time = time() - start_time print("elapsed time to get G", elapsed_time) # x_lptml = np.matmul(G, x.T).T print("what I got back was of type", type(G)) # x_lptml_train, x_lptml_test = x_lptml[train_index], x_lptml[test_index] try: x_lptml_train = np.matmul(G, np.transpose(x_pca_train)).T x_lptml_test = np.matmul(G, np.transpose(x_pca_test)).T except: print("continue") raise neigh_lptml = KNeighborsClassifier(n_neighbors=4, metric="euclidean") neigh_lptml.fit(x_lptml_train, np.ravel(y_train)) neigh = KNeighborsClassifier(n_neighbors=4, metric="euclidean") neigh.fit(x_pca_train, np.ravel(y_train)) y_prediction = neigh.predict(x_pca_test) y_lptml_prediction = neigh_lptml.predict(x_lptml_test) iteration_results[0] = accuracy_score(y_test, y_prediction) iteration_results[1] = accuracy_score(y_test, y_lptml_prediction) iteration_results[4] = precision_score(y_test, y_prediction, average="macro") iteration_results[5] = precision_score(y_test, y_lptml_prediction, average="macro") iteration_results[8] = recall_score(y_test, y_prediction, average="macro") iteration_results[9] = recall_score(y_test, y_lptml_prediction, average="macro") iteration_results[12] = f1_score(y_test, y_prediction, average="macro") iteration_results[13] = f1_score(y_test, y_lptml_prediction, average="macro") iteration_results[16] = lptml.initial_violation_count iteration_results[17] = lptml.max_best_solution_d + lptml.max_best_solution_s #violated constraints d_viol, s_viol = lptml.count_violated_constraints(x_pca_test, y_test, lptml.transformer(np.identity(dimensions)), u, l) iteration_results[18] = d_viol + s_viol d_viol, s_viol = lptml.count_violated_constraints(x_pca_test, y_test, G, u, l) iteration_results[19] = d_viol + s_viol iteration_results[20] = elapsed_time print(iteration_results) experiment_results[str(reduce_dim_by)][str(target_iteration)].append(iteration_results) return experiment_results def perform_experiment(x, y, number_of_folds, feat_count, PCA_dim_by, repeat_experiment, result_header, filename, lptml_iterations, S, D, ut, lt, run_hadoop=False, num_machines=10, label_noise=0, rand_state=-1): results_dict = split_pca_learn_metric(x, y, PCA_dim_by, repeat_experiment, number_of_folds, lptml_iterations, S, D, ut, lt, run_hadoop=run_hadoop, num_machines=num_machines, label_noise=label_noise, rand_state=rand_state) for pca in PCA_dim_by: for ite in lptml_iterations: final_results = ["", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] results = np.array(results_dict[str(pca)][str(ite)]) if pca == 0: final_results[0] = result_header + " NOPCA" else: final_results[0] = result_header + " to " + str(feat_count - pca) final_results[0] += " t=" + str(ite) # Averages accuracy for Euclidean, lptml, LMNN, ITML final_results[1] = np.round(np.average(results[:, 0]), 2) final_results[2] = np.round(np.average(results[:, 1]), 2) # Std accuracy for Euclidean, lptml, LMNN, ITML final_results[3] = np.round(np.std(results[:, 0]), 2) final_results[4] = np.round(np.std(results[:, 1]), 2) # Averages precision for Euclidean, lptml, LMNN, ITML final_results[5] = np.round(np.average(results[:, 4]), 2) final_results[6] = np.round(np.average(results[:, 5]), 2) # Std precision for Euclidean, lptml, LMNN, ITML final_results[7] = np.round(np.std(results[:, 4]), 2) final_results[8] = np.round(np.std(results[:, 5]), 2) # Averages recall for Euclidean, lptml, LMNN, ITML final_results[9] = np.round(np.average(results[:, 8]), 2) final_results[10] = np.round(np.average(results[:, 9]), 2) # Std recall for Euclidean, lptml, LMNN, ITML final_results[11] = np.round(np.std(results[:, 8]), 2) final_results[12] = np.round(np.std(results[:, 9]), 2) # Averages F1 score for Euclidean, lptml, LMNN, ITML final_results[13] = np.round(np.average(results[:, 12]), 2) final_results[14] = np.round(np.average(results[:, 13]), 2) # Std F1 score for Euclidean, lptml, LMNN, ITML final_results[15] = np.round(np.std(results[:, 12]), 2) final_results[16] = np.round(np.std(results[:, 13]), 2) # Train initial # violated final_results[17] = np.round(np.average(results[:, 16]), 2) final_results[18] = np.round(np.std(results[:, 16]), 2) # Train final # violated final_results[19] = np.round(np.average(results[:, 17]), 2) final_results[20] = np.round(np.std(results[:, 17]), 2) # Test initial # violated final_results[21] = np.round(np.average(results[:, 18]), 2) final_results[22] = np.round(np.std(results[:, 18]), 2) # Test final # violated final_results[23] = np.round(
np.average(results[:, 19])
numpy.average
# Plot the boxplots for 4000 unmethylated & methylated CpGs each, analysed by old (Nanopolish) & new (NN events) method # with their 5 values and see if there is a difference: # Organise your data in the style of 100:5 matrix # (100 rows corresponding to individual CpG & 5 columns corresponding to 5 signal data points per CpG) un_old = [[] for i in range(5)] for CpG in open("/Users/kristinaulicna/Documents/Rotation_1/Archive/DRONE/UnmethOldNoNone.txt"): CpG = CpG.strip().split('\t') CpG = [float(i) for i in CpG[6:11]] index = 0 for number in CpG: un_old[index].append(CpG[index]) index += 1 print ("Un_Old:", type(un_old[0][0]), un_old[0][0], un_old[1][0], un_old[2][0], un_old[3][0], un_old[4][0]) un_new = [[] for i in range(5)] for CpG in open("/Users/kristinaulicna/Documents/Rotation_1/Archive/DRONE/UnmethNewNoNone.txt"): CpG = CpG.strip().split('\t') CpG = [float(i) for i in CpG[6:11]] index = 0 for number in CpG: un_new[index].append(CpG[index]) index += 1 print ("Un_New:", type(un_new[0][0]), un_new[0][0], un_new[1][0], un_new[2][0], un_new[3][0], un_new[4][0]) me_old = [[] for i in range(5)] for CpG in open("/Users/kristinaulicna/Documents/Rotation_1/Archive/DRONE/MethOldNoNone.txt"): CpG = CpG.strip().split('\t') CpG = [float(i) for i in CpG[6:11]] index = 0 for number in CpG: me_old[index].append(CpG[index]) index += 1 print ("Me_Old:", type(me_old[0][0]), me_old[0][0], me_old[1][0], me_old[2][0], me_old[3][0], me_old[4][0]) me_new = [[] for i in range(5)] for CpG in open("/Users/kristinaulicna/Documents/Rotation_1/Archive/DRONE/MethNewNoNone.txt"): CpG = CpG.strip().split('\t') CpG = [float(i) for i in CpG[6:11]] index = 0 for number in CpG: me_new[index].append(CpG[index]) index += 1 print ("Me_New:", type(me_new[0][0]), me_new[0][0], me_new[1][0], me_new[2][0], me_new[3][0], me_new[4][0]) print ("\nDone!") #--------- Prepare the data: import numpy as np boxplot_datasize = 1500 all_lists = [un_old, un_new, me_old, me_new] for single_list in all_lists: index = 0 while index <= 4: single_list[index] = single_list[index][0:boxplot_datasize] index += 1 un_old = all_lists[0] un_new = all_lists[1] me_old = all_lists[2] me_new = all_lists[3] print () print ("Un_Old:", type(un_old[0][0]), len(un_old[0]), len(un_old[1]), len(un_old[2]), len(un_old[3]), len(un_old[4]), un_old[0][0], un_old[1][0], un_old[2][0], un_old[3][0], un_old[4][0]) print ("Un_New:", type(un_new[0][0]), len(un_new[0]), len(un_new[1]), len(un_new[2]), len(un_new[3]), len(un_new[4]), un_new[0][0], un_new[1][0], un_new[2][0], un_new[3][0], un_new[4][0]) print ("Me_Old:", type(me_old[0][0]), len(me_old[0]), len(me_old[1]), len(me_old[2]), len(me_old[3]), len(me_old[4]), me_old[0][0], me_old[1][0], me_old[2][0], me_old[3][0], me_old[4][0]) print ("Me_New:", type(me_new[0][0]), len(me_new[0]), len(me_new[1]), len(me_new[2]), len(me_new[3]), len(me_new[4]), me_new[0][0], me_new[1][0], me_new[2][0], me_new[3][0], me_new[4][0]) mean_un_old = [np.mean(un_old[i]) for i in range(5)] mean_me_old = [np.mean(me_old[i]) for i in range(5)] mean_un_new = [np.mean(un_new[i]) for i in range(5)] mean_me_new = [np.mean(me_new[i]) for i in range(5)] print ("\nMean_Un_Old:", mean_un_old, "\t", "Mean_Me_Old:", mean_me_old, "\t", "Mean_Un_New:", mean_un_new, "\t", "Mean_Me_New:", mean_me_new) print ("Mean_Un_New:", mean_un_new) print ("Shift:",
np.mean(mean_un_new)
numpy.mean
from __future__ import division import numpy as np import matplotlib.pyplot as plt import argparse from scipy.stats import gamma from scipy.optimize import minimize,fmin_l_bfgs_b #import autograd.numpy as np #from autograd import grad, jacobian, hessian def measure_sensitivity(X): N = len(X) Ds = 1/N * (np.abs(np.max(X) - np.min(X))) return(Ds) def measure_sensitivity_private(distribution, N, theta_vector, cliplo, cliphi): #computed on a surrogate sample different than the one being analyzed if distribution == 'poisson': theta = theta_vector[0] if cliphi == np.inf: Xprime = np.random.poisson(theta, size=1000) Xmax, Xmin = np.max(Xprime), np.min(Xprime) else: Xmax, Xmin = cliphi, cliplo Ds = 1/N * (np.abs(Xmax - Xmin)) if distribution == 'gaussian': theta, sigma = theta_vector[0], theta_vector[1] if cliphi == np.inf: Xprime = np.random.normal(theta, sigma, size=1000) Xmax, Xmin = np.max(Xprime), np.min(Xprime) else: Xmax, Xmin = cliphi, cliplo Ds = 1/N * (np.abs(Xmax - Xmin)) if distribution == 'gaussian2': theta, sigma = theta_vector[0], theta_vector[1] if cliphi == np.inf: Xprime = np.random.normal(theta, sigma, size=1000) Xmax, Xmin = np.max(Xprime), np.min(Xprime) else: Xmax, Xmin = cliphi, cliplo Ds1 = 1/N * (np.abs(Xmax - Xmin)) Ds2 = 2/N * (np.abs(Xmax - Xmin)) Ds = [Ds1, Ds2] if distribution == 'gamma': theta, theta2 = theta_vector[0], theta_vector[1] if cliphi == np.inf: Xprime = np.random.gamma(theta2, theta, size=1000) Xmax, Xmin = np.max(Xprime), np.min(Xprime) else: Xmax, Xmin = cliphi, cliplo Ds = 1/N * (np.abs(Xmax - Xmin)) if distribution == 'gaussianMV': theta, theta2 = theta_vector[0], theta_vector[1] K = len(theta) Xprime = np.random.multivariate_normal(theta, theta2, size=1000) Xmax, Xmin = np.max(Xprime, axis=0), np.min(Xprime,axis=0) Ds = 1/N * (np.abs(Xmax.T-Xmin.T)) return(Ds, [Xmin, Xmax]) def A_SSP(X, Xdistribution, privately_computed_Ds, laplace_noise_scale, theta_vector, rho): N = len(X) if Xdistribution == 'poisson': s = 1/N * np.sum(X) z = np.random.laplace(loc=s, scale=privately_computed_Ds/laplace_noise_scale, size = 1) theta_hat_given_s = s theta_hat_given_z = z return({'0priv': theta_hat_given_z, '0basic': theta_hat_given_s}) if Xdistribution == 'gaussian': s = 1/N * np.sum(X) z = np.random.laplace(loc=s, scale=privately_computed_Ds/laplace_noise_scale, size = 1) theta_hat_given_s = s theta_hat_given_z = z return({'0priv': theta_hat_given_z, '0basic': theta_hat_given_s}) if Xdistribution == 'gaussian2': s1 = 1/N * np.sum(X) s2 = 1/N * np.sum(np.abs(X-s1)) # see du et al 2020 z1 = np.random.laplace(loc=s1, scale=privately_computed_Ds[0]/(laplace_noise_scale*rho), size = 1) z2 = np.random.laplace(loc=s2, scale=privately_computed_Ds[1]/(laplace_noise_scale*(1-rho)), size = 1) theta_hat_given_s = s1 theta2_hat_given_s = np.sqrt(np.pi/2) * max(0.00000001, s2) theta_hat_given_z = z1 theta2_hat_given_z = np.sqrt(np.pi/2) * max(0.00000001, z2) return({'0priv': theta_hat_given_z, '1priv': theta2_hat_given_z, '0basic': theta_hat_given_s, '1basic': theta2_hat_given_s}) if Xdistribution == 'gamma': K = theta_vector[1] s = 1/N *
np.sum(X)
numpy.sum
# -*- coding: utf-8 -*- """Test cases for the Square Exponential covariance function and its spatial gradient. Testing is sparse at the moment. The C++ implementations are tested thoroughly (gpp_covariance_test.hpp/cpp) and we rely more on :mod:`moe.tests.optimal_learning.python.cpp_wrappers.covariance_test`'s comparison with C++ for verification of the Python code. TODO(GH-175): Ping testing for spatial gradients and hyperparameter gradients/hessian. TODO(GH-176): Make test structure general enough to support other covariance functions automatically. """ import numpy import testify as T from moe.optimal_learning.python.geometry_utils import ClosedInterval from moe.optimal_learning.python.python_version.covariance import SquareExponential from moe.optimal_learning.python.python_version.domain import TensorProductDomain import moe.tests.optimal_learning.python.gaussian_process_test_utils as gp_utils from moe.tests.optimal_learning.python.optimal_learning_test_case import OptimalLearningTestCase class SquareExponentialTest(OptimalLearningTestCase): """Tests for the computation of the SquareExponential covariance and spatial gradient of covariance. Tests cases are against manually verified results in various spatial dimensions and some ping tests. """ @T.class_setup def base_setup(self): """Set up parameters for test cases.""" self.epsilon = 2.0 * numpy.finfo(numpy.float64).eps self.CovarianceClass = SquareExponential self.one_dim_test_sets = numpy.array([ [1.0, 0.1], [2.0, 0.1], [1.0, 1.0], [0.1, 10.0], [1.0, 1.0], [0.1, 10.0], ]) self.three_dim_test_sets = numpy.array([ [1.0, 0.1, 0.1, 0.1], [1.0, 0.1, 0.2, 0.1], [1.0, 0.1, 0.2, 0.3], [2.0, 0.1, 0.1, 0.1], [2.0, 0.1, 0.2, 0.1], [2.0, 0.1, 0.2, 0.3], [0.1, 10.0, 1.0, 0.1], [1.0, 10.0, 1.0, 0.1], [10.0, 10.0, 1.0, 0.1], [0.1, 10.0, 1.0, 0.1], [1.0, 10.0, 1.0, 0.1], [10.0, 10.0, 1.0, 0.1], ]) def test_square_exponential_covariance_one_dim(self): """Test the SquareExponential covariance function against correct values for different sets of hyperparameters in 1D.""" for hyperparameters in self.one_dim_test_sets: signal_variance = hyperparameters[0] length = hyperparameters[1] covariance = self.CovarianceClass(hyperparameters) # One length away truth = signal_variance * numpy.exp(-0.5) self.assert_scalar_within_relative( covariance.covariance(numpy.array([0.0]), numpy.array(length)), truth, self.epsilon, ) # Sym self.assert_scalar_within_relative( covariance.covariance(numpy.array(length), numpy.array([0.0])), truth, self.epsilon, ) # One length * sqrt 2 away truth = signal_variance * numpy.exp(-1.0) self.assert_scalar_within_relative( covariance.covariance(numpy.array([0.0]), numpy.array([length * numpy.sqrt(2)])), truth, self.epsilon, ) def test_square_exponential_covariance_three_dim(self): """Test the SquareExponential covariance function against correct values for different sets of hyperparameters in 3D.""" for hyperparameters in self.three_dim_test_sets: signal_variance = hyperparameters[0] length = hyperparameters[1:] covariance = self.CovarianceClass(hyperparameters) self.assert_scalar_within_relative( covariance.covariance(numpy.array([0.0, 0.0, 0.0]), numpy.array([0.0, 0.0, length[2]])), signal_variance * numpy.exp(-0.5), self.epsilon, ) self.assert_scalar_within_relative( covariance.covariance(numpy.array([0.0, 0.0, 0.0]),
numpy.array([0.0, length[1], 0.0])
numpy.array
import sys sys.path.append("./models") from sklearn.metrics import accuracy_score, f1_score, hamming_loss, jaccard_score import torch import numpy as np from DataIter import BERTDataIter, get_labelbert_input_single_sen import os from SigmoidModel import SigmoidModel from LabelMaskModel import LabelMaskModel from TrainConfig import TrainConfig from os.path import join from scipy.special import expit import random import pandas as pd import logging logging.basicConfig(level=logging.INFO) def _pred_logits_fc(model: torch.nn.Module, data_iter, device: torch.device, save_path): """ 基于非标签掩码的模型预测 """ model.eval() y_true, logits = [], [] data_iter.reset() with torch.no_grad(): for ipt in data_iter: ipt = {k: v.to(device) for k, v in ipt.items()} batch_label = ipt.pop("labels") batch_logits = model(**ipt)[0] batch_logits = batch_logits.to("cpu").data.numpy() ### batch_label = batch_label.to("cpu").data.numpy() y_true.append(batch_label) logits.append(batch_logits) y_true =
np.vstack(y_true)
numpy.vstack
from __future__ import print_function, division from sklearn.pipeline import make_pipeline from sklearn import preprocessing from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.model_selection import KFold, cross_validate import numpy as np import pickle import os # Training function def train(x, y): print("Training...") clf = make_pipeline(preprocessing.StandardScaler(), LDA(solver='lsqr', shrinkage='auto')) cv = KFold(n_splits=5) #scores = cross_val_score(clf, x, y, cv=cv) cv_results = cross_validate(clf, x, y, cv=cv, scoring=('accuracy', 'roc_auc'), return_train_score=True) print("End training") return clf, cv_results class ClassifierTrainer(OVBox): def __init__(self): super(ClassifierTrainer, self).__init__() self.stims = [] self.do_train = False self.do_save = False self.x = [] self.y = [] def initialize(self): pass # Save model after training def save_model(self, model): filename = self.setting['classifier_path'] pickle.dump(model, open(filename, 'wb')) def process(self): # collect stimulations, keep only target/non_targets ones and binarize them if self.input[0]: chunk = self.input[0].pop() if type(chunk) == OVStimulationSet: if (chunk): stim = chunk.pop() if stim.identifier == OpenViBE_stimulation['OVTK_StimulationId_Target'] or stim.identifier == OpenViBE_stimulation['OVTK_StimulationId_NonTarget']: self.stims.append(stim.identifier - OpenViBE_stimulation['OVTK_StimulationId_Target']) if stim.identifier == OpenViBE_stimulation['OVTK_StimulationId_ExperimentStop']: self.do_train = True # stack Target feature vectors if self.input[1]: x1 = self.input[1].pop() if type(x1) == OVStreamedMatrixBuffer: if (x1): self.x.append(x1) # stack Non Target features vectors if self.input[2]: x2 = self.input[2].pop() if type(x2) == OVStreamedMatrixBuffer: if (x2): self.x.append(x2) # Cross-validate after Experiments end if self.do_train: self.y =
np.array(self.stims)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data =
np.array([])
numpy.array
# -*- coding: utf-8 -*- # @Time : 2021/2/10 11:24 上午 # @Author : <NAME> # @fileName: SaDE.py # @Software: PyCharm # @Blog :https://lesliewongcv.github.io/ import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../') import DifferenceEvolution as DE import GenericAlgorithm as GA NP = 50 D = 10 CRm = np.random.normal(0.5, 0.1) X = np.arange(-5, 5, 0.1) Y = X ** 2 ITER = 100 rep_set = np.zeros(4) LP = 2 # ITER = 3 def rand_1_mutation(popu_): offspringSet = np.zeros((NP, D)) for j in range(NP): f = np.random.normal(0.5, 0.3) sub_popu = np.delete(popu_, j, axis=0) rand_sub = np.arange(sub_popu.shape[0]) np.random.shuffle(rand_sub) offspringSet[j] = sub_popu[rand_sub[4]] + f * (sub_popu[rand_sub[0]] - sub_popu[rand_sub[1]]) return offspringSet def rand2best_2_mutation(popu_): offspringSet = np.zeros((NP, D)) for k in range(NP): f = np.random.normal(0.5, 0.3) sub_popu = np.delete(popu_, k, axis=0) rand_sub = np.arange(sub_popu.shape[0]) np.random.shuffle(rand_sub) offspringSet[k] = sub_popu[rand_sub[4]] + f * (sub_popu[rand_sub[0]] - sub_popu[rand_sub[1]]) \ + f * (sub_popu[rand_sub[2]] - sub_popu[rand_sub[3]]) return offspringSet def cur2rand_1_mutation(popu_): offspringSet = np.zeros((NP, D)) for l in range(NP): f =
np.random.normal(0.5, 0.3)
numpy.random.normal
import unittest import numpy.testing as npt import numpy as np import os from conjgrad import cg_solve DEFAULT_TOL = 2e-2 DEFAULT_ATOL = 2e-2 def make_sparse_inputs(A, b): N = len(b) spA = np.zeros((N, 18)) C = np.zeros(18 * N, dtype=int) for i in range(N): filt = A[i, :] != 0 Ai = A[i, filt] conn = np.where(filt)[0] spA[i, :len(Ai)] = Ai C[18 * i:18 * i + len(conn)] = conn return spA, C class LASTest(unittest.TestCase): def test_cg_eye_rand(self): A = np.eye(10) b = np.random.rand(10) res = cg_solve(A, b) sol =
np.linalg.solve(A, b)
numpy.linalg.solve
import collections import abc import colorama import numpy as np import scipy import sklearn.mixture import scipy.stats import state import mposterior # a named tuple for a more intuitive access to a "exchange tuple" ExchangeTuple = collections.namedtuple( 'ExchangeTuple', ['i_PE', 'i_particle_within_PE', 'i_neighbour', 'i_particle_within_neighbour']) # a named tuple for a more intuitive access to a "exchange tuple" NeighbourParticlesTuple = collections.namedtuple( 'NeighbourParticlesTuple', ['i_neighbour', 'i_particles']) class ExchangeRecipe(metaclass=abc.ABCMeta): def __init__(self, processing_elements_topology): self._PEs_topology = processing_elements_topology # for the sake of convenience, we keep the number of PEs... self._n_PEs = processing_elements_topology.n_processing_elements def randomized_wakeup(self, n, PRNG): # time elapsed between ticks of the PEs' clocks (each row is the tick of the corresponding PE) time_elapsed_between_ticks = PRNG.exponential(size=(self._n_PEs, n)) # waking times for every PE (as many as the number of iterations so that, in principle, any PE can *always* be # the chosen one) ticks_absolute_time = time_elapsed_between_ticks.cumsum(axis=1) # these are the indexes of the PEs that will wake up to exchange statistics with a neighbour (notice that a # certain PE can show up several times) # REMARK I: [0] is because we only care about the index of the waking PE (and not the instant) # REMARK II: [:self.n_iterations] is because we only consider the "self.n_iterations" earliest wakings i_waking_PEs = np.unravel_index(np.argsort(ticks_absolute_time, axis=None), (self._n_PEs, n))[0][:n] return i_waking_PEs def perform_exchange(self, DPF): pass def messages(self): return np.NaN @property def n_processing_elements(self): return self._n_PEs @property def PEs_topology(self): return self._PEs_topology # a decorator class IteratedExchangeRecipe(ExchangeRecipe): def __init__(self, exchange_recipe, n_iterations): self._exchange_recipe = exchange_recipe self._n_iterations = n_iterations def messages(self): return self._exchange_recipe.messages()*self._n_iterations def perform_exchange(self, DPF): for _ in range(self._n_iterations): self._exchange_recipe.perform_exchange(DPF) @property def n_processing_elements(self): return self._exchange_recipe.n_processing_elements class ParticlesBasedExchangeRecipe(ExchangeRecipe): def __init__( self, processing_elements_topology, n_particles_per_processing_element, exchanged_particles): super().__init__(processing_elements_topology) # the "contacts" of each PE are the PEs it is going to exchange/share particles with self.processing_elements_contacts = self.get_PEs_contacts() # the number of particles that are to be exchanged between a couple of neighbours is computed (or set) if type(exchanged_particles) is int: self.n_particles_exchanged_between_neighbours = exchanged_particles elif type(exchanged_particles) is float: # it is computed accounting for the maximum number of neighbours a given PE can have self.n_particles_exchanged_between_neighbours = int( (n_particles_per_processing_element * exchanged_particles) // max( [len(neighbourhood) for neighbourhood in self.processing_elements_contacts])) else: raise Exception('type of "exchanged_particles" is not valid') if self.n_particles_exchanged_between_neighbours is 0: raise Exception('no particles are to be shared by a PE with its processing_elements_contacts') def perform_exchange(self, DPF): # first, we gather all the particles that are going to be exchanged in an auxiliar variable aux = [] for exchangeTuple in self.exchange_tuples: aux.append( (DPF.PEs[exchangeTuple.i_PE].get_particle(exchangeTuple.i_particle_within_PE), DPF.PEs[exchangeTuple.i_neighbour].get_particle(exchangeTuple.i_particle_within_neighbour))) # afterwards, we loop through all the exchange tuples performing the real exchange for (exchangeTuple, particles) in zip(self.exchange_tuples, aux): DPF.PEs[exchangeTuple.i_PE].set_particle(exchangeTuple.i_particle_within_PE, particles[1]) DPF.PEs[exchangeTuple.i_neighbour].set_particle(exchangeTuple.i_particle_within_neighbour, particles[0]) def messages(self): # the number of hops between each pair of PEs distances = self._PEs_topology.distances_between_processing_elements # overall number of messages sent/received in an exchange step n_messages = 0 # for every PE (index) along with its list of neighbours for i_processing_element, neighbours_list in enumerate(self.neighbours_particles): # each element of the list is a tuple (<index neighbour>,<indexes of the particles exchanged with that neighbour>) for i_neighbour, i_particles in neighbours_list: # the number of messages required to send the samples n_messages += distances[i_processing_element, i_neighbour]*len(i_particles)*state.n_elements # we also need to send the aggregated weight to each neighbour n_messages += len(neighbours_list) return n_messages @abc.abstractmethod def get_PEs_contacts(self): pass @abc.abstractproperty def exchange_tuples(self): pass @abc.abstractproperty def neighbours_particles(self): pass class DRNAExchangeRecipe(ParticlesBasedExchangeRecipe): def __init__( self, processing_elements_topology, n_particles_per_processing_element, exchanged_particles, PRNG=np.random.RandomState(), allow_exchange_one_particle_more_than_once=False): super().__init__(processing_elements_topology, n_particles_per_processing_element, exchanged_particles) # indexes of the particles...just for the sake of efficiency (this array will be used many times) i_particles = np.arange(n_particles_per_processing_element) # an array to keep tabs on pairs of PEs already processed already_processed_PEs = np.zeros((self._n_PEs, self._n_PEs), dtype=bool) # in order to keep tabs on which particles a given PE has already "promised" to exchange particles_not_swapped_yet = np.ones((self._n_PEs, n_particles_per_processing_element), dtype=bool) # all the elements in this array will be "true" across all the iterations of the loop below candidate_particles_all_true = particles_not_swapped_yet.copy() if allow_exchange_one_particle_more_than_once: # the "reference" below is set to a fixed all-true array candidate_particles = candidate_particles_all_true else: # the "reference" is set to the (varying) "particles_not_swapped_yet" candidate_particles = particles_not_swapped_yet # named tuples as defined above, each representing an exchange self._exchangeTuples = [] # a list in which the i-th element is also a list containing tuples of the form (<neighbour index>,<numpy array> # with the indices of particles to be exchanged with that neighbour>) self._neighbours_particles = [[] for _ in range(self._n_PEs)] for iPE, i_this_PE_neighbours in enumerate(self.processing_elements_contacts): for iNeighbour in i_this_PE_neighbours: if not already_processed_PEs[iPE, iNeighbour]: # the particles to be exchanged are chosen randomly (with no replacement) for both, this PE... i_exchanged_particles_within_PE = PRNG.choice( i_particles[candidate_particles[iPE, :]], size=self.n_particles_exchanged_between_neighbours, replace=False) # ...and the corresponding neighbour i_exchanged_particles_within_neighbour = PRNG.choice( i_particles[candidate_particles[iNeighbour, :]], size=self.n_particles_exchanged_between_neighbours, replace=False) # new "exchange tuple"s are generated self._exchangeTuples.extend([ExchangeTuple( i_PE=iPE, i_particle_within_PE=iParticleWithinPE, i_neighbour=iNeighbour, i_particle_within_neighbour=iParticleWithinNeighbour ) for iParticleWithinPE, iParticleWithinNeighbour in zip( i_exchanged_particles_within_PE, i_exchanged_particles_within_neighbour)]) # these PEs (the one considered in the main loop and the neighbour being processed) should not # exchange the selected particles (different in each case) with other PEs particles_not_swapped_yet[iPE, i_exchanged_particles_within_PE] = False particles_not_swapped_yet[iNeighbour, i_exchanged_particles_within_neighbour] = False # we "mark" this pair of PEs as already processed; despite the symmetry, # only "already_processed_PEs[iNeighbour, iPe]" should be accessed later on already_processed_PEs[iNeighbour, iPE] = already_processed_PEs[iPE, iNeighbour] = True # each tuple specifies a neighbor, and the particles THE LATTER exchanges with it (rather than # the other way around) self._neighbours_particles[iPE].append( NeighbourParticlesTuple(iNeighbour, i_exchanged_particles_within_neighbour)) self._neighbours_particles[iNeighbour].append( NeighbourParticlesTuple(iPE, i_exchanged_particles_within_PE)) @property def exchange_tuples(self): return self._exchangeTuples # this is only meant to be used by subclasses (specifically, Mposterior-related ones) @property def neighbours_particles(self): """Particles received from each neighbour. Returns ------- neighbours, particles : list of lists Every individual list contains tuples of the form (<index neighbour>, <indexes particles within that neighbour>) for the corresponding PE """ return self._neighbours_particles def get_PEs_contacts(self): return self._PEs_topology.get_neighbours() class MposteriorExchangeRecipe(DRNAExchangeRecipe): def __init__( self, processing_elements_topology, n_particles_per_processing_element, exchanged_particles, weiszfeld_parameters, PRNG=np.random.RandomState(), allow_exchange_one_particle_more_than_once=False): super().__init__(processing_elements_topology, n_particles_per_processing_element, exchanged_particles, PRNG, allow_exchange_one_particle_more_than_once) self.weiszfeld_parameters = weiszfeld_parameters self.i_own_particles_within_PEs = [PRNG.randint( n_particles_per_processing_element, size=self.n_particles_exchanged_between_neighbours ) for _ in range(self._n_PEs)] def perform_exchange(self, DPF): for PE, this_PE_neighbours_particles, i_this_PE_particles in zip( DPF.PEs, self.neighbours_particles, self.i_own_particles_within_PEs): # a list with the subset posterior of each neighbour subset_posterior_distributions = [ DPF.PEs[neighbour_particles.i_neighbour].get_samples_at(neighbour_particles.i_particles).T for neighbour_particles in this_PE_neighbours_particles] # a subset posterior obtained from this PE is also added: it encompasses # the particles whose indexes are given in "i_this_PE_particles" subset_posterior_distributions.append(PE.get_samples_at(i_this_PE_particles).T) joint_particles, joint_weights = mposterior.find_weiszfeld_median( subset_posterior_distributions, **self.weiszfeld_parameters) # the indexes of the particles to be kept i_new_particles = DPF._resampling_algorithm.get_indexes(joint_weights, PE.n_particles) PE.samples = joint_particles[:, i_new_particles] PE.log_weights = np.full(PE.n_particles, -
np.log(PE.n_particles)
numpy.log
"""Tests for command serialization.""" # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import numpy as np from PIL import Image import pytest import scenepic as sp def test_color(): expected = sp.Color(0.5, 0, 0.2) actual = sp.ColorFromBytes(255, 0, 102) * 0.5 np.testing.assert_array_almost_equal(actual, expected) def test_camera(assert_json_equal): center = np.array([0, 2, 0], np.float32) look_at = np.array([0, 1, 0], np.float32) up_dir = np.array([1, 0, 0], np.float32) fov_y_degrees = 45.0 initial_aspect_ratio = 1.5 new_aspect_ratio = 0.9 znear = 0.01 zfar = 20 rotation = np.array([ [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1] ], np.float32) world_to_camera = np.array([ [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, -2], [0, 0, 0, 1] ], np.float32) camera_to_world = np.array([ [0, 1, 0, 0], [0, 0, 1, 2], [1, 0, 0, 0], [0, 0, 0, 1] ], np.float32) projection = sp.Transforms.gl_projection(fov_y_degrees, initial_aspect_ratio, znear, zfar) look_at_cam = sp.Camera(center, look_at, up_dir, fov_y_degrees, znear, zfar, initial_aspect_ratio) np.testing.assert_array_almost_equal(look_at_cam.center, center) np.testing.assert_array_almost_equal(look_at_cam.look_at, look_at) np.testing.assert_array_almost_equal(look_at_cam.up_dir, up_dir) np.testing.assert_array_almost_equal(look_at_cam.world_to_camera, world_to_camera) np.testing.assert_array_almost_equal(look_at_cam.camera_to_world, camera_to_world) np.testing.assert_array_almost_equal(look_at_cam.projection, projection) assert_json_equal(str(look_at_cam), "camera") look_at_cam.aspect_ratio = new_aspect_ratio assert look_at_cam.aspect_ratio == pytest.approx(new_aspect_ratio) rt_cam = sp.Camera(center, rotation, fov_y_degrees, znear, zfar, new_aspect_ratio) np.testing.assert_array_almost_equal(rt_cam.center, center) np.testing.assert_array_almost_equal(rt_cam.look_at, look_at) np.testing.assert_array_almost_equal(rt_cam.up_dir, up_dir) np.testing.assert_array_almost_equal(rt_cam.world_to_camera, world_to_camera) np.testing.assert_array_almost_equal(rt_cam.camera_to_world, camera_to_world) assert rt_cam.aspect_ratio == pytest.approx(new_aspect_ratio) rt_cam.aspect_ratio = initial_aspect_ratio np.testing.assert_array_almost_equal(rt_cam.projection, projection) assert_json_equal(str(rt_cam), "camera") cam = sp.Camera(world_to_camera, fov_y_degrees, znear, zfar, new_aspect_ratio) np.testing.assert_array_almost_equal(cam.center, center) np.testing.assert_array_almost_equal(cam.look_at, look_at) np.testing.assert_array_almost_equal(cam.up_dir, up_dir) np.testing.assert_array_almost_equal(cam.world_to_camera, world_to_camera) np.testing.assert_array_almost_equal(cam.camera_to_world, camera_to_world) assert cam.aspect_ratio == pytest.approx(new_aspect_ratio) cam.aspect_ratio = initial_aspect_ratio np.testing.assert_array_almost_equal(cam.projection, projection) assert_json_equal(str(cam), "camera") def test_canvas2d(assert_json_equal): scene = sp.Scene() canvas2d = scene.create_canvas_2d("canvas2d") frame2d = canvas2d.create_frame() frame2d.add_circle(0, 0, 5) frame2d = canvas2d.create_frame() frame2d.add_rectangle(5, 6, 7, 8) frame2d = canvas2d.create_frame() frame2d.add_text("test", 1, 1) frame2d = canvas2d.create_frame() frame2d.add_image("rand") assert_json_equal(str(canvas2d), "canvas2d") canvas2d.clear_script() frame2d = canvas2d.create_frame() positions = np.array( [[0, 0], [1, 1], [2, 2]], np.float32 ) frame2d.add_line(positions) assert_json_equal(str(canvas2d), "canvas2d_cleared") def test_canvas3d(assert_json_equal, color): scene = sp.Scene() cube_mesh = scene.create_mesh("cube") cube_mesh.add_cube(color) cone_mesh = scene.create_mesh("cone") cone_mesh.add_cone(color) disc_mesh = scene.create_mesh("disc") disc_mesh.add_disc(color) icosphere_mesh = scene.create_mesh("icosphere") icosphere_mesh.add_icosphere(color) cylinder_mesh = scene.create_mesh("cylinder") cylinder_mesh.add_cylinder(color) canvas3d = scene.create_canvas_3d("canvas3d") frame3d = canvas3d.create_frame("", [1, 0, 0]) frame3d.add_mesh(cube_mesh) frame3d = canvas3d.create_frame() frame3d.add_mesh(disc_mesh, sp.Transforms.Scale(5)) frame3d = canvas3d.create_frame() frame3d.add_mesh(icosphere_mesh) frame3d = canvas3d.create_frame() frame3d.add_mesh(cylinder_mesh) assert_json_equal(str(canvas3d), "canvas3d") canvas3d.clear_script() frame3d = canvas3d.create_frame() frame3d.add_mesh(cone_mesh) assert_json_equal(str(canvas3d), "canvas3d_cleared") def test_drop_down_menu(assert_json_equal): scene = sp.Scene() drop_down_menu = scene.create_drop_down_menu("", "DropDown") drop_down_menu.items = ["one", "two", "three"] assert_json_equal(str(drop_down_menu), "drop_down_menu") def test_frame2d(assert_json_equal): scene = sp.Scene() canvas2d = scene.create_canvas_2d() frame2d = canvas2d.create_frame() frame2d.add_circle(0, 0, 5.0) assert_json_equal(str(frame2d), "frame2d") def test_frame3d(assert_json_equal, color): scene = sp.Scene() cube_mesh = scene.create_mesh("cube") cube_mesh.add_cube(color) canvas3d = scene.create_canvas_3d() frame3d = canvas3d.create_frame("", [1, 0, 0]) frame3d.add_mesh(cube_mesh) assert_json_equal(str(frame3d), "frame3d") def test_image(assert_json_equal, color, asset): scene = sp.Scene() image = scene.create_image("rand") image.load(asset("rand.png")) assert_json_equal(str(image), "image") pixels = np.array(Image.open(asset("rand.png"))) image.from_numpy(pixels, "png") assert_json_equal(str(image), "image") with open(asset("rand.png"), "rb") as file: buffer = file.read() image.load_from_buffer(buffer, "png") assert_json_equal(str(image), "image") mesh = scene.create_mesh("image") mesh.texture_id = image.image_id mesh.add_image() assert_json_equal(str(mesh), "image_mesh") def test_audio(assert_json_equal, asset): scene = sp.Scene() audio = scene.create_audio("hello") audio.load(asset("hello.mp3")) assert_json_equal(str(audio), "audio") def test_video(assert_json_equal, asset): scene = sp.Scene() video = scene.create_video("test") video.load(asset("test.mp4")) assert_json_equal(str(video), "video") def test_label(assert_json_equal): scene = sp.Scene() scene.create_label() assert_json_equal(scene.get_json(), "label") def test_primitives(assert_json_equal, asset, color): scene = sp.Scene() texture = scene.create_image("uv") texture.load(asset("uv.png")) mesh = scene.create_mesh("triangle") mesh.add_triangle(color) assert_json_equal(str(mesh), "triangle") mesh = scene.create_mesh("quad") mesh.add_quad(color) assert_json_equal(str(mesh), "quad") mesh = scene.create_mesh("cube") mesh.add_cube(color) assert_json_equal(str(mesh), "cube") mesh = scene.create_mesh("cube_texture", texture_id=texture.image_id) mesh.add_cube() assert_json_equal(str(mesh), "cube_texture") mesh = scene.create_mesh("thickline") mesh.add_thickline(color) assert_json_equal(str(mesh), "thickline") mesh = scene.create_mesh("cone") mesh.add_cone(color) assert_json_equal(str(mesh), "cone") mesh = scene.create_mesh("trunc_cone") mesh.add_cone(color, truncation_height=0.7) assert_json_equal(str(mesh), "trunc_cone") mesh = scene.create_mesh("coordinate_axes_0") mesh.add_coordinate_axes() assert_json_equal(str(mesh), "coordinate_axes_0") mesh = scene.create_mesh("coordinate_axes_1", shared_color=sp.Colors.White) mesh.add_cube() mesh.add_coordinate_axes() assert_json_equal(str(mesh), "coordinate_axes_1") mesh = scene.create_mesh("camera_frustum") mesh.add_camera_frustum(color) assert_json_equal(str(mesh), "camera_frustum") mesh = scene.create_mesh("disc") mesh.add_disc(color) assert_json_equal(str(mesh), "disc") mesh = scene.create_mesh("cylinder") mesh.add_cylinder(color) assert_json_equal(str(mesh), "cylinder") mesh = scene.create_mesh("sphere") mesh.add_sphere(color) assert_json_equal(str(mesh), "sphere") mesh = scene.create_mesh("icosphere") mesh.add_icosphere(color) assert_json_equal(str(mesh), "icosphere") mesh = scene.create_mesh("icosphere_texture", texture_id=texture.image_id) mesh.add_icosphere(steps=1) assert_json_equal(str(mesh), "icosphere_texture") mesh = scene.create_mesh("uv_sphere") mesh.add_uv_sphere(color) assert_json_equal(str(mesh), "uv_sphere") mesh = scene.create_mesh("point_cloud") positions = [] for x in range(5): for y in range(5): for z in range(5): positions.append([x, y, z]) positions = np.array(positions, np.float32) positions = (positions / 2) - 1 mesh.add_cube(color) mesh.apply_transform(sp.Transforms.scale(0.01)) mesh.enable_instancing(positions) assert_json_equal(str(mesh), "point_cloud") mesh = scene.create_mesh("line_cloud") mesh.add_lines(positions, positions * 10, color) assert_json_equal(str(mesh), "line_cloud") def test_io(assert_json_equal, asset): scene = sp.Scene() image = scene.create_image("texture") image.load(asset("PolarBear.png")) mesh = scene.create_mesh("cube") mesh.texture_id = image.image_id mesh_info = sp.load_obj(asset("cube.obj")) mesh.add_mesh(mesh_info) assert_json_equal(str(mesh), "io") def test_mesh_update(assert_json_equal, color): scene = sp.Scene() mesh = scene.create_mesh("base") mesh.add_triangle(color) positions = np.array([ [0, 0, 0], [1, 0, 0], [0, 0, 1] ], np.float32) normals = np.array([ [0, -1, 0], [0, -1, 0], [0, -1, 0] ], np.float32) colors = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ], np.float32) update = scene.update_mesh_positions("base", positions, "update0") assert_json_equal(str(update), "update0") update = scene.update_mesh("base", positions, normals, colors, "update1") assert_json_equal(str(update), "update1") keyframe_buffer = update.vertex_buffer.copy() keyframe_buffer["pos"][0] = [0, 1, 1] update.quantize(1, 6.0, keyframe_buffer) assert_json_equal(str(update), "update_quantized") instance_pos = np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2] ], np.float32) instance_rot = np.array([ [0.11, 0.22, 0.46, 0.85], [0.46, -0.12, -0.22, 0.85], [0.22, -0.12, 0.46, 0.85] ], np.float32) instance_c = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ], np.float32) mesh.enable_instancing(instance_pos, instance_rot, instance_c) instance_pos[0] = [1, 1, 0] update = scene.update_mesh_positions("base", instance_pos, "update2") assert_json_equal(str(update), "update2") instance_pos[1] = [1, 0, 1] instance_rot[0] = [0.24, 0.24, 0.06, 0.94] instance_c[0] = [0.5, 0, 0] update = scene.update_instanced_mesh("base", instance_pos, instance_rot, instance_c, "update3") assert_json_equal(str(update), "update3") def test_quantization(assert_json_equal, color): scene = sp.Scene() mesh = scene.create_mesh("base") mesh.add_triangle(color) for i in range(20): positions = np.array([ [0, 0, 0], [1, i * 0.05, 0], [0, 1, 0] ], np.float32) scene.update_mesh_positions("base", positions) info = scene.quantize_updates(1e-5) assert info["base"].keyframe_count == 2 assert_json_equal(scene.get_json(), "quantization") def _create_tetrahedron(): vertices = np.array([ [-0.5, -0.32476, -0.20412], [0.5, -0.32476, -0.20412], [0, 0.541266, -0.20412], [0, 0.108253, 0.612372] ], np.float32) triangles = np.array([ [0, 1, 3], [1, 2, 3], [2, 0, 3], [0, 2, 1] ], np.uint32) return vertices, triangles SIZE = 500 def test_scene(assert_json_equal, asset): scene = sp.Scene("test") image = scene.create_image("rand") image.load(asset("rand.png")) mesh_rand = scene.create_mesh() mesh_rand.texture_id = image.image_id mesh_rand.layer_id = "Test" mesh_rand.add_image([-0.5, -0.5, 0], [2, 0, 0]) tet_verts, tet_tris = _create_tetrahedron() model_mesh = scene.create_mesh() model_mesh.shared_color = sp.Color(1, 0, 0) model_mesh.add_mesh_without_normals(tet_verts, tet_tris) model_mesh.reverse_triangle_order() canvas_rand = scene.create_canvas_3d("", SIZE, SIZE) tet_center = tet_verts.mean(axis=0) canvas_tet = scene.create_canvas_3d("", SIZE, SIZE) canvas_tet.camera = sp.Camera(tet_center + np.array([0, 0, 0.5], np.float32), tet_center, [0, 1, 0], 45.0) canvas_tet.shading = sp.Shading(sp.Colors.White) canvas_tet.ui_parameters = sp.UIParameters() n_frames = 5 for i in range(n_frames): angle = 2 * np.pi * i / n_frames frame_rand = canvas_rand.create_frame() frame_rand.add_mesh(mesh_rand, sp.Transforms.Translate([np.cos(angle), np.sin(angle), 0])) mesh_primitives = scene.create_mesh() mesh_primitives.layer_id = "Primitives" mesh_primitives.add_disc(sp.Color(0, 1, 0), sp.Transforms.Scale(0.2 + 0.2 * (1 + np.cos(angle))), 10, False, True) mesh_primitives.add_cube(sp.Color(0, 0, 1), sp.Transforms.Translate([-1, -1, -3])) frame_rand.add_mesh(mesh_primitives) mesh_noise = scene.create_mesh() mesh_noise.shared_color = sp.Color(1, 0, 0) mesh_noise.layer_id = "Noise" mesh_noise.add_cylinder() mesh_noise.apply_transform(sp.Transforms.Scale([0.02, 0.1, 0.1])) mesh_noise.apply_transform(sp.Transforms.RotationToRotateXAxisToAlignWithAxis([0.5, 0.5, 0.5])) positions =
np.zeros((16, 3), np.float32)
numpy.zeros
import numpy as np class Target: def __init__(self, init_weight=1.0, init_state=np.array([[0.0], [0.0], [0.0], [0.0]]), init_cov=np.diag((0.01, 0.01, 0.01, 0.01)), process_noise=0.001, step=3, dt_1=1, dt_2=1): self.state = init_state self.state_cov = init_cov self.weight = init_weight self.measure_cov = init_cov self.dt_1 = dt_1 self.dt_2 = dt_2 self.all_states = [] self.all_states.append(init_state) self.all_cov = [] self.all_cov.append(init_cov) self.state[2][0] = step self.state[3][0] = step self.A = np.array([[1, 0, dt_1, 0], [0, 1, 0, dt_2], [0, 0, 1, 0], [0, 0, 0, 1]]) self.B =
np.eye(init_state.shape[0])
numpy.eye
#!/usr/bin/env python3 import os, time, json import numpy as np import pandas as pd from pprint import pprint import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors as mcolors from matplotlib.colors import LogNorm from scipy.integrate import quad import tinydb as db import argparse from matplotlib.lines import Line2D c_f = 1e-12 data = np.genfromtxt("./V_HV.txt") #test1 data1 = np.genfromtxt('./V_HV2.txt') #test4 data2 = np.genfromtxt('./V_HV3.txt') #test5 v_hv = np.asarray(data[1:,0]) v_out =
np.asarray(data[1:,2])
numpy.asarray
import sys sys.path.append('../') from collections import deque import os from pathlib import Path import imageio import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook from matplotlib.backend_bases import MouseButton import pickle from re import split from scipy.cluster.vq import vq, kmeans2 from py_diff_pd.common.project_path import root_path from py_diff_pd.common.common import ndarray, create_folder, print_info, print_warning def extract_intrinsic_parameters(K): K = ndarray(K).copy() cx = K[0, 2] cy = K[1, 2] alpha = K[0, 0] cot_theta = K[0, 1] / -alpha tan_theta = 1 / cot_theta theta = np.arctan(tan_theta) if theta < 0: theta += np.pi beta = K[1, 1] * np.sin(theta) return { 'alpha': alpha, 'beta': beta, 'theta': theta, 'cx': cx, 'cy': cy } def assemble_intrinsic_parameters(alpha, beta, theta, cx, cy): K = np.zeros((3, 3)) K[0, 0] = alpha K[0, 1] = -alpha / np.tan(theta) K[0, 2] = cx K[1, 1] = beta / np.sin(theta) K[1, 2] = cy K[2, 2] = 1 return ndarray(K).copy() def solve_camera(points_in_pixel, points_in_world): # This is a better reference: https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf # # The pixel space is: # - Origin: lower left. # - x: left to right. # - y: bottom to top. # Let p and P be points_in_pixel (2D) and points_in_world (3D), respectively. # Let R and t be the orientation and location of the world frame in the camera frame. # T = [R, t] # [0, 1] # K = [alpha, -alpha * cot theta, cx, 0] # [0, beta / sin theta, cy, 0] # [0, 0, 1, 0] # Pixels: alpha * (x - cot theta * y) / z + cx # beta / sin theta * y / z + cy # which makes sense if the image is skewed to its right. # [p, 1] = Homogenous(KT[P, 1]). # Let M = KT \in R^{3 x 4} = [m1, m2, m3] # p.x = <m1, [P, 1]> / <m3, [P, 1]>. # p.y = <m2, [P, 1]> / <m3, [P, 1]>. # p.x * <m3, [P, 1]> - <m1, [P, 1]> = 0. # p.y * <m3, [P, 1]> - <m2, [P, 1]> = 0. # Let's flatten them into a linear system. points_in_pixel = ndarray(points_in_pixel).copy() points_in_world = ndarray(points_in_world).copy() num_points = points_in_pixel.shape[0] assert (num_points, 2) == points_in_pixel.shape assert (num_points, 3) == points_in_world.shape P = ndarray(np.zeros((2 * num_points, 12))) for i in range(num_points): # Assemble the x equation. # m1: P[2 * i, :3] = -points_in_world[i] P[2 * i, 3] = -1 # m3: P[2 * i, 8:11] = points_in_world[i] * points_in_pixel[i, 0] P[2 * i, 11] = points_in_pixel[i, 0] # Assemble the y equation. # m2: P[2 * i + 1, 4:7] = -points_in_world[i] P[2 * i + 1, 7] = -1 # m3: P[2 * i + 1, 8:11] = points_in_world[i] * points_in_pixel[i, 1] P[2 * i + 1, 11] = points_in_pixel[i, 1] # Now m can be obtained from P * m = 0. # We solve this by minimizing \|P * m\|^2 s.t. \|m\|^2 = 1. # Consider SVD of P: P = U * Sigma * V.T. U, Sigma, Vt = np.linalg.svd(P) # U @ np.diag(Sigma) @ Vt = P. # So, Vt * m = [0, 0, 0, ..., 1], or m = V * [0, 0, 0, ..., 1]. m = Vt[-1] M = ndarray(np.reshape(m, (3, 4))) # Now we know M = 1 / rho * KT. Let's extract camera parameters. a1 = M[0, :3] a2 = M[1, :3] a3 = M[2, :3] rho = 1 / np.linalg.norm(a3) cx = rho * rho * (a1.dot(a3)) cy = rho * rho * (a2.dot(a3)) a1_cross_a3 = np.cross(a1, a3) a2_cross_a3 = np.cross(a2, a3) cos_theta = -a1_cross_a3.dot(a2_cross_a3) / (np.linalg.norm(a1_cross_a3) * np.linalg.norm(a2_cross_a3)) theta = np.arccos(cos_theta) alpha = rho * rho * np.linalg.norm(a1_cross_a3) * np.sin(theta) beta = rho * rho * np.linalg.norm(a2_cross_a3) * np.sin(theta) K = ndarray([[alpha, -alpha / np.tan(theta), cx], [0, beta / np.sin(theta), cy], [0, 0, 1]]) # Extrinsic camera info: r1 = a2_cross_a3 / np.linalg.norm(a2_cross_a3) # r3 has two possibilities. We need to figure out which one is better. r3_pos = rho * a3 r2_pos = np.cross(r3_pos, r1) R_pos = np.vstack([r1, r2_pos, r3_pos]) r3_neg = -rho * a3 r2_neg = np.cross(r3_neg, r1) R_neg = np.vstack([r1, r2_neg, r3_neg]) # Compare K @ R and rho M[:, :3]. if np.linalg.norm(K @ R_pos - rho * M[:, :3]) < np.linalg.norm(K @ R_neg + rho * M[:, :3]): R = R_pos else: R = R_neg rho = -rho T = rho * np.linalg.inv(K) @ M[:, 3] info = { 'K': ndarray(K).copy(), 'R': ndarray(R).copy(), 'T': ndarray(T).copy(), 'alpha': alpha, 'beta': beta, 'theta': theta, 'cx': cx, 'cy': cy, } return info def solve_simple_camera(points_in_pixel, points_in_world): # The pixel space is: # - Origin: lower left. # - x: left to right. # - y: bottom to top. # Let p and P be points_in_pixel (2D) and points_in_world (3D), respectively. # Let R and t be the orientation and location of the world frame in the camera frame. # T = [R, t] # [0, 1] # K = [alpha, 0, img_width / 2, 0] # [0, alpha, img_height / 2, 0] # [0, 0, 1, 0] # Pixels: alpha * x / z + cx # alpha * y / z + cy # [p, 1] = Homogenous(KT[P, 1]). # Let M = KT \in R^{3 x 4} = [m1, m2, m3] # p.x = <m1, [P, 1]> / <m3, [P, 1]>. # p.y = <m2, [P, 1]> / <m3, [P, 1]>. # p.x * <m3, [P, 1]> - <m1, [P, 1]> = 0. # p.y * <m3, [P, 1]> - <m2, [P, 1]> = 0. # Let's flatten them into a linear system. points_in_pixel = ndarray(points_in_pixel).copy() points_in_pixel[:, 0] -= img_width / 2 points_in_pixel[:, 1] -= img_height / 2 points_in_world = ndarray(points_in_world).copy() num_points = points_in_pixel.shape[0] assert (num_points, 2) == points_in_pixel.shape assert (num_points, 3) == points_in_world.shape P = ndarray(np.zeros((2 * num_points, 12))) for i in range(num_points): # Assemble the x equation. # m1: P[2 * i, :3] = -points_in_world[i] P[2 * i, 3] = -1 # m3: P[2 * i, 8:11] = points_in_world[i] * points_in_pixel[i, 0] P[2 * i, 11] = points_in_pixel[i, 0] # Assemble the y equation. # m2: P[2 * i + 1, 4:7] = -points_in_world[i] P[2 * i + 1, 7] = -1 # m3: P[2 * i + 1, 8:11] = points_in_world[i] * points_in_pixel[i, 1] P[2 * i + 1, 11] = points_in_pixel[i, 1] # Now m can be obtained from P * m = 0. # We solve this by minimizing \|P * m\|^2 s.t. \|m\|^2 = 1. # Consider SVD of P: P = U * Sigma * V.T. U, Sigma, Vt = np.linalg.svd(P) # U @ np.diag(Sigma) @ Vt = P. # So, Vt * m = [0, 0, 0, ..., 1], or m = V * [0, 0, 0, ..., 1]. m = Vt[-1] M = ndarray(np.reshape(m, (3, 4))) # Now we know M = 1 / rho * KT. Let's extract camera parameters. # M = 1 / rho * [alpha, 0, 0] * [R, t] # [0, alpha, 0] # [0, 0, 1] a1 = M[0, :3] a2 = M[1, :3] a3 = M[2, :3] # |rho| * |a3| = 1. rho_pos = 1 / np.linalg.norm(a3) rho_neg = -rho_pos info = None error = np.inf for rho in (rho_pos, rho_neg): KR = rho * M[:, :3] alpha0 = np.linalg.norm(KR[0]) alpha1 = np.linalg.norm(KR[1]) assert np.isclose(alpha0, alpha1, rtol=0.1) alpha = (alpha0 + alpha1) / 2 R_est = np.copy(KR) R_est[0] /= alpha R_est[1] /= alpha U, Sig, Vt = np.linalg.svd(R_est) assert np.allclose(U @ np.diag(Sig) @ Vt, R_est) assert np.allclose(Sig, [1, 1, 1], rtol=0.5) R = U @ Vt K = np.diag([alpha, alpha, 1]) t = np.linalg.inv(K) @ M[:, 3] * rho e = np.linalg.norm(np.hstack([K @ R, (K @ t)[:, None]]) / rho - M) if e < error: info = { 'K': ndarray([[alpha, 0, img_width / 2], [0, alpha, img_height / 2], [0, 0, 1]]), 'R': ndarray(R).copy(), 'T': ndarray(t).copy(), 'alpha': alpha, 'beta': alpha, 'theta': np.pi / 2, 'cx': img_width / 2, 'cy': img_height / 2 } error = e return info # Input: # - image_data: H x W x 3 ndarray. # Output: # - M x 2 pixel coordinates and M x 3 3D coordinates in the world space. # The world frame is defined as follows: # - origin: lower left corner of the table. # - x: left to right. # - y: bottom to top. # - z: pointing up from the table surface. points_in_pixel = [] points_in_world_space = [] last_img_x = None last_img_y = None def select_corners(image_data): global points_in_pixel global points_in_world_space global last_img_x global last_img_y points_in_pixel = [] points_in_world_space = [] last_img_x = -1 last_img_y = -1 fig = plt.figure() ax_img = fig.add_subplot(211) ax_img.imshow(image_data) # The flat sheet. ax_table = fig.add_subplot(212) ax_table.set_xlabel('x') ax_table.set_ylabel('y') # We know the 3D coordinates of the table and the billiard box. table_corners = ndarray([ [0, 0, 0], [1.10, 0, 0], [1.10, 0.67, 0], [0, 0.67, 0] ]) billiard_box_top_corners = ndarray([ [0, 0.67 - 0.056, 0.245], [0.245, 0.67 - 0.056, 0.245], [0.245, 0.67, 0.245], [0, 0.67, 0.245] ]) billiard_box_bottom_corners = ndarray([ [0, 0.67 - 0.056, 0], [0.245, 0.67 - 0.056, 0], [0.245, 0.67, 0], [0, 0.67, 0] ]) billiard_box_top_corners_proxy =
np.copy(billiard_box_top_corners)
numpy.copy
#! /usr/bin/env python # encoding: utf-8 import click import numpy as np from .download_input import get_input def hexgrid_1(movements): direction_indices = {"n": 0, "ne": 1, "nw": 2, "s": 3, "se": 4, "sw": 5} movements = [direction_indices[move] for move in movements.split(",")] directions = np.array([(1, 0), (0, 1), (1, -1), (-1, 0), (-1, 1), (0, -1)]) sum_of_directions = np.sum(directions[movements], axis=0) steps = np.abs(np.sum(sum_of_directions)) signs = np.sign(sum_of_directions) if signs[0] != signs[1]: steps += np.abs(sum_of_directions).min() return steps def hexgrid_2(movements): direction_indices = {"n": 0, "ne": 1, "nw": 2, "s": 3, "se": 4, "sw": 5} movements = [direction_indices[move] for move in movements.split(",")] directions = np.array([(1, 0), (0, 1), (1, -1), (-1, 0), (-1, 1), (0, -1)]) sum_of_directions = np.cumsum(directions[movements], axis=0) steps = np.abs(np.sum(sum_of_directions, axis=1)) signs =
np.sign(sum_of_directions)
numpy.sign
import numpy as np _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 ] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 ] def chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def i0(x): x = np.abs(x) return np.exp(x) * np.piecewise(x, [x<=8.0], [lambda x1: chbevl(x1/2.0-2, _i0A), lambda x1: chbevl(32.0/x1 - 2.0, _i0B) / np.sqrt(x1)]) def kaiser_window(N, beta): n = np.arange(0, N) alpha = (N - 1) / 2.0 return i0(beta * np.sqrt(1 - ((n - alpha) / alpha) ** 2.0)) / i0(beta) def kaiser_beta(a): if a > 50: beta = 0.1102 * (a - 8.7) elif a > 21: beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21) else: beta = 0.0 return beta def kaiser_parameters(ripple, width): ''' ripple - Both passband and stopband ripple strength in dB. width - Difference between fs (stopband frequency) i fp (passband frequency). Normalized so that 1 corresponds to pi radians / sample. That is, the frequency is expressed as a fraction of the Nyquist frequency. ''' a = abs(ripple) beta = kaiser_beta(a) numtaps = (a - 7.95) / 2.285 / (np.pi * width) + 1 return int(np.ceil(numtaps)), beta def lowpass_kaiser_fir_filter(rate=16000, cutoff_freq=4000, width=400, attenuation=65): ''' rate - Signal sampling rate. cuttof_freq - Filter cutoff frequency in Hz. width - Difference between fs (stopband frequency) i fp (passband frequency) in Hz. attenuation - Signal attenuation in the stopband, given in dB. Returns: h(n) - impulse response of lowpass sinc filter with applied Kaiser window. ''' nyq = rate / 2 cutoff_freq = cutoff_freq / nyq numtaps, beta = kaiser_parameters(attenuation, float(width) / nyq) if numtaps % 2 == 0: numtaps += 1 pass_zero = True # zato sto je lowpass pass_nyq = False # zato sto je lowpass cutoff =
np.hstack(([0.0]*pass_zero, cutoff_freq, [1.0]*pass_nyq))
numpy.hstack
def CoulogCC(mbeam,Zbeam, mi, Zi, ni, xi,b): import numpy as np import const as c sqrtpie2 = np.sqrt(np.pi/c.e2) hbc2 = 6.1992097e-05 # hbar c /2 in units of eV cm u = (1-1/
np.sqrt(xi)
numpy.sqrt
#!/usr/bin/env python # # test_fsl_ents.py - # # Author: <NAME> <<EMAIL>> # import sys import numpy as np import pytest import fsl.utils.tempdir as tempdir import fsl.scripts.fsl_ents as extn def test_genComponentIndexList(): with tempdir.tempdir(): # sequence of 1-indexed integers/file paths icomps = [1, 5, 28, 12, 42, 54] fcomps1 = [1, 4, 6, 3, 7] fcomps2 = [12, 42, 31, 1, 4, 8] with open('comps1.txt', 'wt') as f: f.write(','.join([str(l) for l in fcomps1])) with open('comps2.txt', 'wt') as f: f.write(','.join([str(l) for l in fcomps2])) ncomps = 60 comps = icomps + ['comps1.txt', 'comps2.txt'] expcomps = list(sorted(set(icomps + fcomps1 + fcomps2))) expcomps = [c - 1 for c in expcomps] assert extn.genComponentIndexList(comps, ncomps) == expcomps with pytest.raises(ValueError): extn.genComponentIndexList(comps + [-1], 60) with pytest.raises(ValueError): extn.genComponentIndexList(comps, 40) def test_loadConfoundFiles(): with tempdir.tempdir(): npts = 50 confs = [ np.random.randint(1, 100, (50, 10)), np.random.randint(1, 100, (50, 1)), np.random.randint(1, 100, (50, 5))] badconfs = [ np.random.randint(1, 100, (40, 10)), np.random.randint(1, 100, (60, 10))] expected = np.empty((50, 16), dtype=np.float64) expected[:, :] = np.nan expected[:, :10] = confs[0] expected[:, 10:11] = confs[1] expected[:, 11:16] = confs[2] conffiles = [] for i, c in enumerate(confs): fname = 'conf{}.txt'.format(i) conffiles.append(fname) np.savetxt(fname, c) result = extn.loadConfoundFiles(conffiles, npts) amask = ~np.isnan(expected) assert np.all(~np.isnan(result) == amask) assert np.all(result[amask] == expected[amask]) assert np.all(result[amask] == expected[amask]) badconfs = [
np.random.randint(1, 100, (40, 10))
numpy.random.randint
""" Core functionality for feature computation <NAME> Copyright (c) 2021. Pfizer Inc. All rights reserved. """ from abc import ABC, abstractmethod from collections.abc import Iterator, Sequence import json from warnings import warn from pandas import DataFrame from numpy import float_, asarray, zeros, sum, moveaxis __all__ = ["Bank"] class ArrayConversionError(Exception): pass def get_n_feats(size, index): if isinstance(index, int): return 1 elif isinstance(index, (Iterator, Sequence)): return len(index) elif isinstance(index, slice): return len(range(*index.indices(size))) elif isinstance(index, type(Ellipsis)): return size def partial_index_check(index): if index is None: index = ... if not isinstance(index, (int, Iterator, Sequence, type(...), slice)): raise IndexError(f"Index type ({type(index)}) not understood.") if isinstance(index, str): raise IndexError("Index type (str) not understood.") return index def normalize_indices(nfeat, index): if index is None: return [...] * nfeat elif not isinstance(index, (Iterator, Sequence)): # slice, single integer, etc return [partial_index_check(index)] * nfeat elif all([isinstance(i, int) for i in index]): # iterable of ints return [index] * nfeat elif isinstance(index, Sequence): # able to be indexed return [partial_index_check(i) for i in index] else: # pragma: no cover return IndexError(f"Index type ({type(index)}) not understood.") def normalize_axes(ndim, axis, ind_axis): """ Normalize input axes to be positive/correct for how the swapping has to work """ if axis == ind_axis: raise ValueError("axis and index_axis cannot be the same") if ndim == 1: return 0, None elif ndim >= 2: """ | shape | ax | ia | move1 | ax | ia | res | ax | ia | res move | |--------|----|----|--------|----|----|-------|----|----|----------| | (a, b) | 0 | 1 | (b, a) | 0 | 0 | (bf,) | | | | | (a, b) | 0 | N | (b, a) | 0 | N | (f, b)| | | | | (a, b) | 1 | 0 | | | | (3a,) | | | | | (a, b) | 1 | N | | | | (f, a)| | | | | shape | ax| ia | move1 | ax| ia| move2 | res | | ia| res move | |----------|---|------|----------|---|---|----------|----------|----|---|----------| | (a, b, c)| 0 | 1(0) | (b, c, a)| | | | (bf, c) | 0 | 0 | | | (a, b, c)| 0 | 2(1) | (b, c, a)| | 1 | (c, b, a)| (cf, b) | 0 | 1 | (b, cf) | | (a, b, c)| 0 | N | (b, c, a)| | | | (f, b, c)| | | | | (a, b, c)| 1 | 0 | (a, c, b)| | | | (af, c) | 0 | 0 | | | (a, b, c)| 1 | 2(1) | (a, c, b)| | 1 | (c, a, b)| (cf, a) | 0 | 1 | (a, cf) | | (a, b, c)| 1 | N | (a, c, b)| | | | (f, a, c)| | | | | (a, b, c)| 2 | 0 | (a, b, c)| | | | (af, b) | 0 | 0 | | | (a, b, c)| 2 | 1 | (a, b, c)| | 1 | (b, a, c)| (bf, a) | 0 | 1 | (a, bf) | | (a, b, c)| 2 | N | (a, b, c)| | | | (f, a, b)| | | | | shape | ax| ia | move1 | ia| move2 | res | | ia| res move | |------------|---|------|-------------|---|-------------|-------------|---|---|-----------| |(a, b, c, d)| 0 | 1(0) | (b, c, d, a)| | | (bf, c, d) | 0 | 0 | | |(a, b, c, d)| 0 | 2(1) | (b, c, d, a)| 1 | (c, b, d, a)| (cf, b, d) | 0 | 1 | (b, cf, d)| |(a, b, c, d)| 0 | 3(2) | (b, c, d, a)| 2 | (d, b, c, a)| (df, b, c) | 0 | 2 | (d, c, df)| |(a, b, c, d)| 0 | N | (b, c, d, a)| | | (f, b, c, d)| | | | |(a, b, c, d)| 1 | 0 | (a, c, d, b)| | | (af, c, d) | | | | |(a, b, c, d)| 1 | 2(1) | (a, c, d, b)| 1 | (c, a, d, b)| (cf, a, d) | 0 | 1 | (a, cf, d)| |(a, b, c, d)| 1 | 3(2) | (a, c, d, b)| 2 | (d, a, c, b)| (df, a, c) | 0 | 2 | (a, c, df)| |(a, b, c, d)| 1 | N | (a, c, d, b)| | | (f, a, c, d)| | | | |(a, b, c, d)| 2 | 0 | (a, b, d, c)| | | (af, b, d) | | | | |(a, b, c, d)| 2 | 1 | (a, b, d, c)| 1 | (b, a, d, c)| (bf, a, d) | 0 | 1 | (a, bf, d)| |(a, b, c, d)| 2 | 3(2) | (a, b, d, c)| 2 | (d, a, b, c)| (df, a, b) | 0 | 2 | (a, b, df)| |(a, b, c, d)| 2 | N | (a, b, d, c)| | | (f, a, b, d)| | | | |(a, b, c, d)| 3 | 0 | (a, b, c, d)| | | (af, b, c) | | | | |(a, b, c, d)| 3 | 1 | (a, b, c, d)| 1 | (b, a, c, d)| (bf, a, c) | 0 | 1 | (a, bf, c)| |(a, b, c, d)| 3 | 2 | (a, b, c, d)| 2 | (c, a, b, d)| (cf, a, b) | 0 | 2 | (a, b, cf)| |(a, b, c, d)| 3 | N | (a, b, c, d)| | | (f, a, b, c)| | | | """ ax = axis if axis >= 0 else ndim + axis if ind_axis is None: return ax, None ia = ind_axis if ind_axis >= 0 else ndim + ind_axis if ia > ax: ia -= 1 return ax, ia class Bank: """ A feature bank object for ease in creating a table or pipeline of features to be computed. Parameters ---------- bank_file : {None, path-like}, optional Path to a saved bank file to load. Optional Examples -------- """ __slots__ = ("_feats", "_indices") def __str__(self): return "Bank" def __repr__(self): s = "Bank[" for f in self._feats: s += f"\n\t{f!r}," s += "\n]" return s def __contains__(self, item): return item in self._feats def __len__(self): return len(self._feats) def __init__(self, bank_file=None): # initialize some variables self._feats = [] self._indices = [] if bank_file is not None: self.load(bank_file) def add(self, features, index=None): """ Add a feature or features to the pipeline. Parameters ---------- features : {Feature, list} Single signal Feature, or list of signal Features to add to the feature Bank index : {int, slice, list}, optional Index to be applied to data input to each features. Either a index that will apply to every feature, or a list of features corresponding to each feature being added. """ if isinstance(features, Feature): if features in self: warn( f"Feature {features!s} already in the Bank, will be duplicated.", UserWarning, ) self._indices.append(partial_index_check(index)) self._feats.append(features) elif all([isinstance(i, Feature) for i in features]): if any([ft in self for ft in features]): warn("Feature already in the Bank, will be duplicated.", UserWarning) self._indices.extend(normalize_indices(len(features), index)) self._feats.extend(features) def save(self, file): """ Save the feature Bank to a file for a persistent object that can be loaded later to create the same Bank as before Parameters ---------- file : path-like File to be saved to. Creates a new file or overwrites an existing file. """ out = [] for i, ft in enumerate(self._feats): idx = "Ellipsis" if self._indices[i] is Ellipsis else self._indices[i] out.append( {ft.__class__.__name__: {"Parameters": ft._params, "Index": idx}} ) with open(file, "w") as f: json.dump(out, f) def load(self, file): """ Load a previously saved feature Bank from a json file. Parameters ---------- file : path-like File to be read to create the feature Bank. """ # the import must be here, otherwise a circular import error occurs from skdh.features import lib with open(file, "r") as f: feats = json.load(f) for ft in feats: name = list(ft.keys())[0] params = ft[name]["Parameters"] index = ft[name]["Index"] if index == "Ellipsis": index = Ellipsis # add it to the feature bank self.add(getattr(lib, name)(**params), index=index) def compute( self, signal, fs=1.0, *, axis=-1, index_axis=None, indices=None, columns=None ): """ Compute the specified features for the given signal Parameters ---------- signal : {array-like} Array-like signal to have features computed for. fs : float, optional Sampling frequency in Hz. Default is 1Hz axis : int, optional Axis along which to compute the features. Default is -1. index_axis : {None, int}, optional Axis corresponding to the indices specified in `Bank.add` or `indices`. Default is None, which assumes that this axis is not part of the signal. Note that setting this to None means values for `indices` or the indices set in `Bank.add` will be ignored. indices : {None, int, list-like, slice, ellipsis}, optional Indices to apply to the input signal. Either None, a integer, list-like, slice to apply to each feature, or a list-like of lists/objects with a 1:1 correspondence to the features present in the Bank. If provided, takes precedence over any values given in `Bank.add`. Default is None, which will use indices from `Bank.add`. columns : {None, list}, optional Columns to use if providing a dataframe. Default is None (uses all columns). Returns ------- feats : numpy.ndarray Computed features. """ # standardize the input signal if isinstance(signal, DataFrame): columns = columns if columns is not None else signal.columns x = signal[columns].values.astype(float_) else: try: x = asarray(signal, dtype=float_) except ValueError as e: raise ArrayConversionError("Error converting signal to ndarray") from e axis, index_axis = normalize_axes(x.ndim, axis, index_axis) if index_axis is None: indices = [...] * len(self) else: if indices is None: indices = self._indices else: indices = normalize_indices(len(self), indices) # get the number of features that will results. Needed to allocate the feature array if index_axis is None: # don't have to move any other axes than the computation axis x = moveaxis(x, axis, -1) # number of feats is 1 per n_feats = [1] * len(self) feats = zeros((sum(n_feats),) + x.shape[:-1], dtype=float_) else: # move both the computation and index axis. do this in two steps to allow for undoing # just the index axis swap later. The index_axis has been adjusted appropriately # to match this axis move in 2 steps x = moveaxis(x, axis, -1) x =
moveaxis(x, index_axis, 0)
numpy.moveaxis
# coding: utf-8 """ demo using GREIT """ # Copyright (c) <NAME>. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division, absolute_import, print_function import numpy as np import matplotlib.pyplot as plt import pyeit.mesh as mesh from pyeit.eit.fem import EITForward import pyeit.eit.protocol as protocol from pyeit.mesh.shape import thorax import pyeit.eit.greit as greit from pyeit.mesh.wrapper import PyEITAnomaly_Circle """ 0. construct mesh """ n_el = 16 # nb of electrodes use_customize_shape = False if use_customize_shape: # Mesh shape is specified with fd parameter in the instantiation, e.g : fd=thorax mesh_obj = mesh.create(n_el, h0=0.1, fd=thorax) else: mesh_obj = mesh.create(n_el, h0=0.1) # extract node, element, alpha pts = mesh_obj.node tri = mesh_obj.element """ 1. problem setup """ # this step is not needed, actually # mesh_0 = mesh.set_perm(mesh_obj, background=1.0) # test function for altering the 'permittivity' in mesh anomaly = [ PyEITAnomaly_Circle(center=[0.4, 0], r=0.1, perm=10.0), PyEITAnomaly_Circle(center=[-0.4, 0], r=0.1, perm=10.0), PyEITAnomaly_Circle(center=[0, 0.5], r=0.1, perm=0.1), PyEITAnomaly_Circle(center=[0, -0.5], r=0.1, perm=0.1), ] mesh_new = mesh.set_perm(mesh_obj, anomaly=anomaly, background=1.0) delta_perm =
np.real(mesh_new.perm - mesh_obj.perm)
numpy.real
from evalutils.exceptions import ValidationError from evalutils.io import CSVLoader, FileLoader, ImageLoader import json import nibabel as nib import numpy as np import os.path from pathlib import Path from pandas import DataFrame, MultiIndex import scipy.ndimage from scipy.ndimage.interpolation import map_coordinates, zoom from surface_distance import * ##### paths ##### DEFAULT_INPUT_PATH = Path("/input/") DEFAULT_GROUND_TRUTH_PATH = Path("/opt/evaluation/ground-truth/") DEFAULT_EVALUATION_OUTPUT_FILE_PATH = Path("/output/metrics.json") ##### metrics ##### def jacobian_determinant(disp): _, _, H, W, D = disp.shape gradx = np.array([-0.5, 0, 0.5]).reshape(1, 3, 1, 1) grady = np.array([-0.5, 0, 0.5]).reshape(1, 1, 3, 1) gradz =
np.array([-0.5, 0, 0.5])
numpy.array
import argparse import os import sys import numpy as np import pandas as pd from itertools import compress import copy import deTiN_utilities as du import deTiN_SSNV_based_estimate as dssnv import deTiN_aSCNA_based_estimate as dascna import numpy.ma as ma class input: """class which holds the required detin somatic data prior to model""" def __init__(self, args, ascna_probe_number_filter=200, ascna_SNP_number_filter=20, coverage_threshold=15, SSNV_af_threshold=0.15, aSCNA_variance_threshold=0.025): # related to inputs from command line self.call_stats_file = args.mutation_data_path self.seg_file = args.cn_data_path self.tumor_het_file = args.tumor_het_data_path self.normal_het_file = args.normal_het_data_path self.exac_db_file = args.exac_data_path self.indel_file = args.indel_data_path self.indel_type = args.indel_data_type self.only_ascnas = args.only_ascnas if type(args.weighted_classification): self.weighted_classification = bool(args.weighted_classification) else: self.weighted_classification = args.weighted_classification if type(args.mutation_prior) == str: self.mutation_prior = float(args.mutation_prior) else: self.mutation_prior = args.mutation_prior if type(args.TiN_prior) == str: self.TiN_prior = float(args.TiN_prior) else: self.TiN_prior = args.TiN_prior if type(args.resolution) == str: self.resolution = int(args.resolution) else: self.resolution = args.resolution self.output_path = args.output_dir self.output_name = args.output_name if type(args.use_outlier_removal) == str: if args.use_outlier_removal.lower() == 'false': self.use_outlier_removal = False else: self.use_outlier_removal = True else: self.use_outlier_removal = args.use_outlier_removal if type(args.aSCNA_threshold) == str: self.aSCNA_thresh = float(args.aSCNA_threshold) else: self.aSCNA_thresh = args.aSCNA_threshold try: self.ascna_probe_number_filter = float(args.ascna_probe_number_filter) except AttributeError: self.ascna_probe_number_filter = ascna_probe_number_filter try: self.ascna_SNP_number_filter = float(args.ascna_SNP_number_filter) except AttributeError: self.ascna_SNP_number_filter = ascna_SNP_number_filter try: self.coverage_threshold = float(args.coverage_threshold) except AttributeError: self.coverage_threshold = coverage_threshold try: self.SSNV_af_threshold = float(args.SSNV_af_threshold) except AttributeError: self.SSNV_af_threshold = SSNV_af_threshold try: self.aSCNA_variance_threshold = float(args.aSCNA_variance_threshold) except AttributeError: self.aSCNA_variance_threshold = aSCNA_variance_threshold try: self.CancerHotSpotsBED = args.cancer_hot_spots except AttributeError: self.aSCNA_variance_threshold = 'NA' # related to inputs from class functions self.call_stats_table = [] self.seg_table = [] self.het_table = [] self.candidates = [] self.indel_table = [] self.skew = 0.5 def read_call_stats_file(self): fields = ['contig', 'position', 'ref_allele', 'alt_allele', 'tumor_name', 'normal_name', 't_alt_count', 't_ref_count' , 'n_alt_count', 'n_ref_count', 'failure_reasons', 'judgement','t_lod_fstar'] fields_type = {'contig': str, 'position': np.int, 'ref_allele': str, 'alt_allele': str, 'tumor_name': str, 'normal_name': str, 't_alt_count': np.int, 't_ref_count': np.int, 'n_alt_count': np.int, 'n_ref_count': np.int, 'failure_reasons': str, 'judgement': str} try: self.call_stats_table = pd.read_csv(self.call_stats_file, '\t', index_col=False, comment='#', usecols=fields, dtype=fields_type) except (ValueError, LookupError): try: fields = ['contig', 'position', 'ref_allele', 'alt_allele', 'tumor_name', 'normal_name', 't_alt_count', 't_ref_count' , 'n_alt_count', 'n_ref_count', 'failure_reasons', 'judgement'] self.call_stats_table = pd.read_csv(self.call_stats_file, '\t', index_col=False, comment='#', usecols=fields, dtype=fields_type) except (ValueError, LookupError): print('Error reading call stats skipping first two rows and trying again') self.call_stats_table = pd.read_csv(self.call_stats_file, '\t', index_col=False, comment='#', skiprows=2, usecols=fields, dtype=fields_type) if type(self.call_stats_table['contig'][0]) == str: self.call_stats_table['Chromosome'] = du.chr2num(np.array(self.call_stats_table['contig'])) else: self.call_stats_table['Chromosome'] = np.array(self.call_stats_table['contig']) - 1 self.call_stats_table = self.call_stats_table[np.isfinite(self.call_stats_table['Chromosome'])] self.call_stats_table['genomic_coord_x'] = du.hg19_to_linear_positions( np.array(self.call_stats_table['Chromosome']), np.array(self.call_stats_table['position'])) self.n_calls_in = len(self.call_stats_table) self.call_stats_table.reset_index(inplace=True, drop=True) def read_het_file(self): t_het_header = du.read_file_header(self.tumor_het_file) n_het_header = du.read_file_header(self.normal_het_file) cols_t_type = {t_het_header[0]: str} cols_n_type = {n_het_header[0]: str} tumor_het_table = pd.read_csv(self.tumor_het_file, '\t', index_col=False, low_memory=False, comment='#', dtype=cols_t_type) normal_het_table = pd.read_csv(self.normal_het_file, '\t', index_col=False, low_memory=False, comment='#', dtype=cols_n_type) tumor_het_table = du.fix_het_file_header(tumor_het_table) normal_het_table = du.fix_het_file_header(normal_het_table) tumor_het_table['Chromosome'] = du.chr2num(np.array(tumor_het_table['CONTIG'])) normal_het_table['Chromosome'] = du.chr2num(np.array(normal_het_table['CONTIG'])) tumor_het_table = tumor_het_table[np.isfinite(tumor_het_table['Chromosome'])] tumor_het_table['genomic_coord_x'] = du.hg19_to_linear_positions(np.array(tumor_het_table['Chromosome']), np.array(tumor_het_table['POSITION'])) normal_het_table = normal_het_table[np.isfinite(normal_het_table['Chromosome'])] normal_het_table['genomic_coord_x'] = du.hg19_to_linear_positions(np.array(normal_het_table['Chromosome']), np.array(normal_het_table['POSITION'])) tumor_het_table['AF'] = np.true_divide(tumor_het_table['ALT_COUNT'], tumor_het_table['ALT_COUNT'] + tumor_het_table['REF_COUNT']) normal_het_table['AF'] = np.true_divide(normal_het_table['ALT_COUNT'], normal_het_table['ALT_COUNT'] + normal_het_table['REF_COUNT']) self.het_table = pd.merge(normal_het_table, tumor_het_table, on='genomic_coord_x', suffixes=('_N', '_T')) def read_seg_file(self): if self.seg_file == 'NULL': self.seg_table = pd.DataFrame(index=[0],columns=['Chromosome','Start.bp','End.bp','n_probes','length','f','tau','genomic_coord_start','genomic_coord_end']) self.het_table = pd.DataFrame(index=[0],columns=['seg_id','tau','f','d','AF_T','AF_N','Chromosome','genomic_coord_x','ALT_COUNT_N' 'ALT_COUNT_T','REF_COUNT_N','REF_COUNT_T']) else: seg_header = du.read_file_header(self.seg_file) cols_seg_type = {seg_header[0]: str} self.seg_table = pd.read_csv(self.seg_file, '\t', index_col=False, low_memory=False, comment='#', dtype=cols_seg_type) self.seg_table = du.fix_seg_file_header(self.seg_table) self.seg_table['Chromosome'] = du.chr2num(np.array(self.seg_table['Chromosome'])) self.seg_table['genomic_coord_start'] = du.hg19_to_linear_positions(np.array(self.seg_table['Chromosome']), np.array(self.seg_table['Start.bp'])) self.seg_table['genomic_coord_end'] = du.hg19_to_linear_positions(np.array(self.seg_table['Chromosome']), np.array(self.seg_table['End.bp'])) def annotate_call_stats_with_allelic_cn_data(self): f_acs = np.zeros([self.n_calls_in, 1]) + 0.5 tau = np.zeros([self.n_calls_in, 1]) + 2 for i, r in self.seg_table.iterrows(): f_acs[np.logical_and(np.array(self.call_stats_table['genomic_coord_x']) >= r['genomic_coord_start'], np.array(self.call_stats_table['genomic_coord_x']) <= r['genomic_coord_end'])] = r.f tau[np.logical_and(np.array(self.call_stats_table['genomic_coord_x']) >= r['genomic_coord_start'], np.array(self.call_stats_table['genomic_coord_x']) <= r[ 'genomic_coord_end'])] = r.tau + 0.001 self.call_stats_table['tau'] = tau self.call_stats_table['f_acs'] = f_acs def annotate_het_table(self): seg_id = np.zeros([len(self.het_table), 1]) - 1 tau = np.zeros([len(self.het_table), 1]) + 2 f = np.zeros([len(self.het_table), 1]) + 0.5 for seg_index, seg in self.seg_table.iterrows(): het_index = np.logical_and(self.het_table['genomic_coord_x'] >= seg['genomic_coord_start'], self.het_table['genomic_coord_x'] <= seg['genomic_coord_end']) ix = list(compress(range(len(het_index)), het_index)) seg_id[ix] = seg_index tau[ix] = seg['tau'] f[ix] = seg['f'] self.het_table['seg_id'] = seg_id self.het_table['tau'] = tau self.het_table['f'] = f d = np.ones([len(self.het_table), 1]) d[np.array(self.het_table['AF_T'] <= 0.5, dtype=bool)] = -1 self.skew = 0.5 self.het_table['d'] = d def read_and_preprocess_SSNVs(self): self.read_call_stats_file() self.read_seg_file() self.annotate_call_stats_with_allelic_cn_data() if not self.indel_file == 'None': if not self.indel_type == 'None': self.indel_table = du.read_indel_vcf(self.indel_file, self.seg_table, self.indel_type) else: print('Warning: if indels are provided you must also specify indel data source using --indel_data_type') print('no indels will be returned') self.indel_file = 'None' self.indel_type = 'None' def read_and_preprocess_aSCNAs(self): self.read_seg_file() self.read_het_file() self.seg_table = du.filter_segments_based_on_size_f_and_tau(self.seg_table, self.aSCNA_thresh, self.ascna_probe_number_filter) self.annotate_het_table() self.het_table = du.remove_sites_near_centromere_and_telomeres(self.het_table) def read_and_preprocess_data(self): self.read_and_preprocess_SSNVs() self.read_and_preprocess_aSCNAs() class output: """ combined from deTiN's models reclassified SSNVs based on TiN estimate are labeled KEEP in judgement column self.SSNVs['judgement'] == KEEP confidence intervals (CI_tin_high/low) represent 95% interval """ def __init__(self, input, ssnv_based_model, ascna_based_model): # previous results self.input = input self.ssnv_based_model = ssnv_based_model self.ascna_based_model = ascna_based_model # useful outputs self.SSNVs = input.candidates self.joint_log_likelihood = np.zeros([self.input.resolution, 1]) self.joint_posterior = np.zeros([self.input.resolution, 1]) self.CI_tin_high = [] self.CI_tin_low = [] self.TiN = [] self.p_null = 1 # variables self.TiN_range = np.linspace(0, 1, num=self.input.resolution) self.TiN_int = 0 # threshold for accepting variants based on the predicted somatic assignment # if p(S|TiN) exceeds threshold we keep the variant. self.threshold = 0.5 # defines whether to remove events based on predicted exceeding predicted allele fractions # if Beta_cdf(predicted_normal_af;n_alt_count+1,n_ref_count+1) <= 0.01 we remove the variant self.use_outlier_threshold = input.use_outlier_removal if self.input.indel_file != 'None': if self.input.indel_table.isnull().values.sum() == 0: self.indels = self.input.indel_table def calculate_joint_estimate(self): # do not use SSNV based estimate if it exceeds 0.3 (this estimate can be unreliable at high TiNs due to # germline events) if self.ssnv_based_model.TiN <= 0.3 and ~np.isnan(self.ascna_based_model.TiN): if len(self.ascna_based_model.centroids) > 1: reselect_cluster = np.argmin(np.abs(self.ascna_based_model.centroids / 100 - self.ssnv_based_model.TiN)) self.ascna_based_model.TiN_likelihood = self.ascna_based_model.cluster_TiN_likelihoods[reselect_cluster] print('reselected cluster based on SSNVs') # combine independent likelihoods self.joint_log_likelihood = self.ascna_based_model.TiN_likelihood + self.ssnv_based_model.TiN_likelihood # normalize likelihood to calculate posterior self.joint_posterior = np.exp(self.ascna_based_model.TiN_likelihood + self.ssnv_based_model.TiN_likelihood - np.nanmax( self.ascna_based_model.TiN_likelihood + self.ssnv_based_model.TiN_likelihood)) self.joint_posterior = np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior)) self.CI_tin_low = self.TiN_range[next(x[0] for x in enumerate( np.cumsum(np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.025)] self.CI_tin_high = self.TiN_range[ next(x[0] for x in enumerate(np.cumsum( np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.975)] self.TiN_int = np.nanargmax(self.joint_posterior) self.TiN = self.TiN_range[self.TiN_int] zero_tin_ssnv_model = copy.deepcopy(self.ssnv_based_model) zero_tin_ssnv_model.TiN = 0 zero_tin_ssnv_model.expectation_of_z_given_TiN() zero_tin_ssnv_model.maximize_TiN_likelihood() zero_total_l = zero_tin_ssnv_model.TiN_likelihood + self.ascna_based_model.TiN_likelihood zero_total_l = np.exp(zero_total_l - np.nanmax(zero_total_l)) self.p_null = np.true_divide(zero_total_l,np.nansum(zero_total_l))[0] print('joint TiN estimate = ' + str(self.TiN)) # use only ssnv based model elif ~np.isnan(self.ascna_based_model.TiN): # otherwise TiN estimate is = to aSCNA estimate print('SSNV based TiN estimate exceed 0.3 using only aSCNA based estimate') self.joint_log_likelihood = self.ascna_based_model.TiN_likelihood self.joint_posterior = np.exp( self.ascna_based_model.TiN_likelihood - np.nanmax(self.ascna_based_model.TiN_likelihood)) self.joint_posterior = np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior)) self.CI_tin_low = self.TiN_range[next(x[0] for x in enumerate( np.cumsum(np.ma.masked_array(np.true_divide(self.joint_posterior, np.nansum(self.joint_posterior))))) if x[1] > 0.025)] self.CI_tin_high = self.TiN_range[ next(x[0] for x in enumerate(np.cumsum( np.ma.masked_array(np.true_divide(self.joint_posterior,
np.nansum(self.joint_posterior)
numpy.nansum
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import cirq # Python 2 gives a different repr due to unicode strings being prefixed with u. @cirq.testing.only_test_in_python3 def test_wave_function_trial_result_repr(): final_simulator_state = cirq.WaveFunctionSimulatorState( qubit_map={cirq.NamedQubit('a'): 0}, state_vector=np.array([0, 1])) trial_result = cirq.WaveFunctionTrialResult( params=cirq.ParamResolver({'s': 1}), measurements={'m': np.array([[1]])}, final_simulator_state=final_simulator_state) assert repr(trial_result) == ( "cirq.WaveFunctionTrialResult(" "params=cirq.ParamResolver({'s': 1}), " "measurements={'m': array([[1]])}, " "final_simulator_state=cirq.WaveFunctionSimulatorState(" "state_vector=array([0, 1]), " "qubit_map={cirq.NamedQubit('a'): 0}))") def test_wave_function_trial_result_equality(): eq = cirq.testing.EqualsTester() eq.add_equality_group( cirq.WaveFunctionTrialResult( params=cirq.ParamResolver({}), measurements={}, final_simulator_state=cirq.WaveFunctionSimulatorState(np.array([]), {})), cirq.WaveFunctionTrialResult( params=cirq.ParamResolver({}), measurements={}, final_simulator_state=cirq.WaveFunctionSimulatorState(
np.array([])
numpy.array
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.parsing_ops.""" import itertools import numpy as np from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging # Helpers for creating Example objects example = example_pb2.Example feature = feature_pb2.Feature features = lambda d: feature_pb2.Features(feature=d) bytes_feature = lambda v: feature(bytes_list=feature_pb2.BytesList(value=v)) int64_feature = lambda v: feature(int64_list=feature_pb2.Int64List(value=v)) float_feature = lambda v: feature(float_list=feature_pb2.FloatList(value=v)) # Helpers for creating SequenceExample objects feature_list = lambda l: feature_pb2.FeatureList(feature=l) feature_lists = lambda d: feature_pb2.FeatureLists(feature_list=d) sequence_example = example_pb2.SequenceExample def empty_sparse(dtype, shape=None): if shape is None: shape = [0] return (np.empty(shape=(0, len(shape)), dtype=np.int64), np.array([], dtype=dtype), np.array(shape, dtype=np.int64)) def flatten(list_of_lists): """Flatten one level of nesting.""" return itertools.chain.from_iterable(list_of_lists) def flatten_values_tensors_or_sparse(tensors_list): """Flatten each SparseTensor object into 3 Tensors for session.run().""" return list( flatten([[v.indices, v.values, v.dense_shape] if isinstance( v, sparse_tensor.SparseTensor) else [v] for v in tensors_list])) def _compare_output_to_expected(tester, dict_tensors, expected_tensors, flat_output): tester.assertEqual(set(dict_tensors.keys()), set(expected_tensors.keys())) i = 0 # Index into the flattened output of session.run() for k, v in dict_tensors.items(): expected_v = expected_tensors[k] tf_logging.info("Comparing key: %s", k) if isinstance(v, sparse_tensor.SparseTensor): # Three outputs for SparseTensor : indices, values, shape. tester.assertEqual([k, len(expected_v)], [k, 3]) tester.assertAllEqual(expected_v[0], flat_output[i]) tester.assertAllEqual(expected_v[1], flat_output[i + 1]) tester.assertAllEqual(expected_v[2], flat_output[i + 2]) i += 3 else: # One output for standard Tensor. tester.assertAllEqual(expected_v, flat_output[i]) i += 1 class ParseExampleTest(test.TestCase): def _test(self, kwargs, expected_values=None, expected_err=None): with self.cached_session() as sess: if expected_err: with self.assertRaisesWithPredicateMatch(expected_err[0], expected_err[1]): out = parsing_ops.parse_single_example(**kwargs) sess.run(flatten_values_tensors_or_sparse(out.values())) return else: # Returns dict w/ Tensors and SparseTensors. out = parsing_ops.parse_single_example(**kwargs) # Also include a test with the example names specified to retain # code coverage of the unfused version, and ensure that the two # versions produce the same results. out_with_example_name = parsing_ops.parse_single_example( example_names="name", **kwargs) for result_dict in [out, out_with_example_name]: result = flatten_values_tensors_or_sparse(result_dict.values()) # Check values. tf_result = self.evaluate(result) _compare_output_to_expected(self, result_dict, expected_values, tf_result) for k, f in kwargs["features"].items(): if isinstance(f, parsing_ops.FixedLenFeature) and f.shape is not None: self.assertEqual(tuple(out[k].get_shape().as_list()), f.shape) elif isinstance(f, parsing_ops.VarLenFeature): self.assertEqual( tuple(out[k].indices.get_shape().as_list()), (None, 1)) self.assertEqual(tuple(out[k].values.get_shape().as_list()), (None,)) self.assertEqual( tuple(out[k].dense_shape.get_shape().as_list()), (1,)) @test_util.run_deprecated_v1 def testEmptySerializedWithAllDefaults(self): sparse_name = "st_a" a_name = "a" b_name = "b" c_name = "c:has_a_tricky_name" a_default = [0, 42, 0] b_default = np.random.rand(3, 3).astype(bytes) c_default = np.random.rand(2).astype(np.float32) expected_st_a = ( # indices, values, shape np.empty((0, 1), dtype=np.int64), # indices np.empty((0,), dtype=np.int64), # sp_a is DT_INT64 np.array([0], dtype=np.int64)) # max_elems = 0 expected_output = { sparse_name: expected_st_a, a_name: np.array([a_default]), b_name: np.array(b_default), c_name: np.array(c_default), } self._test({ "serialized": ops.convert_to_tensor(""), "features": { sparse_name: parsing_ops.VarLenFeature(dtypes.int64), a_name: parsing_ops.FixedLenFeature( (1, 3), dtypes.int64, default_value=a_default), b_name: parsing_ops.FixedLenFeature( (3, 3), dtypes.string, default_value=b_default), c_name: parsing_ops.FixedLenFeature( (2,), dtypes.float32, default_value=c_default), } }, expected_output) def testEmptySerializedWithoutDefaultsShouldFail(self): input_features = { "st_a": parsing_ops.VarLenFeature(dtypes.int64), "a": parsing_ops.FixedLenFeature( (1, 3), dtypes.int64, default_value=[0, 42, 0]), "b": parsing_ops.FixedLenFeature( (3, 3), dtypes.string, default_value=np.random.rand(3, 3).astype(bytes)), # Feature "c" is missing a default, this gap will cause failure. "c": parsing_ops.FixedLenFeature( (2,), dtype=dtypes.float32), } # Edge case where the key is there but the feature value is empty original = example(features=features({"c": feature()})) self._test( { "serialized": original.SerializeToString(), "features": input_features, }, expected_err=(errors_impl.OpError, "Feature: c \\(data type: float\\) is required")) # Standard case of missing key and value. self._test( { "serialized": "", "features": input_features, }, expected_err=(errors_impl.OpError, "Feature: c \\(data type: float\\) is required")) def testDenseNotMatchingShapeShouldFail(self): original = example(features=features({ "a": float_feature([-1, -1]), })) serialized = original.SerializeToString() self._test( { "serialized": ops.convert_to_tensor(serialized), "features": { "a": parsing_ops.FixedLenFeature((1, 3), dtypes.float32) } }, # TODO(mrry): Consider matching the `io.parse_example()` error message. expected_err=(errors_impl.OpError, "Key: a.")) def testDenseDefaultNoShapeShouldFail(self): original = example(features=features({ "a": float_feature([1, 1, 3]), })) serialized = original.SerializeToString() self._test( { "serialized": ops.convert_to_tensor(serialized), "features": { "a": parsing_ops.FixedLenFeature(None, dtypes.float32) } }, expected_err=(ValueError, "Missing shape for feature a")) @test_util.run_deprecated_v1 def testSerializedContainingSparse(self): original = [ example(features=features({ "st_c": float_feature([3, 4]) })), example(features=features({ "st_c": float_feature([]), # empty float list })), example(features=features({ "st_d": feature(), # feature with nothing in it })), example(features=features({ "st_c": float_feature([1, 2, -1]), "st_d": bytes_feature([b"hi"]) })) ] expected_outputs = [{ "st_c": (np.array([[0], [1]], dtype=np.int64), np.array([3.0, 4.0], dtype=np.float32), np.array([2], dtype=np.int64)), "st_d": empty_sparse(bytes) }, { "st_c": empty_sparse(np.float32), "st_d": empty_sparse(bytes) }, { "st_c": empty_sparse(np.float32), "st_d": empty_sparse(bytes) }, { "st_c": (np.array([[0], [1], [2]], dtype=np.int64), np.array([1.0, 2.0, -1.0], dtype=np.float32), np.array([3], dtype=np.int64)), "st_d": (np.array([[0]], dtype=np.int64), np.array(["hi"], dtype=bytes), np.array([1], dtype=np.int64)) }] for proto, expected_output in zip(original, expected_outputs): self._test({ "serialized": ops.convert_to_tensor(proto.SerializeToString()), "features": { "st_c": parsing_ops.VarLenFeature(dtypes.float32), "st_d": parsing_ops.VarLenFeature(dtypes.string) }, }, expected_output) def testSerializedContainingSparseFeature(self): original = [ example(features=features({ "val": float_feature([3, 4]), "idx": int64_feature([5, 10]) })), example(features=features({ "val": float_feature([]), # empty float list "idx": int64_feature([]) })), example(features=features({ "val": feature(), # feature with nothing in it # missing idx feature })), example(features=features({ "val": float_feature([1, 2, -1]), "idx": int64_feature([0, 9, 3]) # unsorted })) ] expected_outputs = [{ "sp": (np.array([[5], [10]], dtype=np.int64), np.array([3.0, 4.0], dtype=np.float32), np.array([13], dtype=np.int64)) }, { "sp": empty_sparse(np.float32, shape=[13]) }, { "sp": empty_sparse(np.float32, shape=[13]) }, { "sp": (np.array([[0], [3], [9]], dtype=np.int64), np.array([1.0, -1.0, 2.0], dtype=np.float32), np.array([13], dtype=np.int64)) }] for proto, expected_output in zip(original, expected_outputs): self._test({ "serialized": ops.convert_to_tensor(proto.SerializeToString()), "features": { "sp": parsing_ops.SparseFeature(["idx"], "val", dtypes.float32, [13]) } }, expected_output) def testSerializedContainingSparseFeatureReuse(self): original = [ example(features=features({ "val1": float_feature([3, 4]), "val2": float_feature([5, 6]), "idx": int64_feature([5, 10]) })), example(features=features({ "val1": float_feature([]), # empty float list "idx": int64_feature([]) })), ] expected_outputs = [{ "sp1": (np.array([[5], [10]], dtype=np.int64), np.array([3.0, 4.0], dtype=np.float32), np.array([13], dtype=np.int64)), "sp2": (np.array([[5], [10]], dtype=np.int64), np.array([5.0, 6.0], dtype=np.float32), np.array([7], dtype=np.int64)) }, { "sp1": empty_sparse(np.float32, shape=[13]), "sp2": empty_sparse(np.float32, shape=[7]) }] for proto, expected_output in zip(original, expected_outputs): self._test({ "serialized": ops.convert_to_tensor(proto.SerializeToString()), "features": { "sp1": parsing_ops.SparseFeature("idx", "val1", dtypes.float32, 13), "sp2": parsing_ops.SparseFeature( "idx", "val2", dtypes.float32, size=7, already_sorted=True) } }, expected_output) def testSerializedContaining3DSparseFeature(self): original = [ example(features=features({ "val": float_feature([3, 4]), "idx0": int64_feature([5, 10]), "idx1": int64_feature([0, 2]), })), example(features=features({ "val": float_feature([]), # empty float list "idx0": int64_feature([]), "idx1": int64_feature([]), })), example(features=features({ "val": feature(), # feature with nothing in it # missing idx feature })), example(features=features({ "val": float_feature([1, 2, -1]), "idx0": int64_feature([0, 9, 3]), # unsorted "idx1": int64_feature([1, 0, 2]), })) ] expected_outputs = [{ "sp": (
np.array([[5, 0], [10, 2]], dtype=np.int64)
numpy.array
import numpy as np import copy from ..Utils.geometry import * class LinearLeastSquare: """ Linear Least Square Fitting solution. Parameters ---------- parameter_space : :obj:`ParaMol.Parameter_space.parameter_space.ParameterSpace` Instance of the parameter space. include_regulatization : bool Flag that signal whether or not to include regularization. method : str Type of regularization. Options are 'L2' or 'hyperbolic'. scaling_factor : float Scaling factor of the regularization value. hyperbolic_beta : float Hyperbolic beta value. Only used if `regularization_type` is `hyperbolic`. weighting_method : str Method used to weight the conformations. Available methods are "uniform, "boltzmann" and "manual". weighting_temperature : unit.simtk.Quantity Temperature used in the weighting. Only relevant if `weighting_method` is "boltzmann". Attributes ---------- include_regulatization : bool Flag that signal whether or not to include regularization. regularization_type : str Type of regularization. Options are 'L2' or 'hyperbolic'. scaling_factor : float Scaling factor of the regularization value. hyperbolic_beta : float Hyperbolic beta value. Only used if `regularization_type` is `hyperbolic`. weighting_method : str Method used to weight the conformations. Available methods are "uniform, "boltzmann" and "manual". weighting_temperature : unit.simtk.Quantity Temperature used in the weighting. Only relevant if `weighting_method` is "boltzmann". """ def __init__(self, parameter_space, include_regularization, method, scaling_factor, hyperbolic_beta, weighting_method, weighting_temperature, **kwargs): # Matrices used in the explicit solution of the LLS equations self._parameter_space = parameter_space self._parameters = None self._n_parameters = None # Private variables self._A = None self._B = None self._Aw = None self._Bw = None self._param_keys_list = None self._p0 = None self._initial_param_regularization = None # Regularization variables self._include_regularization = include_regularization self._regularization_type = method self._scaling_factor = scaling_factor self._hyperbolic_beta = hyperbolic_beta # Weighting variables self._weighting_method = weighting_method self._weighting_temperature = weighting_temperature def fit_parameters_lls(self, systems, alpha_bond=0.05, alpha_angle=0.05): """ Method that fits bonded parameters using LLS. Notes ----- Only one ParaMol system is supported at once. Parameters ---------- systems : list of :obj:`ParaMol.System.system.ParaMolSystem` List containing instances of ParaMol systems. alpha_bond : float alpha_angle : float Returns ------- systems, parameter_space, objective_function, optimizer """ assert self._weighting_method.upper() != "NON_BOLTZMANN", "LLS does not support {} weighting method.".format(self._weighting_method) # TODO: In the future, adapt this to multiple systems system = systems[0] # Compute A matrix self._calculate_a(system, alpha_bond, alpha_angle) self._n_parameters = self._A.shape[1] # Compute B matrix self._calculate_b(system) # ---------------------------------------------------------------- # # Calculate conformations weights # # ---------------------------------------------------------------- # system.compute_conformations_weights(temperature=self._weighting_temperature, weighting_method=self._weighting_method, emm=None) # Weight conformations for row in range(system.n_structures): self._A[row, :] = self._A[row, :] * np.sqrt(system.weights[row]) / np.sqrt(np.var(system.ref_energies)) self._B = self._B * np.sqrt(system.weights) / np.sqrt(np.var(system.ref_energies)) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Preconditioning # # ---------------------------------------------------------------- # # Preconditioning self._calculate_scaling_constants() for row in range(system.n_structures): self._A[row, :] = self._A[row, :] / self._scaling_constants # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Regularization # # ---------------------------------------------------------------- # if self._include_regularization: # Add regularization self._A, self._B = self._add_regularization() # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Symmetries # # ---------------------------------------------------------------- # self._add_symmetries(system) # ---------------------------------------------------------------- # # Perform LLS self._parameters = np.linalg.lstsq(self._A, self._B, rcond=None)[0] # Revert scaling self._parameters = self._parameters / self._scaling_constants # Reconstruct parameters self._reconstruct_parameters(self._parameters) # Get optimizable parameters self._parameter_space.get_optimizable_parameters([system], symmetry_constrained=False) return self._parameter_space.optimizable_parameters_values def fit_parameters_lls2(self, systems, alpha_bond=0.05, alpha_angle=0.05): """ Method that fits bonded parameters using LLS. Notes ----- Only one ParaMol system is supported at once. Experimental function. Parameters ---------- systems : list of :obj:`ParaMol.System.system.ParaMolSystem` List containing instances of ParaMol systems. alpha_bond : float alpha_angle : float Returns ------- systems, parameter_space, objective_function, optimizer """ # TODO: In the future, adapt this to multiple systems system = systems[0] n_iter = 1 rmsd = 999 rmsd_tol = 1e-20 max_iter = 100000 # Self-consistent solution while n_iter < max_iter and rmsd > rmsd_tol: # Compute A matrix self._calculate_a(system, alpha_bond, alpha_angle) self._n_parameters = self._A.shape[1] # Compute B matrix self._calculate_b(system) # ---------------------------------------------------------------- # # Calculate conformations weights # # ---------------------------------------------------------------- # system.compute_conformations_weights(temperature=self._weighting_temperature, weighting_method=self._weighting_method, emm=system.get_energies_ensemble()) print(system.get_energies_ensemble()) # Weight conformations for row in range(system.n_structures): self._A[row, :] = self._A[row, :] * np.sqrt(system.weights[row]) self._B = self._B * np.sqrt(system.weights) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Preconditioning # # ---------------------------------------------------------------- # # Preconditioning self._calculate_scaling_constants() for row in range(system.n_structures): self._A[row, :] = self._A[row, :] / self._scaling_constants # ---------------------------------------------------------------- # new_param = self._parameter_space.optimizable_parameters_values / self._parameter_space.scaling_constants # ---------------------------------------------------------------- # # Regularization # # ---------------------------------------------------------------- # if self._include_regularization: # Add regularization self._A, self._B = self._add_regularization() # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Symmetries # # ---------------------------------------------------------------- # self._add_symmetries(system) # ---------------------------------------------------------------- # # Perform LLS self._parameters = np.linalg.lstsq(self._A, self._B, rcond=None)[0] # Revert scaling self._parameters = self._parameters / self._scaling_constants # Reconstruct parameters self._reconstruct_parameters(self._parameters) # Get optimizable parameters self._parameter_space.get_optimizable_parameters([system], symmetry_constrained=False) self._parameter_space.update_systems(systems, self._parameter_space.optimizable_parameters_values, symmetry_constrained=False) old_param = copy.deepcopy(new_param) new_param = self._parameter_space.optimizable_parameters_values /self._parameter_space.scaling_constants rmsd = np.sqrt(np.sum((old_param - new_param) ** 2) / len(self._parameter_space.optimizable_parameters_values)) a = np.sum(system.weights * (system.get_energies_ensemble() - system.ref_energies - np.mean(system.get_energies_ensemble() - system.ref_energies)) ** 2) / (np.var(system.ref_energies)) n_iter+=1 print("RMSD",n_iter, rmsd, a) print("RMSD",n_iter, rmsd) system.compute_conformations_weights(temperature=self._weighting_temperature, weighting_method=self._weighting_method, emm=system.get_energies_ensemble()) a = np.sum(system.weights*(system.get_energies_ensemble()-system.ref_energies-np.mean(system.get_energies_ensemble()-system.ref_energies)) **2) / (np.var(system.ref_energies)) print("FINAL",a) return self._parameter_space.optimizable_parameters_values def _add_regularization(self): """ Method that adds the regularization part of the A and B matrices. Returns ------- self._A, self._B """ # Create alpha=scaling_factor / scaling_constants alpha = self._scaling_factor / self._scaling_constants # TODO: think of how to make this division general # Divide by two to make this approach equivalent to the remainder of ParaMol # alpha = 0.5 * alpha # Calculate prior widths self._calculate_prior_widths() # Calculate A_reg A_reg = np.identity(self._n_parameters) for row in range(A_reg.shape[0]): A_reg[row, :] = (A_reg[row, :]) / self._prior_widths A_reg = A_reg * alpha # Update A matrix self._A = np.vstack((self._A, A_reg)) # Calculate B_reg #B_reg = np.zeros((n_parameters)) B_reg = alpha * self._initial_param_regularization # Update B matrix self._B = np.concatenate((self._B, B_reg)) print("Added regularization.") return self._A, self._B def _add_symmetries(self, system): """ Method that adds the symmetrie part of the A and B matrices. Returns ------- self._A, self._B """ n_symmetries = 0 symm_covered = [] A_symm = [] for i in range(len(self._param_symmetries_list)): symm_i = self._param_symmetries_list[i] if symm_i in symm_covered or symm_i in ["X_x", "X_y", "X"]: continue for j in range(i + 1, len(self._param_symmetries_list)): symm_j = self._param_symmetries_list[j] if symm_i == symm_j: A_symm_row = np.zeros((self._n_parameters)) A_symm_row[i] = 1.0 A_symm_row[j] = -1.0 A_symm.append(A_symm_row) n_symmetries += 1 symm_covered.append(symm_i) A_symm = np.asarray(A_symm) # Update matrices if n_symmetries > 0: self._A = np.vstack((self._A, A_symm)) # Calculate B_reg B_symm = np.zeros((n_symmetries)) # Update B matrix self._B = np.concatenate((self._B, B_symm)) print("{} symmetries were found".format(n_symmetries)) return self._A, self._B def _calculate_prior_widths(self, method=None): """" Method that generates the prior_widths vector. Parameters ---------- method : str, optional Method used to generate the prior widths. Returns ------- self._prior_widths : np.array Array containing the prior widths. """ self._prior_widths = [] prior_widths_dict, prior_widths = self._parameter_space.calculate_prior_widths(method=method) for i in range(self._n_parameters): self._prior_widths.append(prior_widths_dict[self._param_keys_list[i]]) self._prior_widths = np.asarray(self._prior_widths) return self._prior_widths def _calculate_scaling_constants(self, method=None): """ Method that generates the scaling constant's vector. Parameters ---------- method : str, optional Method used to generate the prior widths. Returns ------- self._prior_widths : np.array Array containing the scaling constants. """ self._scaling_constants = [] scaling_constants_dict, scaling_constants = self._parameter_space.calculate_scaling_constants(method=method) for i in range(self._n_parameters): self._scaling_constants.append(scaling_constants_dict[self._param_keys_list[i]]) self._scaling_constants = np.asarray(self._scaling_constants) return self._scaling_constants def _reconstruct_parameters(self, final_parameters): """ Method that reconstructs the parameters after the LLS. Parameters ---------- final_parameters : np.array or list List containing the final parameters. Returns ------- """ m = 0 for parameter in self._parameter_space.optimizable_parameters: ff_term = parameter.ff_term # ---------------------------------------------------------------- # # Bonds # # ---------------------------------------------------------------- # if parameter.param_key == "bond_k": if ff_term.parameters["bond_eq"].optimize: k_xy = np.asarray(final_parameters[m:m + 2]) x0_xy = np.asarray(self._p0[m:m+2]) # Update value of "bond_k" parameter.value = np.sum(k_xy) # Update value of "bond_eq" ff_term.parameters["bond_eq"].value = np.sum(k_xy*x0_xy) / np.sum(k_xy) m += 2 else: k_xy = final_parameters[m] # Update value of "bond_k" parameter.value = k_xy m += 1 # ---------------------------------------------------------------- # # Angles # # ---------------------------------------------------------------- # elif parameter.param_key == "angle_k": if ff_term.parameters["angle_eq"].optimize: k_xy = np.asarray(final_parameters[m:m + 2]) theta0_xy = np.asarray(self._p0[m:m+2]) # Update value of "bond_k" parameter.value = np.sum(k_xy) # Update value of "bond_eq" ff_term.parameters["angle_eq"].value = np.sum(k_xy*theta0_xy) / np.sum(k_xy) m += 2 else: k_xy = final_parameters[m] # Update value of "bond_k" parameter.value = k_xy m += 1 # ---------------------------------------------------------------- # # Torsions # # ---------------------------------------------------------------- # elif parameter.param_key == "torsion_k": if ff_term.parameters["torsion_phase"].optimize: k_xy = np.asarray(final_parameters[m:m + 2]) delta_xy = np.asarray(self._p0[m:m + 2]) # Define phasors p_x = k_xy[0]*np.exp(1j*delta_xy[0]) p_y = k_xy[1]*
np.exp(1j*delta_xy[1])
numpy.exp
import logging from amlb.benchmark import TaskConfig from amlb.data import Dataset from amlb.datautils import impute from amlb.results import save_predictions from amlb.utils import Timer from sklearn.preprocessing import OrdinalEncoder import numpy as np import pandas as pd from frameworks.shared.callee import save_metadata import torch from pytorch_tabnet.tab_model import TabNetClassifier, TabNetRegressor log = logging.getLogger(__name__) def run(dataset:Dataset, config: TaskConfig): log.info("****TabNet****") save_metadata(config) is_classification = config.type == 'classification' X_train, X_test = dataset.train.X, dataset.test.X X_train, X_test = impute(X_train, X_test) X =
np.concatenate((X_train, X_test), axis=0)
numpy.concatenate
import numpy as np import matplotlib #print ("Matplotlib Version :",matplotlib.__version__) import pylab as pl import time, sys, os import decimal import glob from subprocess import call from IPython.display import Image from matplotlib.pyplot import figure, imshow, axis from matplotlib.image import imread #from sympy import * #from mpmath import quad from scipy.integrate import quad import random import string vol_frac = 0.5 radius_cyl = np.sqrt(vol_frac/np.pi) rho = 1000 mu = 0.001 L = 2*radius_cyl def Reynolds( V_mean, L, rho=1000, mu=0.001): Re_actual = rho*V_mean*L/mu return Re_actual def majorAxis(alpha): return np.sqrt((0.5/np.pi)/alpha) def createFolder(directory): try: if not os.path.exists(directory): os.makedirs(directory) except OSError: print ('Error: Creating directory. ' + directory) def plot_fourier_curve(shape): # input( coeffs ): the fourier coefficients of dimension 2,2*M+1, where M is the maximum degree. # output plot: Plots the shape coeffs = shape["coeffs"] name =shape["name"] x_coeffs = coeffs[0,:] y_coeffs = coeffs[1,:] M = (np.shape(coeffs)[1] -1 ) // 2 start_t = 0.0 t = np.linspace(start_t,start_t+2.0*np.pi,num=100,endpoint=True) #print((t)) x = np.zeros(np.shape(t)) y = np.zeros(np.shape(t)) x += 0.5*x_coeffs[0] ; y += 0.5*y_coeffs[0] for mi in range(1,M+1): x += x_coeffs[2*mi-1]*np.cos(mi*t) + x_coeffs[2*mi]*np.sin(mi*t) y += y_coeffs[2*mi-1]*np.cos(mi*t) + y_coeffs[2*mi]*np.sin(mi*t) pl.plot(x,y,'k-') head = "shape "+name curve = np.column_stack((x,y)) np.savetxt(name,curve,delimiter=" ")#,header=head) pl.axis('equal') pl.title('Shape from Fourier Coeffs.') pl.show() coords = {"x":x, "y":y} return coords def minkowski_fourier_curve(coeffs): # input( shape ): contains the key "coeffs" -the fourier coefficients of dimension 2,2*M+1, where M is the maximum degree. # and the key "name" for shape name. # output (W) : Dictionary containing the four 2D minkowski tensors W020, W120, W220, W102 and the area # and perimeter of the curve/shape. #coeffs = shape["coeffs"] t=symbols("t") # parameter of the curve x_coeffs = coeffs[0,:] y_coeffs = coeffs[1,:] # m =0 , zeroth degree terms, also gives the centroid of the shape. expr_X = "0.5*"+str(coeffs[0,0]) expr_Y = "0.5*"+str(coeffs[1,0]) M = (np.shape(coeffs)[1] -1)//2 # X and Y coodinates as parametric representation using fourier series. for mi in range(1,M+1): expr_X += "+" + str(x_coeffs[2*mi-1]) + "*cos("+str(mi)+"*t) + " +str(x_coeffs[2*mi])+"*sin("+str(mi)+"*t)" expr_Y += "+" + str(y_coeffs[2*mi-1]) + "*cos("+str(mi)+"*t) + " +str(y_coeffs[2*mi])+"*sin("+str(mi)+"*t)" # derivative terms required for normal and curvature computation sym_x = sympify(expr_X) sym_y = sympify(expr_Y) # dx/dt sym_dx = diff(sym_x,t) # d^2x/dt^2 sym_ddx = diff(sym_dx,t) # dA = ydx infinitesimal area sym_ydx = sym_y*sym_dx sym_dy = diff(sym_y,t) sym_ddy = diff(sym_dy,t) # ds = sqrt(x'^2 + y'^2) , the infinitesimal arc-length sym_ds = sqrt(sym_dx**2 + sym_dy**2) # position vector r sym_r = [sym_x, sym_y] # unit normal vector n sym_norm_mag = sqrt(sym_dx**2 + sym_dy**2) sym_norm = [sym_dx/sym_norm_mag, sym_dy/sym_norm_mag] #print("Computed derivatives") # Area = \int ydx area = Integral(sym_ydx,(t,0,2*pi)).evalf(5) perimeter = Integral(sym_ds,(t,0,2*pi)).evalf(5) kappa = (sym_dx*sym_ddy - sym_dy*sym_ddx)/(sym_dx**2 + sym_dy**2)**(3/2) #print("Computing integrals ...") #Initialize the minkowski tensors W020 = np.zeros((2,2)) W120 = np.zeros((2,2)) W220 = np.zeros((2,2)) W102 = np.zeros((2,2)) x = symbols('x') #tensor computation for ia in range(2): for ib in range(2): # W020[ia,ib] = Integral(sym_r[ia]*sym_r[ib]*sym_ydx, (t,0,2*pi)).evalf(5) # print("Computing W120 ...") # W120[ia,ib] = 0.5* Integral(sym_r[ia]*sym_r[ib]*sym_ds, (t,0,2*pi)).evalf(5) # W220[ia,ib] = 0.5* Integral(kappa*sym_r[ia]*sym_r[ib]*sym_ds, (t,0,2*pi)).evalf(5) # print("Computing W102 ...") # W102[ia,ib] = 0.5* Integral(sym_norm[ia] * sym_norm[ib]*sym_ds,(t,0,2*pi)).evalf(5) f = lambdify(t,sym_r[ia]*sym_r[ib]*sym_ydx) W020[ia,ib],err = quad( f, 0,2*np.pi) #print(W020[ia,ib]) #print("Computing W120 ...") f = lambdify(t,sym_r[ia]*sym_r[ib]*sym_ds) W120[ia,ib],err = quad(f, 0,2*np.pi) W120[ia,ib] = 0.5* W120[ia,ib] f = lambdify(t,kappa*sym_r[ia]*sym_r[ib]*sym_ds) W220[ia,ib],err = quad(f, 0,2*np.pi) W220[ia,ib] = 0.5*W220[ia,ib] #print("Computing W102 ...") f = lambdify(t,sym_norm[ia] * sym_norm[ib]*sym_ds) W102[ia,ib], err = quad(f, 0,2*np.pi) W102[ia,ib] = 0.5* W102[ia,ib] #dictionary with computed quantities W={"W020":W020, "W120":W120, "W220":W220, "W102":W102, "area":area, "perimeter":perimeter } return W # def simulate_flow(): # DIR = './shapes/coords' # createFolder('./simulations') # start_t = time.time() # name_list = [] # num = 0 # #n_angles =20 # n_shapes = len(os.listdir(DIR)) # for name in os.listdir(DIR): # if os.path.isfile(os.path.join(DIR,name)): # update_progress(num/n_shapes,start_t,time.time()) # num += 1 # thisfolder ='./simulations/'+name # createFolder(thisfolder) # #print("Shape No. "+str(num)+" : "+name) # #for angle in range(n_angles): # #theta = random.uniform(0.0,np.pi) # # thisfolder ='./simulations/'+name+'/theta_'+str(round(theta,3)) # # createFolder(thisfolder) # call(["cp","vorticity.gfs",thisfolder+'/.']) # call(["cp","xprofile",thisfolder+'/.']) # f=open(thisfolder+"/shape.gts","w") # call(["shapes",os.path.join(DIR,name)],stdout=f) #+" > "+thisfolder+"/shape.gts"]) # os.chdir(thisfolder) # call(["gerris2D","vorticity.gfs"]) # #xp = (np.loadtxt('xprof', delimiter=" ")) # #pl.plot(xp[:,6],xp[:,2],label=r'$\theta =$') #thets # #Vel_mean[i,1] = np.mean(xp[:,6]) # #Vel_mean[i,0] = theta # #Image("velocity.png") # os.chdir('../../') # #name_list.append(name) # n_simulations = n_shapes def simulate_flow(dp=0.000001,DIR='./shapes_low0/coords'): # DIR = './shapes_low0/coords' # dp_0 = 0.000001 # p_ratio = round(dp_0/dp,2) dp_string = '{:.0e}'.format(decimal.Decimal(str(dp))) folder_name ='./simulations_dP_'+dp_string input_file ='vorticity_'+dp_string+'.gfs' with open('vorticity.gfs','r') as fin: # # with is like your try .. finally block in this case input_string = fin.readlines() for index, line in enumerate(input_string): if line.strip().startswith('Source {} U'): input_string[index] = 'Source {} U '+str(dp) with open(input_file, 'w') as file: file.writelines( input_string ) createFolder(folder_name) start_t = time.time() name_list = [] num = 0 #n_angles =20 n_shapes = len(os.listdir(DIR)) for name in os.listdir(DIR): if os.path.isfile(os.path.join(DIR,name)): update_progress(num/n_shapes,start_t,time.time()) num += 1 thisfolder =folder_name + '/' + name createFolder(thisfolder) #print("Shape No. "+str(num)+" : "+name) #for angle in range(n_angles): #theta = random.uniform(0.0,np.pi) # thisfolder ='./simulations/'+name+'/theta_'+str(round(theta,3)) # createFolder(thisfolder) call(["cp", input_file ,thisfolder+'/.']) call(["cp","xprofile",thisfolder+'/.']) f=open(thisfolder+"/shape.gts","w") call(["shapes",os.path.join(DIR,name)],stdout=f) #+" > "+thisfolder+"/shape.gts"]) os.chdir(thisfolder) call(["gerris2D",input_file]) #xp = (np.loadtxt('xprof', delimiter=" ")) #pl.plot(xp[:,6],xp[:,2],label=r'$\theta =$') #thets #Vel_mean[i,1] = np.mean(xp[:,6]) #Vel_mean[i,0] = theta #Image("velocity.png") os.chdir('../../') #name_list.append(name) n_simulations = n_shapes def fourier2Cart(coeffs,t): #x_coeffs = coeffs[0,:] #y_coeffs = coeffs[1,:] #M = (np.shape(coeffs)[1] -1 ) // 2 #x = np.zeros(np.shape(t)) #y = np.zeros(np.shape(t)) #x += 0.5*x_coeffs[0] ; y += 0.5*y_coeffs[0] #for mi in range(1,M+1): # x += x_coeffs[2*mi-1]*np.cos(mi*t) + x_coeffs[2*mi]*np.sin(mi*t) # y += y_coeffs[2*mi-1]*np.cos(mi*t) + y_coeffs[2*mi]*np.sin(mi*t) #t.reshape(len(t)) #t=t[:,np.newaxis].T tt = np.row_stack((t,t)) #print(np.shape(tt)) coords = np.zeros(np.shape(tt)) coords += 0.5*coeffs[:,0,np.newaxis] M = (np.shape(coeffs)[1] -1 ) // 2 for mi in range(1,M+1): coords += coeffs[:,2*mi-1,np.newaxis]*np.cos( mi*tt) + coeffs[:,2*mi,np.newaxis]*np.sin(mi*tt) #coords = np.row_stack((x,y)) return coords def generateShape(res=200,M=4): t = np.linspace(0, 2.0*np.pi, num=res, endpoint=True) dt = t[1]-t[0] coeffs = np.zeros((2,2*M+1)) bad_shape = True n_attempts = 0 while bad_shape == True: alpha = np.random.uniform(1.0,2.0) a = majorAxis(alpha) b = alpha*a #a = 1 #b = 1 #print("the major and minor axes are:"+str(a)+","+str(b)) coeffs[0,1] = a # create an ellipse as starting point coeffs[1,2] = b # create an ellipse as starting point coeffs[:,3::] = coeffs[:,3::] + 0.25*a*(np.random.rand(2,2*M-2) -0.5)#-0.5 coords = fourier2Cart(coeffs,t) #pl.plot(coords[0,:],coords[1,:],'-') dx = np.gradient(coords,axis=1) ddx = np.gradient(dx, axis=1) num = dx[0,:] * ddx[1,:] - ddx[0,:] * dx[1,:] denom = dx[0,:] * dx[0,:] + dx[1,:] * dx[1,:] denom = np.sqrt(denom) denom = denom * denom * denom curvature = num / denom sharp_edge = False outside_domain = False if (np.amax(np.absolute(curvature)) > 20): sharp_edge = True coords_prime = np.gradient(coords,dt,axis=1) integrand = coords_prime[1,:] * coords[0,:] area = np.trapz(integrand, x=t) scale = np.sqrt(0.5 / np.absolute(area)) coeffs = scale * coeffs coords = fourier2Cart(coeffs,t) if(np.any(np.abs(coords) >= 0.5)): outside_domain = True bad_shape = sharp_edge or outside_domain n_attempts +=1 #if(bad_shape): # print( "This shape is bad:"+str(sharp_edge)+str(outside_domain)) #x_coeffs_prime = x_coeffs[1:] #y_coeffs_prime = y_coeffs[1:] coords_prime = np.gradient(coords,dt,axis=1) integrand = coords[1,:] * coords_prime[0,:] area = np.trapz(integrand, x=t) # x = np.append(x, x[0]) # y = np.append(y, y[0]) length = np.sum( np.sqrt(np.ediff1d(coords[0,:]) * np.ediff1d(coords[0,:]) + np.ediff1d(coords[1,:]) * np.ediff1d(coords[1,:])) ) print('x-coefficients: ' + str(coeffs[0,:])) print('y-coefficients: ' + str(coeffs[1,:])) print('enclosed area: ' + str(np.absolute(area))) print('curve length: ' + str(length)) shape={"coeffs":coeffs, "coords":coords} pl.plot(coords[0,:],coords[1,:],'-') return shape def check_self_intersection(coords): result = False for i in range(2,np.shape(coords)[1]-1): p = coords[:,i] dp = coords[:,i+1] - p for j in range(0,i-2): if (result==False): q = coords[:,j] dq = coords[:,j+1] - q dpdq = np.cross(dp,dq) t = np.cross(q-p,dq)/dpdq u = np.cross(q-p,dp)/dpdq if(dpdq != 0): if(0<= t <= 1): if(0<= u <= 1): result = True return result def check_domain_intersection(coords): result = np.any(np.abs(coords)>= 0.5) return result def generate_Npoint_shape(N=10,M=4, res=100): #random.seed(1516) bad_shape =True while bad_shape == True: pos_r = np.random.uniform(0,0.5,(N)) #pos_thet = np.random.uniform(0,2*np.pi,(1,N)) pos_thet =np.linspace(0,2*np.pi,num=N,endpoint=False) posx = pos_r*np.cos(pos_thet) posy = pos_r*np.sin(pos_thet) pos = np.row_stack((posx,posy)) center = np.mean(pos,axis=1) r = pos - center[:,np.newaxis] r_mag = np.sqrt(r[0,:]**2 + r[1,:]**2) x = np.zeros((2,np.shape(r)[1])) x[0,:] = 1 costh =np.diag(np.matmul(r.T,x))#r.x costh = costh/r_mag theta = np.arccos(costh) ry = r[1,:] rx = r[0,:] neg = np.where(ry<0) theta[neg] = 2*np.pi - theta[neg] #print(r) #print(theta) rx = rx[np.argsort(theta)] ry = ry[np.argsort(theta)] theta = theta[np.argsort(theta)] #print(rx,ry) #print(theta) b = np.append(rx,ry) #print(np.shape(b)) #M = 4 m = 2*M+1 A = np.zeros((N,m)) A[:,0] = 1.0 for j in range(1,M+1): A[:,2*j-1] = np.cos(j*theta) A[:,2*j] = np.sin(j*theta) # Use the same A for both x and y coordinates. AA = np.matmul(A.T,A) #print("solving") #print(np.shape(AA)) #print(np.shape(rx)) coeffs_x = np.linalg.solve(AA,np.matmul(A.T,rx)) coeffs_y = np.linalg.solve(AA,np.matmul(A.T,ry)) coeffs = np.row_stack((coeffs_x,coeffs_y)) #oeffs = scale_area(coeffs) #coeffs[:,2*mi-1,np.newaxis]*np.cos( mi*tt) + coeffs[:,2*mi,np.newaxis]*np.sin(mi*tt) #np.cos(M*theta) t = np.linspace(0, 2.0*np.pi, num=res, endpoint=True) dt = t[1]-t[0] coords = fourier2Cart(coeffs,t) coords_prime = np.gradient(coords,dt,axis=1) integrand = coords_prime[1,:] * coords[0,:] area = np.trapz(integrand, x=t) self_intersection = check_self_intersection(coords) scale = np.sqrt(0.5 / np.absolute(area)) coeffs = scale * coeffs coords = fourier2Cart(coeffs,t) domain_intersection = check_domain_intersection(coords) #bad_shape = False bad_shape = self_intersection or domain_intersection # pl.figure(figsize=(8,4)) # pl.subplot(121,projection='polar') # pl.plot(pos_thet,pos_r,'o') # pl.grid(True) # pl.subplot(122) # pl.axis('equal') # pl.xlim(-0.5,0.5) # pl.ylim(-0.5,0.5) # pl.plot(r[0,:],r[1,:],'o') # pl.plot(coords[0,:],coords[1,:],'r-') shape={"coeffs":coeffs, "coords":coords} #pl.plot(coords[0,:],coords[1,:],'-') return shape def plot_shapes(shapes): nr = len(shapes)//5 width = 10 height = nr*width/5 pl.figure(figsize=(width,height)) for i in range(len(shapes)): showImageinArray(i,len(shapes),shapes[i]["coords"]) def showImageinArray(i,N,coords): #fig = figure(figsize=(6,6)) #number_of_files = len(list_of_files) #print(number_of_files) im_per_row = 5 numrows = N // im_per_row #remaining = i % im_per_row #for i in range(numrows+1): # for j in range(im_per_row): # k = i*im_per_row + j # if (k<number_of_files): pl.subplot(numrows+1,im_per_row,i+1) pl.plot(coords[:,0],coords[:,1],'r-') pl.plot(axis='equal') pl.subplots_adjust(bottom=0.0) pl.axis('off') #pl.show() def update_progress(progress, start, now): barLength = 15 # Modify this to change the length of the progress bar status = "" if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 status = "error: progress var must be float\r\n" if progress < 0: progress = 0 status = "Halt...\r\n" if progress >= 1: progress = 1 status = "Done...\r\n" block = int(round(barLength*progress)) if(progress == 0 ): time_left = -1 else: time_left = (now-start)/progress - (now-start) text = "\rPercent: [{0}] {1}% {2} {3} min".format( "#"*block + "-"*(barLength-block), round(progress*100,2), status,round(time_left/60,2)) sys.stdout.write(text) sys.stdout.flush() def write_shape(shape): #N = len(shapes) #random.seed(1516) createFolder('./shapes') coeff_folder = "./shapes/"+"coeffs/" coord_folder = "./shapes/"+"coords/" createFolder(coeff_folder) createFolder(coord_folder) #for i in range(len(shapes)): name = id_generator() #shape["name"] = name coord_file = coord_folder+name coeff_file = coeff_folder+name np.savetxt(coord_file,shape["coords"].T,delimiter=' ') np.savetxt(coeff_file,shape["coeffs"].T,delimiter=' ') return name def id_generator(size=6, chars=string.ascii_uppercase+string.digits): return ''.join(random.choice(chars) for _ in range(size)) def read_shapes(): DIR = './shapes/coeffs' #createFolder('./simulations') shapes=[] num = 0 #n_angles =20 for name in os.listdir(DIR): if os.path.isfile(os.path.join(DIR,name)): coeffs = np.loadtxt(name,delimiter=' ') coeffs = coeffs.T shape= {"coeffs": coeffs} shapes.append(shape) return shapes def compute_minkowski_tensors(): DIR = './shapes/coeffs' mt_folder = './shapes/MT' createFolder(mt_folder) start_t = time.time() name_list = [] num = 0 n_shapes = len(os.listdir(DIR)) for name in os.listdir(DIR): if os.path.isfile(os.path.join(DIR,name)): update_progress(num/n_shapes,start_t, time.time()) num += 1 coeffs = np.loadtxt(os.path.join(DIR,name),delimiter=' ') coeffs = coeffs.T W = minkowski_fourier_curve(coeffs) W_write = np.row_stack((W["W020"],W["W120"],W["W220"],W["W102"])) mt_file = os.path.join(mt_folder,name) np.savetxt(mt_file,W_write,delimiter=' ') def consolidate_coords(): DIR = './shapes/coords' createFolder('./shapes/coords_consolidated') n_shapes= len(os.listdir(DIR)) allnames = os.listdir(DIR) allnames.sort() Xcoord =np.zeros((n_shapes,100)) Ycoord =np.zeros((n_shapes,100)) length =np.zeros((n_shapes,1)) for counter,name in enumerate(allnames): localfile = os.path.join(DIR,name) arr = np.loadtxt(localfile) npoints = np.shape(arr)[0] # find total length len_ = 0.0 for j in range(npoints-1): len_ = len_ + np.sqrt((arr[j+1,0]-arr[j,0])**2 + (arr[j+1,1]-arr[j,1] )**2 ) if (npoints == 200): arr_X=arr[::2,0] arr_Y=arr[::2,1] elif (npoints == 300): arr_X=arr[::3,0] arr_Y=arr[::3,1] else : arr_X = arr[:,0] arr_Y = arr[:,1] assert np.shape(arr_X)[0]==100 , " Array x problem" assert np.shape(arr_Y)[0]==100 , " Array y problem" Xcoord[counter,:] = arr_X Ycoord[counter,:] = arr_Y length[counter,0] = len_ np.savetxt('./shapes/coords_consolidated/Xcoord',Xcoord,delimiter=' ')
np.savetxt('./shapes/coords_consolidated/Ycoord',Ycoord,delimiter=' ')
numpy.savetxt
import copy from typing import Iterable import numba as nb import numpy as np import spectrum_utils.spectrum as sus def dot(spectrum1: sus.MsmsSpectrum, spectrum2: sus.MsmsSpectrum, fragment_mz_tolerance: float) -> float: """ Compute the dot product between the given spectra. Parameters ---------- spectrum1 : sus.MsmsSpectrum The first spectrum. spectrum2 : sus.MsmsSpectrum The second spectrum. fragment_mz_tolerance : float The fragment m/z tolerance used to match peaks. Returns ------- float The dot product similarity between the given spectra. """ return _dot(spectrum1.mz, _norm_intensity(
np.copy(spectrum1.intensity)
numpy.copy
''' Methods to convert data between physical (cMpc) coordinates and observational (angular-frequency) coordinates. ''' import numpy as np from .lightcone import redshifts_at_equal_comoving_distance from . import cosmology as cm from . import conv from . import helper_functions as hf from . import smoothing from . import const from scipy.signal import fftconvolve def physical_lightcone_to_observational(physical_lightcone, input_z_low, output_dnu, output_dtheta, input_box_size_mpc=None): ''' Interpolate a lightcone volume from physical (length) units to observational (angle/frequency) units. Parameters: physical_lightcone (ndarray): the lightcone volume input_z_low (float): the lowest redshift of the input lightcone output_dnu (float): the frequency resolution of the output volume in MHz output_dtheta (float): the angular resolution of the output in arcmin input_box_size_mpc (float): the size of the input FoV in Mpc. If None (default), this will be set to conv.LB Returns: * The output volume as a numpy array * The output frequencies in MHz as an array of floats ''' if input_box_size_mpc == None: input_box_size_mpc = conv.LB #For each output redshift: average the corresponding slices hf.print_msg('Making observational lightcone...') hf.print_msg('Binning in frequency...') lightcone_freq, output_freqs = bin_lightcone_in_frequency(physical_lightcone,\ input_z_low, input_box_size_mpc, output_dnu) #Calculate the FoV in degrees at lowest z (largest one) fov_deg = cm.angular_size_comoving(input_box_size_mpc, input_z_low) #Calculate dimensions of output volume n_cells_theta = int(fov_deg*60./output_dtheta) n_cells_nu = len(output_freqs) #Go through each slice and make angular slices for each one hf.print_msg('Binning in angle...') output_volume = np.zeros((n_cells_theta, n_cells_theta, n_cells_nu)) for i in range(n_cells_nu): if i%10 == 0: hf.print_msg('Slice %d of %d' % (i, n_cells_nu)) z = cm.nu_to_z(output_freqs[i]) output_volume[:,:,i] = physical_slice_to_angular(lightcone_freq[:,:,i], z, \ slice_size_mpc=input_box_size_mpc, fov_deg=fov_deg,\ dtheta=output_dtheta, order=2) return output_volume, output_freqs def observational_lightcone_to_physical(observational_lightcone, input_freqs, input_dtheta): ''' Interpolate a lightcone volume measured in observational (angle/frequency) units into physical (length) units. The output resolution will be set to the coarest one, as determined either by the angular or the frequency resolution. The lightcone must have the LoS as the last index, with frequencies decreasing along the LoS. Parameters: observational_lightcone (numpy array): the input lightcone volume input_freqs (numpy array): the frequency in MHz of each slice along the line of sight of the input input_dheta (float): the angular size of a cell in arcmin Returns: * The output volume * The redshifts along the LoS of the output * The output cell size in Mpc ''' assert input_freqs[0] > input_freqs[-1] assert observational_lightcone.shape[0] == observational_lightcone.shape[1] #Determine new cell size - set either by frequency or angle. #The FoV size in Mpc is set by the lowest redshift dnu = input_freqs[0]-input_freqs[1] z_low = cm.nu_to_z(input_freqs[0]) fov_deg = observational_lightcone.shape[0]*input_dtheta/60. fov_mpc = fov_deg/cm.angular_size_comoving(1., z_low) cell_size_perp = fov_mpc/observational_lightcone.shape[0] cell_size_par = cm.nu_to_cdist(input_freqs[-1])-cm.nu_to_cdist(input_freqs[-2]) output_cell_size = max([cell_size_par, cell_size_perp]) hf.print_msg('Making physical lightcone with cell size %.2f Mpc' % output_cell_size) #Go through each slice along frequency axis. Cut off excess and #interpolate down to correct resolution n_cells_perp = int(fov_mpc/output_cell_size) output_volume_par = np.zeros((n_cells_perp, n_cells_perp, observational_lightcone.shape[2])) for i in range(output_volume_par.shape[2]): z = cm.nu_to_z(input_freqs[i]) output_volume_par[:,:,i] = angular_slice_to_physical(observational_lightcone[:,:,i],\ z, slice_size_deg=fov_deg, output_cell_size=output_cell_size,\ output_size_mpc=fov_mpc, order=2) #Bin along frequency axis output_volume, output_redshifts = bin_lightcone_in_mpc(output_volume_par, \ input_freqs, output_cell_size) return output_volume, output_redshifts, output_cell_size def physical_slice_to_angular(input_slice, z, slice_size_mpc, fov_deg, dtheta, order=0): ''' Interpolate a slice in physical coordinates to angular coordinates. Parameters: input_slice (numpy array): the 2D slice in physical coordinates z (float): the redshift of the input slice slice_size_Mpc (float): the size of the input slice in cMpc fov_deg (float): the field-of-view in degrees. The output will be padded to match this size dtheta (float): the target resolution in arcmin Returns: (angular_slice, size_deg) ''' #Resample fov_mpc = cm.deg_to_cdist(fov_deg, z) cell_size_mpc = fov_mpc/(fov_deg*60./dtheta) n_cells_resampled = int(slice_size_mpc/cell_size_mpc) #Avoid edge effects with even number of cells if n_cells_resampled % 2 == 0: n_cells_resampled -= 1 resampled_slice = resample_slice(input_slice, n_cells_resampled, order) #Pad the array slice_n = resampled_slice.shape[0] padded_n = int(fov_deg*60./dtheta)# np.round(slice_n*(fov_mpc/slice_size_mpc)) if padded_n < slice_n: if slice_n - padded_n > 2: print('Warning! Padded slice is significantly smaller than original!') print('This should not happen...') padded_n = slice_n padded_slice = _get_padded_slice(resampled_slice, padded_n) return padded_slice def angular_slice_to_physical(input_slice, z, slice_size_deg, output_cell_size, output_size_mpc, order=0, prefilter=True): ''' Interpolate a slice in angular coordinates to physical Parameters: input_slice (numpy array): the 2D slice in observational coordinates z (float): the redshift of the input slice slice_size_deg (float): the size of the input slice in deg output_cell_size (float): the output cell size in cMpc output_size_mpc (float): the output size in mpc Returns: (physical_slice, size_mpc) ''' #Resample slice_size_mpc = cm.deg_to_cdist(slice_size_deg, z) n_cells_resampled = int(slice_size_mpc/output_cell_size) #Avoid edge effects with even number of cells if n_cells_resampled % 2 == 0: n_cells_resampled += 1 resampled_slice = resample_slice(input_slice, n_cells_resampled, order, prefilter) #Remove cells to get correct size n_cutout_cells = int(output_size_mpc/output_cell_size)# np.round(resampled_slice.shape[0]*output_size_mpc/slice_size_mpc) if n_cutout_cells > input_slice.shape[0]: if input_slice.shape[0] - n_cutout_cells > 2: print('Warning! Cutout slice is larger than original.') print('This should not happen') n_cutout_cells = input_slice.shape[0] slice_cutout = resampled_slice[:n_cutout_cells, :n_cutout_cells] return slice_cutout def resample_slice(input_slice, n_output_cells, order=0, prefilter=True): ''' Resample a 2D slice to new dimensions. Parameters: input_slice (ndarray): the input slice n_output_cells (int) : the number of output cells Returns: output slice ''' tophat_width = np.round(input_slice.shape[0]/n_output_cells) if tophat_width < 1 or (not prefilter): tophat_width = 1 slice_smoothed = smoothing.smooth_tophat(input_slice, tophat_width) idx = np.linspace(0, slice_smoothed.shape[0], n_output_cells) output_slice = smoothing.interpolate2d(slice_smoothed, idx, idx, order=order) return output_slice def bin_lightcone_in_frequency(lightcone, z_low, box_size_mpc, dnu): ''' Bin a lightcone in frequency bins. Parameters: lightcone (ndarray): the lightcone in length units z_low (float): the lowest redshift of the lightcone box_size_mpc (float): the side of the lightcone in Mpc dnu (float): the width of the frequency bins in MHz Returns: * The lightcone, binned in frequencies with high frequencies first * The frequencies along the line of sight in MHz ''' #Figure out dimensions and make output volume cell_size = box_size_mpc/lightcone.shape[0] distances = cm.z_to_cdist(z_low) + np.arange(lightcone.shape[2])*cell_size input_redshifts = cm.cdist_to_z(distances) input_frequencies = cm.z_to_nu(input_redshifts) nu1 = input_frequencies[0] nu2 = input_frequencies[-1] output_frequencies = np.arange(nu1, nu2, -dnu) output_lightcone = np.zeros((lightcone.shape[0], lightcone.shape[1], \ len(output_frequencies))) #Bin in frequencies by smoothing and indexing max_cell_size = cm.nu_to_cdist(output_frequencies[-1])-cm.nu_to_cdist(output_frequencies[-2]) smooth_scale = np.round(max_cell_size/cell_size) if smooth_scale < 1: smooth_scale = 1 hf.print_msg('Smooth along LoS with scale %f' % smooth_scale) tophat3d = np.ones((1,1,int(smooth_scale))) tophat3d /=
np.sum(tophat3d)
numpy.sum
import numpy as np import plotly as py import plotly.graph_objs as go import random import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import datetime as dt from typing import Dict def plotly_wordcloud(words: Dict[str, int]): lower, upper = 15, 45 frequency = [((x - min(words.values())) / (max(words.values()) - min(words.values()))) * (upper - lower) + lower for x in words.values()] if np.isnan(
np.sum(frequency)
numpy.sum
#This weeks code focuses on understanding basic functions of pandas and numpy #This will help you complete other lab experiments # Do not change the function definations or the parameters import numpy as np import pandas as pd #input: tuple (x,y) x,y:int def create_numpy_ones_array(shape): #return a numpy array with one at all index array=None #TODO array = np.ones(shape, dtype = np.int8) return array #input: tuple (x,y) x,y:int def create_numpy_zeros_array(shape): #return a numpy array with zeros at all index array=None #TODO array = np.zeros(shape, dtype = np.int8) return array #input: int def create_identity_numpy_array(order): #return a identity numpy array of the defined order array=None #TODO array = np.identity(order, dtype = np.int8) return array #input: numpy array def matrix_cofactor(matrix): #return cofactor matrix of the given array array=None #TODO newMatrix = [] try: array = np.linalg.inv(matrix).T * np.linalg.det(matrix) except: for i in range(len(matrix)): temp = [] for j in range(len(matrix[i])): minor = matrix[np.array(list(range(i))+list(range(i+1,matrix.shape[0])))[:,np.newaxis],np.array(list(range(j))+list(range(j+1,matrix.shape[1])))] temp.append(np.linalg.det(minor)) newMatrix.append(temp) array = np.array(newMatrix) return array #Input: (numpy array, int ,numpy array, int , int , int , int , tuple,tuple) #tuple (x,y) x,y:int def f1(X1,coef1,X2,coef2,seed1,seed2,seed3,shape1,shape2): #note: shape is of the forst (x1,x2) #return W1 x (X1 ** coef1) + W2 x (X2 ** coef2) +b # where W1 is random matrix of shape shape1 with seed1 # where W2 is random matrix of shape shape2 with seed2 # where B is a random matrix of comaptible shape with seed3 # if dimension mismatch occur return -1 ans=None #TODO try: np.random.seed(seed1) W1 = np.random.rand(shape1[0], shape1[1]) np.random.seed(seed2) W2 = np.random.rand(shape2[0], shape2[1]) ans = np.add(np.matmul(W1,(X1 ** coef1)), np.matmul(W2, X2 ** coef2)) shape = np.shape(ans) np.random.seed(seed3) b =
np.random.rand(shape[0], shape[1])
numpy.random.rand
import numpy as np from keras import backend as K import cv2 import os import shutil from keras.applications.vgg16 import VGG16, preprocess_input from keras.preprocessing.image import img_to_array from keras.optimizers import SGD def hard_sigmoid(x): i = 0 y = np.zeros((1, len(x[0,:]))) for x_i in x[0,:]: if x_i < -2.5: y_i = 0 elif x_i >2.5: y_i = 1 else: y_i = 0.2*x_i+0.5 y[0,i] = y_i i = i+1 return y def lp_norm(p,n1,n2): n1 = np.array([n1]).ravel() n2 = np.array([n2]).ravel() m = np.count_nonzero(n1-n2) return np.linalg.norm(n1-n2,ord=p)/float(m) def l2_norm(n1,n2): n1 = np.array([n1]).ravel() n2 = np.array([n2]).ravel() m = np.count_nonzero(n1-n2) return np.linalg.norm(n1-n2,ord=2)/float(m) def getActivationValue(model,layer,test): #print("xxxx %s"%(str(self.model.layers[1].input.shape))) OutFunc = K.function([model.input], [model.layers[layer].output]) out_val = OutFunc([test, 1.])[0] return np.squeeze(out_val) def layerName(model,layer): layerNames = [layer.name for layer in model.layers] return layerNames[layer] def powerset(iterable): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) def extract_vgg16_features(model, video_input_file_path, feature_output_file_path): if os.path.exists(feature_output_file_path): return np.load(feature_output_file_path) count = 0 print('Extracting frames from video: ', video_input_file_path) vidcap = cv2.VideoCapture(video_input_file_path) success, image = vidcap.read() features = [] success = True while success: vidcap.set(cv2.CAP_PROP_POS_MSEC, (count * 1000)) # added this line success, image = vidcap.read() # print('Read a new frame: ', success) if success: img = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA) input = img_to_array(img) input = np.expand_dims(input, axis=0) input = preprocess_input(input) feature = model.predict(input).ravel() features.append(feature) count = count + 1 unscaled_features =
np.array(features)
numpy.array
import os import glob import sys import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) import scipy.ndimage as nd from astropy.table import Table import astropy.io.fits as pyfits import astropy.wcs as pywcs from astropy.modeling import models, fitting from astropy.modeling.models import Gaussian2D from scipy.signal import fftconvolve import mpdaf.obj from mpdaf.obj import airtovac, vactoair gau = models.Gaussian1D(mean=0, stddev=1) from grizli.utils_c import interp from grizli import utils utils.set_warnings() band_lims = {'Y': (9600, 11360), 'J': (11440, 13560), 'H': (14580, 18150), 'K': (18880, 24160)} plt.rcParams['figure.max_open_warning'] = 100 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['image.interpolation'] = 'Nearest' def optimal_extract(file, show_sn=False, slx=slice(300,-300), prof_model=models.Gaussian1D, prof_keys=['mean','stddev'], fit_profile=False, rescale_errors=True, prof_sigma=3, prof_offset=0, escl=2, zi=0, binf=64, flux_corr=None, to_vacuum=False, limits_2d=[-0.18, 0.18], gwidth=(4,2), clip_edge=5, suffix=''): """ Optimal extraction from 2D fits file """ #print(file) im = pyfits.open(file) valid = np.isfinite(im[0].data) if valid.sum() == 0: print('Bad spectrum') return False band = im[0].header['FILTER'] sh = im[0].data.shape if file.endswith('_sp.fits'): is_mine = True wht = im['WHT'].data valid &= wht > 0 sig = 1/np.sqrt(wht) sig[~valid] = 0 else: sig = pyfits.open(file.replace('_eps','_sig'))[0].data is_mine = False yp, xp = np.indices(sh) oky = valid.sum(axis=0) vx = oky > 3 xarr = np.arange(sh[-1]) if is_mine: h = im[0].header lam_coeffs = np.array([h[f'LAMCOEF{i}'] for i in range(h['LAMORDER']+1)]) wave = np.polyval(lam_coeffs, xarr-h['CRPIX1']) #print('xx', wave.min(), wave.max(), lam_coeffs) wcs = pywcs.WCS(im[0].header) wave = wcs.all_pix2world(xarr, xarr*0., 0)[0]*1.e10 #sh = outsci.shape #xarr = np.arange(sh[1]) yp = np.ones(sh[1]) + sh[0]/2 lam_wcs = pywcs.WCS(im[0].header) #wave, _y = lam_wcs.all_pix2world(xarr, yp, 0) #wave *= 1.e10 # A #pix_lim = np.interp(band_lims[band], wave, xarr, left=0, right=2048) pix_lim = (np.array(band_lims[band])-lam_coeffs[-1])/lam_coeffs[-2] + h['CRPIX1'] else: wcs = pywcs.WCS(im[0].header) wave = wcs.all_pix2world(xarr, xarr*0., 0)[0]*1.e10 pix_lim = wcs.all_world2pix(np.array(band_lims[band])/1.e10, [0,0], 0)[0] #wave[iw], xarr[iw]) if flux_corr is not None: try: to_flam = flux_corr[0](flux_corr[1], wave) except: to_flam = flux_corr(wave) vx &= np.isfinite(to_flam) if band in ['K']: vx &= to_flam/np.nanmin(to_flam) < 6 else: vx &= to_flam/np.nanmin(to_flam) < 6 else: to_flam = 1.0 vx = np.where(vx)[0] xvalid = vx.min(), vx.max() valid &= (xp > xvalid[0]) & (xp < xvalid[1]) if slx is None: slx = slice(*xvalid) if is_mine: targname = os.path.basename(file.split('_sp.fits')[0]) + suffix else: targname = os.path.basename(file.split('_eps.fits')[0]) + suffix if os.path.exists(file.replace('_eps','_itime')): itime = pyfits.open(file.replace('_eps','_itime')) exptime = np.nanpercentile(itime[0].data[itime[0].data > 0], [50,90]) else: if is_mine: exptime = im[0].header['EXPTIME'], im[0].header['EXPTIME'] else: exptime = [0,0] y0 = im[0].header['CRPIX2']-im[0].header['CRVAL2'] if gwidth is not None: ivar = 1/sig**2 ivar[~np.isfinite(ivar) | ~valid] = 0 gau = Gaussian2D(x_mean=0, x_stddev=gwidth[0], y_mean=0, y_stddev=gwidth[1]) xgarr = np.arange(-4*gwidth[0], 4.1*gwidth[0], 1) ygarr = np.arange(-4*gwidth[1], 4.1*gwidth[1], 1) xp, yp = np.meshgrid(xgarr, ygarr) gm = gau(xp, yp) sci = im[0].data*1 sci[~valid] = 0 num = fftconvolve(sci*ivar, gm, mode='same') den = fftconvolve(ivar, gm**2, mode='same') smoothed = num/den*valid if show_sn: smoothed *= np.sqrt(den) yarr = np.arange(smoothed.shape[0]) ysl = np.abs(yarr-y0) < 10 perc = np.nanpercentile(smoothed[ysl,:][valid[ysl,:]], [16,50,84]) limits_2d = perc[1] - 3*np.diff(perc)[0], perc[1] + 3*np.diff(perc)[1] if show_sn: lmax = np.clip(limits_2d[1], 5, 40) #print('xxx', lmax) limits_2d = [-lmax, lmax] else: smoothed = im[0].data smoothed[~valid] = 0 figs = [] fig, axes = plt.subplots(1,2, figsize=(12,3), gridspec_kw={'width_ratios':[3,1]}, sharey=True) ax = axes[0] figs.append(fig) ax.imshow(smoothed, origin='lower', vmin=limits_2d[0], vmax=limits_2d[1], cmap='gray') ax.set_aspect('auto') if slx.stop < 0: ax.vlines([slx.start, sh[1]+slx.stop], 0, sh[0]-1, color='w', linewidth=3, alpha=0.35) ax.vlines([slx.start, sh[1]+slx.stop], 0, sh[0]-1, color='r', linewidth=1, alpha=0.35) else: ax.vlines([slx.start, slx.stop], 0, sh[0]-1, color='w', linewidth=3, alpha=0.35) ax.vlines([slx.start, slx.stop], 0, sh[0]-1, color='r', linewidth=1, alpha=0.35) ax.hlines(y0+np.array([-10,10]), 0, sh[1]-1, color='w', linewidth=3, alpha=0.35) ax.hlines(y0+np.array([-10,10]), 0, sh[1]-1, color='r', linewidth=1, alpha=0.35) ivar = 1/sig**2 sci = im[0].data*1 imask = (sig == 0) | ~np.isfinite(ivar) | ~np.isfinite(sci) | (~valid) ivar[imask] = 0 sci[imask] = 0 iw = np.where(np.isfinite(wave))[0] #print('x limits: ', sh, pix_lim) ax.set_xlim(*pix_lim) ax.xaxis.set_major_locator(MultipleLocator(200)) #ax.set_xticklabels([]) xt = ax.get_xticks() ax.set_xticks(xt[2:-2]) ax.set_xticklabels(np.cast[int](xt[2:-2])) yt = ax.get_yticks() for j in [-3, -2]: ax.text(0.01*(pix_lim[1]-pix_lim[0])+pix_lim[0], yt[j], f'{int(yt[j])}', ha='left', va='center', fontsize=7, bbox=dict(edgecolor='None', facecolor='w', alpha=0.9)) ax.set_yticklabels([]) new_sci, new_ivar = sci, ivar ax.text(0.98, 0.98, targname, ha='right', va='top', transform=ax.transAxes, fontsize=8, bbox=dict(edgecolor='None', facecolor='w', alpha=0.9)) #fig, ax = plt.subplots(1,1,figsize=(5,5)) ax = axes[1] #figs.append(fig) prof = (new_sci*new_ivar)[:,slx].sum(axis=1)/(new_ivar[:,slx].sum(axis=1)) yarr = np.arange(len(prof))*1. ax.plot(prof, yarr) y0 = im[0].header['CRPIX2']-im[0].header['CRVAL2']+prof_offset keys = {prof_keys[0]:y0, prof_keys[1]:prof_sigma} prof_mask = np.isfinite(prof) & (np.abs(yarr-y0) < 10) #print('Prof: ', yarr.shape, prof_mask.sum()) gau = prof_model(amplitude=prof[prof_mask].max(), **keys) gau.bounds['mean'] = (y0-8,y0+8) gau.bounds['stddev'] = (1, 4) fit_status = True if fit_profile: fitter = fitting.LevMarLSQFitter() try: gau = fitter(gau, yarr[prof_mask & (prof > 0)], prof[prof_mask & (prof > 0)]) except: fit_status = False if fit_status: prof_offset = gau.parameters[gau.param_names.index(prof_keys[0])] + im[0].header['CRVAL2'] ax.plot(gau(yarr), yarr) ymax = 1.5*gau.amplitude.value ax.set_xlim(-ymax, ymax) ax.set_xticklabels([]) ax.text(gau.amplitude.value, 0.05*sh[0], f'{gau.amplitude.value:.4f}', ha='center', va='center', bbox=dict(edgecolor='None', facecolor='w', alpha=0.9)) #ax.plot(yarr[prof_mask], gau(yarr)[prof_mask]) ax.hlines(y0+np.array([-10,10]),*plt.xlim(), color='r', linewidth=1, alpha=0.35) ax.grid() fig.tight_layout(pad=0.5) #fig.savefig(file.replace('_eps.fits','_extract.png')) if not fit_status: return {'fig_extract':fig} yfull = np.linspace(yarr[0], yarr[-1], 1024) gnorm = np.trapz(gau(yfull), yfull) gprof = gau(yarr)/gnorm num = (new_sci*new_ivar/escl**2*gprof[:,None]).sum(axis=0) den = (gprof[:,None]**2*new_ivar/escl**2).sum(axis=0) opt_flux = num/den opt_err = 1/np.sqrt(den) if rescale_errors: ok = np.isfinite(opt_flux + opt_err) & (den > 0) sn = (opt_flux/opt_err)[ok] if np.median(sn) < 10: df = np.diff(opt_flux[ok]) de = np.sqrt(opt_err[ok][1:]**2+opt_err[ok][:-1]**2) scl = utils.nmad(df/de) print(f'Rescale uncertainties: {scl:.3f}') opt_err *= scl else: print(f'Rescale uncertainties (med SN={np.median(sn):.2f})') #fig, ax = plt.subplots(1,1, figsize=(9, 3)) fig, axes = plt.subplots(1,2, figsize=(12,3), gridspec_kw={'width_ratios':[3,1]}, sharey=True) ax = axes[0] axes[1].axis('off') figs.append(fig) #ax.plot(wave/(1+zi), sp[0].data) #ax.plot(wave/(1+zi), sp[1].data) opt_ivar = 1/opt_err**2 ax.set_ylim(-0.05, 0.1) #ax.set_xlim(0.98e4/(1+zi), 1.04e4/(1+zi)) # Lines xline = opt_ivar < 0.7*np.median(opt_ivar) opt_ivar[xline] *= 0. #0.05 opt_flux *= to_flam opt_err *= to_flam opt_ivar /= to_flam**2 ok_idx = np.where(np.isfinite(opt_ivar + opt_flux + to_flam))[0] if len(ok_idx) > 2*clip_edge: # print('Clip edge', len(ok_idx), len(opt_ivar)) ok_idx = ok_idx[clip_edge:-clip_edge] opt_mask = np.ones(len(opt_ivar), dtype=bool) opt_mask[ok_idx] = False opt_ivar[opt_mask] = 0 opt_err[opt_mask] = 1e8 opt_flux[opt_mask] = 0 ax.plot(wave/(1+zi), opt_flux, alpha=0.4, color='0.5') ax.plot(wave/(1+zi), opt_err, alpha=0.5, color='pink') bkern = np.ones(binf) bnum = nd.convolve1d(opt_flux*opt_ivar, bkern)[binf//2::binf] bwnum = nd.convolve1d(wave*opt_ivar, bkern)[binf//2::binf] bden = nd.convolve1d(opt_ivar, bkern)[binf//2::binf] bflux = bnum/bden berr = 1/np.sqrt(bden) bwave = bwnum/bden ymax = np.percentile(bflux[np.isfinite(bflux)], 90)*5 ax.set_ylim(-0.5*ymax, ymax) #ax.set_ylim(-0.05, 0.11) ax.set_xlim(*(bwave[np.isfinite(bwave)][np.array([0,-1])]/(1+zi))) xl = ax.get_xlim() if (zi > 0): ax.set_xlim(6500, 6800) ax.vlines([3727., 4102.9, 4341.7, 4862., 4960., 5008., 6302, 6563., 6548, 6584, 6679., 6717, 6731, 7137.77, 7321.94, 7332.17], ax.get_ylim()[0], 0, color='r', linestyle=':') ax.set_xlabel(f'rest wave, z={zi:.4f}') ax.set_xlim(*xl) ax.text(0.98, 0.98, targname, ha='right', va='top', transform=ax.transAxes, fontsize=8, bbox={'edgecolor':'None', 'facecolor':'w'}) if (zi > 6): ax.vlines([1216.], *ax.get_ylim(), color='r', linestyle=':') ax.errorbar(bwave/(1+zi), bflux, berr, color='k', alpha=0.4, linestyle='None', marker='.') ax.plot(wave/(1+zi), wave*0., color='k', linestyle=':') ok = np.isfinite(bflux+bwave) utils.fill_between_steps(bwave[ok]/(1+zi), bflux[ok], bflux[ok]*0., ax=ax, color='orange', alpha=0.5, zorder=-1) ax.set_xlim(*band_lims[band]) yt = ax.get_yticks() for j in [0, yt[-3]]: if j == 0: labl = '0' else: if j < 0.1: labl = f'{j:.2f}' elif j < 1: labl = f'{j:.1f}' else: labl = f'{int(j)}' ax.text(0.01*(band_lims[band][1]-band_lims[band][0])+band_lims[band][0], j, labl, ha='left', va='center', fontsize=7, bbox=dict(edgecolor='None', facecolor='w', alpha=0.9)) ax.set_yticklabels([]) fig.tight_layout(pad=0.5) #fig.savefig(file.replace('_eps.fits','_spec.png')) if to_vacuum: try: wave = airtovac(wave) bwave = airtovac(bwave) except: pass spec = {'wave':wave, 'opt_flux':opt_flux, 'opt_err':opt_err, 'wave_bin':bwave, 'bin_flux':bflux, 'bin_err':berr} spec['yarr'] = yarr spec['prof_model'] = gau spec['gprof'] = gau(yarr) spec['prof'] = prof spec['prof_offset'] = prof_offset spec['fig_extract'] = figs[0] spec['fig_1d'] = figs[1] spec['to_flam'] = to_flam spec['targname'] = targname spec['im'] = im spec['file'] = file spec['filter'] = band spec['xarr'] = xarr spec['shape'] = sh tab = utils.GTable() tab['wave'] = wave.astype(np.float32) tab['flux'] = opt_flux.astype(np.float32) tab['err'] = opt_err.astype(np.float32) tab.meta['ny'], tab.meta['nx'] = sh tab['ny'] = oky tab.meta['slx0'] = slx.start, '2D slice start' tab.meta['slx1'] = slx.stop, '2D slice stop' tab['to_flam'] = np.cast[np.float32](to_flam) tab.meta['itime50'] = exptime[0], 'Median exposure time in 2D' tab.meta['itime90'] = exptime[1], '90th percentile 2D exposure time' tab.meta['wmin'] = tab['wave'][opt_ivar > 0].min(), 'Min valid wavelength' tab.meta['wmax'] = tab['wave'][opt_ivar > 0].max(), 'Max valid wavelength' snperc = np.nanpercentile((tab['flux']/tab['err'])[opt_ivar > 0], [16, 50, 84, 99]) tab.meta['sn16'] = snperc[0], 'SN 16th percentile' tab.meta['sn50'] = snperc[1], 'SN median' tab.meta['sn84'] = snperc[2], 'SN 84th percentile' tab.meta['sn99'] = snperc[3], 'SN 99th percentile' tab.meta['slitnum'] = im[0].header['SLITNUM'], 'Mask slit number' tab.meta['slitidx'] = im[0].header['SLITIDX'], 'Mask slit index' tab.meta['prof_amp'] = spec['prof_model'].amplitude.value, 'Profile model amplitude' tab.meta['prof_sig'] = spec['prof_model'].stddev.value, 'Profile model sigma' tab.meta['prof_mu'] = spec['prof_model'].mean.value, 'Profile model mean' ima = np.nanargmax(prof) tab.meta['prof_yma'] = yarr[ima], 'Location of profile max' tab.meta['prof_ma'] = prof[ima], 'Profile max' imi = np.nanargmin(prof) tab.meta['prof_ymi'] = yarr[imi], 'Location of profile min' tab.meta['prof_mi'] = prof[imi], 'Profile min' for k in ['prof_offset','file','filter','targname']: tab.meta[k] = spec[k] stats = {} cols = ['SKYPA3','AIRMASS','GUIDFWHM'] tr = {'SKYPA3':'pa','AIRMASS':'airm','GUIDFWHM':'fwhm'} for k in cols: stats[k] = [] for ki in spec['im'][0].header: if '_img' not in ki: continue ks = ki.split('_img')[0] if ks in cols: stats[ks].append(spec['im'][0].header[ki]) for k in cols: if len(stats[k]) == 0: stats[k].append(0) for k in stats: #print(k, len(stats[k]), np.median(stats[k])) tab.meta['{0}_min'.format(tr[k])] = np.nanmin(stats[k]), f'Min {k}' tab.meta['{0}'.format(tr[k])] = np.nanmedian(stats[k]), f'Median {k}' tab.meta['{0}_max'.format(tr[k])] = np.nanmax(stats[k]), f'Max {k}' # full_path = os.path.join(os.getcwd(), file) # full_path = file tab.meta['file'] = os.path.basename(file), 'Extraction filename' tab.meta['path'] = os.path.dirname(file), 'File path' tab.meta['datemask'] = im[0].header['DATEMASK'], 'Unique mask identifier' spec['opt_spec'] = tab return spec ################## ## Find peak def find_max(file, gwidth=(5,2), pad=10, erode=10, suffix=''): """ Find peak S/N in 2D spectrum file """ import scipy.ndimage as nd im = pyfits.open(file) valid = np.isfinite(im[0].data) if erode: valid = nd.binary_erosion(valid, iterations=erode) if valid.sum() == 0: return (-1, (0,0), 0) if file.endswith('_sp.fits'): targname = os.path.basename(file.split('_sp.fits')[0]) + suffix is_mine = True wht = im['WHT'].data valid &= wht > 0 sig = 1/
np.sqrt(wht)
numpy.sqrt
import numpy as np import nanocut.common as nc from nanocut.output import error, printstatus __all__ = [ "Periodicity", ] def gcd(numbers): """Calculates greatest common divisor of a list of numbers.""" aa = numbers[0] for bb in numbers[1:]: while bb: aa, bb = bb, aa % bb return aa def plane_axis_from_miller(miller): """Returns two vectors in a plane with given miller index. Args: miller: Miller indices of the plane (array of 3 integers) Returns: Two 3D vectors in relative coordinates, both being vectors in the plane. It returns the shortest possible vectors. """ # Separate zero and nonzero components of Miller vector nonzero = np.flatnonzero(
np.not_equal(miller, 0)
numpy.not_equal
import numpy as np from tqdm import tqdm import utils.helper as hlp def slidewindow(ts, horizon=.2, stride=0.2): xf = [] yf = [] for i in range(0, ts.shape[0], int(stride * ts.shape[0])): horizon1 = int(horizon * ts.shape[0]) if (i + horizon1 + horizon1 <= ts.shape[0]): xf.append(ts[i:i + horizon1,0]) yf.append(ts[i + horizon1:i + horizon1 + horizon1, 0]) xf = np.asarray(xf) yf = np.asarray(yf) return xf, yf def cutPF(ts, perc=.5): seq_len = ts.shape[0] new_ts = ts.copy() t=int(perc*seq_len) return new_ts[:t, ...], new_ts[t:, ...] def cutout(ts, perc=.1): seq_len = ts.shape[0] new_ts = ts.copy() win_len = int(perc * seq_len) start = np.random.randint(0, seq_len-win_len-1) end = start + win_len start = max(0, start) end = min(end, seq_len) # print("[INFO] start={}, end={}".format(start, end)) new_ts[start:end, ...] = 0 # return new_ts, ts[start:end, ...] return new_ts def cut_piece2C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len/(2*2) if perc<1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len-win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1-start2)<(win_class): label=0 else: label=1 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece3C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len/(2*3) if perc<1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len-win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1-start2)<(win_class): label=0 elif abs(start1-start2)<(2*win_class): label=1 else: label=2 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece4C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 4) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 else: label = 3 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece5C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 5) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 else: label = 4 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece6C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 6) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 elif abs(start1 - start2) < (5 * win_class): label = 4 else: label = 5 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece7C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 7) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 elif abs(start1 - start2) < (5 * win_class): label = 4 elif abs(start1 - start2) < (6 * win_class): label = 5 else: label = 6 return ts[start1:end1, ...], ts[start2:end2, ...], label def cut_piece8C(ts, perc=.1): seq_len = ts.shape[0] win_class = seq_len / (2 * 8) if perc < 1: win_len = int(perc * seq_len) else: win_len = perc start1 = np.random.randint(0, seq_len - win_len) end1 = start1 + win_len start2 = np.random.randint(0, seq_len - win_len) end2 = start2 + win_len if abs(start1 - start2) < (win_class): label = 0 elif abs(start1 - start2) < (2 * win_class): label = 1 elif abs(start1 - start2) < (3 * win_class): label = 2 elif abs(start1 - start2) < (4 * win_class): label = 3 elif abs(start1 - start2) < (5 * win_class): label = 4 elif abs(start1 - start2) < (6 * win_class): label = 5 elif abs(start1 - start2) < (7 * win_class): label = 6 else: label = 7 return ts[start1:end1, ...], ts[start2:end2, ...], label def jitter(x, sigma=0.03): # https://arxiv.org/pdf/1706.00527.pdf return x + np.random.normal(loc=0., scale=sigma, size=x.shape) def scaling(x, sigma=0.1): # https://arxiv.org/pdf/1706.00527.pdf factor = np.random.normal(loc=1., scale=sigma, size=(x.shape[0],x.shape[2])) return
np.multiply(x, factor[:,np.newaxis,:])
numpy.multiply
import math as mt import numpy as np import byxtal.find_csl_dsc as fcd import byxtal.integer_manipulations as iman import byxtal.bp_basis as bpb import byxtal.pick_fz_bpl as pfb import numpy.linalg as nla import ovito.data as ovd from ovito.pipeline import StaticSource, Pipeline import ovito.modifiers as ovm from ovito.data import CutoffNeighborFinder def find_int_solns(a_vec, b_vec): """ Given two basis vectors (a_vec and b_vec) in the primitive basis, find the third basis vector (c_vec) such that the matrix [a_vec, b_vec, c_vec] is a valid basis. All the components of the vectors are integers and the determinant of the matrix must be equal to **1**. Parameters ----------------- a_vec: numpy.array The first basis vector. Must be an integer array. b_vec: numpy.array The second basis vector. Must be an integer array. Returns ------------ l_p2_p1: numpy.array, (3X3, must be an integer array) A 3x3 numpy array of integers that forms the new basis for the lattice. """ a1 = a_vec[0] a2 = a_vec[1] a3 = a_vec[2] b1 = b_vec[0] b2 = b_vec[1] b3 = b_vec[2] a = a2*b3 - a3*b2 b = -(a1*b3 - a3*b1) c = a1*b2 - a2*b1 d = 1 a = int(a) b = int(b) c = int(c) d = int(d) p = mt.gcd(a, b) if p == 0: if c == 1: y1 = 0 y2 = 0 y3 = 1 # l_p2_p1 = (np.hstack((a_vec, b_vec, np.array([[y1],[y2],[y3]])))) l_p2_p1 = np.dstack((a_vec, b_vec, np.array([y1, y2, y3]))).squeeze() det1 = nla.det(l_p2_p1) if ((np.abs(det1)-1) > 1e-10): raise Exception('Error with Diophantine solution') else: if det1 == -1: l_p2_p1[:, 2] = -l_p2_p1[:, 2] else: raise Exception('Error with boundary-plane indices') else: a1 = int(a/p) b1 = int(b/p) # Let u0 and v0 any solution of a'u + b'v = c int_soln1 = bpb.lbi_dioph_soln(a1, b1, c) u0 = int(int_soln1[0]) v0 = int(int_soln1[1]) # z0, t0 any solution of cz + pt = d int_soln2 = bpb.lbi_dioph_soln(c, p, d) z0 = int(int_soln2[0]) t0 = int(int_soln2[1]) # x0, y0 any solution of a'x + b'y = t0 int_soln3 = bpb.lbi_dioph_soln(a1, b1, t0) x0 = int(int_soln3[0]) y0 = int(int_soln3[1]) # The general solution of ax + by + cz = d is : # x = x0 + b'k - u0m # y = y0 - a'k - v0m # z = z0 + pm with k and m any integer in \mathbb{Z} tn1 = 10 ival =
np.arange(-(tn1), tn1+1)
numpy.arange
#file reading portion of 190621_accel_combined only import os import glob from datetime import datetime, timedelta import time import csv import numpy as np import statistics import json import geopy.distance import urllib.request from scipy import interpolate from scipy import fft from scipy import signal import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math from accelinfo import getseiscoords, getfilepath #%% filename = max(glob.iglob(getfilepath()), key=os.path.getctime) #get path of most recent data file #starttime_s = os.path.getmtime(filename) #starttime_s = os.path.getctime(filename) print('Reading metadata') with open(filename, newline='\n') as f: reader = csv.reader(f) metadata = next(reader) metadatapresent = True if 'PDT' in metadata[0]: #if timezone is PDT starttime_s = metadata[0].strip('metadata: PDT') elif 'UTC' in metadata[0]: #if timezone is UTC starttime_s = metadata[0].strip('metadata: UTC') elif 'metadata' not in metadata[0]: #convert filename to starttime starttime = os.path.basename(filename) starttime = datetime.strptime(starttime.replace('_accel.csv',''),'%Y%m%d_%H%M') #starttime = filename[15:27] #starttime = starttime_s.replace('_','') #yeartime = starttime[0:3] #convert datetime object to seconds starttime_s = starttime.timestamp() metadatapresent = False #set metadatapresent else: #tries to handle messed up time from first files starttime_s = metadata[0].strip('metadata: ') starttime_s = starttime_s.replace('-',',') starttime_s = starttime_s.replace(' ',',') starttime_s = starttime_s.replace(':',',') starttime_s = list(starttime_s) if starttime_s[5] == 0: starttime_s[5] = '' if starttime_s[8] == 0: starttime_s[8] = '' starttime_s[19:26] = '' starttime_s = ''.join(starttime_s) counter = 0 counter = int(counter) for item in starttime_s: starttime_s[counter] = int(starttime_s[counter]) counter = counter + 1 starttime_s = (datetime(starttime_s) - datetime(1970,1,1)).total_seconds() if metadatapresent == True: accelunits = metadata[1] timeunits = metadata[2] sensorname = metadata[3] comstandard = metadata[4] accelprecision = 'none' #set precision to 'none' if none is specified if len(metadata) > 5: accelprecision = metadata[5] #precision = number of digits after the decimal else: accelunits = 'g' timeunits = 'ms' sensorname = 'unknown' comstandard = 'serial' accelprecision = 'none' #%% print('Reading file') with open(filename) as csvfile: readCSV = csv.reader(csvfile, delimiter=',') accelx = [] accely = [] accelz = [] timems = [] fullrow = [] skippedtotal = 0 skippedrowlen = 0 skippedsplit = 0 skippedaxis = 0 skippedt = 0 skippedrows = [] #lengthaccellow = 13 #lengthaccelhigh = 15 if accelprecision == 'none': #if no precision set rowlenlow = 43 rowlenhigh = 56 lengthaccellow = 13 lengthaccelhigh = 15 else: #if precision set, set length limits based on precision lengthaccellow = accelprecision + 2 lengthaccelhigh = accelprecision + 4 rowlenlow = (lengthaccellow * 3) + 4 rowlenhigh = (lengthaccelhigh * 3) + 9 for row in readCSV: #step through rows in file fullrow = row[0] if len(row[0]) < rowlenlow: #if row is too short, skip #print(len(fullrow)) skippedtotal = skippedtotal + 1 skippedrowlen = skippedrowlen + 1 #print(fullrow) continue if len(row[0]) > rowlenhigh: #if row is too long, skip skippedtotal = skippedtotal + 1 skippedrowlen = skippedrowlen + 1 #print(fullrow) #print(len(fullrow)) continue fullrow = row[0].split(',') #split row into sections at commas #print(fullrow) if len(fullrow) != 4: #if wrong number of commas, skip skippedtotal = skippedtotal + 1 skippedsplit = skippedsplit + 1 #print(fullrow) continue #print(fullrow) #print whole row x = fullrow[0] x = str(float(x)) if (len(x) < lengthaccellow) and (len(x) > lengthaccelhigh): skippedtotal = skippedtotal + 1 skippedaxis = skippedaxis + 1 #print(fullrow) continue y = fullrow[1] y = str(float(y)) if (len(y) < lengthaccellow) and (len(y) > lengthaccelhigh): skippedtotal = skippedtotal + 1 skippedaxis = skippedaxis + 1 #print(fullrow) continue z = fullrow[2] z = str(float(z)) if (len(z) < lengthaccellow) and (len(z) > lengthaccelhigh): skippedtotal = skippedtotal + 1 skippedaxis = skippedaxis + 1 #print(fullrow) continue #print('here') t = fullrow[3] t.strip() if (len(t) > 9) or (len(t) < 1): skippedtotal = skippedtotal + 1 skippedt = skippedt + 1 #print(fullrow) continue accelx.append(x) accely.append(y) accelz.append(z) timems.append(t) #convert data arrays into stuff matplotlib will accept print('Converting data arrays') accelx = np.array(accelx) accelx = accelx.astype(np.float) accely = np.array(accely) accely = accely.astype(np.float) accelz = np.array(accelz) accelz = accelz.astype(np.float) timems = np.array(timems) timems = timems.astype(np.float) #convert timems to time_s print('Converting ms to S') starttime_s = np.array(starttime_s) starttime_s = starttime_s.astype(np.float) time_s = [] #initialize arry time_s = [((x/1000)+starttime_s) for x in timems] #time_s = timems converted to s and added to the start time endtime_s = time_s[-1] #get end time by reading last value in time_s #calculate statistics print('Calculating statistics') timediff =
np.diff(time_s)
numpy.diff
# coding: utf-8 import os, pickle, csv, json import subprocess from typing import NamedTuple, List, TextIO, Tuple, Dict, Optional, Union, Iterable, Hashable import numpy as np import pandas as pd from scipy import stats from itertools import product, groupby, takewhile from collections import namedtuple, Counter import multiprocessing import logging import string import matplotlib matplotlib.use("Agg") # pids with missing data (i.e., pdbs missing for either sid, eid, and/or gid) pids_missing_data = {'2000524', '2001234', '2001249', '2001255', '2001287', '2001291', '2001306', '2001308', '2001311', '2002239', '2002243', '2002247', '2002255', '2002713', '2002963', '2002990', '2002992', '2003008', '2003011', '2003015', '997529', '996023'} unfetched_pids = {'2000659', '2001302', '2002102', '2002465', '2002809', '2002833', '2002850', '2003001', '2003047', '2003059', '2003078', '2003126', '2003183', '996313', '996492', '996508', '997542', '997940', '998465', '998529', '998574'} # fetched, but corrupt bad_pids = {'1998935', '2000659', '2001302', '2002102', '2002465', '2002809', '2002833', '2002850', '2003078', '2003126', '2003183', '2003763', '2003832', '997766'} # stopped early due to crashes or errors stopped_pids = {'2003699', '2003183', '2002494', '2002247', '2002912', '2003801'} # restarted version of stopped puzzle restarted_pids = {'2003704', '2002499', '2002255', '2002914', '2003806'} pids_missing_energies = {'996547'} pids_missing_pdl_actions = {'998071', '1998729', '998219'} skip_pids = pids_missing_energies.union(pids_missing_pdl_actions).union(bad_pids) class EnergyComponent(NamedTuple): name: str weight: float energy: float class PDB_Info(NamedTuple): sid: str pid: str uid: str gid: str sharing_gid: str scoretype: str pdl: Dict energy: float energy_components: List[EnergyComponent] timestamp: int parent_sid: Optional[str] tmscore: float deviations: np.ndarray class SnapshotDelta(NamedTuple): sid: str parent_sid: Optional[str] timestamp: int action_diff: Counter macro_diff: Counter action_count: int energy_diff: float class SolvingLineVariant(NamedTuple): action_count: int time: int indices: List[int] class SolvingLine(NamedTuple): action_count: int time: int pdb_infos: List[PDB_Info] variants: List[SolvingLineVariant] @property def energies(self): return [x.energy for x in self.pdb_infos] class EvolvingLine(NamedTuple): source: Dict pdb_infos: List[PDB_Info] @property def energies(self): return [x.energy for x in self.pdb_infos] class PuzzleMeta(NamedTuple): pid: str best_tmscores: Dict pfront: np.ndarray upload_baseline: float energy_baseline: float structure: Dict class PatternInstance(NamedTuple): cid: int uid: str pid: str start_idx: int end_idx: int class PatternInstanceExt(NamedTuple): cid: int uid: str pid: str start_idx: int end_idx: int start_pdb: PDB_Info end_pdb: PDB_Info pre_best: PDB_Info post_best: PDB_Info class SubPatternInstance(NamedTuple): p: PatternInstance label: str start_idx: int end_idx: int class SubLookup(NamedTuple): clusters: Dict[str, Dict[int, Dict[int, Dict[int, np.ndarray]]]] # (user to k to cid to sub_k to cluster labels) mrfs: Dict[str, Dict[int, Dict[int, Dict[int, Dict[int, np.ndarray]]]]] # (user to k to cid to sub_k to mrf dictionary (cluster label to mrf)) models: Dict[str, Dict[int, Dict[int, Dict[int, Dict]]]] # (user to k to cid to sub_k to dict of ticc model parameters) bics: Dict[str, Dict[int, Dict[int, Dict[int, float]]]] # (user to k to cid to sub_k to bic) class SubSeriesLookup(NamedTuple): patterns: Dict[Hashable, np.ndarray] # e.g., (uid, pid, start index) -> series for that pattern series: np.ndarray idx_lookup: Dict[Hashable, Tuple[int, int]] class SubclusterSeries(NamedTuple): labels: List[str] series: np.ndarray # type aliases SubClusters = Dict[int, Dict[int, Dict[int, np.ndarray]]] SubMRFs = Dict[int, Dict[int, Dict[int, Dict[int, np.ndarray]]]] PatternLookup = Union[Dict[str, Iterable[PatternInstance]], Dict[int, Dict[int, Iterable[PatternInstance]]]] @pd.api.extensions.register_series_accessor("foldit") class FolditSeriesAccessor: def __init__(self, pandas_obj: pd.Series): self._validate(pandas_obj) self._obj = pandas_obj @staticmethod def _validate(obj: pd.Series): # verify there is a column latitude and a column longitude if ('lines' not in obj.index or 'evol_lines' not in obj.index) and (obj.name != "lines" and obj.name != "evol_lines"): raise AttributeError("Must have 'lines' and 'evol_lines'.") @property def solo_pdbs(self): return [p for l in self._obj.lines for p in l.pdb_infos] if self._obj.lines else [] @property def evol_pdbs(self): return [p for l in self._obj.evol_lines for p in l.pdb_infos] if self._obj.evol_lines else [] @property def solo_energies(self): return [p.energy for p in self._obj.foldit.solo_pdbs] @property def evol_energies(self): return [p.energy for p in self._obj.foldit.evol_pdbs] @pd.api.extensions.register_dataframe_accessor("foldit") class FolditAccessor: def __init__(self, pandas_obj: pd.Series): self._validate(pandas_obj) self._obj = pandas_obj @staticmethod def _validate(obj: pd.Series): # verify there is a column latitude and a column longitude if 'lines' not in obj.columns or 'evol_lines' not in obj.columns: raise AttributeError("Must have 'lines' and 'evol_lines'.") @property def solo_pdbs(self): return self._obj.apply(lambda r: r.foldit.solo_pdbs, axis=1) @property def evol_pdbs(self): return self._obj.apply(lambda r: r.foldit.evol_pdbs, axis=1) @property def solo_energies(self): return self._obj.apply(lambda r: r.foldit.solo_energies, axis=1) @property def evol_energies(self): return self._obj.apply(lambda r: r.foldit.evol_energies, axis=1) # @property # def pdbs(self): ROOT_NID = ('00000000-0000-0000-0000-000000000000', 0) category_lookup = { 'overall': '992758', 'beginner': '992759', 'prediction': '992760', 'design': '992761', 'electron': '994237', 'contacts': '997946', 'symmetry': '992769', 'casp10': '992762', 'casp11': '997398', 'casp_roll': '993715', 'hand_folding': '994890', 'small_molecule_design': '2002074', "pilot": "2004148", 'all': 'all', # dummy to allow select of all categorized puzzles } action_types = { 'optimize': {'ActionGlobalMinimize', 'ActionGlobalMinimizeBackbone', 'ActionGlobalMinimizeSidechains', 'ActionLocalMinimize', 'ActionRepack'}, 'hybrid': {'ActionLocalMinimizePull', 'LoopHash', 'ActionBuild', 'ActionPullSidechain', 'ActionTweak', 'ActionRebuild'}, 'manual': {'ActionSetPhiPsi', 'ActionJumpWidget', 'ActionRotamerCycle', 'ActionRotamerSelect'}, 'guiding': {'ActionInsertCut', 'ActionLockToggle', 'ActionCopyToggle', 'ActionSecStructAssignHelix', 'ActionSecStructAssignLoop', 'ActionSecStructAssignSheet', 'ActionSecStructDSSP', 'ActionSecStructDrag', 'ActionBandAddAtomAtom', 'ActionBandAddDrag', 'ActionBandAddResRes', 'ActionBandDrag', 'ActionBandLength', 'ActionBandStrength'}, } action_types['deliberate'] = action_types['hybrid'].union(action_types['manual']).union(action_types['guiding']) def rmse(predictions, targets): return np.sqrt(((predictions - targets) ** 2).mean()) def iden(x): return x def get_ranks(datafile): puzzles = {} with open("{}.csv".format(datafile)) as fp: ranks_in = csv.DictReader(fp) for row in ranks_in: row['energy'] = float(row['best_score']) row['best_score'] = max(float(row['best_score']) * -10 + 8000, 0) pid = row['pid'] if pid not in puzzles: puzzles[pid] = { 'groups': {}, 'soloists': [], 'evolvers': [], 'categories': [] } if row['gid'] == '0': row['gid'] = 'NULL' # no sense in having both 0 and NULL for no group gid = row['gid'] if gid != 'NULL': gs = puzzles[pid]['groups'] if gid not in gs: gs[gid] = { 'score': row['best_score'], 'type': row['type'], 'gid': gid, 'uid': row['uid'], } if gs[gid]['score'] < row['best_score']: gs[gid]['score'] = row['best_score'] gs[gid]['type'] = row['type'] gs[gid]['uid'] = row['uid'] if row['type'] == '1': puzzles[pid]['soloists'].append(row) if row['type'] == '2': puzzles[pid]['evolvers'].append(row) for pid in puzzles: p = puzzles[pid] p['groups'] = list(p['groups'].values()) # reverse sorts to put them in descending order (top ranked should be first) p['groups'].sort(key=lambda x: x['score'], reverse=True) for i, g in enumerate(p['groups']): g['rank'] = i g['norm_rank'] = i / len(p['groups']) p['soloists'].sort(key=lambda x: x['best_score'], reverse=True) for i, s in enumerate(p['soloists']): s['rank'] = i s['norm_rank'] = i / len(p['soloists']) p['evolvers'].sort(key=lambda x: x['best_score'], reverse=True) for i, e in enumerate(p['evolvers']): e['rank'] = i e['norm_rank'] = i / len(p['evolvers']) return puzzles def get_ranks_labeled(): puzzles = get_ranks("data/rprp_puzzle_ranks_latest") with open("data/puzzle_categories_latest.csv") as fp: cat_in = csv.DictReader(fp) for r in cat_in: pid = r['nid'] if pid in puzzles: puzzles[pid]['categories'] = r['categories'].split(',') puzzles[pid]['categories'].append('all') with open("data/puzzle_labels_latest.json") as fp: lab_in = json.load(fp) for r in lab_in: pid = r['pid'] if pid in puzzles: assert r['title'] is not None puzzles[pid]['title'] = r['title'] if r['desc'] is not None: puzzles[pid]['desc'] = r['desc'] return puzzles def add_pdbs_to_ranks(puzzles): print("loading pdbs") with open("data/top_pdbs.pickle", 'rb') as pdb_fp: pdbs = pickle.load(pdb_fp) pdbs = [p for p in pdbs if 'PID' in p and len(p['PDL']) > 0] print("grouping pdbs") pdbs_by_pid = {pid: list(g) for pid, g in groupby(pdbs, lambda p: p['PID'])} for pid in pids_missing_data.union(unfetched_pids): pid in puzzles and puzzles.pop(pid) for pid in puzzles.copy(): pid not in pdbs_by_pid and puzzles.pop(pid) for pid, ps in pdbs_by_pid.items(): if pid in puzzles: puzzles[pid]['pdbs'] = ps def sig_test(a, b, fstr="{} (n={}) {} (n={})", normal=False, thresholds=frozenset()): if normal: t, p = stats.ttest_ind(a, b, equal_var=False) else: U2, p = stats.mannwhitneyu(np.array(a), np.array(b), use_continuity=True, alternative='two-sided') U = min(U2, len(a) * len(b) - U2) N = len(a) * len(b) f = len(list(filter(lambda xy: xy[0] > xy[1], product(a, b)))) / N u = len(list(filter(lambda xy: xy[0] < xy[1], product(a, b)))) / N if ('p' not in thresholds or p < thresholds['p']) and ('r' not in thresholds or abs(f - u) > thresholds['r']): print(fstr.format("mean={:.6f}, median={:.6f}, std={:.6f}".format(np.mean(a), np.median(a), np.std(a)), len(a), "mean={:.6f}, median={:.6f}, std={:.6f}".format(np.mean(b), np.median(b), np.std(b)), len(b))) if normal: print("test statistic t: {:.6f}".format(t)) else: print("<NAME> U: {:.6f}".format(U)) print("significance (two-tailed): {:.6f}".format(p)) print("rank-biserial correlation: {:.3f}".format(f - u)) return p, f - u def get_atoms(pdb): raw = [[float(x) for x in s.strip(' "[]').split(" ")] for s in pdb['ca'].split(",")] if all(k == 0 for k in raw[-1]): return np.array(raw[:-1]) # remove spurious atom at 0 0 0 that appears at the end of each of these return
np.array(raw)
numpy.array
import os from collections import OrderedDict from wisdem import run_wisdem import wisdem.postprocessing.compare_designs as compare_designs import wisdem.postprocessing.wisdem_get as getter import wisdem.commonse.utilities as util import numpy as np import pandas as pd import matplotlib.pyplot as plt from generateTables import RWT_Tabular # File management thisdir = os.path.dirname(os.path.realpath(__file__)) ontology_dir = os.path.join(os.path.dirname(thisdir), "WT_Ontology") fname_modeling_options = os.path.join(thisdir, "modeling_options.yaml") fname_analysis_options = os.path.join(thisdir, "analysis_options.yaml") folder_output = os.path.join(thisdir, "outputs") def run_15mw(fname_wt_input): float_flag = fname_wt_input.find('Volturn') >= 0 # Run WISDEM prob, modeling_options, analysis_options = run_wisdem(fname_wt_input, fname_modeling_options, fname_analysis_options) # Produce standard plots compare_designs.run([prob], ['IEA Wind 15-MW'], modeling_options, analysis_options) # Tabular output: Blade Shape blade_shape = np.c_[prob.get_val('blade.outer_shape_bem.s'), prob.get_val('blade.outer_shape_bem.ref_axis','m')[:,2], prob.get_val('blade.outer_shape_bem.chord','m'), prob.get_val('blade.outer_shape_bem.twist', 'deg'), prob.get_val('blade.interp_airfoils.r_thick_interp')*100, prob.get_val('blade.outer_shape_bem.pitch_axis')*100, prob.get_val('blade.outer_shape_bem.ref_axis','m')[:,0], prob.get_val('blade.outer_shape_bem.ref_axis','m')[:,1], ] blade_shape_col = ['Blade Span','Rotor Coordinate [m]', 'Chord [m]', 'Twist [deg]', 'Relative Thickness [%]', 'Pitch Axis Chord Location [%]', 'Prebend [m]', 'Sweep [m]'] bladeDF = pd.DataFrame(data=blade_shape, columns=blade_shape_col) # Tabular output: Blade Stiffness blade_stiff = np.c_[prob.get_val('rotorse.r','m'), prob.get_val('rotorse.A','m**2'), prob.get_val('rotorse.EA','N'), prob.get_val('rotorse.EIxx','N*m**2'), prob.get_val('rotorse.EIyy','N*m**2'), prob.get_val('rotorse.EIxy','N*m**2'), prob.get_val('rotorse.GJ','N*m**2'), prob.get_val('rotorse.rhoA','kg/m'), prob.get_val('rotorse.rhoJ','kg*m'), prob.get_val('rotorse.x_ec','mm'), prob.get_val('rotorse.y_ec','mm'), prob.get_val('rotorse.re.x_tc','mm'), prob.get_val('rotorse.re.y_tc','mm'), prob.get_val('rotorse.re.x_sc','mm'), prob.get_val('rotorse.re.y_sc','mm'), prob.get_val('rotorse.re.x_cg','mm'), prob.get_val('rotorse.re.y_cg','mm'), prob.get_val('rotorse.re.precomp.flap_iner','kg/m'), prob.get_val('rotorse.re.precomp.edge_iner','kg/m')] blade_stiff_col = ['Blade Span [m]', 'Cross-sectional area [m^2]', 'Axial stiffness [N]', 'Edgewise stiffness [Nm^2]', 'Flapwise stiffness [Nm^2]', 'Flap-edge coupled stiffness [Nm^2]', 'Torsional stiffness [Nm^2]', 'Mass density [kg/m]', 'Polar moment of inertia density [kg*m]', 'X-distance to elastic center [mm]', 'Y-distance to elastic center [mm]', 'X-distance to tension center [mm]', 'Y-distance to tension center [mm]', 'X-distance to shear center [mm]', 'Y-distance to shear center [mm]', 'X-distance to mass center [mm]', 'Y-distance to mass center [mm]', 'Section flap inertia [kg/m]', 'Section edge inertia [kg/m]', ] bladeStiffDF = pd.DataFrame(data=blade_stiff, columns=blade_stiff_col) # Blade internal laminate layer details layerDF = [] l_s = prob.get_val("blade.internal_structure_2d_fem.s") lthick = prob.get_val("blade.internal_structure_2d_fem.layer_thickness", 'm') lrot = prob.get_val("blade.internal_structure_2d_fem.layer_rotation", 'deg') lstart = prob.get_val("blade.internal_structure_2d_fem.layer_start_nd") lend = prob.get_val("blade.internal_structure_2d_fem.layer_end_nd") nlay = lthick.shape[0] layer_cols = ['Span','Thickness [m]','Fiber angle [deg]','Layer Start','Layer End'] for k in range(nlay): ilay = np.c_[l_s, lthick[k,:], lrot[k,:], lstart[k,:], lend[k,:]] layerDF.append( pd.DataFrame(data=ilay, columns=layer_cols) ) # Tabular output: Rotor Performance rotor_perf = np.c_[prob.get_val("rotorse.rp.powercurve.V",'m/s'), prob.get_val("rotorse.rp.powercurve.pitch",'deg'), prob.get_val("rotorse.rp.powercurve.P",'MW'), prob.get_val("rotorse.rp.powercurve.Cp"), prob.get_val("rotorse.rp.powercurve.Cp_aero"), prob.get_val("rotorse.rp.powercurve.Omega",'rpm'), prob.get_val("rotorse.rp.powercurve.Omega",'rad/s')*0.5*prob["configuration.rotor_diameter_user"], prob.get_val("rotorse.rp.powercurve.T",'MN'), prob.get_val("rotorse.rp.powercurve.Ct_aero"), prob.get_val("rotorse.rp.powercurve.Q",'MN*m'), prob.get_val("rotorse.rp.powercurve.Cq_aero"), prob.get_val("rotorse.rp.powercurve.M",'MN*m'), prob.get_val("rotorse.rp.powercurve.Cm_aero"), ] rotor_perf_col = ['Wind [m/s]','Pitch [deg]', 'Power [MW]','Power Coefficient [-]','Aero Power Coefficient [-]', 'Rotor Speed [rpm]','Tip Speed [m/s]', 'Thrust [MN]','Thrust Coefficient [-]', 'Torque [MNm]','Torque Coefficient [-]', 'Blade Moment [MNm]','Blade Moment Coefficient [-]', ] perfDF = pd.DataFrame(data=rotor_perf, columns=rotor_perf_col) # Nacelle mass properties tabular # Columns are ['Mass', 'CoM_x', 'CoM_y', 'CoM_z', # 'MoI_cm_xx', 'MoI_cm_yy', 'MoI_cm_zz', 'MoI_cm_xy', 'MoI_cm_xz', 'MoI_cm_yz', # 'MoI_TT_xx', 'MoI_TT_yy', 'MoI_TT_zz', 'MoI_TT_xy', 'MoI_TT_xz', 'MoI_TT_yz'] nacDF = prob.model.wt.drivese.nac._mass_table hub_cm = float(prob["drivese.hub_system_cm"]) L_drive = float(prob["drivese.L_drive"]) tilt = float(prob.get_val('nacelle.uptilt', 'rad')) shaft0 = prob["drivese.shaft_start"] Cup = -1.0 hub_cm = R = shaft0 + (L_drive + hub_cm) * np.array([Cup * np.cos(tilt), 0.0, np.sin(tilt)]) hub_mass = prob['drivese.hub_system_mass'] hub_I = prob["drivese.hub_system_I"] hub_I_TT = util.rotateI(hub_I, -Cup * tilt, axis="y") hub_I_TT = util.unassembleI( util.assembleI(hub_I_TT) + hub_mass * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) ) blades_mass = prob['drivese.blades_mass'] blades_I = prob["drivese.blades_I"] blades_I_TT = util.rotateI(blades_I, -Cup * tilt, axis="y") blades_I_TT = util.unassembleI( util.assembleI(blades_I_TT) + blades_mass * (np.dot(R, R) * np.eye(3) - np.outer(R, R)) ) rna_mass = prob['drivese.rna_mass'] rna_cm = R = prob['drivese.rna_cm'] rna_I_TT = prob['drivese.rna_I_TT'] rna_I = util.unassembleI( util.assembleI(rna_I_TT) + rna_mass * (np.dot(R, R) *
np.eye(3)
numpy.eye
from tsfresh.examples.robot_execution_failures import download_robot_execution_failures, \ load_robot_execution_failures import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from glob import glob import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report from sklearn.model_selection import StratifiedKFold from tsfresh.transformers import RelevantFeatureAugmenter from tsfresh.utilities.dataframe_functions import impute from tsfresh.feature_extraction import ComprehensiveFCParameters settings = ComprehensiveFCParameters() from tsfresh import extract_features from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from tsfresh.feature_selection.relevance import calculate_relevance_table from pca import PCAForPandas from dtwnn import KnnDtw from boruta import BorutaPy import copy import time import sys import csv import matplotlib.colors as mcolors # adjust for testing, but the full run requires 10 stratified sample folds num_folds = 10 # tell pandas to consider infinity as a missing value (for filtering) pd.options.mode.use_inf_as_na = True # record our overall start time for time delta display in log messages mark = time.time() # return value to indicate that the test for a fold failed and should be ignored ignore_this_fold = { 'rfc': -1, 'ada': -1, 'rfc_count': -1, 'ada_count': -1, } # read both the TEST and TRAIN files for a particular # dataset into a single set, then partition the data # and label into X and y DataFrames def get_combined_raw_dataset(root_path: str): name = root_path.split('/')[2] raw_train = pd.read_csv(root_path + name + '_TRAIN.tsv', delimiter='\t', header=None) raw_test = pd.read_csv(root_path + name + '_TEST.tsv', delimiter='\t', header=None) combined = raw_train.append(raw_test) v = combined.reset_index().drop(['index'], axis=1) X = v.iloc[:,1:] y = v.iloc[:,:1] return (X, y) # convert a raw dataframe into the vertically oriented # format that tsfresh requires for feature extraction def raw_to_tsfresh(X, y): ids = [] values = [] ys = [] indices = [] for id, row in X.iterrows(): c = (y.loc[[id], :]).iloc[0][0] ys.append(int(c)) indices.append(id) first = True for v in row: if (not first): ids.append(id) values.append(float(v)) first = False d = { 'id': ids, 'value': values } return (pd.DataFrame(data=d), pd.Series(data=ys, index=indices)) # helper function to filter features out of a dataframe given # a calculated tsfresh relevance table (R) def filter_features(df, R): for id, row in R.iterrows(): if (row['relevant'] == False): df = df.drop([row['feature']], axis=1) return df # calculate the accuracy rate of a prediction def accuracy_rate(predicted, actual): correct = 0 for p, a in zip(predicted, actual): if (p == a): correct += 1 return correct / len(predicted) # a single place to configure our RFC and ADA classifiers: def build_rfc(): return RandomForestClassifier() def build_ada(): return AdaBoostClassifier() # Perform the standard FRESH algorithm def perform_fresh(X_train, y_train, X_test, y_test): log('Processing fresh') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction and relevance tests ONLY on the train # data set. extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') extracted_train = extracted_train.dropna(axis='columns') # We run FRESH and its variants first at the default fdr level of 0.05, # but if it returns 0 features (why?) then we lower the value and try # again. filtered_train = None for fdr in [0.05, 0.01, 0.005, 0.001, 0.00001]: log('Using ' + str(fdr)) R = calculate_relevance_table(extracted_train, y_train.squeeze(), fdr_level=fdr) filtered_train = filter_features(extracted_train, R) if (filtered_train.shape[1] > 0): break # Extract features from the test set, but then apply the same relevant # features that we used from the train set extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_test = extracted_test.dropna(axis='columns') filtered_test = filter_features(extracted_test, R) # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(filtered_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(filtered_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(filtered_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(filtered_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # Safely executes a feature-based fold run, catching any # exceptions so that we simply ignore this failed fold. This # was added to make FRESH and its variants more robust, as # sometimes a single fold out of 10 in FRESH would fail as # the algorithm (even at low fdr settings) would report zero # relevant features def run_safely(f, X_train, y_train, X_test, y_test): try: return f(X_train, y_train, X_test, y_test) except: return ignore_this_fold # FRESH variant with PCA run on the extracted relevant features def perform_fresh_pca_after(X_train, y_train, X_test, y_test): log('Processing fresh_pca_after') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction and relevance tests ONLY on the train # data set. extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') # For some reason, tsfresh is extracting features that contain Nan, # Infinity or None. This breaks the PCA step. To avoid this, we # drop columns that contain these values. I know of nothing else to do here. extracted_train = extracted_train.dropna(axis='columns') filtered_train = None # execute at different fdr levels to try to make FRESH more robust for fdr in [0.05, 0.01, 0.005, 0.001]: R = calculate_relevance_table(extracted_train, y_train.squeeze(), fdr_level=fdr) filtered_train = filter_features(extracted_train, R) if (filtered_train.shape[1] > 0): break # Perform PCA on the filtered set of features pca_train = PCAForPandas(n_components=0.95, svd_solver='full') filtered_train = pca_train.fit_transform(filtered_train) # Extract features from the test set, but then apply the same relevant # features that we used from the train set extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_test = extracted_test.dropna(axis='columns') filtered_test = filter_features(extracted_test, R) filtered_test = pca_train.transform(filtered_test) # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(filtered_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(filtered_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(filtered_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(filtered_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # FRESH variant that runs PCA before the filtering step def perform_fresh_pca_before(X_train, y_train, X_test, y_test): log('Processing fresh_pca_before') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction and relevance tests ONLY on the train # data set. extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') # For some reason, tsfresh is extracting features that contain Nan, # Infinity or None. This breaks the PCA step. To avoid this, we # drop columns that contain these values. extracted_train = extracted_train.dropna(axis='columns') # Perform PCA on the complete set of extracted features pca_train = PCAForPandas(n_components=0.95, svd_solver='full') extracted_train = pca_train.fit_transform(extracted_train) filtered_train = extracted_train.reset_index(drop=True) y_train = y_train.reset_index(drop=True) # Extract features from the test set, but then apply the same relevant # features that we used from the train set extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_test = extracted_test.dropna(axis='columns') filtered_test = pca_train.transform(extracted_test) # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(filtered_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(filtered_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(filtered_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(filtered_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # The Borunta based feature-extraction algorithm def perform_boruta(X_train, y_train, X_test, y_test): log('Processing boruta') rf = build_rfc() feat_selector = BorutaPy(rf, n_estimators='auto', perc=90, verbose=2, random_state=0) feat_selector.fit(X_train.values, y_train.values) X_filtered = feat_selector.transform(X_train.values) X_test_filtered = feat_selector.transform(X_test.values) trained_model = rf.fit(X_filtered, y_train.squeeze().values) rfc_predicted = list(map(lambda v: int(v), rf.predict(X_test_filtered))) actual = y_test.squeeze().tolist() bdt = build_ada() trained_model = bdt.fit(X_filtered, y_train.squeeze().values) ada_predicted = list(map(lambda v: int(v), bdt.predict(X_test_filtered))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(rf.estimators_), 'ada_count': len(bdt.estimators_), } # LDA def perform_lda(X_train, y_train, X_test, y_test): log('Processing lda') X_train = X_train.values y_train = y_train.values X_test = X_test.values y_test = y_test.values sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) lda = LDA() X_train = lda.fit_transform(X_train, y_train) X_test = lda.transform(X_test) rf = build_rfc() trained_model = rf.fit(X_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), rf.predict(X_test))) actual = y_test.squeeze().tolist() bdt = build_ada() trained_model = bdt.fit(X_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(X_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(rf.estimators_), 'ada_count': len(bdt.estimators_), } # Take the extracted features from FRESH and use them unfiltered # to make a prediction def perform_unfiltered(X_train, y_train, X_test, y_test): log('Processing unfiltered') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction only extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_train = extracted_train.dropna(axis='columns') extracted_test = extracted_test.dropna(axis='columns') # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(extracted_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(extracted_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(extracted_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(extracted_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # Nearest Neighbors with Dynamic Time Warping def perform_dtw_nn(X_train, y_train, X_test, y_test): log('Processing dtw_nn') m = KnnDtw(n_neighbors=1, max_warping_window=10) m.fit(X_train.values, y_train.values) predicted, proba = m.predict(X_test.values) actual = y_test.squeeze().tolist() return accuracy_rate(predicted, actual), 0 # A simple majority vote classifier def perform_trivial(X_train, y_train, X_test, y_test): log('Processing trivial') counts = {} for v in y_train: if v not in counts: counts[v] = 1 else: counts[v] = counts.get(v) + 1 m = -1 majority = None for k in counts: v = counts.get(k) if (v > m): m = v majority = k majority = np.argmax(counts) predicted = np.full(len(y_test.squeeze().values), majority) actual = y_test.squeeze().tolist() return accuracy_rate(predicted, actual) # Process a single test/train fold def process_fold(X_train, y_train, X_test, y_test): # Fresh and it's variants fresh = run_safely(perform_fresh, X_train, y_train, X_test, y_test) fresh_b = run_safely(perform_fresh_pca_before, X_train, y_train, X_test, y_test) fresh_a = run_safely(perform_fresh_pca_after, X_train, y_train, X_test, y_test) unfiltered = run_safely(perform_unfiltered, X_train, y_train, X_test, y_test) # The other two feature-based approaches boruta = run_safely(perform_boruta, X_train, y_train, X_test, y_test) lda = run_safely(perform_lda, X_train, y_train, X_test, y_test) # Shape based DTW_NN and the majority vote classifier dtw = perform_dtw_nn(X_train, y_train, X_test, y_test) trivial = perform_trivial(X_train, y_train, X_test, y_test) return ({ 'Boruta_ada': boruta.get('ada'), 'Boruta_rfc': boruta.get('rfc'), 'DTW_NN': dtw[0], 'FRESH_PCAa_ada': fresh_a.get('ada'), 'FRESH_PCAa_rfc': fresh_a.get('rfc'), 'FRESH_PCAb_ada': fresh_b.get('ada'), 'FRESH_PCAb_rfc': fresh_b.get('rfc'), 'FRESH_ada': fresh.get('ada'), 'FRESH_rfc': fresh.get('rfc'), 'LDA_ada': lda.get('ada'), 'LDA_rfc': lda.get('rfc'), 'ada': unfiltered.get('ada'), 'rfc': unfiltered.get('rfc'), 'trivial': trivial, }, { 'Boruta_ada': boruta.get('ada_count'), 'Boruta_rfc': boruta.get('rfc_count'), 'DTW_NN': dtw[1], 'FRESH_PCAa_ada': fresh_a.get('ada_count'), 'FRESH_PCAa_rfc': fresh_a.get('rfc_count'), 'FRESH_PCAb_ada': fresh_b.get('ada_count'), 'FRESH_PCAb_rfc': fresh_b.get('ada_count'), 'FRESH_ada': fresh.get('ada_count'), 'FRESH_rfc': fresh.get('rfc_count'), 'LDA_ada': lda.get('ada_count'), 'LDA_rfc': lda.get('rfc_count'), 'ada': unfiltered.get('ada_count'), 'rfc': unfiltered.get('rfc_count'), 'trivial': 0, }) # Complete processing of one data set. Does 10-fold cross-validation # extraction and classification def process_data_set(root_path: str): combined_X, combined_y = get_combined_raw_dataset(root_path) skf = StratifiedKFold(n_splits=num_folds) skf.get_n_splits(combined_X, combined_y) total_acc = 0 results = [] fold = 1 for train_index, test_index in skf.split(combined_X, combined_y): log('Processing fold ' + str(fold)) X_train, X_test = combined_X.iloc[train_index], combined_X.iloc[test_index] y_train, y_test = combined_y.iloc[train_index], combined_y.iloc[test_index] results.append(process_fold(X_train, y_train, X_test, y_test)) fold += 1 # For this dataset, averages is a map from the name of the # pipeline (e.g. Boruta_rfc) to the average of all folds, # similar for std_devs averages, std_devs, counts = calc_statistics(results) return averages, std_devs, counts # Calculates the mean, std_dev and average counts of the # results def calc_statistics(results): averages = {} std_devs = {} counts = {} for k in results[0][0]: values = [] for r in results: f = r[0] if (f.get(k) != -1): values.append(f.get(k)) averages[k] = np.mean(values) std_devs[k] = np.std(values) for k in results[0][1]: values = [] for r in results: f = r[1] if (f.get(k) != -1): values.append(f.get(k)) counts[k] = np.mean(values) return averages, std_devs, counts # dump contents of array of strings to a file def out_to_file(file: str, lines): f = open(file, 'w') for line in lines: f.write(line + '\n') f.close() # log our progress. def log(message): elapsed = str(round(time.time() - mark, 0)) f = open('./log.txt', 'w+') f.write('[' + elapsed.rjust(15, '0') + '] ' + message + '\n') f.close() # Output the captured results to the various tsv output files def output_results(results): header = 'dataset' first = results.get(next(iter(results)))[0] for k in first: header = header + '\t' + k # averages lines = [header] for r in results: line = r aves = results.get(r)[0] for k in aves: line = line + '\t' + str(aves.get(k)) lines.append(line) out_to_file('./averages.tsv', lines) # std_devs lines = [header] for r in results: line = r aves = results.get(r)[1] for k in aves: line = line + '\t' + str(aves.get(k)) lines.append(line) out_to_file('./std_devs.tsv', lines) # counts lines = [header] for r in results: line = r aves = results.get(r)[2] for k in aves: line = line + '\t' + str(aves.get(k)) lines.append(line) out_to_file('./counts.tsv', lines) def get_dataset_dirs(): return glob("./data/*/") # builds a (X, y) DataFrame pair of a random time series with # a binary label and specified number of samples and length def build_random_ts(num_samples, length_of_ts): data = {} labels = [] for s in range (0, num_samples): labels.append(np.random.choice([1, 2])) data['y'] = labels for col in range(0, length_of_ts): key = 'feature_' + str(col + 1) values = [] for s in range (0, num_samples): values.append(np.random.normal()) data[key] = values df = pd.DataFrame.from_dict(data) X = df.iloc[:,1:] y = df.iloc[:,:1] return (X, y) # Dump the current snapshot of results to a given output filename def capture_timing_result(f, results): lines = [] for r in results: values = results.get(r) line = r for v in values: line = line + '\t' + str(v) lines.append(line) out_to_file(f, lines) # Perform the full timing test first for fixed number of # samples and then a fixed length of time series def perform_timing_test(): log('performing timing test') # The collection of tests that we run tests = [ ('Boruta', perform_boruta), ('DTW_NN', perform_dtw_nn), ('FRESH', perform_fresh), ('FRESH_PCAa', perform_fresh_pca_after), ('FRESH_PCAb', perform_fresh_pca_before), ('LDA', perform_lda), ('Full_X', perform_unfiltered) ] # keep the number of samples constant constant_samples_results = {} for test in tests: constant_samples_results[test[0]] = [] for length in [100, 1000, 2000]: log('running 1000 samples and ' + str(length) + ' length') X, y = build_random_ts(1000, length) skf = StratifiedKFold(n_splits=10) skf.get_n_splits(X, y) train_index, test_index = next(skf.split(X, y)) X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] for test in tests: mark = time.time() try: test[1](X_train, y_train, X_test, y_test) except: log(test[0] + ' ERROR') constant_samples_results.get(test[0]).append(time.time() - mark) capture_timing_result('./fixed_samples.tsv', constant_samples_results) # keep the length constant constant_length_results = {} for test in tests: constant_length_results[test[0]] = [] for num_samples in [100, 1000, 2000]: log('running 1000 length and ' + str(length) + ' samples') X, y = build_random_ts(num_samples, 1000) skf = StratifiedKFold(n_splits=10) skf.get_n_splits(X, y) train_index, test_index = next(skf.split(X, y)) X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] for test in tests: mark = time.time() try: test[1](X_train, y_train, X_test, y_test) except: log(test[0] + ' ERROR') constant_length_results.get(test[0]).append(time.time() - mark) capture_timing_result('./fixed_length.tsv', constant_length_results) def load_and_plot(filename, out, title, colormap, vmax): df = pd.read_csv(filename, delimiter='\t') datasets = df['dataset'].tolist() algorithms = list(df.columns.values)[1:] data = df.iloc[:,1:].values create_heatmap(out, data, datasets, algorithms, title, colormap, vmax) def make_colormap(seq): """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mcolors.LinearSegmentedColormap('CustomMap', cdict) def create_boxplot(data, algorithms): fig = plt.figure(1, figsize=(9, 6)) # Create an axes instance ax = fig.add_subplot(111) # rectangular box plot bplot1 = ax.boxplot(data, vert=True, # vertical box alignment patch_artist=True, # fill with color labels=algorithms) # will be used to label x-ticks ax.set_title('Used Features') # fill with colors colors = ['pink', 'orange', 'darkgoldenrod', 'olive', 'green', 'lightseagreen', 'seagreen', 'lightgreen', 'deepskyblue', 'orchid', 'hotpink', 'palevioletred'] for patch, color in zip(bplot1['boxes'], colors): patch.set_facecolor(color) # adding horizontal grid lines ax.yaxis.grid(True) plt.setp(ax.get_xticklabels(), rotation=90, ha="right") ax.set_xlabel('Algorithm') ax.set_ylabel('Used feature counts') plt.savefig('./results/counts.png') def create_heatmap(out, data, row_labels, col_labels, title, colormap, vmax, ax=None, cbar_kw={}, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Arguments: data : A 2D numpy array of shape (N,M) row_labels : A list or array of length N with the labels for the rows col_labels : A list or array of length M with the labels for the columns Optional arguments: ax : A matplotlib.axes.Axes instance to which the heatmap is plotted. If not provided, use current axes or create a new one. cbar_kw : A dictionary with arguments to :meth:`matplotlib.Figure.colorbar`. cbarlabel : The label for the colorbar All other arguments are directly passed on to the imshow call. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, cmap=colormap, vmin=0, vmax=vmax, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") plt.gcf().subplots_adjust(bottom=0.25) # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) # ... and label them with the respective list entries. ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) ax.tick_params(axis='both', which='major', labelsize=6) ax.tick_params(axis='both', which='minor', labelsize=6) ax.tick_params(top=False, bottom=True, labeltop=False, labelbottom=True) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=90, ha="right") plt.title(title) # Turn spines off and create white grid. #for edge, spine in ax.spines.items(): # spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.6, minor=True) ax.set_yticks(
np.arange(data.shape[0]+1)
numpy.arange
# Python Classes/Functions containing Utility Functions for Tycho # Keep This Class Unitless! # ------------------------------------- # # Python Package Importing # # ------------------------------------- # # Importing Necessary System Packages import sys, os, math import numpy as np import matplotlib as plt import time as tp import hashlib import time import datetime # Importing cPickle/Pickle try: import pickle as pickle except: import pickle # Import the Amuse Base Packages from amuse import datamodel from amuse.units import nbody_system from amuse.units import units from amuse.units import constants from amuse.datamodel import particle_attributes from amuse.io import * from amuse.lab import * from amuse.ic.brokenimf import MultiplePartIMF from amuse.community.sse.interface import SSE # ------------------------------------- # # Defining Functions # # ------------------------------------- # def new_seed_from_string(string): ''' Creates a seed for Numpy.RandomState() usin a string. string: The provided string to use. ''' hash_md5 = hashlib.md5(str(string).encode('utf-8')).hexdigest() hash_int = "" for c in hash_md5: if c.isalpha(): hash_int += str(ord(c)) else: hash_int += c seed = int(hash_int) % (2**32 -1) return seed def store_ic(converter, options): ''' Creates a Structured Numpy Array to Store Initial Conditions. converter: AMUSE NBody Converter Used in Tycho. options: Commandline Options Set by User. ''' ic_dtype = np.dtype({'names': ['cluster_name','seed','num_stars','num_planets','total_smass','viral_radius','w0','IBF'], \ 'formats': ['S8', 'S8', 'i8', 'i8','f8','f8','f8','f4']}) ic_array = np.recarray(1, dtype=ic_dtype) ic_array[0].cluster_name = options.cluster_name ic_array[0].seed = options.seed ic_array[0].num_stars = options.num_stars ic_array[0].num_planets = options.num_psys tsm = converter.to_si(converter.values[1]).number vr = converter.to_si(converter.values[2]).number ic_array[0].total_smass = tsm ic_array[0].viral_radius = vr ic_array[0].w0 = options.w0 #ic_array[0].IBF = options.IBF return ic_array[0] def preform_EulerRotation(particle_set): ''' Preforms a randomly oriented Euler Transformation to a set of AMUSE Particles. particle_set: AMUSE particle set which it will preform the transform on. !! Based on <NAME>'s 1996 "Fast Random Rotation Matrices" !! https://pdfs.semanticscholar.org/04f3/beeee1ce89b9adf17a6fabde1221a328dbad.pdf ''' # First: Generate the three Uniformly Distributed Numbers (Two Angles, One Decimal) n_1 = np.random.uniform(0.0, math.pi*2.0) n_2 = np.random.uniform(0.0, math.pi*2.0) n_3 = np.random.uniform(0.0, 1.0) # Second: Calculate Matrix & Vector Values c1 = np.cos(n_1) c2 = np.cos(n_2) s1 = np.sin(n_1) s2 = np.sin(n_2) r3 = np.sqrt(n_3) R = [[ c1, s1, 0.0], [ -s1, c1, 0.0], [ 0.0, 0.0, 1.0]] V = [[c2*r3], [s2*r3], [np.sqrt(1-n_3)]] # Third: Create the Rotation Matrix # This was the old rotation matrix calculation... #rotate = (np.outer(V, V) - np.dot(np.eye(3),(R))) # But here is the new one which more correctly implements the equations from the paper referenced above... rotate = (2 * np.dot(np.outer(V, V), R) - np.dot(np.eye(3), R)) # Forth: Preform the Rotation & Update the Particle for particle in particle_set: pos = np.matrix(([[particle.x.number], [particle.y.number], [particle.z.number]])) vel = np.matrix(([[particle.vx.number], [particle.vy.number], [particle.vz.number]])) particle.position = np.dot(rotate,pos) | particle.position.unit # nbody_system.length particle.velocity = np.dot(rotate,vel) | particle.velocity.unit def calc_HillRadius(a, e, m_planet, m_star): ''' Calculates the Hill Radius for a planet given a, e, and the two masses. a: The semi-major axis of the planet's orbit. e: The eccentricity of the planet's orbit. m_planet: The mass of the planet. m_star: The mass of the star. ''' return a*(1.0-e)*(m_planet/(3*m_star))**(1.5) def calc_SnowLine(host_star): ''' Calculates the Snow Line (Ida & Lin 2005, Kennedy & Kenyon 2008) ''' return 2.7*(host_star.mass/ (1.0 | units.MSun))**2.0 | units.AU def calc_JovianPlacement(host_star): ''' Calculates the placement of a Jovian, scaling Jupiter's location based on the host star's mass. ''' a_jupiter = 5.454 | units.AU return a_jupiter*(host_star.mass/ (1.0 | units.MSun))**2.0 def calc_PeriodRatio(planet1_a, planet2_a, mu): period_1 = 2*np.pi*
np.sqrt(planet1_a**3/mu)
numpy.sqrt
from scipy import integrate import numpy as np from quaternion_euler_utility import euler_quat, quat_euler, deriv_quat, quat_rot_mat from numpy.linalg import norm from mpl_toolkits.mplot3d import Axes3D import matplotlib from matplotlib import pyplot as plt from scipy.spatial.transform import Rotation """"" QUADROTOR ENVIRONMENT DEVELOPED BY: <NAME> PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA MECÂNICA, UNIVERSIDADE FEDERAL DO ABC SP - SANTO ANDRÉ - BRASIL FURTHER DOCUMENTATION ON README.MD """"" # matplotlib.use("pgf") # matplotlib.rcParams.update({ # "pgf.texsystem": "pdflatex", # 'font.family': 'serif', # 'text.usetex': True, # 'pgf.rcfonts': False, # 'pgf.preamble':[ # '\DeclareUnicodeCharacter{2212}{-}'] # }) ## SIMULATION BOUNDING BOXES ## BB_POS = 5 BB_VEL = 10 BB_CONTROL = 9 BB_ANG = np.pi/2 # QUADROTOR MASS AND GRAVITY VALUE M, G = 1.03, 9.82 # AIR DENSITY RHO = 1.2041 #DRAG COEFFICIENT C_D = 1.1 # ELETRIC MOTOR THRUST AND MOMENT K_F = 1.435e-5 K_M = 2.4086e-7 I_R = 5e-5 T2WR = 2 # INERTIA MATRIX J = np.array([[16.83e-3, 0, 0], [0, 16.83e-3, 0], [0, 0, 28.34e-3]]) # ELETRIC MOTOR DISTANCE TO CG D = 0.26 #PROJECTED AREA IN X_b, Y_b, Z_b BEAM_THICKNESS = 0.05 A_X = BEAM_THICKNESS*2*D A_Y = BEAM_THICKNESS*2*D A_Z = BEAM_THICKNESS*2*D*2 A = np.array([[A_X,A_Y,A_Z]]).T ## REWARD PARAMETERS ## SOLVED_REWARD = 20 BROKEN_REWARD = -20 SHAPING_WEIGHT = 5 SHAPING_INTERNAL_WEIGHTS = [15, 4, 1] # CONTROL REWARD PENALITIES # P_C = 0.003 P_C_D = 0 ## TARGET STEADY STATE ERROR ## TR = [0.005, 0.01, 0.1] TR_P = [3, 2, 1] ## ROBUST CONTROL PARAMETERS class robust_control(): def __init__(self): self.D_KF = 0.1 self.D_KM = 0.1 self.D_M = 0.3 self.D_IR = 0.1 self.D_J = np.ones(3) * 0.1 self.reset() self.gust_std = [[5], [5], [2]] self.gust_period = 500 # integration steps self.i_gust = 0 self.gust = np.zeros([3, 1]) def reset(self): self.episode_kf = np.random.random(4) * self.D_KF self.episode_m = np.random.normal(0, self.D_M, 1) self.episode_ir = np.random.random(4) * self.D_IR self.episode_J = np.eye(3)*np.random.normal(np.zeros(3), self.D_J, [3]) def wind(self, i): index = (i % self.gust_period) - 1 if index % self.gust_period == 0: self.last_gust = self.gust self.gust = np.random.normal(np.zeros([3, 1]), self.gust_std, [3, 1]) self.linear_wind_change = np.linspace(self.last_gust, self.gust, self.gust_period) return self.linear_wind_change[index] class quad(): def __init__(self, t_step, n, training = True, euler=0, direct_control=1, T=1, clipped = True): """" inputs: t_step: integration time step n: max timesteps euler: flag to set the states return in euler angles, if off returns quaternions deep learning: deep learning flag: If on, changes the way the env. outputs data, optimizing it to deep learning use. T: Number of past history of states/actions used as inputs in the neural network debug: If on, prints a readable reward funcion, step by step, for a simple reward weight debugging. """ self.clipped = clipped if training: self.ppo_training = True else: self.ppo_training = False self.mass = M self.gravity = G self.i = 0 self.T = T #Initial Steps self.bb_cond = np.array([BB_VEL, BB_VEL, BB_VEL, BB_ANG, BB_ANG, 3/4*np.pi, BB_VEL*2, BB_VEL*2, BB_VEL*2]) #Bounding Box Conditions Array if not self.ppo_training: self.bb_cond = self.bb_cond*1 #Quadrotor states dimension self.state_size = 13 #Quadrotor action dimension self.action_size = 4 #Env done Flag self.done = True #Env Maximum Steps self.n = n+self.T self.t_step = t_step #Neutral Action (used in reset and absolute action penalty) if direct_control: self.zero_control = np.ones(4)*(2/T2WR - 1) else: self.zero_control =
np.array([M*G, 0, 0, 0])
numpy.array
import datetime as dt import unittest import pandas as pd import numpy as np import numpy.testing as npt import seaice.nasateam as nt import seaice.tools.plotter.daily_extent as de class Test_BoundingDateRange(unittest.TestCase): def test_standard(self): today = dt.date(2015, 9, 22) month_bounds = (-3, 1) expected_bounds = (dt.date(2015, 6, 1), dt.date(2015, 10, 31)) actual = de._bounding_date_range(today, *month_bounds) self.assertEqual(expected_bounds, actual) def test_bounding_dates_overlap_year(self): today = dt.date(2001, 1, 15) month_bounds = (-1, 1) expected_bounds = (dt.date(2000, 12, 1), dt.date(2001, 2, 28)) actual = de._bounding_date_range(today, *month_bounds) self.assertEqual(expected_bounds, actual) def test_bounding_dates_overlap_leap_year(self): today = dt.date(2016, 1, 15) month_bounds = (-1, 1) expected_bounds = (dt.date(2015, 12, 1), dt.date(2016, 2, 29)) actual = de._bounding_date_range(today, *month_bounds) self.assertEqual(expected_bounds, actual) class Test_GetRecordYear(unittest.TestCase): start_date = nt.BEGINNING_OF_SATELLITE_ERA end_date = dt.date(2015, 12, 31) date_index = pd.date_range(start_date, end_date) base_series = pd.Series(index=date_index).fillna(5) def _series(self, low=None, high=None, next_highest=None, next_lowest=None): """Return a series for easily testing record values. All the values are 5, with different values set to the dates passed in as low, next_lowest, high, and next_highest. The index of the returned series is from the beginning of the satellite era to the end of 2015 (since that happens to be the last complete year at the time of this writing). """ series = self.base_series.copy() if high: series[high] = 10 if next_highest: series[next_highest] = 7 if next_lowest: series[next_lowest] = 2 if low: series[low] = 0 return series def test_max(self): """Date: 4/2014, range: 1/2014 -> 5/2014, record:9/2002 , recordline:2002""" series = self._series(high='2002-09-15') date = pd.to_datetime('2014-04-15') month_bounds = (-3, 1) # expectation expected = 2002 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min(self): """Date: 4/2014, range: 1/2014 -> 5/2014, record:9/2002(min) , recordline:2002""" series = self._series(low='2002-09-15') date = pd.to_datetime('2014-04-15') month_bounds = (-3, 1) # expectation expected = 2002 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_current_year_is_record(self): """Date: 4/2014, range: 1/2014 -> 5/2014, record:3/2014, recordline:2010""" series = self._series(high='2014-03-15', next_highest='2010-09-15') date = pd.to_datetime('2014-04-15') month_bounds = (-3, 1) # expectation expected = 2010 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_current_year_is_record(self): """Date: 4/2014, range: 1/2014 -> 5/2014, record:3/2014(min), recordline:2010""" series = self._series(low='2014-03-15', next_lowest='2010-09-15') date = pd.to_datetime('2014-04-15') month_bounds = (-3, 1) # expectation expected = 2010 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_min_record_year_is_included_in_month_bounds(self): """Date: 2/2015, range: 10/2014 -> 3/2015, record: 1/2014, recordline: 2013-2014""" series = self._series(low='2014-04-20', next_lowest='1999-09-15') date = pd.to_datetime('2015-02-15') month_bounds = (-4, 1) # expectation expected = 2014 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_min_record_year_before_and_crossover_forward(self): """Date: 12/2015, range: 8/2015 -> 1/2016, record: 12/2014, recordline: 2014-2015""" series = self._series(low='2014-09-20', next_lowest='1999-09-15') date = pd.to_datetime('2015-12-15') month_bounds = (-4, 1) # expectation expected = 2014 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_year_changeover_record_is_plotted_and_aligned(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record:1/2004, recordline:2004""" series = self._series(high='2004-01-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2004 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_year_changeover_record_is_plotted_and_aligned(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record:1/2004(min), recordline:2003-2004""" series = self._series(low='2004-01-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2004 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_year_changeover_record_is_plotted_not_aligned(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record:11/2007 , recordline:2007-2008""" series = self._series(high='2007-11-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2008 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_year_changeover_record_is_plotted_not_aligned(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record:11/2007 , recordline:2007-2008""" series = self._series(low='2007-11-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2008 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_year_changeover_record_is_plotted_with_current_year_plots_next_highest(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record:11/2009 , recordline:2004-2005""" series = self._series(high='2009-11-27', next_highest='2004-11-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2005 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_year_changeover_record_is_plotted_with_current_year_plots_next_highest(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record:11/2009 , recordline:2004-2005""" series = self._series(low='2009-11-27', next_lowest='2004-11-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2005 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_year_record_not_plotted_picks_most_months(self): """Date: 1/2010, range: 11/2009 -> 3/2010, record:10/2008, recordline:2007-2008""" series = self._series(high='2008-10-27') date = pd.to_datetime('2010-01-15') month_bounds = (-2, 2) # expectation expected = 2008 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_year_record_not_plotted_picks_most_months(self): """Date: 1/2010, range: 11/2009 -> 3/2010, record:8/2008, recordline:2007-2008""" series = self._series(low='2008-08-27') date = pd.to_datetime('2010-01-15') month_bounds = (-2, 2) # expectation expected = 2008 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_year_record_not_plotted_picks_most_months_next_highest_record(self): """Date: 1/2010, range: 10/2009 -> 2/2010, record: 8/2009, recordline: 2008-2009 """ series = self._series(high='2009-08-27', next_highest='2004-08-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2009 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_year_record_not_plotted_picks_most_months_next_highest_record(self): """Date: 1/2010, range:10/2009 -> 2/2010, record: 8/2009, recordline: 2008-2009""" series = self._series(low='2009-08-27', next_lowest='2004-08-27') date = pd.to_datetime('2010-01-15') month_bounds = (-3, 1) # expectation expected = 2009 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_past_record_same_year(self): """Date: 9/2015, range:6/2015 -> 10/2015, record: 3/2015, recordline: 2010""" series = self._series(low='2015-03-27', next_lowest='2010-03-28') date = pd.to_datetime('2015-09-15') month_bounds = (-3, 1) # expectation expected = 2010 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_past_record_same_year_with_overlap(self): """Date: 9/2015, range:6/2015 -> 1/2016, record: 3/2015, recordline: 2014-2015""" series = self._series(low='2015-03-27', next_lowest='2010-03-28') date = pd.to_datetime('2015-09-15') month_bounds = (-3, 4) # expectation expected = 2014 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) def test_max_year_record_not_plotted_same_most_months_picks_earlier_year(self): """Date: 1/2010, range: 11/2009 -> 2/2010, record: 8/2008 , recordline:2008-2009""" series = self._series(high='2008-08-27') date = pd.to_datetime('2010-01-15') month_bounds = (-2, 1) # expectation expected = 2009 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_starts_january_contains_record_month_same_year(self): """Date: 12/09, range: 09/2009 -> 1/2010, record: 9/2008 , recordline:2008-2009""" series = self._series(high='2008-09-22') date = pd.to_datetime('2009-12-15') month_bounds = (-3, 1) # expectation expected = 2008 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_starts_feb_contains_record_month_different_year(self): """Date: 1/10, range: 09/2009 -> 2/2010, record: 9/2008 , recordline:2008-2009""" series = self._series(high='2008-09-22') date = pd.to_datetime('2010-01-15') month_bounds = (-4, 1) # expectation expected = 2009 # execute actual = de._get_record_year(series, date, month_bounds, 'max') self.assertEqual(actual, expected) def test_min_year_record_not_plotted_same_most_months_picks_earlier_year(self): """Date: 1/2010, range: 11/2009 -> 2/2010, record:8/2008 , recordline:2008-2009""" series = self._series(low='2008-08-27') date = pd.to_datetime('2010-01-15') month_bounds = (-2, 1) # expectation expected = 2009 # execute actual = de._get_record_year(series, date, month_bounds, 'min') self.assertEqual(actual, expected) class Test_YearWithMostMonthsInIndex(unittest.TestCase): def test_longer_year_earlier(self): index = pd.date_range(start='1999-01-01', end='2000-01-31') actual = de._year_with_most_months_in_index(index) expected = 1999 self.assertEqual(actual, expected) def test_longer_year_later(self): index = pd.date_range(start='1999-11-01', end='2000-04-29') actual = de._year_with_most_months_in_index(index) expected = 2000 self.assertEqual(actual, expected) def test_earlier_year_when_equal_months(self): index = pd.date_range(start='1999-11-01', end='2000-02-29') actual = de._year_with_most_months_in_index(index) expected = 1999 self.assertEqual(actual, expected) class Test_DateIndexPrependDays(unittest.TestCase): def test_adds_days_to_beginning_of_date_index(self): date_index = pd.date_range(start='2005-01-05', end='2005-01-10') days = 5 actual = de._date_index_prepend_days(date_index, days) expected = pd.date_range(start='2004-12-31', end='2005-01-10') self.assertTrue(actual.equals(expected)) class Test__ExtendSmoothDivide(unittest.TestCase): def test_does_all_the_things(self): date_index = pd.date_range(start='2000-01-06', end='2000-01-08') nday_average = 3 divisor = 1e3 df_index = pd.Index([6, 7, 8], name='day of year') df = pd.DataFrame({'data': [10000, 15000, 20000]}, index=df_index) actual = de._extend_smooth_divide(df, date_index, nday_average, divisor) # index extended expected_index = pd.Index([3, 4, 5, 6, 7, 8]) npt.assert_array_equal(actual.index.values, expected_index.values) # smoothed and divided expected_data = np.array([np.nan, np.nan, np.nan, 10, 12.5, 15]) npt.assert_array_equal(actual.data.values, expected_data) class Test_ClimatologyStatistics(unittest.TestCase): def test_with_data_gets_average_stddevs_and_percentiles(self): date_index = pd.date_range(start='2008-01-01', end='2008-01-10') series1 = pd.Series([1000.0, 2000.0, 3000.0, 4000.0, 5000.0], index=pd.date_range(start='2008-01-03', end='2008-01-07')) series2 = pd.Series([2000.0, 3000.0, 4000.0, 5000.0, 6000.0], index=pd.date_range(start='2009-01-03', end='2009-01-07')) extents = series1.append(series2) extents.name = 'total_extent_km2' actual = de._climatology_statistics(extents, date_index, percentiles=[0, 50, 100], nday_average=3, divisor=1e3) expected_columns = ['climatology', 'climatology_lower', 'climatology_upper', 'percentile_0', 'percentile_50', 'percentile_100'] npt.assert_array_equal(sorted(actual.columns), sorted(expected_columns)) expected_climatology = [np.nan, np.nan, 1.5, 2., 2.5, 3.5, 4.5, 5., 5.5, np.nan] expected_climatology_upper = [np.nan, np.nan, 2.914214, 3.414214, 3.914214, 4.914214, 5.914214, 6.414214, 6.914214, np.nan] expected_climatology_lower = [np.nan, np.nan, 0.085786, 0.585786, 1.085786, 2.085786, 3.085786, 3.585786, 4.085786, np.nan] npt.assert_array_equal(actual.climatology, expected_climatology) npt.assert_array_almost_equal(actual.climatology_upper, expected_climatology_upper) npt.assert_array_almost_equal(actual.climatology_lower, expected_climatology_lower) expected_percentile_100 = [np.nan, np.nan, 2., 2.5, 3., 4., 5., 5.5, 6., np.nan] npt.assert_array_equal(actual.percentile_100, expected_percentile_100) expected_percentile_50 = [np.nan, np.nan, 1.5, 2., 2.5, 3.5, 4.5, 5., 5.5, np.nan]
npt.assert_array_equal(actual.percentile_50, expected_percentile_50)
numpy.testing.assert_array_equal
# DEPRECATED from .. import settings from .. import logging as logg from ..preprocessing.moments import get_connectivities from .utils import make_dense, make_unique_list, test_bimodality import warnings import matplotlib.pyplot as pl from matplotlib import rcParams import numpy as np exp = np.exp def log(x, eps=1e-6): # to avoid invalid values for log. return np.log(np.clip(x, eps, 1 - eps)) def inv(x): with warnings.catch_warnings(): warnings.simplefilter("ignore") x_inv = 1 / x * (x != 0) return x_inv def unspliced(tau, u0, alpha, beta): expu = exp(-beta * tau) return u0 * expu + alpha / beta * (1 - expu) def spliced(tau, s0, u0, alpha, beta, gamma): c = (alpha - u0 * beta) * inv(gamma - beta) expu, exps = exp(-beta * tau), exp(-gamma * tau) return s0 * exps + alpha / gamma * (1 - exps) + c * (exps - expu) def mRNA(tau, u0, s0, alpha, beta, gamma): expu, exps = exp(-beta * tau), exp(-gamma * tau) u = u0 * expu + alpha / beta * (1 - expu) s = ( s0 * exps + alpha / gamma * (1 - exps) + (alpha - u0 * beta) * inv(gamma - beta) * (exps - expu) ) return u, s def vectorize(t, t_, alpha, beta, gamma=None, alpha_=0, u0=0, s0=0, sorted=False): with warnings.catch_warnings(): warnings.simplefilter("ignore") o = np.array(t < t_, dtype=int) tau = t * o + (t - t_) * (1 - o) u0_ = unspliced(t_, u0, alpha, beta) s0_ = spliced(t_, s0, u0, alpha, beta, gamma if gamma is not None else beta / 2) # vectorize u0, s0 and alpha u0 = u0 * o + u0_ * (1 - o) s0 = s0 * o + s0_ * (1 - o) alpha = alpha * o + alpha_ * (1 - o) if sorted: idx = np.argsort(t) tau, alpha, u0, s0 = tau[idx], alpha[idx], u0[idx], s0[idx] return tau, alpha, u0, s0 def tau_inv(u, s=None, u0=None, s0=None, alpha=None, beta=None, gamma=None): with warnings.catch_warnings(): warnings.simplefilter("ignore") inv_u = (gamma >= beta) if gamma is not None else True inv_us = np.invert(inv_u) any_invu = np.any(inv_u) or s is None any_invus = np.any(inv_us) and s is not None if any_invus: # tau_inv(u, s) beta_ = beta * inv(gamma - beta) xinf = alpha / gamma - beta_ * (alpha / beta) tau = -1 / gamma * log((s - beta_ * u - xinf) / (s0 - beta_ * u0 - xinf)) if any_invu: # tau_inv(u) uinf = alpha / beta tau_u = -1 / beta * log((u - uinf) / (u0 - uinf)) tau = tau_u * inv_u + tau * inv_us if any_invus else tau_u return tau def find_swichting_time(u, s, tau, o, alpha, beta, gamma, plot=False): off, on = o == 0, o == 1 t0_ = np.max(tau[on]) if on.sum() > 0 and np.max(tau[on]) > 0 else np.max(tau) if off.sum() > 0: u_, s_, tau_ = u[off], s[off], tau[off] beta_ = beta * inv(gamma - beta) ceta_ = alpha / gamma - beta_ * alpha / beta x = -ceta_ * exp(-gamma * tau_) y = s_ - beta_ * u_ exp_t0_ = (y * x).sum() / (x ** 2).sum() if -1 < exp_t0_ < 0: t0_ = -1 / gamma * log(exp_t0_ + 1) if plot: pl.scatter(x, y) return t0_ def fit_alpha(u, s, tau, o, beta, gamma, fit_scaling=False): off, on = o == 0, o == 1 if on.sum() > 0 or off.sum() > 0 or tau[on].min() == 0 or tau[off].min() == 0: alpha = None else: tau_on, tau_off = tau[on], tau[off] # 'on' state expu, exps = exp(-beta * tau_on), exp(-gamma * tau_on) # 'off' state t0_ = np.max(tau_on) expu_, exps_ = exp(-beta * tau_off), exp(-gamma * tau_off) expu0_, exps0_ = exp(-beta * t0_), exp(-gamma * t0_) # from unspliced dynamics c_beta = 1 / beta * (1 - expu) c_beta_ = 1 / beta * (1 - expu0_) * expu_ # from spliced dynamics c_gamma = (1 - exps) / gamma + (exps - expu) * inv(gamma - beta) c_gamma_ = ( (1 - exps0_) / gamma + (exps0_ - expu0_) * inv(gamma - beta) ) * exps_ - (1 - expu0_) * (exps_ - expu_) * inv(gamma - beta) # concatenating together c = np.concatenate([c_beta, c_gamma, c_beta_, c_gamma_]).T x = np.concatenate([u[on], s[on], u[off], s[off]]).T alpha = (c * x).sum() / (c ** 2).sum() if fit_scaling: # alternatively compute alpha and scaling simultaneously c = np.concatenate([c_gamma, c_gamma_]).T x = np.concatenate([s[on], s[off]]).T alpha = (c * x).sum() / (c ** 2).sum() c = np.concatenate([c_beta, c_beta_]).T x = np.concatenate([u[on], u[off]]).T scaling = (c * x).sum() / (c ** 2).sum() / alpha # ~ alpha * z / alpha return alpha, scaling return alpha def fit_scaling(u, t, t_, alpha, beta): tau, alpha, u0, _ = vectorize(t, t_, alpha, beta) ut = unspliced(tau, u0, alpha, beta) return (u * ut).sum() / (ut ** 2).sum() def tau_s(s, s0, u0, alpha, beta, gamma, u=None, tau=None, eps=1e-2): if tau is None: tau = tau_inv(u, u0=u0, alpha=alpha, beta=beta) if u is not None else 1 tau_prev, loss, n_iter, max_iter, mixed_states = 1e6, 1e6, 0, 10, np.any(alpha == 0) b0 = (alpha - beta * u0) * inv(gamma - beta) g0 = s0 - alpha / gamma + b0 with warnings.catch_warnings(): warnings.simplefilter("ignore") while np.abs(tau - tau_prev).max() > eps and loss > eps and n_iter < max_iter: tau_prev, n_iter = tau, n_iter + 1 expu, exps = b0 * exp(-beta * tau), g0 * exp(-gamma * tau) f = exps - expu + alpha / gamma # >0 ft = -gamma * exps + beta * expu # >0 if on else <0 ftt = gamma ** 2 * exps - beta ** 2 * expu a, b, c = ftt / 2, ft, f - s term = b ** 2 - 4 * a * c update = (-b + np.sqrt(term)) / (2 * a) if mixed_states: update = np.nan_to_num(update) * (alpha > 0) + (-c / b) * (alpha <= 0) tau = ( np.nan_to_num(tau_prev + update) * (s != 0) if np.any(term > 0) else tau_prev / 10 ) loss = np.abs( alpha / gamma + g0 * exp(-gamma * tau) - b0 * exp(-beta * tau) - s ).max() return np.clip(tau, 0, None) def assign_timepoints_projection( u, s, alpha, beta, gamma, t0_=None, u0_=None, s0_=None, n_timepoints=300 ): if t0_ is None: t0_ = tau_inv(u=u0_, u0=0, alpha=alpha, beta=beta) if u0_ is None or s0_ is None: u0_, s0_ = ( unspliced(t0_, 0, alpha, beta), spliced(t0_, 0, 0, alpha, beta, gamma), ) tpoints = np.linspace(0, t0_, num=n_timepoints) tpoints_ = np.linspace( 0, tau_inv(np.min(u[s > 0]), u0=u0_, alpha=0, beta=beta), num=n_timepoints )[1:] xt = np.vstack( [unspliced(tpoints, 0, alpha, beta), spliced(tpoints, 0, 0, alpha, beta, gamma)] ).T xt_ = np.vstack( [unspliced(tpoints_, u0_, 0, beta), spliced(tpoints_, s0_, u0_, 0, beta, gamma)] ).T x_obs = np.vstack([u, s]).T # assign time points (oth. projection onto 'on' and 'off' curve) tau, o, diff = np.zeros(len(u)), np.zeros(len(u), dtype=int), np.zeros(len(u)) tau_alt, diff_alt = np.zeros(len(u)), np.zeros(len(u)) for i, xi in enumerate(x_obs): diffs, diffs_ = ( np.linalg.norm((xt - xi), axis=1), np.linalg.norm((xt_ - xi), axis=1), ) idx, idx_ = np.argmin(diffs), np.argmin(diffs_) o[i] = np.argmin([diffs_[idx_], diffs[idx]]) tau[i] = [tpoints_[idx_], tpoints[idx]][o[i]] diff[i] = [diffs_[idx_], diffs[idx]][o[i]] tau_alt[i] = [tpoints_[idx_], tpoints[idx]][1 - o[i]] diff_alt[i] = [diffs_[idx_], diffs[idx]][1 - o[i]] t = tau * o + (t0_ + tau) * (1 - o) return t, tau, o """State-independent derivatives""" def dtau(u, s, alpha, beta, gamma, u0, s0, du0=[0, 0, 0], ds0=[0, 0, 0, 0]): a, b, g, gb, b0 = alpha, beta, gamma, gamma - beta, beta * inv(gamma - beta) cu = s - a / g - b0 * (u - a / b) c0 = s0 - a / g - b0 * (u0 - a / b) cu += cu == 0 c0 += c0 == 0 cu_, c0_ = 1 / cu, 1 / c0 dtau_a = b0 / g * (c0_ - cu_) + 1 / g * c0_ * (ds0[0] - b0 * du0[0]) dtau_b = 1 / gb ** 2 * ((u - a / g) * cu_ - (u0 - a / g) * c0_) dtau_c = -a / g * (1 / g ** 2 - 1 / gb ** 2) * (cu_ - c0_) - b0 / g / gb * ( u * cu_ - u0 * c0_ ) # + 1/g**2 * np.log(cu/c0) return dtau_a, dtau_b, dtau_c def du(tau, alpha, beta, u0=0, du0=[0, 0, 0], dtau=[0, 0, 0]): # du0 is the derivative du0 / d(alpha, beta, tau) expu, cb = exp(-beta * tau), alpha / beta du_a = ( du0[0] * expu + 1.0 / beta * (1 - expu) + (alpha - beta * u0) * dtau[0] * expu ) du_b = ( du0[1] * expu - cb / beta * (1 - expu) + (cb - u0) * tau * expu + (alpha - beta * u0) * dtau[1] * expu ) return du_a, du_b def ds( tau, alpha, beta, gamma, u0=0, s0=0, du0=[0, 0, 0], ds0=[0, 0, 0, 0], dtau=[0, 0, 0] ): # ds0 is the derivative ds0 / d(alpha, beta, gamma, tau) expu, exps, = exp(-beta * tau), exp(-gamma * tau) expus = exps - expu cbu = (alpha - beta * u0) * inv(gamma - beta) ccu = (alpha - gamma * u0) * inv(gamma - beta) ccs = alpha / gamma - s0 - cbu ds_a = ( ds0[0] * exps + 1.0 / gamma * (1 - exps) + 1 * inv(gamma - beta) * (1 - beta * du0[0]) * expus + (ccs * gamma * exps + cbu * beta * expu) * dtau[0] ) ds_b = ( ds0[1] * exps + cbu * tau * expu + 1 * inv(gamma - beta) * (ccu - beta * du0[1]) * expus + (ccs * gamma * exps + cbu * beta * expu) * dtau[1] ) ds_c = ( ds0[2] * exps + ccs * tau * exps - alpha / gamma ** 2 * (1 - exps) - cbu * inv(gamma - beta) * expus + (ccs * gamma * exps + cbu * beta * expu) * dtau[2] ) return ds_a, ds_b, ds_c def derivatives( u, s, t, t0_, alpha, beta, gamma, scaling=1, alpha_=0, u0=0, s0=0, weights=None ): o = np.array(t < t0_, dtype=int) du0 = np.array(du(t0_, alpha, beta, u0))[:, None] * (1 - o)[None, :] ds0 = np.array(ds(t0_, alpha, beta, gamma, u0, s0))[:, None] * (1 - o)[None, :] tau, alpha, u0, s0 = vectorize(t, t0_, alpha, beta, gamma, alpha_, u0, s0) dt = np.array(dtau(u, s, alpha, beta, gamma, u0, s0, du0, ds0)) # state-dependent derivatives: du_a, du_b = du(tau, alpha, beta, u0, du0, dt) du_a, du_b = du_a * scaling, du_b * scaling ds_a, ds_b, ds_c = ds(tau, alpha, beta, gamma, u0, s0, du0, ds0, dt) # evaluate derivative of likelihood: ut, st = mRNA(tau, u0, s0, alpha, beta, gamma) # udiff = np.array(ut * scaling - u) udiff = np.array(ut - u / scaling) sdiff = np.array(st - s) if weights is not None: udiff = np.multiply(udiff, weights) sdiff = np.multiply(sdiff, weights) dl_a = (du_a * (1 - o)).dot(udiff) + (ds_a * (1 - o)).dot(sdiff) dl_a_ = (du_a * o).dot(udiff) + (ds_a * o).dot(sdiff) dl_b = du_b.dot(udiff) + ds_b.dot(sdiff) dl_c = ds_c.dot(sdiff) dl_tau, dl_t0_ = None, None return dl_a, dl_b, dl_c, dl_a_, dl_tau, dl_t0_ class BaseDynamics: def __init__(self, adata=None, u=None, s=None): self.s, self.u = s, u zeros, zeros3 = np.zeros(adata.n_obs), np.zeros((3, 1)) self.u0, self.s0, self.u0_, self.s0_, self.t_, self.scaling = ( None, None, None, None, None, None, ) self.t, self.tau, self.o, self.weights = zeros, zeros, zeros, zeros self.alpha, self.beta, self.gamma, self.alpha_, self.pars = ( None, None, None, None, None, ) self.dpars, self.m_dpars, self.v_dpars, self.loss = zeros3, zeros3, zeros3, [] def uniform_weighting(self, n_regions=5, perc=95): # deprecated from numpy import union1d as union from numpy import intersect1d as intersect u, s = self.u, self.s u_b = np.linspace(0, np.percentile(u, perc), n_regions) s_b = np.linspace(0, np.percentile(s, perc), n_regions) regions, weights = {}, np.ones(len(u)) for i in range(n_regions): if i == 0: region = intersect(np.where(u < u_b[i + 1]), np.where(s < s_b[i + 1])) elif i < n_regions - 1: lower_cut = union(np.where(u > u_b[i]), np.where(s > s_b[i])) upper_cut = intersect( np.where(u < u_b[i + 1]), np.where(s < s_b[i + 1]) ) region = intersect(lower_cut, upper_cut) else: region = union( np.where(u > u_b[i]), np.where(s > s_b[i]) ) # lower_cut for last region regions[i] = region if len(region) > 0: weights[region] = n_regions / len(region) # set weights accordingly such that each region has an equal overall contribution. self.weights = weights * len(u) / np.sum(weights) self.u_b, self.s_b = u_b, s_b def plot_regions(self): u, s, ut, st = self.u, self.s, self.ut, self.st u_b, s_b = self.u_b, self.s_b pl.figure(dpi=100) pl.scatter(s, u, color="grey") pl.xlim(0) pl.ylim(0) pl.xlabel("spliced") pl.ylabel("unspliced") for i in range(len(s_b)): pl.plot([s_b[i], s_b[i], 0], [0, u_b[i], u_b[i]]) def plot_derivatives(self): u, s = self.u, self.s alpha, beta, gamma = self.alpha, self.beta, self.gamma t, tau, o, t_ = self.t, self.tau, self.o, self.t_ du0 = np.array(du(t_, alpha, beta))[:, None] * (1 - o)[None, :] ds0 = np.array(ds(t_, alpha, beta, gamma))[:, None] * (1 - o)[None, :] tau, alpha, u0, s0 = vectorize(t, t_, alpha, beta, gamma) dt = np.array(dtau(u, s, alpha, beta, gamma, u0, s0)) du_a, du_b = du(tau, alpha, beta, u0=u0, du0=du0, dtau=dt) ds_a, ds_b, ds_c = ds( tau, alpha, beta, gamma, u0=u0, s0=s0, du0=du0, ds0=ds0, dtau=dt ) idx = np.argsort(t) t = np.sort(t) pl.plot(t, du_a[idx], label=r"$\partial u / \partial\alpha$") pl.plot(t, 0.2 * du_b[idx], label=r"$\partial u / \partial \beta$") pl.plot(t, ds_a[idx], label=r"$\partial s / \partial \alpha$") pl.plot(t, ds_b[idx], label=r"$\partial s / \partial \beta$") pl.plot(t, 0.2 * ds_c[idx], label=r"$\partial s / \partial \gamma$") pl.legend() pl.xlabel("t") class DynamicsRecovery(BaseDynamics): def __init__( self, adata=None, gene=None, u=None, s=None, use_raw=False, load_pars=None, fit_scaling=False, fit_time=True, fit_switching=True, fit_steady_states=True, fit_alpha=True, fit_connected_states=True, ): super(DynamicsRecovery, self).__init__(adata.n_obs) _layers = adata[:, gene].layers self.gene = gene self.use_raw = use_raw = use_raw or "Ms" not in _layers.keys() # extract actual data if u is None or s is None: u = ( make_dense(_layers["unspliced"]) if use_raw else make_dense(_layers["Mu"]) ) s = make_dense(_layers["spliced"]) if use_raw else make_dense(_layers["Ms"]) self.s, self.u = s, u # set weights for fitting (exclude dropouts and extreme outliers) nonzero =
np.ravel(s > 0)
numpy.ravel
import keras import sys import os import shutil # Allow relative imports when being executed as script. if __name__ == "__main__" and __package__ is None: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) import keras_retinanet_3D.bin # noqa: F401 __package__ = "keras_retinanet_3D.bin" from .. import models from ..utils.image import read_image_bgr, preprocess_image, resize_image from ..utils.visualization import draw_3d_detections_from_pose, drawdashedline, draw_detections_with_keypoints, draw_box, draw_caption # import miscellaneous modules import cv2 import numpy as np import time import scipy.io import argparse # set tf backend to allow memory to grow, instead of claiming everything import tensorflow as tf def parse_args(args): """ Parse the arguments. """ parser = argparse.ArgumentParser(description='Simple script for running the network on a directory of images.') parser.add_argument('model_path', help='Path to inference model.', type=str) parser.add_argument('image_dir', help='Path to directory of input images.', type=str) parser.add_argument('calib_dir', help='Path to directory of calibration files.', type=str) parser.add_argument('plane_params_path', help='Path to .MAT file containing road planes.', type=str) parser.add_argument('output_dir', help='Path to output directory', type=str) parser.add_argument('--kitti', help='Include to save results in KITTI format.', action='store_true') parser.add_argument('--save-images', help='Include to save result images.', action='store_true') parser.add_argument('--backbone', help='The backbone of the model to load.', default='resnet50') return parser.parse_args(args) def get_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) def load_calibration(calib_path, image_scale): """ Load inverse of camera projection matrix from file. """ cam_id = 2 with open(calib_path, 'r') as f: line = f.readlines()[cam_id] key, value = line.split(':', 1) P = np.array([float(x) for x in value.split()]).reshape((3, 4)) P = np.dot(np.array([[image_scale, 0.0, 0.0], [0.0, image_scale, 0.0], [0.0, 0.0, 1.0]]), P) P_inv = np.linalg.pinv(P) return (P, P_inv) def main(args=None): if args is None: args = sys.argv[1:] args = parse_args(args) # set the modified tf session as backend in keras keras.backend.tensorflow_backend.set_session(get_session()) # load retinanet model model = models.load_model(args.model_path, backbone_name=args.backbone) #print(model.summary()) # load all road planes plane_params = scipy.io.loadmat(args.plane_params_path)['road_planes_database'] # create necessary output directories output_dir = os.path.join(args.output_dir, os.path.basename(args.model_path)[:-3]) if os.path.isdir(output_dir): shutil.rmtree(output_dir) os.mkdir(output_dir) os.mkdir(os.path.join(output_dir, 'outputs')) os.mkdir(os.path.join(output_dir, 'outputs', 'full')) if args.kitti: os.mkdir(os.path.join(output_dir, 'outputs', 'kitti')) if args.save_images: os.mkdir(os.path.join(output_dir, 'images')) os.mkdir(os.path.join(output_dir, 'images', 'composite')) for j, fn in enumerate(os.listdir(args.calib_dir)): calib_fp = os.path.join(args.calib_dir, fn) image_fp = os.path.join(args.image_dir, fn.replace('.txt', '.png')) # load image raw_image = read_image_bgr(image_fp) # preprocess image for network image = preprocess_image(raw_image) image, scale = resize_image(image) # load calibration parameters P, P_inv = load_calibration(calib_fp, scale) # construct inputs inputs = [np.expand_dims(image, axis=0), np.expand_dims(P_inv, axis=0), np.expand_dims(plane_params, axis=0)] # process image start = time.time() # run network boxes, dimensions, scores, labels, orientations, keypoints, keyplanes, residuals = model.predict_on_batch(inputs)[:8] print("Image {}: frame rate: {:.2f}".format(j, 1.0 / (time.time() - start))) # correct for image scale boxes /= scale P = np.dot(np.array([[1.0/scale, 0.0, 0.0], [0.0, 1.0/scale, 0.0], [0.0, 0.0, 1.0]]), P) # select indices which have a score above the threshold indices = np.where(scores[0, :] > 0.05)[0] # select those scores scores = scores[0][indices] # find the order with which to sort the scores max_detections = 100 scores_sort = np.argsort(-scores)[:max_detections] # select detections boxes = boxes[0, indices[scores_sort], :] dimensions = dimensions[0, indices[scores_sort], :] scores = scores[scores_sort] labels = labels[0, indices[scores_sort]] orientations = orientations[0, indices[scores_sort]] keypoints = np.reshape(keypoints[0, indices[scores_sort], :, :], (-1, 12)) keyplanes = np.reshape(keyplanes[0, indices[scores_sort], :, :], (-1, 4)) residuals = residuals[0, indices[scores_sort]] angles = np.empty_like(dimensions) locations =
np.empty_like(dimensions)
numpy.empty_like
""" Prepare data for Part-GPNN model. Need: Node feature at different scales Edge feature for valid edges Adjacency matrix GT (parse graph GT) Edge weight (corresponds to node level) Edge label GT """ import os import sys import json import pickle import warnings from collections import defaultdict import numpy as np import skimage.io import cv2 import feature_model import metadata import torch import torch.autograd import torchvision.models import vsrl_utils as vu local = False part_ids = {'Right Shoulder': [2], 'Left Shoulder': [5], 'Knee Right': [10], 'Knee Left': [13], 'Ankle Right': [11], 'Ankle Left': [14], 'Elbow Left': [6], 'Elbow Right': [3], 'Hand Left': [7], 'Hand Right': [4], 'Head': [0], 'Hip': [8], 'Upper Body': [2,5,6,3,7,4,0,8], 'Lower Body': [10,13,11,14,8], 'Left Arm': [5,6,7], 'Right Arm': [2,3,4], 'Left Leg': [8,10,11], 'Right Leg': [8,13,14], 'Full Body': [2,5,10,13,11,14,6,3,7,4,0,8], } __PART_WEIGHT_L1 = 0.1 # hand __PART_WEIGHT_L2 = 0.3 # arm __PART_WEIGHT_L3 = 0.5 # upper body __PART_WEIGHT_L4 = 1.0 # human part_weights = {'Right Shoulder': __PART_WEIGHT_L1, 'Left Shoulder': __PART_WEIGHT_L1, 'Knee Right': __PART_WEIGHT_L1, 'Knee Left': __PART_WEIGHT_L1, 'Ankle Right': __PART_WEIGHT_L1, 'Ankle Left': __PART_WEIGHT_L1, 'Elbow Left': __PART_WEIGHT_L1, 'Elbow Right': __PART_WEIGHT_L1, 'Hand Left': __PART_WEIGHT_L1, 'Hand Right': __PART_WEIGHT_L1, 'Head': __PART_WEIGHT_L1, 'Hip': __PART_WEIGHT_L1, 'Upper Body': __PART_WEIGHT_L3, 'Lower Body': __PART_WEIGHT_L3, 'Left Arm': __PART_WEIGHT_L2, 'Right Arm': __PART_WEIGHT_L2, 'Left Leg': __PART_WEIGHT_L2, 'Right Leg': __PART_WEIGHT_L2, 'Full Body': __PART_WEIGHT_L4} part_names = list(part_ids.keys()) part_graph = {'Right Shoulder': [], 'Left Shoulder': [], 'Knee Right': [], 'Knee Left': [], 'Ankle Right': [], 'Ankle Left': [], 'Elbow Left': [], 'Elbow Right': [], 'Hand Left': [], 'Hand Right': [], 'Head': [], 'Hip': [], 'Upper Body': ['Head', 'Hip', 'Left Arm', 'Right Arm'], 'Lower Body': ['Hip', 'Left Leg', 'Right Leg'], 'Left Arm': ['Left Shoulder', 'Elbow Left', 'Hand Left'], 'Right Arm': ['Right Shoulder', 'Elbow Right', 'Hand Right'], 'Left Leg': ['Hip', 'Knee Left', 'Ankle Left'], 'Right Leg': ['Hip', 'Knee Right', 'Ankle Right'], 'Full Body': ['Upper Body', 'Lower Body'] } def get_intersection(box1, box2): return np.hstack((np.maximum(box1[:2], box2[:2]), np.minimum(box1[2:], box2[2:]))) def compute_area(box): side1 = box[2]-box[0] side2 = box[3]-box[1] if side1 > 0 and side2 > 0: return side1 * side2 else: return 0.0 def compute_iou(box1, box2): intersection_area = compute_area(get_intersection(box1, box2)) iou = intersection_area / (compute_area(box1) + compute_area(box2) - intersection_area) return iou def get_node_index(bbox, det_boxes, index_list): bbox = np.array(bbox, dtype=np.float32) max_iou = 0.5 # Use 0.5 as a threshold for evaluation max_iou_index = -1 for i_node in index_list: # check bbox overlap iou = compute_iou(bbox, det_boxes[i_node]) if iou > max_iou: max_iou = iou max_iou_index = i_node return max_iou_index def combine_box(box1, box2): return np.hstack((np.minimum(box1[:2], box2[:2]), np.maximum(box1[2:], box2[2:]))) def get_box(_box, human_boxes_all, used_human): max_iou = 0.5 best_box = None best_i = None for i, box in enumerate(human_boxes_all): if i in used_human: continue iou = compute_iou(_box, box) if iou > max_iou: max_iou = iou best_box = box best_i = i return best_i, human_boxes_all[best_i] def draw_box(box, color='blue'): x0,y0,x1,y1 = box plt.plot([x0,x1,x1,x0,x0], [y0,y0,y1,y1,y0], c=color) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) def img_to_torch(img): """ input: H x W x C img iterables with range 0-255 output: C x H x W img tensor with range 0-1, normalized """ img = np.array(img) / 255. img = (img - mean) / std if len(img.shape) == 3: img = np.expand_dims(img.transpose([2,0,1]), axis=0) elif len(img.shape) == 4: img = img.transpose([0,3,1,2]) elif len(img.shape) == 5: img = img.transpose([0,1,4,2,3]) img = torch.autograd.Variable(torch.Tensor(img)).cuda() return img meta_dir = os.path.join(os.path.dirname(__file__), '../../../data/vcoco_features') if local: img_dir = '/home/tengyu/Data/mscoco/coco' vcoco_root = '/home/tengyu/Data/mscoco/v-coco/data' save_data_path = '/home/tengyu/Documents/github/Part-GPNN/data/feature_resnet_tengyu2' else: img_dir = '/home/tengyu/dataset/mscoco/images' checkpoint_dir = '/home/tengyu/github/Part-GPNN/data/model_resnet_noisy/finetune_resnet' vcoco_root = '/home/tengyu/dataset/v-coco/data' save_data_path = '/home/tengyu/github/Part-GPNN/data/feature_resnet_tengyu2' obj_action_pair = pickle.load(open(os.path.join(os.path.dirname(__file__), 'obj_action_pairs.pkl'), 'rb')) os.makedirs(save_data_path, exist_ok=True) if not local: feature_network = feature_model.Resnet152(num_classes=len(metadata.action_classes)) feature_network.cuda() best_model_file = os.path.join(checkpoint_dir, 'model_best.pth') checkpoint = torch.load(best_model_file) for k in list(checkpoint['state_dict'].keys()): if k[:7] == 'module.': checkpoint['state_dict'][k[7:]] = checkpoint['state_dict'][k] del checkpoint['state_dict'][k] feature_network.load_state_dict(checkpoint['state_dict']) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_h, input_w = 224, 224 part_eye = np.eye(21) obj_eye =
np.eye(81)
numpy.eye
from hydroDL.post import axplot, figplot from hydroDL.new import fun from hydroDL.app import waterQuality import importlib import matplotlib.pyplot as plt from scipy.stats import gamma import numpy as np import random importlib.reload(fun) kLst = [1, 2, 5, 10, 20] # flow duration curves t = np.arange(365) fig, ax = plt.subplots(1, 1, figsize=(12, 6)) for k in kLst: q = fun.fdc(t, k) print(np.sum(q)) ax.plot(t, q, label='a={}'.format(k)) ax.legend() ax.set_title('flow duration curve') fig.show() # kate's model rLst = [0, 0.1, 0.2, 0.5, 1, 2] t = np.arange(365) fig, ax = plt.subplots(1, 1, figsize=(12, 6)) for r in rLst: ct = fun.kate(t, r) ax.plot(t, ct, label='tw={}'.format(r)) ax.legend() ax.set_title('concentration with travel time') fig.show() # prcp t =
np.arange('2000-01-01', '2005-01-01', dtype='datetime64[D]')
numpy.arange
import torch import time import numpy as np import torch import open3d as o3d from torch.utils.data import DataLoader, Dataset, ConcatDataset, random_split from .event_utils import gen_discretized_event_volume, normalize_event_volume from easydict import EasyDict from tqdm import tqdm import os import cv2 import pdb from scipy import ndimage class TrainerDataset(object): def __init__(self): super(TrainerDataset, self).__init__() def build_dataset(self): classes = ["02691156", "02828884", "02933112", "02958343", "03001627", "03211117", "03636649", "03691459", "04090263", "04256520", "04379243", "04401088", "04530566"] if self.opt.random_data: dset_all = RandomShapeNet(class_name=classes[0]) else: dset_all = EvShapeNet(class_name=classes[0], use_mask_input=self.opt.use_mask_input) train_len = int(0.9 * len(dset_all)) val_len = len(dset_all) - train_len train_dataset, val_dataset = random_split(dset_all, [train_len, val_len]) self.datasets = EasyDict() # Create Datasets self.datasets.dataset_train = train_dataset self.datasets.dataset_test = val_dataset if not self.opt.demo: # Create dataloaders self.datasets.dataloader_train = torch.utils.data.DataLoader(self.datasets.dataset_train, batch_size=self.opt.batch_size, shuffle=True, num_workers=int(self.opt.workers)) self.datasets.dataloader_test = torch.utils.data.DataLoader(self.datasets.dataset_test, batch_size=self.opt.batch_size_test, shuffle=True, num_workers=int(self.opt.workers)) self.datasets.len_dataset = len(self.datasets.dataset_train) self.datasets.len_dataset_test = len(self.datasets.dataset_test) class EvShapeNet(Dataset): def __init__(self, width=256, height=256, volume_time_slices=10, delta_t=0.01, mode='train', class_name=None, use_mask_input=False, num_views=45, meta_path='/Datasets/cwang/event_shapenet/shapenet_r2n2.txt', event_folder = '/Datasets/cwang/event_shapenet_corrected_events', gt_folder='/Datasets/cwang/event_shapenet_corrected'): self.width = width self.height = height self.volume_time_slices = volume_time_slices self.mode = mode self.class_name = class_name self.event_folder = event_folder self.gt_folder = gt_folder self.delta_t = delta_t self.use_mask_input = use_mask_input self.num_views = num_views self.paths = self.read_meta(gt_folder, meta_path, class_name=class_name) print("There are {} objects in the current dataset".format(len(self.paths))) def read_meta(self, data_folder, meta_file, class_name=None): classes = [c for c in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, c))] meta_file = open(meta_file, 'r') all_paths = [] # generate list of models for l in meta_file.readlines(): l = l.strip("\n") if class_name is None or class_name in l: split_name = l.split("/") cname = split_name[0] oname = split_name[1] model_path = os.path.join(cname, oname) # TODO: hack check if the events are generated event_path = os.path.join(self.event_folder, model_path, "events.npz") if os.path.exists(event_path): all_paths.append(model_path) return all_paths def __len__(self): return len(self.paths) def rotate(self, inputs, x, axis=[1, 2]): return ndimage.rotate(inputs, x, reshape=False, axes=axis) def __getitem__(self, index): path = self.paths[index] output = {} # find events based on image time if self.use_mask_input: # read sil masks masks = [] for i in range(45): data = np.load(os.path.join(self.gt_folder, path, "{:05}_gt.npz".format(i))) masks.append(data['sil_mask']) network_input = np.stack(masks, axis=0).astype(np.float32) else: try: event_data = dict(np.load(os.path.join(self.event_folder, path, "events.npz"))) event_volume = gen_discretized_event_volume( torch.from_numpy(event_data['x']).long(), torch.from_numpy(event_data['y']).long(), torch.from_numpy(event_data['t'].astype(np.float32)), torch.from_numpy(event_data['p']), [self.volume_time_slices*2, self.height, self.width]) network_input = normalize_event_volume(event_volume).float() except: print("Invalid Path:", path) model = o3d.io.read_triangle_mesh(os.path.join(self.gt_folder, path, "model.obj")) # sample 1000 points from model points = np.array(model.sample_points_uniformly(number_of_points=1000).points) # normalize events and convert to event volume # get sample points output = { "input_data": network_input, "points": points.astype(np.float32) } return output class RandomShapeNet(Dataset): def __init__(self, width=256, height=256, volume_time_slices=10, delta_t=0.01, mode='train', class_name=None, meta_path='/Datasets/cwang/event_shapenet/shapenet_r2n2.txt', event_folder = '/Datasets/cwang/event_shapenet_corrected_events', gt_folder='/Datasets/cwang/event_shapenet_corrected'): self.width = width self.height = height self.volume_time_slices = volume_time_slices self.mode = mode self.class_name = class_name self.event_folder = event_folder self.gt_folder = gt_folder self.delta_t = delta_t self.paths = self.read_meta(gt_folder, meta_path, class_name=class_name) print("There are {} objects in the current dataset".format(len(self.paths))) def read_meta(self, data_folder, meta_file, class_name=None): classes = [c for c in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, c))] meta_file = open(meta_file, 'r') all_paths = [] # generate list of models for l in meta_file.readlines(): l = l.strip("\n") if class_name is None or class_name in l: split_name = l.split("/") cname = split_name[0] oname = split_name[1] model_path = os.path.join(cname, oname) event_path = os.path.join(self.event_folder, model_path, "events.npz") if os.path.exists(event_path): all_paths.append(model_path) return all_paths def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] # find events based on image time model = o3d.io.read_triangle_mesh(os.path.join(self.gt_folder, path, "model.obj")) # sample 1000 points from model points = np.array(model.sample_points_uniformly(number_of_points=1000).points) # normalize events and convert to event volume event_volume =
np.ones([self.volume_time_slices*2, self.height, self.width])
numpy.ones
# Copyright 2009-2011 by <NAME>. All rights reserved. # Revisions copyright 2009-2013 by <NAME>. All rights reserved. # Revisions copyright 2013 <NAME>. All rights reserved. # # Converted by <NAME> from an older unit test copyright 2002 # by <NAME>. # # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Unit tests for the Bio.PDB module.""" from __future__ import print_function from copy import deepcopy import os import sys import tempfile import unittest import warnings from Bio._py3k import StringIO try: import numpy from numpy import dot # Missing on old PyPy's micronumpy del dot from numpy.linalg import svd, det # Missing in PyPy 2.0 numpypy from numpy.random import random except ImportError: from Bio import MissingPythonDependencyError raise MissingPythonDependencyError( "Install NumPy if you want to use Bio.PDB.") from Bio import BiopythonWarning from Bio.Seq import Seq from Bio.Alphabet import generic_protein from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder, PDBIO, Select, MMCIFParser, MMCIFIO from Bio.PDB.MMCIF2Dict import MMCIF2Dict from Bio.PDB import HSExposureCA, HSExposureCB, ExposureCN from Bio.PDB.PDBExceptions import PDBConstructionException, PDBConstructionWarning from Bio.PDB import rotmat, Vector, refmat, calc_angle, calc_dihedral, rotaxis, m2rotaxis from Bio.PDB import Residue, Atom from Bio.PDB import make_dssp_dict from Bio.PDB import DSSP from Bio.PDB.NACCESS import process_asa_data, process_rsa_data from Bio.PDB.ResidueDepth import _get_atom_radius # NB: the 'A_' prefix ensures this test case is run first class A_ExceptionTest(unittest.TestCase): """Errors and warnings while parsing of flawed PDB files. These tests must be executed because of the way Python's warnings module works -- a warning is only logged the first time it is encountered. """ def test_1_warnings(self): """Check warnings: Parse a flawed PDB file in permissive mode.""" with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always', PDBConstructionWarning) # Trigger warnings p = PDBParser(PERMISSIVE=True) p.get_structure("example", "PDB/a_structure.pdb") self.assertEqual(len(w), 14) for wrn, msg in zip(w, [ # Expected warning messages: "Used element 'N' for Atom (name=N) with given element ''", "Used element 'C' for Atom (name=CA) with given element ''", "Atom names ' CA ' and 'CA ' differ only in spaces at line 17.", "Used element 'CA' for Atom (name=CA ) with given element ''", 'Atom N defined twice in residue <Residue ARG het= resseq=2 icode= > at line 21.', 'disordered atom found with blank altloc before line 33.', "Residue (' ', 4, ' ') redefined at line 43.", "Blank altlocs in duplicate residue SER (' ', 4, ' ') at line 43.", "Residue (' ', 10, ' ') redefined at line 75.", "Residue (' ', 14, ' ') redefined at line 106.", "Residue (' ', 16, ' ') redefined at line 135.", "Residue (' ', 80, ' ') redefined at line 633.", "Residue (' ', 81, ' ') redefined at line 646.", 'Atom O defined twice in residue <Residue HOH het=W resseq=67 icode= > at line 823.' ]): self.assertIn(msg, str(wrn)) def test_2_strict(self): """Check error: Parse a flawed PDB file in strict mode.""" parser = PDBParser(PERMISSIVE=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", PDBConstructionWarning) self.assertRaises(PDBConstructionException, parser.get_structure, "example", "PDB/a_structure.pdb") self.assertEqual(len(w), 4, w) def test_3_bad_xyz(self): """Check error: Parse an entry with bad x,y,z value.""" data = "ATOM 9 N ASP A 152 21.554 34.953 27.691 1.00 19.26 N\n" parser = PDBParser(PERMISSIVE=False) s = parser.get_structure("example", StringIO(data)) data = "ATOM 9 N ASP A 152 21.ish 34.953 27.691 1.00 19.26 N\n" self.assertRaises(PDBConstructionException, parser.get_structure, "example", StringIO(data)) def test_4_occupancy(self): """Parse file with missing occupancy""" permissive = PDBParser(PERMISSIVE=True) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", PDBConstructionWarning) structure = permissive.get_structure("test", "PDB/occupancy.pdb") self.assertEqual(len(w), 3, w) atoms = structure[0]['A'][(' ', 152, ' ')] # Blank occupancy behavior set in Bio/PDB/PDBParser self.assertEqual(atoms['N'].get_occupancy(), None) self.assertEqual(atoms['CA'].get_occupancy(), 1.0) self.assertEqual(atoms['C'].get_occupancy(), 0.0) strict = PDBParser(PERMISSIVE=False) self.assertRaises(PDBConstructionException, strict.get_structure, "test", "PDB/occupancy.pdb") class HeaderTests(unittest.TestCase): """Tests for parse_pdb_header.""" def test_capsid(self): """Parse the header of a known PDB file (1A8O).""" parser = PDBParser() struct = parser.get_structure('1A8O', 'PDB/1A8O.pdb') self.assertAlmostEqual(struct.header['resolution'], 1.7) # Case-insensitive string comparisons known_strings = { 'author': 'T.R.Gamble,S.Yoo,F.F.Vajdos,<NAME>,D.K.Worthylake,H.Wang,J.P.Mccutcheon,W.I.Sundquist,C.P.Hill', 'deposition_date': '1998-03-27', 'head': 'viral protein', 'journal': 'AUTH T.R.GAMBLE,S.YOO,F.F.VAJDOS,U.K.VON SCHWEDLER,AUTH 2 D.K.WORTHYLAKE,H.WANG,J.P.MCCUTCHEON,W.I.SUNDQUIST,AUTH 3 C.P.HILLTITL STRUCTURE OF THE CARBOXYL-TERMINAL DIMERIZATIONTITL 2 DOMAIN OF THE HIV-1 CAPSID PROTEIN.REF SCIENCE V. 278 849 1997REFN ISSN 0036-8075PMID 9346481DOI 10.1126/SCIENCE.278.5339.849', 'journal_reference': 't.r.gamble,s.yoo,f.f.vajdos,u.k.von schwedler, d.k.worthylake,h.wang,j.p.mccutcheon,w.i.sundquist, c.p.hill structure of the carboxyl-terminal dimerization domain of the hiv-1 capsid protein. science v. 278 849 1997 issn 0036-8075 9346481 10.1126/science.278.5339.849 ', 'keywords': 'capsid, core protein, hiv, c-terminal domain, viral protein', 'name': ' hiv capsid c-terminal domain', 'release_date': '1998-10-14', 'structure_method': 'x-ray diffraction', } for key, expect in known_strings.items(): self.assertEqual(struct.header[key].lower(), expect.lower()) def test_fibril(self): """Parse the header of another PDB file (2BEG).""" parser = PDBParser() struct = parser.get_structure('2BEG', 'PDB/2BEG.pdb') known_strings = { 'author': 'T.Luhrs,C.Ritter,M.Adrian,D.Riek-Loher,B.Bohrmann,H.Dobeli,D.Schubert,R.Riek', 'deposition_date': '2005-10-24', 'head': 'protein fibril', 'journal': "AUTH T.LUHRS,C.RITTER,M.ADRIAN,D.RIEK-LOHER,B.BOHRMANN,AUTH 2 H.DOBELI,D.SCHUBERT,R.RIEKTITL 3D STRUCTURE OF ALZHEIMER'S AMYLOID-{BETA}(1-42)TITL 2 FIBRILS.REF PROC.NATL.ACAD.SCI.USA V. 102 17342 2005REFN ISSN 0027-8424PMID 16293696DOI 10.1073/PNAS.0506723102", 'journal_reference': "t.luhrs,c.ritter,m.adrian,d.riek-loher,b.bohrmann, h.dobeli,d.schubert,r.riek 3d structure of alzheimer's amyloid-{beta}(1-42) fibrils. proc.natl.acad.sci.usa v. 102 17342 2005 issn 0027-8424 16293696 10.1073/pnas.0506723102 ", 'keywords': "alzheimer's, fibril, protofilament, beta-sandwich, quenched hydrogen/deuterium exchange, pairwise mutagenesis, protein fibril", 'name': " 3d structure of alzheimer's abeta(1-42) fibrils", 'release_date': '2005-11-22', 'structure_method': 'solution nmr', } for key, expect in known_strings.items(): self.assertEqual(struct.header[key].lower(), expect.lower()) class ParseTest(unittest.TestCase): def setUp(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) p = PDBParser(PERMISSIVE=1) self.structure = p.get_structure("example", "PDB/a_structure.pdb") def test_c_n(self): """Extract polypeptides using C-N.""" ppbuild = PPBuilder() polypeptides = ppbuild.build_peptides(self.structure[1]) self.assertEqual(len(polypeptides), 1) pp = polypeptides[0] # Check the start and end positions self.assertEqual(pp[0].get_id()[1], 2) self.assertEqual(pp[-1].get_id()[1], 86) # Check the sequence s = pp.get_sequence() self.assertTrue(isinstance(s, Seq)) self.assertEqual(s.alphabet, generic_protein) self.assertEqual("RCGSQGGGSTCPGLRCCSIWGWCGDSEPYCGRTCENKCWSGER" "SDHRCGAAVGNPPCGQDRCCSVHGWCGGGNDYCSGGNCQYRC", str(s)) def test_ca_ca(self): """Extract polypeptides using CA-CA.""" ppbuild = CaPPBuilder() polypeptides = ppbuild.build_peptides(self.structure[1]) self.assertEqual(len(polypeptides), 1) pp = polypeptides[0] # Check the start and end positions self.assertEqual(pp[0].get_id()[1], 2) self.assertEqual(pp[-1].get_id()[1], 86) # Check the sequence s = pp.get_sequence() self.assertTrue(isinstance(s, Seq)) self.assertEqual(s.alphabet, generic_protein) self.assertEqual("RCGSQGGGSTCPGLRCCSIWGWCGDSEPYCGRTCENKCWSGER" "SDHRCGAAVGNPPCGQDRCCSVHGWCGGGNDYCSGGNCQYRC", str(s)) def test_structure(self): """Verify the structure of the parsed example PDB file.""" # Structure contains 2 models self.assertEqual(len(self.structure), 2) # --- Checking model 0 --- m0 = self.structure[0] # Model 0 contains 1 chain self.assertEqual(len(m0), 1) # Chain 'A' contains 1 residue self.assertEqual(len(m0['A']), 1) # Residue ('H_PCA', 1, ' ') contains 8 atoms. residue = m0['A'].get_list()[0] self.assertEqual(residue.get_id(), ('H_PCA', 1, ' ')) self.assertEqual(len(residue), 9) # --- Checking model 1 --- m1 = self.structure[1] # Model 1 contains 3 chains self.assertEqual(len(m1), 3) # Deconstruct this data structure to check each chain chain_data = [ # chain_id, chain_len, [(residue_id, residue_len), ...] ('A', 86, [((' ', 0, ' '), 1), ((' ', 2, ' '), 11), ((' ', 3, ' '), 6, 1), # disordered ((' ', 4, ' '), 4), ((' ', 5, ' '), 6), ((' ', 6, ' '), 9), ((' ', 7, ' '), 4), ((' ', 8, ' '), 4), ((' ', 9, ' '), 4), ((' ', 10, ' '), 6, ['GLY', 'SER']), # point mut ((' ', 11, ' '), 7), ((' ', 12, ' '), 6), ((' ', 13, ' '), 7), ((' ', 14, ' '), 4, ['ALA', 'GLY']), # point mut ((' ', 15, ' '), 8, 3), # disordered ((' ', 16, ' '), 11, ['ARG', 'TRP']), # point mut ((' ', 17, ' '), 6), ((' ', 18, ' '), 6), ((' ', 19, ' '), 6), ((' ', 20, ' '), 8), ((' ', 21, ' '), 14), ((' ', 22, ' '), 4), ((' ', 23, ' '), 14), ((' ', 24, ' '), 6), ((' ', 25, ' '), 4), ((' ', 26, ' '), 8), ((' ', 27, ' '), 6), ((' ', 28, ' '), 9, 5), # disordered ((' ', 29, ' '), 7), ((' ', 30, ' '), 12), ((' ', 31, ' '), 6), ((' ', 32, ' '), 4), ((' ', 33, ' '), 11), ((' ', 34, ' '), 7), ((' ', 35, ' '), 6), ((' ', 36, ' '), 9), ((' ', 37, ' '), 8), ((' ', 38, ' '), 9), ((' ', 39, ' '), 6), ((' ', 40, ' '), 14), ((' ', 41, ' '), 6), ((' ', 42, ' '), 4), ((' ', 43, ' '), 9), ((' ', 44, ' '), 11), ((' ', 45, ' '), 6, 1), # disordered ((' ', 46, ' '), 8), ((' ', 47, ' '), 10), ((' ', 48, ' '), 11), ((' ', 49, ' '), 6), ((' ', 50, ' '), 4), ((' ', 51, ' '), 5), ((' ', 52, ' '), 5), ((' ', 53, ' '), 7), ((' ', 54, ' '), 4), ((' ', 55, ' '), 8), ((' ', 56, ' '), 7), ((' ', 57, ' '), 7), ((' ', 58, ' '), 6), ((' ', 59, ' '), 4), ((' ', 60, ' '), 9), ((' ', 61, ' '), 8), ((' ', 62, ' '), 11), ((' ', 63, ' '), 6), ((' ', 64, ' '), 6), ((' ', 65, ' '), 6), ((' ', 66, ' '), 7), ((' ', 67, ' '), 10), ((' ', 68, ' '), 4), ((' ', 69, ' '), 14), ((' ', 70, ' '), 6), ((' ', 71, ' '), 4), ((' ', 72, ' '), 4), ((' ', 73, ' '), 4), ((' ', 74, ' '), 8, 3), # disordered ((' ', 75, ' '), 8), ((' ', 76, ' '), 12), ((' ', 77, ' '), 6), ((' ', 78, ' '), 6), ((' ', 79, ' '), 4, 4), # disordered ((' ', 80, ' '), 4, ['GLY', 'SER']), # point mut ((' ', 81, ' '), 8, ['ASN', 'LYS']), # point mut ((' ', 82, ' '), 6), ((' ', 83, ' '), 9), ((' ', 84, ' '), 12), ((' ', 85, ' '), 11), ((' ', 86, ' '), 6), ]), ('B', 5, [(('W', 0, ' '), 1), (('H_NAG', 1, ' '), 14), (('H_NAG', 2, ' '), 14), (('H_NAG', 4, ' '), 14), (('H_NAG', 3, ' '), 14), ]), (' ', 76, [(('W', 1, ' '), 1), (('W', 2, ' '), 1), (('W', 3, ' '), 1), (('W', 4, ' '), 1), (('W', 5, ' '), 1), (('W', 6, ' '), 1), (('W', 7, ' '), 1), (('W', 8, ' '), 1), (('W', 9, ' '), 1), (('W', 10, ' '), 1), (('W', 11, ' '), 1), (('W', 12, ' '), 1), (('W', 13, ' '), 1), (('W', 14, ' '), 1), (('W', 15, ' '), 1), (('W', 16, ' '), 1), (('W', 17, ' '), 1), (('W', 18, ' '), 1), (('W', 19, ' '), 1), (('W', 20, ' '), 1), (('W', 21, ' '), 1), (('W', 22, ' '), 1), (('W', 23, ' '), 1), (('W', 24, ' '), 1), (('W', 25, ' '), 1), (('W', 26, ' '), 1), (('W', 27, ' '), 1), (('W', 28, ' '), 1), (('W', 29, ' '), 1), (('W', 30, ' '), 1), (('W', 31, ' '), 1), (('W', 32, ' '), 1), (('W', 33, ' '), 1), (('W', 34, ' '), 1), (('W', 35, ' '), 1), (('W', 36, ' '), 1), (('W', 37, ' '), 1), (('W', 38, ' '), 1), (('W', 39, ' '), 1), (('W', 40, ' '), 1), (('W', 41, ' '), 1), (('W', 42, ' '), 1), (('W', 43, ' '), 1), (('W', 44, ' '), 1), (('W', 45, ' '), 1), (('W', 46, ' '), 1), (('W', 47, ' '), 1), (('W', 48, ' '), 1), (('W', 49, ' '), 1), (('W', 50, ' '), 1), (('W', 51, ' '), 1), (('W', 52, ' '), 1), (('W', 53, ' '), 1), (('W', 54, ' '), 1), (('W', 55, ' '), 1), (('W', 56, ' '), 1), (('W', 57, ' '), 1), (('W', 58, ' '), 1), (('W', 59, ' '), 1), (('W', 60, ' '), 1), (('W', 61, ' '), 1), (('W', 62, ' '), 1), (('W', 63, ' '), 1), (('W', 64, ' '), 1), (('W', 65, ' '), 1), (('W', 66, ' '), 1), (('W', 67, ' '), 1), (('W', 68, ' '), 1), (('W', 69, ' '), 1), (('W', 70, ' '), 1), (('W', 71, ' '), 1), (('W', 72, ' '), 1), (('W', 73, ' '), 1), (('W', 74, ' '), 1), (('W', 75, ' '), 1), (('W', 77, ' '), 1), ]) ] for c_idx, chn in enumerate(chain_data): # Check chain ID and length chain = m1.get_list()[c_idx] self.assertEqual(chain.get_id(), chn[0]) self.assertEqual(len(chain), chn[1]) for r_idx, res in enumerate(chn[2]): residue = chain.get_list()[r_idx] # Check residue ID and atom count self.assertEqual(residue.get_id(), res[0]) self.assertEqual(len(residue), res[1]) disorder_lvl = residue.is_disordered() if disorder_lvl == 1: # Check the number of disordered atoms disordered_count = sum(1 for atom in residue if atom.is_disordered()) if disordered_count: self.assertEqual(disordered_count, res[2]) elif disorder_lvl == 2: # Point mutation -- check residue names self.assertEqual(residue.disordered_get_id_list(), res[2]) def test_details(self): """Verify details of the parsed example PDB file.""" structure = self.structure self.assertEqual(len(structure), 2) # First model model = structure[0] self.assertEqual(model.id, 0) self.assertEqual(model.level, "M") self.assertEqual(len(model), 1) chain = model["A"] self.assertEqual(chain.id, "A") self.assertEqual(chain.level, "C") self.assertEqual(len(chain), 1) self.assertEqual(" ".join(residue.resname for residue in chain), "PCA") self.assertEqual(" ".join(atom.name for atom in chain.get_atoms()), "N CA CB CG DA OE C O CA ") self.assertEqual(" ".join(atom.element for atom in chain.get_atoms()), "N C C C D O C O CA") # Second model model = structure[1] self.assertEqual(model.id, 1) self.assertEqual(model.level, "M") self.assertEqual(len(model), 3) chain = model["A"] self.assertEqual(chain.id, "A") self.assertEqual(chain.level, "C") self.assertEqual(len(chain), 86) self.assertEqual(" ".join(residue.resname for residue in chain), "CYS ARG CYS GLY SER GLN GLY GLY GLY SER THR CYS " "PRO GLY LEU ARG CYS CYS SER ILE TRP GLY TRP CYS " "GLY ASP SER GLU PRO TYR CYS GLY ARG THR CYS GLU " "ASN LYS CYS TRP SER GLY GLU ARG SER ASP HIS ARG " "CYS GLY ALA ALA VAL GLY ASN PRO PRO CYS GLY GLN " "ASP ARG CYS CYS SER VAL HIS GLY TRP CYS GLY GLY " "GLY ASN ASP TYR CYS SER GLY GLY ASN CYS GLN TYR " "ARG CYS") self.assertEqual(" ".join(atom.name for atom in chain.get_atoms()), "C N CA C O CB CG CD NE CZ NH1 NH2 N CA C O CB SG N " "CA C O N CA C O CB OG N CA C O CB CG CD OE1 NE2 N CA " "C O N CA C O N CA C O N CA C O CB OG N CA C O CB OG1 " "CG2 N CA C O CB SG N CA C O CB CG CD N CA C O N CA C " "O CB CG CD1 CD2 N CA C O CB CG CD NE CZ NH1 NH2 N CA " "C O CB SG N CA C O CB SG N CA C O CB OG N CA C O CB " "CG1 CG2 CD1 N CA C O CB CG CD1 CD2 NE1 CE2 CE3 CZ2 " "CZ3 CH2 N CA C O N CA C O CB CG CD1 CD2 NE1 CE2 CE3 " "CZ2 CZ3 CH2 N CA C O CB SG N CA C O N CA C O CB CG " "OD1 OD2 N CA C O CB OG N CA C O CB CG CD OE1 OE2 N " "CA C O CB CG CD N CA C O CB CG CD1 CD2 CE1 CE2 CZ OH " "N CA C O CB SG N CA C O N CA C O CB CG CD NE CZ NH1 " "NH2 N CA C O CB OG1 CG2 N CA C O CB SG N CA C O CB " "CG CD OE1 OE2 N CA C O CB CG OD1 ND2 N CA C O CB CG " "CD CE NZ N CA C O CB SG N CA C O CB CG CD1 CD2 NE1 " "CE2 CE3 CZ2 CZ3 CH2 N CA C O CB OG N CA C O N CA C " "O CB CG CD OE1 OE2 N CA C O CB CG CD NE CZ NH1 NH2 " "N CA C O CB OG N CA C O CB CG OD1 OD2 N CA C O CB " "CG ND1 CD2 CE1 NE2 N CA C O CB CG CD NE CZ NH1 NH2 " "N CA C O CB SG N CA C O N CA C O CB N CA C O CB N " "CA C O CB CG1 CG2 N CA C O N CA C O CB CG OD1 ND2 " "N CA C O CB CG CD N CA C O CB CG CD N CA C O CB SG " "N CA C O N CA C O CB CG CD OE1 NE2 N CA C O CB CG " "OD1 OD2 N CA C O CB CG CD NE CZ NH1 NH2 N CA C O CB " "SG N CA C O CB SG N CA C O CB OG N CA C O CB CG1 CG2 " "N CA C O CB CG ND1 CD2 CE1 NE2 N CA C O N CA C O CB " "CG CD1 CD2 NE1 CE2 CE3 CZ2 CZ3 CH2 N CA C O CB SG N " "CA C O N CA C O N CA C O CA N C O CB CG OD1 ND2 N CA " "C O CB CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 CE2 CZ " "OH N CA C O CB SG N CA C O CB OG N CA C O N CA C O N " "CA C O CB CG OD1 ND2 N CA C O CB SG N CA C O CB CG " "CD OE1 NE2 N CA C O CB CG CD1 CD2 CE1 CE2 CZ OH N CA " "C O CB CG CD NE CZ NH1 NH2 N CA C O CB SG") self.assertEqual(" ".join(atom.element for atom in chain.get_atoms()), "C N C C O C C C N C N N N C C O C S N C C O N C C O " "C O N C C O C C C O N N C C O N C C O N C C O N C C " "O C O N C C O C O C N C C O C S N C C O C C C N C C " "O N C C O C C C C N C C O C C C N C N N N C C O C S " "N C C O C S N C C O C O N C C O C C C C N C C O C C " "C C N C C C C C N C C O N C C O C C C C N C C C C C " "N C C O C S N C C O N C C O C C O O N C C O C O N C " "C O C C C O O N C C O C C C N C C O C C C C C C C O " "N C C O C S N C C O N C C O C C C N C N N N C C O C " "O C N C C O C S N C C O C C C O O N C C O C C O N N " "C C O C C C C N N C C O C S N C C O C C C C N C C C " "C C N C C O C O N C C O N C C O C C C O O N C C O C " "C C N C N N N C C O C O N C C O C C O O N C C O C C " "N C C N N C C O C C C N C N N N C C O C S N C C O N " "C C O C N C C O C N C C O C C C N C C O N C C O C C " "O N N C C O C C C N C C O C C C N C C O C S N C C O " "N C C O C C C O N N C C O C C O O N C C O C C C N C " "N N N C C O C S N C C O C S N C C O C O N C C O C C " "C N C C O C C N C C N N C C O N C C O C C C C N C C " "C C C N C C O C S N C C O N C C O N C C O C N C O C " "C O N N C C O C C O O N C C O C C C C C C C O N C C " "O C S N C C O C O N C C O N C C O N C C O C C O N N " "C C O C S N C C O C C C O N N C C O C C C C C C C O " "N C C O C C C N C N N N C C O C S") def test_pdbio_write_truncated(self): """Test parsing of truncated lines.""" io = PDBIO() struct = self.structure # Write to temp file io.set_structure(struct) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) # Check if there are lines besides 'ATOM', 'TER' and 'END' with open(filename, 'rU') as handle: record_set = set(l[0:6] for l in handle) record_set -= set(('ATOM ', 'HETATM', 'MODEL ', 'ENDMDL', 'TER\n', 'TER ', 'END\n', 'END ')) self.assertEqual(record_set, set()) finally: os.remove(filename) # Tests for sorting methods def test_comparison_entities(self): """Test comparing and sorting the several SMCRA objects""" struct = self.structure # Sorting (<, >, <=, <=) # Chains (same code as models) model = struct[1] chains = [c.id for c in sorted(model)] self.assertEqual(chains, ['A', 'B', ' ']) # Residues residues = [r.id[1] for r in sorted(struct[1]['B'])] self.assertEqual(residues, [1, 2, 3, 4, 0]) # Atoms for residue in struct.get_residues(): old = [a.name for a in residue] new = [a.name for a in sorted(residue)] special = [a for a in ('N', 'CA', 'C', 'O') if a in old] len_special = len(special) # Placed N, CA, C, O first? self.assertEqual(new[:len_special], special, "Sorted residue did not place N, CA, C, O first: %s" % new) # Placed everyone else alphabetically? self.assertEqual(new[len_special:], sorted(new[len_special:]), "After N, CA, C, O order Should be alphabetical: %s" % new) # DisorderedResidue residues = [r.id[1] for r in sorted(struct[1]['A'])][79:81] self.assertEqual(residues, [80, 81]) # DisorderedAtom atoms = [a.altloc for a in sorted(struct[1]['A'][74]['OD1'])] self.assertEqual(atoms, ['A', 'B']) # Comparisons self.assertTrue(model == model) # __eq__ same type self.assertFalse(struct[0] == struct[1]) self.assertFalse(struct[0] == []) # __eq__ diff. types self.assertFalse(struct == model) # In Py2 this will be True/False, in Py3 it will raise a TypeError. try: self.assertTrue(struct > model) # __gt__ diff. types except TypeError: pass try: self.assertFalse(struct >= []) # __le__ diff. types except TypeError: pass def test_deepcopy_of_structure_with_disorder(self): """Test deepcopy of a structure with disordered atoms""" structure = deepcopy(self.structure) class ParseReal(unittest.TestCase): """Testing with real PDB files.""" def test_empty(self): """Parse an empty file.""" parser = PDBParser() filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: struct = parser.get_structure('MT', filename) # Structure has no children (models) self.assertFalse(len(struct)) finally: os.remove(filename) def test_residue_sort(self): """Sorting atoms in residues.""" parser = PDBParser(PERMISSIVE=False) structure = parser.get_structure("example", "PDB/1A8O.pdb") for residue in structure.get_residues(): old = [a.name for a in residue] new = [a.name for a in sorted(residue)] special = [] for a in ['N', 'CA', 'C', 'O']: if a in old: special.append(a) special_len = len(special) self.assertEqual(new[0:special_len], special, "Sorted residue did not place N, CA, C, O first: %s" % new) self.assertEqual(new[special_len:], sorted(new[special_len:]), "After N, CA, C, O should be alphabet: %s" % new) def test_c_n(self): """Extract polypeptides from 1A80.""" parser = PDBParser(PERMISSIVE=False) structure = parser.get_structure("example", "PDB/1A8O.pdb") self.assertEqual(len(structure), 1) for ppbuild in [PPBuilder(), CaPPBuilder()]: # ========================================================== # First try allowing non-standard amino acids, polypeptides = ppbuild.build_peptides(structure[0], False) self.assertEqual(len(polypeptides), 1) pp = polypeptides[0] # Check the start and end positions self.assertEqual(pp[0].get_id()[1], 151) self.assertEqual(pp[-1].get_id()[1], 220) # Check the sequence s = pp.get_sequence() self.assertTrue(isinstance(s, Seq)) self.assertEqual(s.alphabet, generic_protein) # Here non-standard MSE are shown as M self.assertEqual("MDIRQGPKEPFRDYVDRFYKTLRAEQASQEVKNWMTETLLVQ" "NANPDCKTILKALGPGATLEEMMTACQG", str(s)) # ========================================================== # Now try strict version with only standard amino acids # Should ignore MSE 151 at start, and then break the chain # at MSE 185, and MSE 214,215 polypeptides = ppbuild.build_peptides(structure[0], True) self.assertEqual(len(polypeptides), 3) # First fragment pp = polypeptides[0] self.assertEqual(pp[0].get_id()[1], 152) self.assertEqual(pp[-1].get_id()[1], 184) s = pp.get_sequence() self.assertTrue(isinstance(s, Seq)) self.assertEqual(s.alphabet, generic_protein) self.assertEqual("DIRQGPKEPFRDYVDRFYKTLRAEQASQEVKNW", str(s)) # Second fragment pp = polypeptides[1] self.assertEqual(pp[0].get_id()[1], 186) self.assertEqual(pp[-1].get_id()[1], 213) s = pp.get_sequence() self.assertTrue(isinstance(s, Seq)) self.assertEqual(s.alphabet, generic_protein) self.assertEqual("TETLLVQNANPDCKTILKALGPGATLEE", str(s)) # Third fragment pp = polypeptides[2] self.assertEqual(pp[0].get_id()[1], 216) self.assertEqual(pp[-1].get_id()[1], 220) s = pp.get_sequence() self.assertTrue(isinstance(s, Seq)) self.assertEqual(s.alphabet, generic_protein) self.assertEqual("TACQG", str(s)) def test_strict(self): """Parse 1A8O.pdb file in strict mode.""" parser = PDBParser(PERMISSIVE=False) structure = parser.get_structure("example", "PDB/1A8O.pdb") self.assertEqual(len(structure), 1) model = structure[0] self.assertEqual(model.id, 0) self.assertEqual(model.level, "M") self.assertEqual(len(model), 1) chain = model["A"] self.assertEqual(chain.id, "A") self.assertEqual(chain.level, "C") self.assertEqual(len(chain), 158) self.assertEqual(" ".join(residue.resname for residue in chain), "MSE ASP ILE ARG GLN GLY PRO LYS GLU PRO PHE ARG " "ASP TYR VAL ASP ARG PHE TYR LYS THR LEU ARG ALA " "GLU GLN ALA SER GLN GLU VAL LYS ASN TRP MSE THR " "GLU THR LEU LEU VAL GLN ASN ALA ASN PRO ASP CYS " "LYS THR ILE LEU LYS ALA LEU GLY PRO GLY ALA THR " "LEU GLU GLU MSE MSE THR ALA CYS GLN GLY HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH " "HOH HOH") self.assertEqual(" ".join(atom.name for atom in chain.get_atoms()), "N CA C O CB CG SE CE N CA C O CB CG OD1 OD2 N CA " "C O CB CG1 CG2 CD1 N CA C O CB CG CD NE CZ NH1 " "NH2 N CA C O CB CG CD OE1 NE2 N CA C O N CA C O " "CB CG CD N CA C O CB CG CD CE NZ N CA C O CB CG " "CD OE1 OE2 N CA C O CB CG CD N CA C O CB CG CD1 " "CD2 CE1 CE2 CZ N CA C O CB CG CD NE CZ NH1 NH2 N " "CA C O CB CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 " "CE2 CZ OH N CA C O CB CG1 CG2 N CA C O CB CG OD1 " "OD2 N CA C O CB CG CD NE CZ NH1 NH2 N CA C O CB " "CG CD1 CD2 CE1 CE2 CZ N CA C O CB CG CD1 CD2 CE1 " "CE2 CZ OH N CA C O CB CG CD CE NZ N CA C O CB " "OG1 CG2 N CA C O CB CG CD1 CD2 N CA C O CB CG CD " "NE CZ NH1 NH2 N CA C O CB N CA C O CB CG CD OE1 " "OE2 N CA C O CB CG CD OE1 NE2 N CA C O CB N CA C " "O CB OG N CA C O CB CG CD OE1 NE2 N CA C O CB CG " "CD OE1 OE2 N CA C O CB CG1 CG2 N CA C O CB CG CD " "CE NZ N CA C O CB CG OD1 ND2 N CA C O CB CG CD1 " "CD2 NE1 CE2 CE3 CZ2 CZ3 CH2 N CA C O CB CG SE CE " "N CA C O CB OG1 CG2 N CA C O CB CG CD OE1 OE2 N " "CA C O CB OG1 CG2 N CA C O CB CG CD1 CD2 N CA C " "O CB CG CD1 CD2 N CA C O CB CG1 CG2 N CA C O CB " "CG CD OE1 NE2 N CA C O CB CG OD1 ND2 N CA C O CB " "N CA C O CB CG OD1 ND2 N CA C O CB CG CD N CA C " "O CB CG OD1 OD2 N CA C O CB SG N CA C O CB CG CD " "CE NZ N CA C O CB OG1 CG2 N CA C O CB CG1 CG2 " "CD1 N CA C O CB CG CD1 CD2 N CA C O CB CG CD CE " "NZ N CA C O CB N CA C O CB CG CD1 CD2 N CA C O N " "CA C O CB CG CD N CA C O N CA C O CB N CA C O CB " "OG1 CG2 N CA C O CB CG CD1 CD2 N CA C O CB CG CD " "OE1 OE2 N CA C O CB CG CD OE1 OE2 N CA C O CB CG " "SE CE N CA C O CB CG SE CE N CA C O CB OG1 CG2 N " "CA C O CB N CA C O CB SG N CA C O CB CG CD OE1 " "NE2 N CA C O OXT O O O O O O O O O O O O O O O O " "O O O O O O O O O O O O O O O O O O O O O O O O " "O O O O O O O O O O O O O O O O O O O O O O O O " "O O O O O O O O O O O O O O O O O O O O O O O O") self.assertEqual(" ".join(atom.element for atom in chain.get_atoms()), "N C C O C C SE C N C C O C C O O N C C O C C C C " "N C C O C C C N C N N N C C O C C C O N N C C O " "N C C O C C C N C C O C C C C N N C C O C C C O " "O N C C O C C C N C C O C C C C C C C N C C O C " "C C N C N N N C C O C C O O N C C O C C C C C C " "C O N C C O C C C N C C O C C O O N C C O C C C " "N C N N N C C O C C C C C C C N C C O C C C C C " "C C O N C C O C C C C N N C C O C O C N C C O C " "C C C N C C O C C C N C N N N C C O C N C C O C " "C C O O N C C O C C C O N N C C O C N C C O C O " "N C C O C C C O N N C C O C C C O O N C C O C C " "C N C C O C C C C N N C C O C C O N N C C O C C " "C C N C C C C C N C C O C C SE C N C C O C O C N " "C C O C C C O O N C C O C O C N C C O C C C C N " "C C O C C C C N C C O C C C N C C O C C C O N N " "C C O C C O N N C C O C N C C O C C O N N C C O " "C C C N C C O C C O O N C C O C S N C C O C C C " "C N N C C O C O C N C C O C C C C N C C O C C C " "C N C C O C C C C N N C C O C N C C O C C C C N " "C C O N C C O C C C N C C O N C C O C N C C O C " "O C N C C O C C C C N C C O C C C O O N C C O C " "C C O O N C C O C C SE C N C C O C C SE C N C C " "O C O C N C C O C N C C O C S N C C O C C C O N " "N C C O O O O O O O O O O O O O O O O O O O O O " "O O O O O O O O O O O O O O O O O O O O O O O O " "O O O O O O O O O O O O O O O O O O O O O O O O " "O O O O O O O O O O O O O O O O O O O O O") def test_model_numbering(self): """Preserve model serial numbers during I/O.""" def confirm_numbering(struct): self.assertEqual(len(struct), 3) for idx, model in enumerate(struct): self.assertEqual(model.serial_num, idx + 1) self.assertEqual(model.serial_num, model.id + 1) def confirm_single_end(fname): """Ensure there is only one END statement in multi-model files.""" with open(fname) as handle: end_stment = [] for iline, line in enumerate(handle): if line.strip() == 'END': end_stment.append((line, iline)) self.assertEqual(len(end_stment), 1) # Only one? self.assertEqual(end_stment[0][1], iline) # Last line of the file? parser = PDBParser(QUIET=1) struct1 = parser.get_structure("1lcd", "PDB/1LCD.pdb") confirm_numbering(struct1) # Round trip: serialize and parse again io = PDBIO() io.set_structure(struct1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct2 = parser.get_structure("1lcd", filename) confirm_numbering(struct2) confirm_single_end(filename) finally: os.remove(filename) class WriteTest(unittest.TestCase): def setUp(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) self.parser = PDBParser(PERMISSIVE=1) self.mmcif_parser = MMCIFParser() self.structure = self.parser.get_structure("example", "PDB/1A8O.pdb") self.mmcif_file = "PDB/1A8O.cif" self.mmcif_multimodel_pdb_file = "PDB/1SSU_mod.pdb" self.mmcif_multimodel_mmcif_file = "PDB/1SSU_mod.cif" def test_pdbio_write_structure(self): """Write a full structure using PDBIO.""" io = PDBIO() struct1 = self.structure # Write full model to temp file io.set_structure(struct1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct2 = self.parser.get_structure("1a8o", filename) nresidues = len(list(struct2.get_residues())) self.assertEqual(len(struct2), 1) self.assertEqual(nresidues, 158) finally: os.remove(filename) def test_pdbio_write_residue(self): """Write a single residue using PDBIO""" io = PDBIO() struct1 = self.structure residue1 = list(struct1.get_residues())[0] # Write full model to temp file io.set_structure(residue1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct2 = self.parser.get_structure("1a8o", filename) nresidues = len(list(struct2.get_residues())) self.assertEqual(nresidues, 1) finally: os.remove(filename) def test_pdbio_write_custom_residue(self): """Write a chainless residue using PDBIO.""" io = PDBIO() res = Residue.Residue((' ', 1, ' '), 'DUM', '') atm = Atom.Atom('CA', [0.1, 0.1, 0.1], 1.0, 1.0, ' ', 'CA', 1, 'C') res.add(atm) # Write full model to temp file io.set_structure(res) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct2 = self.parser.get_structure("res", filename) latoms = list(struct2.get_atoms()) self.assertEqual(len(latoms), 1) self.assertEqual(latoms[0].name, 'CA') self.assertEqual(latoms[0].parent.resname, 'DUM') self.assertEqual(latoms[0].parent.parent.id, 'A') finally: os.remove(filename) def test_pdbio_select(self): """Write a selection of the structure using a Select subclass.""" # Selection class to filter all alpha carbons class CAonly(Select): """Accepts only CA residues.""" def accept_atom(self, atom): if atom.name == "CA" and atom.element == "C": return 1 io = PDBIO() struct1 = self.structure # Write to temp file io.set_structure(struct1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename, CAonly()) struct2 = self.parser.get_structure("1a8o", filename) nresidues = len(list(struct2.get_residues())) self.assertEqual(nresidues, 70) finally: os.remove(filename) def test_pdbio_missing_occupancy(self): """Write PDB file with missing occupancy.""" io = PDBIO() with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) structure = self.parser.get_structure("test", "PDB/occupancy.pdb") io.set_structure(structure) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", BiopythonWarning) io.save(filename) self.assertEqual(len(w), 1, w) with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) struct2 = self.parser.get_structure("test", filename) atoms = struct2[0]['A'][(' ', 152, ' ')] self.assertEqual(atoms['N'].get_occupancy(), None) finally: os.remove(filename) def test_mmcifio_write_structure(self): """Write a full structure using MMCIFIO.""" io = MMCIFIO() struct1 = self.structure # Write full model to temp file io.set_structure(struct1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct2 = self.mmcif_parser.get_structure("1a8o", filename) nresidues = len(list(struct2.get_residues())) self.assertEqual(len(struct2), 1) self.assertEqual(nresidues, 158) finally: os.remove(filename) def test_mmcifio_write_residue(self): """Write a single residue using MMCIFIO.""" io = MMCIFIO() struct1 = self.structure residue1 = list(struct1.get_residues())[0] # Write full model to temp file io.set_structure(residue1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct2 = self.mmcif_parser.get_structure("1a8o", filename) nresidues = len(list(struct2.get_residues())) self.assertEqual(nresidues, 1) finally: os.remove(filename) def test_mmcifio_select(self): """Write a selection of the structure using a Select subclass.""" # Selection class to filter all alpha carbons class CAonly(Select): """Accepts only CA residues.""" def accept_atom(self, atom): if atom.name == "CA" and atom.element == "C": return 1 io = MMCIFIO() struct1 = self.structure # Write to temp file io.set_structure(struct1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename, CAonly()) struct2 = self.mmcif_parser.get_structure("1a8o", filename) nresidues = len(list(struct2.get_residues())) self.assertEqual(nresidues, 70) finally: os.remove(filename) def test_mmcifio_write_dict(self): """Write an mmCIF dictionary out, read it in and compare them.""" d1 = MMCIF2Dict(self.mmcif_file) io = MMCIFIO() # Write to temp file io.set_dict(d1) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) d2 = MMCIF2Dict(filename) k1 = sorted(d1.keys()) k2 = sorted(d2.keys()) self.assertEqual(k1, k2) for key in k1: self.assertEqual(d1[key], d2[key]) finally: os.remove(filename) def test_mmcifio_multimodel(self): """Write a multi-model, multi-chain mmCIF file.""" pdb_struct = self.parser.get_structure("1SSU_mod_pdb", self.mmcif_multimodel_pdb_file) mmcif_struct = self.mmcif_parser.get_structure("1SSU_mod_mmcif", self.mmcif_multimodel_mmcif_file) io = MMCIFIO() for struct in [pdb_struct, mmcif_struct]: io.set_structure(struct) filenumber, filename = tempfile.mkstemp() os.close(filenumber) try: io.save(filename) struct_in = self.mmcif_parser.get_structure("1SSU_mod_in", filename) self.assertEqual(len(struct_in), 2) self.assertEqual(len(struct_in[1]), 2) self.assertEqual(round(float(struct_in[1]["B"][1]["N"].get_coord()[0]), 3), 6.259) finally: os.remove(filename) class Exposure(unittest.TestCase): """Testing Bio.PDB.HSExposure.""" def setUp(self): pdb_filename = "PDB/a_structure.pdb" with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) structure = PDBParser(PERMISSIVE=True).get_structure('X', pdb_filename) self.model = structure[1] # Look at first chain only a_residues = list(self.model["A"].child_list) self.assertEqual(86, len(a_residues)) self.assertEqual(a_residues[0].get_resname(), "CYS") self.assertEqual(a_residues[1].get_resname(), "ARG") self.assertEqual(a_residues[2].get_resname(), "CYS") self.assertEqual(a_residues[3].get_resname(), "GLY") # ... self.assertEqual(a_residues[-3].get_resname(), "TYR") self.assertEqual(a_residues[-2].get_resname(), "ARG") self.assertEqual(a_residues[-1].get_resname(), "CYS") self.a_residues = a_residues self.radius = 13.0 def test_HSExposureCA(self): """HSExposureCA.""" hse = HSExposureCA(self.model, self.radius) residues = self.a_residues self.assertEqual(0, len(residues[0].xtra)) self.assertEqual(0, len(residues[1].xtra)) self.assertEqual(3, len(residues[2].xtra)) self.assertAlmostEqual(0.81250973133184456, residues[2].xtra["EXP_CB_PCB_ANGLE"]) self.assertEqual(14, residues[2].xtra["EXP_HSE_A_D"]) self.assertEqual(14, residues[2].xtra["EXP_HSE_A_U"]) self.assertEqual(3, len(residues[3].xtra)) self.assertAlmostEqual(1.3383737, residues[3].xtra["EXP_CB_PCB_ANGLE"]) self.assertEqual(13, residues[3].xtra["EXP_HSE_A_D"]) self.assertEqual(16, residues[3].xtra["EXP_HSE_A_U"]) # ... self.assertEqual(3, len(residues[-2].xtra)) self.assertAlmostEqual(0.77124014456278489, residues[-2].xtra["EXP_CB_PCB_ANGLE"]) self.assertEqual(24, residues[-2].xtra["EXP_HSE_A_D"]) self.assertEqual(24, residues[-2].xtra["EXP_HSE_A_U"]) self.assertEqual(0, len(residues[-1].xtra)) def test_HSExposureCB(self): """HSExposureCB.""" hse = HSExposureCB(self.model, self.radius) residues = self.a_residues self.assertEqual(0, len(residues[0].xtra)) self.assertEqual(2, len(residues[1].xtra)) self.assertEqual(20, residues[1].xtra["EXP_HSE_B_D"]) self.assertEqual(5, residues[1].xtra["EXP_HSE_B_U"]) self.assertEqual(2, len(residues[2].xtra)) self.assertEqual(10, residues[2].xtra["EXP_HSE_B_D"]) self.assertEqual(18, residues[2].xtra["EXP_HSE_B_U"]) self.assertEqual(2, len(residues[3].xtra)) self.assertEqual(7, residues[3].xtra["EXP_HSE_B_D"]) self.assertEqual(22, residues[3].xtra["EXP_HSE_B_U"]) # ... self.assertEqual(2, len(residues[-2].xtra)) self.assertEqual(14, residues[-2].xtra["EXP_HSE_B_D"]) self.assertEqual(34, residues[-2].xtra["EXP_HSE_B_U"]) self.assertEqual(2, len(residues[-1].xtra)) self.assertEqual(23, residues[-1].xtra["EXP_HSE_B_D"]) self.assertEqual(15, residues[-1].xtra["EXP_HSE_B_U"]) def test_ExposureCN(self): """HSExposureCN.""" hse = ExposureCN(self.model, self.radius) residues = self.a_residues self.assertEqual(0, len(residues[0].xtra)) self.assertEqual(1, len(residues[1].xtra)) self.assertEqual(25, residues[1].xtra["EXP_CN"]) self.assertEqual(1, len(residues[2].xtra)) self.assertEqual(28, residues[2].xtra["EXP_CN"]) self.assertEqual(1, len(residues[3].xtra)) self.assertEqual(29, residues[3].xtra["EXP_CN"]) # ... self.assertEqual(1, len(residues[-2].xtra)) self.assertEqual(48, residues[-2].xtra["EXP_CN"]) self.assertEqual(1, len(residues[-1].xtra)) self.assertEqual(38, residues[-1].xtra["EXP_CN"]) class Atom_Element(unittest.TestCase): """induces Atom Element from Atom Name.""" def setUp(self): pdb_filename = "PDB/a_structure.pdb" with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) structure = PDBParser(PERMISSIVE=True).get_structure('X', pdb_filename) self.residue = structure[0]['A'][('H_PCA', 1, ' ')] def test_AtomElement(self): """Atom Element.""" atoms = self.residue.child_list self.assertEqual('N', atoms[0].element) # N self.assertEqual('C', atoms[1].element) # Alpha Carbon self.assertEqual('CA', atoms[8].element) # Calcium self.assertEqual('D', atoms[4].element) # Deuterium def test_ions(self): """Element for magnesium is assigned correctly.""" pdb_filename = "PDB/ions.pdb" structure = PDBParser(PERMISSIVE=True).get_structure('X', pdb_filename) # check magnesium atom atoms = structure[0]['A'][('H_ MG', 1, ' ')].child_list self.assertEqual('MG', atoms[0].element) def test_hydrogens(self): def quick_assign(fullname): return Atom.Atom(fullname.strip(), None, None, None, None, fullname, None).element pdb_elements = dict( H=(' H ', ' HA ', ' HB ', ' HD1', ' HD2', ' HE ', ' HE1', ' HE2', ' HE3', ' HG ', ' HG1', ' HH ', ' HH2', ' HZ ', ' HZ2', ' HZ3', '1H ', '1HA ', '1HB ', '1HD ', '1HD1', '1HD2', '1HE ', '1HE2', '1HG ', '1HG1', '1HG2', '1HH1', '1HH2', '1HZ ', '2H ', '2HA ', '2HB ', '2HD ', '2HD1', '2HD2', '2HE ', '2HE2', '2HG ', '2HG1', '2HG2', '2HH1', '2HH2', '2HZ ', '3H ', '3HB ', '3HD1', '3HD2', '3HE ', '3HG1', '3HG2', '3HZ ', 'HE21'), O=(' OH ',), # noqa: E741 C=(' CH2',), N=(' NH1', ' NH2'), ) for element, atom_names in pdb_elements.items(): for fullname in atom_names: with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) e = quick_assign(fullname) # warnings.warn("%s %s" % (fullname, e)) self.assertEqual(e, element) class IterationTests(unittest.TestCase): def setUp(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) self.struc = PDBParser(PERMISSIVE=True).get_structure('X', "PDB/a_structure.pdb") def test_get_chains(self): """Yields chains from different models separately.""" chains = [chain.id for chain in self.struc.get_chains()] self.assertEqual(chains, ['A', 'A', 'B', ' ']) def test_get_residues(self): """Yields all residues from all models.""" residues = [resi.id for resi in self.struc.get_residues()] self.assertEqual(len(residues), 168) def test_get_atoms(self): """Yields all atoms from the structure, excluding duplicates and ALTLOCs which are not parsed.""" atoms = ["%12s" % str((atom.id, atom.altloc)) for atom in self.struc.get_atoms()] self.assertEqual(len(atoms), 757) class ChangingIdTests(unittest.TestCase): def setUp(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) self.struc = PDBParser(PERMISSIVE=True).get_structure( 'X', "PDB/a_structure.pdb") def test_change_model_id(self): """Change the id of a model.""" for model in self.struc: break # Get first model in structure model.id = 2 self.assertEqual(model.id, 2) self.assertIn(2, self.struc) self.assertNotIn(0, self.struc) def test_change_model_id_raises(self): """Cannot change id to a value already in use by another child.""" model = next(iter(self.struc)) with self.assertRaises(ValueError): model.id = 1 # Make sure nothing was changed self.assertEqual(model.id, 0) self.assertIn(0, self.struc) self.assertIn(1, self.struc) def test_change_chain_id(self): """Change the id of a model.""" chain = next(iter(self.struc.get_chains())) chain.id = "R" self.assertEqual(chain.id, "R") model = next(iter(self.struc)) self.assertIn("R", model) def test_change_residue_id(self): """Change the id of a residue.""" chain = next(iter(self.struc.get_chains())) res = chain[('H_PCA', 1, ' ')] res.id = (' ', 1, ' ') self.assertEqual(res.id, (' ', 1, ' ')) self.assertIn((' ', 1, ' '), chain) self.assertNotIn(('H_PCA', 1, ' '), chain) self.assertEqual(chain[(' ', 1, ' ')], res) def test_full_id_is_updated_residue(self): """Invalidate cached full_ids if an id is changed.""" atom = next(iter(self.struc.get_atoms())) # Generate the original full id. original_id = atom.get_full_id() self.assertEqual(original_id, ('X', 0, 'A', ('H_PCA', 1, ' '), ('N', ' '))) residue = next(iter(self.struc.get_residues())) # Make sure the full id was in fact cached, # so we need to invalidate it later. self.assertEqual(residue.full_id, ('X', 0, 'A', ('H_PCA', 1, ' '))) # Changing the residue's id should lead to an updated full id. residue.id = (' ', 1, ' ') new_id = atom.get_full_id() self.assertNotEqual(original_id, new_id) self.assertEqual(new_id, ('X', 0, 'A', (' ', 1, ' '), ('N', ' '))) def test_full_id_is_updated_chain(self): """Invalidate cached full_ids if an id is changed.""" atom = next(iter(self.struc.get_atoms())) # Generate the original full id. original_id = atom.get_full_id() self.assertEqual(original_id, ('X', 0, 'A', ('H_PCA', 1, ' '), ('N', ' '))) residue = next(iter(self.struc.get_residues())) # Make sure the full id was in fact cached, # so we need to invalidate it later. self.assertEqual(residue.full_id, ('X', 0, 'A', ('H_PCA', 1, ' '))) chain = next(iter(self.struc.get_chains())) # Changing the chain's id should lead to an updated full id. chain.id = 'Q' new_id = atom.get_full_id() self.assertNotEqual(original_id, new_id) self.assertEqual(new_id, ('X', 0, 'Q', ('H_PCA', 1, ' '), ('N', ' '))) # class RenumberTests(unittest.TestCase): # """Tests renumbering of structures.""" # # def setUp(self): # pdb_filename = "PDB/1A8O.pdb" # self.structure=PDBParser(PERMISSIVE=True).get_structure('X', pdb_filename) # # def test_renumber_residues(self): # """Residues in a structure are renumbered.""" # self.structure.renumber_residues() # nums = [resi.id[1] for resi in self.structure[0]['A'].child_list] # print(nums) # # ------------------------------------------------------------- class TransformTests(unittest.TestCase): def setUp(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", PDBConstructionWarning) self.s = PDBParser(PERMISSIVE=True).get_structure( 'X', "PDB/a_structure.pdb") self.m = self.s.get_list()[0] self.c = self.m.get_list()[0] self.r = self.c.get_list()[0] self.a = self.r.get_list()[0] def get_total_pos(self, o): """Sum of positions of atoms in an entity along with the number of atoms.""" if hasattr(o, "get_coord"): return o.get_coord(), 1 total_pos = numpy.array((0.0, 0.0, 0.0)) total_count = 0 for p in o.get_list(): pos, count = self.get_total_pos(p) total_pos += pos total_count += count return total_pos, total_count def get_pos(self, o): """Average atom position in an entity.""" pos, count = self.get_total_pos(o) return 1.0 * pos / count def test_transform(self): """Transform entities (rotation and translation).""" for o in (self.s, self.m, self.c, self.r, self.a): rotation = rotmat(Vector(1, 3, 5), Vector(1, 0, 0)) translation = numpy.array((2.4, 0, 1), 'f') oldpos = self.get_pos(o) o.transform(rotation, translation) newpos = self.get_pos(o) newpos_check = numpy.dot(oldpos, rotation) + translation for i in range(0, 3): self.assertAlmostEqual(newpos[i], newpos_check[i]) def test_Vector(self): """Test Vector object.""" v1 = Vector(0, 0, 1) v2 = Vector(0, 0, 0) v3 = Vector(0, 1, 0) v4 = Vector(1, 1, 0) self.assertEqual(calc_angle(v1, v2, v3), 1.5707963267948966) self.assertEqual(calc_dihedral(v1, v2, v3, v4), 1.5707963267948966) self.assertTrue(numpy.array_equal((v1 - v2).get_array(), numpy.array([0.0, 0.0, 1.0]))) self.assertTrue(numpy.array_equal((v1 - 1).get_array(), numpy.array([-1.0, -1.0, 0.0]))) self.assertTrue(numpy.array_equal((v1 - (1, 2, 3)).get_array(), numpy.array([-1.0, -2.0, -2.0]))) self.assertTrue(numpy.array_equal((v1 + v2).get_array(),
numpy.array([0.0, 0.0, 1.0])
numpy.array
''' This file contains functions for pruning resnet-like model in layer level 1. prune_resconv_layer (resnet: conv layers) 2. prune_resnet_lconv_layer (resnet: lconv means identity layer) 3. prune_rbconv_by_indices (resnet: rbconv means right path's bottom layer) 4. prune_rbconv_by_number (resnet: used when you prune lconv but next block/layer cannot absorb your effect) 5. prune_ruconv1_layer (resnet: for resnet normal conv1 layers (i.e. right path's first upper layers)) 6. prune_ruconv2_layer (resnet: for resnet normal conv2 layers (i.e. right path's second upper layers)) Author: xuhuahuang as intern in YouTu 07/2018 ''' import torch from torch.autograd import Variable from torchvision import models import cv2 cv2.setNumThreads(0) # pytorch issue 1355: possible deadlock in DataLoader # OpenCL may be enabled by default in OpenCV3; # disable it because it because it's not thread safe and causes unwanted GPU memory allocations cv2.ocl.setUseOpenCL(False) import sys import numpy as np from models.resnet import BasicBlock, Bottleneck def replace_layers(model, i, indexes, layers): if i in indexes: # layers and indexes store new layers used to update old layers return layers[indexes.index(i)] # if i not in indexes, use old layers return model[i] # helper function ''' Helper function for updating immediate following layer/block's input channels Args: model: model after pruning current layer/block layer_index: current layer index. Locate the block/layer being pruned filters NOW filters_to_prune: the output channels indices being pruned **Note** Not handle case described by prune_rbconv_by_number() Not handle case inside prune_ruconv1_layer() and prune_ruconv2_layer() because they are inside same block ''' def update_next_layers(model, layer_index, filters_to_prune): # only need to change in_channels for all following objects based on filters_to_prune next_conv = None next_blk = None next_ds = None # if next one is a block, and this block has downsample path, you need to update both residual and downsample path offset = 1 # search for the next conv, based on current conv with id = (layer_index, filter_index) while layer_index + offset < len(model.base._modules.items()): res = list(model.base._modules.items())[layer_index+offset] # name, module if isinstance(res[1], torch.nn.modules.conv.Conv2d): next_name, next_conv = res next_is_block = False break elif isinstance(res[1], (BasicBlock, Bottleneck)): next_is_block = True next_blk = res[1] if res[1].downsample is None: next_conv = res[1].conv1 next_ds = None else: next_conv = res[1].conv1 next_ds = res[1].downsample break offset = offset + 1 if next_conv is None: print("No filter will be prunned for this layer (last layer)") return model if len(filters_to_prune) == 0: print("No filter will be prunned for this layer") return model cut = len(filters_to_prune) # next_conv must exists next_new_conv = \ torch.nn.Conv2d(in_channels = next_conv.in_channels - cut,\ out_channels = next_conv.out_channels, \ kernel_size = next_conv.kernel_size, \ stride = next_conv.stride, padding = next_conv.padding, dilation = next_conv.dilation, groups = next_conv.groups, bias = next_conv.bias is not None) old_weights = next_conv.weight.data.cpu().numpy() new_weights = next_new_conv.weight.data.cpu().numpy() new_weights = np.delete(old_weights, filters_to_prune, axis = 1) next_new_conv.weight.data = torch.from_numpy(new_weights).cuda() if next_conv.bias is not None: next_new_conv.bias.data = next_conv.bias.data # next_ds exists or not is okay, no matter next_is_block is True or not if next_ds is not None: old_conv_in_next_ds = next_ds[0] new_conv_in_next_new_ds = \ torch.nn.Conv2d(in_channels = old_conv_in_next_ds.in_channels - cut,\ out_channels = old_conv_in_next_ds.out_channels, \ kernel_size = old_conv_in_next_ds.kernel_size, \ stride = old_conv_in_next_ds.stride, padding = old_conv_in_next_ds.padding, dilation = old_conv_in_next_ds.dilation, groups = old_conv_in_next_ds.groups, bias = old_conv_in_next_ds.bias is not None) old_weights = old_conv_in_next_ds.weight.data.cpu().numpy() new_weights = new_conv_in_next_new_ds.weight.data.cpu().numpy() new_weights = np.delete(old_weights, filters_to_prune, axis = 1) new_conv_in_next_new_ds.weight.data = torch.from_numpy(new_weights).cuda() if old_conv_in_next_ds.bias is not None: new_conv_in_next_new_ds.bias.data = old_conv_in_next_ds.bias.data # bias won't change next_new_ds = torch.nn.Sequential(new_conv_in_next_new_ds, next_ds[1]) # BN keeps unchanged else: next_new_ds = None # next_new_ds and next_new_conv are ready now, create a next_new_block for replace_layers() if next_is_block: #same as next_blk is not None: if isinstance(next_blk, BasicBlock): # rely on conv1 of old block to get in_planes, out_planes, tride next_new_block = BasicBlock(next_blk.conv1.in_channels - cut, \ next_blk.conv1.out_channels, next_blk.stride, downsample = next_new_ds) next_new_block.conv1 = next_new_conv # only update in_channels next_new_block.bn1 = next_blk.bn1 next_new_block.relu = next_blk.relu next_new_block.conv2 = next_blk.conv2 next_new_block.bn2 = next_blk.bn2 else: next_new_block = Bottleneck(next_blk.conv1.in_channels - cut, \ next_blk.conv1.out_channels, next_blk.stride, downsample = next_new_ds) next_new_block.conv1 = next_new_conv # only update in_channels next_new_block.bn1 = next_blk.bn1 next_new_block.conv2 = next_blk.conv2 next_new_block.bn2 = next_blk.bn2 next_new_block.conv3 = next_blk.conv3 next_new_block.bn3 = next_blk.bn3 next_new_block.relu = next_blk.relu if not next_is_block: base = torch.nn.Sequential( *(replace_layers(model.base, i, [layer_index+offset], \ [next_new_conv]) for i, _ in enumerate(model.base))) else: base = torch.nn.Sequential( *(replace_layers(model.base, i, [layer_index+offset], \ [next_new_block]) for i, _ in enumerate(model.base))) del model.base # delete and replace with brand new one model.base = base print("Finished update next layers.") return model ''' -------------------------------------------------------------------------------- 1. Prune conv layers in resnet with/without BN (only support layers stored in model.base for now) Args: model: model for pruning layer_index: index the pruned layer's location within model cut_ratio: the ratio of filters you want to prune from this layer (e.g. 20% - cut 20% lowest weights layers) Adapted from: https://github.com/jacobgil/pytorch-pruning ''' def prune_resconv_layer(model, layer_index, cut_ratio=0.2, use_bn = True): _, conv = list(model.base._modules.items())[layer_index] if use_bn: _, old_bn = list(model.base._modules.items())[layer_index + 1] next_conv = None offset = 1 # search for the next conv, based on current conv with id = (layer_index, filter_index) while layer_index + offset < len(model.base._modules.items()): res = list(model.base._modules.items())[layer_index+offset] # name, module if isinstance(res[1], torch.nn.modules.conv.Conv2d): next_name, next_conv = res break elif isinstance(res[1], (BasicBlock, Bottleneck)): next_conv = res[1].conv1 break offset = offset + 1 if next_conv is None: print("No filter will be prunned for this layer (last layer)") return model num_filters = conv.weight.data.size(0) # out_channels x in_channels x 3 x 3 # skip the layer with only one filter left if num_filters <= 1: print("No filter will be prunned for this layer (num_filters<=1)") return model cut = int(cut_ratio * num_filters) if cut < 1: print("No filter will be prunned for this layer (cut<1)") return model if (num_filters - cut) < 1: print("No filter will be prunned for this layer (no filter left after cutting)") return model # rank the filters within this layer and store into filter_ranks abs_wgt = torch.abs(conv.weight.data) values = \ torch.sum(abs_wgt, dim = 1, keepdim = True).\ sum(dim=2, keepdim = True).sum(dim=3, keepdim = True)[:, 0, 0, 0]# .data # Normalize the sum of weight by the filter dimensions in x 3 x 3 values = values / (abs_wgt.size(1) * abs_wgt.size(2) * abs_wgt.size(3)) # (filter_number for this layer, 1) print("Ranking filters.. ") filters_to_prune = np.argsort(values.cpu().numpy())[:cut] # order from smallest to largest print("Filters that will be prunned", filters_to_prune) print("Pruning filters.. ") # the updated conv for current conv, with cut output channels being pruned new_conv = \ torch.nn.Conv2d(in_channels = conv.in_channels, \ out_channels = conv.out_channels - cut, kernel_size = conv.kernel_size, \ stride = conv.stride, padding = conv.padding, dilation = conv.dilation, groups = conv.groups, bias = conv.bias is not None) #(out_channels) old_weights = conv.weight.data.cpu().numpy() # (out_channels, in_channels, kernel_size[0], kernel_size[1] new_weights = new_conv.weight.data.cpu().numpy() # skip that filter's weight inside old_weights and store others into new_weights new_weights = np.delete(old_weights, filters_to_prune, axis = 0) new_conv.weight.data = torch.from_numpy(new_weights).cuda() if conv.bias is not None: # no bias for conv layers bias_numpy = conv.bias.data.cpu().numpy() # change size to (out_channels - cut) bias = np.zeros(shape = (bias_numpy.shape[0] - cut), dtype = np.float32) bias = np.delete(bias_numpy, filters_to_prune, axis = None) new_conv.bias.data = torch.from_numpy(bias).cuda() # BatchNorm modification # TODO: Extract this function outside as a separate func. if use_bn: new_bn = torch.nn.BatchNorm2d(num_features=new_conv.out_channels, \ eps=old_bn.eps, momentum=old_bn.momentum, affine=old_bn.affine) # old_bn.affine == True, need to copy learning gamma and beta to new_bn # gamma: size = (num_features) old_weights = old_bn.weight.data.cpu().numpy() new_weights = new_bn.weight.data.cpu().numpy() new_weights =
np.delete(old_weights, filters_to_prune)
numpy.delete
# %% [markdown] ## Imports # %% # Data Processing import pandas as pd import matplotlib.pyplot as plt plt.rcParams["font.family"] = "Times New Roman" plt.rcParams["font.size"] = 12 plt.rcParams["axes.labelsize"] = 'x-large' from matplotlib.collections import LineCollection import scipy as scp from scipy import interpolate import numpy as np import seaborn as sns from sklearn.preprocessing import normalize # General import os import simplejson as json import time import copy # from process_data import interface_dfs # targetbarclicks = ['panel.click','arrow.click','drag.click','targetdrag.click','target.click'] # targetbarprs = ['panel.press/release','arrow.press/release','drag.press/release','targetdrag.press/release', 'targetdrag.press/release'] targetbarclicks = ['panel-click','arrow-click','drag-click','targetdrag-click','target-click'] targetbarprs = ['panel-press/release','arrow-press/release','drag-press/release','targetdrag-press/release', 'targetdrag-press/release'] #targetbarnames = ['arrow.click','drag.click','panel.click','target.click','targetdrag.click','arrow.p/r','drag.p/r','panel.p/r','targetdrag.p/r'] targetplotnames = ['Fixed','ArrowRing','CircleRing','TargetAnchor','TargetRing'] targetplotcolors = ['#ffe500','#ff9405','#ff4791','#007bff','#00c36b'] targetplotcolorslight = ['#ffe486','#ffb757','#ff8dbb','#64afff','#00fd8b'] interfaceIDs = ['arrow-click','drag-click','panel-click','target-click','targetdrag-click','arrow-press/release','drag-press/release','panel-press/release','targetdrag-press/release'] def plot_everything(): # interfaceIDs = ['arrow.click','drag.click','panel.click','target.click','targetdrag.click','arrow.press/release','drag.press/release','panel.press/release','targetdrag.press/release'] cycles_df = pd.read_csv("data/se2-10-29-filtered-cycles.csv", skiprows = 0) print(cycles_df.columns) # print(cycles_df.head()) uids = cycles_df["uid"].unique() user_dfs = {} user_data_columns = ["uid", "interfaceID", "numClicks", "draggingDuration", 'cycleLength'] user_data = [] for uid in uids: user_df = cycles_df[cycles_df["uid"] == uid] interface_id = user_df["interfaceID"].unique()[0] user_data.append([uid, interface_id, np.mean(user_df['numClicks']), np.mean(user_df['draggingDuration']), np.mean(user_df['cycleLength'])]); user_dfs = pd.DataFrame(user_data, columns=user_data_columns) interface_dfs = {} for interfaceID in interfaceIDs: interface_dfs[interfaceID] = user_dfs[user_dfs["interfaceID"] == interfaceID] all_interface_dfs = {} for interfaceID in interfaceIDs: all_interface_dfs[interfaceID] = cycles_df[cycles_df["interfaceID"] == interfaceID] # %% for interfaceID in interface_dfs: interface_df = interface_dfs[interfaceID] print(interfaceID) print("Mean:", np.mean(interface_df['cycleLength'])) print("Standard Deviation:",np.std(interface_df['cycleLength'])) print("Min:",np.min(interface_df['cycleLength'])) print("Max:",np.max(interface_df['cycleLength'])) print() # %% [markdown] ## Time stats per interface plot_box_chart(interface_dfs, 'cycleLength', 'Task completion time (sec)') plot_box_chart(interface_dfs, 'numClicks', 'Number of clicks', has_labels=False) plot_box_chart(interface_dfs, 'draggingDuration', 'Drag duration (sec)') plot_scatter(all_interface_dfs) def plot_bar_chart(interface_dfs, label, y_label, has_labels=True): # %% if has_labels: fig = plt.figure(figsize=(10,5)) else: fig = plt.figure(figsize=(8,5)) fig.subplots_adjust(hspace=0.6, wspace=0.3) ax = fig.add_subplot(1,1,1) means_clicks = [] means_prs = [] errors_prs = [] errors_clicks = [] for i in np.arange(len(targetbarclicks)): interface_dfclicks = interface_dfs[targetbarclicks[i]] interface_dfprs = interface_dfs[targetbarprs[i]] means_clicks.append(np.mean(interface_dfclicks[label])) means_prs.append(np.mean(interface_dfprs[label])) errors_clicks.append(np.std(interface_dfclicks[label])) errors_prs.append(np.std(interface_dfprs[label])) #print("Mean:", np.mean(interface_dfclicks['cycleLength'])) #print("Standard Deviation:",np.std(interface_dfclicks['cycleLength'])) #print("Min:",np.min(interface_dfclicks['cycleLength'])) #print("Max:",np.max(interface_dfclicks['cycleLength'])) #print() means_prs[4] = 0 errors_prs[4] = 0 ax.grid(color='gray', linestyle='-.', linewidth=1, axis='x', which='major', zorder=0) y_pos = np.arange(len(targetplotnames)) width = 0.44 rects1 = ax.barh(y_pos - width/2, means_prs, width-0.02, xerr=errors_prs, alpha=1.0, color=targetplotcolorslight, ecolor="gray", capsize=9, zorder=2) rects2 = ax.barh(y_pos + width/2, means_clicks, width-0.02, xerr=errors_clicks, alpha=1.0, color=targetplotcolors, ecolor="gray", capsize=9, zorder=2) # ax.set_ylabel('Interface',fontsize=24) ax.set_xlabel(y_label,fontsize=24, fontstyle='italic') ax.set_yticks(y_pos) if has_labels: ax.set_yticklabels(targetplotnames) else: ax.set_yticklabels(['','','','','']) #ax.set_title('Task Completion Time', fontsize=24, fontweight='bold') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_linewidth(2.0) ax.spines['left'].set_linewidth(2.0) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.tick_params(axis='both', which='major', labelsize=24) ax.set_xlim([0, 25]) #plt.xticks(rotation=45) ax.invert_yaxis() # for ytick, color in zip(ax.get_yticklabels(), targetplotcolors): # ytick.set_color(color) for rect1 in rects1[0:4]: ax.text(0.1, rect1.get_y() + 0.36, '$\it{P/R}$', c="white", fontsize=20, fontfamily="Times New Roman") for rect2 in rects2: ax.text(0.1, rect2.get_y() + 0.36, '$\it{Click}$', c="white", fontsize=20, fontfamily="Times New Roman") plt.tight_layout() plt.savefig('data/' + label + '.pdf') # plt.show() def plot_scatter(interface_dfs): # %% [markdown] ## Time vs. Distance (Euclidean, Orientation, and Combined) ### Euclidean Distance vs Time # %% fig = plt.figure(figsize=(16,6)) fig.subplots_adjust(hspace=0.6, wspace=0.3) targetplots = ['panel-click','arrow-click','drag-click','targetdrag-click','target-click'] interface_dftargets = [interface_dfs[idx] for idx in targetplots] for i, interface_df in enumerate(interface_dftargets): ax = fig.add_subplot(2,5,str(i+1)) bx = fig.add_subplot(2,5,str(i+6)) ax.set_title(targetplotnames[i], fontsize=24) #bx.set_title(targetplotnames[i], c=targetplotcolors[i], fontsize=16) ax.scatter(interface_df['targetDistance'], interface_df['cycleLength'], c=targetplotcolors[i], marker=".") bx.scatter(interface_df['threshXY'], interface_df['cycleLength'], c=targetplotcolors[i], marker=".") lineax = fit_line(interface_df['targetDistance'], interface_df['cycleLength']) linebx = fit_line(interface_df['threshXY'], interface_df['cycleLength']) r_squaredax = lineax[2] r_squaredbx = linebx[2] ax.plot(lineax[0], lineax[1], c="black", linewidth=2.0) bx.plot(linebx[0], linebx[1], c="black", linewidth=2.0) # ax.text(80, 30, '$\mathbf{R^2}$ = %0.2f' %(1-r_squaredax), c="black", fontsize=20) # bx.text(10, 30, '$\mathbf{R^2}$ = %0.2f' %(1-r_squaredbx), c="black", fontsize=20) #_, _, r_val, _, _ = scp.stats.linregress(interface_df['targetDistance'], interface_df['cycleLength']) #print(r_val**2) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) bx.spines['right'].set_visible(False) bx.spines['top'].set_visible(False) for axis in ['bottom', 'left']: ax.spines[axis].set_linewidth(3.0) bx.spines[axis].set_linewidth(3.0) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') bx.yaxis.set_ticks_position('left') bx.xaxis.set_ticks_position('bottom') # Change the fontsize of tick labels ax.tick_params(axis='both', which='major', labelsize=20) bx.tick_params(axis='both', which='major', labelsize=20) ax.set_xlabel('Target distance', fontsize=24, fontstyle='italic') ax.set_ylim([0, 30]) bx.set_xlabel('Target size', fontsize=24, fontstyle='italic') bx.set_ylim([0, 30]) if i == 0: ax.set_ylabel('Time (sec)', fontsize=24, fontstyle='italic') bx.set_ylabel('Time (sec)', fontsize=24, fontstyle='italic') plt.tight_layout() plt.savefig('data/scatter.pdf') # plt.show() def plot_bar_chart(interface_dfs, label, y_label, has_labels=True): # %% if has_labels: fig = plt.figure(figsize=(10,5)) else: fig = plt.figure(figsize=(8,5)) fig.subplots_adjust(hspace=0.6, wspace=0.3) ax = fig.add_subplot(1,1,1) means_clicks = [] means_prs = [] errors_prs = [] errors_clicks = [] for i in np.arange(len(targetbarclicks)): interface_dfclicks = interface_dfs[targetbarclicks[i]] interface_dfprs = interface_dfs[targetbarprs[i]] means_clicks.append(np.mean(interface_dfclicks[label])) means_prs.append(np.mean(interface_dfprs[label])) errors_clicks.append(np.std(interface_dfclicks[label])) errors_prs.append(np.std(interface_dfprs[label])) #print("Mean:", np.mean(interface_dfclicks['cycleLength'])) #print("Standard Deviation:",np.std(interface_dfclicks['cycleLength'])) #print("Min:",np.min(interface_dfclicks['cycleLength'])) #print("Max:",np.max(interface_dfclicks['cycleLength'])) #print() means_prs[4] = 0 errors_prs[4] = 0 ax.grid(color='gray', linestyle='-.', linewidth=1, axis='x', which='major', zorder=0) y_pos = np.arange(len(targetplotnames)) width = 0.44 rects1 = ax.barh(y_pos - width/2, means_prs, width-0.02, xerr=errors_prs, alpha=1.0, color=targetplotcolorslight, ecolor="gray", capsize=9, zorder=2) rects2 = ax.barh(y_pos + width/2, means_clicks, width-0.02, xerr=errors_clicks, alpha=1.0, color=targetplotcolors, ecolor="gray", capsize=9, zorder=2) # ax.set_ylabel('Interface',fontsize=24) ax.set_xlabel(y_label,fontsize=24, fontstyle='italic') ax.set_yticks(y_pos) if has_labels: ax.set_yticklabels(targetplotnames) else: ax.set_yticklabels(['','','','','']) #ax.set_title('Task Completion Time', fontsize=24, fontweight='bold') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_linewidth(2.0) ax.spines['left'].set_linewidth(2.0) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.tick_params(axis='both', which='major', labelsize=24) ax.set_xlim([0, 25]) #plt.xticks(rotation=45) ax.invert_yaxis() # for ytick, color in zip(ax.get_yticklabels(), targetplotcolors): # ytick.set_color(color) for rect1 in rects1[0:4]: ax.text(0.1, rect1.get_y() + 0.36, '$\it{P/R}$', c="white", fontsize=20, fontfamily="Times New Roman") for rect2 in rects2: ax.text(0.1, rect2.get_y() + 0.36, '$\it{Click}$', c="white", fontsize=20, fontfamily="Times New Roman") plt.tight_layout() plt.savefig('data/' + label + '.pdf') # plt.show() def plot_box_chart(interface_dfs, label, y_label, has_labels=True): # %% if has_labels: fig = plt.figure(figsize=(10,5)) else: fig = plt.figure(figsize=(8,5)) fig.subplots_adjust(hspace=0.6, wspace=0.3) ax = fig.add_subplot(1,1,1) interface_data_combined = [] for i in np.arange(len(targetbarclicks)): interface_dfclicks = interface_dfs[targetbarclicks[i]] interface_dfprs = interface_dfs[targetbarprs[i]] interface_data_combined.append(interface_dfprs[label]) interface_data_combined.append(interface_dfclicks[label]) interface_data_combined[8] = 0 # Combine both color lists every alternating items: https://stackoverflow.com/a/3678938 targetplotcolorscombined = [None]*(len(targetplotcolorslight)*2) targetplotcolorscombined[::2] = targetplotcolorslight targetplotcolorscombined[1::2] = targetplotcolors flierprops = {'marker':'.', 'markerfacecolor':'none', 'markersize':10, 'linestyle':'none', 'markeredgecolor':'gray'} width = 0.6 positions = np.arange(len(targetplotcolorscombined)) + np.array([(1-width)/2,0]*len(targetplotcolors)) + np.array([0, -(1-width)/2]*len(targetplotcolors)) # In order to group the boxes, we need to shift the top and bottom box of each pair up/down by half of the spacing (1-width)/2 bplot = ax.boxplot(interface_data_combined, 0, '.', 0, patch_artist=True, widths=width, positions=positions, flierprops=flierprops) # Setting patch_artist = True is requried to set the background color of the boxes: https://stackoverflow.com/a/28742262 for patch, color in zip(bplot['boxes'], targetplotcolorscombined): patch.set(color="gray") patch.set_facecolor(color) for whisker in bplot['whiskers']: whisker.set(color="gray") for cap in bplot['caps']: cap.set(color ='gray') for median in bplot['medians']: median.set(color='white') y_pos = np.arange(len(targetplotnames))*2 - 0.3 ax.grid(color='gray', linestyle='-.', linewidth=1, axis='x', which='major', zorder=0) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_linewidth(2.0) ax.spines['left'].set_linewidth(2.0) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.tick_params(axis='both', which='major', labelsize=24) ax.set_xlim([0, 25]) #plt.xticks(rotation=45) # ax.set_ylabel('Interface',fontsize=24) ax.set_xlabel(y_label,fontsize=24, fontstyle='italic') ax.set_yticks(y_pos) if has_labels: ax.set_yticklabels(targetplotnames) else: ax.set_yticklabels(['','','','','']) #ax.set_title('Task Completion Time', fontsize=24, fontweight='bold') ax.invert_yaxis() ax.set_aspect(1.4) # for ytick, color in zip(ax.get_yticklabels(), targetplotcolors): # ytick.set_color(color) # for rect1 in rects1[0:4]: # ax.text(0.1, rect1.get_y() + 0.32, '$\it{P/R}$', c="white", fontsize=22, fontfamily="Times New Roman") # for rect2 in rects2: # ax.text(0.1, rect2.get_y() + 0.32, '$\it{Click}$', c="white", fontsize=22, fontfamily="Times New Roman") for i in range(len(positions)): ax.text(-0.1, positions[i] + 0.3, '$\it{' + ('P/R' if (i%2 == 0) else 'Click') + '}$', c="black", fontsize=15, fontfamily="Times New Roman", zorder = 0, ha='right') plt.tight_layout() plt.savefig('data/' + label + '.pdf') # plt.show() # %% # Custom tools def fit_line(x, y): ''' Fits a line to an input set of points Returns a tuple of the x and y components of the line Adapted from: https://stackoverflow.com/a/31800660/6454085 ''' #correlation_matrix = np.corrcoef(x,y) #correlation_xy = correlation_matrix[0,1] #r_squared = correlation_xy**2 y_hat = np.poly1d(np.polyfit(x, y, 1))(x) y_bar =np.sum(y)/len(y) ssres = np.sum((y_hat - y)**2) sstot =
np.sum((y - y_bar)**2)
numpy.sum
"""Create artificial data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import scipy.stats as stats def decaying_multi_normal(dimensions, size, alpha=1): """Create multinormal data with exponentially decaying principal components. Creates a two-dimensional numpy array such that a PCA yields principal components with exponentially decaying variance. Args: dimensions: How many dimensions should the data have? size: How many samples should be drawn? alpha: The exponential decay constant: how fast should the variance of the principal components decay (default: 1)? Only non-negative values are allowed. Returns: A two-dimensional numpy array with one sample per row and one dimension per column. Raises: ValueError: alpha is negative. """ if alpha < 0: raise ValueError("alpha must be non-negative.") pc_variance = np.exp(-alpha*np.array(range(dimensions))) rand_ortho = stats.ortho_group.rvs(dimensions) rand_normal = np.random.normal(scale=pc_variance, size=(size, dimensions)) rand_input =
np.matmul(rand_normal, rand_ortho)
numpy.matmul
import numpy as np import pandas as pd def interpolate_traj(trks, threshold, mark_interpolation=False, drop_len=1): trks = trks[np.argsort(trks[:, 1])] feat_dim = trks[:, 5:].shape[1] traj_df = pd.DataFrame(data=trks[:, :5], columns=['frame', 'trkid', 'y', 'x', 'z']) reixed_traj_df = traj_df.set_index('trkid') full_traj_dfs = [] traj_start_ends = traj_df.groupby('trkid')['frame'].agg(['min', 'max']) for ped_id, (traj_start, traj_end) in traj_start_ends.iterrows(): if ped_id != -1: full_traj_df = pd.DataFrame(data=
np.arange(traj_start, traj_end + 1)
numpy.arange
# -*- coding: utf-8 -*- ''' This code calculates impacts of temperature changes induced by aerosols on GDP apply the Dell et al. damage function distribution of Dell et al. parameter was sampled (1000 times) based on the provided median and standard error by <NAME> (<EMAIL>) ''' from netCDF4 import Dataset import pandas as pd import numpy as np import _env import datetime import xarray as xr nens = _env.nens datasets = _env.datasets year = _env.year syr = str(year) gdp_year = year sgdp_year = str(gdp_year) par = 'TREFHT' ds = 'ERA-Interim' p_scen = 'No-Aerosol' if_temp = _env.odir_root + '/sim_temperature/Simulated_Global_and_Country_' + par + '_20yravg.nc' if_ctry_list = _env.idir_root + '/regioncode/Country_List.xls' if_ctry_pr = _env.idir_root + '/historical_stat/Ctry_Poor_Rich_from_Burke.csv' #adopt country list from Burke et al. 2018 if_ctry_gdpcap = _env.idir_root + '/historical_stat/' + '/API_NY.GDP.PCAP.KD_DS2_en_csv_v2.csv' if_ctry_pop = _env.idir_root + '/historical_stat/' + '/API_SP.POP.TOTL_DS2_en_csv_v2.csv' odir_gdp = _env.odir_root + '/gdp_' + ds + '/' _env.mkdirs(odir_gdp) #climatological temperature from three datasets if_clim_temp = _env.odir_root + 'sim_temperature/Climatological_Temp_Ctry_3ds.csv' itbl_clim_temp = pd.read_csv(if_clim_temp,index_col = 0)[['iso',ds]] #country list itbl_ctry_info = pd.read_csv(_env.odir_root + '/basic_stats/' + 'Country_Basic_Stats.csv') #read global and country-level temperature T_glob = Dataset(if_temp)['TREFHT_Global'][:,[0,1]] T_ctry_full = Dataset(if_temp)['TREFHT_Country'][:,:,[0,1]] #extract temperature for analyzed countries T_ctry = T_ctry_full[((itbl_ctry_info['ind_in_full_list'].astype(int)).tolist()),:,:] T_diff = T_ctry[:,:,1]-T_ctry[:,:,0] T_ctry[:,:,0] = np.repeat(np.array(itbl_clim_temp[ds].values)[:,np.newaxis],8,axis=1) T_ctry[:,:,1] = T_ctry[:,:,0] + T_diff ####country-level changes in GDP/cap growth rate#### ######## # the net effect of a 1◦ C rise in temperature is to decrease growth rates in poor countries by −1.394 percentage points. (Dell,Jones, and Olken, 2012) Table 2 #median = -1.394 #standard error=0.408 if_gen_pars = 0 n_boot_sample = 1000 def cal_theta(theta,se_theta): return np.random.normal(loc=theta,scale=se_theta,size=n_boot_sample) if if_gen_pars: #generate 1000 sets of parameters for the selected damage function djo_pars = cal_theta(-1.394,0.408)/100 _env.mkdirs(_env.idir_root + '/Dell_parameters/') xr.Dataset({'djo_pars' : xr.DataArray(djo_pars,dims = ['boots'])}).to_netcdf(_env.idir_root + '/Dell_parameters/' + '/DJO_parameters.nc') else: djo_pars = xr.open_dataset(_env.idir_root + '/Dell_parameters/' + '/DJO_parameters.nc')['djo_pars'].values n_ctry = len(itbl_ctry_info.index) ifs_rich = 1-itbl_ctry_info['poor'] poor_ind = np.where(ifs_rich == 0)[0] diff_gr = np.zeros([n_boot_sample, np.shape(T_ctry)[0],np.shape(T_ctry)[1]]) diff_gr[:,poor_ind,:] = np.einsum('i,jk->ijk',djo_pars, np.squeeze(T_ctry[poor_ind,:,1]-T_ctry[poor_ind,:,0])) #*(0.2609434-1.655145)/100 #no-aerosol minus with-aerosol diff_gdp = np.einsum('ijk,j->ijk',diff_gr,itbl_ctry_info[str(gdp_year) + '_gdp']) _env.rmfile(odir_gdp + 'GDP_Changes_' + 'Dell_' + str(gdp_year) + '_' + ds + '_' + p_scen + '.nc') onc = Dataset(odir_gdp + 'GDP_Changes_' + 'Dell_' + str(gdp_year) + '_' + ds + '_' + p_scen + '.nc', 'w', format='NETCDF4') d_ctry = onc.createDimension('boots',n_boot_sample) d_ctry = onc.createDimension('countries',n_ctry) d_ens = onc.createDimension('ensembles',nens) v_ratio = onc.createVariable('GDP_Ratio','f4',('boots','countries','ensembles')) v_ratio.desc = 'Impacts of aerosol-induced cooling on annual GDP growth rate' v_ratio[:] = diff_gr v_gdp = onc.createVariable('GDP','f4',('boots','countries','ensembles')) v_gdp.desc = 'Impacts of aerosol-induced cooling on country-level annual GDP' v_gdp[:] = diff_gdp #write global attribute onc.by = '<NAME> (<EMAIL>)' onc.desc = 'Impacts of aerosol-induced cooling on annual GDP and GDP growth rate (based on damage functions by Pretis et al. 2018)' onc.creattime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') onc.close() ####summarize global and regional GDP changes#### itbl_gdp_baseline = itbl_ctry_info.copy() odir_summary = _env.odir_root + 'summary_' + ds _env.mkdirs(odir_summary) writer = pd.ExcelWriter(odir_summary + '/country_specific_statistics_GDP_'+ds+'_'+p_scen+'_Dell.xls') otbls_ctry_GDP_stat = {} gdp_tot = itbl_gdp_baseline[sgdp_year + '_gdp'].sum() spe = 'Dell' otbl_median = pd.DataFrame(index=[spe],columns = ['median','median_ratio','5','5_ratio','95','95_ratio','10','10_ratio','90','90_ratio','prob_benefit']) imtrx_gdp = diff_gdp.copy() ##global total imtrx_gdp_glob = (imtrx_gdp).sum(axis=1) otbl_median.loc[spe] = np.median(imtrx_gdp_glob)/1e9,np.median(imtrx_gdp_glob)/gdp_tot*100,np.percentile(imtrx_gdp_glob,95)/1e9,np.percentile(imtrx_gdp_glob,95)/gdp_tot*100,np.percentile(imtrx_gdp_glob,5)/1e9,np.percentile(imtrx_gdp_glob,5)/gdp_tot*100, np.percentile(imtrx_gdp_glob,90)/1e9,np.percentile(imtrx_gdp_glob,90)/gdp_tot*100,np.percentile(imtrx_gdp_glob,10)/1e9,np.percentile(imtrx_gdp_glob,10)/gdp_tot*100,len(np.where(imtrx_gdp_glob<0)[0])/np.size(imtrx_gdp_glob) otbl_ctry_GDP_stat = itbl_gdp_baseline.copy() otbl_ctry_GDP_stat['GDP_mean_benefit'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_median_benefit'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_mean_benefit_ratio'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_median_benefit_ratio'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_90_benefit'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_10_benefit'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_95_benefit'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['GDP_5_benefit'] = np.zeros(len(otbl_ctry_GDP_stat.index)) otbl_ctry_GDP_stat['probability_damage'] = np.zeros(len(otbl_ctry_GDP_stat.index)) #add by yz 20190719 for ictry,ctry in enumerate(itbl_ctry_info.index): imtrx_country = (imtrx_gdp)[:,ictry,:] otbl_ctry_GDP_stat.loc[ctry,'GDP_mean_benefit'] = -np.mean(imtrx_country) otbl_ctry_GDP_stat.loc[ctry,'GDP_median_benefit'] = -np.median(imtrx_country) otbl_ctry_GDP_stat.loc[ctry,'GDP_90_benefit'] = -np.percentile(imtrx_country,90) otbl_ctry_GDP_stat.loc[ctry,'GDP_10_benefit'] = -np.percentile(imtrx_country,10) otbl_ctry_GDP_stat.loc[ctry,'GDP_95_benefit'] = -np.percentile(imtrx_country,95) otbl_ctry_GDP_stat.loc[ctry,'GDP_5_benefit'] = -np.percentile(imtrx_country,5) otbl_ctry_GDP_stat.loc[ctry,'probability_damage'] = len(imtrx_country[imtrx_country>0])/np.size(imtrx_country) otbl_ctry_GDP_stat['GDP_mean_benefit_ratio'] = otbl_ctry_GDP_stat['GDP_mean_benefit']/otbl_ctry_GDP_stat[sgdp_year+'_gdp']*100 otbl_ctry_GDP_stat['GDP_median_benefit_ratio'] = otbl_ctry_GDP_stat['GDP_median_benefit']/otbl_ctry_GDP_stat[sgdp_year+'_gdp']*100 otbl_ctry_GDP_stat.to_excel(writer,spe) otbls_ctry_GDP_stat[spe] = otbl_ctry_GDP_stat.copy() otbl_median = -otbl_median otbl_median.to_excel(writer,'median_summary') writer.save() #==================changes in 90:10 and 80:20 ratio (inequality)=========================== itbl_gdp_baseline.sort_values([sgdp_year + '_gdpcap'],inplace=True) tot_pop = itbl_gdp_baseline[sgdp_year + '_pop'].sum() itbl_gdp_baseline[sgdp_year + '_gdpsum'] = 0 itbl_gdp_baseline[sgdp_year + '_popsum'] = 0 for irow, row in enumerate(itbl_gdp_baseline.index): if irow == 0: itbl_gdp_baseline.loc[row,sgdp_year + '_gdpsum'] = itbl_gdp_baseline.loc[row,sgdp_year + '_gdp'] itbl_gdp_baseline.loc[row, sgdp_year + '_popsum'] = itbl_gdp_baseline.loc[row,sgdp_year + '_pop'] else: itbl_gdp_baseline.loc[row,sgdp_year + '_gdpsum'] = itbl_gdp_baseline[sgdp_year + '_gdpsum'].iloc[irow-1] + itbl_gdp_baseline.loc[row,sgdp_year + '_gdp'] itbl_gdp_baseline.loc[row, sgdp_year + '_popsum'] = itbl_gdp_baseline[sgdp_year + '_popsum'].iloc[irow-1] + itbl_gdp_baseline.loc[row,sgdp_year + '_pop'] itbl_gdp_baseline[sgdp_year + '_pop_ratio_sum'] = itbl_gdp_baseline[sgdp_year + '_popsum']/tot_pop #deciles (<=10% and >=90%) deciles = {} ind10 = np.where(itbl_gdp_baseline[sgdp_year + '_pop_ratio_sum']<=0.1)[0] deciles[10] = itbl_gdp_baseline.iloc[ind10].copy() ind90 = np.where(itbl_gdp_baseline[sgdp_year + '_pop_ratio_sum']>=0.9)[0] deciles[90] = itbl_gdp_baseline.iloc[ind90].copy() #quintiles (<=20% and >=80%) ind20 = np.where(itbl_gdp_baseline[sgdp_year + '_pop_ratio_sum']<=0.2)[0] deciles[20] = itbl_gdp_baseline.iloc[ind20].copy() ind80 = np.where(itbl_gdp_baseline[sgdp_year + '_pop_ratio_sum']>=0.8)[0] deciles[80] = itbl_gdp_baseline.iloc[ind80].copy() writer = pd.ExcelWriter(odir_summary + '/Deciles_and_Quintile_ratio_changes_'+ds+'_'+p_scen+'_Dell.xls') otbls = {} otbl_ineq = pd.DataFrame(index=[spe],columns = ['median_ratio','5_ratio','95_ratio','10_ratio','90_ratio','probability_reduced']) otbls['deciles'] = otbl_ineq.copy() otbls['quintiles'] = otbl_ineq.copy() omtrx_gdp_spe = diff_gdp.copy() dec_var = {} dec_base = {} for perc in [10,20,80,90]: dec = deciles[perc].copy() dec_pop_tot = dec[sgdp_year + '_pop'].sum() dec_gdp_tot = dec[sgdp_year + '_gdp'].sum() dec_base[perc] = dec_gdp_tot/dec_pop_tot ind_ctry = dec.index imtrx_dec = omtrx_gdp_spe[:,ind_ctry,:] imtrx_dec_sum = dec_gdp_tot-(imtrx_dec).sum(axis=1) #+ dec_gdp_tot dec_gdpcap = imtrx_dec_sum/dec_pop_tot dec_var[perc] = dec_gdpcap.copy() dec_diff = (dec_var[90]/dec_var[10]-dec_base[90]/dec_base[10])/(dec_base[90]/dec_base[10])*100 quin_diff = (dec_var[80]/dec_var[20] - dec_base[80]/dec_base[20])/(dec_base[80]/dec_base[20])*100 otbls['deciles'].loc[spe,'median_ratio'] = np.median(dec_diff) otbls['deciles'].loc[spe,'5_ratio'] = np.percentile(dec_diff,5) otbls['deciles'].loc[spe,'95_ratio'] = np.percentile(dec_diff,95) otbls['deciles'].loc[spe,'10_ratio'] = np.percentile(dec_diff,10) otbls['deciles'].loc[spe,'90_ratio'] = np.percentile(dec_diff,90) otbls['deciles'].loc[spe,'probability_reduced'] = len(dec_diff[dec_diff<0])/np.size(dec_diff) otbls['quintiles'].loc[spe,'median_ratio'] = np.median(quin_diff) otbls['quintiles'].loc[spe,'5_ratio'] = np.percentile(quin_diff,5) otbls['quintiles'].loc[spe,'95_ratio'] = np.percentile(quin_diff,95) otbls['quintiles'].loc[spe,'10_ratio'] = np.percentile(quin_diff,10) otbls['quintiles'].loc[spe,'90_ratio'] = np.percentile(quin_diff,90) otbls['quintiles'].loc[spe,'probability_reduced'] = len(quin_diff[quin_diff<0])/
np.size(quin_diff)
numpy.size
""" A convenient plotting container In this package implements :class:`Plotter`, which is a simple container to dictionary like structure (e.g. :class:`dict`, :class:`np.recarray`, :class:`pandas.DataFrame`). It allows the user to plot directly using keys of the data and also allows rapid group plotting routines (groupy and facets). I was basically tired of all the packages doing fancy things and not allowing basics or requiring a lot of dependencies. Examples -------- .. code-block::python >> d = {...} >> p = plotter.Plotter(d) >> g = p.groupby('BRK', markers='<^>v.oxs', colors='parula_r') >> g.plot('CRA', 'CDEC') >> g.colorbar().set_label('BRK') Multiple groups can be done as well. (Caution, the `facet` option is not robust) .. code-block::python >> g = p.groupby('BRK', facet=True, sharex=True, sharey=True).groupby('FLD') >> g.plot('CRA', 'CDEC', 'o') .. note:: * tested with python 2.7, & 3.4 * tested compatible with pandas (not required) * requirements: numpy, matplotlib :author: <NAME> """ from __future__ import (absolute_import, division, print_function, unicode_literals) import sys PY3 = sys.version_info[0] > 2 if PY3: basestring = (str, bytes) else: basestring = (str, unicode) import pylab as plt import matplotlib as mpl import numpy as np import itertools __all__ = ['Group', 'Plotter', 'create_common_cbar', 'colorify', 'evalexpr', 'create_common_legend'] def get_doc_from(name, obj=plt): """ decorator to add documentation from a module (default: matplotlib) Parameters ---------- name: str name of the function to get the documentation from obj: object module from which the function is an attribute Returns ------- decorator: callable decorator """ def deco(func): fn = getattr(obj, name, None) if fn is not None: if func.__doc__ is None: func.__doc__ = fn.__doc__ else: func.__doc__ += fn.__doc__ return func return deco def _groupby(data, key): """ create an iterator which returns (key, DataFrame) grouped by each value of key(value) """ for k, index in _arg_groupby(data, key): d = {a: b[index] for a,b in data.items()} yield k, data.__class__(d) def _arg_groupby(data, key): """ create an iterator which returns (key, index) grouped by each value of key(value) """ val = data[key] ind = sorted(zip(val, range(len(val))), key=lambda x:x[0]) for k, grp in itertools.groupby(ind, lambda x: x[0]): index = [k[1] for k in grp] yield k, index class Group(object): """ Group multiple plotter instances into one container. This offers any function of :class:`Plotter` through an implicit loop of any method It allows for instance to generate multiple plots on the same axes or even facet plot (one per group). .. code-block:: python >> g = Plotter(df).groupby('class') >> g.set_options(facet=True, ncols=2, projection='aitoff') # which is equivalent to >> g = Plotter(df).groupby('class', facet=True, ncols=2, projection='aitoff') >> g.plot('RA', 'Dec', 'o', alpha=0.5, mec='None') Attributes ---------- seq: sequence Sequence of Plotter instances title: str name of the group (used as label is nested groups) facet: bool set to use facets, i.e., one subplot per element of the group markers: iterable sequence of markers one per group linestyles: iterable sequence of linestyles one per group colors: seq or Colormap sequence of colors or Colormap instance from which deriving a sequence of colors to encode each group if Colormap instance, a cmap attribute will be generated after a plot and will refer to the updated instance sharex: bool set to share x-axis with all subplots sharey: bool set to share y-axis with all subplots kwargs: dict any other option will be forwarded to :func:`plt.subplot` .. see also:: :func:`set_options` """ def __init__(self, seq, title='', **kwargs): self.seq = seq self.title = title self.facet = False self.markers = None self.linestyles = None self.colors = None self.ncols = 3 self.sharex = False self.sharey = False self.axes = None self.kwargs = {} self.create_common_cbar = create_common_cbar self.set_options(**kwargs) self.show = plt.show def make_facets(self): """ generates multiple subplots uses self.ncols as number of columns and subplots are also using self.kwargs. Returns ------- axes: sequence sequence of the axes instance from the subplots .. see also:: :func:`set_options` """ axes = [] n = len(self) ncols = self.ncols nlines = n // ncols if ncols * nlines < n: nlines += 1 if nlines == 0: nlines = 1 ncols = n axes = [] ax = sharex = sharey = None for k in range(n): if self.sharex: sharex = ax if self.sharey: sharey = ax ax = plt.subplot(nlines, ncols, k + 1, sharex=sharex, sharey=sharey, **self.kwargs) axes.append(ax) if self.seq[k].label is not None: ax.set_title(self.seq[k].label) if (self.sharex): if k < (n - ncols): plt.setp(ax.get_xticklabels(), visible=False) if (self.sharey): if (k % ncols) > 0: plt.setp(ax.get_yticklabels(), visible=False) self.axes = axes return axes def set_options(self, **kwargs): """ Set some options Parameters ---------- title: str rename the group facet: bool set the group to display facets or one plot ncols: int when facet is True, this gives how many columns should be used markers: seq sequence of markers (will cycle through) linestyles: seq sequence of linestyles (will cycle through) colors: seq or Colormap sequence of colors or Colormap instance from which deriving a sequence of colors to encode each group if Colormap instance, a cmap attribute will be generated after a plot and will refer to the updated instance sharex: bool set to share x-axis with all subplots sharey: bool set to share y-axis with all subplots kwargs: dict any other option will be forwarded to :func:`plt.subplot` Returns ------- self: Group instance returns itself for conveniance when writting one liners. """ title = kwargs.pop('title', None) facet = kwargs.pop('facet', None) ncols = kwargs.pop('ncols', None) markers = kwargs.pop('markers', None) colors = kwargs.pop('colors', None) linestyles = kwargs.pop('linestyles', None) labels = kwargs.pop('labels', None) sharex = kwargs.pop('sharex', None) sharey = kwargs.pop('sharey', None) allow_expressions = kwargs.pop('allow_expressions', None) if sharex is not None: self.sharex = sharex if sharey is not None: self.sharey = sharey if title is not None: self.title = title if facet is not None: self.facet = facet if ncols is not None: self.ncols = ncols if markers is not None: self.markers = markers if colors is not None: self.colors = colors if type(self.colors) in basestring: self.colors = plt.cm.get_cmap(self.colors) if linestyles is not None: self.linestyles = linestyles if labels is not None: for k, v in zip(self.seq, itertools.cycle(labels)): k.label = v if allow_expressions is not None: for k in self.seq: k.allow_expressions = allow_expressions self.kwargs.update(kwargs) return self def groupby(self, key, select=None, labels=None, **kwargs): """ Make individual plots per group Parameters ---------- key: str key on which building groups select: sequence explicit selection on the groups if a group does not exist, it will be returned empty labels: dict set to replace the group names by a specific label string during the plot kwargs: dict optional keywords forwarded to :func:`set_options` method Returns ------- g: Group instance group of plotters .. see also:: :func:`set_options` """ gg = [] for sk in self.seq: lst = sk.groupby(key, select=select, labels=labels) for k, v in sk.__dict__.items(): if k not in ['seq', 'title']: setattr(lst, k, v) if getattr(sk, 'title', None) is not None: lst.label = sk.title lst.set_options(**kwargs) gg.append(lst) return self.__class__(gg, title=self.title) def subplot(self, *args, **kwargs): """ A convenient shortcut for one liner use Generates a subplot with given arguments and returns `self`. """ self.axes = plt.subplot(*args, **kwargs) return self def __len__(self): return len(self.seq) def __repr__(self): txt = """Object Group {0:s} (length={2:d}): {1:s}""" return txt.format(self.title, object.__repr__(self), len(self)) def __dir__(self): """ show the content of Plotter """ return self.seq[0].__dir__() def __getattr__(self, k): """ Returns a looper function on each plotter of the group """ cyclenames = 'linestyles', 'colors', 'markers' cyclekw = {k: getattr(self, k) for k in cyclenames} if isinstance(self.colors, mpl.colors.Colormap): s = set() for sk in self.seq: s = s.union(set(sk.data[self.title])) colors, cmap = colorify(s) cyclekw['colors'] = colors self.cmap = cmap if self.facet: axes = self.make_facets() return self.looper_facet_method(self.seq, k, axes, cyclekw=cyclekw) else: return self.looper_method(self.seq, k, cyclekw=cyclekw) def __iter__(self): """ Iterator over the individual plotter of the group """ for k in self.seq: yield k def __getitem__(self, k): """ Returns one plotter of the group """ return self.seq[k] @staticmethod def looper_method(lst, methodname, cyclekw={}, **kw): """ calls a method on many instance of sequence of objects Parameters ---------- lst: sequence sequence of objects to call the method from methodname: str name of the method to call from each object cyclekw: dict keyword arguments that calls need to cycle over per object. Each element in this dictionary is expected to be a sequence and one element of each will be used per call. It will use :func:`itertools.cycle`. (None elements are filtered) cyclenames = 'linestyles', 'colors', 'markers' kw: dict other keywords (have priority on `cyclekw`) Returns ------- deco: callable mapper function """ cyclenames = 'linestyles', 'colors', 'markers' _cyclekw = {k: itertools.cycle(cyclekw[k]) for k in cyclenames if cyclekw[k] is not None } def next_cyclekw(): a = {k[:-1]:next(v) for k, v in _cyclekw.items()} return a def deco(*args, **kwargs): r = [] for l in lst: k0 = next_cyclekw() kw.update(k0) kw.update(kwargs) if (l.data is None) or (np.size(l.data) == 0): a = None else: a = getattr(l, methodname)(*args, **kw) r.append(a) return r return deco @staticmethod def looper_facet_method(lst, methodname, axes, cyclekw={}, **kw): """ calls a method on many instance of sequence of objects but also imposes ax as keyword argument. This method will also test if there is no data to plot. Parameters ---------- lst: sequence sequence of objects to call the method from methodname: str name of the method to call from each object axes: sequence list of axes, one per call cyclekw: dict keyword arguments that calls need to cycle over per object. Each element in this dictionary is expected to be a sequence and one element of each will be used per call. It will use :func:`itertools.cycle`. (None elements are filtered) cyclenames = 'linestyles', 'colors', 'markers' kw: dict other keywords (have priority on `cyclekw`) Returns ------- deco: callable mapper function """ cyclenames = 'linestyles', 'colors', 'markers' _cyclekw = {k: itertools.cycle(cyclekw[k]) for k in cyclenames if cyclekw[k] is not None } def next_cyclekw(): a = {k[:-1]:next(v) for k, v in _cyclekw.items()} return a def deco(*args, **kwargs): r = [] for l, ax in zip(lst, axes): k0 = next_cyclekw() kw.update(k0) kw.update(kwargs) if (l.data is None) or (
np.size(l.data)
numpy.size
import sys import argparse from functools import reduce from collections import OrderedDict import numpy as np import pandas as pd import matplotlib.pyplot as plt import xgboost as xgb from sklearn.metrics import roc_auc_score from sklearn.linear_model import Ridge, LinearRegression import torch import torch.nn as nn from zamlexplain.data import load_data from model import RealNVP def mean_sd(df_x, df_gen): df_x = df_x.iloc[:,:17] df_gen = df_gen.iloc[:,:17] mean_x = df_x.mean() mean_gen = df_gen.mean() mean_err = 100*(mean_gen - mean_x)/mean_x df_mean = pd.DataFrame(OrderedDict({ 'data mean': mean_x, 'synth mean': mean_gen, 'err %': mean_err})).round({'data mean': 2, 'synth mean': 2, 'err %': 0}) std_x = df_x.std() std_gen = df_gen.std() std_err = 100*(std_gen - std_x)/std_x df_std = pd.DataFrame(OrderedDict({ 'data std': std_x, 'synth std': std_gen, 'err %': std_err})).round({'data std': 2, 'synth std': 2, 'err %': 0}) return df_mean, df_std def fix_df(x, scaler, return_numpy=False): x = scaler.inverse_transform(x.copy()) for cat_idx in scaler.cat_cols: if len(cat_idx) == 1: x[:, cat_idx] = (x[:,cat_idx] > 0.5).astype(np.float32) else: new_ohe = np.zeros((x.shape[0], len(cat_idx)), dtype=np.float32) new_ohe[np.arange(x.shape[0]), np.argmax(x[:, cat_idx], axis=1)] = 1.0 x[:, cat_idx] = new_ohe # delinq_2yrs, inq, mths, mths, open for i in [5, 6, 7, 8, 9, 10, 12, 16]: x[x[:,i] < 0, i] = 0.0 x[:, i] = np.round(x[:, i]) if return_numpy: return x else: return pd.DataFrame(x, columns=scaler.columns) def un_ohe(df, scaler): df = df.copy() cat_cols = [cat_idx for cat_idx in scaler.cat_cols if len(cat_idx) > 1] for cat_idx in cat_cols: pref, suffs = get_pref(scaler.columns[cat_idx]) suffs = np.array(suffs) df[pref] = suffs[np.argmax(df.iloc[:, cat_idx].as_matrix(), axis=1)] cat_arr = np.array(reduce(lambda x,y: x+y, cat_cols)) return df.drop(labels=scaler.columns[cat_arr], axis=1) def drop_static(df): df = df.copy() to_drop = [] for i in range(df.shape[1]): if len(df.iloc[:,i].unique()) == 1: to_drop += [i] return df.drop(labels=df.columns[to_drop], axis=1) def get_pref(lst): if len(lst) == 1: pref = lst[0] suffs = [''] else: cnt = 0 while all([lst[0][cnt] == el[cnt] for el in lst]): cnt += 1 pref = lst[0][:cnt] suffs = [el[cnt:] for el in lst] return pref.rstrip('_'), suffs def categorical_hist(df_x, df_gen, scaler): fig = plt.figure(1, figsize=(8, 8)) cnt = 0 for cat_idx in scaler.cat_cols: n_var = len(cat_idx) if n_var > 1: x_vals = np.argmax(df_x.iloc[:, cat_idx].as_matrix(), axis=1) gen_vals = np.argmax(df_gen.iloc[:, cat_idx].as_matrix(), axis=1) x_hist = np.histogram(x_vals, np.arange(n_var+1))[0] x_hist = x_hist/np.sum(x_hist) gen_hist = np.histogram(gen_vals, np.arange(n_var+1))[0] gen_hist = gen_hist/np.sum(gen_hist) pref, suffs = get_pref(scaler.columns[cat_idx]) plt.subplot(2, 2, cnt+1) cnt += 1 obj1 = plt.bar(np.arange(n_var)-0.1, x_hist, width=0.15, color='b', align='center') obj2 = plt.bar(np.arange(n_var)+0.1, gen_hist, width=0.15, color='r', align='center') plt.xticks(np.arange(n_var), suffs, rotation=30, ha='right') plt.title(pref.rstrip('_')) plt.subplots_adjust(hspace=0.4) fig.legend([obj1, obj2], ['real', 'synth'], loc='upper center') def payment_error(df): def payment(p, r, n): r /= 12 return p*(r*(1+r)**n)/((1+r)**n - 1) term = np.array([36 if t36 >= t60 else 60 for t60, t36 in zip(df['term_60months'], df['term_36months'])]) calc = payment(df['loan_amnt'], df['int_rate'], term) df_payment = pd.DataFrame({'Synth installment': df['installment'], 'Calc installment': calc}) df_payment.to_csv('installment.csv', index=False) error = 100* (calc - df['installment'])/calc fig = plt.figure(2) error.plot.hist(ax=fig.gca(), title='% error in payment calculation', range=[-100, 100], bins=50) plt.xlabel('%') def quality_test(df_x, df_gen, scaler): # check means vs. sd df_mean, df_sd = mean_sd(df_x, df_gen) print(df_mean) df_mean.to_csv('mean.csv') print(df_sd) df_sd.to_csv('std.csv') categorical_hist(df_x, df_gen, scaler) payment_error(df_gen) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', default='flow_model.pytorch', help='training RealNVP model') parser.add_argument('--n_samples', default=10000, type=int, help='number of samples to use for reconstruction quality tests') parser.add_argument('--quality', action='store_true', help='run reconstruction quality tests') parser.add_argument('--sensitivity', action='store_true', help='run sensitivity demo') parser.add_argument('--improvement', action='store_true', help='run score improvement demo') args = parser.parse_args(sys.argv[1:]) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) x, y, scaler = load_data('lendingclub', is_tree=False, scaler_type='standardize') x = np.concatenate([x, np.zeros((x.shape[0], 1))], axis=1).astype(np.float32) flow = RealNVP(x.shape[1], device) if device.type == 'cpu': flow.load_state_dict(torch.load(args.model, map_location='cpu')) else: flow.load_state_dict(torch.load(args.model)) flow.to(device) flow.eval() # produce samples x_gen = flow.g(flow.prior.sample((args.n_samples,))).detach().cpu().numpy()[:,:-1] np.save('samples.npy', x_gen) df_x = scaler.as_dataframe(x[:,:-1]) df_gen = fix_df(x_gen, scaler) df_gen.to_csv('real.csv') # reconstruction quality --------------------- if args.quality: quality_test(df_x, df_gen, scaler) # build a model param = {'max_depth': 4, 'silent': 1, 'objective': 'binary:logistic'} num_round = 20 num_train = 35000 bst = xgb.train(param, xgb.DMatrix(x[:num_train], label=y[:num_train]), num_round) pred_val = bst.predict(xgb.DMatrix(x[num_train:])) val_auc = roc_auc_score(y[num_train:], pred_val) print('\nAUC score on val set: {:.03f}'.format(val_auc)) pred_fn = lambda x: bst.predict(xgb.DMatrix(x)) shap_fn = lambda x: bst.predict(xgb.DMatrix(x), pred_contribs=True) inf_fn = lambda x: flow.f(torch.from_numpy(x.astype(np.float32)).to(device))[0].detach().cpu().numpy() gen_fn = lambda z: flow.g(torch.from_numpy(z.astype(np.float32)).to(device)).detach().cpu().numpy() logp_fn = lambda x: flow.log_prob(torch.from_numpy(x.astype(np.float32)).to(device)).detach().cpu().numpy() if args.sensitivity: noise_sd = 0.1 n_nbhrs = 40 i = np.random.randint(num_train, x.shape[0], 1)[0] print('\nSensitivity for sample {:d}'.format(i)) x_test = x[i][None,:] z_test = inf_fn(x_test) z_nbhr = z_test + noise_sd * np.random.randn(n_nbhrs, z_test.shape[1]).astype(np.float32) x_nbhr = gen_fn(z_nbhr) def fixer(x, scaler): """Make fixed np array that is standardized""" x_new = fix_df(x[:,:-1], scaler, return_numpy=True) x_new = scaler.transform(x_new) return np.concatenate([x_new, np.zeros((x_new.shape[0],1), dtype=np.float32)], axis=1) x_nbhr = fixer(x_nbhr, scaler) pred_nbhr = pred_fn(x_nbhr) pred_test = pred_fn(x_test) shap_values = shap_fn(x_test)[0][:-2] best_idx_shap = np.argsort(-np.abs(shap_values))[:10] the_crew_np =
np.concatenate([x_test, x_nbhr], axis=0)
numpy.concatenate
from numpy.core.fromnumeric import transpose import sortedcontainers from pychastic.cached_gaussian import normal import numpy as np import jax.numpy as jnp import math class Wiener: ''' Class for sampling, and memorization of Wiener process. ''' def __init__(self, seed=None): self.sample_points = sortedcontainers.SortedDict() self.sample_points[0.] = { 'w': 0.0, #'zToPrevPoint': 0.0 } self.normal_generator = normal(seed=seed) self.t_max = 0 self.last_w = 0 #@profile def get_w(self, t): ''' Get value of Wiener probess at specified timestamp. Parameters ---------- t: float Time at which the process should be sampled. Has to be non-negative. Returns ------- float Value of Wiener process at time ``t``. Example ------- >>> wiener = Wiener() >>> dW = wiener.get_w(1.0) - wiener.get_w(0.0) >>> dW 0.321 #random value from N(0,1) ''' if not t >= 0: raise ValueError('Illegal (negative?) timestamp') if t in self.sample_points: return self.sample_points[t]['w'] t_max = self.t_max if t > t_max: normal = next(self.normal_generator) next_w = self.last_w + np.sqrt(t-t_max)*normal self.sample_points[t] = {'w': next_w} self.t_max = t self.last_w = next_w else: next_i = self.sample_points.bisect_left(t) next_t = self.sample_points.peekitem(next_i)[0] prev_t = self.sample_points.peekitem(next_i-1)[0] next_w = self.sample_points.peekitem(next_i)[1]['w'] prev_w = self.sample_points.peekitem(next_i-1)[1]['w'] w = prev_w + (t-prev_t)/(next_t-prev_t)*(next_w-prev_w) + next(self.normal_generator)*np.sqrt((next_t-t)*(t-prev_t)/(next_t-prev_t)) assert np.isfinite(w) self.sample_points[t] = {'w': w} return self.sample_points[t]['w'] def get_z(self, t1, t2): raise NotImplementedError class WienerWithZ: ''' Class for sampling, and memorization of Wiener process and first nontrivial Stochastic integral. ''' def __init__(self,seed=None): self.sample_points = sortedcontainers.SortedDict() self.sample_points[0.] = { 'w': 0.0, 'zToPrevPoint': 0.0 } self.normal_generator = normal(seed=seed) def get_w(self,t): ''' Get value of Wiener probess at specified timestamp. Parameters ---------- t: float Time at which the process should be sampled. Has to be non-negative. Returns ------- float Value of Wiener process at time ``t``. Example ------- >>> wiener = WienerWithZ() >>> dW = wiener.get_w(1.0) - wiener.get_w(0.0) >>> dW 0.321 #random value from N(0,1) ''' self.ensure_sample_point(t) return self.sample_points[t]['w'] def get_z(self,t1,t2): ''' Get value of first nontrivial, primitive stochastic integral I(1,0), (Kloden-Platen 10.4.2) .. math :: Z_{t_1}^{t_2} = \int_{t_1}^{t_2} \int_{t_1}^{s_2} dW_{s_1} ds_2 Parameters ---------- t: float Time at which the process should be sampled. Has to be non-negative. Returns ------- float Value of Wiener process at time ``t``. Example ------- >>> wiener = WienerWithZ() >>> dZ = wiener.get_z(0.0,0.1) >>> dZ 0.321 #random value from N(0,1) ''' if t1 >= t2: raise ValueError self.ensure_sample_point(t1) self.ensure_sample_point(t2) Z = 0 w1 = self.sample_points[t1]['w'] it_lower = self.sample_points.irange(t1, t2) it_upper = self.sample_points.irange(t1, t2) next(it_upper) for t_upper in it_upper: t_lower = next(it_lower) Z += self.sample_points[t_upper]['zToPrevPoint'] dt = t_upper-t_lower dw = self.sample_points[t_lower]['w'] - w1 Z += dw*dt return Z def ensure_sample_point(self,t): ''' Ensures ``t`` is in the dictionary of sampled time instances. If not there yet samples new point either to the right of all existing points or inbetween existing points. ''' if t in self.sample_points.keys(): return if t < 0: raise ValueError t_max = self.sample_points.keys()[-1] if t > t_max: #Kloden-Platen 10.4.3 # (4.3) dW = U1 sqrt(dt), dZ = 0.5 dt^(3/2) (U1 + 1/sqrt(3) U2) tmpU1 = next(self.normal_generator) tmpU2 = next(self.normal_generator) tmpdt = t - t_max tmpdW = tmpU1*math.sqrt(tmpdt) tmpdZ = 0.5*math.pow(tmpdt,3.0/2.0)*(tmpU1 + (1.0 / math.sqrt(3))*tmpU2 ) self.sample_points[t] = {'w': self.sample_points[t_max]['w'] + tmpdW, 'zToPrevPoint': tmpdZ} else: #Somewhere inside sampled points next_i = self.sample_points.bisect_left(t) next_t = self.sample_points.peekitem(next_i)[0] prev_t = self.sample_points.peekitem(next_i-1)[0] next_w = self.sample_points.peekitem(next_i)[1]['w'] prev_w = self.sample_points.peekitem(next_i-1)[1]['w'] wt1t3 = next_w - prev_w zt1t3 = self.sample_points.peekitem(next_i)[1]['zToPrevPoint'] (t1,t2,t3) = (prev_t,t,next_t) i1 = t2-t1 i2 = t3-t2 I = t3-t1 varwt1t2 = i1*i2*(i1*i1-i1*i2+i2*i2)/(I*I*I); cov = i1*i1*i2*i2*(i2-i1)/(2*I*I*I); varzt1t2 = i1*i1*i1*i2*i2*i2/(3*I*I*I); (wt1t2, zt1t2) = self._DrawCovaried(varwt1t2,cov,varzt1t2) #Add conditional mean wt1t2 += wt1t3*i1*(i1-2*i2)/(I*I) + zt1t3*6*i1*i2/(I*I*I) zt1t2 += wt1t3*(-1)*i1*i1*i2/(I*I) + zt1t3*i1*i1*(i1+3*i2)/(I*I*I) wt2 = prev_w + wt1t2 #Break Z integration interval into two segments self.sample_points[next_t]['zToPrevPoint'] = ( self.sample_points.peekitem(next_i)[1]['zToPrevPoint'] - zt1t2 - (next_t-t)*(wt2-prev_w)) self.sample_points[t] = {'w' : wt2, 'zToPrevPoint' : zt1t2} def _DrawCovaried(self,xx,xy,yy): ''' Draws x,y from N(0,{{xx,xy},{xy,yy}}) distribution ''' (x,y) = self._DrawCorrelated(xy/math.sqrt(xx*yy)) return (math.sqrt(xx)*x,math.sqrt(yy)*y) def _DrawCorrelated(self,cor): ''' Draws correalted normal samples with correlation ``cor`` ''' z1 = next(self.normal_generator) z2 = next(self.normal_generator) return (math.sqrt(1-cor*cor)*z1 + cor*z2,z2) class VectorWiener: ''' Class for sampling, and memorization of vector valued Wiener process. Parameters ---------- noiseterms : int Dimensionality of the vector process (i.e. number of independent Wiener processes). Example ------- >>> vw = pychastic.wiener.VectorWiener(2) >>> vw.get_w(1) array([0.21,-0.31]) # random, independent from N(0,1) ''' def __init__(self,noiseterms : int): self.sample_points = sortedcontainers.SortedDict() self.noiseterms = noiseterms self.sample_points[0.] = { 'w': np.array([0.0 for x in range(0,noiseterms)]), } self.normal_generator = normal() def get_w(self, t): ''' Get value of Wiener probess at specified timestamp. Parameters ---------- t: float Time at which the process should be sampled. Has to be non-negative. Returns ------- np.array Value of Wiener processes at time ``t``. Example ------- >>> vw = VectorWiener(2) >>> dW = vw.get_w(1.0) - vw.get_w(0.0) >>> dW array([0.321,-0.123]) #random, each from N(0,1) ''' if t < 0: raise ValueError('Negative timestamp') if t in self.sample_points: return self.sample_points[t]['w'] (t_max, last_values) = self.sample_points.peekitem() # last item is default if t > t_max: nvec = self.normal_generator.get_number_of_samples(self.noiseterms) #nvec = np.array([next(self.normal_generator) for x in range(0,self.noiseterms)]) # slow :< w_val = np.array(last_values['w'] + np.sqrt(t-t_max)*nvec) self.sample_points[t] = {'w': w_val} else: #print(f'Called with t {t}, current t_max is {t_max}') #print(self.sample_points) raise NotImplementedError return self.sample_points[t]['w'] def get_commuting_noise(self, t1, t2): ''' Get value of commutative noise matrix (compare Kloden-Platen (10.3.15)) Define :math:`I_{jk}` as .. math :: I_{jk}(t_1,t_2) = \int_{t_1}^{t_2} \int_{t_1}^{s_1} dW_j(s_2) dW_k(s_1) Then for :math:`j \\neq k` .. math :: I_{jk} + I_{kj} = \Delta W_j \Delta W_k Parameters ---------- t1 : float Lower bound of double stochastic integrals t2 : float Upper bound of double stochastic integrals Returns ------- np.array Symmetric square matrix `noiseterms` by `noiseterms` containing :math:`I_{jk}` approximants as components. ''' if t1 < 0 or t2 < 0: raise ValueError if t1 > t2: raise ValueError if (t1 in self.sample_points) and (t2 in self.sample_points): dW = self.sample_points[t2]['w'] - self.sample_points[t1]['w'] dV = self.sample_points[t2]['w'] - self.sample_points[t1]['w'] prod = np.outer(dW,dV) #halfdiag = np.oneslike(prod) - 0.5*np.identity(self.noiseterms) #return prod*halfdiag - (t2-t1)*np.identity(self.noiseterms) return 0.5*prod t_max = self.sample_points.keys()[-1] if t1 > t_max: nvec = self.normal_generator.get_sample(self.noiseterms,n=self.noiseterms) # nvec = np.array([next(self.normal_generator) for x in range(0,self.noiseterms)]) # slow :< self.sample_points[t1] = {'w': self.sample_points[t_max]['w'] + np.sqrt(t1-t_max)*nvec} elif t1 not in self.sample_points: raise NotImplementedError if t2 > t_max: nvec = self.normal_generator.get_sample(self.noiseterms,n=self.noiseterms) # nvec = np.array([next(self.normal_generator) for x in range(0,self.noiseterms)]) # slow :< self.sample_points[t2] = {'w': self.sample_points[t_max]['w'] + np.sqrt(t2-t_max)*nvec} elif t2 not in self.sample_points: raise NotImplementedError dW = self.sample_points[t2]['w'] - self.sample_points[t1]['w'] dV = self.sample_points[t2]['w'] - self.sample_points[t1]['w'] prod = np.outer(dW,dV) #halfdiag = np.oneslike(prod) - 0.5*np.identity(self.noiseterms) #return prod*halfdiag - (t2-t1)*np.identity(self.noiseterms) return 0.5*prod def get_commuting_noise_component(self, t1, t2, j, k): ''' Get value of commutative noise component (compare Kloden-Platen (10.3.15)). Define :math:`I_{jk}` as .. math :: I_{jk}(t_1,t_2) = \int_{t_1}^{t_2} \int_{t_1}^{s_1} dW_j(s_2) dW_k(s_1) Then for :math:`j \\neq k` .. math :: I_{jk} + I_{kj} = \Delta W_j \Delta W_k Parameters ---------- t1 : float Lower bound of double stochastic integrals t2 : float Upper bound of double stochastic integrals j : int Index of the first of Wiener processes k : int Index of the second of Wiener processes Returns ------- float Value of stochastic integral with specified time bounds. ''' if t1 < 0 or t2 < 0: raise ValueError if t1 > t2: raise ValueError if (t1 in self.sample_points) and (t2 in self.sample_points): dW = self.sample_points[t2]['w'][j] - self.sample_points[t1]['w'][j] dV = self.sample_points[t2]['w'][k] - self.sample_points[t1]['w'][k] if j != k: return 0.5*dW*dV else: return 0.5*(dW*dW - (t2-t1)) t_max = self.sample_points.keys()[-1] if t1 > t_max: #nvec = np.array([next(self.normal_generator) for x in range(0,self.noiseterms)]) nvec = self.normal_generator.get_sample(self.noiseterms,n=self.noiseterms) self.sample_points[t1] = {'w': self.sample_points[t_max]['w'] +
np.sqrt(t1-t_max)
numpy.sqrt
import numpy as np import conftest from PathPlanning.DubinsPath import dubins_path_planning np.random.seed(12345) def check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, end_x, end_y, end_yaw): assert (abs(px[0] - start_x) <= 0.01) assert (abs(py[0] - start_y) <= 0.01) assert (abs(pyaw[0] - start_yaw) <= 0.01) assert (abs(px[-1] - end_x) <= 0.01) assert (abs(py[-1] - end_y) <= 0.01) assert (abs(pyaw[-1] - end_yaw) <= 0.01) def check_path_length(px, py, lengths): path_len = sum( [np.hypot(dx, dy) for (dx, dy) in zip(np.diff(px), np.diff(py))]) assert (abs(path_len - sum(lengths)) <= 0.1) def test_1(): start_x = 1.0 # [m] start_y = 1.0 # [m] start_yaw = np.deg2rad(45.0) # [rad] end_x = -3.0 # [m] end_y = -3.0 # [m] end_yaw = np.deg2rad(-45.0) # [rad] curvature = 1.0 px, py, pyaw, mode, lengths = dubins_path_planning.dubins_path_planning( start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature) check_edge_condition(px, py, pyaw, start_x, start_y, start_yaw, end_x, end_y, end_yaw) check_path_length(px, py, lengths) def test_2(): dubins_path_planning.show_animation = False dubins_path_planning.main() def test_3(): N_TEST = 10 for i in range(N_TEST): start_x = (np.random.rand() - 0.5) * 10.0 # [m] start_y = (np.random.rand() - 0.5) * 10.0 # [m] start_yaw = np.deg2rad((np.random.rand() - 0.5) * 180.0) # [rad] end_x = (
np.random.rand()
numpy.random.rand
""" faerun.py ==================================== The main module containing the Faerun class. """ import math import os import copy from typing import Union, Dict, Any, List, Tuple from collections.abc import Iterable import colour import jinja2 import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import Colormap from pandas import DataFrame try: from IPython.display import display, IFrame, FileLink except Exception: pass class Faerun(object): """Creates a faerun object which is an empty plotting surface where layers such as scatter plots can be added.""" def __init__( self, title: str = "", clear_color: str = "#111111", coords: bool = True, coords_color: str = "#888888", coords_box: bool = False, coords_ticks: bool = True, coords_grid: bool = False, coords_tick_count: int = 10, coords_tick_length: float = 2.0, coords_offset: float = 5.0, x_title: str = "", y_title: str = "", show_legend: bool = True, legend_title: str = "Legend", legend_orientation: str = "vertical", legend_number_format: str = "{:.2f}", view: str = "free", scale: float = 750.0, alpha_blending=False, anti_aliasing=True, style: Dict[str, Dict[str, Any]] = {}, impress: str = None, thumbnail_width: int = 250, ): """Constructor for Faerun. Keyword Arguments: title (:obj:`str`, optional): The plot title clear_color (:obj:`str`, optional): The background color of the plot coords (:obj:`bool`, optional): Show the coordinate axes in the plot coords_color (:obj:`str`, optional): The color of the coordinate axes coords_box (:obj:`bool`, optional): Show a box around the coordinate axes coords_tick (:obj:`bool`, optional): Show ticks on coordinate axes coords_grid (:obj:`bool`, optional): Extend ticks to create a grid coords_tick_count (:obj:`int`, optional): The number of ticks to display per axis coords_tick_length (:obj:`float`, optional): The length of the coordinate ticks coords_offset (:obj:`float`, optional): An offset added to the coordinate axes x_title (:obj:`str`, optional): The title of the x-axis y_title (:obj:`str`, optional): The title of the y-axis show_legend (:obj:`bool`, optional): Whether or not to show the legend legend_title (:obj:`str`, optional): The legend title legend_orientation (:obj:`str`, optional): The orientation of the legend ('vertical' or 'horizontal') legend_number_format (:obj:`str`, optional): A format string applied to the numbers displayed in the legend view (:obj:`str`, optional): The view (front, back, top, bottom, left, right, free) scale (:obj:`float`, optional): To what size to scale the coordinates (which are normalized) alpha_blending (:obj:`bool`, optional): Whether to activate alpha blending (required for smoothCircle shader) anti_aliasing (:obj:`bool`, optional): Whether to activate anti-aliasing. Might improve quality at the cost of (substantial) rendering performance style (:obj:`Dict[str, Dict[str, Any]]`, optional): The css styles to apply to the HTML elements impress (:obj:`str`, optional): A short message that is shown on the HTML page thumbnail_width (:obj: `int`, optional): The width of the thumbnail images. Defaults to 250. """ self.title = title self.clear_color = clear_color self.coords = coords self.coords_color = coords_color self.coords_box = coords_box self.coords_ticks = coords_ticks self.coords_grid = coords_grid self.coords_tick_count = coords_tick_count self.coords_tick_length = coords_tick_length self.coords_offset = coords_offset self.x_title = x_title self.y_title = y_title self.show_legend = show_legend self.legend_title = legend_title self.legend_orientation = legend_orientation self.legend_number_format = legend_number_format self.view = view self.scale = scale self.alpha_blending = alpha_blending self.anti_aliasing = anti_aliasing self.style = style self.impress = impress self.thumbnail_width = thumbnail_width self.trees = {} self.trees_data = {} self.scatters = {} self.scatters_data = {} # Defining the default style (css values) default_style = { "legend": { "bottom": "10px", "right": "10px", "padding": "10px", "border": "1px solid #262626", "border-radius": "2px", "background-color": "#111111", "filter": "drop-shadow(0px 0px 10px rgba(0, 0, 0, 0.5))", "color": "#eeeeee", "font-family": "'Open Sans'", }, "selected": { "bottom": "10px", "left": "10px", "padding": "0px", "border": "1px solid #262626", "border-radius": "2px", "background-color": "#111111", "filter": "drop-shadow(0px 0px 10px rgba(0, 0, 0, 0.5))", "color": "#eeeeee", "font-family": "'Open Sans'", }, "controls": { "top": "10px", "right": "10px", "padding": "2px", "border": "1px solid #262626", "border-radius": "2px", "background-color": "#111111", "filter": "drop-shadow(0px 0px 10px rgba(0, 0, 0, 0.5))", "color": "#eeeeee", "font-family": "'Open Sans'", }, "title": { "padding-bottom": "20px", "font-size": "1.0em", "color": "#888888", "font-family": "'Open Sans'", }, "x-axis": { "padding-top": "20px", "font-size": "0.7em", "color": "#888888", "font-family": "'Open Sans'", }, "y-axis": { "padding-bottom": "20px", "font-size": "0.7em", "color": "#888888", "font-family": "'Open Sans'", "transform": "rotate(-90deg)", }, "color-box": {"width": "15px", "height": "15px", "border": "solid 0px"}, "color-stripe": {"width": "15px", "height": "1px", "border": "solid 0px"}, "color-stripe": {"width": "15px", "height": "1px", "border": "solid 0px"}, "crosshair": {"background-color": "#fff"}, } for key, _ in default_style.items(): if key in self.style: default_style[key].update(self.style[key]) self.style = default_style def add_tree( self, name: str, data: Union[dict, DataFrame], mapping: dict = { "from": "from", "to": "to", "x": "x", "y": "y", "z": "z", "c": "c", }, color: str = "#666666", colormap: Union[str, Colormap] = "plasma", fog_intensity: float = 0.0, point_helper: str = None, ): """Add a tree layer to the plot. Arguments: name (:obj:`str`): The name of the layer data (:obj:`dict` or :obj:`DataFrame`): A Python dict or Pandas DataFrame containing the data Keyword Arguments: mapping (:obj:`dict`, optional): The keys which contain the data in the input dict or DataFrame color (:obj:`str`, optional): The default color of the tree colormap (:obj:`str` or :obj:`Colormap`, optional): The name of the colormap (can also be a matplotlib Colormap object) fog_intensity (:obj:`float`, optional): The intensity of the distance fog point_helper (:obj:`str`, optional): The name of the scatter layer to associate with this tree layer (the source of the coordinates) """ if point_helper is None and mapping["z"] not in data: data[mapping["z"]] = [0] * len(data[mapping["x"]]) self.trees[name] = { "name": name, "color": color, "fog_intensity": fog_intensity, "mapping": mapping, "colormap": colormap, "point_helper": point_helper, } self.trees_data[name] = data def add_scatter( self, name: str, data: Union[Dict, DataFrame], mapping: Dict = { "x": "x", "y": "y", "z": "z", "c": "c", "cs": "cs", "s": "s", "labels": "labels", "knn": "knn", }, colormap: Union[str, Colormap, List[str], List[Colormap]] = "plasma", shader: str = "sphere", point_scale: float = 1.0, max_point_size: float = 100.0, fog_intensity: float = 0.0, saturation_limit: Union[float, List[float]] = 0.2, categorical: Union[bool, List[bool]] = False, interactive: bool = True, has_legend: bool = False, legend_title: Union[str, List[str]] = None, legend_labels: Union[Dict, List[Dict]] = None, min_legend_label: Union[str, float, List[str], List[float]] = None, max_legend_label: Union[str, float, List[str], List[float]] = None, series_title: Union[str, List[str]] = None, ondblclick: Union[str, List[str]] = None, selected_labels: Union[List, List[List]] = None, label_index: Union[int, List[int]] = 0, title_index: Union[int, List[int]] = 0, knn: List[List[int]] = [], ): """Add a scatter layer to the plot. Arguments: name (:obj:`str`): The name of the layer data (:obj:`dict` or :obj:`DataFrame`): A Python dict or Pandas DataFrame containing the data Keyword Arguments: mapping (:obj:`dict`, optional): The keys which contain the data in the input dict or the column names in the pandas :obj:`DataFrame` colormap (:obj:`str`, :obj:`Colormap`, :obj:`List[str]`, or :obj:`List[Colormap]` optional): The name of the colormap (can also be a matplotlib Colormap object). A list when visualizing multiple series shader (:obj:`str`, optional): The name of the shader to use for the data point visualization point_scale (:obj:`float`, optional): The relative size of the data points max_point_size (:obj:`int`, optional): The maximum size of the data points when zooming in fog_intensity (:obj:`float`, optional): The intensity of the distance fog saturation_limit (:obj:`float` or :obj:`List[float]`, optional): The minimum saturation to avoid "gray soup". A list when visualizing multiple series categorical (:obj:`bool` or :obj:`List[bool]`, optional): Whether this scatter layer is categorical. A list when visualizing multiple series interactive (:obj:`bool`, optional): Whether this scatter layer is interactive has_legend (:obj:`bool`, optional): Whether or not to draw a legend legend_title (:obj:`str` or :obj:`List[str]`, optional): The title of the legend. A list when visualizing multiple series legend_labels (:obj:`Dict` or :obj:`List[Dict]`, optional): A dict mapping values to legend labels. A list when visualizing multiple series min_legend_label (:obj:`str`, :obj:`float`, :obj:`List[str]` or :obj:`List[float]`, optional): The label used for the miminum value in a ranged (non-categorical) legend. A list when visualizing multiple series max_legend_label (:obj:`str`, :obj:`float`, :obj:`List[str]` or :obj:`List[float]`, optional): The label used for the maximum value in a ranged (non-categorical) legend. A list when visualizing multiple series series_title (:obj:`str` or :obj:`List[str]`, optional): The name of the series (used when multiple properites supplied). A list when visualizing multiple series ondblclick (:obj:`str` or :obj:`List[str]`, optional): A JavaScript snippet that is executed on double-clicking on a data point. A list when visualizing multiple series selected_labels: (:obj:`Dict` or :obj:`List[Dict]`, optional): A list of label values to show in the selected box. A list when visualizing multiple series label_index: (:obj:`int` or :obj:`List[int]`, optional): The index of the label value to use as the actual label (when __ is used to specify multiple values). A list when visualizing multiple series title_index: (:obj:`int` or :obj:`List[int]`, optional): The index of the label value to use as the selected title (when __ is used to specify multiple values). A list when visualizing multiple series """ if mapping["z"] not in data: data[mapping["z"]] = [0] * len(data[mapping["x"]]) if "pandas" in type(data).__module__: data = data.to_dict("list") data_c = data[mapping["c"]] data_cs = data[mapping["c"]] if mapping["cs"] in data else None data_s = data[mapping["s"]] if mapping["s"] in data else None # Check whether the color ("c") are strings if type(data_c[0]) is str: raise ValueError('Strings are not valid values for "c".') # In case there are multiple series defined n_series = 1 if isinstance(data_c[0], Iterable): n_series = len(data_c) else: data_c = [data_c] if data_cs is not None and not isinstance(data_cs[0], Iterable): data_cs = [data_cs] if data_s is not None and not isinstance(data_s[0], Iterable): data_s = [data_s] # Make everything a list that isn't one (or a tuple) colormap = Faerun.make_list(colormap) saturation_limit = Faerun.make_list(saturation_limit) categorical = Faerun.make_list(categorical) legend_title = Faerun.make_list(legend_title) legend_labels = Faerun.make_list(legend_labels, make_list_list=True) min_legend_label = Faerun.make_list(min_legend_label) max_legend_label = Faerun.make_list(max_legend_label) series_title = Faerun.make_list(series_title) ondblclick = Faerun.make_list(ondblclick) selected_labels = Faerun.make_list(selected_labels, make_list_list=True) label_index = Faerun.make_list(label_index) title_index = Faerun.make_list(title_index) # If any argument list is shorter than the number of series, # repeat the last element colormap = Faerun.expand_list(colormap, n_series) saturation_limit = Faerun.expand_list(saturation_limit, n_series) categorical = Faerun.expand_list(categorical, n_series) legend_title = Faerun.expand_list(legend_title, n_series, with_none=True) legend_labels = Faerun.expand_list(legend_labels, n_series, with_none=True) min_legend_label = Faerun.expand_list( min_legend_label, n_series, with_none=True ) max_legend_label = Faerun.expand_list( max_legend_label, n_series, with_none=True ) series_title = Faerun.expand_list(series_title, n_series, with_value="Series") ondblclick = Faerun.expand_list(ondblclick, n_series, with_none=True) selected_labels = Faerun.expand_list(selected_labels, n_series) label_index = Faerun.expand_list(label_index, n_series) title_index = Faerun.expand_list(title_index, n_series) # # The c and cs values in the data are a special case, as they should # # never be expanded # if type(data[mapping["c"]][0]) is not list and prop_len > 1: # prop_len = 1 # elif: # prop_len = len(data[mapping["c"]]) legend = [None] * n_series is_range = [None] * n_series min_c = [None] * n_series max_c = [None] * n_series for s in range(n_series): min_c[s] = float(min(data_c[s])) max_c[s] = float(max(data_c[s])) len_c = len(data_c[s]) if min_legend_label[s] is None: min_legend_label[s] = min_c[s] if max_legend_label[s] is None: max_legend_label[s] = max_c[s] is_range[s] = False if legend_title[s] is None: legend_title[s] = name # Prepare the legend legend[s] = [] if has_legend: legend_values = [] if categorical[s]: if legend_labels[s]: legend_values = legend_labels[s] else: legend_values = [(i, str(i)) for i in sorted(set(data_c[s]))] else: if legend_labels[s]: legend_labels[s].reverse() for value, label in legend_labels[s]: legend_values.append( [(value - min_c[s]) / (max_c[s] - min_c[s]), label] ) else: is_range[s] = True for i, val in enumerate(np.linspace(1.0, 0.0, 99)): legend_values.append( [val, str(data_c[s][int(math.floor(len_c / 100 * i))])] ) cmap = None if isinstance(colormap[s], str): cmap = plt.cm.get_cmap(colormap[s]) else: cmap = colormap[s] for value, label in legend_values: legend[s].append([list(cmap(value)), label]) # Normalize the data to later get the correct colour maps if not categorical[s]: data_c[s] = np.array(data_c[s]) data_c[s] = (data_c[s] - min_c[s]) / (max_c[s] - min_c[s]) if mapping["cs"] in data and len(data_cs) > s: data_cs[s] = np.array(data_cs[s]) min_cs = min(data_cs[s]) max_cs = max(data_cs[s]) # Avoid zero saturation by limiting the lower bound to 0.1 data_cs[s] = 1.0 - np.maximum( saturation_limit[s], np.array((data_cs[s] - min_cs) / (max_cs - min_cs)), ) # Format numbers if parameters are indeed numbers if isinstance(min_legend_label[s], (int, float)): min_legend_label[s] = self.legend_number_format.format( min_legend_label[s] ) if isinstance(max_legend_label[s], (int, float)): max_legend_label[s] = self.legend_number_format.format( max_legend_label[s] ) data[mapping["c"]] = data_c if data_cs: data[mapping["cs"]] = data_cs if data_s: data[mapping["s"]] = data_s self.scatters[name] = { "name": name, "shader": shader, "point_scale": point_scale, "max_point_size": max_point_size, "fog_intensity": fog_intensity, "interactive": interactive, "categorical": categorical, "mapping": mapping, "colormap": colormap, "has_legend": has_legend, "legend_title": legend_title, "legend": legend, "is_range": is_range, "min_c": min_c, "max_c": max_c, "min_legend_label": min_legend_label, "max_legend_label": max_legend_label, "series_title": series_title, "ondblclick": ondblclick, "selected_labels": selected_labels, "label_index": label_index, "title_index": title_index, } self.scatters_data[name] = data def plot( self, file_name: str = "index", path: str = "./", template: str = "default", notebook_height: int = 500, ): """Plots the data to an HTML / JS file. Keyword Arguments: file_name (:obj:`str`, optional): The name of the HTML / JS file path (:obj:`str`, optional): The path to which to write the HTML / JS file template (:obj:`str`, optional): The name or path of the template to use notebook_height: (:obj`int`, optional): The height of the plot when displayed in a jupyter notebook """ self.notebook_height = notebook_height script_path = os.path.dirname(os.path.abspath(__file__)) if template in ["default", "reaction_smiles", "smiles", "url_image"]: template = "template_" + template + ".j2" else: script_path = os.path.dirname(template) html_path = os.path.join(path, file_name + ".html") js_path = os.path.join(path, file_name + ".js") jenv = jinja2.Environment(loader=jinja2.FileSystemLoader(script_path)) has_legend = False for _, value in self.scatters.items(): if value["has_legend"]: has_legend = True break if not self.show_legend: has_legend = False # Drop colormaps before passing them to the document, as they are # not JSON serializable. trees_copy = copy.deepcopy(self.trees) scatters_copy = copy.deepcopy(self.scatters) for key, _ in trees_copy.items(): del trees_copy[key]["colormap"] for key, _ in scatters_copy.items(): del scatters_copy[key]["colormap"] model = { "title": self.title, "file_name": file_name + ".js", "clear_color": self.clear_color, "view": self.view, "coords": str(self.coords).lower(), "coords_color": self.coords_color, "coords_box": str(self.coords_box).lower(), "coords_ticks": str(self.coords_ticks).lower(), "coords_grid": str(self.coords_grid).lower(), "coords_tick_count": self.coords_tick_count, "coords_tick_length": self.coords_tick_length, "coords_offset": self.coords_offset, "x_title": self.x_title, "y_title": self.y_title, "tree_helpers": list(trees_copy.values()), "point_helpers": list(scatters_copy.values()), "has_legend": str(has_legend).lower(), "legend_title": self.legend_title, "legend_orientation": self.legend_orientation, "alpha_blending": str(self.alpha_blending).lower(), "anti_aliasing": str(self.anti_aliasing).lower(), "style": self.style, "impress": self.impress, "in_notebook": Faerun.in_notebook(), "thumbnail_width": self.thumbnail_width, } if Faerun.in_notebook(): model["data"] = self.create_data() else: with open(js_path, "w") as f: f.write(self.create_data()) output_text = jenv.get_template(template).render(model) with open(html_path, "w") as result_file: result_file.write(output_text) if Faerun.in_notebook(): display(IFrame(html_path, width="100%", height=self.notebook_height)) display(FileLink(html_path)) def get_min_max(self) -> tuple: """ Get the minimum an maximum coordinates from this plotter instance Returns: :obj:`tuple`: The minimum and maximum coordinates """ minimum = float("inf") maximum = float("-inf") for name, data in self.scatters_data.items(): mapping = self.scatters[name]["mapping"] min_x = float("inf") min_y = float("inf") min_z = float("inf") max_x = float("-inf") max_y = float("-inf") max_z = float("-inf") if mapping["x"] in data: min_x = min(data[mapping["x"]]) max_x = max(data[mapping["x"]]) if mapping["y"] in data: min_y = min(data[mapping["y"]]) max_y = max(data[mapping["y"]]) if mapping["z"] in data: min_z = min(data[mapping["z"]]) max_z = max(data[mapping["z"]]) minimum = min(minimum, min([min_x, min_y, min_z])) maximum = max(maximum, max([max_x, max_y, max_z])) for name, data in self.trees_data.items(): if self.trees[name]["point_helper"] is None: mapping = self.trees[name]["mapping"] min_x = float("inf") min_y = float("inf") min_z = float("inf") max_x = float("-inf") max_y = float("-inf") max_z = float("-inf") if mapping["x"] in data: min_x = min(data[mapping["x"]]) max_x = max(data[mapping["x"]]) if mapping["y"] in data: min_y = min(data[mapping["y"]]) max_y = max(data[mapping["y"]]) if mapping["z"] in data: min_z = min(data[mapping["z"]]) max_z = max(data[mapping["z"]]) minimum = min(minimum, min([min_x, min_y, min_z])) maximum = max(maximum, max([max_x, max_y, max_z])) return minimum, maximum def create_python_data(self) -> dict: """Returns a Python dict containing the data Returns: :obj:`dict`: The data defined in this Faerun instance """ s = self.scale minimum, maximum = self.get_min_max() diff = maximum - minimum output = {} # Create the data for the scatters for name, data in self.scatters_data.items(): mapping = self.scatters[name]["mapping"] colormaps = self.scatters[name]["colormap"] cmaps = [None] * len(colormaps) for i, colormap in enumerate(colormaps): if isinstance(colormap, str): cmaps[i] = plt.cm.get_cmap(colormap) else: cmaps[i] = colormap output[name] = {} output[name]["meta"] = self.scatters[name] output[name]["type"] = "scatter" output[name]["x"] = np.array( [s * (x - minimum) / diff for x in data[mapping["x"]]], dtype=np.float32 ) output[name]["y"] = np.array( [s * (y - minimum) / diff for y in data[mapping["y"]]], dtype=np.float32 ) output[name]["z"] = np.array( [s * (z - minimum) / diff for z in data[mapping["z"]]], dtype=np.float32 ) if mapping["labels"] in data: # Make sure that the labels are always strings output[name]["labels"] = list(map(str, data[mapping["labels"]])) if mapping["s"] in data: output[name]["s"] = np.array(data[mapping["s"]], dtype=np.float32) output[name]["colors"] = [{}] * len(data[mapping["c"]]) for s in range(len(data[mapping["c"]])): if mapping["cs"] in data: colors = np.array([cmaps[s](x) for x in data[mapping["c"]][s]]) for i, c in enumerate(colors): hsl = np.array(colour.rgb2hsl(c[:3])) hsl[1] = hsl[1] - hsl[1] * data[mapping["cs"]][s][i] colors[i] = np.append(np.array(colour.hsl2rgb(hsl)), 1.0) colors = np.round(colors * 255.0) output[name]["colors"][s]["r"] = np.array( colors[:, 0], dtype=np.float32 ) output[name]["colors"][s]["g"] = np.array( colors[:, 1], dtype=np.float32 ) output[name]["colors"][s]["b"] = np.array( colors[:, 2], dtype=np.float32 ) else: colors = np.array([cmaps[s](x) for x in data[mapping["c"]][s]]) colors = np.round(colors * 255.0) output[name]["colors"][s]["r"] = np.array( colors[:, 0], dtype=np.float32 ) output[name]["colors"][s]["g"] = np.array( colors[:, 1], dtype=np.float32 ) output[name]["colors"][s]["b"] = np.array( colors[:, 2], dtype=np.float32 ) for name, data in self.trees_data.items(): mapping = self.trees[name]["mapping"] point_helper = self.trees[name]["point_helper"] output[name] = {} output[name]["meta"] = self.trees[name] output[name]["type"] = "tree" if point_helper is not None and point_helper in self.scatters_data: scatter = self.scatters_data[point_helper] scatter_mapping = self.scatters[point_helper]["mapping"] x_t = [] y_t = [] z_t = [] for i in range(len(data[mapping["from"]])): x_t.append(scatter[scatter_mapping["x"]][data[mapping["from"]][i]]) x_t.append(scatter[scatter_mapping["x"]][data[mapping["to"]][i]]) y_t.append(scatter[scatter_mapping["y"]][data[mapping["from"]][i]]) y_t.append(scatter[scatter_mapping["y"]][data[mapping["to"]][i]]) z_t.append(scatter[scatter_mapping["z"]][data[mapping["from"]][i]]) z_t.append(scatter[scatter_mapping["z"]][data[mapping["to"]][i]]) output[name]["x"] = np.array( [s * (x - minimum) / diff for x in x_t], dtype=np.float32 ) output[name]["y"] = np.array( [s * (y - minimum) / diff for y in y_t], dtype=np.float32 ) output[name]["z"] = np.array( [s * (z - minimum) / diff for z in z_t], dtype=np.float32 ) else: output[name]["x"] = np.array( [s * (x - minimum) / diff for x in data[mapping["x"]]], dtype=np.float32, ) output[name]["y"] = np.array( [s * (y - minimum) / diff for y in data[mapping["y"]]], dtype=np.float32, ) output[name]["z"] = np.array( [s * (z - minimum) / diff for z in data[mapping["z"]]], dtype=np.float32, ) if mapping["c"] in data: colormap = self.trees[name]["colormap"] cmap = None if isinstance(colormap, str): cmap = plt.cm.get_cmap(colormap) else: cmap = colormap colors = np.array([cmap(x) for x in data[mapping["c"]]]) colors = np.round(colors * 255.0) output[name]["r"] = np.array(colors[:, 0], dtype=np.float32) output[name]["g"] =
np.array(colors[:, 1], dtype=np.float32)
numpy.array
import numpy as np import os import sys import pandas as pd import zipfile import argparse from tqdm import tqdm from utils import * from sklearn.model_selection import train_test_split import h5py np.random.seed(0) def dataset_split(all_images, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) X_train, X_test = train_test_split(all_images, test_size=0.33, random_state=0) X_train = np.asarray(X_train) X_test = np.asarray(X_test) print(X_train.shape, X_test.shape) np.save(os.path.join(output_dir, 'train_ids.npy'), X_train) np.save(os.path.join(output_dir, 'test_ids.npy'), X_test) def find_single_attribute_ind(categories, attribute): # attribute: Target attribute for binary classification index = np.where(np.asarray(categories) == attribute) index = index[0][0] return index def find_attribute_index(categories, attribute): # attribute: Target attribute for binary classification index_main = [] for a in attribute: print(a) index = np.where(np.asarray(categories) == a) index = index[0][0] index_main.append(index) print(index_main) return index_main def save_processed_label_file(df, output_dir, attribute): file_name = ''.join(attribute) + '_binary_classification.txt' df.to_csv(os.path.join(output_dir, file_name), sep=' ', index=None, header=None) print(df.shape) one_line = str(df.shape[0]) + '\n' second_line = ''.join(attribute) + "\n" with open(os.path.join(output_dir, file_name), 'r+') as fp: lines = fp.readlines() # lines is list of line, each element '...\n' lines.insert(0, one_line) # you can use any index if you know the line index lines.insert(1, second_line) fp.seek(0) # file pointer locates at the beginning to write the whole file again fp.writelines(lines) # Write the label file for target attribute binary classification def write_attribute_label_file(df, categories, attribute, output_dir): index_main = find_attribute_index(categories, attribute) # Train File df_temp = df[['Image_Path'] + index_main] save_processed_label_file(df_temp, output_dir, attribute) # Read saved files def read_saved_files(attribute, output_dir, image_dir): file_name = ''.join(attribute) + '_binary_classification.txt' categories, file_names_dict = read_data_file(os.path.join(output_dir, file_name), image_dir) categories = np.asarray(categories).ravel() print(categories) print("Number of images: ", len(file_names_dict.keys())) print("Few image names:") list(file_names_dict.keys())[0:5] label = file_names_dict[list(file_names_dict.keys())[0]] print(type(label)) label = np.asarray(label) print(label.ravel()) def prep_celeba(attributes=[['Smiling'], ['Young'], ['No_Beard'], ['Heavy_Makeup'], ['Black_Hair'], ['Bangs']]): # final paths celebA_dir = os.path.join('data', 'CelebA') image_dir = os.path.join(celebA_dir, 'images') txt_dir = os.path.join(celebA_dir, 'list_attr_celeba.txt') print('Image Dir: ', image_dir) print('Label File: ', txt_dir) # Divide dataset into train and test set all_images = os.listdir(image_dir) dataset_split(all_images, celebA_dir) # Read Label File categories, file_names_dict = read_data_file(txt_dir) categories = np.asarray(categories).ravel() print(categories) print("Number of images: ", len(file_names_dict.keys())) label = file_names_dict[list(file_names_dict.keys())[0]] print(type(label)) label = np.asarray(label) print(label.ravel()) # Create Binary-Classification Data file # Convert the dictionary: attr_list to a dataframe df = pd.DataFrame(file_names_dict).T df['Image_Path'] = df.index for attribute in attributes: write_attribute_label_file(df, categories, attribute, celebA_dir) for attribute in attributes: read_saved_files(attribute, celebA_dir, image_dir) def prep_celeba_biased(): attribute = 'Smiling' # Attribute is Smiling # however, confounded with Young and Blond. # Meaning that positive examples are also Young and Blond # And negative examples are old and dark haired # final paths celebA_dir = os.path.join('data', 'CelebA') image_dir = os.path.join(celebA_dir, 'images') txt_dir = os.path.join(celebA_dir, 'list_attr_celeba.txt') biased_celebA_dir = os.path.join(celebA_dir, 'biased') if not os.path.exists(biased_celebA_dir): os.makedirs(biased_celebA_dir) print('Image Dir: ', image_dir) print('Label File: ', txt_dir) # Read Label File categories, all_file_names_dict = read_data_file(txt_dir) categories = np.asarray(categories).ravel() file_names_dict = {} for img in all_file_names_dict.keys(): smiling = all_file_names_dict[img][find_single_attribute_ind(categories, 'Smiling')] young = all_file_names_dict[img][find_single_attribute_ind(categories, 'Young')] blond = all_file_names_dict[img][find_single_attribute_ind(categories, 'Blond_Hair')] if smiling == young and smiling == blond: file_names_dict.update({img: all_file_names_dict[img]}) print(categories) # Divide dataset into train and test set all_images = list(file_names_dict.keys()) dataset_split(all_images, biased_celebA_dir) print("Number of images: ", len(file_names_dict.keys())) label = file_names_dict[list(file_names_dict.keys())[0]] print(type(label)) label = np.asarray(label) print(label.ravel()) # Create Binary-Classification Data file # Convert the dictionary: attr_list to a dataframe df = pd.DataFrame(file_names_dict).T df['Image_Path'] = df.index write_attribute_label_file(df, categories, [attribute], biased_celebA_dir) def prep_celeba_biased_or(): attribute = 'Smiling' # Attribute is Smiling # however, confounded with Young and Blond. # Meaning that positive examples are either smile + blond or smile+young # And negative examples are not smiling + old + dark haired # final paths celebA_dir = os.path.join('data', 'CelebA') image_dir = os.path.join(celebA_dir, 'images') txt_dir = os.path.join(celebA_dir, 'list_attr_celeba.txt') biased_celebA_dir = os.path.join(celebA_dir, 'biased_or') if not os.path.exists(biased_celebA_dir): os.makedirs(biased_celebA_dir) print('Image Dir: ', image_dir) print('Label File: ', txt_dir) # Read Label File categories, all_file_names_dict = read_data_file(txt_dir) categories = np.asarray(categories).ravel() file_names_dict = {} for img in all_file_names_dict.keys(): smiling = all_file_names_dict[img][find_single_attribute_ind(categories, 'Smiling')] bangs = all_file_names_dict[img][find_single_attribute_ind(categories, 'Bangs')] blond = all_file_names_dict[img][find_single_attribute_ind(categories, 'Blond_Hair')] if smiling == 1: if bangs == 1 or blond == 1: file_names_dict.update({img: all_file_names_dict[img]}) else: if bangs == -1 and blond == -1: if np.random.uniform() < 0.33: file_names_dict.update({img: all_file_names_dict[img]}) print(categories) # Divide dataset into train and test set all_images = list(file_names_dict.keys()) dataset_split(all_images, biased_celebA_dir) print("Number of images: ", len(file_names_dict.keys())) label = file_names_dict[list(file_names_dict.keys())[0]] print(type(label)) label =
np.asarray(label)
numpy.asarray
import matplotlib.pyplot as plt import matplotlib import numpy as np import os, argparse import csv from run1 import get_params_office_world, get_params_traffic_world, get_params_craft_world def smooth(y, box_pts): box = np.ones(box_pts)/box_pts y.append(sum(y[-5:])/len(y[-5:])) y.append(sum(y[-5:]) / len(y[-5:])) y.append(sum(y[-5:]) / len(y[-5:])) y.append(sum(y[-5:]) / len(y[-5:])) y.append(sum(y[-5:]) / len(y[-5:])) y_smooth = np.convolve(y[0:-5], box, mode='same') y_smooth[-1] = y_smooth[-6] y_smooth[-2] = y_smooth[-6] y_smooth[-3] = y_smooth[-6] y_smooth[-4] = y_smooth[-6] y_smooth[-5] = y_smooth[-6] return y_smooth def export_results_traffic_world(task_id, algorithm): files = os.listdir("../plotdata/") step_unit = get_params_traffic_world('../experiments/traffic/tests/ground_truth.txt')[0].num_steps max_step = get_params_traffic_world('../experiments/traffic/tests/ground_truth.txt')[3].total_steps steps = np.linspace(0, max_step, (max_step / step_unit) + 1, endpoint=True) if task_id>0: p25 = [0] p50 = [0] p75 = [0] p25s = [0] p50s = [0] p75s = [0] p25_q = [0] p50_q = [0] p75_q = [0] p25_hrl = [0] p50_hrl = [0] p75_hrl = [0] p25_dqn = [0] p50_dqn = [0] p75_dqn = [0] files_of_interest = list() for file in files: if (("traffic" in file) and (".csv" in file) and (str(task_id) in file)): files_of_interest.append(file) for file in files_of_interest: file_str = ("../plotdata/") + file if 'qlearning' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_q.append(np.percentile(row, 25)) p50_q.append(np.percentile(row, 50)) p75_q.append(np.percentile(row, 75)) elif 'hrl' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_hrl.append(np.percentile(row, 25)) p50_hrl.append(np.percentile(row, 50)) p75_hrl.append(np.percentile(row, 75)) elif 'dqn' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_dqn.append(np.percentile(row, 25)) p50_dqn.append(np.percentile(row, 50)) p75_dqn.append(np.percentile(row, 75)) elif 'rpni' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25.append(np.percentile(row, 25)) p50.append(np.percentile(row, 50)) p75.append(np.percentile(row, 75)) elif 'sat' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25s.append(np.percentile(row, 25)) p50s.append(np.percentile(row, 50)) p75s.append(np.percentile(row, 75)) fig, ax = plt.subplots() fig.set_figheight(6) fig.set_figwidth(8) if algorithm == "jirprpni" or algorithm == "all": p25 = smooth(p25, 5) p50 = smooth(p50, 5) p75 = smooth(p75, 5) steps = np.linspace(0, (len(p25)-1) * step_unit, len(p25), endpoint=True) plt.xlim(0, (len(p25)-1) * step_unit) ax.plot(steps, p25, alpha=0) ax.plot(steps, p50, color='black', label='JIRP RPNI') ax.plot(steps, p75, alpha=0) plt.fill_between(steps, p50, p25, color='black', alpha=0.25) plt.fill_between(steps, p50, p75, color='black', alpha=0.25) if algorithm == "jirpsat" or algorithm == "all": p25s = smooth(p25s, 5) p50s = smooth(p50s, 5) p75s = smooth(p75s, 5) steps = np.linspace(0, (len(p25s)-1) * step_unit, len(p25s), endpoint=True) plt.xlim(0, (len(p25s) - 1) * step_unit) ax.plot(steps, p25s, alpha=0) ax.plot(steps, p50s, color='green', label='JIRP SAT') ax.plot(steps, p75s, alpha=0) plt.fill_between(steps, p50s, p25s, color='green', alpha=0.25) plt.fill_between(steps, p50s, p75s, color='green', alpha=0.25) if algorithm == "qlearning" or algorithm == "all": p25_q = smooth(p25_q, 5) p50_q = smooth(p50_q, 5) p75_q = smooth(p75_q, 5) steps = np.linspace(0, (len(p25_q)-1) * step_unit, len(p25_q), endpoint=True) plt.xlim(0, (len(p25_q) - 1) * step_unit) ax.plot(steps, p25_q, alpha=0) ax.plot(steps, p50_q, color='red', label='QAS') ax.plot(steps, p75_q, alpha=0) plt.fill_between(steps, p50_q, p25_q, color='red', alpha=0.25) plt.fill_between(steps, p50_q, p75_q, color='red', alpha=0.25) if algorithm == "hrl" or algorithm == "all": p25_hrl = smooth(p25_hrl, 5) p50_hrl = smooth(p50_hrl, 5) p75_hrl = smooth(p75_hrl, 5) steps = np.linspace(0, (len(p25_hrl)-1) * step_unit, len(p25_hrl), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_hrl, alpha=0) ax.plot(steps, p50_hrl, color='blue', label='HRL') ax.plot(steps, p75_hrl, alpha=0) plt.fill_between(steps, p50_hrl, p25_hrl, color='blue', alpha=0.25) plt.fill_between(steps, p50_hrl, p75_hrl, color='blue', alpha=0.25) if algorithm == "ddqn" or algorithm == "all": p25_dqn = smooth(p25_dqn, 5) p50_dqn = smooth(p50_dqn, 5) p75_dqn = smooth(p75_dqn, 5) steps = np.linspace(0, (len(p25_dqn)-1) * step_unit, len(p25_dqn), endpoint=True) plt.xlim(0, (len(p25_dqn)-1) * step_unit) ax.plot(steps, p25_dqn, alpha=0) ax.plot(steps, p50_dqn, color='purple', label='D-DQN') ax.plot(steps, p75_dqn, alpha=0) plt.fill_between(steps, p50_dqn, p25_dqn, color='purple', alpha=0.25) plt.fill_between(steps, p50_dqn, p75_dqn, color='purple', alpha=0.25) ax.grid() ax.set_xlabel('number of training steps', fontsize=22) ax.set_ylabel('reward', fontsize=22) plt.ylim(-0.1, 1.1) if algorithm == "all": plt.xlim(0,max_step) plt.locator_params(axis='x', nbins=5) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) plt.gcf().subplots_adjust(bottom=0.15) plt.gca().legend(('', 'JIRP RPNI', '', '', 'JIRP SAT', '', '', 'QAS', '', '', 'D-DQN','','','HRL', '')) plt.legend(loc='upper right', bbox_to_anchor=(1, 0.8), prop={'size': 14}) ax.tick_params(axis='both', which='major', labelsize=22) plt.savefig('../plotdata/figure.png', dpi=600) plt.show() else: step = 0 p25dict = dict() p50dict = dict() p75dict = dict() p25sdict = dict() p50sdict = dict() p75sdict = dict() p25_qdict = dict() p50_qdict = dict() p75_qdict = dict() p25_hrldict = dict() p50_hrldict = dict() p75_hrldict = dict() p25_dqndict = dict() p50_dqndict = dict() p75_dqndict = dict() p25 = list() p50 = list() p75 = list() p25s = list() p50s = list() p75s = list() p25_q = list() p50_q = list() p75_q = list() p25_hrl = list() p50_hrl = list() p75_hrl = list() p25_dqn = list() p50_dqn = list() p75_dqn = list() p25dict[0] = [0,0,0,0] p50dict[0] = [0,0,0,0] p75dict[0] = [0,0,0,0] p25sdict[0] = [0,0,0,0] p50sdict[0] = [0,0,0,0] p75sdict[0] = [0,0,0,0] p25_qdict[0] = [0,0,0,0] p50_qdict[0] = [0,0,0,0] p75_qdict[0] = [0,0,0,0] p25_hrldict[0] = [0,0,0,0] p50_hrldict[0] = [0,0,0,0] p75_hrldict[0] = [0,0,0,0] p25_dqndict[0] = [0,0,0,0] p50_dqndict[0] = [0,0,0,0] p75_dqndict[0] = [0,0,0,0] files_dict = dict() for file in files: if (("traffic" in file) and (".csv" in file)): if "1" in file: task = 1 if "2" in file: task = 2 if "3" in file: task = 3 if "4" in file: task = 4 if task not in files_dict: files_dict[task] = [file] else: files_dict[task].append(file) for task in files_dict: for file in files_dict[task]: file_str = ("../plotdata/") + file if 'qlearning' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_qdict: p25_qdict[step].append(np.percentile(row, 25)) p50_qdict[step].append(np.percentile(row, 50)) p75_qdict[step].append(np.percentile(row, 75)) else: p25_qdict[step] = [np.percentile(row, 25)] p50_qdict[step] = [np.percentile(row, 50)] p75_qdict[step] = [np.percentile(row, 75)] elif 'hrl' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_hrldict: p25_hrldict[step].append(np.percentile(row, 25)) p50_hrldict[step].append(np.percentile(row, 50)) p75_hrldict[step].append(np.percentile(row, 75)) else: p25_hrldict[step] = [np.percentile(row, 25)] p50_hrldict[step] = [np.percentile(row, 50)] p75_hrldict[step] = [np.percentile(row, 75)] elif 'dqn' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_dqndict: p25_dqndict[step].append(np.percentile(row, 25)) p50_dqndict[step].append(np.percentile(row, 50)) p75_dqndict[step].append(np.percentile(row, 75)) else: p25_dqndict[step] = [np.percentile(row, 25)] p50_dqndict[step] = [np.percentile(row, 50)] p75_dqndict[step] = [np.percentile(row, 75)] elif 'rpni' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25dict: p25dict[step].append(np.percentile(row, 25)) p50dict[step].append(np.percentile(row, 50)) p75dict[step].append(np.percentile(row, 75)) else: p25dict[step] = [np.percentile(row, 25)] p50dict[step] = [np.percentile(row, 50)] p75dict[step] = [np.percentile(row, 75)] elif 'sat' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25sdict: p25sdict[step].append(np.percentile(row, 25)) p50sdict[step].append(np.percentile(row, 50)) p75sdict[step].append(np.percentile(row, 75)) else: p25sdict[step] = [np.percentile(row, 25)] p50sdict[step] = [np.percentile(row, 50)] p75sdict[step] = [np.percentile(row, 75)] for step in steps: if step in p25_qdict: p25_q.append(sum(p25_qdict[step]) / len(p25_qdict[step])) p50_q.append(sum(p50_qdict[step]) / len(p50_qdict[step])) p75_q.append(sum(p75_qdict[step]) / len(p75_qdict[step])) if step in p25_hrldict: p25_hrl.append(sum(p25_hrldict[step]) / len(p25_hrldict[step])) p50_hrl.append(sum(p50_hrldict[step]) / len(p50_hrldict[step])) p75_hrl.append(sum(p75_hrldict[step]) / len(p75_hrldict[step])) if step in p25dict: p25.append(sum(p25dict[step]) / len(p25dict[step])) p50.append(sum(p50dict[step]) / len(p50dict[step])) p75.append(sum(p75dict[step]) / len(p75dict[step])) if step in p25sdict: p25s.append(sum(p25sdict[step]) / len(p25sdict[step])) p50s.append(sum(p50sdict[step]) / len(p50sdict[step])) p75s.append(sum(p75sdict[step]) / len(p75sdict[step])) if step in p25_dqndict: p25_dqn.append(sum(p25_dqndict[step]) / len(p25_dqndict[step])) p50_dqn.append(sum(p50_dqndict[step]) / len(p50_dqndict[step])) p75_dqn.append(sum(p75_dqndict[step]) / len(p75_dqndict[step])) fig, ax = plt.subplots() fig.set_figheight(6) fig.set_figwidth(8) if algorithm == "jirprpni" or algorithm == "all": p25 = smooth(p25, 5) p50 = smooth(p50, 5) p75 = smooth(p75, 5) steps = np.linspace(0, (len(p25) - 1) * step_unit, len(p25), endpoint=True) plt.xlim(0, (len(p25) - 1) * step_unit) ax.plot(steps, p25, alpha=0) ax.plot(steps, p50, color='black', label='JIRP RPNI') ax.plot(steps, p75, alpha=0) plt.fill_between(steps, p50, p25, color='black', alpha=0.25) plt.fill_between(steps, p50, p75, color='black', alpha=0.25) if algorithm == "jirpsat" or algorithm == "all": p25s = smooth(p25s, 5) p50s = smooth(p50s, 5) p75s = smooth(p75s, 5) steps = np.linspace(0, (len(p25s) - 1) * step_unit, len(p25s), endpoint=True) plt.xlim(0, (len(p25s) - 1) * step_unit) ax.plot(steps, p25s, alpha=0) ax.plot(steps, p50s, color='green', label='JIRP SAT') ax.plot(steps, p75s, alpha=0) plt.fill_between(steps, p50s, p25s, color='green', alpha=0.25) plt.fill_between(steps, p50s, p75s, color='green', alpha=0.25) if algorithm == "qlearning" or algorithm == "all": p25_q = smooth(p25_q, 5) p50_q = smooth(p50_q, 5) p75_q = smooth(p75_q, 5) steps = np.linspace(0, (len(p25_q) - 1) * step_unit, len(p25_q), endpoint=True) plt.xlim(0, (len(p25_q) - 1) * step_unit) ax.plot(steps, p25_q, alpha=0) ax.plot(steps, p50_q, color='red', label='QAS') ax.plot(steps, p75_q, alpha=0) plt.fill_between(steps, p50_q, p25_q, color='red', alpha=0.25) plt.fill_between(steps, p50_q, p75_q, color='red', alpha=0.25) if algorithm == "ddqn" or algorithm == "all": p25_dqn = smooth(p25_dqn, 5) p50_dqn = smooth(p50_dqn, 5) p75_dqn = smooth(p75_dqn, 5) steps = np.linspace(0, (len(p25_dqn) - 1) * step_unit, len(p25_dqn), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_dqn, alpha=0) ax.plot(steps, p50_dqn, color='purple', label='D-DQN') ax.plot(steps, p75_dqn, alpha=0) plt.fill_between(steps, p50_dqn, p25_dqn, color='purple', alpha=0.25) plt.fill_between(steps, p50_dqn, p75_dqn, color='purple', alpha=0.25) if algorithm == "hrl" or algorithm == "all": p25_hrl = smooth(p25_hrl, 5) p50_hrl = smooth(p50_hrl, 5) p75_hrl = smooth(p75_hrl, 5) steps = np.linspace(0, (len(p25_hrl) - 1) * step_unit, len(p25_hrl), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_hrl, alpha=0) ax.plot(steps, p50_hrl, color='blue', label='HRL') ax.plot(steps, p75_hrl, alpha=0) plt.fill_between(steps, p50_hrl, p25_hrl, color='blue', alpha=0.25) plt.fill_between(steps, p50_hrl, p75_hrl, color='blue', alpha=0.25) ax.grid() ax.set_xlabel('number of training steps', fontsize=22) ax.set_ylabel('reward', fontsize=22) plt.ylim(-0.1, 1.1) plt.xlim(0, max_step) plt.locator_params(axis='x', nbins=5) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) plt.gcf().subplots_adjust(bottom=0.15) plt.gca().legend(('', 'JIRP RPNI', '', '', 'JIRP SAT', '', '', 'QAS', '','','D-DQN','', '', 'HRL', '')) plt.legend(loc='upper right', bbox_to_anchor=(1, 0.8), prop={'size': 14}) ax.tick_params(axis='both', which='major', labelsize=22) plt.savefig('../plotdata/figure.png', dpi=600) plt.show() def export_results_office_world(task_id, algorithm): files = os.listdir("../plotdata/") step_unit = get_params_office_world('../experiments/office/tests/ground_truth.txt')[0].num_steps max_step = get_params_office_world('../experiments/office/tests/ground_truth.txt')[3].total_steps steps = np.linspace(0, max_step, (max_step / step_unit) + 1, endpoint=True) if task_id>0: p25 = [0] p50 = [0] p75 = [0] p25s = [0] p50s = [0] p75s = [0] p25_q = [0] p50_q = [0] p75_q = [0] p25_hrl = [0] p50_hrl = [0] p75_hrl = [0] p25_dqn = [0] p50_dqn = [0] p75_dqn = [0] files_of_interest = list() for file in files: if (("office" in file) and (".csv" in file) and (str(task_id) in file)): files_of_interest.append(file) for file in files_of_interest: file_str = ("../plotdata/") + file if 'qlearning' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_q.append(np.percentile(row, 25)) p50_q.append(np.percentile(row, 50)) p75_q.append(np.percentile(row, 75)) elif 'hrl' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_hrl.append(np.percentile(row, 25)) p50_hrl.append(np.percentile(row, 50)) p75_hrl.append(np.percentile(row, 75)) elif 'dqn' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_dqn.append(np.percentile(row, 25)) p50_dqn.append(np.percentile(row, 50)) p75_dqn.append(np.percentile(row, 75)) elif 'rpni' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25.append(np.percentile(row, 25)) p50.append(np.percentile(row, 50)) p75.append(np.percentile(row, 75)) elif 'sat' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25s.append(np.percentile(row, 25)) p50s.append(np.percentile(row, 50)) p75s.append(np.percentile(row, 75)) fig, ax = plt.subplots() fig.set_figheight(6) fig.set_figwidth(8) if algorithm == "jirprpni" or algorithm == "all": p25 = smooth(p25, 5) p50 = smooth(p50, 5) p75 = smooth(p75, 5) steps = np.linspace(0, (len(p25)-1) * step_unit, len(p25), endpoint=True) plt.xlim(0, (len(p25)-1) * step_unit) ax.plot(steps, p25, alpha=0) ax.plot(steps, p50, color='black', label='JIRP RPNI') ax.plot(steps, p75, alpha=0) plt.fill_between(steps, p50, p25, color='black', alpha=0.25) plt.fill_between(steps, p50, p75, color='black', alpha=0.25) if algorithm == "jirpsat" or algorithm == "all": p25s = smooth(p25s, 5) p50s = smooth(p50s, 5) p75s = smooth(p75s, 5) steps = np.linspace(0, (len(p25s)-1) * step_unit, len(p25s), endpoint=True) plt.xlim(0, (len(p25s) - 1) * step_unit) ax.plot(steps, p25s, alpha=0) ax.plot(steps, p50s, color='green', label='JIRP SAT') ax.plot(steps, p75s, alpha=0) plt.fill_between(steps, p50s, p25s, color='green', alpha=0.25) plt.fill_between(steps, p50s, p75s, color='green', alpha=0.25) if algorithm == "qlearning" or algorithm == "all": p25_q = smooth(p25_q, 5) p50_q = smooth(p50_q, 5) p75_q = smooth(p75_q, 5) steps = np.linspace(0, (len(p25_q)-1) * step_unit, len(p25_q), endpoint=True) plt.xlim(0, (len(p25_q) - 1) * step_unit) ax.plot(steps, p25_q, alpha=0) ax.plot(steps, p50_q, color='red', label='QAS') ax.plot(steps, p75_q, alpha=0) plt.fill_between(steps, p50_q, p25_q, color='red', alpha=0.25) plt.fill_between(steps, p50_q, p75_q, color='red', alpha=0.25) if algorithm == "hrl" or algorithm == "all": p25_hrl = smooth(p25_hrl, 5) p50_hrl = smooth(p50_hrl, 5) p75_hrl = smooth(p75_hrl, 5) steps = np.linspace(0, (len(p25_hrl)-1) * step_unit, len(p25_hrl), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_hrl, alpha=0) ax.plot(steps, p50_hrl, color='blue', label='HRL') ax.plot(steps, p75_hrl, alpha=0) plt.fill_between(steps, p50_hrl, p25_hrl, color='blue', alpha=0.25) plt.fill_between(steps, p50_hrl, p75_hrl, color='blue', alpha=0.25) if algorithm == "ddqn" or algorithm == "all": p25_dqn = smooth(p25_dqn, 5) p50_dqn = smooth(p50_dqn, 5) p75_dqn = smooth(p75_dqn, 5) steps = np.linspace(0, (len(p25_dqn)-1) * step_unit, len(p25_dqn), endpoint=True) plt.xlim(0, (len(p25_dqn)-1) * step_unit) ax.plot(steps, p25_dqn, alpha=0) ax.plot(steps, p50_dqn, color='purple', label='D-DQN') ax.plot(steps, p75_dqn, alpha=0) plt.fill_between(steps, p50_dqn, p25_dqn, color='purple', alpha=0.25) plt.fill_between(steps, p50_dqn, p75_dqn, color='purple', alpha=0.25) ax.grid() ax.set_xlabel('number of training steps', fontsize=22) ax.set_ylabel('reward', fontsize=22) plt.ylim(-0.1, 1.1) plt.xlim(0, max_step) plt.locator_params(axis='x', nbins=5) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) plt.gcf().subplots_adjust(bottom=0.15) plt.gca().legend(('', 'JIRP RPNI', '', '', 'JIRP SAT', '', '', 'QAS', '', '','D-DQN','','', 'HRL', '')) plt.legend(loc='upper right', bbox_to_anchor=(1, 0.8), prop={'size': 14}) ax.tick_params(axis='both', which='major', labelsize=22) plt.savefig('../plotdata/figure.png', dpi=600) plt.show() else: step = 0 p25dict = dict() p50dict = dict() p75dict = dict() p25sdict = dict() p50sdict = dict() p75sdict = dict() p25_qdict = dict() p50_qdict = dict() p75_qdict = dict() p25_hrldict = dict() p50_hrldict = dict() p75_hrldict = dict() p25_dqndict = dict() p50_dqndict = dict() p75_dqndict = dict() p25 = list() p50 = list() p75 = list() p25s = list() p50s = list() p75s = list() p25_q = list() p50_q = list() p75_q = list() p25_hrl = list() p50_hrl = list() p75_hrl = list() p25_dqn = list() p50_dqn = list() p75_dqn = list() p25dict[0] = [0,0,0,0] p50dict[0] = [0,0,0,0] p75dict[0] = [0,0,0,0] p25sdict[0] = [0,0,0,0] p50sdict[0] = [0,0,0,0] p75sdict[0] = [0,0,0,0] p25_qdict[0] = [0,0,0,0] p50_qdict[0] = [0,0,0,0] p75_qdict[0] = [0,0,0,0] p25_hrldict[0] = [0,0,0,0] p50_hrldict[0] = [0,0,0,0] p75_hrldict[0] = [0,0,0,0] p25_dqndict[0] = [0,0,0,0] p50_dqndict[0] = [0,0,0,0] p75_dqndict[0] = [0,0,0,0] files_dict = dict() for file in files: if (("office" in file) and (".csv" in file)): if "1" in file: task = 1 if "2" in file: task = 2 if "3" in file: task = 3 if "4" in file: task = 4 if task not in files_dict: files_dict[task] = [file] else: files_dict[task].append(file) for task in files_dict: for file in files_dict[task]: file_str = ("../plotdata/") + file if 'qlearn' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_qdict: p25_qdict[step].append(np.percentile(row, 25)) p50_qdict[step].append(np.percentile(row, 50)) p75_qdict[step].append(np.percentile(row, 75)) else: p25_qdict[step] = [np.percentile(row, 25)] p50_qdict[step] = [np.percentile(row, 50)] p75_qdict[step] = [np.percentile(row, 75)] elif 'hrl' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_hrldict: p25_hrldict[step].append(np.percentile(row, 25)) p50_hrldict[step].append(np.percentile(row, 50)) p75_hrldict[step].append(np.percentile(row, 75)) else: p25_hrldict[step] = [np.percentile(row, 25)] p50_hrldict[step] = [np.percentile(row, 50)] p75_hrldict[step] = [np.percentile(row, 75)] elif 'dqn' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_dqndict: p25_dqndict[step].append(np.percentile(row, 25)) p50_dqndict[step].append(np.percentile(row, 50)) p75_dqndict[step].append(np.percentile(row, 75)) else: p25_dqndict[step] = [np.percentile(row, 25)] p50_dqndict[step] = [np.percentile(row, 50)] p75_dqndict[step] = [np.percentile(row, 75)] elif 'rpni' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25dict: p25dict[step].append(np.percentile(row, 25)) p50dict[step].append(np.percentile(row, 50)) p75dict[step].append(np.percentile(row, 75)) else: p25dict[step] = [np.percentile(row, 25)] p50dict[step] = [np.percentile(row, 50)] p75dict[step] = [np.percentile(row, 75)] elif 'sat' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25sdict: p25sdict[step].append(np.percentile(row, 25)) p50sdict[step].append(np.percentile(row, 50)) p75sdict[step].append(np.percentile(row, 75)) else: p25sdict[step] = [np.percentile(row, 25)] p50sdict[step] = [np.percentile(row, 50)] p75sdict[step] = [np.percentile(row, 75)] for step in steps: if step in p25_qdict: p25_q.append(sum(p25_qdict[step])/len(p25_qdict[step])) p50_q.append(sum(p50_qdict[step])/len(p50_qdict[step])) p75_q.append(sum(p75_qdict[step])/len(p75_qdict[step])) if step in p25_hrldict: p25_hrl.append(sum(p25_hrldict[step])/len(p25_hrldict[step])) p50_hrl.append(sum(p50_hrldict[step])/len(p50_hrldict[step])) p75_hrl.append(sum(p75_hrldict[step])/len(p75_hrldict[step])) if step in p25dict: p25.append(sum(p25dict[step])/len(p25dict[step])) p50.append(sum(p50dict[step])/len(p50dict[step])) p75.append(sum(p75dict[step])/len(p75dict[step])) if step in p25sdict: p25s.append(sum(p25sdict[step])/len(p25sdict[step])) p50s.append(sum(p50sdict[step])/len(p50sdict[step])) p75s.append(sum(p75sdict[step])/len(p75sdict[step])) if step in p25_dqndict: p25_dqn.append(sum(p25_dqndict[step]) / len(p25_dqndict[step])) p50_dqn.append(sum(p50_dqndict[step]) / len(p50_dqndict[step])) p75_dqn.append(sum(p75_dqndict[step]) / len(p75_dqndict[step])) fig, ax = plt.subplots() fig.set_figheight(6) fig.set_figwidth(8) if algorithm == "jirprpni" or algorithm == "all": p25 = smooth(p25, 5) p50 = smooth(p50, 5) p75 = smooth(p75, 5) steps = np.linspace(0, (len(p25) - 1) * step_unit, len(p25), endpoint=True) plt.xlim(0, (len(p25) - 1) * step_unit) ax.plot(steps, p25, alpha=0) ax.plot(steps, p50, color='black', label='JIRP RPNI') ax.plot(steps, p75, alpha=0) plt.fill_between(steps, p50, p25, color='black', alpha=0.25) plt.fill_between(steps, p50, p75, color='black', alpha=0.25) if algorithm == "jirpsat" or algorithm == "all": p25s = smooth(p25s, 5) p50s = smooth(p50s, 5) p75s = smooth(p75s, 5) steps = np.linspace(0, (len(p25s) - 1) * step_unit, len(p25s), endpoint=True) plt.xlim(0, (len(p25s) - 1) * step_unit) ax.plot(steps, p25s, alpha=0) ax.plot(steps, p50s, color='green', label='JIRP SAT') ax.plot(steps, p75s, alpha=0) plt.fill_between(steps, p50s, p25s, color='green', alpha=0.25) plt.fill_between(steps, p50s, p75s, color='green', alpha=0.25) if algorithm == "ddqn" or algorithm == "all": p25_dqn = smooth(p25_dqn, 5) p50_dqn = smooth(p50_dqn, 5) p75_dqn = smooth(p75_dqn, 5) steps = np.linspace(0, (len(p25_dqn) - 1) * step_unit, len(p25_dqn), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_dqn, alpha=0) ax.plot(steps, p50_dqn, color='purple', label='D-DQN') ax.plot(steps, p75_dqn, alpha=0) plt.fill_between(steps, p50_dqn, p25_dqn, color='purple', alpha=0.25) plt.fill_between(steps, p50_dqn, p75_dqn, color='purple', alpha=0.25) if algorithm == "qlearning" or algorithm == "all": p25_q = smooth(p25_q, 5) p50_q = smooth(p50_q, 5) p75_q = smooth(p75_q, 5) steps = np.linspace(0, (len(p25_q) - 1) * step_unit, len(p25_q), endpoint=True) plt.xlim(0, (len(p25_q) - 1) * step_unit) ax.plot(steps, p25_q, alpha=0) ax.plot(steps, p50_q, color='red', label='QAS') ax.plot(steps, p75_q, alpha=0) plt.fill_between(steps, p50_q, p25_q, color='red', alpha=0.25) plt.fill_between(steps, p50_q, p75_q, color='red', alpha=0.25) if algorithm == "hrl" or algorithm == "all": p25_hrl = smooth(p25_hrl, 5) p50_hrl = smooth(p50_hrl, 5) p75_hrl = smooth(p75_hrl, 5) steps = np.linspace(0, (len(p25_hrl) - 1) * step_unit, len(p25_hrl), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_hrl, alpha=0) ax.plot(steps, p50_hrl, color='blue', label='HRL') ax.plot(steps, p75_hrl, alpha=0) plt.fill_between(steps, p50_hrl, p25_hrl, color='blue', alpha=0.25) plt.fill_between(steps, p50_hrl, p75_hrl, color='blue', alpha=0.25) ax.grid() ax.set_xlabel('number of training steps', fontsize=22) ax.set_ylabel('reward', fontsize=22) plt.ylim(-0.1, 1.1) if algorithm == "all": plt.xlim(0,max_step) plt.locator_params(axis='x', nbins=5) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) plt.gcf().subplots_adjust(bottom=0.15) plt.gca().legend(('', 'JIRP RPNI', '', '', 'JIRP SAT', '', '', 'QAS', '', '','D-DQN','','', 'HRL', '')) plt.legend(loc='upper right', bbox_to_anchor=(1, 0.32), prop={'size': 14}) ax.tick_params(axis='both', which='major', labelsize=22) plt.savefig('../plotdata/figure.png', dpi=600) plt.show() def export_results_craft_world(task_id, algorithm): files = os.listdir("../plotdata/") step_unit = get_params_craft_world('../experiments/craft/tests/ground_truth.txt')[0].num_steps max_step = get_params_craft_world('../experiments/craft/tests/ground_truth.txt')[3].total_steps steps = np.linspace(0, max_step, (max_step / step_unit) + 1, endpoint=True) if task_id>0: p25 = [0] p50 = [0] p75 = [0] p25s = [0] p50s = [0] p75s = [0] p25_q = [0] p50_q = [0] p75_q = [0] p25_hrl = [0] p50_hrl = [0] p75_hrl = [0] p25_dqn = [0] p50_dqn = [0] p75_dqn = [0] files_of_interest = list() for file in files: if (("craft" in file) and (".csv" in file) and (str(task_id) in file)): files_of_interest.append(file) for file in files_of_interest: file_str = ("../plotdata/") + file if 'qlearning' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_q.append(np.percentile(row,25)) p50_q.append(np.percentile(row,50)) p75_q.append(np.percentile(row,75)) elif 'hrl' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_hrl.append(np.percentile(row,25)) p50_hrl.append(np.percentile(row,50)) p75_hrl.append(np.percentile(row,75)) elif 'dqn' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25_dqn.append(np.percentile(row, 25)) p50_dqn.append(np.percentile(row, 50)) p75_dqn.append(np.percentile(row, 75)) elif 'rpni' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25.append(np.percentile(row,25)) p50.append(np.percentile(row,50)) p75.append(np.percentile(row,75)) elif 'sat' in file: with open(file_str) as csvfile: readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] p25s.append(np.percentile(row,25)) p50s.append(np.percentile(row,50)) p75s.append(np.percentile(row,75)) fig, ax = plt.subplots() fig.set_figheight(6) fig.set_figwidth(8) if algorithm == "jirprpni" or algorithm == "all": p25 = smooth(p25, 5) p50 = smooth(p50, 5) p75 = smooth(p75, 5) steps = np.linspace(0, (len(p25)-1) * step_unit, len(p25), endpoint=True) plt.xlim(0, (len(p25)-1) * step_unit) ax.plot(steps, p25, alpha=0) ax.plot(steps, p50, color='black', label='JIRP RPNI') ax.plot(steps, p75, alpha=0) plt.fill_between(steps, p50, p25, color='black', alpha=0.25) plt.fill_between(steps, p50, p75, color='black', alpha=0.25) if algorithm == "jirpsat" or algorithm == "all": p25s = smooth(p25s, 5) p50s = smooth(p50s, 5) p75s = smooth(p75s, 5) steps = np.linspace(0, (len(p25s)-1) * step_unit, len(p25s), endpoint=True) plt.xlim(0, (len(p25s) - 1) * step_unit) ax.plot(steps, p25s, alpha=0) ax.plot(steps, p50s, color='green', label='JIRP SAT') ax.plot(steps, p75s, alpha=0) plt.fill_between(steps, p50s, p25s, color='green', alpha=0.25) plt.fill_between(steps, p50s, p75s, color='green', alpha=0.25) if algorithm == "qlearning" or algorithm == "all": p25_q = smooth(p25_q, 5) p50_q = smooth(p50_q, 5) p75_q = smooth(p75_q, 5) steps = np.linspace(0, (len(p25_q)-1) * step_unit, len(p25_q), endpoint=True) plt.xlim(0, (len(p25_q) - 1) * step_unit) ax.plot(steps, p25_q, alpha=0) ax.plot(steps, p50_q, color='red', label='QAS') ax.plot(steps, p75_q, alpha=0) plt.fill_between(steps, p50_q, p25_q, color='red', alpha=0.25) plt.fill_between(steps, p50_q, p75_q, color='red', alpha=0.25) if algorithm == "hrl" or algorithm == "all": p25_hrl = smooth(p25_hrl, 5) p50_hrl = smooth(p50_hrl, 5) p75_hrl = smooth(p75_hrl, 5) steps = np.linspace(0, (len(p25_hrl)-1) * step_unit, len(p25_hrl), endpoint=True) plt.xlim(0, (len(p25_hrl) - 1) * step_unit) ax.plot(steps, p25_hrl, alpha=0) ax.plot(steps, p50_hrl, color='blue', label='HRL') ax.plot(steps, p75_hrl, alpha=0) plt.fill_between(steps, p50_hrl, p25_hrl, color='blue', alpha=0.25) plt.fill_between(steps, p50_hrl, p75_hrl, color='blue', alpha=0.25) if algorithm == "ddqn" or algorithm == "all": p25_dqn = smooth(p25_dqn, 5) p50_dqn = smooth(p50_dqn, 5) p75_dqn = smooth(p75_dqn, 5) steps = np.linspace(0, (len(p25_dqn)-1) * step_unit, len(p25_dqn), endpoint=True) plt.xlim(0, (len(p25_dqn)-1) * step_unit) ax.plot(steps, p25_dqn, alpha=0) ax.plot(steps, p50_dqn, color='purple', label='D-DQN') ax.plot(steps, p75_dqn, alpha=0) plt.fill_between(steps, p50_dqn, p25_dqn, color='purple', alpha=0.25) plt.fill_between(steps, p50_dqn, p75_dqn, color='purple', alpha=0.25) ax.grid() if algorithm == "all": plt.xlim(0,max_step) ax.set_xlabel('number of training steps', fontsize=22) ax.set_ylabel('reward', fontsize=22) plt.ylim(-0.1, 1.1) plt.xlim(0, max_step) plt.locator_params(axis='x', nbins=5) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) plt.gcf().subplots_adjust(bottom=0.15) plt.gca().legend(('', 'JIRP RPNI', '', '', 'JIRP SAT', '', '', 'QAS', '','','D-DQN','','', 'HRL', '')) plt.legend(loc='upper right', bbox_to_anchor=(1, 0.8), prop={'size': 14}) ax.tick_params(axis='both', which='major', labelsize=22) plt.savefig('../plotdata/figure.png', dpi=600) plt.show() else: step = 0 p25dict = dict() p50dict = dict() p75dict = dict() p25sdict = dict() p50sdict = dict() p75sdict = dict() p25_qdict = dict() p50_qdict = dict() p75_qdict = dict() p25_hrldict = dict() p50_hrldict = dict() p75_hrldict = dict() p25_dqndict = dict() p50_dqndict = dict() p75_dqndict = dict() p25 = list() p50 = list() p75 = list() p25s = list() p50s = list() p75s = list() p25_q = list() p50_q = list() p75_q = list() p25_hrl = list() p50_hrl = list() p75_hrl = list() p25_dqn = list() p50_dqn = list() p75_dqn = list() p25dict[0] = [0,0,0,0] p50dict[0] = [0,0,0,0] p75dict[0] = [0,0,0,0] p25sdict[0] = [0,0,0,0] p50sdict[0] = [0,0,0,0] p75sdict[0] = [0,0,0,0] p25_qdict[0] = [0,0,0,0] p50_qdict[0] = [0,0,0,0] p75_qdict[0] = [0,0,0,0] p25_hrldict[0] = [0,0,0,0] p50_hrldict[0] = [0,0,0,0] p75_hrldict[0] = [0,0,0,0] p25_dqndict[0] = [0,0,0,0] p50_dqndict[0] = [0,0,0,0] p75_dqndict[0] = [0,0,0,0] files_dict = dict() for file in files: if (("craft" in file) and (".csv" in file)): if "1" in file: task = 1 if "2" in file: task = 2 if "3" in file: task = 3 if "4" in file: task = 4 if task not in files_dict: files_dict[task] = [file] else: files_dict[task].append(file) for task in files_dict: for file in files_dict[task]: file_str = ("../plotdata/") + file if 'qlearning' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_)>1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_qdict: p25_qdict[step].append(np.percentile(row, 25)) p50_qdict[step].append(np.percentile(row, 50)) p75_qdict[step].append(np.percentile(row, 75)) else: p25_qdict[step] = [np.percentile(row, 25)] p50_qdict[step] = [np.percentile(row, 50)] p75_qdict[step] = [np.percentile(row, 75)] elif 'hrl' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_)>1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_hrldict: p25_hrldict[step].append(np.percentile(row, 25)) p50_hrldict[step].append(np.percentile(row, 50)) p75_hrldict[step].append(np.percentile(row, 75)) else: p25_hrldict[step] = [np.percentile(row, 25)] p50_hrldict[step] = [np.percentile(row, 50)] p75_hrldict[step] = [np.percentile(row, 75)] elif 'dqn' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_) > 1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25_dqndict: p25_dqndict[step].append(np.percentile(row, 25)) p50_dqndict[step].append(np.percentile(row, 50)) p75_dqndict[step].append(np.percentile(row, 75)) else: p25_dqndict[step] = [np.percentile(row, 25)] p50_dqndict[step] = [np.percentile(row, 50)] p75_dqndict[step] = [np.percentile(row, 75)] elif 'rpni' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_)>1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25dict: p25dict[step].append(np.percentile(row, 25)) p50dict[step].append(np.percentile(row, 50)) p75dict[step].append(np.percentile(row, 75)) else: p25dict[step] = [np.percentile(row, 25)] p50dict[step] = [np.percentile(row, 50)] p75dict[step] = [np.percentile(row, 75)] elif 'sat' in file: with open(file_str) as csvfile: step = 0 readcsv = csv.reader(csvfile) for row_ in readcsv: if len(row_)>1: row = list(map(int, row_)) else: row = [float(row_[0])] step += step_unit if step in p25sdict: p25sdict[step].append(np.percentile(row, 25)) p50sdict[step].append(np.percentile(row, 50)) p75sdict[step].append(np.percentile(row, 75)) else: p25sdict[step] = [np.percentile(row, 25)] p50sdict[step] = [np.percentile(row, 50)] p75sdict[step] = [
np.percentile(row, 75)
numpy.percentile
# -*- coding: utf-8 -*- """ Module to manipulate, analyze and visualize structural geology data. """ from __future__ import division, print_function from copy import deepcopy import warnings import pickle import numpy as np import matplotlib.pyplot as plt from apsg.helpers import ( KentDistribution, sind, cosd, acosd, asind, atand, atan2d, angle_metric, l2v, getldd, _linear_inverse_kamb, _square_inverse_kamb, _schmidt_count, _kamb_count, _exponential_kamb, ) __all__ = ( "Vec3", "Lin", "Fol", "Pair", "Fault", "Group", "PairSet", "FaultSet", "Cluster", "StereoGrid", "G", "settings", ) # Default module settings (singleton). settings = dict(notation="dd", # Default notation for Fol dd or rhr vec2dd=False, # Show Vec3 as plunge direction and plunge precision=1e-12, # Numerical precision for comparism figsize=(8, 6)) # Default figure size class Vec3(np.ndarray): """ ``Vec3`` is base class to store 3-dimensional vectors derived from ``numpy.ndarray`` on which ``Lin`` and ``Fol`` classes are based. ``Vec3`` support most of common vector algebra using following operators - ``+`` - vector addition - ``-`` - vector subtraction - ``*`` - dot product - ``**`` - cross product - ``abs`` - magnitude (length) of vector Check following methods and properties for additional operations. Args: arr (array_like): Input data that or can be converted to an array. This includes lists, tuples, and ndarrays. When more than one argument is passed (i.e. `inc` is not `None`) `arr` is interpreted as dip direction of the vector in degrees. inc (float): `None` or dip of the vector in degrees. mag (float): The magnitude of the vector if `inc` is not `None`. Returns: ``Vec3`` object Example: >>> v = Vec3([1, -2, 3]) >>> abs(v) 3.7416573867739413 # The dip direction and dip angle of vector with magnitude of 1 and 3. >>> v = Vec3(120, 60) >>> abs(v) 1.0 >>> v = Vec3(120, 60, 3) >>> abs(v) 3.0 """ def __new__(cls, arr, inc=None, mag=1.0): if inc is None: obj = np.asarray(arr).view(cls) else: obj = mag * Lin(arr, inc).view(cls) return obj def __repr__(self): if settings["vec2dd"]: result = "V:{:.0f}/{:.0f}".format(*self.dd) else: result = "V({:.3f}, {:.3f}, {:.3f})".format(*self) return result def __str__(self): return repr(self) def __mul__(self, other): """ Return the dot product of two vectors. """ return np.dot(self, other) # What about `numpy.inner`? def __abs__(self): """ Return the 2-norm or Euclidean norm of vector. """ return np.linalg.norm(self) def __pow__(self, other): """ Return cross product if argument is vector or power of vector. """ if np.isscalar(other): return pow(abs(self), other) else: return self.cross(other) def __eq__(self, other): """ Return `True` if vectors are equal, otherwise `False`. """ if not isinstance(other, self.__class__): return False return self is other or abs(self - other) < settings["precision"] def __ne__(self, other): """ Return `True` if vectors are not equal, otherwise `False`. Overrides the default implementation (unnecessary in Python 3). """ return not self == other def __hash__(self): return NotImplementedError @classmethod def rand(cls): """ Random unit vector from distribution on sphere """ return cls(np.random.randn(3)).uv @property def type(self): """ Return the type of ``self``. """ return type(self) @property def upper(self): """ Return `True` if z-coordinate is negative, otherwise `False`. """ return np.sign(self[2]) < 0 @property def flip(self): """ Return a new vector with inverted `z` coordinate. """ return Vec3((self[0], self[1], -self[2])) @property def uv(self): """ Normalize the vector to unit length. Returns: unit vector of ``self`` Example: >>> u = Vec3([1,1,1]) >>> u.uv V(0.577, 0.577, 0.577) """ return self / abs(self) def cross(self, other): """ Calculate the cross product of two vectors. Args: other: other ``Vec3`` vector Returns: The cross product of `self` and `other`. Example: >>> v = Vec3([1, 0, 0]) >>> u = Vec3([0, 0, 1]) >>> v.cross(u) V(0.000, -1.000, 0.000) """ return Vec3(np.cross(self, other)) def angle(self, other): """ Calculate the angle between two vectors in degrees. Args: other: other ``Vec3`` vector Returns: The angle between `self` and `other` in degrees. Example: >>> v = Vec3([1, 0, 0]) >>> u = Vec3([0, 0, 1]) >>> v.angle(u) 90.0 """ if isinstance(other, Group): return other.angle(self) else: return acosd(np.clip(np.dot(self.uv, other.uv), -1, 1)) def rotate(self, axis, angle): """ Return rotated vector about axis. Args: axis (``Vec3``): axis of rotation angle (float): angle of rotation in degrees Returns: vector represenatation of `self` rotated `angle` degrees about vector `axis`. Rotation is clockwise along axis direction. Example: # Rotate `e1` vector around `z` axis. >>> u = Vec3([1, 0, 0]) >>> z = Vec3([0, 0, 1]) >>> u.rotate(z, 90) V(0.000, 1.000, 0.000) """ e = Vec3(self) # rotate all types as vectors k = axis.uv r = cosd(angle) * e + sind(angle) * k.cross(e) + (1 - cosd(angle)) * k * (k * e) return r.view(type(self)) def proj(self, other): """ Return projection of vector `u` onto vector `v`. Args: other (``Vec3``): other vector Returns: vector representation of `self` projected onto 'other' Example: >> u.proj(v) Note: To project on plane use: `u - u.proj(v)`, where `v` is plane normal. """ r =
np.dot(self, other)
numpy.dot
import os import sys import imp import argparse import time import math import numpy as np from utils import utils from utils.imageprocessing import preprocess from utils.dataset import Dataset from network import Network from evaluation.lfw import LFWTest def main(args): paths = [ r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0002.jpg', r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0003.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\a-000013.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\rgb_2.jpg', r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0002.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\rgb_2.jpg', r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0003.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\rgb_2.jpg', ] print('%d images to load.' % len(paths)) assert(len(paths)>0) # Load model files and config file network = Network() network.load_model(args.model_dir) # network.config.preprocess_train = [] # network.config.preprocess_test = [] images = preprocess(paths, network.config, False) import cv2 # images = np.array([cv2.resize(img, (96, 96)) for img in images]) # images = (images - 128.) / 128. # images = images[..., ::-1] print(images.shape) # print(images[0,:5,:5,0]) # Run forward pass to calculate embeddings mu, sigma_sq = network.extract_feature(images, args.batch_size, verbose=True) print(mu.shape, sigma_sq.shape) print('sigma_sq', np.max(sigma_sq), np.min(sigma_sq), np.mean(sigma_sq), np.exp(np.mean(np.log(sigma_sq)))) log_sigma_sq = np.log(sigma_sq) print('log_sigma_sq', np.max(log_sigma_sq),
np.min(log_sigma_sq)
numpy.min
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Imaging improve: reinit, uncert, rand_norm, rand_splitnorm, rand_pointing, slice, slice_inv_sq, crop, rebin, groupixel smooth, artifact, mask Jy_per_pix_to_MJy_per_sr(improve): header, image, wave iuncert(improve): unc islice(improve): image, wave, filenames, clean icrop(improve): header, image, wave irebin(improve): header, image, wave igroupixel(improve): header, image, wave ismooth(improve): header, image, wave imontage(improve): reproject, reproject_mc, coadd, clean iswarp(improve): footprint, combine, combine_mc, clean iconvolve(improve): spitzer_irs, choker, do_conv, image, wave, filenames, clean cupid(improve): spec_build, sav_build, header, image, wave wmask, wclean, interfill, hextract, hswarp, concatenate """ from tqdm import tqdm, trange import os import math import numpy as np from scipy.io import readsav from scipy.interpolate import interp1d from astropy import wcs from astropy.io import ascii from astropy.table import Table from reproject import reproject_interp, reproject_exact, reproject_adaptive from reproject.mosaicking import reproject_and_coadd import subprocess as SP import warnings # warnings.filterwarnings("ignore", category=RuntimeWarning) # warnings.filterwarnings("ignore", message="Skipping SYSTEM_VARIABLE record") ## Local from utilities import InputError from inout import (fitsext, csvext, ascext, fclean, read_fits, write_fits, savext, write_hdf5, # read_csv, write_csv, read_ascii, ) from arrays import listize, closest, pix2sup, sup2pix from maths import nanavg, bsplinterpol from astrom import fixwcs, get_pc, pix2sr ##----------------------------------------------- ## ## <improve> based tools ## ##----------------------------------------------- class improve: ''' IMage PROcessing VEssel ''' def __init__(self, filIN=None, header=None, image=None, wave=None, wmod=0, verbose=False): ''' self: filIN, wmod, hdr, w, cdelt, pc, cd, Ndim, Nx, Ny, Nw, im, wvl ''' ## INPUTS self.filIN = filIN self.wmod = wmod self.verbose = verbose ## Read image/cube if filIN is not None: ds = read_fits(filIN) self.hdr = ds.header self.im = ds.data self.wvl = ds.wave else: self.hdr = header self.im = image self.wvl = wave if self.im is not None: self.Ndim = self.im.ndim if self.Ndim==3: self.Nw, self.Ny, self.Nx = self.im.shape ## Nw=1 patch if self.im.shape[0]==1: self.Ndim = 2 elif self.Ndim==2: self.Ny, self.Nx = self.im.shape self.Nw = None if self.hdr is not None: hdr = self.hdr.copy() ws = fixwcs(header=hdr, mode='red_dim') self.hdred = ws.header # reduced header self.w = ws.wcs pcdelt = get_pc(wcs=ws.wcs) self.cdelt = pcdelt.cdelt self.pc = pcdelt.pc self.cd = pcdelt.cd if verbose==True: print('<improve> file: ', filIN) print('Raw size (pix): {} * {}'.format(self.Nx, self.Ny)) def reinit(self, filIN=None, header=None, image=None, wave=None, wmod=0, verbose=False): ''' Update init variables ''' ## INPUTS self.filIN = filIN self.wmod = wmod self.verbose = verbose ## Read image/cube if filIN is not None: ds = read_fits(filIN) self.hdr = ds.header self.im = ds.data self.wvl = ds.wave else: self.hdr = header self.im = image self.wvl = wave self.Ndim = self.im.ndim self.hdr['NAXIS'] = self.Ndim if self.Ndim==3: self.Nw, self.Ny, self.Nx = self.im.shape ## Nw=1 patch if self.im.shape[0]==1: self.Ndim = 2 del self.hdr['NAXIS3'] else: self.hdr['NAXIS3'] = self.Nw elif self.Ndim==2: self.Ny, self.Nx = self.im.shape self.Nw = None self.hdr['NAXIS2'] = self.Ny self.hdr['NAXIS1'] = self.Nx hdr = self.hdr.copy() ws = fixwcs(header=hdr, mode='red_dim') self.hdred = ws.header # reduced header self.w = ws.wcs pcdelt = get_pc(wcs=ws.wcs) self.cdelt = pcdelt.cdelt self.pc = pcdelt.pc self.cd = pcdelt.cd if verbose==True: print('<improve> file: ', filIN) print('Image size (pix): {} * {}'.format(self.Nx, self.Ny)) def uncert(self, filOUT=None, filUNC=None, filWGT=None, wfac=1., BG_image=None, BG_weight=None, zerovalue=np.nan): ''' Estimate uncertainties from the background map So made error map is uniform/weighted ------ INPUT ------ filOUT output uncertainty map (FITS) filUNC input uncertainty map (FITS) filWGT input weight map (FITS) wfac multiplication factor for filWGT (Default: 1) BG_image background image array used to generate unc map BG_weight background weight array zerovalue value used to replace zero value (Default: NaN) ------ OUTPUT ------ unc estimated unc map ''' if filUNC is not None: unc = read_fits(filUNC).data else: if BG_image is not None: im = BG_image Ny, Nx = BG_image.shape else: im = self.im Ny = self.Ny Nx = self.Nx Nw = self.Nw ## sigma: std dev of (weighted) flux distribution of bg region if BG_weight is not None: if self.Ndim==3: sigma = np.nanstd(im * BG_weight, axis=(1,2)) elif self.Ndim==2: sigma = np.nanstd(im * BG_weight) else: if self.Ndim==3: sigma = np.nanstd(im, axis=(1,2)) elif self.Ndim==2: sigma = np.nanstd(im) ## wgt: weight map if filWGT is not None: wgt = read_fits(filWGT).data * wfac else: wgt = np.ones(self.im.shape) * wfac ## unc: weighted rms = root of var/wgt if self.Ndim==3: unc = [] for w in range(Nw): unc.append(np.sqrt(1./wgt[w,:,:]) * sigma(w)) unc = np.array(unc) elif self.Ndim==2: unc = np.sqrt(1./wgt) * sigma ## Replace zero values unc[unc==0] = zerovalue self.unc = unc if filOUT is not None: write_fits(filOUT, self.hdr, unc, self.wvl, self.wmod) return unc def rand_norm(self, filUNC=None, unc=None, sigma=1., mu=0.): ''' Add random N(0,1) noise ''' if filUNC is not None: unc = read_fits(filUNC).data if unc is not None: ## unc should have the same dimension with im theta = np.random.normal(mu, sigma, self.im.shape) self.im += theta * unc return self.im def rand_splitnorm(self, filUNC=None, unc=None, sigma=1., mu=0.): ''' Add random SN(0,lam,lam*tau) noise ------ INPUT ------ filUNC 2 FITS files for unc of left & right sides unc 2 uncertainty ndarrays ------ OUTPUT ------ ''' if filUNC is not None: unc = [] for f in filUNC: unc.append(read_fits(f).data) if unc is not None: ## unc[i] should have the same dimension with self.im tau = unc[1]/unc[0] peak = 1/(1+tau) theta = np.random.normal(mu, sigma, self.im.shape) # ~N(0,1) flag = np.random.random(self.im.shape) # ~U(0,1) if self.Ndim==2: for x in range(self.Nx): for y in range(self.Ny): if flag[y,x]<peak[y,x]: self.im[y,x] += -abs(theta[y,x]) * unc[0][y,x] else: self.im[y,x] += abs(theta[y,x]) * unc[1][y,x] elif self.Ndim==3: for x in range(self.Nx): for y in range(self.Ny): for k in range(self.Nw): if flag[k,y,x]<peak[k,y,x]: self.im[k,y,x] += -abs( theta[k,y,x]) * unc[0][k,y,x] else: self.im[k,y,x] += abs( theta[k,y,x]) * unc[1][k,y,x] return self.im def rand_pointing(self, sigma=0, header=None, fill='med', xscale=1, yscale=1, swarp=False, tmpdir=None): ''' Add pointing uncertainty to WCS ------ INPUT ------ sigma pointing accuracy (arcsec) header baseline fill fill value of no data regions after shift 'med': axis median (default) 'avg': axis average 'near': nearest non-NaN value on the same axis float: constant xscale,yscale regrouped super pixel size swarp use SWarp to perform position shifts Default: False (not support supix) ------ OUTPUT ------ ''' if sigma>=0: sigma /= 3600. d_ro = abs(np.random.normal(0., sigma)) # N(0,sigma) d_phi = np.random.random() *2. * np.pi # U(0,2*pi) # d_ro, d_phi = 0.0002, 4.5 # print('d_ro,d_phi = ', d_ro,d_phi) ## New header/WCS if header is None: header = self.hdr wcs = fixwcs(header=header, mode='red_dim').wcs Nx = header['NAXIS1'] Ny = header['NAXIS2'] newheader = header.copy() newheader['CRVAL1'] += d_ro * np.cos(d_phi) newheader['CRVAL2'] += d_ro * np.sin(d_phi) newcs = fixwcs(header=newheader, mode='red_dim').wcs ## Convert world increment to pix increment pix = wcs.all_world2pix(newheader['CRVAL1'], newheader['CRVAL2'], 1) d_x = pix[0] - header['CRPIX1'] d_y = pix[1] - header['CRPIX2'] # print('Near CRPIXn increments: ', d_x, d_y) # val1 = np.array(newcs.all_pix2world(0.5, 0.5, 1)) # d_x, d_y = wcs.all_world2pix(val1[np.newaxis,:], 1)[0] - 0.5 # print('Near (1,1) increments: ', d_x, d_y) oldimage = self.im ## Resampling if swarp: ## Set path of tmp files (SWarp use only) if tmpdir is None: path_tmp = os.getcwd()+'/tmp_swp/' else: path_tmp = tmpdir if not os.path.exists(path_tmp): os.makedirs(path_tmp) ## Works but can be risky since iswarp.combine included rand_pointing... write_fits(path_tmp+'tmp_rand_shift', newheader, self.im, self.wvl) swp = iswarp(refheader=self.hdr, tmpdir=path_tmp) rep = swp.combine(path_tmp+'tmp_rand_shift', combtype='avg', keepedge=True) self.im = rep.data else: if self.Ndim==3: Nxs = math.ceil(Nx/xscale) cube_supx = np.zeros((self.Nw,Ny,Nxs)) frac2 = d_x / xscale f2 = math.floor(frac2) frac1 = 1 - frac2 for xs in range(Nxs): if frac2>=0: x0 = sup2pix(0, xscale, Npix=Nx, origin=0) else: x0 = sup2pix(Nxs-1, xscale, Npix=Nx, origin=0) if fill=='med': fill_value = np.nanmedian(self.im,axis=2) elif fill=='avg': fill_value = np.nanmean(self.im,axis=2) elif fill=='near': fill_value = np.nanmean(self.im[:,:,x0[0]:x0[-1]+1],axis=2) else: fill_value = fill if frac2>=0: if xs>=f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (f2+frac1) * np.nanmean(self.im[:,:,x1[0]:x1[-1]+1],axis=2) if xs>f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (frac2-f2) * np.nanmean(self.im[:,:,x2[0]:x2[-1]+1],axis=2) else: cube_supx[:,:,xs] += (frac2-f2) * fill_value else: cube_supx[:,:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) else: if xs<=Nxs+f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (frac2-f2) * np.nanmean(self.im[:,:,x2[0]:x2[-1]+1],axis=2) if xs<Nxs+f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (f2+frac1) * np.nanmean(self.im[:,:,x1[0]:x1[-1]+1],axis=2) else: cube_supx[:,:,xs] += (f2+frac1) * fill_value else: cube_supx[:,:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) Nys = math.ceil(Ny/yscale) supcube = np.zeros((self.Nw,Nys,Nxs)) frac2 = d_y / yscale f2 = math.floor(frac2) frac1 = 1 - frac2 for ys in range(Nys): if frac2>=0: y0 = sup2pix(0, yscale, Npix=Ny, origin=0) else: y0 = sup2pix(Nys-1, yscale, Npix=Ny, origin=0) if fill=='med': fill_value = np.nanmedian(cube_supx,axis=1) elif fill=='avg': fill_value = np.nanmean(cube_supx,axis=1) elif fill=='near': fill_value = np.nanmean(cube_supx[:,y0[0]:y0[-1]+1,:],axis=1) else: fill_value = fill if frac2>=0: if ys>=f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (f2+frac1) * np.nanmean(cube_supx[:,y1[0]:y1[-1]+1,:],axis=1) if ys>f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (frac2-f2) * np.nanmean(cube_supx[:,y2[0]:y2[-1]+1,:],axis=1) else: supcube[:,ys,:] += (frac2-f2) * fill_value else: supcube[:,ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) else: if ys<=Nys+f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (frac2-f2) * np.nanmean(cube_supx[:,y2[0]:y2[-1]+1,:],axis=1) if ys<Nys+f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (f2+frac1) * np.nanmean(cube_supx[:,y1[0]-1:y1[-1],:],axis=1) else: supcube[:,ys,:] += (f2+frac1) * fill_value else: supcube[:,ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) for x in range(Nx): for y in range(Ny): xs = pix2sup(x, xscale, origin=0) ys = pix2sup(y, yscale, origin=0) self.im[:,y,x] = supcube[:,ys,xs] elif self.Ndim==2: Nxs = math.ceil(Nx/xscale) cube_supx = np.zeros((Ny,Nxs)) frac2 = d_x / xscale f2 = math.floor(frac2) frac1 = 1 - frac2 for xs in range(Nxs): if frac2>=0: x0 = sup2pix(0, xscale, Npix=Nx, origin=0) else: x0 = sup2pix(Nxs-1, xscale, Npix=Nx, origin=0) if fill=='med': fill_value = np.nanmedian(self.im,axis=1) elif fill=='avg': fill_value = np.nanmean(self.im,axis=1) elif fill=='near': fill_value = np.nanmean(self.im[:,x0[0]:x0[-1]+1],axis=1) else: fill_value = fill if frac2>=0: if xs>=f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (f2+frac1) * np.nanmean(self.im[:,x1[0]:x1[-1]+1],axis=1) if xs>f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (frac2-f2) * np.nanmean(self.im[:,x2[0]:x2[-1]+1],axis=1) else: cube_supx[:,xs] += (frac2-f2) * fill_value else: cube_supx[:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) else: if xs<=Nxs+f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (frac2-f2) * np.nanmean(self.im[:,x2[0]:x2[-1]+1],axis=1) if xs<Nxs+f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (f2+frac1) * np.nanmean(self.im[:,x1[0]:x1[-1]+1],axis=1) else: cube_supx[:,xs] += (f2+frac1) * fill_value else: cube_supx[:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) Nys = math.ceil(Ny/yscale) supcube = np.zeros((Nys,Nxs)) frac2 = d_y / yscale f2 = math.floor(frac2) frac1 = 1 - frac2 for ys in range(Nys): if frac2>=0: y0 = sup2pix(0, yscale, Npix=Ny, origin=0) else: y0 = sup2pix(Nys-1, yscale, Npix=Ny, origin=0) if fill=='med': fill_value = np.nanmedian(cube_supx,axis=0) elif fill=='avg': fill_value = np.nanmean(cube_supx,axis=0) elif fill=='near': fill_value = np.nanmean(cube_supx[y0[0]:y0[-1]+1,:],axis=0) else: fill_value = fill if frac2>=0: if ys>=f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[ys,:] += (f2+frac1) * np.nanmean(cube_supx[y1[0]:y1[-1]+1,:],axis=0) if ys>f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[ys,:] += (frac2-f2) * np.nanmean(cube_supx[y2[0]:y2[-1]+1,:],axis=0) else: supcube[ys,:] += (frac2-f2) * fill_value else: supcube[ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) else: if ys<=Nys+f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[ys,:] += (frac2-f2) * np.nanmean(cube_supx[y2[0]:y2[-1]+1,:],axis=0) if ys<Nys+f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[ys,:] += (f2+frac1) * np.nanmean(cube_supx[y1[0]-1:y1[-1],:],axis=0) else: supcube[ys,:] += (f2+frac1) * fill_value else: supcube[ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) for x in range(Nx): for y in range(Ny): xs = pix2sup(x, xscale, origin=0) ys = pix2sup(y, yscale, origin=0) self.im[y,x] = supcube[ys,xs] ## Original NaN mask mask_nan = np.isnan(oldimage) self.im[mask_nan] = np.nan ## Recover new NaN pixels with zeros mask_recover = np.logical_and(np.isnan(self.im), ~mask_nan) self.im[mask_recover] = 0 return self.im def slice(self, filSL, postfix='', ext=''): ## 3D cube slicing slist = [] if self.Ndim==3: # hdr = self.hdr.copy() # for kw in self.hdr.keys(): # if '3' in kw: # del hdr[kw] # hdr['NAXIS'] = 2 for k in range(self.Nw): ## output filename list f = filSL+'_'+'0'*(4-len(str(k)))+str(k)+postfix slist.append(f+ext) write_fits(f, self.hdred, self.im[k,:,:]) # gauss_noise inclu elif self.Ndim==2: f = filSL+'_0000'+postfix slist.append(f+ext) write_fits(f, self.hdred, self.im) # gauss_noise inclu if self.verbose==True: print('Input file is a 2D image which cannot be sliced! ') print('Rewritten with only random noise added (if provided).') return slist def slice_inv_sq(self, filSL, postfix=''): ## Inversed square cube slicing inv_sq = 1./self.im**2 slist = [] if self.Ndim==3: # hdr = self.hdr.copy() # for kw in self.hdr.keys(): # if '3' in kw: # del hdr[kw] # hdr['NAXIS'] = 2 for k in range(self.Nw): ## output filename list f = filSL+'_'+'0'*(4-len(str(k)))+str(k)+postfix slist.append(f) write_fits(f, self.hdred, inv_sq[k,:,:]) # gauss_noise inclu elif self.Ndim==2: f = filSL+'_0000'+postfix slist.append(f) write_fits(f, self.hdred, inv_sq) # gauss_noise inclu return slist def crop(self, filOUT=None, sizpix=None, cenpix=None, sizval=None, cenval=None): ''' If pix and val co-exist, pix will be taken. ------ INPUT ------ filOUT output file sizpix crop size in pix (dx, dy) cenpix crop center in pix (x, y) sizval crop size in deg (dRA, dDEC) -> (dx, dy) cenval crop center in deg (RA, DEC) -> (x, y) ------ OUTPUT ------ self.im cropped image array ''' oldimage = self.im hdr = self.hdr ## Crop center ##------------- if cenpix is None: if cenval is None: raise ValueError('Crop center unavailable! ') else: ## Convert coord try: cenpix = np.array(self.w.all_world2pix(cenval[0], cenval[1], 1)) except wcs.wcs.NoConvergence as e: cenpix = e.best_solution print("Best solution:\n{0}".format(e.best_solution)) print("Achieved accuracy:\n{0}".format(e.accuracy)) print("Number of iterations:\n{0}".format(e.niter)) else: cenval = self.w.all_pix2world(np.array([cenpix]), 1)[0] if not (0<cenpix[0]-0.5<self.Nx and 0<cenpix[1]-0.5<self.Ny): raise ValueError('Crop centre overpassed image border! ') ## Crop size ##----------- if sizpix is None: if sizval is None: raise ValueError('Crop size unavailable! ') else: ## CDELTn needed (Physical increment at the reference pixel) sizpix = np.array(sizval) / abs(self.cdelt) sizpix = np.array([math.floor(n) for n in sizpix]) else: sizval = np.array(sizpix) * abs(self.cdelt) if self.verbose==True: print('----------') print("Crop centre (RA, DEC): [{:.8}, {:.8}]".format(*cenval)) print("Crop size (dRA, dDEC): [{}, {}]\n".format(*sizval)) print("Crop centre (x, y): [{}, {}]".format(*cenpix)) print("Crop size (dx, dy): [{}, {}]".format(*sizpix)) print('----------') ## Lowerleft origin ##------------------ xmin = math.floor(cenpix[0] - sizpix[0]/2.) ymin = math.floor(cenpix[1] - sizpix[1]/2.) xmax = xmin + sizpix[0] ymax = ymin + sizpix[1] if not (xmin>=0 and xmax<=self.Nx and ymin>=0 and ymax<=self.Ny): raise ValueError('Crop region overpassed image border! ') ## OUTPUTS ##--------- ## New image if self.Ndim==3: newimage = oldimage[:, ymin:ymax, xmin:xmax] # gauss_noise inclu ## recover 3D non-reduced header # hdr = read_fits(self.filIN).header elif self.Ndim==2: newimage = oldimage[ymin:ymax, xmin:xmax] # gauss_noise inclu ## Modify header ##--------------- hdr['CRPIX1'] = math.floor(sizpix[0]/2. + 0.5) hdr['CRPIX2'] = math.floor(sizpix[1]/2. + 0.5) hdr['CRVAL1'] = cenval[0] hdr['CRVAL2'] = cenval[1] self.hdr = hdr self.im = newimage ## Write cropped image/cube if filOUT is not None: # comment = "[ICROP]ped at centre: [{:.8}, {:.8}]. ".format(*cenval) # comment = "with size [{}, {}] (pix).".format(*sizpix) write_fits(filOUT, self.hdr, self.im, self.wvl, self.wmod) ## Update self variables self.reinit(header=self.hdr, image=self.im, wave=self.wvl, wmod=self.wmod, verbose=self.verbose) return self.im def rebin(self, pixscale=None, total=False, extrapol=False, filOUT=None): ''' Shrinking (box averaging) or expanding (bilinear interpolation) astro images New/old images collimate on zero point. [REF] IDL lib frebin/hrebin https://idlastro.gsfc.nasa.gov/ftp/pro/astrom/hrebin.pro https://github.com/wlandsman/IDLAstro/blob/master/pro/frebin.pro ------ INPUT ------ pixscale output pixel scale in arcsec/pixel scalar - square pixel tuple - same Ndim with image total Default: False True - sum the non-NaN pixels False - mean extrapol Default: False True - value weighted by non NaN fractions False - NaN if any fraction is NaN filOUT output file ------ OUTPUT ------ newimage rebinned image array ''' oldimage = self.im hdr = self.hdr oldheader = hdr.copy() oldw = self.w # cd = w.pixel_scale_matrix oldcd = self.cd oldcdelt = self.cdelt oldNx = self.Nx oldNy = self.Ny if pixscale is not None: pixscale = listize(pixscale) if len(pixscale)==1: pixscale.extend(pixscale) else: warnings.warn('Non-square pixels present as square on DS9. ' 'WCS will not work either.') ## convert arcsec to degree cdelt = np.array(pixscale) / 3600. ## Expansion (>1) or contraction (<1) in X/Y xratio = cdelt[0] / abs(oldcdelt[0]) yratio = cdelt[1] / abs(oldcdelt[1]) else: pixscale = listize(abs(oldcdelt) * 3600.) xratio = 1. yratio = 1. if self.verbose==True: print('----------') print('The actual map size is {} * {}'.format(self.Nx, self.Ny)) print('The actual pixel scale is {} * {} arcsec'.format(*pixscale)) print('----------') raise InputError('<improve.rebin>', 'No pixscale, nothing has been done!') ## Modify header ##--------------- ## Fix CRVALn crpix1 = hdr['CRPIX1'] crpix2 = hdr['CRPIX2'] hdr['CRPIX1'] = (crpix1 - 0.5) / xratio + 0.5 hdr['CRPIX2'] = (crpix2 - 0.5) / yratio + 0.5 cd = oldcd * [xratio,yratio] hdr['CD1_1'] = cd[0][0] hdr['CD2_1'] = cd[1][0] hdr['CD1_2'] = cd[0][1] hdr['CD2_2'] = cd[1][1] for kw in oldheader.keys(): if 'PC' in kw: del hdr[kw] if 'CDELT' in kw: del hdr[kw] # lam = yratio/xratio # pix_ratio = xratio*yratio Nx = math.ceil(oldNx / xratio) Ny = math.ceil(oldNy / yratio) # Nx = int(oldNx/xratio + 0.5) # Ny = int(oldNy/yratio + 0.5) ## Rebin ##------- ''' ## Ref: poppy(v0.3.4).utils.krebin ## Klaus P's fastrebin from web sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1] return a.reshape(sh).sum(-1).sum(1) ''' if self.Ndim==3: image_newx = np.zeros((self.Nw,oldNy,Nx)) newimage = np.zeros((self.Nw,Ny,Nx)) nanbox = np.zeros((self.Nw,Ny,Nx)) elif self.Ndim==2: image_newx = np.zeros((oldNy,Nx)) newimage = np.zeros((Ny,Nx)) nanbox = np.zeros((Ny,Nx)) ## istart/old1, istop/old2, rstart/new1, rstop/new2 are old grid indices if not extrapol: ## Sample x axis ##--------------- for x in range(Nx): rstart = x * xratio # float istart = int(rstart) # int frac1 = rstart - istart rstop = rstart + xratio # float if int(rstop)<oldNx: ## Full covered new pixels istop = int(rstop) # int frac2 = 1. - (rstop - istop) else: ## Upper edge (value 0 for uncovered frac: frac2) istop = oldNx - 1 # int frac2 = 0 if istart==istop: ## Shrinking case with old pix containing whole new pix (box averaging) if self.Ndim==3: image_newx[:,:,x] = (1.-frac1-frac2) * oldimage[:,:,istart] elif self.Ndim==2: image_newx[:,x] = (1.-frac1-frac2) * oldimage[:,istart] else: ## Other cases (bilinear interpolation) if self.Ndim==3: edges = frac1*oldimage[:,:,istart] + frac2*oldimage[:,:,istop] image_newx[:,:,x] = np.sum(oldimage[:,:,istart:istop+1],axis=2) - edges elif self.Ndim==2: edges = frac1*oldimage[:,istart] + frac2*oldimage[:,istop] image_newx[:,x] = np.sum(oldimage[:,istart:istop+1],axis=1) - edges ## Sample y axis ##--------------- for y in range(Ny): rstart = y * yratio # float istart = int(rstart) # int frac1 = rstart - istart rstop = rstart + yratio # float if int(rstop)<oldNy: ## Full covered new pixels istop = int(rstop) # int frac2 = 1. - (rstop - istop) else: ## Upper edge (value 0 for uncovered frac: frac2) istop = oldNy - 1 # int frac2 = 0 if istart==istop: ## Shrinking case with old pix containing whole new pix (box averaging) if self.Ndim==3: newimage[:,y,:] = (1.-frac1-frac2) * image_newx[:,istart,:] elif self.Ndim==2: newimage[y,:] = (1.-frac1-frac2) * image_newx[istart,:] else: ## Other cases (bilinear interpolation) if self.Ndim==3: edges = frac1*image_newx[:,istart,:] + frac2*image_newx[:,istop,:] newimage[:,y,:] = np.sum(image_newx[:,istart:istop+1,:],axis=1) - edges elif self.Ndim==2: edges = frac1*image_newx[istart,:] + frac2*image_newx[istop,:] newimage[y,:] = np.sum(image_newx[istart:istop+1,:],axis=0) - edges if not total: newimage = newimage / (xratio*yratio) else: ## Sample y axis ##--------------- for y in range(Ny): rstart = y * yratio # float istart = int(rstart) # int frac1 = rstart - istart rstop = rstart + yratio # float if int(rstop)<oldNy: ## Full covered new pixels istop = int(rstop) # int frac2 = 1. - (rstop - istop) else: ## Upper edge (value 0 for uncovered frac: frac2) istop = oldNy - 1 # int frac2 = (rstop - istop) - 1. ## Sample x axis ##--------------- for x in range(Nx): new1 = x * xratio # float old1 = int(new1) # int f1 = new1 - old1 new2 = new1 + xratio # float if int(new2)<oldNx: ## Full covered new pixels old2 = int(new2) # int f2 = 1. - (new2 - old2) else: ## Upper edge (value 0 for uncovered frac: f2) old2 = oldNx - 1 # int f2 = (new2 - old2) - 1. # out frac ## For each pixel (x,y) in new grid, ## find NaNs in old grid and ## recalculate nanbox[w,y,x] taking into account fractions for j in range(istop+1-istart): for i in range(old2+1-old1): ## old y grid if j==0: ybox = 1.-frac1 elif j==istop-istart: if int(rstop)<oldNy: ybox = 1.-frac2 else: ybox = rstop-istop-1. else: ybox = 1. ## old x grid if i==0: xbox = 1.-f1 elif i==old2-old1: if int(new2)<oldNx: xbox = 1.-f2 else: xbox = f2 else: xbox = 1. ## old 2D grid if self.Ndim==3: for w in range(self.Nw): if ~np.isnan(oldimage[w,istart+j,old1+i]): newimage[w,y,x] += oldimage[w,istart+j,old1+i] * ybox * xbox nanbox[w,y,x] += ybox * xbox elif self.Ndim==2: if ~np.isnan(oldimage[istart+j,old1+i]): newimage[y,x] += oldimage[istart+j,old1+i] * ybox * xbox nanbox[y,x] += ybox * xbox if not total: newimage = np.where(nanbox==0, np.nan, newimage/nanbox) newimage[newimage==0] = np.nan if filOUT is not None: write_fits(filOUT, hdr, newimage, self.wvl, self.wmod) ## Update self variables self.reinit(header=hdr, image=newimage, wave=self.wvl, wmod=self.wmod, verbose=self.verbose) if self.verbose==True: print('----------') print('The actual map size is {} * {}'.format(self.Nx, self.Ny)) print('The actual pixel scale is {} * {} arcsec'.format(*pixscale)) print('\n <improve> Rebin [done]') print('----------') return newimage def groupixel(self, xscale=1, yscale=1, filOUT=None): ''' Group a cluster of pixels (with their mean value) ------ INPUT ------ xscale,yscale grouped super pixel size ''' Nxs = math.ceil(self.Nx/xscale) Nys = math.ceil(self.Ny/yscale) if self.Ndim==3: ## Super pixels image_sup = np.zeros((self.Nw,Nys,Nxs)) for xs in range(Nxs): xarr = sup2pix(xs, xscale, Npix=self.Nx, origin=0) for ys in range(Nys): yarr = sup2pix(ys, yscale, Npix=self.Ny, origin=0) im = self.im[:,yarr[0]:yarr[-1]+1,xarr[0]:xarr[-1]+1] image_sup[:,ys,xs] += np.nanmean(im,axis=(1,2)) ## Grouped pixels image_grp = np.zeros((self.Nw,self.Ny,self.Nx)) for x in range(self.Nx): for y in range(self.Ny): xs = pix2sup(x, xscale, origin=0) ys = pix2sup(y, yscale, origin=0) image_grp[:,y,x] = image_sup[:,ys,xs] elif self.Ndim==2: ## Super pixels image_sup = np.zeros((Nys,Nxs)) for xs in range(Nxs): xarr = sup2pix(xs, xscale, Npix=self.Nx, origin=0) for ys in range(Nys): yarr = sup2pix(ys, yscale, Npix=self.Ny, origin=0) im = self.im[yarr[0]:yarr[-1]+1,xarr[0]:xarr[-1]+1] image_sup[ys,xs] += np.nanmean(im) ## Grouped pixels image_grp = np.zeros((self.Ny,self.Nx)) for x in range(self.Nx): for y in range(self.Ny): xs = pix2sup(x, xscale, origin=0) ys = pix2sup(y, yscale, origin=0) image_grp[y,x] = image_sup[ys,xs] if filOUT is not None: write_fits(filOUT, self.hdr, image_grp, self.wvl, self.wmod) ## Update self variables self.reinit(header=self.hdr, image=image_grp, wave=self.wvl, wmod=self.wmod, verbose=self.verbose) return image_grp def smooth(self, smooth=1, wgrid=None, wstart=None, filOUT=None): ''' Smooth wavelengths If shift, not compatible with unc which needs MC propagation ------ INPUT ------ smooth smooth wavelength grid by linear interpolation (Default: 1) wgrid external wavelength grid (Default: None) wstart shift wavelength grid to wstart origin (Default: None) ''' ## Replace wavelength grid if wgrid is not None: wvl = wgrid Nw0 = len(wgrid) else: wvl = self.wvl Nw0 = self.Nw ## Wavelength shift (within original w range) if wstart is not None: wshift = wstart - wvl[0] else: wshift = 0 newave = [] nan_left = 0 nan_right = 0 for k in range(Nw0): if k%smooth==0: w = wvl[k]+wshift ## New wgrid should be within the interpolation range (or give NaNs) newave.append(w) if w<self.wvl[0]: nan_left+=1 elif w>self.wvl[-1]: nan_right+=1 newave = np.array(newave) Nw = len(newave) newcube = np.empty([Nw,self.Ny,self.Nx]) for x in range(self.Nx): for y in range(self.Ny): f = interp1d(self.wvl, self.im[:,y,x], kind='linear') newcube[nan_left:Nw-nan_right,y,x] = f(newave[nan_left:Nw-nan_right]) newcube[:nan_left,y,x] = np.nan newcube[Nw-nan_right:,y,x] = np.nan if filOUT is not None: write_fits(filOUT, self.hdr, newcube, newave, self.wmod) ## Update self variables self.reinit(header=self.hdr, image=newcube, wave=newave, wmod=self.wmod, verbose=self.verbose) return newcube def artifact(self, filUNC=None, BG_image=None, zerovalue=np.nan, wmin=None, wmax=None, lim_unc=1.e2, fltr_pn=None, cmin=5, filOUT=None): ''' Remove spectral artifacts (Interpolate aberrant wavelengths) Anormaly if: abs(v - v_med) / unc > lim_unc ------ INPUT ------ filUNC input uncertainty map (FITS) filOUT output spectral map (FITS) BG_image background image used to generate unc map zerovalue value used to replace zero value (Default:NaN) wmin,wmax wavelength range to clean (float) lim_unc uncertainty dependant factor limit (positive float) fltr_pn positive/negtive filter (Default: None) 'p' - clean only positive aberrant 'n' - clean only negtive aberrant cmin minimum neighboring artifacts ------ OUTPUT ------ im cleaned spectral map ''' im = self.im wvl = self.wvl unc = self.uncert(filUNC=filUNC,BG_image=BG_image,zerovalue=zerovalue) if wmin is None: wmin = wvl[0] iwi = listize(wvl).index(wvl[closest(wvl,wmin)]) if wmax is None: wmax = wvl[-1] iws = listize(wvl).index(wvl[closest(wvl,wmax)]) if lim_unc<0: raise ValueError('lim_unc must be positive!') ## Scan every pixel/spectrum at each wavelength for w in trange(self.Nw, leave=False, desc='<improve> Cleaning spectral artifacts'): if w>=iwi and w<=iws: pix_x = [] pix_y = [] for y in range(self.Ny): for x in range(self.Nx): v_med = np.median(im[iwi:iws,y,x]) dv = (im[w,y,x] - v_med) / unc[w,y,x] if fltr_pn is None or fltr_pn=='p': if dv > lim_unc: pix_x.append(x) pix_y.append(y) if fltr_pn is None or fltr_pn=='n': if dv < -lim_unc: pix_x.append(x) pix_y.append(y) pix_x = np.array(pix_x) pix_y = np.array(pix_y) ## If the neighbors share the feature, not an artifact for ix, x in enumerate(pix_x): counter = 0 for iy, y in enumerate(pix_y): if abs(y-pix_y[ix]+pix_x[iy]-x)<=2: counter += 1 ## max(counter) == 12 if counter<cmin: if w==0: im[w,pix_y[ix],x] = im[w+1,pix_y[ix],x] elif w==self.Nw-1: im[w,pix_y[ix],x] = im[w-1,pix_y[ix],x] else: im[w,pix_y[ix],x] = (im[w-1,pix_y[ix],x]+im[w+1,pix_y[ix],x])/2 # im[w,pix_y[ix],x] = np.median(im[iwi:iws,pix_y[ix],x]) if filOUT is not None: comment = "Cleaned by <improve.artifact>" write_fits(filOUT, self.hdr, im, wvl, COMMENT=comment) return im def mask(self): ''' ''' pass class Jy_per_pix_to_MJy_per_sr(improve): ''' Convert image unit from Jy/pix to MJy/sr ------ INPUT ------ filIN input FITS file filOUT output FITS file ------ OUTPUT ------ ''' def __init__(self, filIN, filOUT=None, wmod=0, verbose=False): super().__init__(filIN, wmod=wmod, verbose=verbose) ## gmean( Jy/MJy / sr/pix ) ufactor = np.sqrt(np.prod(1.e-6/pix2sr(1., self.cdelt))) self.im = self.im * ufactor self.hdr['BUNIT'] = 'MJy/sr' if filOUT is not None: write_fits(filOUT, self.hdr, self.im, self.wvl, self.wmod) def header(self): return self.hdr def image(self): return self.im def wave(self): return self.wvl class iuncert(improve): ''' Generate uncertainties ------ INPUT ------ filIN input map (FITS) filOUT output weight map (FITS) filWGT input weight map (FITS) wfac multiplication factor for filWGT (Default: 1) BG_image background image array BG_weight background weight array zerovalue value to replace zeros (Default: NaN) ------ OUTPUT ------ ''' def __init__(self, filIN, filOUT=None, filWGT=None, wfac=1, BG_image=None, BG_weight=None, zerovalue=np.nan): super().__init__(filIN, wmod=0, verbose=False) self.uncert(filOUT=filOUT, BG_image=BG_image, zerovalue=zerovalue, filWGT=filWGT, wfac=wfac, BG_weight=BG_weight) def unc(self): return self.unc class islice(improve): ''' Slice a cube ------ INPUT ------ filIN input FITS file filSL ouput path+basename filUNC input uncertainty FITS dist unc pdf slicetype Default: None None - normal slices 'inv_sq' - inversed square slices postfix postfix of output slice names ------ OUTPUT ------ self: slist, path_tmp, (filIN, wmod, hdr, w, cdelt, pc, cd, Ndim, Nx, Ny, Nw, im, wvl) ''' def __init__(self, filIN, filSL=None, filUNC=None, dist=None, slicetype=None, postfix=''): super().__init__(filIN) if filSL is None: path_tmp = os.getcwd()+'/tmp_proc/' if not os.path.exists(path_tmp): os.makedirs(path_tmp) filSL = path_tmp+'slice' self.filSL = filSL if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) if slicetype is None: self.slist = self.slice(filSL, postfix) # gauss_noise inclu elif slicetype=='inv_sq': self.slist = self.slice_inv_sq(filSL, postfix) def image(self): return self.im def wave(self): return self.wvl def filenames(self): return self.slist def clean(self, filIN=None): if filIN is not None: fclean(filIN) else: fclean(self.filSL+'*') class icrop(improve): ''' CROP 2D image or 3D cube ''' def __init__(self, filIN, filOUT=None, sizpix=None, cenpix=None, sizval=None, cenval=None, filUNC=None, dist=None, wmod=0, verbose=False): ## slicrop: slice super().__init__(filIN, wmod=wmod, verbose=verbose) if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) im_crop = self.crop(filOUT=filOUT, sizpix=sizpix, cenpix=cenpix, sizval=sizval, cenval=cenval) # gauss_noise inclu def header(self): return self.hdr def image(self): return self.im def wave(self): return self.wvl class irebin(improve): ''' REBIN 2D image or 3D cube ''' def __init__(self, filIN, filOUT=None, pixscale=None, total=False, extrapol=False, filUNC=None, dist=None, wmod=0, verbose=False): super().__init__(filIN, wmod=wmod, verbose=verbose) if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) im_rebin = self.rebin(filOUT=filOUT, pixscale=pixscale, total=total, extrapol=extrapol) def header(self): return self.hdr def image(self): return self.im def wave(self): return self.wvl class igroupixel(improve): ''' GROUP a cluster of PIXELs (with their mean value) ''' def __init__(self, filIN, filOUT=None, xscale=1, yscale=1, wmod=0, verbose=False): super().__init__(filIN, wmod=wmod, verbose=verbose) im_grp = self.groupixel(xscale=xscale, yscale=yscale, filOUT=filOUT) def header(self): return self.hdr def image(self): return self.im def wave(self): return self.wvl class ismooth(improve): ''' SMOOTH wavelengths ''' def __init__(self, filIN, filOUT=None, smooth=1, wgrid=None, wstart=None, wmod=0, verbose=False): super().__init__(filIN, wmod=wmod, verbose=verbose) im_smooth = self.smooth(smooth=smooth, filOUT=filOUT, wgrid=wgrid, wstart=wstart) def header(self): return self.hdr def image(self): return self.im def wave(self): return self.wvl class imontage(improve): ''' 2D image or 3D cube montage toolkit Based on reproject v0.7.1 or later ------ INPUT ------ reproject_function resampling algorithms 'interp': fastest (Default) 'exact': slowest 'adaptive': DeForest2004 tmpdir tmp file path verbose (Default: False) ------ OUTPUT ------ ''' def __init__(self, reproject_function='interp', tmpdir=None, verbose=False): ''' self: func, path_tmp, verbose ''' if reproject_function=='interp': self.func = reproject_interp elif reproject_function=='exact': self.func = reproject_exact elif reproject_function=='adaptive': self.func = reproject_adaptive else: raise InputError('<imontage>', 'Unknown reprojection !') ## Set path of tmp files if tmpdir is None: path_tmp = os.getcwd()+'/tmp_mtg/' else: path_tmp = tmpdir if not os.path.exists(path_tmp): os.makedirs(path_tmp) self.path_tmp = path_tmp ## Verbose if verbose==False: devnull = open(os.devnull, 'w') else: devnull = None self.verbose = verbose self.devnull = devnull def reproject(self, flist, refheader, filOUT=None, dist=None, sig_pt=0, fill_pt='near') : ''' Reproject 2D image or 3D cube ------ INPUT ------ flist FITS files to reproject refheader reprojection header filOUT output FITS file dist uncertainty distribution 'norm' - N(0,1) 'splitnorm' - SN(0,lam,lam*tau) sig_pt pointing accuracy in arcsec (Default: 0) fill_pt fill value of no data regions after shift 'med': axis median 'avg': axis average 'near': nearest non-NaN value on the same axis (default) float: constant ------ OUTPUT ------ images reprojected images ''' flist = listize(flist) # if refheader is None: # raise InputError('<imontage>','No reprojection header!') images = [] for f in flist: super().__init__(f) ## Set tmp and out filename = os.path.basename(f) if filOUT is None: filOUT = self.path_tmp+filename+'_rep' ## Uncertainty propagation if dist=='norm': self.rand_norm(f+'_unc') elif dist=='splitnorm': self.rand_splitnorm([f+'_unc_N', f+'_unc_P']) self.rand_pointing(sig_pt, fill=fill_pt) write_fits(filOUT, self.hdr, self.im, self.wvl, wmod=0) ## Do reprojection ##----------------- im = self.func(filOUT+fitsext, refheader)[0] images.append(im) comment = "Reprojected by <imontage>. " write_fits(filOUT, refheader, im, self.wvl, wmod=0, COMMENT=comment) return images def reproject_mc(self, filIN, refheader, filOUT=None, dist=None, sig_pt=0, fill_pt='near', Nmc=0): ''' Generate Monte-Carlo uncertainties for reprojected input file ''' ds = type('', (), {})() hyperim = [] # [j,(w,)y,x] for j in trange(Nmc+1, leave=False, desc='<imontage> Reprojection [MC]'): if j==0: im0 = self.reproject(filIN, refheader, filOUT)[0] else: hyperim.append( self.reproject(filIN, refheader, filOUT+'_'+str(j), dist, sig_pt, fill_pt)[0] ) im0 = np.array(im0) hyperim = np.array(hyperim) unc = np.nanstd(hyperim, axis=0) comment = "Reprojected by <imontage>. " if Nmc>0: write_fits(filOUT+'_unc', refheader, unc, self.wvl, COMMENT=comment) ds.data = im0 ds.unc = unc ds.hyperdata = hyperim return ds def coadd(self, flist, refheader, filOUT=None, dist=None, sig_pt=0, fill_pt='near', Nmc=0): ''' Reproject and coadd ''' flist = listize(flist) ds = type('', (), {})() comment = "Created by <imontage>" slist = [] # slist[j,if,iw] for j in trange(Nmc+1, leave=False, desc='<imontage> Slicing... [MC]'): sl = [] # sl[f,w] for f in flist: super().__init__(f) ## Set tmp and out filename = os.path.basename(f) if filOUT is None: filOUT = self.path_tmp+filename+'_rep' coadd_tmp = self.path_tmp+filename+'/' if not os.path.exists(coadd_tmp): os.makedirs(coadd_tmp) if j==0: sl.append(self.slice(coadd_tmp+'slice', ext=fitsext)) else: if dist=='norm': self.rand_norm(f+'_unc') elif dist=='splitnorm': self.rand_splitnorm([f+'_unc_N', f+'_unc_P']) self.rand_pointing(sig_pt, fill=fill_pt) sl.append(self.slice(coadd_tmp+'slice', postfix='_'+str(j), ext=fitsext)) slist.append(np.array(sl)) slist = np.array(slist) Nw = self.Nw superim = [] for j in trange(Nmc+1, leave=False, desc='<imontage> Coadding... [MC]'): if j==0: im = [] if self.Ndim==3: for iw in range(Nw): im.append(reproject_and_coadd(slist[j,:,iw], refheader, reproject_function=self.func)[0]) elif self.Ndim==2: im = reproject_and_coadd(slist[j,:,0], refheader, reproject_function=self.func)[0] im = np.array(im) write_fits(filOUT, refheader, im, self.wvl, wmod=0, COMMENT=comment) else: hyperim = [] for iw in range(Nw): hyperim.append(reproject_and_coadd(slist[j,:,iw], refheader, reproject_function=self.func)[0]) superim.append(np.array(hyperim)) write_fits(filOUT+'_'+str(j), refheader, hyperim, self.wvl, wmod=0, COMMENT=comment) superim = np.array(superim) unc = np.nanstd(superim, axis=0) if Nmc>0: write_fits(filOUT+'_unc', refheader, unc, self.wvl, wmod=0, COMMENT=comment) ds.wave = self.wvl ds.data = im ds.unc = unc ds.hyperdata = superim return ds def clean(self, filIN=None): if filIN is not None: fclean(filIN) else: fclean(self.path_tmp) class iswarp(improve): ''' SWarp drop-in image montage toolkit i means <improve>-based Alternative to its fully Python-based twin <imontage> ------ INPUT ------ flist ref FITS files used to make header (footprint) refheader scaling matrix adopted if co-exist with file center center of output image frame None - contains all input fields str('hh:mm:ss,dd:mm:ss') - manual input RA,DEC pixscale pixel scale (arcsec) None - median of pixscale at center input frames float() - in arcseconds verbose default: True tmpdir tmp file path ------ OUTPUT ------ coadd.fits By default, SWarp reprojects all input to a WCS with diag CD matrix. "To implement the unusual output features required, one must write a coadd.head ASCII file that contains a custom anisotropic scaling matrix. " ''' def __init__(self, flist=None, refheader=None, center=None, pixscale=None, verbose=False, tmpdir=None): ''' self: path_tmp, verbose (filIN, wmod, hdr, w, Ndim, Nx, Ny, Nw, im, wvl) ''' if verbose==False: devnull = open(os.devnull, 'w') else: devnull = None self.verbose = verbose self.devnull = devnull ## Set path of tmp files if tmpdir is None: path_tmp = os.getcwd()+'/tmp_swp/' else: path_tmp = tmpdir if not os.path.exists(path_tmp): os.makedirs(path_tmp) self.path_tmp = path_tmp fclean(path_tmp+'coadd*') # remove previous coadd.fits/.head if flist is None: if refheader is None: raise InputError('<iswarp>','No input!') ## Define coadd frame via refheader else: if center is not None or pixscale is not None: warnings.warn('The keywords center and pixscale are dumb. ') self.refheader = refheader else: ## Input files in list object flist = listize(flist) ## Images image_files = ' ' list_ref = [] for i in range(len(flist)): image = read_fits(flist[i]).data hdr = fixwcs(flist[i]+fitsext).header file_ref = flist[i] if image.ndim==3: ## Extract 1st frame of the cube file_ref = path_tmp+os.path.basename(flist[i])+'_ref' write_fits(file_ref, hdr, image[0]) image_files += file_ref+fitsext+' ' # SWarp input str list_ref.append(file_ref+fitsext) # reproject input ## Define coadd frame ##-------------------- ## via SWarp without refheader (isotropic scaling matrix) ## Create config file SP.call('swarp -d > swarp.cfg', shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) ## Config param list swarp_opt = ' -c swarp.cfg -SUBTRACT_BACK N -IMAGEOUT_NAME coadd.ref.fits ' if center is not None: swarp_opt += ' -CENTER_TYPE MANUAL -CENTER '+center if pixscale is not None: swarp_opt += ' -PIXELSCALE_TYPE MANUAL -PIXEL_SCALE '+str(pixscale) if verbose=='quiet': swarp_opt += ' -VERBOSE_TYPE QUIET ' ## Run SWarp SP.call('swarp '+swarp_opt+image_files, shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) self.refheader = read_fits(path_tmp+'coadd.ref').header ## via reproject with refheader (custom anisotropic scaling matrix) if refheader is not None: if center is not None or pixscale is not None: warnings.warn('The keywords center and pixscale are dumb. ') super().__init__(path_tmp+'coadd.ref') pix_old = [[0, 0]] pix_old.append([0, self.Ny]) pix_old.append([self.Nx, 0]) pix_old.append([self.Nx, self.Ny]) world_arr = self.w.all_pix2world(np.array(pix_old), 1) w = fixwcs(header=refheader).wcs try: pix_new = w.all_world2pix(world_arr, 1) except wcs.wcs.NoConvergence as e: pix_new = e.best_solution print("Best solution:\n{0}".format(e.best_solution)) print("Achieved accuracy:\n{0}".format(e.accuracy)) print("Number of iterations:\n{0}".format(e.niter)) xmin = min(pix_new[:,0]) xmax = max(pix_new[:,0]) ymin = min(pix_new[:,1]) ymax = max(pix_new[:,1]) refheader['CRPIX1'] += -xmin refheader['CRPIX2'] += -ymin refheader['NAXIS1'] = math.ceil(xmax - xmin) refheader['NAXIS2'] = math.ceil(ymax - ymin) self.refheader = refheader # fclean(path_tmp+'*ref.fits') def footprint(self, filOUT=None): ''' Save reprojection footprint ''' if filOUT is None: filOUT = self.path_tmp+'footprint' Nx = self.refheader['NAXIS1'] Ny = self.refheader['NAXIS2'] im_fp = np.ones((Ny, Nx)) comment = "<iswarp> footprint" write_fits(filOUT, self.refheader, im_fp, COMMENT=comment) return im_fp def combine(self, flist, combtype='med', keepedge=False, cropedge=False, dist=None, sig_pt=0, fill_pt='near', filOUT=None, tmpdir=None): ''' SWarp combine (coadding/reprojection) ------ INPUT ------ flist input FITS files should have the same wvl combtype combine type 'med' - median (default) 'avg' - average 'wgt_avg' - inverse variance weighted average keepedge default: False cropedge crop the NaN edge of the frame (Default: False) dist add uncertainties (filename+'_unc.fits' needed) sig_pt pointing accuracy in arcsec (Default: 0) fill_pt fill value of no data regions after shift 'med': axis median 'avg': axis average 'near': nearest non-NaN value on the same axis (default) float: constant filOUT output FITS file ------ OUTPUT ------ coadd.head key for SWarp (inherit self.refheader) ''' ds = type('', (), {})() verbose = self.verbose devnull = self.devnull path_tmp = self.path_tmp if tmpdir is None: path_comb = path_tmp+'comb/' else: path_comb = tmpdir if not os.path.exists(path_comb): os.makedirs(path_comb) ## Input files in list format flist = listize(flist) ## Header ##-------- with open(path_tmp+'coadd.head', 'w') as f: f.write(str(self.refheader)) ## Images and weights ##-------------------- Nf = len(flist) imshape = read_fits(flist[0]).data.shape if len(imshape)==3: Nw = imshape[0] wvl = read_fits(flist[0]).wave else: Nw = 1 wvl = None ## Build imlist & wgtlist (size=Nf) imlist = [] wgtlist = [] for i in range(Nf): filename = os.path.basename(flist[i]) ## Set slice file file_slice = path_comb+filename ## Slice super().__init__(flist[i]) if dist=='norm': self.rand_norm(flist[i]+'_unc') elif dist=='splitnorm': self.rand_splitnorm([flist[i]+'_unc_N', flist[i]+'_unc_P']) self.rand_pointing(sig_pt, fill=fill_pt) imlist.append(self.slice(file_slice, '')) if combtype=='wgt_avg': super().__init__(flist[i]+'_unc') wgtlist.append(self.slice_inv_sq(file_slice, '.weight')) ## Build image_files & weight_files (size=Nw) image_files = [' ']*Nw weight_files = [' ']*Nw ## Let's SWarp ##------------- hyperimage = [] for k in trange(Nw, leave=False, desc='<iswarp> Combining (by wvl)'): for i in range(Nf): image_files[k] += imlist[i][k]+fitsext+' ' if combtype=='wgt_avg': weight_files[k] += wgtlist[i][k]+fitsext+' ' ## Create config file SP.call('swarp -d > swarp.cfg', shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) ## Config param list swarp_opt = ' -c swarp.cfg -SUBTRACT_BACK N ' if combtype=='med': pass elif combtype=='avg': swarp_opt += ' -COMBINE_TYPE AVERAGE ' elif combtype=='wgt_avg': swarp_opt += ' -COMBINE_TYPE WEIGHTED ' swarp_opt += ' -WEIGHT_TYPE MAP_WEIGHT ' swarp_opt += ' -WEIGHT_SUFFIX .weight.fits ' # swarp_opt += ' -WEIGHT_IMAGE '+weight_files[k] # not worked if verbose=='quiet': swarp_opt += ' -VERBOSE_TYPE QUIET ' ## Run SWarp SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE LANCZOS3 '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) coadd = read_fits(path_tmp+'coadd') newimage = coadd.data newheader = coadd.header ## Add back in the edges because LANCZOS3 kills the edges ## Do it in steps of less and less precision if keepedge==True: oldweight = read_fits(path_tmp+'coadd.weight').data if np.sum(oldweight==0)!=0: SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE LANCZOS2 '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) edgeimage = read_fits(path_tmp+'coadd').data newweight = read_fits(path_tmp+'coadd.weight').data edgeidx = np.logical_and(oldweight==0, newweight!=0) if edgeidx.any(): newimage[edgeidx] = edgeimage[edgeidx] oldweight = read_fits(path_tmp+'coadd.weight').data if np.sum(oldweight==0)!=0: SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE BILINEAR '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) edgeimage = read_fits(path_tmp+'coadd').data newweight = read_fits(path_tmp+'coadd.weight').data edgeidx = np.logical_and(oldweight==0, newweight!=0) if edgeidx.any(): newimage[edgeidx] = edgeimage[edgeidx] oldweight = read_fits(path_tmp+'coadd.weight').data if np.sum(oldweight==0)!=0: SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE NEAREST '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) edgeimage = read_fits(path_tmp+'coadd').data newweight = read_fits(path_tmp+'coadd.weight').data edgeidx = np.logical_and(oldweight==0, newweight!=0) if edgeidx.any(): newimage[edgeidx] = edgeimage[edgeidx] ## Astrometric flux-rescaling based on the local ratio of pixel scale ## Complementary for lack of FITS kw 'FLXSCALE' ## Because SWarp is conserving surface brightness/pixel oldcdelt = get_pc(wcs=fixwcs(flist[i]+fitsext).wcs).cdelt newcdelt = get_pc(wcs=fixwcs(path_tmp+'coadd'+fitsext).wcs).cdelt old_pixel_fov = abs(oldcdelt[0]*oldcdelt[1]) new_pixel_fov = abs(newcdelt[0]*newcdelt[1]) newimage = newimage * old_pixel_fov/new_pixel_fov newimage[newimage==0] = np.nan # write_fits(path_comb+'coadd_'+str(k), newheader, newimage) # tqdm.write(str(old_pixel_fov)) # tqdm.write(str(new_pixel_fov)) # tqdm.write(str(abs(newheader['CD1_1']*newheader['CD2_2']))) if Nw==1: hyperimage = newimage else: hyperimage.append(newimage) hyperimage = np.array(hyperimage) if cropedge: reframe = improve(header=newheader, image=hyperimage, wave=wvl) xlist = [] for x in range(reframe.Nx): if reframe.Ndim==3: allnan = np.isnan(reframe.im[:,:,x]).all() elif reframe.Ndim==2: allnan = np.isnan(reframe.im[:,x]).all() if not allnan: xlist.append(x) ylist = [] for y in range(reframe.Ny): if reframe.Ndim==3: allnan = np.isnan(reframe.im[:,y,:]).all() elif reframe.Ndim==2: allnan = np.isnan(reframe.im[y,:]).all() if not allnan: ylist.append(y) xmin = min(xlist) xmax = max(xlist)+1 ymin = min(ylist) ymax = max(ylist)+1 dx = xmax-xmin dy = ymax-ymin x0 = xmin+dx/2 y0 = ymin+dy/2 reframe.crop(filOUT=path_tmp+'coadd.ref', sizpix=(dx,dy), cenpix=(x0,y0)) newheader = reframe.hdr hyperimage = reframe.im cropcenter = (x0,y0) cropsize = (dx,dy) else: cropcenter = None cropsize = None if filOUT is not None: write_fits(filOUT, newheader, hyperimage, wvl) if tmpdir is None: fclean(path_comb) ds.header = newheader ds.data = hyperimage ds.wave = wvl ds.cropcenter = cropcenter ds.cropsize = cropsize return ds def combine_mc(self, filIN, Nmc=0, combtype='med', keepedge=False, cropedge=False, dist=None, sig_pt=0, fill_pt='near', filOUT=None, tmpdir=None): ''' Generate Monte-Carlo uncertainties for reprojected input file ''' ds = type('', (), {})() hyperim = [] # [j,(w,)y,x] for j in trange(Nmc+1, leave=False, desc='<iswarp> Reprojection (MC level)'): if j==0: comb = self.combine(filIN, filOUT=filOUT, tmpdir=tmpdir, combtype=combtype, keepedge=keepedge, cropedge=cropedge) im0 = comb.data else: hyperim.append( self.combine(filIN, filOUT=filOUT+'_'+str(j), tmpdir=tmpdir, combtype=combtype, keepedge=keepedge, cropedge=cropedge, dist=dist, sig_pt=sig_pt, fill_pt=fill_pt).data ) im0 = np.array(im0) hyperim =
np.array(hyperim)
numpy.array
# -*- coding: utf-8 -*- # @Author: Bao # @Date: 2021-12-11 08:47:12 # @Last Modified by: dorihp # @Last Modified time: 2022-01-07 14:19:15 import json import time import cv2 import numpy as np from onvif import ONVIFCamera class Detector(): def __init__(self, cfg, weights, classes, input_size): super(Detector, self).__init__() assert input_size % 32 == 0, "Input size must be a multiple of 32!" # Init detector and it's parameters self.net = cv2.dnn_DetectionModel(cfg, weights) self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) self.input_size = input_size self.net.setInputSize(input_size, input_size) self.net.setInputScale(1.0 / 255) self.net.setInputSwapRB(True) with open(classes, 'rt') as f: self.classes = f.read().rstrip('\n').split('\n') def detect(self, frame, cl_filter): classes, _, boxes = self.net.detect(frame, confThreshold=0.1, nmsThreshold=0.4) cen_x = cen_y = False # print(classes, boxes) if len(classes): for _class, box in zip(classes.flatten(), boxes): # if _class != cl_filter: # continue left, top, width, height = box cen_x = int(left + width / 2) cen_y = int(top + height / 2) right = left + width bottom = top + height cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.circle(frame, (cen_x, cen_y), radius=0, color=(0, 0, 255), thickness=5) # break return frame, classes, boxes # return frame, cen_x, cen_y class Undistort(): def __init__(self, params): super(Undistort, self).__init__() parameters =
np.load(params)
numpy.load
"""Tests for the InsertAlongAxis op.""" import numpy as np import theano from theano import config from theano import tensor from pylearn2.utils.insert_along_axis import ( insert_columns, insert_rows, InsertAlongAxis ) def test_insert_along_axis(): x = tensor.matrix() y = insert_columns(x, 10, range(0, 10, 2)) f = theano.function([x], y) x_ = np.random.normal(size=(7, 5)).astype(config.floatX) f_val = f(x_) assert f_val.shape == (7, 10) assert np.all(f_val[:, range(0, 10, 2)] == x_) assert f_val.dtype == x_.dtype y = insert_rows(x, 10, range(0, 10, 2)) f = theano.function([x], y) x_ =
np.random.normal(size=(5, 6))
numpy.random.normal
# Python 2 backwards compatibility overhead START """ DEPRECEATED! USE OTHER MODULES LIKE rd.data, rd.ml, rd.reweight, rd.score and rd.stat DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED! """ import math as mt import numpy as np from . import dev_tool, data_storage def mayou_score( mc_data, real_data, features=None, old_mc_weights=1, clf="xgb", splits=2, n_folds=10 ): """An experimental score using a "loss" function for data-similarity""" import raredecay.analysis.ml_analysis as ml_ana from raredecay.globals_ import out features = dev_tool.entries_to_str(features) clf = dev_tool.entries_to_str(clf) # initialize variables output = {} score_mc_vs_mcr = [] score_mcr_vs_real = [] # splits *= 2 # because every split is done with fold 0 and 1 (<- 2 *) # loop over number of splits, split the mc data mc_data.make_folds(n_folds) real_data.make_folds(n_folds) # mc reweighted vs mc for fold in range(n_folds): mc_data_train, mc_data_test = mc_data.get_fold(fold) # TODO: no real folds? It is better to test on full data always? # mc_data_train, mc_data_test = real_data.get_fold(fold) for split in range(splits * 2): # because two possibilities per split if split % 2 == 0: mc_data_train.make_folds(2) mc_normal, mc_reweighted = mc_data_train.get_fold(split % 2) mc_normal.set_weights(old_mc_weights) score_mc_vs_mcr.append( ml_ana.classify( original_data=mc_normal, target_data=mc_reweighted, features=features, validation=[mc_data_test, real_data], clf=clf, plot_importance=1, # TODO: no weights ratio? (roc auc) weights_ratio=0, )[1] ) out.add_output( [ "mayou_score mc vs mc reweighted test on mc vs real score: ", score_mc_vs_mcr, "\nMean: ", np.mean(score_mc_vs_mcr), " +-", np.std(score_mc_vs_mcr) / mt.sqrt(len(score_mc_vs_mcr) - 1), ], subtitle="Mayou score", to_end=True, ) output["mc_distance"] = np.mean(score_mc_vs_mcr) # mc_reweighted vs real for fold in range(n_folds): real_train, real_test = real_data.get_fold(fold) mc_train, mc_test = mc_data.get_fold(fold) mc_test.set_weights(old_mc_weights) score_mcr_vs_real.append( ml_ana.classify( original_data=mc_train, target_data=real_train, features=features, validation=[mc_test, real_test], clf=clf, plot_importance=1, # TODO: no weights ratio? (roc auc) weights_ratio=0, )[1] ) out.add_output( [ "mayou_score real vs mc reweighted test on mc vs real score: ", score_mcr_vs_real, "\nMean: ", np.mean(score_mcr_vs_real), " +-", np.std(score_mcr_vs_real) / mt.sqrt(len(score_mcr_vs_real) - 1), ], to_end=True, ) output["real_distance"] = np.mean(score_mcr_vs_real) def train_similar( mc_data, real_data, features=None, n_checks=10, n_folds=10, clf="xgb", test_max=True, test_shuffle=True, test_mc=False, old_mc_weights=1, test_predictions=False, clf_pred="rdf", ): """Score for reweighting. Train clf on mc reweighted/real, test on real; minimize score. Enter two datasets and evaluate the score described below. Return a dictionary containing the different scores. The test_predictions is another scoring, which is built upon the train_similar method. **Scoring method description** **Idea**: A clf is trained on the reweighted mc as well as on the real data of a certain decay. Therefore, the classifier learns to distinguish between Monte-Carlo data and real data. Then we let the classifier predict some real data (an unbiased test set) and see, how many he is able to classify as real events. The lower the score, the less differences he was able to learn from the train data therefore the more similar the train data therefore the better the reweighting. **Advandages**: It is quite difficult to cheat on this method. Most of all it is robust to single high-weight events (which mcreweighted_as_real is not) and, in general, seems to be the best scoring so far. **Disadvantages**: If you insert a gaussian shaped 1.0 as mc and a gaussian shaped 1.1 as real, the score will be badly (around 0.33). So far, this was only observed for "artificial" distributions (even dough, of course, we do not know if it affects real distributions aswell partly) **Output explanation** The return is a dictionary containing several values. Of course, only the values, which are set to be evaluated, are contained. The keys are: - '**score**' : The average of all train_similar scores (as we use KFolding, there will be n_folds scores). *The* score. - '**score_std**' : The std of a single score, just for curiosity - '**score_max**' : The (average of all) "maximum" score. Actually the train_similar score but with mc instead of *reweighted* mc. Should be higher then the reweighted score. - '**score_max_std**' : The std of a single score, just for curiosity - '**score_pred**' : The score of the test_predictions method. - '**score_mc_pred**' : The score of the test_predictions method but on the predictions of the mc instead of the *reweighted* mc. Parameters ---------- mc_data : |hepds_type| The reweighted Monte-Carlo data, assuming the new weights are applied already. real_data : |hepds_type| The real data n_checks : int >= 1 Number of checks to perform. Has to be <= n_folds n_folds : int > 1 Number of folds the data will be split into clf : str The name of a classifier to be used in :py:func:`~raredecay.analysis.ml_analysis.classify`. test_max : boolean If true, test for the "maximum value" by training also on mc/real (instead of *reweighted* mc/real) and test on real. The score for only mc should be higher than for reweighted mc/real. It *should* most probably but does not have to be! old_mc_weights : array-like or 1 If *test_max* is True, the weights for mc before reweighting will be taken to be *old_mc_weights*, the weights the mc distribution had before the reweighting. The default is 1. test_predictions : boolean If true, try to distinguish the predictions. Advanced feature and not yet really discoverd how to interpret. Gives very high ROC somehow. clf_pred : str The classifier to be used to distinguish the predictions. Required for the *test_predictions*. Return ------ out : dict A dictionary conaining the different scores. Description see above. """ import raredecay.analysis.ml_analysis as ml_ana from raredecay.globals_ import out features = dev_tool.entries_to_str(features) clf = dev_tool.entries_to_str(clf) clf_pred = dev_tool.entries_to_str(clf_pred) # initialize variables assert ( 1 <= n_checks <= n_folds and n_folds > 1 ), "wrong n_checks/n_folds. Check the docs" assert isinstance(mc_data, data_storage.HEPDataStorage), ( "mc_data wrong type:" + str(type(mc_data)) + ", has to be HEPDataStorage" ) assert isinstance(real_data, data_storage.HEPDataStorage), ( "real_data wrong type:" + str(type(real_data)) + ", has to be HEPDataStorage" ) # assert isinstance(clf, str),\ # "clf has to be a string, the name of a valid classifier. Check the docs!" output = {} scores = np.ones(n_checks) scores_shuffled = np.ones(n_checks) scores_mc = np.ones(n_checks) scores_max = np.ones(n_checks) # required due to output of loop scores_mc_max = np.ones(n_checks) # scores_weighted = [] scores_max_weighted = [] probas_mc = [] probas_reweighted = [] weights_mc = [] weights_reweighted = [] real_pred = [] real_test_index = [] real_mc_pred = [] # initialize data tmp_mc_targets = mc_data.get_targets() mc_data.set_targets(0) real_data.make_folds(n_folds=n_folds) if test_mc: mc_data.make_folds(n_folds=n_folds) for fold in range(n_checks): real_train, real_test = real_data.get_fold(fold) if test_mc: mc_train, mc_test = mc_data.get_fold(fold) mc_test.set_targets(0) else: mc_train = mc_data.copy_storage() mc_train.set_targets(0) real_test.set_targets(1) real_train.set_targets(1) tmp_out = ml_ana.classify( mc_train, real_train, validation=real_test, clf=clf, plot_title="train on mc reweighted/real, test on real", weights_ratio=1, get_predictions=True, features=features, plot_importance=1, importance=1, ) clf_trained, scores[fold], pred_reweighted = tmp_out tmp_weights = mc_train.get_weights() if test_shuffle: import copy shuffled_weights = copy.deepcopy(tmp_weights) shuffled_weights.reindex(np.random.permutation(shuffled_weights.index)) mc_train.set_weights(shuffled_weights) tmp_out = ml_ana.classify( mc_train, real_train, validation=real_test, clf=clf, plot_title="train on mc reweighted/real, test on real", weights_ratio=1, get_predictions=True, features=features, plot_importance=1, importance=1, ) scores_shuffled[fold] = tmp_out[1] mc_train.set_weights(tmp_weights) if test_mc: clf_trained, scores_mc[fold] = ml_ana.classify( validation=mc_test, clf=clf_trained, plot_title="train on mc reweighted/real, test on mc", weights_ratio=1, get_predictions=False, features=features, plot_importance=1, importance=1, ) # del clf_trained, tmp_pred probas_reweighted.append(pred_reweighted["y_proba"]) weights_reweighted.append(pred_reweighted["weights"]) real_pred.extend(pred_reweighted["y_pred"]) real_test_index.extend(real_test.get_index()) if test_max: temp_weights = mc_data.get_weights() mc_data.set_weights(old_mc_weights) tmp_out = ml_ana.classify( mc_data, real_train, validation=real_test, plot_title="real/mc NOT reweight trained, validate on real", weights_ratio=1, get_predictions=True, clf=clf, features=features, plot_importance=1, importance=1, ) clf_trained, scores_max[fold], pred_mc = tmp_out if test_mc: clf_trained, scores_mc_max[fold] = ml_ana.classify( validation=mc_test, clf=clf_trained, plot_title="train on mc NOT reweighted/real, test on mc", weights_ratio=1, get_predictions=False, features=features, plot_importance=1, importance=1, ) del clf_trained # HACK tmp_pred = pred_mc["y_proba"][:, 1] * pred_mc["weights"] scores_max_weighted.extend(tmp_pred * (pred_mc["y_true"] * 2 - 1)) # HACK END mc_data.set_weights(temp_weights) probas_mc.append(pred_mc["y_proba"]) weights_mc.append(pred_mc["weights"]) real_mc_pred.extend(pred_mc["y_pred"]) output["score"] = np.round(scores.mean(), 4) output["score_std"] = np.round(scores.std(), 4) if test_shuffle: output["score_shuffled"] = np.round(scores_shuffled.mean(), 4) output["score_shuffled_std"] = np.round(scores_shuffled.std(), 4) if test_mc: output["score_mc"] = np.round(scores_mc.mean(), 4) output["score_mc_std"] = np.round(scores_mc.std(), 4) out.add_output( [ "Score train_similar (recall, lower means better): ", str(output["score"]) + " +- " + str(output["score_std"]), ], subtitle="Clf trained on real/mc reweight, tested on real", ) if test_max: output["score_max"] = np.round(scores_max.mean(), 4) output["score_max_std"] = np.round(scores_max.std(), 4) if test_mc: output["score_mc_max"] = np.round(scores_mc_max.mean(), 4) output["score_mc_max_std"] = np.round(scores_mc_max.std(), 4) out.add_output(["No reweighting score: ", round(output["score_max"], 4)]) if test_predictions: # test on the reweighted/real predictions real_data.set_targets(targets=real_pred, index=real_test_index) tmp_, score_pred = ml_ana.classify( real_data, target_from_data=True, clf=clf_pred, features=features, plot_title="train on predictions reweighted/real, real as target", weights_ratio=1, validation=n_checks, plot_importance=3, ) output["score_pred"] = round(score_pred, 4) if test_predictions and test_max: # test on the mc/real predictions real_data.set_targets(targets=real_mc_pred, index=real_test_index) tmp_, score_mc_pred = ml_ana.classify( real_data, target_from_data=True, clf=clf_pred, validation=n_checks, plot_title="mc not rew/real pred, real as target", weights_ratio=1, plot_importance=3, ) output["score_mc_pred"] = np.round(score_mc_pred, 4) mc_data.set_targets(tmp_mc_targets) output["similar_dist"] = similar_dist( predictions=np.concatenate(probas_reweighted)[:, 1], weights=
np.concatenate(weights_reweighted)
numpy.concatenate
import os from collections import defaultdict import numpy from matplotlib import pyplot as plt from csep.utils.basic_types import seq_iter, AdaptiveHistogram from csep.utils.calc import _compute_likelihood, bin1d_vec, _compute_spatial_statistic from csep.utils.constants import CSEP_MW_BINS, SECONDS_PER_DAY, SECONDS_PER_HOUR, SECONDS_PER_WEEK from csep.models import EvaluationResult from csep.core.repositories import FileSystem from csep.utils.plots import plot_number_test, plot_magnitude_test, plot_likelihood_test, plot_spatial_test, \ plot_cumulative_events_versus_time_dev, plot_magnitude_histogram_dev, plot_distribution_test, plot_probability_test, \ plot_spatial_dataset from csep.utils.stats import get_quantiles, cumulative_square_diff, sup_dist # todo: refactor these methods to not perform any filtering of catalogs inside the processing task class AbstractProcessingTask: def __init__(self, data=None, name=None, min_mw=2.5, n_cat=None, mws=None): self.data = data or [] # to-be deprecated self.mws = mws or [2.5, 3.0, 3.5, 4.0, 4.5] self.min_mw = min_mw self.n_cat = n_cat self.name = name self.ax = [] self.fnames = [] self.needs_two_passes = False self.buffer = [] self.region = None self.buffer_fname = None self.fhandle = None self.archive = True self.version = 1 @staticmethod def _build_filename(dir, mw, plot_id): basename = f"{plot_id}_mw_{str(mw).replace('.','p')}".lower() return os.path.join(dir, basename) def process(self, data): raise NotImplementedError('must implement process()!') def process_again(self, catalog, args=()): """ This function defaults to pass unless the method needs to read through the data twice. """ pass def post_process(self, obs, args=None): """ Compute evaluation of data stored in self.data. Args: obs (csep.Catalog): used to evaluate the forecast args (tuple): args for this function Returns: result (csep.core.evaluations.EvaluationResult): """ result = EvaluationResult() return result def plot(self, results, plot_dir, show=False): """ plots function, typically just a wrapper to function in utils.plotting() Args: show (bool): show plot, if plotting multiple, just run on last. filename (str): where to save the file plot_args (dict): plotting args to pass to function Returns: axes (matplotlib.axes) """ raise NotImplementedError('must implement plot()!') def store_results(self, results, dir): """ Saves evaluation results serialized into json format. This format is used to recreate the results class which can then be plotted if desired. The following directory structure will be created: | dir |-- n-test |---- n-test_mw_2.5.json |---- n_test_mw_3.0.json |-- m-test |---- m_test_mw_2.5.json |---- m_test_mw_3.0.json ... The results iterable should only contain results for a single evaluation. Typically they would contain different minimum magnitudes. Args: results (Iterable of EvaluationResult): iterable object containing evaluation results. this could be a list or tuple of lists as well dir (str): directory to store the testing results. name will be constructed programatically. Returns: None """ success = False if self.archive == False: return # handle if results is just a single result if isinstance(results, EvaluationResult): repo = FileSystem(url=self._build_filename(dir, results.min_mw, results.name) + '.json') if repo.save(results.to_dict()): success = True return success # or if its an iterable for idx in seq_iter(results): # for debugging if isinstance(results[idx], tuple) or isinstance(results[idx], list): result = results[idx] else: result = [results[idx]] for r in result: repo = FileSystem(url=self._build_filename(dir, r.min_mw, r.name) + '.json') if repo.save(r.to_dict()): success = True return success def store_data(self, dir): """ Store the intermediate data used to calculate the results for the evaluations. """ raise NotImplementedError class NumberTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.mws = [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] def process(self, catalog, filter=False): if not self.name: self.name = catalog.name counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') counts.append(cat_filt.event_count) self.data.append(counts) def post_process(self, obs, args=None): # we dont need args for this function _ = args results = {} data = numpy.array(self.data) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) observation_count = obs_filt.event_count # get delta_1 and delta_2 values delta_1, delta_2 = get_quantiles(data[:,i], observation_count) # prepare result result = EvaluationResult(test_distribution=data[:,i], name='N-Test', observed_statistic=observation_count, quantile=(delta_1, delta_2), status='Normal', obs_catalog_repr=obs.date_accessed, sim_name=self.name, min_mw=mw, obs_name=obs.name) results[mw] = result return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): # compute bin counts, this one is special because of integer values td = result.test_distribution min_bin, max_bin = numpy.min(td), numpy.max(td) # hard-code some logic for bin size bins = numpy.arange(min_bin, max_bin) if len(bins) == 1: bins = 3 n_test_fname = AbstractProcessingTask._build_filename(plot_dir, mw, 'n_test') _ = plot_number_test(result, show=show, plot_args={'percentile': 95, 'title': f'Number Test, M{mw}+', 'bins': bins, 'filename': n_test_fname}) self.fnames.append(n_test_fname) class MagnitudeTest(AbstractProcessingTask): def __init__(self, mag_bins=None, **kwargs): super().__init__(**kwargs) self.mws = [2.5, 3.0, 3.5, 4.0] self.mag_bins = mag_bins self.version = 4 def process(self, catalog): if not self.name: self.name = catalog.name # magnitude mag_bins should probably be bound to the region, although we should have a SpaceMagnitudeRegion class if self.mag_bins is None: try: self.mag_bins = catalog.region.mag_bins except: self.mag_bins = CSEP_MW_BINS # optimization idea: always compute this for the lowest magnitude, above this is redundant mags = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') binned_mags = cat_filt.magnitude_counts(mag_bins=self.mag_bins) mags.append(binned_mags) # data shape (n_cat, n_mw, n_mw_bins) self.data.append(mags) def post_process(self, obs, args=None): # we dont need args _ = args results = {} for i, mw in enumerate(self.mws): test_distribution = [] # get observed magnitude counts obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f"Skipping {mw} in Magnitude test because no observed events.") continue obs_histogram = obs_filt.magnitude_counts(mag_bins=self.mag_bins) n_obs_events = numpy.sum(obs_histogram) mag_counts_all = numpy.array(self.data) # get the union histogram, simply the sum over all catalogs, (n_cat, n_mw) union_histogram = numpy.sum(mag_counts_all[:,i,:], axis=0) n_union_events = numpy.sum(union_histogram) union_scale = n_obs_events / n_union_events scaled_union_histogram = union_histogram * union_scale for j in range(mag_counts_all.shape[0]): n_events = numpy.sum(mag_counts_all[j,i,:]) if n_events == 0: continue scale = n_obs_events / n_events catalog_histogram = mag_counts_all[j,i,:] * scale test_distribution.append(cumulative_square_diff(numpy.log10(catalog_histogram+1), numpy.log10(scaled_union_histogram+1))) # compute statistic from the observation obs_d_statistic = cumulative_square_diff(numpy.log10(obs_histogram+1), numpy.log10(scaled_union_histogram+1)) # score evaluation _, quantile = get_quantiles(test_distribution, obs_d_statistic) # prepare result result = EvaluationResult(test_distribution=test_distribution, name='M-Test', observed_statistic=obs_d_statistic, quantile=quantile, status='Normal', min_mw=mw, obs_catalog_repr=obs.date_accessed, obs_name=obs.name, sim_name=self.name) results[mw] = result return results def plot(self, results, plot_dir, plot_args=None, show=False): # get the filename for mw, result in results.items(): m_test_fname = self._build_filename(plot_dir, mw, 'm-test') plot_args = {'percentile': 95, 'title': f'Magnitude Test, M{mw}+', 'bins': 'auto', 'filename': m_test_fname} _ = plot_magnitude_test(result, show=False, plot_args=plot_args) self.fnames.append(m_test_fname) def _build_filename(self, dir, mw, plot_id): try: mag_dh = self.mag_bins[1] - self.mag_bins[0] mag_dh_str = f"_dmag{mag_dh:.1f}".replace('.','p').lower() except: mag_dh_str = '' basename = f"{plot_id}_mw_{str(mw).replace('.', 'p')}{mag_dh_str}".lower() return os.path.join(dir, basename) class LikelihoodAndSpatialTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution_spatial = [] self.test_distribution_likelihood = [] self.cat_id = 0 self.needs_two_passes = True self.buffer = [] self.fnames = {} self.fnames['l-test'] = [] self.fnames['s-test'] = [] self.version = 5 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # unfortunately, we need to iterate twice through the catalogs for this, unless we start pre-processing # everything and storing approximate cell-wise rates lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density[i,:], expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_likelihood.append(lhs) self.test_distribution_spatial.append(lhs_norm) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) test_distribution_likelihood = numpy.array(self.test_distribution_likelihood) # there can be nans in the spatial distribution test_distribution_spatial = numpy.array(self.test_distribution_spatial) # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog.') continue n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density[i,:], expected_cond_count[i], n_obs) # if obs_lh is -numpy.inf, recompute but only for indexes where obs and simulated are non-zero message = "normal" if obs_lh == -numpy.inf or obs_lh_norm == -numpy.inf: idx_good_sim = apprx_rate_density[i,:] != 0 new_gridded_obs = gridded_obs[idx_good_sim] new_n_obs = numpy.sum(new_gridded_obs) print(f"Found -inf as the observed likelihood score for M{self.mws[i]}+. " f"Assuming event(s) occurred in undersampled region of forecast.\n" f"Recomputing with {new_n_obs} events after removing {n_obs - new_n_obs} events.") if new_n_obs == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog ' f'after correcting for under-sampling in forecast.') continue new_ard = apprx_rate_density[i,idx_good_sim] # we need to use the old n_obs here, because if we normalize the ard to a different value the observed # statistic will not be computed correctly. obs_lh, obs_lh_norm = _compute_likelihood(new_gridded_obs, new_ard, expected_cond_count[i], n_obs) message = "undersampled" # determine outcome of evaluation, check for infinity _, quantile_likelihood = get_quantiles(test_distribution_likelihood[:,i], obs_lh) # build evaluation result result_likelihood = EvaluationResult(test_distribution=test_distribution_likelihood[:,i], name='L-Test', observed_statistic=obs_lh, quantile=quantile_likelihood, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) # check for nans here test_distribution_spatial_1d = test_distribution_spatial[:,i] if numpy.isnan(numpy.sum(test_distribution_spatial_1d)): test_distribution_spatial_1d = test_distribution_spatial_1d[~numpy.isnan(test_distribution_spatial_1d)] if n_obs == 0 or numpy.isnan(obs_lh_norm): message = "not-valid" quantile_spatial = -1 else: _, quantile_spatial = get_quantiles(test_distribution_spatial_1d, obs_lh_norm) result_spatial = EvaluationResult(test_distribution=test_distribution_spatial_1d, name='S-Test', observed_statistic=obs_lh_norm, quantile=quantile_spatial, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = (result_likelihood, result_spatial) return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result_tuple in results.items(): # plot likelihood test l_test_fname = self._build_filename(plot_dir, mw, 'l-test') plot_args = {'percentile': 95, 'title': f'Pseudo-Likelihood Test, M{mw}+', 'filename': l_test_fname} _ = plot_likelihood_test(result_tuple[0], axes=None, plot_args=plot_args, show=show) # we can access this in the main program if needed # self.ax.append((ax, spatial_ax)) self.fnames['l-test'].append(l_test_fname) if result_tuple[1].status == 'not-valid': print(f'Skipping plot for spatial test on {mw}. Test results are not valid, likely because no earthquakes observed in target observed_catalog.') continue # plot spatial test s_test_fname = self._build_filename(plot_dir, mw, 's-test') plot_args = {'percentile': 95, 'title': f'Spatial Test, M{mw}+', 'filename': s_test_fname} _ = plot_spatial_test(result_tuple[1], axes=None, plot_args=plot_args, show=False) self.fnames['s-test'].append(s_test_fname) class SpatialTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution_spatial = [] self.cat_id = 0 self.needs_two_passes = True self.buffer = [] self.fnames = {} self.fnames['s-test'] = [] self.version = 5 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # unfortunately, we need to iterate twice through the catalogs for this, unless we start pre-processing # everything and storing approximate cell-wise rates lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density[i,:], expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_spatial.append(lhs_norm) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # there can be nans in the spatial distribution test_distribution_spatial = numpy.array(self.test_distribution_spatial) # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog.') continue n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density[i,:], expected_cond_count[i], n_obs) # if obs_lh is -numpy.inf, recompute but only for indexes where obs and simulated are non-zero message = "normal" if obs_lh == -numpy.inf or obs_lh_norm == -numpy.inf: idx_good_sim = apprx_rate_density[i,:] != 0 new_gridded_obs = gridded_obs[idx_good_sim] new_n_obs = numpy.sum(new_gridded_obs) print(f"Found -inf as the observed likelihood score for M{self.mws[i]}+. " f"Assuming event(s) occurred in undersampled region of forecast.\n" f"Recomputing with {new_n_obs} events after removing {n_obs - new_n_obs} events.") if new_n_obs == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog ' f'after correcting for under-sampling in forecast.') continue new_ard = apprx_rate_density[i,idx_good_sim] # we need to use the old n_obs here, because if we normalize the ard to a different value the observed # statistic will not be computed correctly. obs_lh, obs_lh_norm = _compute_likelihood(new_gridded_obs, new_ard, expected_cond_count[i], n_obs) message = "undersampled" # check for nans here test_distribution_spatial_1d = test_distribution_spatial[:,i] if numpy.isnan(numpy.sum(test_distribution_spatial_1d)): test_distribution_spatial_1d = test_distribution_spatial_1d[~numpy.isnan(test_distribution_spatial_1d)] if n_obs == 0 or numpy.isnan(obs_lh_norm): message = "not-valid" quantile_spatial = -1 else: _, quantile_spatial = get_quantiles(test_distribution_spatial_1d, obs_lh_norm) result_spatial = EvaluationResult(test_distribution=test_distribution_spatial_1d, name='S-Test', observed_statistic=obs_lh_norm, quantile=quantile_spatial, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = result_spatial return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): if result.status == 'not-valid': print(f'Skipping plot for spatial test on {mw}. Test results are not valid, likely because no earthquakes observed in target observed_catalog.') continue # plot spatial test s_test_fname = self._build_filename(plot_dir, mw, 's-test') plot_args = {'percentile': 95, 'title': f'Spatial Test, M{mw}+', 'filename': s_test_fname} _ = plot_spatial_test(result, axes=None, plot_args=plot_args, show=False) self.fnames['s-test'].append(s_test_fname) class LikelihoodTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution_likelihood = [] self.cat_id = 0 self.needs_two_passes = True self.buffer = [] self.fnames = {} self.fnames['l-test'] = [] self.fnames['s-test'] = [] self.version = 5 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # unfortunately, we need to iterate twice through the catalogs for this, unless we start pre-processing # everything and storing approximate cell-wise rates lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density[i,:], expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_likelihood.append(lhs) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) test_distribution_likelihood = numpy.array(self.test_distribution_likelihood) # there can be nans in the spatial distribution # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog.') continue n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density[i,:], expected_cond_count[i], n_obs) # if obs_lh is -numpy.inf, recompute but only for indexes where obs and simulated are non-zero message = "normal" if obs_lh == -numpy.inf or obs_lh_norm == -numpy.inf: idx_good_sim = apprx_rate_density[i,:] != 0 new_gridded_obs = gridded_obs[idx_good_sim] new_n_obs = numpy.sum(new_gridded_obs) print(f"Found -inf as the observed likelihood score for M{self.mws[i]}+. " f"Assuming event(s) occurred in undersampled region of forecast.\n" f"Recomputing with {new_n_obs} events after removing {n_obs - new_n_obs} events.") if new_n_obs == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog ' f'after correcting for under-sampling in forecast.') continue new_ard = apprx_rate_density[i,idx_good_sim] # we need to use the old n_obs here, because if we normalize the ard to a different value the observed # statistic will not be computed correctly. obs_lh, obs_lh_norm = _compute_likelihood(new_gridded_obs, new_ard, expected_cond_count[i], n_obs) message = "undersampled" # determine outcome of evaluation, check for infinity _, quantile_likelihood = get_quantiles(test_distribution_likelihood[:,i], obs_lh) # build evaluation result result_likelihood = EvaluationResult(test_distribution=test_distribution_likelihood[:,i], name='L-Test', observed_statistic=obs_lh, quantile=quantile_likelihood, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = result_likelihood return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): # plot likelihood test l_test_fname = self._build_filename(plot_dir, mw, 'l-test') plot_args = {'percentile': 95, 'title': f'Pseudo-Likelihood Test, M{mw}+', 'filename': l_test_fname} _ = plot_likelihood_test(result, axes=None, plot_args=plot_args, show=show) # we can access this in the main program if needed # self.ax.append((ax, spatial_ax)) self.fnames['s-test'].append(l_test_fname) class CumulativeEventPlot(AbstractProcessingTask): def __init__(self, origin_epoch, end_epoch, **kwargs): super().__init__(**kwargs) self.origin_epoch = origin_epoch self.end_epoch = end_epoch self.time_bins, self.dt = self._get_time_bins() self.n_bins = self.time_bins.shape[0] self.archive = False def _get_time_bins(self): diff = (self.end_epoch - self.origin_epoch) / SECONDS_PER_DAY / 1000 # if less than 7 day use hours if diff <= 7.0: dt = SECONDS_PER_HOUR * 1000 # if less than 180 day use days elif diff <= 180: dt = SECONDS_PER_DAY * 1000 # if less than 3 years (1,095.75 days) use weeks elif diff <= 1095.75: dt = SECONDS_PER_WEEK * 1000 # use 30 day else: dt = SECONDS_PER_DAY * 1000 * 30 # always make bins from start to end of observed_catalog return numpy.arange(self.origin_epoch, self.end_epoch+dt/2, dt), dt def process(self, catalog): counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') n_events = cat_filt.catalog.shape[0] ses_origin_time = cat_filt.get_epoch_times() inds = bin1d_vec(ses_origin_time, self.time_bins) binned_counts = numpy.zeros(self.n_bins) for j in range(n_events): binned_counts[inds[j]] += 1 counts.append(binned_counts) self.data.append(counts) def post_process(self, obs, args=None): # data are stored as (n_cat, n_mw_bins, n_time_bins) summed_counts = numpy.cumsum(self.data, axis=2) # compute summary statistics for plotting fifth_per = numpy.percentile(summed_counts, 5, axis=0) first_quar = numpy.percentile(summed_counts, 25, axis=0) med_counts = numpy.percentile(summed_counts, 50, axis=0) second_quar = numpy.percentile(summed_counts, 75, axis=0) nine_fifth = numpy.percentile(summed_counts, 95, axis=0) # compute median for comcat observed_catalog obs_counts = [] for mw in self.mws: obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) obs_binned_counts = numpy.zeros(self.n_bins) inds = bin1d_vec(obs_filt.get_epoch_times(), self.time_bins) for j in range(obs_filt.event_count): obs_binned_counts[inds[j]] += 1 obs_counts.append(obs_binned_counts) obs_summed_counts = numpy.cumsum(obs_counts, axis=1) # update time_bins for plotting millis_to_hours = 60 * 60 * 1000 * 24 time_bins = (self.time_bins - self.time_bins[0]) / millis_to_hours # since we are cumulating, plot at bin ends time_bins = time_bins + (self.dt / millis_to_hours) # make all arrays start at zero time_bins = numpy.insert(time_bins, 0, 0) # 2d array with (n_mw, n_time_bins) fifth_per = numpy.insert(fifth_per, 0, 0, axis=1) first_quar = numpy.insert(first_quar, 0, 0, axis=1) med_counts = numpy.insert(med_counts, 0, 0, axis=1) second_quar = numpy.insert(second_quar, 0, 0, axis=1) nine_fifth = numpy.insert(nine_fifth, 0, 0, axis=1) obs_summed_counts = numpy.insert(obs_summed_counts, 0, 0, axis=1) # ydata is now (5, n_mw, n_time_bins) results = {'xdata': time_bins, 'ydata': (fifth_per, first_quar, med_counts, second_quar, nine_fifth), 'obs_data': obs_summed_counts} return results def plot(self, results, plot_dir, plot_args=None, show=False): # these are numpy arrays with mw information xdata = results['xdata'] ydata = numpy.array(results['ydata']) obs_data = results['obs_data'] # get values from plotting args for i, mw in enumerate(self.mws): cum_counts_fname = self._build_filename(plot_dir, mw, 'cum_counts') plot_args = {'title': f'Cumulative Event Counts, M{mw}+', 'xlabel': 'Days since start of forecast', 'filename': cum_counts_fname} ax = plot_cumulative_events_versus_time_dev(xdata, ydata[:,i,:], obs_data[i,:], plot_args, show=False) # self.ax.append(ax) self.fnames.append(cum_counts_fname) def store_results(self, results, dir): # store quickly for numpy, because we dont have a results class to deal with this fname = self._build_filename(dir, self.mws[0], 'cum_counts') + '.npy' numpy.save(fname, results) class MagnitudeHistogram(AbstractProcessingTask): def __init__(self, calc=True, **kwargs): super().__init__(**kwargs) self.calc = calc self.archive = False def process(self, catalog): """ this can share data with the Magnitude test, hence self.calc """ if not self.name: self.name = catalog.name if self.calc: # always compute this for the lowest magnitude, above this is redundant cat_filt = catalog.filter(f'magnitude >= {self.mws[0]}') binned_mags = cat_filt.magnitude_counts() self.data.append(binned_mags) def post_process(self, obs, args=None): """ just store observation for later """ _ = args self.obs = obs def plot(self, results, plot_dir, plot_args=None, show=False): mag_hist_fname = self._build_filename(plot_dir, self.mws[0], 'mag_hist') plot_args = { 'xlim': [self.mws[0], numpy.max(CSEP_MW_BINS)], 'title': f"Magnitude Histogram, M{self.mws[0]}+", 'sim_label': self.name, 'obs_label': self.obs.name, 'filename': mag_hist_fname } obs_filt = self.obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) # data (n_sim, n_mag, n_mw_bins) ax = plot_magnitude_histogram_dev(numpy.array(self.data)[:,0,:], obs_filt, plot_args, show=False) # self.ax.append(ax) self.fnames.append(mag_hist_fname) class UniformLikelihoodCalculation(AbstractProcessingTask): """ This calculation assumes that the spatial distribution of the forecast is uniform, but the seismicity is located in spatial bins according to the clustering provided by the forecast model. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.data = None self.test_distribution_likelihood = [] self.test_distribution_spatial = [] self.fnames = {} self.fnames['l-test'] = [] self.fnames['s-test'] = [] self.needs_two_passes = True def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name def process_again(self, catalog, args=()): time_horizon, n_cat, end_epoch, obs = args expected_cond_count = numpy.sum(self.data, axis=1) / n_cat lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): # generate with uniform rate in every spatial bin apprx_rate_density = expected_cond_count[i] * numpy.ones(self.region.num_nodes) / self.region.num_nodes # convert to rate density apprx_rate_density = apprx_rate_density / self.region.dh / self.region.dh / time_horizon obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density, expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_likelihood.append(lhs) self.test_distribution_spatial.append(lhs_norm) def post_process(self, obs, args=None): _, time_horizon, _, n_cat = args results = {} expected_cond_count = numpy.sum(self.data, axis=1) / n_cat test_distribution_likelihood = numpy.array(self.test_distribution_likelihood) test_distribution_spatial = numpy.array(self.test_distribution_spatial) for i, mw in enumerate(self.mws): # create uniform apprx rate density apprx_rate_density = expected_cond_count[i] * numpy.ones(self.region.num_nodes) / self.region.num_nodes # convert to rate density apprx_rate_density = apprx_rate_density / self.region.dh / self.region.dh / time_horizon obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density, expected_cond_count[i], n_obs) # determine outcome of evaluation, check for infinity _, quantile_likelihood = get_quantiles(test_distribution_likelihood[:, i], obs_lh) _, quantile_spatial = get_quantiles(test_distribution_spatial[:, i], obs_lh_norm) # Signals outcome of test message = "normal" # Deal with case with cond. rate. density func has zeros. Keep value but flag as being # either normal and wrong or udetermined (undersampled) if numpy.isclose(quantile_likelihood, 0.0) or numpy.isclose(quantile_likelihood, 1.0): # undetermined failure of the test if numpy.isinf(obs_lh): # Build message message = "undetermined" # build evaluation result result_likelihood = EvaluationResult(test_distribution=test_distribution_likelihood[:, i], name='UL-Test', observed_statistic=obs_lh, quantile=quantile_likelihood, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) # find out if there are issues with the test if numpy.isclose(quantile_spatial, 0.0) or numpy.isclose(quantile_spatial, 1.0): # undetermined failure of the test if numpy.isinf(obs_lh_norm): # Build message message = "undetermined" if n_obs == 0: message = 'not-valid' result_spatial = EvaluationResult(test_distribution=test_distribution_spatial[:, i], name='US-Test', observed_statistic=obs_lh_norm, quantile=quantile_spatial, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = (result_likelihood, result_spatial) return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result_tuple in results.items(): # plot likelihood test l_test_fname = self._build_filename(plot_dir, mw, 'ul-test') plot_args = {'percentile': 95, 'title': f'Pseudo-Likelihood Test\nMw > {mw}', 'bins': 'fd', 'filename': l_test_fname} _ = plot_likelihood_test(result_tuple[0], axes=None, plot_args=plot_args, show=show) # we can access this in the main program if needed # self.ax.append((ax, spatial_ax)) self.fnames['l-test'].append(l_test_fname) if result_tuple[1].status == 'not-valid': print( f'Skipping plot for spatial test on {mw}. Test results are not valid, likely because no earthquakes observed in target observed_catalog.') continue # plot spatial test s_test_fname = self._build_filename(plot_dir, mw, 'us-test') plot_args = {'percentile': 95, 'title': f'Spatial Test\nMw > {mw}', 'bins': 'fd', 'filename': s_test_fname} _ = plot_spatial_test(result_tuple[1], axes=None, plot_args=plot_args, show=False) self.fnames['s-test'].append(s_test_fname) class InterEventTimeDistribution(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.mws = [2.5] # but this should be smart based on the length of the observed_catalog self.data = AdaptiveHistogram(dh=0.1) self.test_distribution = [] self.needs_two_passes = True # jsut saves soem computation bc we only need to compute this once self.normed_data = numpy.array([]) self.version = 2 def process(self, catalog): if self.name is None: self.name = catalog.name cat_ietd = catalog.get_inter_event_times() self.data.add(cat_ietd) def process_again(self, catalog, args=()): cat_ietd = catalog.get_inter_event_times() disc_ietd = numpy.zeros(len(self.data.bins)) idx = bin1d_vec(cat_ietd, self.data.bins) numpy.add.at(disc_ietd, idx, 1) disc_ietd_normed = numpy.cumsum(disc_ietd) / numpy.sum(disc_ietd) if self.normed_data.size == 0: self.normed_data = numpy.cumsum(self.data.data) / numpy.sum(self.data.data) self.test_distribution.append(sup_dist(self.normed_data, disc_ietd_normed)) def post_process(self, obs, args=None): # get inter-event times from observed_catalog obs_filt = obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) obs_ietd = obs_filt.get_inter_event_times() obs_disc_ietd = numpy.zeros(len(self.data.bins)) idx = bin1d_vec(obs_ietd, self.data.bins) numpy.add.at(obs_disc_ietd, idx, 1) obs_disc_ietd_normed = numpy.cumsum(obs_disc_ietd) / numpy.trapz(obs_disc_ietd) d_obs = sup_dist(self.normed_data, obs_disc_ietd_normed) _, quantile = get_quantiles(self.test_distribution, d_obs) result = EvaluationResult(test_distribution=self.test_distribution, name='IETD-Test', observed_statistic=d_obs, quantile=quantile, status='Normal', min_mw=self.mws[0], obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) return result def plot(self, results, plot_dir, plot_args=None, show=False): ietd_test_fname = self._build_filename(plot_dir, results.min_mw, 'ietd_test') _ = plot_distribution_test(results, show=False, plot_args={'percentile': 95, 'title': f'Inter-event Time Distribution Test, M{results.min_mw}+', 'bins': 'auto', 'xlabel': "D* Statistic", 'ylabel': r"Number of catalogs", 'filename': ietd_test_fname}) self.fnames.append(ietd_test_fname) class InterEventDistanceDistribution(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.mws = [2.5] # start by using a 10 second bin for discretizing data # but this should be smart based on the length of the observed_catalog self.data = AdaptiveHistogram(dh=1) self.test_distribution = [] self.needs_two_passes = True # jsut saves soem computation bc we only need to compute this once self.normed_data = numpy.array([]) self.version = 2 def process(self, catalog): """ not nice on the memorys. """ if self.name is None: self.name = catalog.name # distances are in kilometers cat_iedd = catalog.get_inter_event_distances() self.data.add(cat_iedd) def process_again(self, catalog, args=()): cat_iedd = catalog.get_inter_event_distances() disc_iedd = numpy.zeros(len(self.data.bins)) idx = bin1d_vec(cat_iedd, self.data.bins) numpy.add.at(disc_iedd, idx, 1) disc_iedd_normed = numpy.cumsum(disc_iedd) / numpy.sum(disc_iedd) if self.normed_data.size == 0: self.normed_data = numpy.cumsum(self.data.data) / numpy.sum(self.data.data) self.test_distribution.append(sup_dist(self.normed_data, disc_iedd_normed)) def post_process(self, obs, args=None): # get inter-event times from data obs_filt = obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) obs_iedd = obs_filt.get_inter_event_distances() obs_disc_iedd = numpy.zeros(len(self.data.bins)) idx = bin1d_vec(obs_iedd, self.data.bins) numpy.add.at(obs_disc_iedd, idx, 1) obs_disc_iedd_normed = numpy.cumsum(obs_disc_iedd) / numpy.trapz(obs_disc_iedd) d_obs = sup_dist(self.normed_data, obs_disc_iedd_normed) _, quantile = get_quantiles(self.test_distribution, d_obs) result = EvaluationResult(test_distribution=self.test_distribution, name='IEDD-Test', observed_statistic=d_obs, quantile=quantile, status='Normal', min_mw=self.mws[0], obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) return result def plot(self, results, plot_dir, plot_args=None, show=False): iedd_test_fname = self._build_filename(plot_dir, results.min_mw, 'iedd_test') _ = plot_distribution_test(results, show=False, plot_args={'percentile': 95, 'title': f'Inter-event Distance Distribution Test, M{results.min_mw}+', 'bins': 'auto', 'xlabel': "D* statistic", 'ylabel': r"Number of catalogs", 'filename': iedd_test_fname}) self.fnames.append(iedd_test_fname) class TotalEventRateDistribution(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.needs_two_passes = True self.data = AdaptiveHistogram(dh=1) self.normed_data = numpy.array([]) self.test_distribution = [] self.version = 2 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from observed_catalog gridded_counts = catalog.spatial_counts() self.data.add(gridded_counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data _, n_cat, _, _ = args cat_counts = catalog.spatial_counts() cat_disc = numpy.zeros(len(self.data.bins)) idx = bin1d_vec(cat_counts, self.data.bins) numpy.add.at(cat_disc, idx, 1) disc_terd_normed = numpy.cumsum(cat_disc) / numpy.sum(cat_disc) if self.normed_data.size == 0: self.normed_data = numpy.cumsum(self.data.data) / numpy.sum(self.data.data) self.test_distribution.append(sup_dist(self.normed_data, disc_terd_normed)) def post_process(self, obs, args=None): # get inter-event times from observed_catalog obs_filt = obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) obs_terd = obs_filt.spatial_counts() obs_disc_terd = numpy.zeros(len(self.data.bins)) idx = bin1d_vec(obs_terd, self.data.bins) numpy.add.at(obs_disc_terd, idx, 1) obs_disc_terd_normed = numpy.cumsum(obs_disc_terd) / numpy.sum(obs_disc_terd) d_obs = sup_dist(self.normed_data, obs_disc_terd_normed) _, quantile = get_quantiles(self.test_distribution, d_obs) result = EvaluationResult(test_distribution=self.test_distribution, name='TERD-Test', observed_statistic=d_obs, quantile=quantile, status='Normal', min_mw=self.mws[0], obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) return result def plot(self, results, plot_dir, plot_args=None, show=False): terd_test_fname = AbstractProcessingTask._build_filename(plot_dir, results.min_mw, 'terd_test') _ = plot_distribution_test(results, show=False, plot_args={'percentile': 95, 'title': f'Total Event Rate Distribution-Test, M{results.min_mw}+', 'bins': 'auto', 'xlabel': "D* Statistic", 'ylabel': r"Number of catalogs", 'filename': terd_test_fname}) self.fnames.append(terd_test_fname) class BValueTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.version = 2 def process(self, catalog): if not self.name: self.name = catalog.name cat_filt = catalog.filter(f'magnitude >= {self.mws[0]}', in_place=False) self.data.append(cat_filt.get_bvalue(reterr=False)) def post_process(self, obs, args=None): _ = args data = numpy.array(self.data) obs_filt = obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) obs_bval = obs_filt.get_bvalue(reterr=False) # get delta_1 and delta_2 values _, delta_2 = get_quantiles(data, obs_bval) # prepare result result = EvaluationResult(test_distribution=data, name='BV-Test', observed_statistic=obs_bval, quantile=delta_2, status='Normal', min_mw=self.mws[0], obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) return result def plot(self, results, plot_dir, plot_args=None, show=False): bv_test_fname = self._build_filename(plot_dir, results.min_mw, 'bv_test') _ = plot_number_test(results, show=False, plot_args={'percentile': 95, 'title': f"B-Value Distribution Test, M{results.min_mw}+", 'bins': 'auto', 'xlabel': 'b-value', 'xy': (0.2, 0.65), 'filename': bv_test_fname}) self.fnames.append(bv_test_fname) class MedianMagnitudeTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) def process(self, catalog): if not self.name: self.name = catalog.name cat_filt = catalog.filter(f'magnitude >= {self.mws[0]}', in_place=False) self.data.append(numpy.median(cat_filt.get_magnitudes())) def post_process(self, obs, args=None): _ = args data = numpy.array(self.data) obs_filt = obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) observation_count = float(numpy.median(obs_filt.get_magnitudes())) # get delta_1 and delta_2 values _, delta_2 = get_quantiles(data, observation_count) # prepare result result = EvaluationResult(test_distribution=data, name='M-Test', observed_statistic=observation_count, quantile=delta_2, min_mw=self.mws[0], status='Normal', obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) return result def plot(self, results, plot_dir, plot_args=None, show=False): mm_test_fname = self._build_filename(plot_dir, self.mws[0], 'mm_test') _ = plot_number_test(results, show=False, plot_args={'percentile': 95, 'title': f"Median Magnitude Distribution Test\nMw > {self.mws[0]}", 'bins': 25, 'filename': mm_test_fname}) self.fnames.append(mm_test_fname) class SpatialProbabilityTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution = [] self.needs_two_passes = True self.buffer = [] self.fnames = [] self.version = 3 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_event_probability() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args with numpy.errstate(divide='ignore'): prob_map = numpy.log10(self.data / n_cat) # unfortunately, we need to iterate twice through the catalogs for this. probs = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_event_probability() prob = _compute_spatial_statistic(gridded_cat, prob_map[i, :]) probs[i] = prob self.test_distribution.append(probs) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} with numpy.errstate(divide='ignore'): prob_map = numpy.log10(self.data / n_cat) test_distribution_prob = numpy.array(self.test_distribution) # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping Probability test for Mw {mw} because no events in observed observed_catalog.') continue gridded_obs = obs_filt.spatial_event_probability() obs_prob = _compute_spatial_statistic(gridded_obs, prob_map[i, :]) # determine outcome of evaluation, check for infinity will go here... test_1d = test_distribution_prob[:,i] if numpy.isnan(numpy.sum(test_1d)): test_1d = test_1d[~numpy.isnan(test_1d)] _, quantile_likelihood = get_quantiles(test_1d, obs_prob) # Signals outcome of test message = "normal" # Deal with case with cond. rate. density func has zeros. Keep value but flag as being # either normal and wrong or udetermined (undersampled) if numpy.isclose(quantile_likelihood, 0.0) or numpy.isclose(quantile_likelihood, 1.0): # undetermined failure of the test if numpy.isinf(obs_prob): # Build message, should maybe try sampling procedure from pseudo-likelihood based tests message = "undetermined" # build evaluation result result_prob = EvaluationResult(test_distribution=test_1d, name='Prob-Test', observed_statistic=obs_prob, quantile=quantile_likelihood, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = result_prob return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): # plot likelihood test prob_test_fname = self._build_filename(plot_dir, mw, 'prob-test') plot_args = {'percentile': 95, 'title': f'Probability Test, M{mw}+', 'bins': 'auto', 'xlabel': 'Spatial probability statistic', 'ylabel': 'Number of catalogs', 'filename': prob_test_fname} _ = plot_probability_test(result, axes=None, plot_args=plot_args, show=show) self.fnames.append(prob_test_fname) class SpatialProbabilityPlot(AbstractProcessingTask): def __init__(self, calc=True, **kwargs): super().__init__(**kwargs) self.calc=calc self.region=None self.archive=False def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name if self.calc: # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_event_probability() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def post_process(self, obs, args=None): """ store things for later """ self.obs = obs _, time_horizon, _, n_cat = args self.time_horizon = time_horizon self.n_cat = n_cat return None def plot(self, results, plot_dir, plot_args=None, show=False): with numpy.errstate(divide='ignore'): prob = numpy.log10(numpy.array(self.data) / self.n_cat) for i, mw in enumerate(self.mws): # compute expected rate density obs_filt = self.obs.filter(f'magnitude >= {mw}', in_place=False) plot_data = self.region.get_cartesian(prob[i,:]) ax = plot_spatial_dataset(plot_data, self.region, plot_args={'clabel': r'Log$_{10}$ Probability 1 or more events' '\n' f'within {self.region.dh}°x{self.region.dh}° cells', 'clim': [-5, 0], 'title': f'Spatial Probability Plot, M{mw}+'}) ax.scatter(obs_filt.get_longitudes(), obs_filt.get_latitudes(), marker='.', color='white', s=40, edgecolors='black') crd_fname = self._build_filename(plot_dir, mw, 'prob_obs') ax.figure.savefig(crd_fname + '.png') ax.figure.savefig(crd_fname + '.pdf') self.fnames.append(crd_fname) class ApproximateRatePlot(AbstractProcessingTask): def __init__(self, calc=True, **kwargs): super().__init__(**kwargs) self.calc=calc self.region=None self.archive = False self.version = 2 def process(self, data): # grab stuff from data that we might need later if not self.region: self.region = data.region if not self.name: self.name = data.name if self.calc: # compute stuff from data counts = [] for mw in self.mws: cat_filt = data.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def post_process(self, obs, args=None): """ store things for later """ self.obs = obs _, time_horizon, _, n_cat = args self.time_horizon = time_horizon self.n_cat = n_cat return None def plot(self, results, plot_dir, plot_args=None, show=False): with numpy.errstate(divide='ignore'): crd = numpy.log10(numpy.array(self.data) / self.n_cat) for i, mw in enumerate(self.mws): # compute expected rate density obs_filt = self.obs.filter(f'magnitude >= {mw}', in_place=False) plot_data = self.region.get_cartesian(crd[i,:]) ax = plot_spatial_dataset(plot_data, self.region, plot_args={'clabel': r'Log$_{10}$ Approximate rate density' '\n' f'(Expected events per week per {self.region.dh}°x{self.region.dh}°)', 'clim': [-5, 0], 'title': f'Approximate Rate Density with Observations, M{mw}+'}) ax.scatter(obs_filt.get_longitudes(), obs_filt.get_latitudes(), marker='.', color='white', s=40, edgecolors='black') crd_fname = self._build_filename(plot_dir, mw, 'crd_obs') ax.figure.savefig(crd_fname + '.png') ax.figure.savefig(crd_fname + '.pdf') # self.ax.append(ax) self.fnames.append(crd_fname) class ApproximateRateDensity(AbstractProcessingTask): def __init__(self, calc=True, **kwargs): super().__init__(**kwargs) self.calc = calc self.region = None self.archive = False self.mag_dh = None def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name if not self.mag_dh: mag_dh = self.region.magnitudes[1] - self.region.magnitudes[0] self.mag_dh = mag_dh if self.calc: # compute stuff from data gridded_counts = catalog.spatial_magnitude_counts() # we want to aggregate the counts in each bin to preserve memory if self.n_cat is not None: if len(self.data) == 0: self.data = numpy.array(gridded_counts) / self.n_cat else: self.data += numpy.array(gridded_counts) / self.n_cat else: if len(self.data) == 0: self.data = numpy.array(gridded_counts) else: self.data += numpy.array(gridded_counts) def post_process(self, obs, args=()): """ store things for later, and call if n_cat was not availabe at run-time for some reason. """ self.obs = obs _, time_horizon, _, n_cat = args self.time_horizon = time_horizon self.n_cat = n_cat with numpy.errstate(divide='ignore'): self.crd = numpy.array(self.data) / self.n_cat return None def plot(self, results, plot_dir, plot_args=None, show=False): # compute expected rate density with numpy.errstate(divide='ignore'): plot_data = numpy.log10(self.region.get_cartesian(self.crd)) ax = plot_spatial_dataset(plot_data, self.region, plot_args={'clabel': r'Log$_{10}$ Approximate Rate Density' '\n' f'(Expected Events per year per {self.region.dh}°x{self.region.dh}°) per {self.mag_dh} Mw', 'clim': [0, 5], 'title': f'Approximate Rate Density with Observations, M{self.min_mw}+'}) ax.scatter(self.obs.get_longitudes(), self.obs.get_latitudes(), marker='.', color='white', s=40, edgecolors='black') crd_fname = self._build_filename(plot_dir, self.min_mw, 'crd_obs') ax.figure.savefig(crd_fname + '.png') ax.figure.savefig(crd_fname + '.pdf') # self.ax.append(ax) self.fnames.append(crd_fname) class ApproximateSpatialRateDensity(AbstractProcessingTask): def __init__(self, calc=True, **kwargs): super().__init__(**kwargs) self.calc = calc self.region = None self.archive = False def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name if self.calc: # compute stuff from data gridded_counts = catalog.spatial_counts() # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(gridded_counts) else: self.data += numpy.array(gridded_counts) def post_process(self, obs, args=()): """ store things for later """ self.obs = obs _, time_horizon, _, n_cat = args self.time_horizon = time_horizon self.n_cat = n_cat self.crd = numpy.array(self.data) / self.region.dh / self.region.dh / self.time_horizon / self.n_cat return None def plot(self, results, plot_dir, plot_args=None, show=False): # compute expected rate density with numpy.errstate(divide='ignore'): plot_data = numpy.log10(self.region.get_cartesian(self.crd)) ax = plot_spatial_dataset(plot_data, self.region, plot_args={'clabel': r'Log$_{10}$ Approximate Rate Density' '\n' f'(Expected Events per year per {self.region.dh}°x{self.region.dh}°)', 'clim': [0, 5], 'title': f'Approximate Rate Density with Observations, M{self.min_mw}+'}) ax.scatter(self.obs.get_longitudes(), self.obs.get_latitudes(), marker='.', color='white', s=40, edgecolors='black') crd_fname = self._build_filename(plot_dir, self.min_mw, 'crd_obs') ax.figure.savefig(crd_fname + '.png') ax.figure.savefig(crd_fname + '.pdf') # self.ax.append(ax) self.fnames.append(crd_fname) class ConditionalApproximateRatePlot(AbstractProcessingTask): def __init__(self, obs, **kwargs): super().__init__(**kwargs) self.obs = obs self.data = defaultdict(list) self.archive = False self.version = 2 def process(self, data): if self.name is None: self.name = data.name if self.region is None: self.region = data.region """ collects all catalogs conforming to n_obs in a dict""" for mw in self.mws: cat_filt = data.filter(f'magnitude >= {mw}') obs_filt = self.obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count tolerance = 0.05 * n_obs if cat_filt.event_count <= n_obs + tolerance \ and cat_filt.event_count >= n_obs - tolerance: self.data[mw].append(cat_filt.spatial_counts()) def post_process(self, obs, args=None): _, time_horizon, _, n_cat = args self.time_horizon = time_horizon self.n_cat = n_cat return def plot(self, results, plot_dir, plot_args=None, show=False): # compute conditional approximate rate density for i, mw in enumerate(self.mws): # compute expected rate density obs_filt = self.obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: continue rates = numpy.array(self.data[mw]) if rates.shape[0] == 0: continue # compute conditional approximate rate mean_rates = numpy.mean(rates, axis=0) with numpy.errstate(divide='ignore'): crd = numpy.log10(mean_rates) plot_data = self.region.get_cartesian(crd) ax = plot_spatial_dataset(plot_data, self.region, plot_args={'clabel': r'Log$_{10}$ Conditional Rate Density' '\n' f'(Expected Events per year per {self.region.dh}°x{self.region.dh}°)', 'clim': [-5, 0], 'title': f'Conditional Approximate Rate Density with Observations, M{mw}+'}) ax.scatter(obs_filt.get_longitudes(), obs_filt.get_latitudes(), marker='.', color='white', s=40, edgecolors='black') crd_fname = self._build_filename(plot_dir, mw, 'cond_rates') ax.figure.savefig(crd_fname + '.png') ax.figure.savefig(crd_fname + '.pdf') # self.ax.append(ax) self.fnames.append(crd_fname) class CatalogMeanStabilityAnalysis(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.calc = False self.mws = [2.5, 3.5, 4.5, 5.5, 6.5, 7.5] def process(self, catalog): if not self.name: self.name = catalog.name counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') counts.append(cat_filt.event_count) self.data.append(counts) def post_process(self, obs, args=None): results = {} data = numpy.array(self.data) n_sim = data.shape[0] end_points =
numpy.arange(1,n_sim,100)
numpy.arange
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(228, 'F d -3 c :2', transformations) space_groups[228] = sg space_groups['F d -3 c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,-1])
numpy.array
import pandas as pd import numpy as np import math def readFile(filename='iris.csv'): """read csv file and convert it to array""" df = pd.read_csv(filename, header=0) # read the file return df def getDistance(x_data_row1, x_data_row2): """calculates distance between two rows of data (based on Euclidean distance)""" distance = 0 length = len(x_data_row1) for i in range(length): distance += (x_data_row1[i] - x_data_row2[i])**2 # differences of the columns squared distance = math.sqrt(distance) return distance def knnForOne(x_training_data, y_training_data, single_x_test_data, n_neighbors): """find the most common neighbor out of k nearest neighbors for 1 row of test data""" distances_list = [] nearest_neighbors = [] length = len(x_training_data) for i in range(length): X2 = x_training_data[i,:] # get current row of known data Y2 = y_training_data[i] # get current label of known data distance = getDistance(single_x_test_data, X2) # compare test to known data distances_list += [[distance, Y2]] distances_list = sorted(distances_list) for i in range(n_neighbors): nearest_neighbors += [distances_list[i][1]] return max(nearest_neighbors, key=nearest_neighbors.count) def knnForAll(x_training_data, y_training_data, x_test_data, n_neighbors): """find the most common neighbor out of k nearest neighbors for multiple rows of test data""" y_test_data = [] for row in x_test_data: # for multiple rows of test data y_test_data += [knnForOne(x_training_data, y_training_data, row, n_neighbors)] return y_test_data def crossValidate(x_training_data, y_training_data, test_size_percentage): """find the value of k that produces the best results for the data""" data_length = len(x_training_data) foldSize = int(round(data_length * test_size_percentage)) # size of each temporary test data best_score = 0 best_k = 0 for k in [1,3,5,7]: # Test different values of k score = 0 for i in range(0, data_length, foldSize): # Switch section of test data x_temp_test = x_training_data[i:i+foldSize] # get temporary data to test known_y_test = y_training_data[i:i+foldSize] # we already know their labels x_temp_training = np.append(x_training_data[0:i], x_training_data[i+foldSize:], axis=0) # the rest is our temporary training data y_temp_training =
np.append(y_training_data[0:i], y_training_data[i+foldSize:], axis=0)
numpy.append
import pandas as pd import numpy as np from os.path import join, exists, split from os import mkdir, makedirs, listdir import gc import matplotlib.pyplot as plt import seaborn from time import time import pickle import argparse parser = argparse.ArgumentParser() parser.add_argument('split_name') parser.add_argument('f') args = parser.parse_args() split_name = args.split_name f = args.f # split_name = 'temporal_5' # f = 'batch_42.h5' metaid_oor_mapping = dict(vm136=[2.2, float('inf')], vm146=[2.2, float('inf')], vm5=[150, 65], vm1=[110, 60], pm41='Dobutamine', pm42='Milrinone', vm13=[-float('inf'), 4], vm28=[2,-2], vm172=[1.2, float('inf')], vm174=[7.8, 4], vm176=[10, float('inf')], vm4=[140, 40], vm62=[30, float('inf')], vm3=[200, 90], vm20=[-float('inf'), 90]) metaid_name_mapping = dict(vm136='a-Lactate', vm146='v-Lactate', vm5='ABP mean (invasive)', vm1='Heart rate', pm41='Dobutamine', pm42='Milrinone', vm13='Cardiac output', vm28='RASS', vm172='INR', vm174='Blood glucose', vm176='C-reactive protein', vm4='ABP diastolic (invasive)', vm62='Peak inspiratory pressure (ventilator)', vm3='ABP systolic (invasive)', vm20='SpO2') del metaid_oor_mapping['pm41'], metaid_oor_mapping['pm42'] del metaid_name_mapping['pm41'], metaid_name_mapping['pm42'] delta_t = 0 window_size = 480 data_version = 'v6b' result_version = '181108' t_postevent = np.timedelta64(2,'h') wsize_upper_h = (window_size+delta_t) * np.timedelta64(1,'m') wsize_lower_h = delta_t * np.timedelta64(1,'m') bern_path = '/cluster/work/grlab/clinical/Inselspital/DataReleases/01-19-2017/InselSpital/' data_path = join(bern_path,'3_merged', data_version,'reduced') ep_path = join(bern_path,'3a_endpoints', data_version,'reduced') res_dir = lambda s: 'WorseStateFromZero_0.0_8.0_%s_lightgbm_full'%s pred_path = join(bern_path,'8_predictions', result_version,'reduced', split_name, res_dir('shap_top20_variables_MIMIC_BERN')) out_path = join(bern_path,'circews_analysis','simple_alarm', split_name) if not exists(out_path): mkdir(out_path) with pd.HDFStore(join(pred_path, f), mode='r') as tmp: pids = [int(key[2:]) for key in tmp.keys()] gc.collect() lst_vmid = [key for key in metaid_name_mapping.keys()] lst_period_type = ['critical_window', 'maintenance_window', 'uncritical_window', 'patients_wo_events'] stats = dict() for vmid in lst_vmid + ['any']: tmp = dict() for period_type in lst_period_type: tmp.update({period_type: dict(valid_los=[], cnt_alarm=[], los=[])}) tmp.update(cnt_catched_event=0, cnt_missed_event=0) stats.update({vmid: tmp}) is_critical_win = lambda t, ts: np.logical_and(ts< t-wsize_lower_h, ts>=t-wsize_upper_h) is_maintenance_win = lambda t, ts: np.logical_and(ts>t, ts<=t+t_postevent) is_uncritical_win = lambda t, ts, mode: ts<t-wsize_upper_h if mode=='before' else ts>t+t_postevent is_win_pos_alarm = lambda t, ts: np.logical_and(ts> t+wsize_lower_h, ts<=t+wsize_upper_h) t_start = time() for n, pid in enumerate(pids): ff = [x for x in listdir(data_path) if 'fmat_%d_'%int(f[:-3].split('_')[1]) in x][0] df = pd.read_hdf(join(data_path, ff),'reduced', where='PatientID=%d'%pid)[['Datetime']+lst_vmid+['pm41','pm42','pm43','pm44','pm87']] ff = [x for x in listdir(ep_path) if 'endpoints_%d_'%int(f[:-3].split('_')[1]) in x][0] df_ep = pd.read_hdf(join(ep_path, ff), where='PatientID=%d'%pid)[['Datetime','endpoint_status']] df_lbl = pd.read_hdf(join(pred_path, f),'p%d'%pid)[['AbsDatetime','TrueLabel']] # df.loc[:,'Datetime'] = pd.DatetimeIndex(df.Datetime).round('min').values # df_ep.loc[:,'Datetime'] = pd.DatetimeIndex(df_ep.Datetime).round('min').values # df_lbl.loc[:,'AbsDatetime'] = pd.DatetimeIndex(df_lbl.AbsDatetime).round('min').values total_los = 0 df = df.groupby('Datetime').mean() df_ep.set_index('Datetime', inplace=True) df_lbl.set_index('AbsDatetime', inplace=True) df = df.merge(df_ep, how='outer', left_index=True, right_index=True) df = df.merge(df_lbl, how='outer', left_index=True, right_index=True) df.sort_index(inplace=True) df_ep.loc[:,'Stable'] = (df_ep.endpoint_status=='event 0').astype(int) df_ep.loc[:,'InEvent'] = df_ep.endpoint_status.isin(['event 1','event 2','event 3']).astype(int) beg_stable = df_ep.index[np.where(np.array([0]+np.diff(df_ep.Stable.values).tolist())==1)] end_stable = df_ep.index[np.where(np.array(np.diff(df_ep.Stable.values).tolist())==-1)] if df_ep.iloc[0].Stable==1: beg_stable = np.concatenate([[df_ep.index[0]], beg_stable]) if df_ep.iloc[-1].Stable==1: end_stable = np.concatenate([end_stable, [df_ep.index[-1]]]) assert(len(beg_stable)==len(end_stable)) df.loc[:,'Stable'] = False for i in range(len(beg_stable)): df.loc[df.index[np.logical_and(df.index>=beg_stable[i], df.index<=end_stable[i])],'Stable'] = True beg_onset = df_ep.index[np.where(np.array([0]+np.diff(df_ep.InEvent).tolist())==1)] end_onset = df_ep.index[np.where(np.array(np.diff(df_ep.InEvent).tolist())==-1)] if df_ep.iloc[0].InEvent==1: beg_onset = np.concatenate([[df_ep.index[0]], beg_onset]) if df_ep.iloc[-1].InEvent==1: end_onset = np.concatenate([end_onset, [df_ep.index[-1]]]) assert(len(beg_onset)==len(end_onset)) df.loc[:,'InEvent'] = False for i in range(len(beg_onset)): df.loc[df.index[np.logical_and(df.index>=beg_onset[i], df.index<=end_onset[i])],'InEvent'] = True for col in ['Stable', 'InEvent']: df.loc[:,col] = df[col].astype(int) df.loc[:,'Uncertain'] = ((df.Stable+df.InEvent)==0).astype(int) for pmid in ['pm41','pm42','pm43','pm44','pm87']: df.loc[:,pmid] = df[pmid].fillna(method='ffill').fillna(0) df['OnDrug'] = (df[['pm41','pm42','pm43','pm44','pm87']].sum(axis=1)>0).astype(int) df.loc[:,'Onset'] = False for i, dt in enumerate(beg_onset): dt = np.datetime64(dt) win_pre_event = df[is_critical_win(dt, df.index.values)] if len(win_pre_event)==0 or win_pre_event.Stable.sum()==0: continue df.loc[dt,'Onset'] = True del df_ep, df_lbl gc.collect() dt_unstable = df.index[df.Stable==0] for col in metaid_oor_mapping.keys(): if metaid_oor_mapping[col][0] > metaid_oor_mapping[col][1]: if col == 'vm28': df.loc[:,col+'_Alarm'] = np.logical_or(df[col].values >= metaid_oor_mapping[col][0], df[col].values < metaid_oor_mapping[col][1]) else: df.loc[:,col+'_Alarm'] = np.logical_or(df[col].values > metaid_oor_mapping[col][0], df[col].values < metaid_oor_mapping[col][1]) else: df.loc[:,col+'_Alarm'] = np.logical_and(df[col].values > metaid_oor_mapping[col][0], df[col].values < metaid_oor_mapping[col][1]) if len(dt_unstable) > 0: df.loc[dt_unstable, col+'_Alarm'] = np.nan for dt in df.index[np.abs(df[col+'_Alarm'])==1]: dt = np.datetime64(dt) win_pos_alarm = df[is_win_pos_alarm(dt, df.index.values)] if win_pos_alarm.InEvent.sum() > 0: df.loc[dt, col+'_Alarm'] = +1 elif win_pos_alarm.Uncertain.sum() == len(win_pos_alarm): df.loc[dt, col+'_Alarm'] = 0 else: df.loc[dt, col+'_Alarm'] = -1 df['any_Alarm'] = np.abs(df[[col for col in df.columns if 'Alarm' in col]]).sum(axis=1)>0 if len(dt_unstable) > 0: df.loc[dt_unstable,'any_Alarm'] = np.nan for dt in df.index[np.abs(df.any_Alarm)==1]: dt = np.datetime64(dt) win_pos_alarm = df[is_win_pos_alarm(dt, df.index.values)] if win_pos_alarm.InEvent.sum() > 0: df.loc[dt,'any_Alarm'] = 1 elif win_pos_alarm.Uncertain.sum() == len(win_pos_alarm): df.loc[dt,'any_Alarm'] = 0 else: df.loc[dt,'any_Alarm'] = -1 for vmid in lst_vmid+['any']: df.loc[:,vmid+'_CatchedOnset'] = False for i, dt in enumerate(df.index[df.Onset]): dt = np.datetime64(dt) win_pre_event = df[is_critical_win(dt, df.index.values)] for vmid in lst_vmid+['any']: df.loc[dt,vmid+'_CatchedOnset'] = win_pre_event[vmid+'_Alarm'].abs().sum()>0 if df.InEvent.sum()==0: # assert('Yes' not in df.IsAlarmTrue.unique()) tdiff = np.array([0]+(np.diff(df.index.values)/np.timedelta64(1,'h')).tolist()) tdiff_stable = tdiff[df.Stable==1] los_h = np.sum(tdiff) los_stable_h = np.sum(tdiff_stable) for vmid in lst_vmid+['any']: stats[vmid]['patients_wo_events']['valid_los'].append( los_stable_h ) stats[vmid]['patients_wo_events']['los'].append( los_h ) stats[vmid]['patients_wo_events']['cnt_alarm'].append( df[vmid+'_Alarm'].abs().sum() ) else: stable_sum = 0 beg_onset = df.index[np.where(np.array([0]+np.diff(df.InEvent.values).tolist())==1)[0]] end_onset = df.index[np.where(
np.diff(df.InEvent.values)
numpy.diff
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile from language.nql import dataset from language.nql import nql import numpy as np import tensorflow as tf NP_NONE = np.array([0., 0., 0., 0., 0.]) NP_A = np.array([1., 0., 0., 0., 0.]) NP_B = np.array([0., 1., 0., 0., 0.]) NP_C =
np.array([0., 0., 1., 0., 0.])
numpy.array
import datetime import logging import time from pathlib import Path from typing import Dict, List import nibabel as nib import numpy as np import SimpleITK as sitk from nilearn.image import resample_img log = logging.getLogger(__name__) def time_it(func): def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() log.info(func.__name__ + " took " + str(end - start) + "sec") return result return wrapper def resample_nifti(nifti_path, output_path, res=1.0): """ Resamples a nifti to an isotropic resolution of res Args: nifti_path: path to a NifTI image output_path: path where to save the resampled NifTI image """ assert Path(nifti_path).exists() nifti = nib.load(nifti_path) nifti_resampled = resample_img( nifti, target_affine=np.eye(3) * res, interpolation="nearest" ) nib.save(nifti_resampled, output_path) def resample_to_img(img, target_img, interpolation="nearest"): interpolation_mapper = { "nearest": sitk.sitkNearestNeighbor, "linear": sitk.sitkLinear, "bspline": sitk.sitkBSpline, "gaussian": sitk.sitkGaussian, } try: sitk_interpolator = interpolation_mapper[interpolation] except ValueError: raise ValueError(f"Interpolation {interpolation} not supported.") resampled_img = sitk.Resample( img, target_img, sitk.Transform(), sitk_interpolator, 0, img.GetPixelID(), ) return resampled_img def resample_to_nifti( nifti_path, ref_path, output_path=None, interpolation="nearest" ): """ Resamples nifti to reference nifti, using nilearn.image.resample_to_img if output_path not give, overwrites the nifti_path. """ nifti_path = str(nifti_path) ref_path = str(ref_path) if output_path is None: output_path = nifti_path nifti = sitk.ReadImage(nifti_path) ref_nifti = sitk.ReadImage(ref_path) nifti_resampled = resample_to_img( img=nifti, target_img=ref_nifti, interpolation=interpolation ) sitk.WriteImage(nifti_resampled, output_path) def combine_nifti_masks(mask1_path, mask2_path, output_path): """ Args: mask1_path: abs path to the first nifti mask mask2_path: abs path to the second nifti mask output_path: abs path to saved concatenated mask """ if not Path(mask1_path).exists(): raise FileNotFoundError(f"Mask {mask1_path} not found.") if not Path(mask2_path).exists(): raise FileNotFoundError(f"Mask {mask2_path} not found.") mask1 = nib.load(mask1_path) mask2 = nib.load(mask2_path) matrix1 = mask1.get_fdata() matrix2 = mask2.get_fdata() assert matrix1.shape == matrix2.shape new_matrix = np.zeros(matrix1.shape) new_matrix[matrix1 == 1] = 1 new_matrix[matrix2 == 1] = 2 new_matrix = new_matrix.astype(int) new_mask = nib.Nifti1Image( new_matrix, affine=mask1.affine, header=mask1.header ) nib.save(new_mask, output_path) def relabel_mask(mask_path: str, label_map: Dict[int, int], save_path): """ Relabel mask with a new label map. E.g. for for a prostate mask with two labels: 1 for peripheral zone and 2 for transition zone, relabel_mask(mask_path, {1: 1, 2: 1}) would merge both zones into label 1. """ if not Path(mask_path).exists(): raise FileNotFoundError(f"Mask {mask_path} not found.") mask = nib.load(mask_path) matrix = mask.get_fdata() n_found_labels = len(
np.unique(matrix)
numpy.unique
import os import h5py import numpy as np import dataloaders.nyu_transforms as transforms from torch.utils.data import Dataset # NYU and Kitti_odo import dataloaders.nyu_transforms as nyu_transforms from dataloaders.pert_nyu import ShiftDepth iheight, iwidth = 480, 640 # raw image size to_tensor = nyu_transforms.ToTensor() IMG_EXTENSIONS = ['.h5',] def h5_loader(path): h5f = h5py.File(path, "r") rgb = np.array(h5f['rgb']) rgb = np.transpose(rgb, (1, 2, 0)) depth = np.array(h5f['depth']) return rgb, depth class MyDataloader(Dataset): modality_names = ['rgb', 'rgbd', 'd'] # , 'g', 'gd' color_jitter = nyu_transforms.ColorJitter(0.4, 0.4, 0.4) def __init__(self, root, type, sparsifier=None, modality='rgb', shift=None, rotate=None, loader=h5_loader): classes, class_to_idx = find_classes(root) imgs = make_dataset(root, class_to_idx) assert len(imgs)>0, "Found 0 images in subfolders of: " + root + "\n" self.root = root self.imgs = imgs self.classes = classes self.shift = shift self.rotate = rotate self.class_to_idx = class_to_idx if type == 'train': self.transform = self.train_transform elif type == 'selval': self.transform = self.val_transform else: raise (RuntimeError("Invalid dataset type: " + type + "\n" "Supported dataset types are: train, selval")) self.loader = loader self.sparsifier = sparsifier assert (modality in self.modality_names), "Invalid modality type: " + modality + "\n" + \ "Supported dataset types are: " + ''.join(self.modality_names) self.modality = modality def train_transform(self, rgb, depth): raise (RuntimeError("train_transform() is not implemented. ")) def val_transform(rgb, depth): raise (RuntimeError("val_transform() is not implemented.")) def create_sparse_depth(self, rgb, depth): if self.sparsifier is None: return depth else: mask_keep = self.sparsifier.dense_to_sparse(rgb, depth) sparse_depth = np.zeros(depth.shape) sparse_depth[mask_keep] = depth[mask_keep] return sparse_depth def create_rgbd(self, rgb, depth): sparse_depth = self.create_sparse_depth(rgb, depth) rgbd = np.append(rgb, np.expand_dims(sparse_depth, axis=2), axis=2) return rgbd def __getraw__(self, index): """ Args: index (int): Index Returns: tuple: (rgb, depth) the raw data. """ path, target = self.imgs[index] rgb, depth = self.loader(path) return rgb, depth def __getitem__(self, index): rgb, depth = self.__getraw__(index) # Perturb the dataset if self.shift is not None: shift_depth_transform = ShiftDepth(shift=self.shift) pert_depth = shift_depth_transform(depth) elif self.rotate is not None: rotate_depth_transform = ShiftDepth(rotate=self.rotate) pert_depth = rotate_depth_transform (depth) else: pert_depth = depth if self.transform is not None: rgb_np, depth_np = self.transform(rgb, pert_depth) else: raise(RuntimeError("transform not defined")) # color normalization # rgb_tensor = normalize_rgb(rgb_tensor) # rgb_np = normalize_np(rgb_np) if self.modality == 'rgb': input_np = rgb_np elif self.modality == 'rgbd': input_np = self.create_rgbd(rgb_np, pert_depth) elif self.modality == 'd': input_np = self.create_sparse_depth(rgb_np, pert_depth) input_tensor = to_tensor(input_np) while input_tensor.dim() < 3: input_tensor = input_tensor.unsqueeze(0) depth_tensor = to_tensor(depth) depth_tensor = depth_tensor.unsqueeze(0) return input_tensor, depth_tensor def __len__(self): return len(self.imgs) class NYUDataset(MyDataloader): def __init__(self, root, type, sparsifier=None, modality='rgb', shift=None, rotate=None): super(NYUDataset, self).__init__(root, type, sparsifier, modality, shift, rotate) self.output_size = (228, 304) def train_transform(self, rgb, depth): s = np.random.uniform(1.0, 1.5) # random scaling depth_np = depth / s angle = np.random.uniform(-5.0, 5.0) # random rotation degrees do_flip =
np.random.uniform(0.0, 1.0)
numpy.random.uniform
import nibabel as nib import numpy as np import torch from functools import partial from collections import defaultdict from pairwise_measures import PairwiseMeasures from src.utils import apply_transform, non_geometric_augmentations, generate_affine, to_var_gpu, batch_adaptation, soft_dice def evaluate(args, preds, targets, prefix, metrics=['dice', 'jaccard', 'sensitivity', 'specificity', 'soft_dice', 'loads', 'haus_dist', 'vol_diff', 'ppv', 'connected_elements']): output_dict = defaultdict(list) nifty_metrics = ['dice', 'jaccard', 'sensitivity', 'specificity', 'haus_dist', 'vol_diff', 'ppv', 'connected_elements'] for pred, target in zip(preds, targets): seg = np.where(pred > 0.5, np.ones_like(pred, dtype=np.int64), np.zeros_like(pred, dtype=np.int64)) ref = np.where(target > 0.5, np.ones_like(target, dtype=np.int64), np.zeros_like(target, dtype=np.int64)) pairwise = PairwiseMeasures(seg, ref) for metric in nifty_metrics: if metric in metrics: if metric == 'connected_elements': TPc, FPc, FNc = pairwise.m_dict[metric][0]() output_dict[prefix + 'TPc'].append(TPc) output_dict[prefix + 'FPc'].append(FPc) output_dict[prefix + 'FNc'].append(FNc) else: output_dict[prefix + metric].append(pairwise.m_dict[metric][0]()) if 'soft_dice' in metrics: output_dict[prefix + 'soft_dice'].append(soft_dice(pred, ref, args.labels)) if 'loads' in metrics: output_dict[prefix + 'loads'].append(np.sum(pred)) if 'per_pixel_diff' in metrics: output_dict[prefix + 'per_pixel_diff'].append(np.mean(np.abs(ref - pred))) return output_dict def inference_tumour(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on print('Evaluating on {} subjects'.format(len(range_of_volumes))) for index in range(len(range_of_volumes)): print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] #TODO: inputs is of size (4, 170, 240, 160), need to change inference values accordingly. subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) inputsS = np.zeros(shape=(inputs.shape[0], args.paddtarget, args.paddtarget, inputs.shape[-1])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) for slice_index in np.arange(0, inputs.shape[-1], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[-1]) batch_input = np.einsum('ijkl->lijk', inputs[:, :, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(batch_input) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputs.detach().cpu().numpy())) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(batch_labels.detach().cpu().numpy())) inputsS[:, :, :, index_start:index_end] = np.einsum('ijkl->jkli', np.squeeze(batch_input.detach().cpu().numpy())) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputstaug.detach().cpu().numpy())) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputs_t.detach().cpu().numpy())) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) + \ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: fn = save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) else: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_0__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) for idx, modality in enumerate(['flair', 't1c', 't1', 't2']): save_img(format_spec=format_spec, identifier='{}_mri'.format(modality), array=inputsS[idx, ...]) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema def inference_ms(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None, eval_diff=True): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] print('Evaluating on {} subjects'.format(len(whole_volume_dataset))) range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on for index in range_of_volumes: print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) inputsS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) for slice_index in np.arange(0, inputs.shape[2], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[2]) batch_input = np.einsum('ijk->kij', inputs[:, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(np.expand_dims(batch_input, axis=1).astype(np.float32)) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs.detach().cpu().numpy()[:, 0, ...]) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_labels.detach().cpu().numpy()[:, 0, ...]) inputsS[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_input.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', outputstaug.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs_t.detach().cpu().numpy()[:, 0, ...]) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) +\ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) elif eval_diff and iteration > 0: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_{0}__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' print(pred_ema_filename) pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) else: print('Not computing diff') save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) save_img(format_spec=format_spec, identifier='mri', array=inputsS) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema def inference_crossmoda(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None, eval_diff=True): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] print('Evaluating on {} subjects'.format(len(whole_volume_dataset))) range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on for index in range_of_volumes: print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) inputsS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsAug =
np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2]))
numpy.zeros
# -*- coding: utf-8 -*- ############################################################################### ############################################################################### import logging import numpy as np from skimage import io # create logger logger = logging.getLogger('logger') logger.setLevel(logging.DEBUG) # create console handler and set level to debug ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) ############################################################################### ############################################################################### # global params fld = 'data/' satellite_images = ['20090526', '20110514', '20120524', '20130608', '20140517', '20150507', '20160526'] train_images = satellite_images[:-1] alt = 'DEM_altitude.tif' slp = 'DEM_slope.tif' def load_satellite_img(path, date, normalize=True): img = io.imread(path + date + ".tif").astype(np.float32) ndvi = io.imread(path + date + "_NDVI.tif").astype(np.float32)[..., None] if normalize: img /= 20000.0 ndvi /= 255.0 # TODO ask paul: too high ? return img, ndvi def load_satellite_mask(path: str, date: str): return io.imread(path + date + "_mask_ls.tif").astype(np.bool) def load_static_data(path: str, normalize: bool = True): altitude = io.imread(path + alt).astype(np.float32)[..., None] slope = io.imread(path + slp).astype(np.float32)[..., None] if normalize: altitude /= 2555.0 slope /= 52.0 return altitude, slope def load_image_eval(path): altitude, slope = load_static_data(path) img1 = get_single_satellite_features(path, satellite_images[-1]) img2 = get_single_satellite_features(path, satellite_images[-2]) return np.concatenate((img1, img2, altitude, slope), 2) def get_single_satellite_features(path, date): sat_image, ndvi = load_satellite_img(path, date) return np.concatenate((sat_image, ndvi), axis=2) def extract_patch(data, x, y, size): """Expects a 3 dimensional image (height,width,channels)""" diff = size // 2 patch = data[x - diff:x + diff + 1, y - diff:y + diff + 1, :] return patch def patch_validator(shape, pos, size): if ((pos[0] < size) or (pos[1] < size) or (shape[0] - pos[0] < size) or (shape[1] - pos[1] < size)): return False return True def compute_coordinates(masks): """Expects a list of image masks and computes two sets of coordinates, one for positive events and one for negatives """ positives, negatives = [], [] for year, mask in enumerate(masks): logger.info(" process mask {}".format(year)) # positive samples x_pos, y_pos = np.where(mask == 1) d_pos = np.zeros_like(x_pos) + year positive = np.stack((d_pos, x_pos, y_pos)).T positives.append(positive) # negative samples x_neg, y_neg = np.where(mask == 0) d_neg = np.zeros_like(x_neg) + year negative = np.stack((d_neg, x_neg, y_neg)).T negatives.append(negative) # put everything together logger.info("concatenate coordinates") positives = np.concatenate(positives) negatives = np.concatenate(negatives) return positives, negatives def load_sat_images(path): sat_images = [] for sat_image, ndvi in (load_satellite_img(path, d) for d in train_images): sat_images.append(np.concatenate((sat_image, ndvi), axis=2)) return np.stack(sat_images, axis=0) def make_small_dataset(path): """Computes full dataset""" logger.info("load landslides and masks") sat_images = load_sat_images(path) logger.info("calculate coordinates per mask") masks = list(load_satellite_mask(path, d) for d in train_images) positives, negatives = compute_coordinates(masks) altitude, slope = load_static_data(path) return sat_images, positives, negatives, altitude, slope def index_generator(data, validator, image_size, size, batch_size): batch = np.empty((batch_size, 3), dtype=np.int32) ctr = 0 while True: indices = np.random.permutation(len(data)) for i in indices: if validator(image_size, data[i][1:], size): batch[ctr] = data[i] ctr += 1 if ctr == batch_size: yield batch ctr = 0 def patch_generator(images, pos, neg, altitude, slope, size=25, batch_size=64, p=0.4): # calculate the batch size per label batch_size_pos = max(1, int(batch_size * p)) batch_size_neg = batch_size - batch_size_pos image_size = images.shape[1:] # init index generators idx_pos = index_generator(pos, patch_validator, image_size, size, batch_size_pos) idx_neg = index_generator(neg, patch_validator, image_size, size, batch_size_neg) for sample_idx_pos, sample_idx_neg in zip(idx_pos, idx_neg): X = [] for year, x, y in sample_idx_pos: patch_1 = extract_patch(images[year], x, y, size) if year == 0: patch_2 = patch_1 else: patch_2 = extract_patch(images[year - 1], x, y, size) patch_atl = extract_patch(altitude, x, y, size) patch_slp = extract_patch(slope, x, y, size) X.append(np.concatenate((patch_1, patch_2, patch_atl, patch_slp), axis=2)) for year, x, y in sample_idx_neg: patch_1 = extract_patch(images[year], x, y, size) if year == 0: patch_2 = patch_1 else: patch_2 = extract_patch(images[year - 1], x, y, size) patch_atl = extract_patch(altitude, x, y, size) patch_slp = extract_patch(slope, x, y, size) X.append(
np.concatenate((patch_1, patch_2, patch_atl, patch_slp), axis=2)
numpy.concatenate
import sys import os import warnings import itertools import subprocess import numpy as np import pandas as pd import slack import scipy.stats as st import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.patches import Patch from matplotlib.gridspec import GridSpec exec(open(os.path.abspath(os.path.join( os.path.dirname(__file__), os.path.pardir, 'visualisation', 'light_mode.py'))).read()) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from rotvel_correlation.simstats import Simstats warnings.filterwarnings("ignore") pathSave = '/cosma6/data/dp004/dc-alta2/C-Eagle-analysis-work/rotvel_correlation' def bayesian_blocks(t): """Bayesian Blocks Implementation By <NAME>. License: BSD Based on algorithm outlined in http://adsabs.harvard.edu/abs/2012arXiv1207.5578S Parameters ---------- t : ndarray, length N data to be histogrammed Returns ------- bins : ndarray array containing the (N+1) bin edges Notes ----- This is an incomplete implementation: it may fail for some datasets. Alternate fitness functions and prior forms can be found in the paper listed above. """ # copy and sort the array t = np.sort(t) N = t.size # create length-(N + 1) array of cell edges edges = np.concatenate([t[:1], 0.5 * (t[1:] + t[:-1]), t[-1:]]) block_length = t[-1] - edges # arrays needed for the iteration nn_vec = np.ones(N) best = np.zeros(N, dtype=float) last = np.zeros(N, dtype=int) #----------------------------------------------------------------- # Start with first data cell; add one cell at each iteration #----------------------------------------------------------------- for K in range(N): # Compute the width and count of the final bin for all possible # locations of the K^th changepoint width = block_length[:K + 1] - block_length[K + 1] count_vec = np.cumsum(nn_vec[:K + 1][::-1])[::-1] # evaluate fitness function for these possibilities fit_vec = count_vec * (np.log(count_vec) - np.log(width)) fit_vec -= 4 # 4 comes from the prior on the number of changepoints fit_vec[1:] += best[:K] # find the max of the fitness: this is the K^th changepoint i_max = np.argmax(fit_vec) last[K] = i_max best[K] = fit_vec[i_max] #----------------------------------------------------------------- # Recover changepoints by iteratively peeling off the last block #----------------------------------------------------------------- change_points = np.zeros(N, dtype=int) i_cp = N ind = N while True: i_cp -= 1 change_points[i_cp] = ind if ind == 0: break ind = last[ind - 1] change_points = change_points[i_cp:] return edges[change_points] def freedman_diaconis(x: np.ndarray) -> np.ndarray: """ The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of a.size. Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very robust to outliers. :param x: np.ndarray The 1-dimensional x-data to bin. :return: np.ndarray The bins edges computed using the FD method. """ return np.histogram_bin_edges(x, bins='fd') def equal_number_FD(x: np.ndarray) -> np.ndarray: """ Takes the number of bins computed using the FD method, but then selects the bin edges splitting the dataset in bins with equal number of data-points. :param x: np.ndarray The 1-dimensional x-data to bin. :return: np.ndarray The bins edges computed using the equal-N method. """ nbin = len(np.histogram_bin_edges(x, bins='fd')) - 1 npt = len(x) return np.interp(np.linspace(0, npt, nbin + 1), np.arange(npt), np.sort(x)) # Print some overall stats about the datasets sys.stdout = open(os.devnull, 'w') read_apertures = [Simstats(simulation_name='macsis', aperture_id=i).read_simstats() for i in range(20)] sys.stdout = sys.__stdout__ for apid, stat in enumerate(read_apertures): print(f"Aperture radius {apid} \t --> \t {stat['R_aperture'][0]/stat['R_200_crit'][0]:1.2f} R_200_crit") del read_apertures sys.stdout = open(os.devnull, 'w') read_redshifts = [Simstats(simulation_name=i, aperture_id=0).read_simstats() for i in ['macsis', 'celr_e']] sys.stdout = sys.__stdout__ for sim_name, stat in zip(['macsis', 'celr_e'], read_redshifts): print('\n') for zid, redshift in enumerate(stat.query('cluster_id == 0')['redshift_float']): print(f"Simulation: {sim_name:<10s} Redshift {zid:2d} --> {redshift:1.2f}") del read_redshifts # Start with one single aperture aperture_id = 9 simstats = list() simstats.append(Simstats(simulation_name='macsis', aperture_id=aperture_id)) simstats.append(Simstats(simulation_name='celr_e', aperture_id=aperture_id)) simstats.append(Simstats(simulation_name='celr_b', aperture_id=aperture_id)) stats_out = [sim.read_simstats() for sim in simstats] attrs = [sim.read_metadata() for sim in simstats] print(f"\n{' stats_out DATASET INFO ':-^50s}") print(stats_out[0].info()) # Create SQL query query_COLLECTIVE = list() query_COLLECTIVE.append('redshift_float < 0.02') query_COLLECTIVE.append('M_200_crit > 10**9') query_COLLECTIVE.append('thermodynamic_merging_index_T < 1') stats_filtered = [stat.query(' and '.join(query_COLLECTIVE)) for stat in stats_out] # Generate plots catalog x_labels = ['redshift_float', 'R_500_crit', 'R_aperture', 'M_2500_crit', 'M_aperture_T', 'peculiar_velocity_T_magnitude', 'angular_momentum_T_magnitude', 'dynamical_merging_index_T', 'thermodynamic_merging_index_T', 'substructure_fraction_T'] y_labels = ['M_200_crit','rotTvelT','rot0rot4','rot1rot4','dynamical_merging_index_T', 'thermodynamic_merging_index_T','substructure_fraction_T'] data_entries = list(itertools.product(x_labels, y_labels)) x_labels = [] y_labels = [] for entry in data_entries: if entry[0] is not entry[1]: x_labels.append(entry[0]) y_labels.append(entry[1]) xscale = [] yscale = [] for x in x_labels: scale = 'log' if 'M' in x or 'velocity' in x else 'linear' xscale.append(scale) for y in y_labels: scale = 'log' if 'M' in y or 'velocity' in y else 'linear' yscale.append(scale) data_summary = { 'x' : x_labels, 'y' : y_labels, 'xscale' : xscale, 'yscale' : yscale, } summary = pd.DataFrame(data=data_summary, columns=data_summary.keys()) summary = summary[summary['y'].str.contains('rot')] summary = summary[~summary['x'].str.contains('redshift')] print(f"\n{' summary DATASET PLOTS INFO ':-^40s}\n", summary) # Activate the plot factory print(f"\n{' RUNNING PLOT FACTORY ':-^50s}") data_entries = summary.to_dict('r') x_binning = bayesian_blocks print(f"[+] Binning method for x_data set to `{x_binning.__name__}`.") for entry_index, data_entry in enumerate(data_entries): filename = f"{data_entry['x'].replace('_', '')}_{data_entry['y'].replace('_', '')}_aperture{aperture_id}.pdf" are_files = [os.path.isfile(os.path.join(pathSave, 'scatter', filename)), os.path.isfile(os.path.join(pathSave, 'kdeplot', filename)), os.path.isfile(os.path.join(pathSave, 'median', filename))] #if any(are_files): continue fig = plt.figure(figsize=(15, 10)) gs = GridSpec(2, 3, figure=fig) gs.update(wspace=0., hspace=0.) info_ax0 = fig.add_subplot(gs[0]); info_ax0.axis('off') ax1 = fig.add_subplot(gs[1]) info_ax1 = fig.add_subplot(gs[2]); info_ax1.axis('off') ax2 = fig.add_subplot(gs[3], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[4], sharex=ax2, sharey=ax2) ax4 = fig.add_subplot(gs[5], sharex=ax3, sharey=ax3) ax = [ax1, ax2, ax3, ax4] plt.setp(ax[0].get_xticklabels(), visible=False) plt.setp(ax[2].get_yticklabels(), visible=False) plt.setp(ax[3].get_yticklabels(), visible=False) xlims = [np.min(pd.concat(stats_filtered)[data_entry['x']]), np.max(pd.concat(stats_filtered)[data_entry['x']])] ylims = [np.min(pd.concat(stats_filtered)[data_entry['y']]), np.max(pd.concat(stats_filtered)[data_entry['y']])] # Unresolved issue with the Latex labels # Some contain an extra `$` at the end of the string, which should not be there. label_x = attrs[0]['Columns/labels'][data_entry['x']] label_y = attrs[0]['Columns/labels'][data_entry['y']] if label_x.endswith('$'): label_x = label_x.rstrip('$') if label_y.endswith('$'): label_y = label_y.rstrip('$') ax[0].set_ylabel(label_y) ax[1].set_ylabel(label_y) ax[1].set_xlabel(label_x) ax[2].set_xlabel(label_x) ax[3].set_xlabel(label_x) simstats_palette = ['#1B9E77','#D95F02','#7570B3','#E7298A'] z_range = [np.min(pd.concat(stats_filtered)['redshift_float']), np.max(pd.concat(stats_filtered)['redshift_float'])] z_range_str = f'{z_range[0]:1.2f} - {z_range[1]:1.2f}' if round(z_range[0]) < round(z_range[1]) else f'{z_range[0]:1.2f}' items_labels = [ f"{label_x.split(r'quad')[0]} -\\ {label_y.split(r'quad')[0]}", f"Number of clusters: {np.sum([attr['Number of clusters'] for attr in attrs]):d}", f"$z$ = {z_range_str:s}", f"Aperture radius = {stats_filtered[0]['R_aperture'][0] / stats_filtered[0]['R_200_crit'][0]:2.2f} $R_{{200\\ true}}$" ] info_ax0.text(0.03, 0.97, '\n'.join(items_labels), horizontalalignment='left', verticalalignment='top', size=15, transform=info_ax0.transAxes) axisinfo_kwargs = dict( horizontalalignment='right', verticalalignment='top', size=15 ) handles = [Patch(facecolor=simstats_palette[i], label=attrs[i]['Simulation'], edgecolor='k', linewidth=1) for i in range(len(attrs))] leg = info_ax1.legend(handles=handles, loc='lower right', handlelength=1, fontsize=20) info_ax1.add_artist(leg) ################################################################################################## # SCATTER PLOTS # ################################################################################################## plot_type = 'scatterplot' for ax_idx, axes in enumerate(ax): axes.set_xscale(data_entry['xscale']) axes.set_yscale(data_entry['yscale']) axes.tick_params(direction='in', length=5, top=True, right=True) if ax_idx == 0: axes.scatter( pd.concat(stats_filtered)[data_entry['x']], pd.concat(stats_filtered)[data_entry['y']], s=5, c=simstats_palette[ax_idx-1] ) axes.text(0.95, 0.95, f'\\textsc{{Total}}', transform=axes.transAxes, **axisinfo_kwargs) else: axes.scatter( stats_filtered[ax_idx-1][data_entry['x']], stats_filtered[ax_idx-1][data_entry['y']], s=5, c=simstats_palette[ax_idx-1] ) axes.text(0.95, 0.95, f"\\textsc{{{attrs[ax_idx-1]['Simulation']}}}", transform=axes.transAxes, **axisinfo_kwargs) if not os.path.exists(os.path.join(pathSave, plot_type)): os.makedirs(os.path.join(pathSave, plot_type)) plt.savefig(os.path.join(pathSave, plot_type, filename)) print(f"[+] Plot {entry_index:3d}/{len(data_entries)} Figure saved: {plot_type:>15s} >> {filename}") ################################################################################################## # kde PLOTS # ################################################################################################## plot_type = 'kdeplot' fig_kde = fig ax_kde = [fig_kde.axes[i] for i in [1, 3, 4, 5]] for axes in ax_kde: for artist in axes.lines + axes.collections: artist.remove() x_space = np.linspace(xlims[0], xlims[1], 101) y_space = np.linspace(ylims[0], ylims[1], 101) if data_entry['xscale'] is 'log': x_space = np.linspace(np.log10(xlims[0]), np.log10(xlims[1]), 101) if data_entry['yscale'] is 'log': y_space = np.linspace(
np.log10(ylims[0])
numpy.log10
import numpy as np import xarray as xr import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.gridliner import LongitudeFormatter, LatitudeFormatter import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors import geocat.viz.util as gvutil from geocat.viz import cmaps as gvcmaps # create an example dataset da = xr.open_dataset(r'data\noaa_oisst_v2_merged_1982_2020.nc') sst = da.sst date = sst.time ndate = len(date) ndate = np.arange(len(date)) # define a function to compute a linear trend of a timeseries def linear_trend(x): pf = np.polyfit(ndate, x, 1) # we need to return a dataarray or else xarray's groupby won't be happy return xr.DataArray(pf[0]) def linear_trend(x): date = x.time ndate = np.arange(len(date)) pf = np.polyfit(ndate, x, 1) # we need to return a dataarray or else xarray's groupby won't be happy return xr.DataArray(pf[0]*120) # stack lat and lon into a single dimension called allpoints stacked = sst.stack(allpoints=['lat', 'lon']) # apply the function over allpoints to calculate the trend at each point trend = stacked.groupby('allpoints').apply(linear_trend) # unstack back to lat lon coordinates trend_unstacked = trend.unstack('allpoints') sst_clim = trend_unstacked sst_clim.lon ## PLOT Figure # Now plot mean SST climatology ############################################ # Generate figure (set its size (width, height) in inches) fig = plt.figure(figsize=(7.6, 6.5)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() ax.add_feature(cfeature.LAND, facecolor="darkgray", edgecolor='black', linewidths=1, zorder=2) # Usa geocat.viz.util convenience function to set axes parameters gvutil.set_axes_limits_and_ticks(ax, ylim=(5,25), xlim=(80, 100), xticks=np.arange(80,101 , 5), yticks=np.arange(5, 26, 5)) # Use geocat.viz.util convenience function to add minor and major tick lines gvutil.add_major_minor_ticks(ax, labelsize=14) gvutil.add_lat_lon_ticklabels(ax) gvutil.set_titles_and_labels(ax, maintitle= 'SST Trend (1982-2020)', maintitlefontsize= 18, ylabel='Latitude', xlabel='Longitude', labelfontsize=16) # Remove the degree symbol from tick labels ax.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol='')) ax.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='')) # Set contour levels #levels = np.arange(0.04, 0.25, 0.0) levels =
np.linspace(0.04,0.25,11)
numpy.linspace
import sys import typing import numba as nb import numpy as np @nb.njit def sa_doubling( a: np.array, ) -> np.array: n = a.size a = np.searchsorted( np.unique(a), a, ) cnt = np.zeros(n + 1, dtype=np.int32) def count_sort(a): for x in a: cnt[x + 1] += 1 for i in range(n): cnt[i + 1] += cnt[i] idx = np.empty(n, dtype=np.int32) for i in range(n): x = a[i] idx[cnt[x]] = i cnt[x] += 1 cnt[:] = 0 return idx k = 1 rank = a while 1: b = np.zeros(n, dtype=np.int64) for i in range(n - k): b[i] = rank[i + k] + 1 ord_b = count_sort(b) a = rank[ord_b] ord_a = count_sort(a) sa = ord_b[ord_a] c = a[ord_a] << 32 | b[sa] rank[sa[0]] = 0 for i in range(n - 1): rank[sa[i + 1]] = rank[sa[i]] + (c[i + 1] > c[i]) k *= 2 if k >= n: break b[:] = 0 return sa @nb.njit def kasai( a: np.array, sa: np.array, ) -> np.array: n = a.size if n == 0: return
np.full(n, -1, dtype=np.int32)
numpy.full
# This is a small chunk of code from the skimage package. It is reproduced # here because all we need is a couple color conversion routines, and adding # all of skimage as dependecy is really heavy. # Copyright (C) 2019, the scikit-image team # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # 3. Neither the name of skimage nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # skimage/_shared/version_requirements.py:_check_version # Copyright (c) 2013 The IPython Development Team # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # skimage/_shared/version_requirements.py:is_installed: # Original Copyright (C) 2009-2011 <NAME> # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # skimage/external/tifffile: # Copyright (c) 2008-2014, <NAME> # Copyright (c) 2008-2014, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy as np from scipy import linalg from warnings import warn def rgb2xyz(rgb): """RGB to XYZ color space conversion. Parameters ---------- rgb : (..., 3) array_like The image in RGB format. Final dimension denotes channels. Returns ------- out : (..., 3) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3). Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts from sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _prepare_colorarray(rgb).copy() mask = arr > 0.04045 arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4) arr[~mask] /= 12.92 return arr @ xyz_from_rgb.T.astype(arr.dtype) def lab2xyz(lab, illuminant="D65", observer="2"): """CIE-LAB to XYZcolor space conversion. Parameters ---------- lab : array_like The image in lab format, in a 3-D array of shape ``(.., .., 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in XYZ format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `lab` is not a 3-D array of shape ``(.., .., 3)``. ValueError If either the illuminant or the observer angle are not supported or unknown. UserWarning If any of the pixels are invalid (Z < 0). Notes ----- By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref = 95.047, y_ref = 100., z_ref = 108.883. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=07#text7 .. [2] https://en.wikipedia.org/wiki/Lab_color_space """ arr = _prepare_colorarray(lab).copy() L, a, b = arr[:, :, 0], arr[:, :, 1], arr[:, :, 2] y = (L + 16.) / 116. x = (a / 500.) + y z = y - (b / 200.) if np.any(z < 0): invalid = np.nonzero(z < 0) warn('Color data out of range: Z < 0 in %s pixels' % invalid[0].size, stacklevel=2) z[invalid] = 0 out = np.dstack([x, y, z]) mask = out > 0.2068966 out[mask] = np.power(out[mask], 3.) out[~mask] = (out[~mask] - 16.0 / 116.) / 7.787 # rescale to the reference white (illuminant) xyz_ref_white = get_xyz_coords(illuminant, observer) out *= xyz_ref_white return out def xyz2lab(xyz, illuminant="D65", observer="2"): """XYZ to CIE-LAB color space conversion. Parameters ---------- xyz : array_like The image in XYZ format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in CIE-LAB format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Raises ------ ValueError If `xyz` is not a 3-D array of shape ``(.., ..,[ ..,] 3)``. ValueError If either the illuminant or the observer angle is unsupported or unknown. Notes ----- By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=07#text7 .. [2] https://en.wikipedia.org/wiki/Lab_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2lab >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_lab = xyz2lab(img_xyz) """ arr = _prepare_colorarray(xyz) xyz_ref_white = get_xyz_coords(illuminant, observer) # scale by CIE XYZ tristimulus values of the reference white point arr = arr / xyz_ref_white # Nonlinear distortion and linear transformation mask = arr > 0.008856 arr[mask] = np.cbrt(arr[mask]) arr[~mask] = 7.787 * arr[~mask] + 16. / 116. x, y, z = arr[..., 0], arr[..., 1], arr[..., 2] # Vector scaling L = (116. * y) - 16. a = 500.0 * (x - y) b = 200.0 * (y - z) return np.concatenate([x[..., np.newaxis] for x in [L, a, b]], axis=-1) def lab2rgb(lab, illuminant="D65", observer="2"): """Lab to RGB color space conversion. Parameters ---------- lab : array_like The image in Lab format, in a 3-D array of shape ``(.., .., 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `lab` is not a 3-D array of shape ``(.., .., 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant Notes ----- This function uses lab2xyz and xyz2rgb. By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. """ return xyz2rgb(lab2xyz(lab, illuminant, observer)) def rgb2lab(rgb, illuminant="D65", observer="2"): """RGB to lab color space conversion. Parameters ---------- rgb : array_like The image in RGB format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : ndarray The image in Lab format, in a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. Raises ------ ValueError If `rgb` is not a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant Notes ----- This function uses rgb2xyz and xyz2lab. By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for a list of supported illuminants. """ return xyz2lab(rgb2xyz(rgb), illuminant, observer) def lch2lab(lch): """CIE-LCH to CIE-LAB color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lch : array_like The N-D image in CIE-LCH format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. Returns ------- out : ndarray The image in LAB format, with same shape as input `lch`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, c, h). Examples -------- >>> from skimage import data >>> from skimage.color import rgb2lab, lch2lab >>> img = data.astronaut() >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) >>> img_lab2 = lch2lab(img_lch) """ lch = _prepare_lab_array(lch) c, h = lch[..., 1], lch[..., 2] lch[..., 1], lch[..., 2] = c * np.cos(h), c * np.sin(h) return lch def _prepare_lab_array(arr): """Ensure input for lab2lch, lch2lab are well-posed. Arrays must be in floating point and have at least 3 elements in last dimension. Return a new array. """ arr = np.asarray(arr) shape = arr.shape if shape[-1] < 3: raise ValueError('Input array has less than 3 color channels') return img_as_float(arr, force_copy=True) def get_xyz_coords(illuminant, observer): """Get the XYZ coordinates of the given illuminant and observer [1]_. Parameters ---------- illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- (x, y, z) : tuple A tuple with 3 elements containing the XYZ coordinates of the given illuminant. Raises ------ ValueError If either the illuminant or the observer angle are not supported or unknown. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ illuminant = illuminant.upper() try: return illuminants[illuminant][observer] except KeyError: raise ValueError("Unknown illuminant/observer combination\ (\'{0}\', \'{1}\')".format(illuminant, observer)) def _prepare_colorarray(arr): """Check the shape of the array and convert it to floating point representation. """ arr = np.asanyarray(arr) if arr.ndim not in [3, 4] or arr.shape[-1] != 3: msg = ("the input array must be have a shape == (.., ..,[ ..,] 3)), " + "got (" + (", ".join(map(str, arr.shape))) + ")") raise ValueError(msg) return img_as_float(arr) def xyz2rgb(xyz): """XYZ to RGB color space conversion. Parameters ---------- xyz : array_like The image in XYZ format, in a 3-D array of shape ``(.., .., 3)``. Returns ------- out : ndarray The image in RGB format, in a 3-D array of shape ``(.., .., 3)``. Raises ------ ValueError If `xyz` is not a 3-D array of shape ``(.., .., 3)``. Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts to sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2rgb >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_rgb = xyz2rgb(img_xyz) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _convert(rgb_from_xyz, xyz) mask = arr > 0.0031308 arr[mask] = 1.055 * np.power(arr[mask], 1 / 2.4) - 0.055 arr[~mask] *= 12.92 np.clip(arr, 0, 1, out=arr) return arr def _convert(matrix, arr): """Do the color space conversion. Parameters ---------- matrix : array_like The 3x3 matrix to use. arr : array_like The input array. Returns ------- out : ndarray, dtype=float The converted array. """ arr = _prepare_colorarray(arr) return arr @ matrix.T.copy() # --------------------------------------------------------------- # Primaries for the coordinate systems # --------------------------------------------------------------- cie_primaries = np.array([700, 546.1, 435.8]) sb_primaries = np.array([1. / 155, 1. / 190, 1. / 225]) * 1e5 # --------------------------------------------------------------- # Matrices that define conversion between different color spaces # --------------------------------------------------------------- # From sRGB specification xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]]) rgb_from_xyz = linalg.inv(xyz_from_rgb) # From https://en.wikipedia.org/wiki/CIE_1931_color_space # Note: Travis's code did not have the divide by 0.17697 xyz_from_rgbcie = np.array([[0.49, 0.31, 0.20], [0.17697, 0.81240, 0.01063], [0.00, 0.01, 0.99]]) / 0.17697 rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie) # construct matrices to and from rgb: rgbcie_from_rgb = rgbcie_from_xyz @ xyz_from_rgb rgb_from_rgbcie = rgb_from_xyz @ xyz_from_rgbcie gray_from_rgb = np.array([[0.2125, 0.7154, 0.0721], [0, 0, 0], [0, 0, 0]]) yuv_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], [-0.14714119, -0.28886916, 0.43601035 ], [ 0.61497538, -0.51496512, -0.10001026 ]]) rgb_from_yuv = linalg.inv(yuv_from_rgb) yiq_from_rgb = np.array([[0.299 , 0.587 , 0.114 ], [0.59590059, -0.27455667, -0.32134392], [0.21153661, -0.52273617, 0.31119955]]) rgb_from_yiq = linalg.inv(yiq_from_rgb) ypbpr_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], [-0.168736,-0.331264, 0.5 ], [ 0.5 ,-0.418688,-0.081312]]) rgb_from_ypbpr = linalg.inv(ypbpr_from_rgb) ycbcr_from_rgb = np.array([[ 65.481, 128.553, 24.966], [ -37.797, -74.203, 112.0 ], [ 112.0 , -93.786, -18.214]]) rgb_from_ycbcr = linalg.inv(ycbcr_from_rgb) ydbdr_from_rgb = np.array([[ 0.299, 0.587, 0.114], [ -0.45 , -0.883, 1.333], [ -1.333, 1.116, 0.217]]) rgb_from_ydbdr = linalg.inv(ydbdr_from_rgb) # CIE LAB constants for Observer=2A, Illuminant=D65 # NOTE: this is actually the XYZ values for the illuminant above. lab_ref_white = np.array([0.95047, 1., 1.08883]) # XYZ coordinates of the illuminants, scaled to [0, 1]. For each illuminant I # we have: # # illuminant[I][0] corresponds to the XYZ coordinates for the 2 degree # field of view. # # illuminant[I][1] corresponds to the XYZ coordinates for the 10 degree # field of view. # # The XYZ coordinates are calculated from [1], using the formula: # # X = x * ( Y / y ) # Y = Y # Z = ( 1 - x - y ) * ( Y / y ) # # where Y = 1. The only exception is the illuminant "D65" with aperture angle # 2, whose coordinates are copied from 'lab_ref_white' for # backward-compatibility reasons. # # References # ---------- # .. [1] https://en.wikipedia.org/wiki/Standard_illuminant illuminants = \ {"A": {'2': (1.098466069456375, 1, 0.3558228003436005), '10': (1.111420406956693, 1, 0.3519978321919493)}, "D50": {'2': (0.9642119944211994, 1, 0.8251882845188288), '10': (0.9672062750333777, 1, 0.8142801513128616)}, "D55": {'2': (0.956797052643698, 1, 0.9214805860173273), '10': (0.9579665682254781, 1, 0.9092525159847462)}, "D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white` '10': (0.94809667673716, 1, 1.0730513595166162)}, "D75": {'2': (0.9497220898840717, 1, 1.226393520724154), '10': (0.9441713925645873, 1, 1.2064272211720228)}, "E": {'2': (1.0, 1.0, 1.0), '10': (1.0, 1.0, 1.0)}} __all__ = ['img_as_float32', 'img_as_float64', 'img_as_float', #'img_as_int', 'img_as_uint', 'img_as_ubyte', #'img_as_bool', 'dtype_limits'] # For integers Numpy uses `_integer_types` basis internally, and builds a leaky # `np.XintYY` abstraction on top of it. This leads to situations when, for # example, there are two np.Xint64 dtypes with the same attributes but # different object references. In order to avoid any potential issues, # we use the basis dtypes here. For more information, see: # - https://github.com/scikit-image/scikit-image/issues/3043 # For convenience, for these dtypes we indicate also the possible bit depths # (some of them are platform specific). For the details, see: # http://www.unix.org/whitepapers/64bit.html _integer_types = (np.byte, np.ubyte, # 8 bits np.short, np.ushort, # 16 bits np.intc, np.uintc, # 16 or 32 or 64 bits np.int_, np.uint, # 32 or 64 bits np.longlong, np.ulonglong) # 64 bits _integer_ranges = {t: (np.iinfo(t).min,
np.iinfo(t)
numpy.iinfo
import numpy as np import matplotlib matplotlib.use('AGG') import matplotlib.colors as colors matplotlib.rcParams['font.size'] = 12 matplotlib.rcParams['font.family'] = 'serif' matplotlib.rcParams['savefig.bbox'] = 'tight' matplotlib.rcParams['savefig.pad_inches'] = 0 smallfont = {'family': 'serif', 'size': 12} font = {'family': 'serif', 'size': 18} bigfont = {'family': 'serif', 'size': 40} giantfont = {'family': 'serif', 'size': 80} ggiantfont = {'family': 'serif', 'size': 120} import matplotlib.pyplot as plt import matplotlib.ticker as ticker import sys from sklearn import linear_model def mantexp(num): # Generate the mantissa an exponent if num == 0: return 0,0 exponent = int(np.log10(np.abs(num))) mantissa = num/(10**exponent) if np.abs(mantissa) < 1: mantissa *= 10 exponent -= 1 return mantissa,exponent def generate_sci_fmt(xmin,xmax,numdiv=100): # Print to two sig figs eps = (xmax-xmin)/numdiv #print("eps = {}".format(eps)) general_sci_fmt = lambda num,pos: sci_not_precision(num,eps) return general_sci_fmt def sci_not_precision(num,eps): # Specify a number to an accuracy of epsilon/10 #print("num = {}".format(num)) if np.abs(num) < eps*1e-3: #print("num = {}; returning 0".format(num)) return "0" Mn,En = mantexp(num) Me,Ee = mantexp(eps) # Need Ee+1 places past the decimal point #digs = np.abs(Ee) # Wrong for large eps # Need enough digits to distinguish num from num+eps digs = max(0,En-Ee) #print("digs = {}".format(digs)) num_to_prec = eval(("{:."+str(digs)+"e}").format(num)) #print("num_to_prec = {}".format(num_to_prec)) # Now format it accordingly Mn,En = mantexp(num_to_prec) if np.abs(En) > 2: #sci = ("{:."+str(digs)+"f}\\times 10^{}").format(Mn,En) sci = ("{:."+str(digs)+"f}").format(Mn) #sci = "%s\\times 10^{%d}"%(sci,En) sci = "%se%d"%(sci,En) else: #sci = ("{:."+str(digs)+"f}").format(num_to_prec) sci = ("{:."+str(digs)+"f}").format(num_to_prec) return sci #num_to_prec def fmt(num,pos): return '{:.1f}'.format(num) def fmt2(num,pos): return '{:.2f}'.format(num) def fmt3(num,pos): return '{:.3f}'.format(num) def sci_fmt(num,lim): return '{:.1e}'.format(num) def sci_fmt_short(num,lim): return '{:.0e}'.format(num) def sci_fmt_latex0(num): # Convert a number to scientific notation exponent = int(np.log10(np.abs(num))) mantissa = num/(10**exponent) if np.abs(mantissa) < 1: mantissa += np.sign(mantissa) exponent -= 1 if exponent != 0: sci = "%.0f\\times 10^{%d}" % (mantissa,exponent) else: sci = r"%.0f" % mantissa return sci def sci_fmt_latex1(num): # Convert a number to scientific notation exponent = int(np.log10(np.abs(num))) mantissa = num/(10**exponent) if np.abs(mantissa) < 1: mantissa += np.sign(mantissa) exponent -= 1 if exponent != 0: sci = "%.1f\\times 10^{%d}" % (mantissa,exponent) else: sci = r"%.1f" % mantissa return sci def sci_fmt_latex(num): # Convert a number to scientific notation exponent = int(np.log10(np.abs(num))) mantissa = num/(10**exponent) if np.abs(mantissa) < 1: mantissa += np.sign(mantissa) exponent -= 1 if exponent != 0: sci = "%.2f\\times 10^{%d}" % (mantissa,exponent) else: sci = r"$%.2f$" % mantissa return sci def mean_uncertainty(X,num_blocks=10): # Given a list of numbers X, return the mean and the uncertainty in the mean N = len(X) block_size = int(N/num_blocks) N = block_size*num_blocks # might be less than len(X), but not by more than block_size-1 block_means = np.zeros(num_blocks) idx = np.arange(N).reshape((num_blocks,block_size)) for i in range(num_blocks): block_means[i] = np.mean(X[idx[i]]) unc = np.std(block_means) print("mean(X) = {}. min(block_means) = {}. max(block_means) = {}, unc = {}".format(np.mean(X),np.min(block_means),np.max(block_means),unc)) return unc def both_grids(bounds,shp): # This time shp is the number of cells Nc = np.prod(shp-1) # Number of centers Ne = np.prod(shp) # Number of edges center_grid = np.array(np.unravel_index(np.arange(Nc),shp-1)).T edge_grid = np.array(np.unravel_index(np.arange(Ne),shp)).T dx = (bounds[:,1] - bounds[:,0])/(shp - 1) center_grid = bounds[:,0] + dx * (center_grid + 0.5) edge_grid = bounds[:,0] + dx * edge_grid return center_grid,edge_grid,dx def project_field(field,weight,theta_x,shp=None,avg_flag=True,bounds=None): if np.min(weight) < 0: sys.exit("Negative weights") # Given a vector-valued observable function evaluation theta_x, find the mean # and standard deviation of the field across remaining dimensions # Also return some integrated version of the standard deviation thdim = theta_x.shape[1] if shp is None: shp = 20*np.ones(thdim,dtype=int) # number of INTERIOR if bounds is None: bounds = np.array([np.min(theta_x,0)-1e-10,np.max(theta_x,0)+1e-10]).T cgrid,egrid,dth = both_grids(bounds, shp+1) thaxes = [np.linspace(bounds[i,0]+dth[i]/2,bounds[i,1]-dth[i]/2,shp[i]) for i in range(thdim)] data_bins = ((theta_x - bounds[:,0])/dth).astype(int) for d in range(len(shp)): data_bins[:,d] = np.maximum(data_bins[:,d],0) data_bins[:,d] = np.minimum(data_bins[:,d],shp[d]-1) data_bins_flat = np.ravel_multi_index(data_bins.T,shp) # maps data points to bin Ncell = np.prod(shp) filler = np.nan if avg_flag else 0.0 field_mean = filler*np.ones(Ncell) field_std = filler*np.ones(Ncell) for i in range(Ncell): idx = np.where(data_bins_flat == i)[0] if len(idx) > 0 and not np.all(np.isnan(field[idx])): weightsum = np.sum(weight[idx]*(1-np.isnan(field[idx]))) field_mean[i] = np.nansum(field[idx]*weight[idx]) #if avg_flag and (weightsum == 0): # sys.exit("Doh! supposed to average, but weights are zero!") if avg_flag and (weightsum != 0): field_mean[i] *= 1/weightsum field_std[i] = np.sqrt(np.nansum((field[idx]-field_mean[i])**2*weight[idx])) field_std[i] *= 1/np.sqrt(weightsum) field_range = np.nanmax(field[idx])-np.nanmin(field[idx]) #if (len(idx) > 1) and (field_mean[i] < np.min(field[idx])-0.05*field_range or field_mean[i] > np.max(field[idx])+0.05*field_range): if (field_mean[i] < np.min(field[idx])) and np.abs((field_mean[i] - np.min(field[idx]))/np.min(field[idx])) > 0.05: sys.exit("Doh! Too low! field_mean[i]={}, min(field[idx])={}".format(field_mean[i],np.min(field[idx]))) if (field_mean[i] > np.max(field[idx])) and np.abs((field_mean[i] - np.max(field[idx]))/np.max(field[idx])) > 0.05: sys.exit("Doh! Too high! field_mean[i]={}, max(field[idx])={}".format(field_mean[i],np.max(field[idx]))) #sys.exit("Doh! Average is outside the bounds! len(idx)={}\n field_mean[i] = {}\n field[idx] in ({},{})\n weights in ({},{})\n".format(len(idx),field_mean[i],np.min(field[idx]),np.max(field[idx]),np.min(weight[idx]),np.max(weight[idx]))) field_std_L2 = np.sqrt(np.nansum(field_std**2)/Ncell) #*np.prod(dth)) field_std_Linf = np.nanmax(field_std)*np.prod(dth) return shp,dth,thaxes,cgrid,field_mean,field_std,field_std_L2,field_std_Linf,bounds def plot_field_1d(theta,u,weight,shp=[20,],uname="",thetaname="",avg_flag=True,std_flag=False,fig=None,ax=None,color='black',label="",linestyle='-',linewidth=1,orientation='horizontal',units=1.0,unit_symbol="",eq_ax=False,density_flag=False): shp = np.array(shp) # Plot a 1d scatterplot of a field average across remaining dimensions print("avg_flag = {}".format(avg_flag)) shp,dth,thaxes,cgrid,u_mean,u_std,u_std_L2,u_std_Linf,_ = project_field(u,weight,theta.reshape(-1,1),shp,avg_flag=avg_flag) if density_flag: u_mean *= dth[0]/units u_std *= dth[0]/units print("shp0 = {}, dth={}".format(shp,dth*units)) print("thaxes in ({},{})".format(thaxes[0][0]*units,thaxes[0][-1]*units)) print("u in ({},{}), u_mean in ({},{})".format(np.nanmin(u),np.nanmax(u),np.nanmin(u_mean),np.nanmax(u_mean))) if (fig is None) or (ax is None): fig,ax = plt.subplots(figsize=(6,6),constrained_layout=True) if orientation=='horizontal': handle, = ax.plot(units*thaxes[0],u_mean,marker='o',linestyle=linestyle,color=color,label=label,linewidth=linewidth) if std_flag: ax.plot(units*thaxes[0],u_mean-u_std,color=color,linestyle='--',linewidth=linewidth) ax.plot(units*thaxes[0],u_mean+u_std,color=color,linestyle='--',linewidth=linewidth) xlab = thetaname if len(unit_symbol) > 0: xlab += " ({})".format(unit_symbol) ax.set_xlabel(xlab,fontdict=font) ax.set_ylabel(uname,fontdict=font) ax.set_xlim([np.min(units*theta),np.max(units*theta)]) else: handle, = ax.plot(u_mean,units*thaxes[0],marker='o',linestyle=linestyle,color=color,label=label,linewidth=linewidth) if std_flag: ax.plot(u_mean-u_std,units*thaxes[0],color=color,linestyle='--') ax.plot(u_mean+u_std,units*thaxes[0],color=color,linestyle='--') ylab = thetaname if len(unit_symbol) > 0: ylab += " ({})".format(unit_symbol) print("ylab = {}".format(ylab)) ax.set_ylabel(ylab,fontdict=font) ax.set_xlabel(uname,fontdict=font) ax.set_ylim([np.min(units*theta),np.max(units*theta)]) xlim,ylim = ax.get_xlim(),ax.get_ylim() fmt_x = generate_sci_fmt(xlim[0],xlim[1]) fmt_y = generate_sci_fmt(ylim[0],ylim[1]) ax.xaxis.set_major_formatter(ticker.FuncFormatter(fmt_x)) ax.yaxis.set_major_formatter(ticker.FuncFormatter(fmt_y)) ax.tick_params(axis='x',labelsize=10) ax.tick_params(axis='y',labelsize=10) #ax.xaxis.set_major_locator(plt.MaxNLocator(nbins=3)) #ax.yaxis.set_major_locator(plt.MaxNLocator(nbins=5)) if eq_ax: xylim = np.array([ax.get_xlim(),ax.get_ylim()]) xylim = np.array([np.min(xylim[:,0]),np.max(xylim[:,1])]) ax.set_xlim(xylim) ax.set_ylim(xylim) ax.plot(xylim,xylim,color='black',linestyle='--') return fig,ax,handle def plot_field_2d(field,weight,theta_x,shp=[20,20],cmap=plt.cm.coolwarm,fieldname="",fun0name="",fun1name="",avg_flag=True,std_flag=True,logscale=False,ss=None,units=np.ones(2),unit_symbols=["",""],cbar_orientation='horizontal',cbar_location='top',fig=None,ax=None,vmin=None,vmax=None,cbar_pad=0.2,fmt_x=None,fmt_y=None): # The function inside TPT should just extend this one shp = np.array(shp) shp,dth,thaxes,cgrid,field_mean,field_std,field_std_L2,field_std_Linf,_ = project_field(field,weight,theta_x,shp,avg_flag=avg_flag) if std_flag: if fig is None or ax is None: fig,ax = plt.subplots(ncols=2,figsize=(12,6)) ax0,ax1 = ax[0],ax[1] else: if fig is None or ax is None: fig,ax = plt.subplots(figsize=(6,6)) ax0 = ax th01,th10 = np.meshgrid(units[0]*thaxes[0],units[1]*thaxes[1],indexing='ij') if logscale: realidx = np.where(np.isnan(field_mean)==0)[0] if len(realidx) > 0: posidx = realidx[np.where(field_mean[realidx] > 0)[0]] #field_mean[posidx] = np.log10(field_mean[posidx]) field_mean[np.setdiff1d(np.arange(np.prod(shp)),posidx)] = np.nan locator = ticker.LogLocator(numticks=10) if logscale else ticker.MaxNLocator() im = ax0.contourf(th01,th10,field_mean.reshape(shp),cmap=cmap,locator=locator,zorder=1,vmin=vmin,vmax=vmax) ax0.set_xlim([np.min(units[0]*thaxes[0]),np.max(units[0]*thaxes[0])]) ax0.set_ylim([np.min(units[1]*thaxes[1]),np.max(units[1]*thaxes[1]) + 0.15*units[1]*np.ptp(thaxes[1])]) #print("eps = {} - {}".format(np.nanmax(field_mean),np.nanmin(field_mean))) cbar_fmt = generate_sci_fmt(np.nanmin(field_mean),np.nanmax(field_mean),20) # ------------------- # New colorbar code ax0_left,ax0_bottom,ax0_width,ax0_height = ax0.get_position().bounds if cbar_orientation == 'vertical': sys.exit("Not doing vertical colorbars right now") elif cbar_orientation == 'horizontal': if cbar_location == 'bottom': cbaxes = fig.add_axes([0.2,0.00,0.8,0.01]) elif cbar_location == 'top': cbaxes = fig.add_axes([ax0_left+0.1*ax0_width,ax0_bottom+0.97*ax0_height,0.8*ax0_width,0.03*ax0_height]) if not logscale: cbar = plt.colorbar(im, ax=ax0, cax=cbaxes, orientation=cbar_orientation, format=ticker.FuncFormatter(cbar_fmt), ticks=np.linspace(np.nanmin(field_mean),np.nanmax(field_mean),4)) else: cbar = plt.colorbar(im, ax=ax0, cax=cbaxes, ticks=10.0**(np.linspace(np.log10(np.nanmin(field_mean)),np.log10(np.nanmax(field_mean)),4).astype(int)), orientation='horizontal') cbar.ax.tick_params(labelsize=15) # ------------------- # Old colorbar code #if cbar_orientation is not None: # if not logscale: # cbar = fig.colorbar(im,ax=ax0,format=ticker.FuncFormatter(cbar_fmt),orientation=cbar_orientation,pad=cbar_pad,ticks=np.linspace(np.nanmin(field_mean),np.nanmax(field_mean),4)) # else: # cbar = fig.colorbar(im,ax=ax0,orientation=cbar_orientation,pad=cbar_pad) # cbar.ax.tick_params(labelsize=15) # -------------------- # Super-old colorbar code #if logscale: # logmin = np.nanmin(np.log10(field_mean)) # logmax = np.nanmax(np.log10(field_mean)) # print("logmin = {}, logmax = {}".format(logmin,logmax)) # log_tick_arr = np.linspace(np.nanmin(np.log10(field_mean)),np.nanmax(np.log10(field_mean)),4) # print("log_tick_arr = {}".format(log_tick_arr)) # locator = ticker.FixedLocator(10**log_tick_arr) #else: # locator = ticker.MaxNLocator(nbins=3) # cbar.locator = locator #ticker.MaxNLocator(nbins=3) # cbar.update_ticks() # -------------------- ax0.tick_params(axis='x',labelsize=14) ax0.tick_params(axis='y',labelsize=14) xlim,ylim = ax0.get_xlim(),ax0.get_ylim() fmt_x = generate_sci_fmt(xlim[0],xlim[1]) fmt_y = generate_sci_fmt(ylim[0],ylim[1]) #if fmt_x is None: # fmt_x = fmt if xlim[1]-xlim[0]<1e3 else sci_fmt #if fmt_y is None: # fmt_y = fmt if xlim[1]-xlim[0]<1e3 else sci_fmt ax0.xaxis.set_major_formatter(ticker.FuncFormatter(fmt_x)) ax0.yaxis.set_major_formatter(ticker.FuncFormatter(fmt_y)) ax0.xaxis.set_major_locator(ticker.MaxNLocator(nbins=4)) if std_flag: im = ax1.contourf(th01,th10,field_std.reshape(shp),cmap=plt.cm.magma) ax1.tick_params(axis='x',labelsize=10) ax1.tick_params(axis='y',labelsize=10) ax0.set_title("{}".format(fieldname),fontdict=font,y=1.0) #,loc='left') xlab = fun0name if len(unit_symbols[0]) > 0: xlab += " [{}]".format(unit_symbols[0]) ylab = fun1name if len(unit_symbols[1]) > 0: ylab += " [{}]".format(unit_symbols[1]) ax0.set_xlabel("{}".format(xlab),fontdict=font) ax0.set_ylabel("{}".format(ylab),fontdict=font) if std_flag: cbar = fig.colorbar(im,ax=ax[1],format=ticker.FuncFormatter(fmt),orientation=cbar_orientation,pad=0.2,ticks=np.linspace(np.nanmin(field_std),np.nanmax(field_std),4)) cbar.ax.tick_params(labelsize=10) ax1.set_title(r"Std; $L^2=%.2e$"%(field_std_L2),fontdict=font) ax1.set_xlabel("{}".format(xlab),fontdict=font) ax1.set_ylabel("{}".format(ylab),fontdict=font) return fig,ax def reweight_data(x,theta_fun,algo_params,theta_pdf): # theta_fun is a CV space; theta_pdf is a density function on that CV space (need not be normalized) # Given a reference dataset meant to be pi-distributed, resample # ref_data could be transformed Nx = len(x) theta_x = theta_fun(x,algo_params) theta_weights = theta_pdf(theta_x) shp,dth,thaxes,cgrid,field_mean,field_std,field_std_L2,field_std_Linf,bounds = project_field(np.ones(Nx),np.ones(Nx),theta_x,avg_flag=False) lower_bounds = np.array([th[0] for th in thaxes]) data_bins = ((theta_x - lower_bounds)/dth).astype(int) data_bins_flat = np.ravel_multi_index(data_bins.T,shp).T empirical_weights = field_mean[data_bins_flat] print("empirical weights: min={}, max={}, mean={}, std={}".format(np.min(empirical_weights),np.max(empirical_weights),np.mean(empirical_weights),np.std(empirical_weights))) sample_weights = theta_weights*(empirical_weights!=0) / (empirical_weights + 1*(empirical_weights==0)) #sample_weights = 1*(empirical_weights==0) / (empirical_weights + 1*(empirical_weights==0)) sample_weights *= 1.0/np.sum(sample_weights) return sample_weights def compare_fields(theta0,theta1,u0,u1,weights0,weights1,shp=None,avg_flag=True,subset_flag=True): # u_emp is some timeseries that is a function following the long trajectory. u0 is its computed (conditional) expectation # theta_fun is some CV space that we will grid up and compare u0 to u1 averaged over each box N0 = len(theta0) N1 = len(theta1) if subset_flag: ss0 = np.random.choice(np.arange(N0),size=min(N0,10000),replace=True) ss1 = np.random.choice(np.arange(N1),size=min(N1,10000),replace=True) else: ss0 = np.arange(N0) ss1 = np.arange(N1) if shp is None: shp = 10*np.ones(2,dtype=int) shp = np.array(shp) shp,dth,thaxes,cgrid,u0_grid,u0_std,u0_std_L2,u0_std_Linf,bounds = project_field(u0[ss0],weights0[ss0]/np.sum(weights0[ss0]),theta0[ss0],avg_flag=avg_flag,shp=shp) _,_,_,_,u1_grid,_,_,_,_ = project_field(u1[ss1],weights1[ss1]/np.sum(weights1[ss1]),theta1[ss1],avg_flag=avg_flag,shp=shp,bounds=bounds) return shp,dth,thaxes,cgrid,u0_grid,u1_grid def compare_plot_fields_1d(theta0,theta1,u0,u1,weights0,weights1,theta_name="",u_names=["",""],theta_units=1.0,theta_unit_symbol="",avg_flag=True,logscale=False,shp=None): N0 = len(theta0) N1 = len(theta1) shp,dth,thaxes,cgrid,u0_grid,u1_grid = compare_fields(theta0,theta1,u0,u1,weights0,weights1,shp=shp,avg_flag=avg_flag) # Also get the weights for each bin _,_,_,_,w0_grid,w1_grid = compare_fields(theta0,theta1,np.ones(N0),np.ones(N1),weights0,weights1,shp=shp,avg_flag=False) # Compute some total error metric fig,ax = plt.subplots(ncols=2,figsize=(12,6)) scatter_subset = np.where((u0_grid>0)*(u1_grid>0))[0] if logscale else np.arange(len(u0_grid)) total_error = np.sqrt(np.nansum((u0_grid-u1_grid)**2*w1_grid)/np.nansum(w1_grid)) h = ax[0].scatter(u0_grid[scatter_subset],u1_grid[scatter_subset],marker='o',color='black',s=50*w1_grid[scatter_subset]/np.max(w1_grid[scatter_subset]),label=r"Avg. Error = %3.3e"%(total_error)) ax[0].legend(handles=[h],prop={'size':12}) umin = min(np.nanmin(u0_grid[scatter_subset]),
np.nanmin(u1_grid[scatter_subset])
numpy.nanmin
"""Define the Problem class and a FakeComm class for non-MPI users.""" import sys import pprint import os import logging import weakref import time from collections import defaultdict, namedtuple, OrderedDict from fnmatch import fnmatchcase from itertools import product from io import StringIO import numpy as np import scipy.sparse as sparse from openmdao.core.component import Component from openmdao.jacobians.dictionary_jacobian import _CheckingJacobian from openmdao.core.driver import Driver, record_iteration from openmdao.core.group import Group, System from openmdao.core.total_jac import _TotalJacInfo from openmdao.core.constants import _DEFAULT_OUT_STREAM, _UNDEFINED from openmdao.approximation_schemes.complex_step import ComplexStep from openmdao.approximation_schemes.finite_difference import FiniteDifference from openmdao.solvers.solver import SolverInfo from openmdao.error_checking.check_config import _default_checks, _all_checks, \ _all_non_redundant_checks from openmdao.recorders.recording_iteration_stack import _RecIteration from openmdao.recorders.recording_manager import RecordingManager, record_viewer_data, \ record_model_options from openmdao.utils.record_util import create_local_meta from openmdao.utils.general_utils import ContainsAll, pad_name, _is_slicer_op, LocalRangeIterable from openmdao.utils.mpi import MPI, FakeComm, multi_proc_exception_check, check_mpi_env from openmdao.utils.name_maps import name2abs_names from openmdao.utils.options_dictionary import OptionsDictionary from openmdao.utils.units import simplify_unit from openmdao.core.constants import _SetupStatus from openmdao.utils.name_maps import abs_key2rel_key from openmdao.vectors.vector import _full_slice from openmdao.vectors.default_vector import DefaultVector from openmdao.utils.logger_utils import get_logger, TestLogger import openmdao.utils.coloring as coloring_mod from openmdao.utils.hooks import _setup_hooks from openmdao.utils.indexer import indexer from openmdao.utils.om_warnings import issue_warning, DerivativesWarning, warn_deprecation, \ OMInvalidCheckDerivativesOptionsWarning try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None from openmdao.utils.name_maps import rel_key2abs_key, rel_name2abs_name _contains_all = ContainsAll() CITATION = """@article{openmdao_2019, Author={<NAME> and <NAME> and <NAME>. Martins and <NAME> and <NAME>}, Title="{OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization}", Journal="{Structural and Multidisciplinary Optimization}", Year={2019}, Publisher={Springer}, pdf={http://openmdao.org/pubs/openmdao_overview_2019.pdf}, note= {In Press} }""" class Problem(object): """ Top-level container for the systems and drivers. Parameters ---------- model : <System> or None The top-level <System>. If not specified, an empty <Group> will be created. driver : <Driver> or None The driver for the problem. If not specified, a simple "Run Once" driver will be used. comm : MPI.Comm or <FakeComm> or None The global communicator. name : str Problem name. Can be used to specify a Problem instance when multiple Problems exist. **options : named args All remaining named args are converted to options. Attributes ---------- model : <System> Pointer to the top-level <System> object (root node in the tree). comm : MPI.Comm or <FakeComm> The global communicator. driver : <Driver> Slot for the driver. The default driver is `Driver`, which just runs the model once. _mode : 'fwd' or 'rev' Derivatives calculation mode, 'fwd' for forward, and 'rev' for reverse (adjoint). _orig_mode : 'fwd', 'rev', or 'auto' Derivatives calculation mode assigned by the user. If set to 'auto', _mode will be automatically assigned to 'fwd' or 'rev' based on relative sizes of design variables vs. responses. _initial_condition_cache : dict Any initial conditions that are set at the problem level via setitem are cached here until they can be processed. cite : str Listing of relevant citations that should be referenced when publishing work that uses this class. options : <OptionsDictionary> Dictionary with general options for the problem. recording_options : <OptionsDictionary> Dictionary with problem recording options. _rec_mgr : <RecordingManager> Object that manages all recorders added to this problem. _check : bool If True, call check_config at the end of final_setup. _filtered_vars_to_record : dict Dictionary of lists of design vars, constraints, etc. to record. _logger : object or None Object for logging config checks if _check is True. _name : str Problem name. _system_options_recorded : bool A flag to indicate whether the system options for all the systems have been recorded _metadata : dict Problem level metadata. _run_counter : int The number of times run_driver or run_model has been called. _warned : bool Bool to check if `value` deprecation warning has occured yet """ def __init__(self, model=None, driver=None, comm=None, name=None, **options): """ Initialize attributes. """ self.cite = CITATION self._name = name self._warned = False if comm is None: use_mpi = check_mpi_env() if use_mpi is False: comm = FakeComm() else: try: from mpi4py import MPI comm = MPI.COMM_WORLD except ImportError: comm = FakeComm() if model is None: self.model = Group() elif isinstance(model, System): self.model = model else: raise TypeError(self.msginfo + ": The value provided for 'model' is not a valid System.") if driver is None: self.driver = Driver() elif isinstance(driver, Driver): self.driver = driver else: raise TypeError(self.msginfo + ": The value provided for 'driver' is not a valid Driver.") self.comm = comm self._mode = None # mode is assigned in setup() self._initial_condition_cache = {} self._metadata = None self._run_counter = -1 self._system_options_recorded = False self._rec_mgr = RecordingManager() # General options self.options = OptionsDictionary(parent_name=type(self).__name__) self.options.declare('coloring_dir', types=str, default=os.path.join(os.getcwd(), 'coloring_files'), desc='Directory containing coloring files (if any) for this Problem.') self.options.update(options) # Case recording options self.recording_options = OptionsDictionary(parent_name=type(self).__name__) self.recording_options.declare('record_desvars', types=bool, default=True, desc='Set to True to record design variables at the ' 'problem level') self.recording_options.declare('record_objectives', types=bool, default=True, desc='Set to True to record objectives at the problem level') self.recording_options.declare('record_constraints', types=bool, default=True, desc='Set to True to record constraints at the ' 'problem level') self.recording_options.declare('record_responses', types=bool, default=False, desc='Set True to record constraints and objectives at the ' 'problem level.') self.recording_options.declare('record_inputs', types=bool, default=False, desc='Set True to record inputs at the ' 'problem level.') self.recording_options.declare('record_outputs', types=bool, default=True, desc='Set True to record outputs at the ' 'problem level.') self.recording_options.declare('record_residuals', types=bool, default=False, desc='Set True to record residuals at the ' 'problem level.') self.recording_options.declare('record_derivatives', types=bool, default=False, desc='Set to True to record derivatives for the problem ' 'level') self.recording_options.declare('record_abs_error', types=bool, default=True, desc='Set to True to record absolute error of ' 'model nonlinear solver') self.recording_options.declare('record_rel_error', types=bool, default=True, desc='Set to True to record relative error of model \ nonlinear solver') self.recording_options.declare('includes', types=list, default=['*'], desc='Patterns for variables to include in recording. \ Uses fnmatch wildcards') self.recording_options.declare('excludes', types=list, default=[], desc='Patterns for vars to exclude in recording ' '(processed post-includes). Uses fnmatch wildcards') _setup_hooks(self) def _get_var_abs_name(self, name): if name in self.model._var_allprocs_abs2meta: return name elif name in self.model._var_allprocs_prom2abs_list['output']: return self.model._var_allprocs_prom2abs_list['output'][name][0] elif name in self.model._var_allprocs_prom2abs_list['input']: abs_names = self.model._var_allprocs_prom2abs_list['input'][name] if len(abs_names) == 1: return abs_names[0] else: raise KeyError("{}: Using promoted name `{}' is ambiguous and matches unconnected " "inputs %s. Use absolute name to disambiguate.".format(self.msginfo, name, abs_names)) raise KeyError('{}: Variable "{}" not found.'.format(self.msginfo, name)) @property def msginfo(self): """ Return info to prepend to messages. Returns ------- str Info to prepend to messages. """ if self._name is None: return type(self).__name__ return '{} {}'.format(type(self).__name__, self._name) def _get_inst_id(self): return self._name def is_local(self, name): """ Return True if the named variable or system is local to the current process. Parameters ---------- name : str Name of a variable or system. Returns ------- bool True if the named system or variable is local to this process. """ if self._metadata is None: raise RuntimeError("{}: is_local('{}') was called before setup() " "completed.".format(self.msginfo, name)) try: abs_name = self._get_var_abs_name(name) except KeyError: sub = self.model._get_subsystem(name) return sub is not None and sub._is_local # variable exists, but may be remote return abs_name in self.model._var_abs2meta['input'] or \ abs_name in self.model._var_abs2meta['output'] def _get_cached_val(self, name, get_remote=False): # We have set and cached already if name in self._initial_condition_cache: return self._initial_condition_cache[name] # Vector not setup, so we need to pull values from saved metadata request. else: proms = self.model._var_allprocs_prom2abs_list meta = self.model._var_abs2meta try: conns = self.model._conn_abs_in2out except AttributeError: conns = {} abs_names = name2abs_names(self.model, name) if not abs_names: raise KeyError('{}: Variable "{}" not found.'.format(self.model.msginfo, name)) abs_name = abs_names[0] vars_to_gather = self._metadata['vars_to_gather'] io = 'output' if abs_name in meta['output'] else 'input' if abs_name in meta[io]: if abs_name in conns: val = meta['output'][conns[abs_name]]['val'] else: val = meta[io][abs_name]['val'] if get_remote and abs_name in vars_to_gather: owner = vars_to_gather[abs_name] if self.model.comm.rank == owner: self.model.comm.bcast(val, root=owner) else: val = self.model.comm.bcast(None, root=owner) if val is not _UNDEFINED: # Need to cache the "get" in case the user calls in-place numpy operations. self._initial_condition_cache[name] = val return val @property def _recording_iter(self): return self._metadata['recording_iter'] def __getitem__(self, name): """ Get an output/input variable. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. Returns ------- float or ndarray or any python object the requested output/input variable. """ return self.get_val(name, get_remote=None) def get_val(self, name, units=None, indices=None, get_remote=False): """ Get an output/input variable. Function is used if you want to specify display units. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. units : str, optional Units to convert to before return. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to return. get_remote : bool or None If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. If None and the variable is remote or distributed, a RuntimeError will be raised. Returns ------- object The value of the requested output/input variable. """ if self._metadata['setup_status'] == _SetupStatus.POST_SETUP: val = self._get_cached_val(name, get_remote=get_remote) if val is not _UNDEFINED: if indices is not None: val = val[indices] if units is not None: val = self.model.convert2units(name, val, simplify_unit(units)) else: val = self.model.get_val(name, units=units, indices=indices, get_remote=get_remote, from_src=True) if val is _UNDEFINED: if get_remote: raise KeyError('{}: Variable name "{}" not found.'.format(self.msginfo, name)) else: raise RuntimeError(f"{self.model.msginfo}: Variable '{name}' is not local to " f"rank {self.comm.rank}. You can retrieve values from " "other processes using `get_val(<name>, get_remote=True)`.") return val def __setitem__(self, name, value): """ Set an output/input variable. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. value : float or ndarray or any python object value to set this variable to. """ self.set_val(name, value) def set_val(self, name, val=None, units=None, indices=None, **kwargs): """ Set an output/input variable. Function is used if you want to set a value using a different unit. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. val : float or ndarray or list or None Value to set this variable to. units : str, optional Units that value is defined in. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to set to specified value. **kwargs : dict Additional keyword argument for deprecated `value` arg. """ if 'value' not in kwargs: value = None elif 'value' in kwargs: value = kwargs['value'] if value is not None and not self._warned: self._warned = True warn_deprecation(f"{self.msginfo} 'value' will be deprecated in 4.0. Please use 'val' " "in the future.") elif val is not None: self._warned = True value = val model = self.model if self._metadata is not None: conns = model._conn_global_abs_in2out else: raise RuntimeError(f"{self.msginfo}: '{name}' Cannot call set_val before setup.") all_meta = model._var_allprocs_abs2meta loc_meta = model._var_abs2meta n_proms = 0 # if nonzero, name given was promoted input name w/o a matching prom output try: ginputs = model._group_inputs except AttributeError: ginputs = {} # could happen if top level system is not a Group abs_names = name2abs_names(model, name) if abs_names: n_proms = len(abs_names) # for output this will never be > 1 if n_proms > 1 and name in ginputs: abs_name = ginputs[name][0].get('use_tgt', abs_names[0]) else: abs_name = abs_names[0] else: raise KeyError(f'{model.msginfo}: Variable "{name}" not found.') if abs_name in conns: src = conns[abs_name] if abs_name not in model._var_allprocs_discrete['input']: value =
np.asarray(value)
numpy.asarray
#!/usr/bin/env python # coding: utf-8 # !jupyter nbconvert --no-prompt --to=python deconv.ipynb import numpy as np from scipy.signal import convolve2d from os import path, system from astropy.io import fits from numpy.fft import fft2, ifft2 from time import perf_counter def psf_gaussian(npixel=0, ndimension=2, fwhm=0): cntrd=np.array([(npixel-1)/2., (npixel-1)/2.]) x, y = np.meshgrid(np.arange(npixel)-cntrd[0], np.arange(npixel)-cntrd[1], sparse=False) d = np.sqrt(x*x+y*y) mu=0 sigma=fwhm/(2*(2*np.log(2))**(0.5)) psf= np.exp(-( 0.5*(d-mu)**2 / ( sigma**2 ) ) ) return (psf/np.sum(psf)).astype('float64') def arr_extension(arr, n_ext_max=999, minv=np.finfo('float64').eps): meps=np.finfo('float64').eps n_iter=1 ncomp=arr.size # extension kernel in horizontal/vertical directions ext_kernel=np.array([[0,1,0],[1,0,1],[0,1,0]]) # extension kernel in diagonal directions ext_kernel_d=np.array([[1,0,1],[0,0,0],[1,0,1]]) while np.sum(arr != minv) != ncomp: if n_iter > n_ext_max: break # mark only non-minimum values non_min_mark=(arr != minv)*1 # weight horizontal/vertical and diagnonal direction differently arr_ext=convolve2d(arr, ext_kernel+ext_kernel_d/2**0.5, mode='same') # calculate normalization factor norm_factor_sum=convolve2d(non_min_mark, ext_kernel+ext_kernel_d*8, mode='same') norm_factor=norm_factor_sum % 8 norm_factor_d=norm_factor_sum // 8 replace_idx=np.nonzero((non_min_mark == 0) & (norm_factor > 0)) repcnt=len(replace_idx[0]) if repcnt > 0: arr[replace_idx]=np.clip((arr_ext[replace_idx])/ (norm_factor[replace_idx]+norm_factor_d[replace_idx]/2**0.5),meps,None) n_iter+=1 return arr.astype('float64') def deconv(data,psf,psi,nit): # modified from IDL rountine "decon.pro" written by <NAME> meps=np.finfo('float64').eps minv=1e-10 dshape=data.shape psfn=psf.copy() ngidx=np.nonzero(psfn <= 0) if len(ngidx) > 0: psfn[ngidx] = minv #PSF Normalization psfn=psfn/np.sum(psfn) psfn = np.roll(psfn,(int(dshape[0]*0.5),int(dshape[1]*0.5)),(0,1)) norm=np.sum(data) fpsf=(fft2(psfn)) for i in range(nit): phi = (ifft2(fft2(psi)*fpsf)).astype('float64') check_phi=(phi == 0.) if np.sum(check_phi): phi = phi+check_phi*meps div=(data/phi) psi=psi*((ifft2(
fft2(div)
numpy.fft.fft2
""" The :mod:`scikitplot.metrics` module includes plots for machine learning evaluation metrics e.g. confusion matrix, silhouette scores, etc. """ from __future__ import absolute_import, division, print_function, \ unicode_literals import itertools import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import confusion_matrix from sklearn.preprocessing import label_binarize from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_curve from sklearn.metrics import auc from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.utils.multiclass import unique_labels from sklearn.metrics import silhouette_score from sklearn.metrics import silhouette_samples from sklearn.calibration import calibration_curve from scipy import interp from scikitplot.helpers import binary_ks_curve, validate_labels def plot_confusion_matrix(y_true, y_pred, labels=None, true_labels=None, pred_labels=None, title=None, normalize=False, hide_zeros=False, x_tick_rotation=0, ax=None, figsize=None, cmap='Blues', title_fontsize="large", text_fontsize="medium"): """Generates confusion matrix plot from predictions and true labels Args: y_true (array-like, shape (n_samples)): Ground truth (correct) target values. y_pred (array-like, shape (n_samples)): Estimated targets as returned by a classifier. labels (array-like, shape (n_classes), optional): List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. (new in v0.2.5) true_labels (array-like, optional): The true labels to display. If none is given, then all of the labels are used. pred_labels (array-like, optional): The predicted labels to display. If none is given, then all of the labels are used. title (string, optional): Title of the generated plot. Defaults to "Confusion Matrix" if `normalize` is True. Else, defaults to "Normalized Confusion Matrix. normalize (bool, optional): If True, normalizes the confusion matrix before plotting. Defaults to False. hide_zeros (bool, optional): If True, does not plot cells containing a value of zero. Defaults to False. x_tick_rotation (int, optional): Rotates x-axis tick labels by the specified angle. This is useful in cases where there are numerous categories and the labels overlap each other. ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to plot the curve. If None, the plot is drawn on a new set of axes. figsize (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. cmap (string or :class:`matplotlib.colors.Colormap` instance, optional): Colormap used for plotting the projection. View Matplotlib Colormap documentation for available options. https://matplotlib.org/users/colormaps.html title_fontsize (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "large". text_fontsize (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". Returns: ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn. Example: >>> import scikitplot as skplt >>> rf = RandomForestClassifier() >>> rf = rf.fit(X_train, y_train) >>> y_pred = rf.predict(X_test) >>> skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True) <matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490> >>> plt.show() .. image:: _static/examples/plot_confusion_matrix.png :align: center :alt: Confusion matrix """ y_true = np.asarray(y_true) y_pred = np.asarray(y_pred) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) cm = confusion_matrix(y_true, y_pred, labels=labels) if labels is None: classes = unique_labels(y_true, y_pred) else: classes = np.asarray(labels) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm = np.around(cm, decimals=2) cm[np.isnan(cm)] = 0.0 if true_labels is None: true_classes = classes else: validate_labels(classes, true_labels, "true_labels") true_label_indexes = np.in1d(classes, true_labels) true_classes = classes[true_label_indexes] cm = cm[true_label_indexes] if pred_labels is None: pred_classes = classes else: validate_labels(classes, pred_labels, "pred_labels") pred_label_indexes = np.in1d(classes, pred_labels) pred_classes = classes[pred_label_indexes] cm = cm[:, pred_label_indexes] if title: ax.set_title(title, fontsize=title_fontsize) elif normalize: ax.set_title('Normalized Confusion Matrix', fontsize=title_fontsize) else: ax.set_title('Confusion Matrix', fontsize=title_fontsize) image = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.get_cmap(cmap)) plt.colorbar(mappable=image) x_tick_marks = np.arange(len(pred_classes)) y_tick_marks = np.arange(len(true_classes)) ax.set_xticks(x_tick_marks) ax.set_xticklabels(pred_classes, fontsize=text_fontsize, rotation=x_tick_rotation) ax.set_yticks(y_tick_marks) ax.set_yticklabels(true_classes, fontsize=text_fontsize) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if not (hide_zeros and cm[i, j] == 0): ax.text(j, i, cm[i, j], horizontalalignment="center", verticalalignment="center", fontsize=text_fontsize, color="white" if cm[i, j] > thresh else "black") ax.set_ylabel('True label', fontsize=text_fontsize) ax.set_xlabel('Predicted label', fontsize=text_fontsize) ax.grid('off') return ax def plot_roc_curve(y_true, y_probas, title='ROC Curves', curves=('micro', 'macro', 'each_class'), ax=None, figsize=None, cmap='nipy_spectral', title_fontsize="large", text_fontsize="medium"): """Generates the ROC curves from labels and predicted scores/probabilities Args: y_true (array-like, shape (n_samples)): Ground truth (correct) target values. y_probas (array-like, shape (n_samples, n_classes)): Prediction probabilities for each class returned by a classifier. title (string, optional): Title of the generated plot. Defaults to "ROC Curves". curves (array-like): A listing of which curves should be plotted on the resulting plot. Defaults to `("micro", "macro", "each_class")` i.e. "micro" for micro-averaged curve, "macro" for macro-averaged curve ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to plot the curve. If None, the plot is drawn on a new set of axes. figsize (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. cmap (string or :class:`matplotlib.colors.Colormap` instance, optional): Colormap used for plotting the projection. View Matplotlib Colormap documentation for available options. https://matplotlib.org/users/colormaps.html title_fontsize (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "large". text_fontsize (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". Returns: ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn. Example: >>> import scikitplot as skplt >>> nb = GaussianNB() >>> nb = nb.fit(X_train, y_train) >>> y_probas = nb.predict_proba(X_test) >>> skplt.metrics.plot_roc_curve(y_test, y_probas) <matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490> >>> plt.show() .. image:: _static/examples/plot_roc_curve.png :align: center :alt: ROC Curves """ y_true =
np.array(y_true)
numpy.array
import os import imageio import numpy as np import scipy def load_images_from_folder(folder_name): return list( map(lambda image_name: ( image_name, imageio.imread(os.path.join(folder_name, image_name)) / 255), os.listdir(folder_name))) def prepare_input_data(database_folder='./images/database', ground_truth_folder='./images/ground_truth_augmented'): """ Loads images from input folders and groups them with their labels. :param database_folder: :param ground_truth_folder: :return: """ def remove_svm_from_name(input): name, data = input return name.replace('_SVM', ''), data output = [] input_images = load_images_from_folder(database_folder) ground_truth = dict(map(remove_svm_from_name, load_images_from_folder(ground_truth_folder))) for (image_name, image_data) in input_images: image_output = ground_truth[image_name] image_output = scipy.misc.imresize(image_output, (110,110, 3)) / 255 output.append( { 'name': image_name, 'output': image_output, 'input': image_data } ) return output def split_input_data(input_data): """ Splits the input data into training and test set using 70:30 ratio. :param input_data: data to split tuple of (images,labels) :return: splitted data tuple of tuples (train(images,labels)test(images,labels)) """ images = [elem['input'] for elem in input_data] labels = [elem['output'] for elem in input_data] size = len(images) train_part = int(size * 0.7) train_images = np.array(images[:train_part]) train_labels =
np.array(labels[:train_part])
numpy.array
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import os import coord import time import fitsio import treecorr from test_helper import assert_raises, do_pickle, timer, get_from_wiki, CaptureLog, clear_save from test_helper import profile def generate_shear_field(npos, nhalo, rng=None): # We do something completely different here than we did for 2pt patch tests. # A straight Gaussian field with a given power spectrum has no significant 3pt power, # so it's not a great choice for simulating a field for 3pt tests. # Instead we place N SIS "halos" randomly in the grid. # Then we translate that to a shear field via FFT. if rng is None: rng = np.random.RandomState() # Generate x,y values for the real-space field x = rng.uniform(0,1000, size=npos) y = rng.uniform(0,1000, size=npos) nh = rng.poisson(nhalo) # Fill the kappa values with SIS halo profiles. xc = rng.uniform(0,1000, size=nh) yc = rng.uniform(0,1000, size=nh) scale = rng.uniform(20,50, size=nh) mass = rng.uniform(0.01, 0.05, size=nh) # Avoid making huge nhalo * nsource arrays. Loop in blocks of 64 halos nblock = (nh-1) // 64 + 1 kappa = np.zeros_like(x) gamma = np.zeros_like(x, dtype=complex) for iblock in range(nblock): i = iblock*64 j = (iblock+1)*64 dx = x[:,np.newaxis]-xc[np.newaxis,i:j] dy = y[:,np.newaxis]-yc[np.newaxis,i:j] dx[dx==0] = 1 # Avoid division by zero. dy[dy==0] = 1 dx /= scale[i:j] dy /= scale[i:j] rsq = dx**2 + dy**2 r = rsq**0.5 k = mass[i:j] / r # "Mass" here is really just a dimensionless normalization propto mass. kappa += np.sum(k, axis=1) # gamma_t = kappa for SIS. g = -k * (dx + 1j*dy)**2 / rsq gamma += np.sum(g, axis=1) return x, y, np.real(gamma), np.imag(gamma), kappa @timer def test_kkk_jk(): # Test jackknife and other covariance estimates for kkk correlations. # Note: This test takes a while! # The main version I think is a pretty decent test of the code correctness. # It shows that bootstrap in particular easily gets to within 50% of the right variance. # Sometimes within 20%, but because of the randomness there, it varies a bit. # Jackknife isn't much worse. Just a little below 50%. But still pretty good. # Sample and Marked are not great for this test. I think they will work ok when the # triangles of interest are mostly within single patches, but that's not the case we # have here, and it would take a lot more points to get to that regime. So the # accuracy tests for those two are pretty loose. if __name__ == '__main__': # This setup takes about 740 sec to run. nhalo = 3000 nsource = 5000 npatch = 32 tol_factor = 1 elif False: # This setup takes about 180 sec to run. nhalo = 2000 nsource = 2000 npatch = 16 tol_factor = 2 elif False: # This setup takes about 51 sec to run. nhalo = 1000 nsource = 1000 npatch = 16 tol_factor = 3 else: # This setup takes about 20 sec to run. # So we use this one for regular unit test runs. # It's pretty terrible in terms of testing the accuracy, but it works for code coverage. # But whenever actually working on this part of the code, definitely need to switch # to one of the above setups. Preferably run the name==main version to get a good # test of the code correctness. nhalo = 500 nsource = 500 npatch = 16 tol_factor = 4 file_name = 'data/test_kkk_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): nruns = 1000 all_kkks = [] rng1 = np.random.RandomState() for run in range(nruns): x, y, _, _, k = generate_shear_field(nsource, nhalo, rng1) print(run,': ',np.mean(k),np.std(k)) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1) kkk.process(cat) print(kkk.ntri.ravel().tolist()) print(kkk.zeta.ravel().tolist()) all_kkks.append(kkk) mean_kkk = np.mean([kkk.zeta.ravel() for kkk in all_kkks], axis=0) var_kkk = np.var([kkk.zeta.ravel() for kkk in all_kkks], axis=0) np.savez(file_name, all_kkk=np.array([kkk.zeta.ravel() for kkk in all_kkks]), mean_kkk=mean_kkk, var_kkk=var_kkk) data = np.load(file_name) mean_kkk = data['mean_kkk'] var_kkk = data['var_kkk'] print('mean = ',mean_kkk) print('var = ',var_kkk) rng = np.random.RandomState(12345) x, y, _, _, k = generate_shear_field(nsource, nhalo, rng) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1, rng=rng) kkk.process(cat) print(kkk.ntri.ravel()) print(kkk.zeta.ravel()) print(kkk.varzeta.ravel()) kkkp = kkk.copy() catp = treecorr.Catalog(x=x, y=y, k=k, npatch=npatch) # Do the same thing with patches. kkkp.process(catp) print('with patches:') print(kkkp.ntri.ravel()) print(kkkp.zeta.ravel()) print(kkkp.varzeta.ravel()) np.testing.assert_allclose(kkkp.ntri, kkk.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) np.testing.assert_allclose(kkkp.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.6 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.5 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Now as a cross correlation with all 3 using the same patch catalog. print('with 3 patched catalogs:') kkkp.process(catp, catp, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Repeat this test with different combinations of patch with non-patch catalogs: # All the methods work best when the patches are used for all 3 catalogs. But there # are probably cases where this kind of cross correlation with only some catalogs having # patches could be desired. So this mostly just checks that the code runs properly. # Patch on 1 only: print('with patches on 1 only:') kkkp.process(catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 2 only: print('with patches on 2 only:') kkkp.process(cat, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.9 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 3 only: print('with patches on 3 only:') kkkp.process(cat, cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 1,2 print('with patches on 1,2:') kkkp.process(catp, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.4*tol_factor) # Patch on 2,3 print('with patches on 2,3:') kkkp.process(cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Patch on 1,3 print('with patches on 1,3:') kkkp.process(catp, cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Finally a set (with all patches) using the KKKCrossCorrelation class. kkkc = treecorr.KKKCrossCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1, rng=rng) print('CrossCorrelation:') kkkc.process(catp, catp, catp) for k1 in kkkc._all: print(k1.ntri.ravel()) print(k1.zeta.ravel()) print(k1.varzeta.ravel()) np.testing.assert_allclose(k1.ntri, kkk.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(k1.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) np.testing.assert_allclose(k1.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6) print('jackknife:') cov = kkkc.estimate_cov('jackknife') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkc.estimate_cov('sample') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkc.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkc.estimate_cov('bootstrap') print(np.diagonal(cov)) for i in range(6): v = np.diagonal(cov)[i*6:(i+1)*6] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk)))) np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.5*tol_factor) # All catalogs need to have the same number of patches catq = treecorr.Catalog(x=x, y=y, k=k, npatch=2*npatch) with assert_raises(RuntimeError): kkkp.process(catp, catq) with assert_raises(RuntimeError): kkkp.process(catp, catq, catq) with assert_raises(RuntimeError): kkkp.process(catq, catp, catq) with assert_raises(RuntimeError): kkkp.process(catq, catq, catp) @timer def test_ggg_jk(): # Test jackknife and other covariance estimates for ggg correlations. if __name__ == '__main__': # This setup takes about 590 sec to run. nhalo = 5000 nsource = 5000 npatch = 32 tol_factor = 1 elif False: # This setup takes about 160 sec to run. nhalo = 2000 nsource = 2000 npatch = 16 tol_factor = 2 elif False: # This setup takes about 50 sec to run. nhalo = 1000 nsource = 1000 npatch = 16 tol_factor = 3 else: # This setup takes about 13 sec to run. nhalo = 500 nsource = 500 npatch = 8 tol_factor = 3 # I couldn't figure out a way to get reasonable S/N in the shear field. I thought doing # discrete halos would give some significant 3pt shear pattern, at least for equilateral # triangles, but the signal here is still consistent with zero. :( # The point is the variance, which is still calculated ok, but I would have rathered # have something with S/N > 0. # For these tests, I set up the binning to just accumulate all roughly equilateral triangles # in a small separation range. The binning always uses two bins for each to get + and - v # bins. So this function averages these two values to produce 1 value for each gamma. f = lambda g: np.array([np.mean(g.gam0), np.mean(g.gam1), np.mean(g.gam2), np.mean(g.gam3)]) file_name = 'data/test_ggg_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): nruns = 1000 all_gggs = [] rng1 = np.random.RandomState() for run in range(nruns): x, y, g1, g2, _ = generate_shear_field(nsource, nhalo, rng1) # For some reason std(g2) is coming out about 1.5x larger than std(g1). # Probably a sign of some error in the generate function, but I don't see it. # For this purpose I think it doesn't really matter, but it's a bit odd. print(run,': ',np.mean(g1),np.std(g1),np.mean(g2),np.std(g2)) cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2) ggg = treecorr.GGGCorrelation(nbins=1, min_sep=20., max_sep=40., min_u=0.6, max_u=1.0, nubins=1, min_v=0.0, max_v=0.6, nvbins=1) ggg.process(cat) print(ggg.ntri.ravel()) print(f(ggg)) all_gggs.append(ggg) all_ggg = np.array([f(ggg) for ggg in all_gggs]) mean_ggg = np.mean(all_ggg, axis=0) var_ggg = np.var(all_ggg, axis=0) np.savez(file_name, mean_ggg=mean_ggg, var_ggg=var_ggg) data = np.load(file_name) mean_ggg = data['mean_ggg'] var_ggg = data['var_ggg'] print('mean = ',mean_ggg) print('var = ',var_ggg) rng = np.random.RandomState(12345) x, y, g1, g2, _ = generate_shear_field(nsource, nhalo, rng) cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2) ggg = treecorr.GGGCorrelation(nbins=1, min_sep=20., max_sep=40., min_u=0.6, max_u=1.0, nubins=1, min_v=0.0, max_v=0.6, nvbins=1, rng=rng) ggg.process(cat) print(ggg.ntri.ravel()) print(ggg.gam0.ravel()) print(ggg.gam1.ravel()) print(ggg.gam2.ravel()) print(ggg.gam3.ravel()) gggp = ggg.copy() catp = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, npatch=npatch) # Do the same thing with patches. gggp.process(catp) print('with patches:') print(gggp.ntri.ravel()) print(gggp.vargam0.ravel()) print(gggp.vargam1.ravel()) print(gggp.vargam2.ravel()) print(gggp.vargam3.ravel()) print(gggp.gam0.ravel()) print(gggp.gam1.ravel()) print(gggp.gam2.ravel()) print(gggp.gam3.ravel()) np.testing.assert_allclose(gggp.ntri, ggg.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(gggp.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.vargam0, ggg.vargam0, rtol=0.1 * tol_factor) np.testing.assert_allclose(gggp.vargam1, ggg.vargam1, rtol=0.1 * tol_factor) np.testing.assert_allclose(gggp.vargam2, ggg.vargam2, rtol=0.1 * tol_factor) np.testing.assert_allclose(gggp.vargam3, ggg.vargam3, rtol=0.1 * tol_factor) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.9*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.3*tol_factor) # Now as a cross correlation with all 3 using the same patch catalog. print('with 3 patched catalogs:') gggp.process(catp, catp, catp) print(gggp.gam0.ravel()) np.testing.assert_allclose(gggp.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(gggp.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor) # The separate patch/non-patch combinations aren't that interesting, so skip them # for GGG unless running from main. if __name__ == '__main__': # Patch on 1 only: print('with patches on 1 only:') gggp.process(catp, cat) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) # Patch on 2 only: print('with patches on 2 only:') gggp.process(cat, catp, cat) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) # Patch on 3 only: print('with patches on 3 only:') gggp.process(cat, cat, catp) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.9*tol_factor) # Patch on 1,2 print('with patches on 1,2:') gggp.process(catp, catp, cat) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor) # Patch on 2,3 print('with patches on 2,3:') gggp.process(cat, catp) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=1.0*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.3*tol_factor) # Patch on 1,3 print('with patches on 1,3:') gggp.process(catp, cat, catp) print('jackknife:') cov = gggp.estimate_cov('jackknife', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('sample:') cov = gggp.estimate_cov('sample', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggp.estimate_cov('marked_bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor) print('bootstrap:') cov = gggp.estimate_cov('bootstrap', func=f) print(np.diagonal(cov).real) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor) # Finally a set (with all patches) using the GGGCrossCorrelation class. gggc = treecorr.GGGCrossCorrelation(nbins=1, min_sep=20., max_sep=40., min_u=0.6, max_u=1.0, nubins=1, min_v=0.0, max_v=0.6, nvbins=1, rng=rng) print('CrossCorrelation:') gggc.process(catp, catp, catp) for g in gggc._all: print(g.ntri.ravel()) print(g.gam0.ravel()) print(g.vargam0.ravel()) np.testing.assert_allclose(g.ntri, ggg.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam0, ggg.vargam0, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam1, ggg.vargam1, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam2, ggg.vargam2, rtol=0.05 * tol_factor) np.testing.assert_allclose(g.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor) np.testing.assert_allclose(g.vargam3, ggg.vargam3, rtol=0.05 * tol_factor) fc = lambda gggc: np.concatenate([ [np.mean(g.gam0), np.mean(g.gam1), np.mean(g.gam2), np.mean(g.gam3)] for g in gggc._all]) print('jackknife:') cov = gggc.estimate_cov('jackknife', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.4*tol_factor) print('sample:') cov = gggc.estimate_cov('sample', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.6*tol_factor) print('marked:') cov = gggc.estimate_cov('marked_bootstrap', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.8*tol_factor) print('bootstrap:') cov = gggc.estimate_cov('bootstrap', func=fc) print(np.diagonal(cov).real) for i in range(6): v = np.diagonal(cov)[i*4:(i+1)*4] print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg)))) np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.3*tol_factor) # Without func, don't check the accuracy, but make sure it returns something the right shape. cov = gggc.estimate_cov('jackknife') assert cov.shape == (48, 48) @timer def test_nnn_jk(): # Test jackknife and other covariance estimates for nnn correlations. if __name__ == '__main__': # This setup takes about 1200 sec to run. nhalo = 300 nsource = 2000 npatch = 16 source_factor = 50 rand_factor = 3 tol_factor = 1 elif False: # This setup takes about 250 sec to run. nhalo = 200 nsource = 1000 npatch = 16 source_factor = 50 rand_factor = 2 tol_factor = 2 else: # This setup takes about 44 sec to run. nhalo = 100 nsource = 500 npatch = 8 source_factor = 30 rand_factor = 1 tol_factor = 3 file_name = 'data/test_nnn_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): rng = np.random.RandomState() nruns = 1000 all_nnns = [] all_nnnc = [] t0 = time.time() for run in range(nruns): t2 = time.time() x, y, _, _, k = generate_shear_field(nsource * source_factor, nhalo, rng) p = k**3 p /= np.sum(p) ns = rng.poisson(nsource) select = rng.choice(range(len(x)), size=ns, replace=False, p=p) print(run,': ',np.mean(k),np.std(k),np.min(k),np.max(k)) cat = treecorr.Catalog(x=x[select], y=y[select]) ddd = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) rx = rng.uniform(0,1000, rand_factor*nsource) ry = rng.uniform(0,1000, rand_factor*nsource) rand_cat = treecorr.Catalog(x=rx, y=ry) rrr = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) rrr.process(rand_cat) rdd = ddd.copy() drr = ddd.copy() ddd.process(cat) rdd.process(rand_cat, cat) drr.process(cat, rand_cat) zeta_s, _ = ddd.calculateZeta(rrr) zeta_c, _ = ddd.calculateZeta(rrr, drr, rdd) print('simple: ',zeta_s.ravel()) print('compensated: ',zeta_c.ravel()) all_nnns.append(zeta_s.ravel()) all_nnnc.append(zeta_c.ravel()) t3 = time.time() print('time: ',round(t3-t2),round((t3-t0)/60),round((t3-t0)*(nruns/(run+1)-1)/60)) mean_nnns = np.mean(all_nnns, axis=0) var_nnns = np.var(all_nnns, axis=0) mean_nnnc = np.mean(all_nnnc, axis=0) var_nnnc = np.var(all_nnnc, axis=0) np.savez(file_name, mean_nnns=mean_nnns, var_nnns=var_nnns, mean_nnnc=mean_nnnc, var_nnnc=var_nnnc) data = np.load(file_name) mean_nnns = data['mean_nnns'] var_nnns = data['var_nnns'] mean_nnnc = data['mean_nnnc'] var_nnnc = data['var_nnnc'] print('mean simple = ',mean_nnns) print('var simple = ',var_nnns) print('mean compensated = ',mean_nnnc) print('var compensated = ',var_nnnc) # Make a random catalog with 2x as many sources, randomly distributed . rng = np.random.RandomState(1234) rx = rng.uniform(0,1000, rand_factor*nsource) ry = rng.uniform(0,1000, rand_factor*nsource) rand_cat = treecorr.Catalog(x=rx, y=ry) rrr = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) t0 = time.time() rrr.process(rand_cat) t1 = time.time() print('Time to process rand cat = ',t1-t0) print('RRR:',rrr.tot) print(rrr.ntri.ravel()) # Make the data catalog x, y, _, _, k = generate_shear_field(nsource * source_factor, nhalo, rng=rng) print('mean k = ',np.mean(k)) print('min,max = ',np.min(k),np.max(k)) p = k**3 p /= np.sum(p) select = rng.choice(range(len(x)), size=nsource, replace=False, p=p) cat = treecorr.Catalog(x=x[select], y=y[select]) ddd = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1, rng=rng) rdd = ddd.copy() drr = ddd.copy() ddd.process(cat) rdd.process(rand_cat, cat) drr.process(cat, rand_cat) zeta_s1, var_zeta_s1 = ddd.calculateZeta(rrr) zeta_c1, var_zeta_c1 = ddd.calculateZeta(rrr, drr, rdd) print('DDD:',ddd.tot) print(ddd.ntri.ravel()) print('simple: ') print(zeta_s1.ravel()) print(var_zeta_s1.ravel()) print('DRR:',drr.tot) print(drr.ntri.ravel()) print('RDD:',rdd.tot) print(rdd.ntri.ravel()) print('compensated: ') print(zeta_c1.ravel()) print(var_zeta_c1.ravel()) # Make the patches with a large random catalog to make sure the patches are uniform area. big_rx = rng.uniform(0,1000, 100*nsource) big_ry = rng.uniform(0,1000, 100*nsource) big_catp = treecorr.Catalog(x=big_rx, y=big_ry, npatch=npatch, rng=rng) patch_centers = big_catp.patch_centers # Do the same thing with patches on D, but not yet on R. dddp = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1, rng=rng) rddp = dddp.copy() drrp = dddp.copy() catp = treecorr.Catalog(x=x[select], y=y[select], patch_centers=patch_centers) print('Patch\tNtot') for p in catp.patches: print(p.patch,'\t',p.ntot,'\t',patch_centers[p.patch]) print('with patches on D:') dddp.process(catp) rddp.process(rand_cat, catp) drrp.process(catp, rand_cat) # Need to run calculateZeta to get patch-based covariance with assert_raises(RuntimeError): dddp.estimate_cov('jackknife') zeta_s2, var_zeta_s2 = dddp.calculateZeta(rrr) print('DDD:',dddp.tot) print(dddp.ntri.ravel()) print('simple: ') print(zeta_s2.ravel()) print(var_zeta_s2.ravel()) np.testing.assert_allclose(zeta_s2, zeta_s1, rtol=0.05 * tol_factor) np.testing.assert_allclose(var_zeta_s2, var_zeta_s1, rtol=0.05 * tol_factor) # Check the _calculate_xi_from_pairs function. Using all pairs, should get total xi. ddd1 = dddp.copy() ddd1._calculate_xi_from_pairs(dddp.results.keys()) np.testing.assert_allclose(ddd1.zeta, dddp.zeta) # None of these are very good without the random using patches. # I think this is basically just that the approximations used for estimating the area_frac # to figure out the appropriate altered RRR counts isn't accurate enough when the total # counts are as low as this. I think (hope) that it should be semi-ok when N is much larger, # but this is probably saying that for 3pt using patches for R is even more important than # for 2pt. # Ofc, it could also be that this is telling me I still have a bug somewhere that I haven't # managed to find... :( print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=2.3*tol_factor) print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.2*tol_factor) print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.3*tol_factor) print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=2.2*tol_factor) zeta_c2, var_zeta_c2 = dddp.calculateZeta(rrr, drrp, rddp) print('compensated: ') print('DRR:',drrp.tot) print(drrp.ntri.ravel()) print('RDD:',rddp.tot) print(rddp.ntri.ravel()) print(zeta_c2.ravel()) print(var_zeta_c2.ravel()) np.testing.assert_allclose(zeta_c2, zeta_c1, rtol=0.05 * tol_factor, atol=1.e-3 * tol_factor) np.testing.assert_allclose(var_zeta_c2, var_zeta_c1, rtol=0.05 * tol_factor) print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.6*tol_factor) print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=3.8*tol_factor) print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.3*tol_factor) print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.6*tol_factor) # Now with the random also using patches # These are a lot better than the above tests. But still not nearly as good as we were able # to get in 2pt. I'm pretty sure this is just due to the fact that we need to have much # smaller catalogs to make it feasible to run this in a reasonable amount of time. I don't # think this is a sign of any bug in the code. print('with patched random catalog:') rand_catp = treecorr.Catalog(x=rx, y=ry, patch_centers=patch_centers) rrrp = rrr.copy() rrrp.process(rand_catp) drrp.process(catp, rand_catp) rddp.process(rand_catp, catp) print('simple: ') zeta_s2, var_zeta_s2 = dddp.calculateZeta(rrrp) print('DDD:',dddp.tot) print(dddp.ntri.ravel()) print(zeta_s2.ravel()) print(var_zeta_s2.ravel()) np.testing.assert_allclose(zeta_s2, zeta_s1, rtol=0.05 * tol_factor) np.testing.assert_allclose(var_zeta_s2, var_zeta_s1, rtol=0.05 * tol_factor) ddd1 = dddp.copy() ddd1._calculate_xi_from_pairs(dddp.results.keys()) np.testing.assert_allclose(ddd1.zeta, dddp.zeta) t0 = time.time() print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.7*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.0*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('compensated: ') zeta_c2, var_zeta_c2 = dddp.calculateZeta(rrrp, drrp, rddp) print('DRR:',drrp.tot) print(drrp.ntri.ravel()) print('RDD:',rddp.tot) print(rddp.ntri.ravel()) print(zeta_c2.ravel()) print(var_zeta_c2.ravel()) np.testing.assert_allclose(zeta_c2, zeta_c1, rtol=0.05 * tol_factor, atol=1.e-3 * tol_factor) np.testing.assert_allclose(var_zeta_c2, var_zeta_c1, rtol=0.05 * tol_factor) t0 = time.time() print('jackknife:') cov = dddp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('sample:') cov = dddp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('marked:') cov = dddp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() print('bootstrap:') cov = dddp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor) t1 = time.time() print('t = ',t1-t0) t0 = time.time() # I haven't implemented calculateZeta for the NNNCrossCorrelation class, because I'm not # actually sure what the right thing to do here is for calculating a single zeta vectors. # Do we do a different one for each of the 6 permutations? Or one overall one? # So rather than just do something, I'll wait until someone has a coherent use case where # they want this and can explain exactly what the right thing to compute is. # So to just exercise the machinery with NNNCrossCorrelation, I'm using a func parameter # to compute something equivalent to the simple zeta calculation. dddc = treecorr.NNNCrossCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1, rng=rng) rrrc = treecorr.NNNCrossCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, min_u=0.8, max_u=1.0, nubins=1, min_v=0.0, max_v=0.2, nvbins=1) print('CrossCorrelation:') dddc.process(catp, catp, catp) rrrc.process(rand_catp, rand_catp, rand_catp) def cc_zeta(corrs): d, r = corrs d1 = d.n1n2n3.copy() d1._sum(d._all) r1 = r.n1n2n3.copy() r1._sum(r._all) zeta, _ = d1.calculateZeta(r1) return zeta.ravel() print('simple: ') zeta_s3 = cc_zeta([dddc, rrrc]) print(zeta_s3) np.testing.assert_allclose(zeta_s3, zeta_s1.ravel(), rtol=0.05 * tol_factor) print('jackknife:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'jackknife', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor) print('sample:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'sample', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.2*tol_factor) print('marked:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'marked_bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.5*tol_factor) print('bootstrap:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.6*tol_factor) # Repeat with a 1-2 cross-correlation print('CrossCorrelation 1-2:') dddc.process(catp, catp) rrrc.process(rand_catp, rand_catp) print('simple: ') zeta_s3 = cc_zeta([dddc, rrrc]) print(zeta_s3) np.testing.assert_allclose(zeta_s3, zeta_s1.ravel(), rtol=0.05 * tol_factor) print('jackknife:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'jackknife', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor) print('sample:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'sample', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.1*tol_factor) print('marked:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'marked_bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.5*tol_factor) print('bootstrap:') cov = treecorr.estimate_multi_cov([dddc,rrrc], 'bootstrap', cc_zeta) print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.6*tol_factor) @timer def test_brute_jk(): # With bin_slop = 0, the jackknife calculation from patches should match a # brute force calcaulation where we literally remove one patch at a time to make # the vectors. if __name__ == '__main__': nhalo = 100 ngal = 500 npatch = 16 rand_factor = 5 else: nhalo = 100 ngal = 30 npatch = 16 rand_factor = 2 rng = np.random.RandomState(8675309) x, y, g1, g2, k = generate_shear_field(ngal, nhalo, rng) rx = rng.uniform(0,1000, rand_factor*ngal) ry = rng.uniform(0,1000, rand_factor*ngal) rand_cat_nopatch = treecorr.Catalog(x=rx, y=ry) rand_cat = treecorr.Catalog(x=rx, y=ry, npatch=npatch, rng=rng) patch_centers = rand_cat.patch_centers cat_nopatch = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, k=k) cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, k=k, patch_centers=patch_centers) print('cat patches = ',np.unique(cat.patch)) print('len = ',cat.nobj, cat.ntot) assert cat.nobj == ngal print('Patch\tNtot') for p in cat.patches: print(p.patch,'\t',p.ntot,'\t',patch_centers[p.patch]) # Start with KKK, since relatively simple. kkk1 = treecorr.KKKCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) kkk1.process(cat_nopatch) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1, var_method='jackknife') kkk.process(cat) np.testing.assert_allclose(kkk.zeta, kkk1.zeta) kkk_zeta_list = [] for i in range(npatch): cat1 = treecorr.Catalog(x=cat.x[cat.patch != i], y=cat.y[cat.patch != i], k=cat.k[cat.patch != i], g1=cat.g1[cat.patch != i], g2=cat.g2[cat.patch != i]) kkk1 = treecorr.KKKCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) kkk1.process(cat1) print('zeta = ',kkk1.zeta.ravel()) kkk_zeta_list.append(kkk1.zeta.ravel()) kkk_zeta_list = np.array(kkk_zeta_list) cov = np.cov(kkk_zeta_list.T, bias=True) * (len(kkk_zeta_list)-1) varzeta = np.diagonal(np.cov(kkk_zeta_list.T, bias=True)) * (len(kkk_zeta_list)-1) print('KKK: treecorr jackknife varzeta = ',kkk.varzeta.ravel()) print('KKK: direct jackknife varzeta = ',varzeta) np.testing.assert_allclose(kkk.varzeta.ravel(), varzeta) # Now GGG ggg1 = treecorr.GGGCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) ggg1.process(cat_nopatch) ggg = treecorr.GGGCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1, var_method='jackknife') ggg.process(cat) np.testing.assert_allclose(ggg.gam0, ggg1.gam0) np.testing.assert_allclose(ggg.gam1, ggg1.gam1) np.testing.assert_allclose(ggg.gam2, ggg1.gam2) np.testing.assert_allclose(ggg.gam3, ggg1.gam3) ggg_gam0_list = [] ggg_gam1_list = [] ggg_gam2_list = [] ggg_gam3_list = [] ggg_map3_list = [] for i in range(npatch): cat1 = treecorr.Catalog(x=cat.x[cat.patch != i], y=cat.y[cat.patch != i], k=cat.k[cat.patch != i], g1=cat.g1[cat.patch != i], g2=cat.g2[cat.patch != i]) ggg1 = treecorr.GGGCorrelation(nbins=3, min_sep=100., max_sep=300., brute=True, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) ggg1.process(cat1) ggg_gam0_list.append(ggg1.gam0.ravel()) ggg_gam1_list.append(ggg1.gam1.ravel()) ggg_gam2_list.append(ggg1.gam2.ravel()) ggg_gam3_list.append(ggg1.gam3.ravel()) ggg_map3_list.append(ggg1.calculateMap3()[0]) ggg_gam0_list = np.array(ggg_gam0_list) vargam0 = np.diagonal(np.cov(ggg_gam0_list.T, bias=True)) * (len(ggg_gam0_list)-1) print('GGG: treecorr jackknife vargam0 = ',ggg.vargam0.ravel()) print('GGG: direct jackknife vargam0 = ',vargam0) np.testing.assert_allclose(ggg.vargam0.ravel(), vargam0) ggg_gam1_list = np.array(ggg_gam1_list) vargam1 = np.diagonal(np.cov(ggg_gam1_list.T, bias=True)) * (len(ggg_gam1_list)-1) print('GGG: treecorr jackknife vargam1 = ',ggg.vargam1.ravel()) print('GGG: direct jackknife vargam1 = ',vargam1) np.testing.assert_allclose(ggg.vargam1.ravel(), vargam1) ggg_gam2_list = np.array(ggg_gam2_list) vargam2 = np.diagonal(np.cov(ggg_gam2_list.T, bias=True)) * (len(ggg_gam2_list)-1) print('GGG: treecorr jackknife vargam2 = ',ggg.vargam2.ravel()) print('GGG: direct jackknife vargam2 = ',vargam2) np.testing.assert_allclose(ggg.vargam2.ravel(), vargam2) ggg_gam3_list = np.array(ggg_gam3_list) vargam3 = np.diagonal(np.cov(ggg_gam3_list.T, bias=True)) * (len(ggg_gam3_list)-1) print('GGG: treecorr jackknife vargam3 = ',ggg.vargam3.ravel()) print('GGG: direct jackknife vargam3 = ',vargam3) np.testing.assert_allclose(ggg.vargam3.ravel(), vargam3) ggg_map3_list = np.array(ggg_map3_list) varmap3 = np.diagonal(np.cov(ggg_map3_list.T, bias=True)) * (len(ggg_map3_list)-1) covmap3 = treecorr.estimate_multi_cov([ggg], 'jackknife', lambda corrs: corrs[0].calculateMap3()[0]) print('GGG: treecorr jackknife varmap3 = ',np.diagonal(covmap3)) print('GGG: direct jackknife varmap3 = ',varmap3) np.testing.assert_allclose(np.diagonal(covmap3), varmap3) # Finally NNN, where we need to use randoms. Both simple and compensated. ddd = treecorr.NNNCorrelation(nbins=3, min_sep=100., max_sep=300., bin_slop=0, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1, var_method='jackknife') drr = ddd.copy() rdd = ddd.copy() rrr = ddd.copy() ddd.process(cat) drr.process(cat, rand_cat) rdd.process(rand_cat, cat) rrr.process(rand_cat) zeta1_list = [] zeta2_list = [] for i in range(npatch): cat1 = treecorr.Catalog(x=cat.x[cat.patch != i], y=cat.y[cat.patch != i], k=cat.k[cat.patch != i], g1=cat.g1[cat.patch != i], g2=cat.g2[cat.patch != i]) rand_cat1 = treecorr.Catalog(x=rand_cat.x[rand_cat.patch != i], y=rand_cat.y[rand_cat.patch != i]) ddd1 = treecorr.NNNCorrelation(nbins=3, min_sep=100., max_sep=300., bin_slop=0, min_u=0., max_u=1.0, nubins=1, min_v=0., max_v=1.0, nvbins=1) drr1 = ddd1.copy() rdd1 = ddd1.copy() rrr1 = ddd1.copy() ddd1.process(cat1) drr1.process(cat1, rand_cat1) rdd1.process(rand_cat1, cat1) rrr1.process(rand_cat1) zeta1_list.append(ddd1.calculateZeta(rrr1)[0].ravel()) zeta2_list.append(ddd1.calculateZeta(rrr1, drr1, rdd1)[0].ravel()) print('simple') zeta1_list = np.array(zeta1_list) zeta2, varzeta2 = ddd.calculateZeta(rrr) varzeta1 = np.diagonal(np.cov(zeta1_list.T, bias=True)) * (len(zeta1_list)-1) print('NNN: treecorr jackknife varzeta = ',ddd.varzeta.ravel()) print('NNN: direct jackknife varzeta = ',varzeta1) np.testing.assert_allclose(ddd.varzeta.ravel(), varzeta1) print('compensated') print(zeta2_list) zeta2_list = np.array(zeta2_list) zeta2, varzeta2 = ddd.calculateZeta(rrr, drr=drr, rdd=rdd) varzeta2 = np.diagonal(np.cov(zeta2_list.T, bias=True)) * (len(zeta2_list)-1) print('NNN: treecorr jackknife varzeta = ',ddd.varzeta.ravel()) print('NNN: direct jackknife varzeta = ',varzeta2) np.testing.assert_allclose(ddd.varzeta.ravel(), varzeta2) # Can't do patch calculation with different numbers of patches in rrr, drr, rdd. rand_cat3 = treecorr.Catalog(x=rx, y=ry, npatch=3) cat3 = treecorr.Catalog(x=x, y=y, patch_centers=rand_cat3.patch_centers) rrr3 = rrr.copy() drr3 = drr.copy() rdd3 = rdd.copy() rrr3.process(rand_cat3) drr3.process(cat3, rand_cat3) rdd3.process(rand_cat3, cat3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr3, drr, rdd) with assert_raises(RuntimeError): ddd.calculateZeta(rrr, drr3, rdd3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr, drr, rdd3) with assert_raises(RuntimeError): ddd.calculateZeta(rrr, drr3, rdd) @timer def test_finalize_false(): nsource = 80 nhalo = 100 npatch = 16 # Make three independent data sets rng = np.random.RandomState(8675309) x_1, y_1, g1_1, g2_1, k_1 = generate_shear_field(nsource, nhalo, rng) x_2, y_2, g1_2, g2_2, k_2 = generate_shear_field(nsource, nhalo, rng) x_3, y_3, g1_3, g2_3, k_3 = generate_shear_field(nsource, nhalo, rng) # Make a single catalog with all three together cat = treecorr.Catalog(x=np.concatenate([x_1, x_2, x_3]), y=np.concatenate([y_1, y_2, y_3]), g1=np.concatenate([g1_1, g1_2, g1_3]), g2=np.concatenate([g2_1, g2_2, g2_3]), k=np.concatenate([k_1, k_2, k_3]), npatch=npatch) # Now the three separately, using the same patch centers cat1 = treecorr.Catalog(x=x_1, y=y_1, g1=g1_1, g2=g2_1, k=k_1, patch_centers=cat.patch_centers) cat2 = treecorr.Catalog(x=x_2, y=y_2, g1=g1_2, g2=g2_2, k=k_2, patch_centers=cat.patch_centers) cat3 = treecorr.Catalog(x=x_3, y=y_3, g1=g1_3, g2=g2_3, k=k_3, patch_centers=cat.patch_centers) np.testing.assert_array_equal(cat1.patch, cat.patch[0:nsource]) np.testing.assert_array_equal(cat2.patch, cat.patch[nsource:2*nsource]) np.testing.assert_array_equal(cat3.patch, cat.patch[2*nsource:3*nsource]) # KKK auto kkk1 = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) kkk1.process(cat) kkk2 = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) kkk2.process(cat1, initialize=True, finalize=False) kkk2.process(cat2, initialize=False, finalize=False) kkk2.process(cat3, initialize=False, finalize=False) kkk2.process(cat1, cat2, initialize=False, finalize=False) kkk2.process(cat1, cat3, initialize=False, finalize=False) kkk2.process(cat2, cat1, initialize=False, finalize=False) kkk2.process(cat2, cat3, initialize=False, finalize=False) kkk2.process(cat3, cat1, initialize=False, finalize=False) kkk2.process(cat3, cat2, initialize=False, finalize=False) kkk2.process(cat1, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2) np.testing.assert_allclose(kkk1.meand3, kkk2.meand3) np.testing.assert_allclose(kkk1.zeta, kkk2.zeta) # KKK cross12 cat23 = treecorr.Catalog(x=np.concatenate([x_2, x_3]), y=np.concatenate([y_2, y_3]), g1=np.concatenate([g1_2, g1_3]), g2=np.concatenate([g2_2, g2_3]), k=np.concatenate([k_2, k_3]), patch_centers=cat.patch_centers) np.testing.assert_array_equal(cat23.patch, cat.patch[nsource:3*nsource]) kkk1.process(cat1, cat23) kkk2.process(cat1, cat2, initialize=True, finalize=False) kkk2.process(cat1, cat3, initialize=False, finalize=False) kkk2.process(cat1, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2) np.testing.assert_allclose(kkk1.meand3, kkk2.meand3) np.testing.assert_allclose(kkk1.zeta, kkk2.zeta) # KKKCross cross12 kkkc1 = treecorr.KKKCrossCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) kkkc1.process(cat1, cat23) kkkc2 = treecorr.KKKCrossCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) kkkc2.process(cat1, cat2, initialize=True, finalize=False) kkkc2.process(cat1, cat3, initialize=False, finalize=False) kkkc2.process(cat1, cat2, cat3, initialize=False, finalize=True) for perm in ['k1k2k3', 'k1k3k2', 'k2k1k3', 'k2k3k1', 'k3k1k2', 'k3k2k1']: kkk1 = getattr(kkkc1, perm) kkk2 = getattr(kkkc2, perm) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2) np.testing.assert_allclose(kkk1.meand3, kkk2.meand3) np.testing.assert_allclose(kkk1.zeta, kkk2.zeta) # KKK cross kkk1.process(cat, cat2, cat3) kkk2.process(cat1, cat2, cat3, initialize=True, finalize=False) kkk2.process(cat2, cat2, cat3, initialize=False, finalize=False) kkk2.process(cat3, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2) np.testing.assert_allclose(kkk1.meand3, kkk2.meand3) np.testing.assert_allclose(kkk1.zeta, kkk2.zeta) # KKKCross cross kkkc1.process(cat, cat2, cat3) kkkc2.process(cat1, cat2, cat3, initialize=True, finalize=False) kkkc2.process(cat2, cat2, cat3, initialize=False, finalize=False) kkkc2.process(cat3, cat2, cat3, initialize=False, finalize=True) for perm in ['k1k2k3', 'k1k3k2', 'k2k1k3', 'k2k3k1', 'k3k1k2', 'k3k2k1']: kkk1 = getattr(kkkc1, perm) kkk2 = getattr(kkkc2, perm) np.testing.assert_allclose(kkk1.ntri, kkk2.ntri) np.testing.assert_allclose(kkk1.weight, kkk2.weight) np.testing.assert_allclose(kkk1.meand1, kkk2.meand1) np.testing.assert_allclose(kkk1.meand2, kkk2.meand2) np.testing.assert_allclose(kkk1.meand3, kkk2.meand3) np.testing.assert_allclose(kkk1.zeta, kkk2.zeta) # GGG auto ggg1 = treecorr.GGGCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) ggg1.process(cat) ggg2 = treecorr.GGGCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) ggg2.process(cat1, initialize=True, finalize=False) ggg2.process(cat2, initialize=False, finalize=False) ggg2.process(cat3, initialize=False, finalize=False) ggg2.process(cat1, cat2, initialize=False, finalize=False) ggg2.process(cat1, cat3, initialize=False, finalize=False) ggg2.process(cat2, cat1, initialize=False, finalize=False) ggg2.process(cat2, cat3, initialize=False, finalize=False) ggg2.process(cat3, cat1, initialize=False, finalize=False) ggg2.process(cat3, cat2, initialize=False, finalize=False) ggg2.process(cat1, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(ggg1.ntri, ggg2.ntri) np.testing.assert_allclose(ggg1.weight, ggg2.weight) np.testing.assert_allclose(ggg1.meand1, ggg2.meand1) np.testing.assert_allclose(ggg1.meand2, ggg2.meand2) np.testing.assert_allclose(ggg1.meand3, ggg2.meand3) np.testing.assert_allclose(ggg1.gam0, ggg2.gam0) np.testing.assert_allclose(ggg1.gam1, ggg2.gam1) np.testing.assert_allclose(ggg1.gam2, ggg2.gam2) np.testing.assert_allclose(ggg1.gam3, ggg2.gam3) # GGG cross12 ggg1.process(cat1, cat23) ggg2.process(cat1, cat2, initialize=True, finalize=False) ggg2.process(cat1, cat3, initialize=False, finalize=False) ggg2.process(cat1, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(ggg1.ntri, ggg2.ntri) np.testing.assert_allclose(ggg1.weight, ggg2.weight) np.testing.assert_allclose(ggg1.meand1, ggg2.meand1) np.testing.assert_allclose(ggg1.meand2, ggg2.meand2) np.testing.assert_allclose(ggg1.meand3, ggg2.meand3) np.testing.assert_allclose(ggg1.gam0, ggg2.gam0) np.testing.assert_allclose(ggg1.gam1, ggg2.gam1) np.testing.assert_allclose(ggg1.gam2, ggg2.gam2) np.testing.assert_allclose(ggg1.gam3, ggg2.gam3) # GGGCross cross12 gggc1 = treecorr.GGGCrossCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) gggc1.process(cat1, cat23) gggc2 = treecorr.GGGCrossCorrelation(nbins=3, min_sep=30., max_sep=100., brute=True, min_u=0.8, max_u=1.0, nubins=1, min_v=0., max_v=0.2, nvbins=1) gggc2.process(cat1, cat2, initialize=True, finalize=False) gggc2.process(cat1, cat3, initialize=False, finalize=False) gggc2.process(cat1, cat2, cat3, initialize=False, finalize=True) for perm in ['g1g2g3', 'g1g3g2', 'g2g1g3', 'g2g3g1', 'g3g1g2', 'g3g2g1']: ggg1 = getattr(gggc1, perm) ggg2 = getattr(gggc2, perm) np.testing.assert_allclose(ggg1.ntri, ggg2.ntri) np.testing.assert_allclose(ggg1.weight, ggg2.weight) np.testing.assert_allclose(ggg1.meand1, ggg2.meand1) np.testing.assert_allclose(ggg1.meand2, ggg2.meand2) np.testing.assert_allclose(ggg1.meand3, ggg2.meand3) np.testing.assert_allclose(ggg1.gam0, ggg2.gam0) np.testing.assert_allclose(ggg1.gam1, ggg2.gam1) np.testing.assert_allclose(ggg1.gam2, ggg2.gam2) np.testing.assert_allclose(ggg1.gam3, ggg2.gam3) # GGG cross ggg1.process(cat, cat2, cat3) ggg2.process(cat1, cat2, cat3, initialize=True, finalize=False) ggg2.process(cat2, cat2, cat3, initialize=False, finalize=False) ggg2.process(cat3, cat2, cat3, initialize=False, finalize=True) np.testing.assert_allclose(ggg1.ntri, ggg2.ntri) np.testing.assert_allclose(ggg1.weight, ggg2.weight) np.testing.assert_allclose(ggg1.meand1, ggg2.meand1) np.testing.assert_allclose(ggg1.meand2, ggg2.meand2) np.testing.assert_allclose(ggg1.meand3, ggg2.meand3) np.testing.assert_allclose(ggg1.gam0, ggg2.gam0) np.testing.assert_allclose(ggg1.gam1, ggg2.gam1) np.testing.assert_allclose(ggg1.gam2, ggg2.gam2) np.testing.assert_allclose(ggg1.gam3, ggg2.gam3) # GGGCross cross gggc1.process(cat, cat2, cat3) gggc2.process(cat1, cat2, cat3, initialize=True, finalize=False) gggc2.process(cat2, cat2, cat3, initialize=False, finalize=False) gggc2.process(cat3, cat2, cat3, initialize=False, finalize=True) for perm in ['g1g2g3', 'g1g3g2', 'g2g1g3', 'g2g3g1', 'g3g1g2', 'g3g2g1']: ggg1 = getattr(gggc1, perm) ggg2 = getattr(gggc2, perm) np.testing.assert_allclose(ggg1.ntri, ggg2.ntri) np.testing.assert_allclose(ggg1.weight, ggg2.weight) np.testing.assert_allclose(ggg1.meand1, ggg2.meand1) np.testing.assert_allclose(ggg1.meand2, ggg2.meand2) np.testing.assert_allclose(ggg1.meand3, ggg2.meand3)
np.testing.assert_allclose(ggg1.gam0, ggg2.gam0)
numpy.testing.assert_allclose
#!/usr/bin/env python # =============================================================================== # Copyright 2015 Geoscience Australia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import unittest import numpy.testing as npt import numpy from eotools.bulk_stats import bulk_stats from scipy import stats class TestStats(unittest.TestCase): """ Unittests for the bulk_stats funtion. """ def setUp(self): self.data = numpy.random.ranf((10, 100, 100)) self.result = bulk_stats(self.data, double=True) def test_mean(self): """ Test that the mean value is the same. """ control = numpy.mean(self.data, axis=0)
npt.assert_allclose(control, self.result[1])
numpy.testing.assert_allclose
from __future__ import division import numpy as np from numpy.testing import assert_allclose, assert_, assert_equal, assert_raises from nose import SkipTest from .. import SuperSmoother, SuperSmootherMultiband def _generate_data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.RandomState(rseed) t = 10 * period * rng.rand(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.rand(N)) y += dy * rng.randn(N) return t, y, dy def test_supersmoother(N=100, period=1): t, y, dy = _generate_data(N, period) model = SuperSmoother().fit(t, y, dy) model.optimizer.period_range = (period / 1.1, period * 1.1) model.optimizer.final_pass_coverage = 0 assert_allclose(period, model.best_period, rtol=0.02) def test_supersmoother_dy_scalar(N=100, period=1): t, y, dy = _generate_data(N, period) # Make dy array all the same dy[:] = dy.mean() periods = np.linspace(period / 2, period * 2, 100) assert_equal(SuperSmoother().fit(t, y, dy).score(periods), SuperSmoother().fit(t, y, dy[0]).score(periods)) def test_supersmoother_dy_None(N=100, period=1): t, y, dy = _generate_data(N, period) periods = np.linspace(period / 2, period * 2, 100) assert_equal(SuperSmoother().fit(t, y, 1).score(periods), SuperSmoother().fit(t, y).score(periods)) def test_supersmoother_multiband(N=100, period=1): """Test that results are the same with/without filter labels""" t, y, dy = _generate_data(N, period) periods =
np.linspace(period / 2, period * 2, 100)
numpy.linspace
import _pickle as cPickle import collections import operator import os import pdb import random from functools import reduce from typing import List import h5py import joblib import matplotlib.pyplot as plt import numpy as np from skimage.util import view_as_windows from sklearn.preprocessing import StandardScaler, OneHotEncoder from tensorflow.python.keras.callbacks import ModelCheckpoint from tensorflow.python.keras.layers import Dense, Conv2D, Dropout, \ Flatten, MaxPooling2D, BatchNormalization from tensorflow.python.keras.losses import categorical_crossentropy from tensorflow.python.keras.models import Sequential, load_model from tensorflow.python.keras.optimizers import SGD from ..preprocess.convert import EmptySliderFrameConverter from .generator import HDF5DataGenerator from .. import ( utils, slider, timing, db, definitions, hyper_params ) from . import data_utils DIM_X = 69 DIM_Y = 41 DIM_Z = 1 seq_len = hyper_params.sample_frames hidden_units = 128 n_mels = hyper_params.n_mels n_fft = hyper_params.n_fft hop_len = hyper_params.hop_length dataset_file = 'train_inputs' model_file = 'model_hits.test' scaler_file = 'scaler_hits' def flatten_array(t): for x in t: if type(x) == dict \ or type(x) == tuple \ or not isinstance(x, collections.Iterable): yield x else: yield from flatten_array(x) def get_scaler(path): _scaler = joblib.load(path) return _scaler def get_model(path): _model = load_model(path) return _model def get_sequences(melgram, _n_mels): """ Transform 2 or 3D mel spectrogram into 3D array of windows :param melgram: 2 or 3D mel spectrogram (if 3D, squeezed to 2D) :param _n_mels: number of mel buckets :return: array of sequences. shape (n_frames, seq_len, n_mels) """ if len(melgram.shape) == 3: melgram = np.squeeze(melgram) sequences = view_as_windows(melgram, window_shape=(seq_len, _n_mels)) sequences = np.squeeze(sequences, 1) return sequences preprocess_args = { 'cut_beginning': False, 'seq_len': seq_len, 'beatmap_id': '405096' } optimizer_args = { 'lr': 1e-2, # was 1e-3 'decay': 1e-6, 'momentum': 0.9, 'nesterov': False } compile_args = { 'loss': categorical_crossentropy, 'optimizer': SGD(**optimizer_args), 'metrics': ['accuracy'] } def get_fit_args(model_save_path): return { 'batch_size': 32, 'epochs': 30, 'shuffle': False, 'callbacks': [ModelCheckpoint(model_save_path, save_best_only=False)] } def get_data_paths(data_dir) -> dict: model_save_path = '{}/{}.h5'.format(data_dir, model_file) continued_model = '{}/{}.continued.h5'.format(data_dir, model_file) root_dir = '{}/train/model_data'.format(definitions.PROJECT_DIR) scaler_save_path = '{}/scaler_hits.save'.format(data_dir) all_table_path = '{}/all_train.hdf5'.format(data_dir) train_table_path = '{}/train.hdf5'.format(data_dir) hc_counts = '{}/hc_counts.npy'.format(data_dir) n_counts = '{}/n_counts.npy'.format(data_dir) val_table_all_path = '{}/all_validation.hdf5'.format(data_dir) validation_data_path = '{}/validation.hdf5'.format(data_dir) val_index_map_path = '{}/val_index_map.pkl'.format(data_dir) all_index_map_path = '{}/all_index_map.pkl'.format(data_dir) range_data_path = '{}/range_data.json'.format(data_dir) train_inputs_path = '{}/train_inputs'.format(root_dir) train_labels_path = '{}/train_labels'.format(root_dir) return { 'model': model_save_path, 'continued_model': continued_model, 'range_data': range_data_path, 'scaler': scaler_save_path, 'all_table': all_table_path, 'train_table': train_table_path, 'train_inputs': train_inputs_path, 'train_labels': train_labels_path, 'val_table_all': val_table_all_path, 'validation_data': validation_data_path, 'val_index_map': val_index_map_path, 'hc_counts': hc_counts, 'n_counts': n_counts, 'all_index_map': all_index_map_path } def get_frame_indexes(objs, n_fft=hyper_params.n_fft, hop_length=hyper_params.hop_length) -> List: frames = [timing.mls_to_frames(float(x['time']), n_fft=n_fft, hop_length=hop_length)[0] for x in objs] return list(map(lambda x: int(x), frames)) def get_input_shape(dim_1): return dim_1, DIM_X, DIM_Y def build_inputs(spectrogram, indexes, bin_encoded, label): ''' Returns np.array of training inputs for the events taking places at the given indexes params: ------- bin_encoded: np.array (spectrogram.shape[0], d) where d is the number of difficulties returns: -------- np.array: (len(indexes), sample_frames, mel_buckets + difficulties) ''' if bin_encoded.shape[0] != spectrogram.shape[0]: raise ValueError(''' Length of bin_encoded must match that of spectrogram. Found the following: bin_encoded.shape = {}, spectrogram.shape = {}. '''.format(bin_encoded.shape, spectrogram.shape)) dim1 = len(indexes) labels = np.zeros((dim1, 4)) labels[:, label] = 1 inputs = np.empty(get_input_shape(dim1)) ctx_len = hyper_params.context_length start_context_rows = -1 for i, index in enumerate(indexes): context_labels = np.zeros((hyper_params.sample_frames, 1)) c = int((hyper_params.sample_frames - ctx_len) / 2) context_labels[c:c + ctx_len] = bin_encoded[index - ctx_len: index] inputs[i, :, :start_context_rows] = spectrogram[ index - ctx_len: index + ctx_len + 1] inputs[i, :, start_context_rows:] = context_labels return zip(inputs, labels) def get_slider_points(beatmap_data) -> List[int]: sliders = beatmap_data['sliders'] timing_points = beatmap_data['timing_points'] slider_multiplier = float(beatmap_data['metadata']['slider_multiplier']) slider_points = [] for s in sliders: repeats = int(s['repeat']) start, end = slider.start_end_frames( s, timing_points, slider_multiplier, n_fft=hyper_params.n_fft, hop_length=hyper_params.hop_length ) slider_points.append(int(start)) slider_points.append(int(end)) duration = end - start for repeat in range(1, repeats): time = start + duration * (repeat + 1) slider_points.append(int(time)) return slider_points def get_bin_encoded(beatmap_data, song_length, pad=True): bin_encoded = EmptySliderFrameConverter( hit_circles=beatmap_data['hit_circles'], sliders=beatmap_data['sliders'], spinners=beatmap_data['spinners'], timing_points=beatmap_data['timing_points'], breaks=beatmap_data['breaks'], song_length=song_length, slider_multiplier=float(beatmap_data['metadata']['slider_multiplier']), should_filter_breaks=False ).convert() if pad: pad_width = ( hyper_params.context_length, hyper_params.context_length + 1 ) bin_encoded = np.pad( bin_encoded, pad_width, mode='constant', constant_values=0 ) return bin_encoded def get_hit_indexes(beatmap_data): return get_slider_points(beatmap_data) + \ get_frame_indexes(beatmap_data['hit_circles']) def get_hit_vals(bin_encoded, indexes_hit, indexes_none): ''' Returns ------- hit_vals: np.array (n_hits, 2 * n_difficulties) 1-Hot vector: [ 0, - no hit 0, - medium hit only 0, - hard hit only 0 - medium and hard hits ] ''' encoder = OneHotEncoder(4, sparse=False) encoded = encoder.fit_transform(bin_encoded) return np.concatenate( (encoded[sorted(indexes_hit)], encoded[sorted(indexes_none)])) def get_label_hits(hit_dict, pad=False): medium_hits = [] hard_hits = [] both_hits = [] padding = hyper_params.context_length if pad else 0 for key, l in hit_dict.items(): key += padding if len(l) > 1: both_hits.append(key) elif l[0] == 0: medium_hits.append(key) else: hard_hits.append(key) return medium_hits, hard_hits, both_hits def get_inputs(beatmap_data: List, spectrogram, limit_hc=None, limit_n=None, flatten=True): breaks = reduce(operator.add, [b['breaks'] for b in beatmap_data]) song_len = spectrogram.shape[0] bin_encoded = np.zeros((song_len, 1)) hit_dict = {} for i, beatmap in enumerate(beatmap_data): hits = sorted(get_hit_indexes(beatmap)) bin_encoded[hits] = bin_encoded[hits] + i + 1 for hit in hits: if hit not in hit_dict: hit_dict[hit] = [i] else: hit_dict[hit].append(i) medium_indexes, hard_indexes, both_indexes = get_label_hits(hit_dict, pad=True) hit_indexes = medium_indexes + hard_indexes + both_indexes if len(set(hit_indexes)) != len(hit_indexes): pdb.set_trace() spectrogram = utils.pad_array(spectrogram) bin_encoded = utils.pad_array(bin_encoded) none_indexes = get_none_indexes(hit_indexes, spectrogram, breaks) none_inputs = build_inputs(spectrogram, none_indexes, bin_encoded, label=0) medium_inputs = build_inputs(spectrogram, medium_indexes, bin_encoded, label=1) hard_inputs = build_inputs(spectrogram, hard_indexes, bin_encoded, label=2) both_inputs = build_inputs(spectrogram, both_indexes, bin_encoded, label=3) none_groups = get_group_lists(none_inputs, group_size_limit=limit_n, label=0) medium_groups = get_group_lists(medium_inputs, group_size_limit=limit_hc, label=1) hard_groups = get_group_lists(hard_inputs, group_size_limit=limit_hc, label=2) both_groups = get_group_lists(both_inputs, group_size_limit=limit_hc, label=3) if flatten: all_inputs = flatten_array( none_groups + medium_groups + hard_groups + both_groups ) # split into [(input, label), ...] and [(label, x-label, group), ...] input_labels, coords = zip(*all_inputs) # split into [input, ...] and [label, ...] all_inputs, all_labels = zip(*input_labels) return all_inputs, all_labels, coords return none_groups, medium_groups, hard_groups, both_groups def get_counts(*args, limit_n=None): inputs = get_inputs(*args, limit_n=limit_n, flatten=False) counts = np.zeros((4, 3, 35)) if inputs is None: return counts def to_sum_array(g): return [[len(l) for l in x] for x in g] g_n, g_m, g_h, g_b = [to_sum_array(i) for i in inputs] counts[0] = g_n counts[1] = g_m counts[2] = g_h counts[3] = g_b return counts def get_none_indexes(event_indexes, spectrogram, breaks, limit=None) -> np.ndarray: intervals = [] for b in breaks: intervals.append(b['start']) intervals.append(b['end']) song_range = np.arange( hyper_params.context_length, spectrogram.shape[0] - hyper_params.context_length ) subarrays = np.split(song_range, intervals) valid_indexes = np.concatenate(subarrays[::2]) if len(subarrays) > 2 else \ subarrays[0] none_indexes = np.delete(valid_indexes, event_indexes)
np.random.shuffle(none_indexes)
numpy.random.shuffle
import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter import seaborn as sns import numpy import pandas import copy import os import plotly.graph_objs as go from .. import Dataset, MSDataset, NMRDataset from ..enumerations import VariableType, SampleType, AssayRole from ..utilities import rsd from ._plotVariableScatter import plotVariableScatter def plotRSDs(dataset, featureName='Feature Name', ratio=False, logx=True, xlim=None, withExclusions=True, sortOrder=True, savePath=None, color=None, featName=False, hLines=None, figureFormat='png', dpi=72, figureSize=(11,7)): """ plotRSDs(dataset, ratio=False, savePath=None, color=None \*\*kwargs) Visualise analytical *versus* biological variance. Plot RSDs calculated in study-reference samples (analytical variance), versus those calculated in study samples (biological variance). RSDs can be visualised either in absolute terms, or as a ratio to analytical variation (*ratio=*\ ``True``). :py:func:`plotRSDs` requires that the dataset have at least two samples with the :py:attr:`~nPYc.enumerations.AssayRole.PrecisionReference` :term:`assay role`, if present, RSDs calculated on independent sets of :py:attr:`~nPYc.enumerations.AssayRole.PrecisionReference` samples will also be plotted. :param Dataset dataset: Dataset object to plot, the object must have greater that one 'Study Sample' and 'Study-Reference Sample' defined :param bool ratio: If ``True`` plot the ratio of analytical variance to biological variance instead of raw values :param str featureName: featureMetadata column name by which to label features :param bool logx: If ``True`` plot RSDs on a log10 scaled axis :param xlim: Tuple of (min, max) RSD values to plot :type xlim: None or tuple(float, float) :param hLines: None or list of y positions at which to plot an horizontal line. Features are positioned from 1 to nFeat :type hLines: None or list :param savePath: If ``None`` plot interactively, otherwise save the figure to the path specified :type savePath: None or str :param color: Allows the default colour pallet to be overridden :type color: None or seaborn.palettes._ColorPalette :param bool featName: If ``True`` y-axis label is the feature Name, if ``False`` features are numbered. """ rsdTable = _plotRSDsHelper(dataset, featureName=featureName, ratio=ratio, withExclusions=withExclusions, sortOrder=sortOrder) # if RSD not able to be calculated for some features - rsdTable size will be less than dataset.featureMetadata if hLines is not None: if dataset.featureMetadata.shape[0] != rsdTable.shape[0]: temp = [x for x in rsdTable['Feature Name'].values.tolist() if x in dataset.featureMetadata[featureName][dataset.featureMetadata['Passing Selection'] == False].values.tolist()] hLines = [len(temp)] # Plot if xlim: xLim = xlim else: minRSD = numpy.min(rsdTable[rsdTable.columns[1:]].values) maxRSD = numpy.max(rsdTable[rsdTable.columns[1:]].values) xLim = (minRSD, maxRSD) if logx: xlab = 'RSD (%)' else: xlab = 'RSD (%)' # Add Feature Name if required if featName: rsdTable['yName'] = rsdTable['Feature Name'] ylab = 'Feature Name' else: ylab = 'Feature Number' plotVariableScatter(rsdTable, logX=logx, xLim=xLim, xLabel=xlab, yLabel=ylab, sampletypeColor=True, hLines=hLines, vLines=None, savePath=savePath, figureFormat=figureFormat, dpi=dpi, figureSize=figureSize) def plotRSDsInteractive(dataset, featureName='Feature Name', ratio=False, logx=True): """ Plotly-based interactive version of :py:func:`plotRSDs` Visualise analytical *versus* biological variance. Plot RSDs calculated in study-reference samples (analytical variance), versus those calculated in study samples (biological variance). RSDs can be visualised either in absolute terms, or as a ratio to analytical variation (*ratio=*\ ``True``). :py:func:`plotRSDsInteractive` requires that the dataset have at least two samples with the :py:attr:`~nPYc.enumerations.AssayRole.PrecisionReference` :term:`assay role`, if present, RSDs calculated on independent sets of :py:attr:`~nPYc.enumerations.AssayRole.PrecisionReference` samples will also be plotted. :param Dataset dataset: Dataset object to plot, the object must have greater that one 'Study Sample' and 'Study-Reference Sample' defined :param str featureName: featureMetadata column name by which to label features :param bool ratio: If ``True`` plot the ratio of analytical variance to biological variance instead of raw values :param bool logx: If ``True`` plot RSDs on a log10 scaled axis """ rsdTable = _plotRSDsHelper(dataset, featureName=featureName, ratio=ratio) reversedIndex = numpy.arange(len(rsdTable)-1,-1, -1) data = [] if SampleType.StudySample in rsdTable.columns: studySamples = go.Scatter( x = rsdTable[SampleType.StudySample].values, y = reversedIndex, mode = 'markers', text = rsdTable['Feature Name'], name = 'Study Sample', marker = dict( color = 'rgba(89, 117, 164, .8)', ), hoverinfo = 'x+text', ) data.append(studySamples) if SampleType.ExternalReference in rsdTable.columns: externalRef = go.Scatter( x = rsdTable[SampleType.ExternalReference].values, y = reversedIndex, mode = 'markers', text = rsdTable['Feature Name'], name = 'Long-Term Reference', marker = dict( color = 'rgba(181, 93, 96, .8)', ), hoverinfo = 'x+text', ) data.append(externalRef) if SampleType.StudyPool in rsdTable.columns: studyPool = go.Scatter( x = rsdTable[SampleType.StudyPool].values, y = reversedIndex, mode = 'markers', text = rsdTable['Feature Name'], name = 'Study Reference', marker = dict( color = 'rgba(95, 158, 110, .8)', ), hoverinfo = 'x+text', ) data.append(studyPool) if logx: xaxis = dict( type='log', title='RSD (%)', autorange=True ) else: xaxis = dict( title='RSD (%)' ) layout = go.Layout( title='Feature RSDs', legend=dict( orientation="h" ), hovermode = "closest", yaxis=dict( title='Feature Number' ), xaxis=xaxis ) figure = go.Figure(data=data, layout=layout) return figure def _plotRSDsHelper(dataset, featureName='Feature Name', ratio=False, withExclusions=False, sortOrder=True): if not dataset.VariableType == VariableType.Discrete: raise ValueError('Only datasets with discreetly sampled variables are supported.') if sum(dataset.sampleMetadata.loc[dataset.sampleMask, 'SampleType'].values == SampleType.StudySample) <= 2: raise ValueError('More than two Study Samples must be defined to calculate biological RSDs.') ## Calculate RSD for every SampleType with enough PrecisionReference samples. rsdVal = dict() precRefMask = dataset.sampleMetadata.loc[:, 'AssayRole'].values == AssayRole.PrecisionReference precRefMask = numpy.logical_and(precRefMask, dataset.sampleMask) sTypes = list(set(dataset.sampleMetadata.loc[precRefMask, 'SampleType'].values)) if withExclusions: rsdVal['Feature Name'] = dataset.featureMetadata.loc[dataset.featureMask, featureName].values rsdVal[SampleType.StudyPool] = dataset.rsdSP[dataset.featureMask] ssMask = (dataset.sampleMetadata['SampleType'].values == SampleType.StudySample) & dataset.sampleMask rsdList = rsd(dataset.intensityData[ssMask, :]) rsdVal[SampleType.StudySample] = rsdList[dataset.featureMask] else: rsdVal['Feature Name'] = dataset.featureMetadata.loc[:, featureName].values rsdVal[SampleType.StudyPool] = dataset.rsdSP ssMask = (dataset.sampleMetadata['SampleType'].values == SampleType.StudySample) & dataset.sampleMask rsdList = rsd(dataset.intensityData[ssMask, :]) rsdVal[SampleType.StudySample] = rsdList # Only keep features with finite values for SP and SS finiteMask = (rsdVal[SampleType.StudyPool] < numpy.finfo(numpy.float64).max) finiteMask = finiteMask & (rsdVal[SampleType.StudySample] < numpy.finfo(numpy.float64).max) for sType in sTypes: if not sTypes == SampleType.StudyPool: sTypeMask = dataset.sampleMetadata.loc[:, 'SampleType'].values == sType # precRefMask limits to Precision Reference and dataset.sampleMask sTypeMask = numpy.logical_and(sTypeMask, precRefMask) # minimum 3 points needed if sum(sTypeMask) >= 3: rsdList = rsd(dataset.intensityData[sTypeMask, :]) if withExclusions: rsdVal[sType] = rsdList[dataset.featureMask] else: rsdVal[sType] = rsdList finiteMask = finiteMask & (rsdVal[sType] < numpy.finfo(numpy.float64).max) ## apply finiteMask for sType in rsdVal.keys(): rsdVal[sType] = rsdVal[sType][finiteMask] if ratio: rsdSP = copy.deepcopy(rsdVal[SampleType.StudyPool]) for sType in sTypes: rsdVal[sType] =
numpy.divide(rsdVal[sType], rsdSP)
numpy.divide
# MIT License # # Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import math import numpy as np class Box(object): def __init__( self, width=1, height=1, length=1, centerX=0, centerY=0, centerZ=0, yaw=0.0, pitch=0.0, roll=0.0, translationX=0, translationY=0, translationZ=0, ): # In webots length is in z-axis, width is in x-axis and height is in y-axis # Center is the rotation center for the box # -> in webots, this should be the rear axle location relative to the center of the box # -> center is the vector from the true center of the box to the rotation center of the box # In webots yaw is CC around the y-axis! # In webots pitch is CC around the z-axis! # In webots roll is CC around the x-axis! # NOTE: this geometry class applies a translation to get the center of rotation, # rotates the box and then applies a global translation to move the rectangle in a global coordinate system self.dimensions = np.array([width, height, length]) self.center = np.array([centerX, centerY, centerZ]) self.translation = np.array([translationX, translationY, translationZ]) self.yaw = yaw self.pitch = pitch self.roll = roll self.unrotatedegocorners = self._getunrotatedegocorners() self.rotation = self.getyawrollpitchrotation(self.yaw, self.pitch, self.roll) # The transpose is the inverse rotation matrix self.reverserotation =
np.transpose(self.rotation)
numpy.transpose
# -*- coding: utf-8 -*- import os import mxnet as mx import numpy as np import cv2 import shutil def iou(x, ys): """ Calculate intersection-over-union overlap Params: ---------- x : numpy.array single box [xmin, ymin ,xmax, ymax] ys : numpy.array multiple box [[xmin, ymin, xmax, ymax], [...], ] Returns: ----------- numpy.array [iou1, iou2, ...], size == ys.shape[0] """ ixmin = np.maximum(ys[:, 0], x[0]) iymin = np.maximum(ys[:, 1], x[1]) ixmax = np.minimum(ys[:, 2], x[2]) iymax = np.minimum(ys[:, 3], x[3]) iw = np.maximum(ixmax - ixmin, 0.) ih = np.maximum(iymax - iymin, 0.) inters = iw * ih uni = (x[2] - x[0]) * (x[3] - x[1]) + (ys[:, 2] - ys[:, 0]) * \ (ys[:, 3] - ys[:, 1]) - inters ious = inters / uni ious[uni < 1e-12] = 0 # in case bad boxes return ious def plot_rectangle(predict_box, label_box, img_name, img_path, error_img_path, error_img_head_path = None): if predict_box.ndim == 1: predict_box = predict_box.reshape(1, predict_box.size) filename = os.path.join(img_path, img_name) img = cv2.imread(filename) class_list = ['LPRrect'] font = cv2.FONT_HERSHEY_COMPLEX Thickness_box = 1 Thickness_text = 1 height = img.shape[0] width = img.shape[1] img_head = img.copy() # 用于后面保存预测框内的图片 img_name = img_name.split('/')[-1] # 红色画出预测框, 标注出置信度,iou,类别 ious = iou(label_box[1:5], predict_box[:,2:]) for j in range(predict_box.shape[0]): xmin = int(predict_box[j][2]*width) ymin = int(predict_box[j][3]*height) xmax = int(predict_box[j][4]*width) ymax = int(predict_box[j][5]*height) cv2.rectangle(img, (xmin,ymin), (xmax,ymax), (0,0,255), Thickness_box) text = str((class_list[int(predict_box[j][0])], round(predict_box[j][1],4), round(ious[j],4))) cv2.putText(img, text, (xmin,ymax+50), font, 1, (0,0,255), Thickness_text) # 绿色画出真实框, 标注出类别 cv2.rectangle(img, (int(label_box[1]*width),int(label_box[2]*height)), (int(label_box[3]*width),int(label_box[4]*height)), (0,255,0), Thickness_box) cv2.putText(img, class_list[int(label_box[0])], (int(label_box[1]*width),int(label_box[2]*height)-10), font, 1, (0,255,0), Thickness_text) # 裁剪出预测框并保存到指定目录下 if predict_box.shape[0]==1 and error_img_head_path != None: img_head = img_head[ymin:ymax, xmin:xmax] cv2.imwrite(error_img_head_path+img_name, img_head) cv2.imwrite(error_img_path+img_name, img) def find_wrong_detection(labels, preds, list_path, img_path, ovp_thresh = 0.5): """ compare the labels and preds to find false negative and false positive. Params: ---------- labels: mx.nd.array (n * 6) or (n * 5), difficult column is optional 2-d array of ground-truths, n objects(id-xmin-ymin-xmax-ymax-[difficult]) labels.shape : test sample number * 1 * 6 labels.type : <class 'mxnet.ndarray.ndarray.NDArray'> preds: mx.nd.array (m * 6) 2-d array of detections, m objects(id-score-xmin-ymin-xmax-ymax)\ preds.shape : test sample number * anchor number * 6 preds.type : <class 'mxnet.ndarray.ndarray.NDArray'> 该函数只考虑了每张图片中有且只有一个真实框的情景 """ flags = [-1]*labels.shape[0] # -1: 未设置,背景,真实和预测都为背景 # 0 : 正确 # 1 : iou<ovpt_hresh # 2 : 预测框的类别数少于真实框个数(漏检)或个数一致但类别不一致 # 存放类别不一致的错误图片 wrong_class_img_path = os.path.join(img_path, 'worng_class/') # 存放iou low_iou_img_path = os.path.join(img_path, 'low_iou/') low_iou_img_head_path = os.path.join(img_path, 'low_iou_head/') if os.path.exists(wrong_class_img_path): shutil.rmtree(wrong_class_img_path) os.mkdir(wrong_class_img_path) if os.path.exists(low_iou_img_path): shutil.rmtree(low_iou_img_path) os.mkdir(low_iou_img_path) if os.path.exists(low_iou_img_head_path): shutil.rmtree(low_iou_img_head_path) os.mkdir(low_iou_img_head_path) fp = open(list_path) listlines = fp.readlines() img_name_list = [] for lines in listlines: imgname = lines.split('\t')[-1] # 去除换行符 imgname = imgname.replace('\r','').replace('\n','').replace('\t','') img_name_list.append(imgname) # 存放每张图片预测框的iou最大值, iou_list = [] for i in range(labels.shape[0]): # get as numpy arrays label = labels[i].asnumpy() pred = preds[i].asnumpy() img_name = img_name_list[i] # 删除预测为背景和非机动车的预测框 background_indices = np.where(pred[:, 0].astype(int) < 0)[0] pred =
np.delete(pred, background_indices, axis=0)
numpy.delete
# Machine Learning Online Class - Exercise 2: Logistic Regression # # Instructions # ------------ # # This file contains code that helps you get started on the logistic # regression exercise. You will need to complete the following functions # in this exericse: # # sigmoid.py # costFunction.py # predict.py # costFunctionReg.py # # For this exercise, you will not need to change any code in this file, # or any other files other than those mentioned above. import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt from plotData import * import costFunction as cf import plotDecisionBoundary as pdb import predict as predict from sigmoid import * plt.ion() # Load data # The first two columns contain the exam scores and the third column contains the label. data = np.loadtxt('ex2data1.txt', delimiter=',') print('plot_decision_boundary data[0, 0:1] = \n{}'.format(data[0, 0:1])) print('plot_decision_boundary data[0, 0:2] = \n{}'.format(data[0, 0:2])) print('plot_decision_boundary data[0, 0:3] = \n{}'.format(data[0, 0:3])) print('plot_decision_boundary data[0, 1:1] = \n{}'.format(data[0, 1:1])) print('plot_decision_boundary data[0, 1:2] = \n{}'.format(data[0, 1:2])) print('plot_decision_boundary data[0, 1:3] = \n{}'.format(data[0, 1:3])) print('plot_decision_boundary data[0, 2:1] = \n{}'.format(data[0, 2:1])) print('plot_decision_boundary data[0, 2:2] = \n{}'.format(data[0, 2:2])) print('plot_decision_boundary data[0, 2:3] = \n{}'.format(data[0, 2:3])) X = data[:, 0:2] y = data[:, 2] # ===================== Part 1: Plotting ===================== # We start the exercise by first plotting the data to understand the # the problem we are working with. print('Plotting Data with + indicating (y = 1) examples and o indicating (y = 0) examples.') plot_data(X, y) plt.axis([30, 100, 30, 100]) # Specified in plot order. 按绘图顺序指定 plt.legend(['Admitted', 'Not admitted'], loc=1) plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') input('Program paused. Press ENTER to continue') # ===================== Part 2: Compute Cost and Gradient ===================== # In this part of the exercise, you will implement the cost and gradient # for logistic regression. You need to complete the code in # costFunction.py # Setup the data array appropriately, and add ones for the intercept term (m, n) = X.shape # Add intercept term X = np.c_[np.ones(m), X] # Initialize fitting parameters initial_theta = np.zeros(n + 1) # 初始化权重theta # Compute and display initial cost and gradient cost, grad = cf.cost_function(initial_theta, X, y)
np.set_printoptions(formatter={'float': '{: 0.4f}\n'.format})
numpy.set_printoptions
import numpy as np from sklearn import cluster def gaussian_sp(delta_t, miu, sigma=65): x, u, sig = delta_t, miu, sigma p =
np.exp(-(x-u)**2 / (2*sig**2))
numpy.exp