prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import sys import operator import pytest import ctypes import gc import warnings import numpy as np from numpy.core._rational_tests import rational from numpy.core._multiarray_tests import create_custom_field_dtype from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT) from numpy.compat import pickle from itertools import permutations def assert_dtype_equal(a, b): assert_equal(a, b) assert_equal(hash(a), hash(b), "two equivalent types do not hash to the same value !") def assert_dtype_not_equal(a, b): assert_(a != b) assert_(hash(a) != hash(b), "two different types hash to the same value !") class TestBuiltin: @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object, np.compat.unicode]) def test_run(self, t): """Only test hash runs at all.""" dt = np.dtype(t) hash(dt) @pytest.mark.parametrize('t', [int, float]) def test_dtype(self, t): # Make sure equivalent byte order char hash the same (e.g. < and = on # little endian) dt = np.dtype(t) dt2 = dt.newbyteorder("<") dt3 = dt.newbyteorder(">") if dt == dt2: assert_(dt.byteorder != dt2.byteorder, "bogus test") assert_dtype_equal(dt, dt2) else: assert_(dt.byteorder != dt3.byteorder, "bogus test") assert_dtype_equal(dt, dt3) def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right)) def test_invalid_types(self): # Make sure invalid type strings raise an error assert_raises(TypeError, np.dtype, 'O3') assert_raises(TypeError, np.dtype, 'O5') assert_raises(TypeError, np.dtype, 'O7') assert_raises(TypeError, np.dtype, 'b3') assert_raises(TypeError, np.dtype, 'h4') assert_raises(TypeError, np.dtype, 'I5') assert_raises(TypeError, np.dtype, 'e3') assert_raises(TypeError, np.dtype, 'f5') if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16: assert_raises(TypeError, np.dtype, 'g12') elif np.dtype('g').itemsize == 12: assert_raises(TypeError, np.dtype, 'g16') if np.dtype('l').itemsize == 8: assert_raises(TypeError, np.dtype, 'l4') assert_raises(TypeError, np.dtype, 'L4') else: assert_raises(TypeError, np.dtype, 'l8') assert_raises(TypeError, np.dtype, 'L8') if np.dtype('q').itemsize == 8: assert_raises(TypeError, np.dtype, 'q4') assert_raises(TypeError, np.dtype, 'Q4') else: assert_raises(TypeError, np.dtype, 'q8') assert_raises(TypeError, np.dtype, 'Q8') @pytest.mark.parametrize("dtype", ['Bool', 'Complex32', 'Complex64', 'Float16', 'Float32', 'Float64', 'Int8', 'Int16', 'Int32', 'Int64', 'Object0', 'Timedelta64', 'UInt8', 'UInt16', 'UInt32', 'UInt64', 'Void0', "Float128", "Complex128"]) def test_numeric_style_types_are_invalid(self, dtype): with assert_raises(TypeError): np.dtype(dtype) @pytest.mark.parametrize( 'value', ['m8', 'M8', 'datetime64', 'timedelta64', 'i4, (2,3)f8, f4', 'a3, 3u8, (3,4)a10', '>f', '<f', '=f', '|f', ]) def test_dtype_bytes_str_equivalence(self, value): bytes_value = value.encode('ascii') from_bytes = np.dtype(bytes_value) from_str = np.dtype(value) assert_dtype_equal(from_bytes, from_str) def test_dtype_from_bytes(self): # Empty bytes object assert_raises(TypeError, np.dtype, b'') # Byte order indicator, but no type assert_raises(TypeError, np.dtype, b'|') # Single character with ordinal < NPY_NTYPES returns # type by index into _builtin_descrs assert_dtype_equal(np.dtype(bytes([0])), np.dtype('bool')) assert_dtype_equal(np.dtype(bytes([17])), np.dtype(object)) # Single character where value is a valid type code assert_dtype_equal(np.dtype(b'f'), np.dtype('float32')) # Bytes with non-ascii values raise errors assert_raises(TypeError, np.dtype, b'\xff') assert_raises(TypeError, np.dtype, b's\xff') def test_bad_param(self): # Can't give a size that's too small assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'i1'], 'offsets':[0, 4], 'itemsize':4}) # If alignment is enabled, the alignment (4) must divide the itemsize assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'i1'], 'offsets':[0, 4], 'itemsize':9}, align=True) # If alignment is enabled, the individual fields must be aligned assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i1', 'f4'], 'offsets':[0, 2]}, align=True) def test_field_order_equality(self): x = np.dtype({'names': ['A', 'B'], 'formats': ['i4', 'f4'], 'offsets': [0, 4]}) y = np.dtype({'names': ['B', 'A'], 'formats': ['f4', 'i4'], 'offsets': [4, 0]}) assert_equal(x == y, False) # But it is currently an equivalent cast: assert np.can_cast(x, y, casting="equiv") class TestRecord: def test_equivalent_record(self): """Test whether equivalent record dtypes hash the same.""" a = np.dtype([('yo', int)]) b = np.dtype([('yo', int)]) assert_dtype_equal(a, b) def test_different_names(self): # In theory, they may hash the same (collision) ? a = np.dtype([('yo', int)]) b = np.dtype([('ye', int)]) assert_dtype_not_equal(a, b) def test_different_titles(self): # In theory, they may hash the same (collision) ? a = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['Red pixel', 'Blue pixel']}) b = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['RRed pixel', 'Blue pixel']}) assert_dtype_not_equal(a, b) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_refcount_dictionary_setting(self): names = ["name1"] formats = ["f8"] titles = ["t1"] offsets = [0] d = dict(names=names, formats=formats, titles=titles, offsets=offsets) refcounts = {k: sys.getrefcount(i) for k, i in d.items()} np.dtype(d) refcounts_new = {k: sys.getrefcount(i) for k, i in d.items()} assert refcounts == refcounts_new def test_mutate(self): # Mutating a dtype should reset the cached hash value a = np.dtype([('yo', int)]) b = np.dtype([('yo', int)]) c = np.dtype([('ye', int)]) assert_dtype_equal(a, b) assert_dtype_not_equal(a, c) a.names = ['ye'] assert_dtype_equal(a, c) assert_dtype_not_equal(a, b) state = b.__reduce__()[2] a.__setstate__(state) assert_dtype_equal(a, b) assert_dtype_not_equal(a, c) def test_not_lists(self): """Test if an appropriate exception is raised when passing bad values to the dtype constructor. """ assert_raises(TypeError, np.dtype, dict(names={'A', 'B'}, formats=['f8', 'i4'])) assert_raises(TypeError, np.dtype, dict(names=['A', 'B'], formats={'f8', 'i4'})) def test_aligned_size(self): # Check that structured dtypes get padded to an aligned size dt = np.dtype('i4, i1', align=True) assert_equal(dt.itemsize, 8) dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True) assert_equal(dt.itemsize, 8) dt = np.dtype({'names':['f0', 'f1'], 'formats':['i4', 'u1'], 'offsets':[0, 4]}, align=True) assert_equal(dt.itemsize, 8) dt = np.dtype({'f0': ('i4', 0), 'f1':('u1', 4)}, align=True) assert_equal(dt.itemsize, 8) # Nesting should preserve that alignment dt1 = np.dtype([('f0', 'i4'), ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]), ('f2', 'i1')], align=True) assert_equal(dt1.itemsize, 20) dt2 = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['i4', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 'i1'], 'offsets':[0, 4, 16]}, align=True) assert_equal(dt2.itemsize, 20) dt3 = np.dtype({'f0': ('i4', 0), 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4), 'f2': ('i1', 16)}, align=True) assert_equal(dt3.itemsize, 20) assert_equal(dt1, dt2) assert_equal(dt2, dt3) # Nesting should preserve packing dt1 = np.dtype([('f0', 'i4'), ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]), ('f2', 'i1')], align=False) assert_equal(dt1.itemsize, 11) dt2 = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['i4', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 'i1'], 'offsets':[0, 4, 10]}, align=False) assert_equal(dt2.itemsize, 11) dt3 = np.dtype({'f0': ('i4', 0), 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4), 'f2': ('i1', 10)}, align=False) assert_equal(dt3.itemsize, 11) assert_equal(dt1, dt2) assert_equal(dt2, dt3) # Array of subtype should preserve alignment dt1 = np.dtype([('a', '|i1'), ('b', [('f0', '<i2'), ('f1', '<f4')], 2)], align=True) assert_equal(dt1.descr, [('a', '|i1'), ('', '|V3'), ('b', [('f0', '<i2'), ('', '|V2'), ('f1', '<f4')], (2,))]) def test_union_struct(self): # Should be able to create union dtypes dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[0, 0, 2]}, align=True) assert_equal(dt.itemsize, 4) a = np.array([3], dtype='<u4').view(dt) a['f1'] = 10 a['f2'] = 36 assert_equal(a['f0'], 10 + 36*256*256) # Should be able to specify fields out of order dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[4, 0, 2]}, align=True) assert_equal(dt.itemsize, 8) # field name should not matter: assignment is by position dt2 = np.dtype({'names':['f2', 'f0', 'f1'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[4, 0, 2]}, align=True) vals = [(0, 1, 2), (3, -1, 4)] vals2 = [(0, 1, 2), (3, -1, 4)] a = np.array(vals, dt) b = np.array(vals2, dt2) assert_equal(a.astype(dt2), b) assert_equal(b.astype(dt), a) assert_equal(a.view(dt2), b) assert_equal(b.view(dt), a) # Should not be able to overlap objects with other types assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['O', 'i1'], 'offsets':[0, 2]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'O'], 'offsets':[0, 3]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':[[('a', 'O')], 'i1'], 'offsets':[0, 2]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', [('a', 'O')]], 'offsets':[0, 3]}) # Out of order should still be ok, however dt = np.dtype({'names':['f0', 'f1'], 'formats':['i1', 'O'], 'offsets':[np.dtype('intp').itemsize, 0]}) @pytest.mark.parametrize(["obj", "dtype", "expected"], [([], ("(2)f4,"), np.empty((0, 2), dtype="f4")), (3, "(3)f4,", [3, 3, 3]), (np.float64(2), "(2)f4,", [2, 2]), ([((0, 1), (1, 2)), ((2,),)], '(2,2)f4', None), (["1", "2"], "(2)i,", None)]) def test_subarray_list(self, obj, dtype, expected): dtype = np.dtype(dtype) res = np.array(obj, dtype=dtype) if expected is None: # iterate the 1-d list to fill the array expected = np.empty(len(obj), dtype=dtype) for i in range(len(expected)): expected[i] = obj[i] assert_array_equal(res, expected) def test_comma_datetime(self): dt = np.dtype('M8[D],datetime64[Y],i8') assert_equal(dt, np.dtype([('f0', 'M8[D]'), ('f1', 'datetime64[Y]'), ('f2', 'i8')])) def test_from_dictproxy(self): # Tests for PR #5920 dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']}) assert_dtype_equal(dt, np.dtype(dt.fields)) dt2 = np.dtype((np.void, dt.fields)) assert_equal(dt2.fields, dt.fields) def test_from_dict_with_zero_width_field(self): # Regression test for #6430 / #2196 dt = np.dtype([('val1', np.float32, (0,)), ('val2', int)]) dt2 = np.dtype({'names': ['val1', 'val2'], 'formats': [(np.float32, (0,)), int]}) assert_dtype_equal(dt, dt2)
assert_equal(dt.fields['val1'][0].itemsize, 0)
numpy.testing.assert_equal
import cv2 import numpy as np import open3d import plotly.express as px import plotly.graph_objects as go import plotly.graph_objs as go def show_img_grayscale(image: np.ndarray, title="") -> None: if len(image.shape) == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) fig = px.imshow(image, color_continuous_scale="gray", title=title) fig.show() def show_img(image: np.ndarray, title: str = "") -> None: px.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), title=title).show() def show_stl(mesh: open3d.geometry.TriangleMesh, title: str = "") -> None: def stl2mesh3d(stl_mesh): # stl_mesh is read by nympy-stl from a stl file; it is an array of faces/triangles (i.e. three 3d points) # this function extracts the unique vertices and the lists I, J, K to define a Plotly mesh3d p, q, r = stl_mesh.vectors.shape # (p, 3, 3) # the array stl_mesh.vectors.reshape(p*q, r) can contain multiple copies of the same vertex; # extract unique vertices from all mesh triangles vertices, ixr = np.unique( stl_mesh.vectors.reshape(p * q, r), return_inverse=True, axis=0 ) I = np.take(ixr, [3 * k for k in range(p)]) J = np.take(ixr, [3 * k + 1 for k in range(p)]) K = np.take(ixr, [3 * k + 2 for k in range(p)]) return vertices, I, J, K vertices, I, J, K = stl2mesh3d(mesh) x, y, z = vertices.T colorscale = [[0, "#e5dee5"], [1, "#e5dee5"]] mesh3D = go.Mesh3d( x=x, y=y, z=z, i=I, j=J, k=K, flatshading=True, colorscale=colorscale, intensity=z, name=title, showscale=False, ) layout = go.Layout( paper_bgcolor="rgb(1,1,1)", title_text=title, title_x=0.5, font_color="white", scene_camera=dict(eye=dict(x=1.25, y=-1.25, z=1)), scene_xaxis_visible=False, scene_yaxis_visible=False, scene_zaxis_visible=False, scene=dict(aspectmode="data"), ) fig = go.Figure(data=[mesh3D], layout=layout) fig.data[0].update( lighting=dict( ambient=0.18, diffuse=1, fresnel=0.1, specular=1, roughness=0.1, facenormalsepsilon=0, ) ) fig.show() def triangle_mesh_to_fig(mesh: open3d.geometry.TriangleMesh) -> go.Figure: """Takes a open3d TriangleMesh and returns a plotly Mesh3d Figure. Parameters ---------- mesh : open3d.geometry.TriangleMesh The open3d Mesh to convert to a Plotly Mesh3d Figure Returns ------- go.Figure The final figure, can be shown using dash.Graph """ R = mesh.get_rotation_matrix_from_xyz((-np.pi / 2, 0, np.pi)) mesh.rotate(R, center=(0, 0, 0)) verts =
np.asarray(mesh.vertices)
numpy.asarray
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 21 18:19:27 2020 @author: <NAME> """ import logging import numpy as np import pandas as pd from numpy import linalg as LA from numpy.core.umath_tests import inner1d from scipy.spatial.transform import Rotation as R from scipy.interpolate import Rbf import sys logger = logging.getLogger(__name__) class Mesh_Def: def __init__(self,args,aeroframeSettings,lattice): """ *_p : lattice points *r_ p: lattice points reshaped array for ease of use *_v : horseshoe vortex points *r_v : horseshoe vortex points reshaped for ease of use *_c : cell collocation points *_n : normal vector directions *_b : bound leg midpoints f_a : final area of each individual panels u_* : defomation of the given type of point. follows the same naming pattern as for the previous 5 items """ self.args = args self.aeroframeSettings = aeroframeSettings self.lattice = lattice # stores lattice shapes (only theses two are needed, the others are # of identical shape) self.s_p = lattice.p.shape self.s_v = lattice.v.shape self.s_c = lattice.c.shape self.s_b = lattice.bound_leg_midpoints.shape self.s_n = lattice.n.shape # stores lattice intitial (i_) data self.i_p = np.copy(lattice.p) self.ir_p = self.i_p.reshape((self.s_p[0] * self.s_p[1], self.s_p[2])) self.i_v = np.copy(lattice.v) self.ir_v = self.i_v.reshape((self.s_v[0] * self.s_v[1], self.s_v[2])) self.i_c = np.copy(lattice.c) self.i_n = np.copy(lattice.n) self.i_b = np.copy(lattice.bound_leg_midpoints) # stores lattice final (f_) data self.f_p = np.zeros([self.s_p[0], self.s_p[1], self.s_p[2]]) self.fr_p = np.zeros([self.s_p[0] * self.s_p[1], self.s_p[2]]) self.f_v = np.zeros([self.s_p[0], self.s_p[1], self.s_p[2]]) self.fr_v = np.zeros([self.s_p[0] * self.s_p[1], self.s_p[2]]) self.f_c = np.zeros([self.s_c[0] * self.s_c[1]]) self.f_n = np.zeros([self.s_c[0] * self.s_c[1]]) self.f_b = np.zeros([self.s_c[0] * self.s_c[1]]) self.f_a = np.zeros([self.s_c[0] * self.s_c[1]]) # Cells absolute y corrdinates (needed for testing and debug) self.y_p = np.abs(self.ir_p[:,1]) self.y_v = np.abs(self.ir_v[:,1]) self.y_c = np.abs(self.i_c[:,1]) self.y_b = np.abs(self.i_b[:,1]) self.x_p = np.abs(self.ir_p[:,0]) self.x_v = np.abs(self.ir_v[:,0]) self.x_c = np.abs(self.i_c[:,0]) self.x_b = np.abs(self.i_b[:,0]) # Mesh displacement self.u_p = np.zeros((self.s_p[0] * self.s_p[1], self.s_p[2])) self.u_v = np.zeros((self.s_p[0] * self.s_p[1], self.s_p[2])) self.u_c = np.zeros((self.s_c[0], self.s_c[1])) self.u_b = np.zeros((self.s_c[0], self.s_c[1])) # logger.debug(self.u_p) def mesh_update(self): """ Feeds deformed values back to the mesh Returns ------- None. """ self.fr_p = self.ir_p + self.u_p self.f_p = self.i_p + self.u_p.reshape(self.s_p[0], self.s_p[1], self.s_p[2]) self.fr_v = self.ir_v + self.u_v self.f_v = self.i_v + self.u_v.reshape(self.s_v[0], self.s_v[1], self.s_v[2]) self.f_c = self.i_c + self.u_c self.f_b = self.i_b + self.u_b def cantilever(self, y, q, L, E, Ix): return q*y**2 * (6*L**2 - 4*L*y + y**2) / (24*E*Ix) def shape_1(self,settings): """ Shape function 1. This functions respresents line of slope 1. The only purpouse of this shape function is to test if the deformation is done correctly. """ csv_save = True const = 0.0 logger.info("Shape function 1 is selected") case = settings.settings["aircraft"] if case == "1_flat_funcActivated.json": m = 0.0 elif case == "2_dih_funcActivated.json": m = 0.1 elif case == "3_anh_funcActivated.json": m = -0.1 elif case == "4_flat_funcActivated.json": m = 0 elif case == "5_dih_funcActivated.json": m = 0.1 elif case == "6_anh_funcActivated.json": m = -0.1 elif case == "7_flat_funcActivated.json": m = 0 elif case == "8_dih_funcActivated.json": m = 0.1 elif case == "9_anh_funcActivated.json": m = -0.1 elif case == "10_flat_funcActivated.json": m = 0 elif case == "11_dih_funcActivated.json": m = 0.1 elif case == "12_anh_funcActivated.json": m = -0.1 elif case == "AircraftMalo-std_funActivated.xml": m = const elif case == "B7772VSP_v3.1_funActivated.xml": m = const elif case == "BWB_102_VTP1_v3.1_funActivated.xml": m = const elif case == "BWB_ACFA_cpacs_v3.1_funActivated.xml": m = const elif case == "Circlewing_Test.v_3.1_funActivated.xml": m = const elif case == "D150_AGILE_Hangar_funActivated.xml": m = const elif case == "Boxwing_AGILE_Hangar_funActivated_v3.1.xml": m = const elif case == "Optimale_Tornado_SU2_funActivated.xml": m = const elif case == "Optimale.xml": m = 1e-6 elif case == "EbeeX_d0_q0.xml": m = 0.1975 elif "Wing_" in case: logger.debug(int(case[15:-4])) m = np.linspace(0,0.1,13) m = m[int(case[15:-4])-1] else: logger.warning("Deformation input UNEXPECTED") h = 0 self.u_p[:,2] = m * self.y_p + h self.u_v[:,2] = m * self.y_v + h self.u_c[:,2] = m * self.y_c + h self.u_b[:,2] = m * self.y_b + h self.mesh_update() # logger.debug(self.u_p.shape) # Saves data to csv. This part is put here ease of use during debug # phase. "csv_save" will be set to false when this phase is done # TODO set "csv_save" to false when debug is finished if csv_save: headers = ["x","y","z","dx","dy","dz"] points = np.concatenate((self.i_c,self.u_c),axis=1) filepath = str(settings.paths('f_deformation')) name = "deformation_data.csv" dataset = pd.DataFrame(points,columns=headers) dataset.to_csv(filepath[:-4]+name,index=False,float_format='%.18E') logger.info("csv file saved") def shape_2(self,settings): """ Shape function2. This function computes the slope at each y location for a cantilever beam of length "L", with a distributed load of "q". The Young modulus is imposed for steel and "I" the second moment of inertia is also imposed. """ csv_save = True case = settings.settings["aircraft"] logger.info("Shape function 2 is selected") if case == "EbeeX_d0_q0.xml": m = 0.0 if case == "Optimale.xml": m = 0.0 else: logger.warning("Deformation input UNEXPECTED") h = 0 self.u_p[:,2] = m * self.y_p + h self.u_v[:,2] = m * self.y_v + h self.u_c[:,2] = m * self.y_c + h self.u_b[:,2] = m * self.y_b + h cst2 = 1e-1 self.u_p[:,2] = self.u_p[:,2] + cst2*self.y_p**2 self.u_v[:,2] = self.u_v[:,2] + cst2*self.y_v**2 self.u_c[:,2] = self.u_c[:,2] + cst2*self.y_c**2 self.u_b[:,2] = self.u_b[:,2] + cst2*self.y_b**2 self.mesh_update() if csv_save: headers = ["x","y","z","dx","dy","dz"] points = np.concatenate((self.i_c,self.u_c),axis=1) filepath = str(settings.paths('f_deformation')) name = "deformation_data.csv" dataset = pd.DataFrame(points,columns=headers) dataset.to_csv(filepath[:-4]+name,index=False,float_format='%.18E') logger.info("csv file saved") # # [N/m] Distributed load # q = 2000000 # # [m] Wing span # L = 1 # # logger.debug("L = " + str(L) ) # # [Pa] Elasticity modulus # E = 210e9 # # [m**4] Second moment of area # Ix = 1.330e-6 # # Computes beam deformation # self.u_p[:,2] = self.cantilever(self.y_p, q, L, E, Ix) # self.u_v[:,2] = self.cantilever(self.y_v, q, L, E, Ix) # self.u_c[:,2] = self.cantilever(self.y_c, q, L, E, Ix) # self.u_b[:,2] = self.cantilever(self.y_b, q, L, E, Ix) # # logger.debug(self.i_v) # self.mesh_update() # s = self.f_v.shape # var = self.f_v.reshape(s[0]*s[1],s[2]) - self.i_v.reshape(s[0]*s[1],s[2]) # logger.debug(np.max(var[:,0])) def framatDeformation(self,transform): x = self.i_c[:,0] y = self.i_c[:,1] z = self.i_c[:,2] logger.debug("x: \n"+str(x)) logger.debug("tranform.uax = \n"+str(transform.aux)) d = transform.displacements logger.debug("x.shape = "+str(x.shape)) logger.debug("y.shape = "+str(y.shape)) logger.debug("z.shape = "+str(z.shape)) logger.debug("d.shape = "+str(d.shape)) logger.debug(transform.displacements) # sys.exit() # s = dataset.shape # Sorts out which type of FEM simulation was done (beam or shell) # TODO: separate the airplane if half using the x axis. At the moment # there is an issue with the center of the airplane. logger.info("Input deformation data is of type surface") # interpolates the points (lattice.p) rbfi = Rbf(x,y,z,d,function='linear',mode="N-D") self.u_p = rbfi(self.ir_p[:,0],self.ir_p[:,1],self.ir_p[:,2]) # interpolates the vortex horseshoe points (lattice.v) for i in range(len(self.ir_v)): if (i % 4) == 1: self.u_v[i] = rbfi(self.ir_v[i,0], self.ir_v[i,1], self.ir_v[i,2]) self.u_v[i-1] = self.u_v[i] elif (i % 4) == 2: self.u_v[i] = rbfi(self.ir_v[i,0], self.ir_v[i,1], self.ir_v[i,2]) self.u_v[i+1] = self.u_v[i] # interpolates the collocation points (lattice.c) self.u_c = rbfi(self.i_c[:,0],self.i_c[:,1],self.i_c[:,2]) # interpolates the bound leg mid-points (lattice.blm) self.u_b = rbfi(self.i_b[:,0],self.i_b[:,1],self.i_b[:,2]) # Feed values to the deformed points (f for final). self.fr_p = self.ir_p + self.u_p self.f_p = self.i_p + self.u_p.reshape(self.s_p[0], self.s_p[1], self.s_p[2]) self.fr_v = self.ir_v + self.u_v self.f_v = self.i_v + self.u_v.reshape(self.s_v[0], self.s_v[1], self.s_v[2]) self.f_c = self.i_c + self.u_c self.f_b = self.i_b + self.u_b def CSVDeformation(self): """ Loads a displacement file of format .csv and up Returns ------- RBF explained https://www.youtube.com/watch?v=OOpfU3CvUkM None. TODO: take into accound the potential rotations! if file is constructed with beams. """ logger.debug("=== csv deformation function called ===") # Path of the deformation file from the current working directory pathFromCWD = self.aeroframeSettings["deformation_file"] path = self.args.cwd + "/" + pathFromCWD logger.debug("Input deformation csv file path is: \n"+str(path)) if path is None: logger.error("NO DEFORMATION FILE") try: dataset = pd.read_csv(path) dataset = dataset.to_numpy() x = dataset[:,0] y = dataset[:,1] z = dataset[:,2] d = dataset[:,3:] s = dataset.shape # h = list(disp.columns.values) # N_headers = len(h) # Sorts out which type of FEM simulation was done (beam or shell) # TODO: separate the airplane if half using the x axis. At the moment # there is an issue with the center of the airplane. if s[1] == 6: logger.info("Input deformation data is of type surface") # interpolates the points (lattice.p) # Previous experience with Optimale aircraft: # 'multiquadric': GOOD RESULTS with eps = [1e-3;1e-1] # 'inverse': Does not work with any eps # 'gaussian': works only with eps to small to capture deformation # 'linear': GOOD RESULTS, small lack of symmetry # 'cubic': GOOD RESULTS, small lack of symmetry # 'quintic': GOOD RESULTS, small lack of symmetry # 'thin_plate': BEST RESULTS, very little loss of symmetry rbfi = Rbf(x,y,z,d,function='thin_plate',mode="N-D",epsilon=1e-5) self.u_p = rbfi(self.ir_p[:,0],self.ir_p[:,1],self.ir_p[:,2]) # interpolates the vortex horseshoe points (lattice.v) for i in range(len(self.ir_v)): if (i % 4) == 1: self.u_v[i] = rbfi(self.ir_v[i,0], self.ir_v[i,1], self.ir_v[i,2]) self.u_v[i-1] = self.u_v[i] elif (i % 4) == 2: self.u_v[i] = rbfi(self.ir_v[i,0], self.ir_v[i,1], self.ir_v[i,2]) self.u_v[i+1] = self.u_v[i] # interpolates the collocation points (lattice.c) self.u_c = rbfi(self.i_c[:,0],self.i_c[:,1],self.i_c[:,2]) # interpolates the bound leg mid-points (lattice.blm) self.u_b = rbfi(self.i_b[:,0],self.i_b[:,1],self.i_b[:,2]) # Feed values to the deformed points (f for final). self.fr_p = self.ir_p + self.u_p self.f_p = self.i_p + self.u_p.reshape(self.s_p[0], self.s_p[1], self.s_p[2]) self.fr_v = self.ir_v + self.u_v self.f_v = self.i_v + self.u_v.reshape(self.s_v[0], self.s_v[1], self.s_v[2]) except FileNotFoundError: logger.info("No such deformation file or directiory:\n" + str(path)) logger.info("Simulation is continued without deformation") sys.exit() self.f_c = self.i_c + self.u_c self.f_b = self.i_b + self.u_b def deformation(self,acceptedNames,transform=None): """ This function deforms the mesh, computes the new parameters p, v, c, n a. The newly computed parameters are then fed back into the lattice class variable in the stdrun.run function. The stdrun.run function will then continue to compute the simulation with the deformed mesh. Parameters ---------- settings : class variable Variable of class settings. This variable is used for checking which simulation should be done especially during the debug and testing phase. It also provides the path of the current simulation Returns ------- None. """ logger.info("=== Starts deformation function ===") # Computes the initial normal vector for each panel. SVD has a # proprety that in the vh matrix, all the vectors are unitary # orthonormal vectors. This allows to have the reference frame and # compute the angles between old undeformed mesh and the new # deformed reference frame for the panel. G = np.concatenate((self.i_c, self.i_c, self.i_c, self.i_c), axis=1) mat = self.i_p - G.reshape(self.s_p[0],self.s_p[1],self.s_p[2]) u, s, vh_i = LA.svd(mat) # user input choice ###################################################################### # Old way of doing things. Might be useful for debugging # # if settings.settings["deformation_method"] == "shape_1": # logger.debug(settings.settings["deformation_method"]) # self.shape_1(settings) # elif settings.settings["deformation_method"] == "shape_2": # logger.debug(settings.settings["deformation_method"]) # self.shape_2(settings) ###################################################################### if self.aeroframeSettings["CSD_solver"] in acceptedNames[1]: self.CSVDeformation() elif self.aeroframeSettings["CSD_solver"] in acceptedNames[2]: self.framatDeformation(transform) else: logger.error("No shape function selected") sys.exit() # Computes the deformed reference frame by using the same SVD proprety # as before. G = np.concatenate((self.f_c, self.f_c, self.f_c, self.f_c), axis=1) mat = self.f_p - G.reshape(self.s_p[0],self.s_p[1],self.s_p[2]) u, s, vh_f = LA.svd(mat) # Computes the roation pivot vector. Equivalent of a hinge axis for # rotation. This is useful for the quaternion description rot_g = np.cross(vh_f[:,2,:],vh_i[:,2,:]) rot = rot_g / np.linalg.norm(rot_g,axis=1,)[:,np.newaxis] rot[np.isnan(rot)] = 0.0 # Computes the angle between the intial and deformed normal vector # dot product of vector "a" (initial state) and "b" (deformed state). ab = inner1d(vh_f[:,2,:],vh_i[:,2,:]) a = LA.norm(vh_f[:,2,:], axis=1) b = LA.norm(vh_i[:,2,:], axis=1) angle =
np.arccos(ab / (a*b))
numpy.arccos
import numpy as np import xarray as xr import pandas as pd import multiprocessing as mp class PreprocessData: """Class instantiation of PreprocessData: Here we will be preprocessing data for deep learning model training. Attributes: working_directory (str): The path to the directory where the deep learning preprocessing files will be saved and worked from. stormpatch_path (str): Where the storm patch files were saved. climate (str): The climate period to derive deep learning data for. Options are ``current`` or ``future``. threshold1 (int): The UH threshold to use. This value will delineate some form of ``severe`` and ``non-severe`` storm patches. mask (boolean): Whether the threshold will be applied within the storm patch mask or within the full storm patch. Defaults to ``False``. num_cpus (int): Number of CPUs to use in a node for parallelizing extractions. Defaults to 36 (Cheyenne compute nodes contain 36). """ def __init__(self, working_directory, stormpatch_path, climate, threshold1, mask=False, num_cpus=36): # class attributes self.working_directory=working_directory self.stormpatch_path=stormpatch_path # sanity check if climate!='current' and climate!='future': raise Exception("Please enter current or future for climate option.") else: self.climate=climate # class attributes self.threshold1=threshold1 # string help self.mask=mask if not self.mask: self.mask_str='nomask' if self.mask: self.mask_str='mask' # cpus for parallelizing self.num_cpus=num_cpus def generate_time_full(self): """Creation of the full time period that will be looped through for extracting storm patch information. Only considering December-May months due to warm season bias over the central CONUS. The CONUS1 simulations were run for 2000-2013. Returns: Pandas date range (DatetimeIndex). """ return pd.date_range('2000-10-01','2013-09-30',freq='MS')[(pd.date_range('2000-10-01','2013-09-30',freq='MS').month==12)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==1)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==2)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==3)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==4)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==5)] def create_data_indices(self, time): """Split the loaded data into categories based on the UH threshold chosen and save the first intermediary files. Here we create the indices of the storm patches that satisfy UH criteria for later use. Args: time (DatetimeIndex): Time object from pandas date range. """ if not self.mask: data=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_assemble=xr.Dataset({'grid':(['x'], np.argwhere(data.uh25_grid.values.max(axis=(1,2)) > self.threshold1)[:,0])}) data_assemble.to_netcdf(f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc") if self.mask: data=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_assemble=xr.Dataset({'grid':(['x'], np.argwhere(data.uh25_grid.where(data.mask).max(axis=(1,2), skipna=True).values > self.threshold1)[:,0])}) data_assemble.to_netcdf(f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc") def parallelizing_indxs(self): """Activate the multiprocessing function to parallelize the functions. """ print(f"Starting jobs...") timearray=self.generate_time_full() pool1=mp.Pool(self.num_cpus) for time in timearray: print(f"Extracting {time.strftime('%Y-%m')} indices...") pool1.apply_async(self.create_data_indices, args=([time])) pool1.close() pool1.join() print(f"Completed the jobs.") def generate_time_month(self, month_int): """Creation of the time array that will be looped through for extracting storm patch information. Args: month_int (int): The month being used for the time array (2000-2013 years). Returns: Pandas date range (DatetimeIndex) for the respective month. """ return pd.date_range('2000-10-01','2013-09-30',freq='MS')[(pd.date_range('2000-10-01','2013-09-30',freq='MS').month==month_int)] def apply_exceed_mask(self, data_var, data_mask, level): """Function to retain the patches that exceeded the threshold. Args: data_var (Xarray data array): The variable's data. data_mask (Xarray data array): The storm patch mask. level (int): The dataset level coordinate. This could be 0, 1, 2, or 3. Returns: Xarray data array of the variable for the storm patches that exceeded the UH threshold. """ return data_var.var_grid.sel(levels=level)[data_mask.grid.values,:,:] def apply_notexceed_mask(self, data_var, data_mask, level): """Function to retain the patches that did not exceed the threshold. Args: data_var (Xarray data array): The variable's data. data_mask (Xarray data array): The storm patch mask. level (int): The dataset level coordinate. This could be 0, 1, 2, or 3. Returns: Numpy array of the variable for the storm patches that did not exceed the UH threshold. """ return np.delete(data_var.var_grid.sel(levels=level).values, data_mask.grid.values, axis=0) def flatten_list(self, array): """Function to flatten the created list of Xarray data arrays. Args: array (list): The list of Xarray data arrays. Returns: Flattened list of Xarray data arrays. """ return [j for i in array for j in i.values] def flatten_arraylist(self, array): """Function to flatten the created list of numpy arrays. Args: array (list): The list of numpy arrays. Returns: Flattened list of numpy arrays. """ return [j for i in array for j in i] def month_translate(self, num): """Convert integer month to string month. Args: num (int): Input month. Returns: out (str): Input month as string. Raises: ValueError: If the month is not within the study's range (Dec-May). """ var={12:'December', 1:'January', 2:'February', 3:'March', 4:'April', 5:'May'} try: out=var[num] return out except: raise ValueError("Please enter month integer from Dec-May.") def run_months(self, months=np.array([12,1,2,3,4,5]), uh=True, nouh=True): """Function to automate and parallelize the creation of the exceedance/nonexceedance files. Args: months (int array): Months to iterate through. uh (boolean): Whether to compute analysis for threshold exceedances. Defaults to ``True``. nouh(boolean): Whether to compute analysis for threshold non-exceedances. Defaults to ``True``. """ pool2=mp.Pool(self.num_cpus) for mo in months: if uh: print(f"Creating {self.month_translate(mo)} patches of threshold exceedances...") pool2.apply_async(self.create_files_exceed_threshold, args=([mo])) if nouh: print(f"Creating {self.month_translate(mo)} patches of threshold non-exceedances...") pool2.apply_async(self.create_files_notexceed_threshold, args=([mo])) pool2.close() pool2.join() print(f"Completed the jobs.") def create_files_exceed_threshold(self, month_int): """Create and save files containing the environment patches for storms that exceeded the threshold. Data files being opened contain the storm patches, not the full CONUS WRF domain. Args: month_int (int): Month for analysis. """ time_temp=self.generate_time_month(month_int) data_temp_sev_1=[]; data_temp_sev_3=[]; data_temp_sev_5=[]; data_temp_sev_7=[]; data_evwd_sev_1=[]; data_evwd_sev_3=[] data_euwd_sev_1=[]; data_euwd_sev_3=[]; data_euwd_sev_5=[]; data_euwd_sev_7=[]; data_evwd_sev_5=[]; data_evwd_sev_7=[] data_qvap_sev_1=[]; data_qvap_sev_3=[]; data_qvap_sev_5=[]; data_qvap_sev_7=[]; data_dbzs_sev_1=[]; data_maxw_sev_1=[] data_pres_sev_1=[]; data_pres_sev_3=[]; data_pres_sev_5=[]; data_pres_sev_7=[]; data_ctts_sev_1=[]; data_mask_sev_1=[] data_wwnd_sev_1=[]; data_wwnd_sev_3=[]; data_wwnd_sev_5=[]; data_wwnd_sev_7=[]; data_uh25_sev_1=[]; data_uh03_sev_1=[] for time in time_temp: print(f"opening files for {time.strftime('%Y')}{time.strftime('%m')}") data_mask=xr.open_mfdataset( f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc", combine='by_coords') data_temp=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_tk_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_evwd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_ev_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_euwd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_eu_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_qvap=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_qvapor_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_pres=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_p_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_wwnd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_w_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_maxw=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_maxw_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_gen =xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_temp_sev_1.append(self.apply_exceed_mask(data_temp, data_mask, 0)) data_temp_sev_3.append(self.apply_exceed_mask(data_temp, data_mask, 1)) data_temp_sev_5.append(self.apply_exceed_mask(data_temp, data_mask, 2)) data_temp_sev_7.append(self.apply_exceed_mask(data_temp, data_mask, 3)) data_evwd_sev_1.append(self.apply_exceed_mask(data_evwd, data_mask, 0)) data_evwd_sev_3.append(self.apply_exceed_mask(data_evwd, data_mask, 1)) data_evwd_sev_5.append(self.apply_exceed_mask(data_evwd, data_mask, 2)) data_evwd_sev_7.append(self.apply_exceed_mask(data_evwd, data_mask, 3)) data_euwd_sev_1.append(self.apply_exceed_mask(data_euwd, data_mask, 0)) data_euwd_sev_3.append(self.apply_exceed_mask(data_euwd, data_mask, 1)) data_euwd_sev_5.append(self.apply_exceed_mask(data_euwd, data_mask, 2)) data_euwd_sev_7.append(self.apply_exceed_mask(data_euwd, data_mask, 3)) data_qvap_sev_1.append(self.apply_exceed_mask(data_qvap, data_mask, 0)) data_qvap_sev_3.append(self.apply_exceed_mask(data_qvap, data_mask, 1)) data_qvap_sev_5.append(self.apply_exceed_mask(data_qvap, data_mask, 2)) data_qvap_sev_7.append(self.apply_exceed_mask(data_qvap, data_mask, 3)) data_pres_sev_1.append(self.apply_exceed_mask(data_pres, data_mask, 0)) data_pres_sev_3.append(self.apply_exceed_mask(data_pres, data_mask, 1)) data_pres_sev_5.append(self.apply_exceed_mask(data_pres, data_mask, 2)) data_pres_sev_7.append(self.apply_exceed_mask(data_pres, data_mask, 3)) data_wwnd_sev_1.append(self.apply_exceed_mask(data_wwnd, data_mask, 0)) data_wwnd_sev_3.append(self.apply_exceed_mask(data_wwnd, data_mask, 1)) data_wwnd_sev_5.append(self.apply_exceed_mask(data_wwnd, data_mask, 2)) data_wwnd_sev_7.append(self.apply_exceed_mask(data_wwnd, data_mask, 3)) data_maxw_sev_1.append(data_maxw.var_grid[data_mask.grid.values,:,:]) data_dbzs_sev_1.append(data_gen.dbz_grid[data_mask.grid.values,:,:]) data_ctts_sev_1.append(data_gen.ctt_grid[data_mask.grid.values,:,:]) data_uh25_sev_1.append(data_gen.uh25_grid[data_mask.grid.values,:,:]) data_uh03_sev_1.append(data_gen.uh03_grid[data_mask.grid.values,:,:]) data_mask_sev_1.append(data_gen.mask[data_mask.grid.values,:,:]) data_temp_sev_1_patches=self.flatten_list(data_temp_sev_1) data_temp_sev_3_patches=self.flatten_list(data_temp_sev_3) data_temp_sev_5_patches=self.flatten_list(data_temp_sev_5) data_temp_sev_7_patches=self.flatten_list(data_temp_sev_7) data_evwd_sev_1_patches=self.flatten_list(data_evwd_sev_1) data_evwd_sev_3_patches=self.flatten_list(data_evwd_sev_3) data_evwd_sev_5_patches=self.flatten_list(data_evwd_sev_5) data_evwd_sev_7_patches=self.flatten_list(data_evwd_sev_7) data_euwd_sev_1_patches=self.flatten_list(data_euwd_sev_1) data_euwd_sev_3_patches=self.flatten_list(data_euwd_sev_3) data_euwd_sev_5_patches=self.flatten_list(data_euwd_sev_5) data_euwd_sev_7_patches=self.flatten_list(data_euwd_sev_7) data_qvap_sev_1_patches=self.flatten_list(data_qvap_sev_1) data_qvap_sev_3_patches=self.flatten_list(data_qvap_sev_3) data_qvap_sev_5_patches=self.flatten_list(data_qvap_sev_5) data_qvap_sev_7_patches=self.flatten_list(data_qvap_sev_7) data_pres_sev_1_patches=self.flatten_list(data_pres_sev_1) data_pres_sev_3_patches=self.flatten_list(data_pres_sev_3) data_pres_sev_5_patches=self.flatten_list(data_pres_sev_5) data_pres_sev_7_patches=self.flatten_list(data_pres_sev_7) data_wwnd_sev_1_patches=self.flatten_list(data_wwnd_sev_1) data_wwnd_sev_3_patches=self.flatten_list(data_wwnd_sev_3) data_wwnd_sev_5_patches=self.flatten_list(data_wwnd_sev_5) data_wwnd_sev_7_patches=self.flatten_list(data_wwnd_sev_7) data_maxw_sev_1_patches=self.flatten_list(data_maxw_sev_1) data_dbzs_sev_1_patches=self.flatten_list(data_dbzs_sev_1) data_ctts_sev_1_patches=self.flatten_list(data_ctts_sev_1) data_uh25_sev_1_patches=self.flatten_list(data_uh25_sev_1) data_uh03_sev_1_patches=self.flatten_list(data_uh03_sev_1) data_mask_sev_1_patches=self.flatten_list(data_mask_sev_1) data_assemble=xr.Dataset({ 'temp_sev_1':(['patch','y','x'], np.array(data_temp_sev_1_patches)), 'temp_sev_3':(['patch','y','x'], np.array(data_temp_sev_3_patches)), 'temp_sev_5':(['patch','y','x'], np.array(data_temp_sev_5_patches)), 'temp_sev_7':(['patch','y','x'], np.array(data_temp_sev_7_patches)), 'evwd_sev_1':(['patch','y','x'], np.array(data_evwd_sev_1_patches)), 'evwd_sev_3':(['patch','y','x'], np.array(data_evwd_sev_3_patches)), 'evwd_sev_5':(['patch','y','x'], np.array(data_evwd_sev_5_patches)), 'evwd_sev_7':(['patch','y','x'], np.array(data_evwd_sev_7_patches)), 'euwd_sev_1':(['patch','y','x'], np.array(data_euwd_sev_1_patches)), 'euwd_sev_3':(['patch','y','x'], np.array(data_euwd_sev_3_patches)), 'euwd_sev_5':(['patch','y','x'], np.array(data_euwd_sev_5_patches)), 'euwd_sev_7':(['patch','y','x'], np.array(data_euwd_sev_7_patches)), 'qvap_sev_1':(['patch','y','x'], np.array(data_qvap_sev_1_patches)), 'qvap_sev_3':(['patch','y','x'], np.array(data_qvap_sev_3_patches)), 'qvap_sev_5':(['patch','y','x'], np.array(data_qvap_sev_5_patches)), 'qvap_sev_7':(['patch','y','x'], np.array(data_qvap_sev_7_patches)), 'pres_sev_1':(['patch','y','x'], np.array(data_pres_sev_1_patches)), 'pres_sev_3':(['patch','y','x'], np.array(data_pres_sev_3_patches)), 'pres_sev_5':(['patch','y','x'], np.array(data_pres_sev_5_patches)), 'pres_sev_7':(['patch','y','x'], np.array(data_pres_sev_7_patches)), 'wwnd_sev_1':(['patch','y','x'], np.array(data_wwnd_sev_1_patches)), 'wwnd_sev_3':(['patch','y','x'], np.array(data_wwnd_sev_3_patches)), 'wwnd_sev_5':(['patch','y','x'],
np.array(data_wwnd_sev_5_patches)
numpy.array
import numpy as np from gt import weighted_dist, interval_search def range_search(xb_, q_, rg_): dist_ = np.abs(xb_ - q_) return np.nonzero(np.all(dist_ < rg_, axis=1))[0] def weighted_search(xb_, q_, w_, p_): if p_ == -1: distances = np.sum(np.abs(xb_ - q_) > 1 / w_, axis=1) else: distances = np.sum(np.multiply(np.abs(q_ - xb_) ** p_, w_ ** p_), axis=1) return distances def run_(): nb, nq, d = 100000, 100, 16 xb = np.random.uniform(size=(nb, d)) xq = np.random.uniform(size=(nq, d)) rg =
np.random.uniform(size=(nq, d))
numpy.random.uniform
import gc import os import weakref from dataclasses import dataclass from typing import List from unittest import mock import numpy as np import pytest from qtpy.QtGui import QGuiApplication from qtpy.QtWidgets import QMessageBox from napari._tests.utils import ( add_layer_by_type, check_viewer_functioning, layer_test_data, skip_local_popups, ) from napari.settings import get_settings from napari.utils.interactions import mouse_press_callbacks from napari.utils.io import imread from napari.utils.theme import available_themes def test_qt_viewer(make_napari_viewer): """Test instantiating viewer.""" viewer = make_napari_viewer() view = viewer.window.qt_viewer assert viewer.title == 'napari' assert view.viewer == viewer assert len(viewer.layers) == 0 assert view.layers.model().rowCount() == 0 assert viewer.dims.ndim == 2 assert view.dims.nsliders == viewer.dims.ndim assert np.sum(view.dims._displayed_sliders) == 0 def test_qt_viewer_with_console(make_napari_viewer): """Test instantiating console from viewer.""" viewer = make_napari_viewer() view = viewer.window.qt_viewer # Check console is created when requested assert view.console is not None assert view.dockConsole.widget() is view.console def test_qt_viewer_toggle_console(make_napari_viewer): """Test instantiating console from viewer.""" viewer = make_napari_viewer() view = viewer.window.qt_viewer # Check console has been created when it is supposed to be shown view.toggle_console_visibility(None) assert view._console is not None assert view.dockConsole.widget() is view.console @pytest.mark.parametrize('layer_class, data, ndim', layer_test_data) def test_add_layer(make_napari_viewer, layer_class, data, ndim): viewer = make_napari_viewer(ndisplay=int(np.clip(ndim, 2, 3))) view = viewer.window.qt_viewer add_layer_by_type(viewer, layer_class, data) check_viewer_functioning(viewer, view, data, ndim) def test_new_labels(make_napari_viewer): """Test adding new labels layer.""" # Add labels to empty viewer viewer = make_napari_viewer() view = viewer.window.qt_viewer viewer._new_labels() assert
np.max(viewer.layers[0].data)
numpy.max
# Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the Simulator plugin """ import pytest import math import pennylane as qml import numpy as np from pennylane_cirq import SimulatorDevice from pennylane_cirq.simulator_device import z_eigs import cirq class TestHelperFunctions: """Test the helper functions needed for SimulatorDevice.""" # fmt: off @pytest.mark.parametrize("n,expected_output", [ (1, [1, -1]), (2, [1, -1, -1, 1]), (3, [1, -1, -1, 1, -1, 1, 1, -1]), ]) # fmt: on def test_z_eigs(self, n, expected_output): """Tests that z_eigs returns the proper eigenvalues of an n-fold tensor product of Pauli Z operators.""" assert np.array_equal(z_eigs(n), expected_output) class TestDeviceIntegration: """Tests that the SimulatorDevice integrates well with PennyLane""" def test_device_loading(self): """Tests that the cirq.simulator device is properly loaded""" dev = qml.device("cirq.simulator", wires=2) assert dev.num_wires == 2 assert dev.shots == 1000 assert dev.short_name == "cirq.simulator" assert isinstance(dev, SimulatorDevice) @pytest.fixture(scope="function") def simulator_device_1_wire(shots, analytic): """Return a single wire instance of the SimulatorDevice class.""" yield SimulatorDevice(1, shots=shots, analytic=analytic) @pytest.fixture(scope="function") def simulator_device_2_wires(shots, analytic): """Return a two wire instance of the SimulatorDevice class.""" yield SimulatorDevice(2, shots=shots, analytic=analytic) @pytest.fixture(scope="function") def simulator_device_3_wires(shots, analytic): """Return a three wire instance of the SimulatorDevice class.""" yield SimulatorDevice(3, shots=shots, analytic=analytic) @pytest.mark.parametrize("shots,analytic", [(100, True)]) class TestInternalLogic: """Test internal logic of the SimulatorDevice class.""" def test_probability_error(self, simulator_device_1_wire): """Test that an error is raised in probability if the internal state is None.""" simulator_device_1_wire.state = None with pytest.raises(qml.DeviceError, match="Probability can not be computed because the internal state is None."): simulator_device_1_wire.probability() @pytest.mark.parametrize("shots,analytic", [(100, True)]) class TestApply: """Tests that gates are correctly applied""" # fmt: off @pytest.mark.parametrize("name,input,expected_output", [ ("PauliX", [1, 0], np.array([0, 1])), ("PauliX", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / math.sqrt(2), 1 / math.sqrt(2)]), ("PauliY", [1, 0], [0, 1j]), ("PauliY", [1 / math.sqrt(2), 1 / math.sqrt(2)], [-1j / math.sqrt(2), 1j / math.sqrt(2)]), ("PauliZ", [1, 0], [1, 0]), ("PauliZ", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / math.sqrt(2), -1 / math.sqrt(2)]), ("Hadamard", [1, 0], [1 / math.sqrt(2), 1 / math.sqrt(2)]), ("Hadamard", [1 / math.sqrt(2), -1 / math.sqrt(2)], [0, 1]), ]) # fmt: on def test_apply_operation_single_wire_no_parameters( self, simulator_device_1_wire, tol, name, input, expected_output ): """Tests that applying an operation yields the expected output state for single wire operations that have no parameters.""" simulator_device_1_wire._obs_queue = [] simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply(name, wires=[0], par=[]) simulator_device_1_wire.initial_state = np.array(input, dtype=np.complex64) simulator_device_1_wire.pre_measure() assert np.allclose( simulator_device_1_wire.state, np.array(expected_output), **tol ) # fmt: off @pytest.mark.parametrize("name,input,expected_output", [ ("CNOT", [1, 0, 0, 0], [1, 0, 0, 0]), ("CNOT", [0, 0, 1, 0], [0, 0, 0, 1]), ("CNOT", [1 / math.sqrt(2), 0, 0, 1 / math.sqrt(2)], [1 / math.sqrt(2), 0, 1 / math.sqrt(2), 0]), ("SWAP", [1, 0, 0, 0], [1, 0, 0, 0]), ("SWAP", [0, 0, 1, 0], [0, 1, 0, 0]), ("SWAP", [1 / math.sqrt(2), 0, -1 / math.sqrt(2), 0], [1 / math.sqrt(2), -1 / math.sqrt(2), 0, 0]), ("CZ", [1, 0, 0, 0], [1, 0, 0, 0]), ("CZ", [0, 0, 0, 1], [0, 0, 0, -1]), ("CZ", [1 / math.sqrt(2), 0, 0, -1 / math.sqrt(2)], [1 / math.sqrt(2), 0, 0, 1 / math.sqrt(2)]), ]) # fmt: on def test_apply_operation_two_wires_no_parameters( self, simulator_device_2_wires, tol, name, input, expected_output ): """Tests that applying an operation yields the expected output state for two wire operations that have no parameters.""" simulator_device_2_wires._obs_queue = [] simulator_device_2_wires.pre_apply() simulator_device_2_wires.apply(name, wires=[0, 1], par=[]) simulator_device_2_wires.initial_state = np.array(input, dtype=np.complex64) simulator_device_2_wires.pre_measure() assert np.allclose( simulator_device_2_wires.state, np.array(expected_output), **tol ) # fmt: off @pytest.mark.parametrize("name,expected_output,par", [ ("BasisState", [0, 0, 1, 0], [[1, 0]]), ("BasisState", [0, 0, 1, 0], [[1, 0]]), ("BasisState", [0, 0, 0, 1], [[1, 1]]), ("QubitStateVector", [0, 0, 1, 0], [[0, 0, 1, 0]]), ("QubitStateVector", [0, 0, 1, 0], [[0, 0, 1, 0]]), ("QubitStateVector", [0, 0, 0, 1], [[0, 0, 0, 1]]), ("QubitStateVector", [1 / math.sqrt(3), 0, 1 / math.sqrt(3), 1 / math.sqrt(3)], [[1 / math.sqrt(3), 0, 1 / math.sqrt(3), 1 / math.sqrt(3)]]), ("QubitStateVector", [1 / math.sqrt(3), 0, -1 / math.sqrt(3), 1 / math.sqrt(3)], [[1 / math.sqrt(3), 0, -1 / math.sqrt(3), 1 / math.sqrt(3)]]), ]) # fmt: on def test_apply_operation_state_preparation( self, simulator_device_2_wires, tol, name, expected_output, par ): """Tests that applying an operation yields the expected output state for single wire operations that have no parameters.""" simulator_device_2_wires._obs_queue = [] simulator_device_2_wires.pre_apply() simulator_device_2_wires.apply(name, wires=[0, 1], par=par) simulator_device_2_wires.pre_measure() assert np.allclose( simulator_device_2_wires.state, np.array(expected_output), **tol ) # fmt: off @pytest.mark.parametrize("name,input,expected_output,par", [ ("PhaseShift", [1, 0], [1, 0], [math.pi / 2]), ("PhaseShift", [0, 1], [0, 1j], [math.pi / 2]), ("PhaseShift", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / math.sqrt(2), 1 / 2 + 1j / 2], [math.pi / 4]), ("RX", [1, 0], [1 / math.sqrt(2), -1j * 1 / math.sqrt(2)], [math.pi / 2]), ("RX", [1, 0], [0, -1j], [math.pi]), ("RX", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / 2 - 1j / 2, 1 / 2 - 1j / 2], [math.pi / 2]), ("RY", [1, 0], [1 / math.sqrt(2), 1 / math.sqrt(2)], [math.pi / 2]), ("RY", [1, 0], [0, 1], [math.pi]), ("RY", [1 / math.sqrt(2), 1 / math.sqrt(2)], [0, 1], [math.pi / 2]), ("RZ", [1, 0], [1 / math.sqrt(2) - 1j / math.sqrt(2), 0], [math.pi / 2]), ("RZ", [0, 1], [0, 1j], [math.pi]), ("RZ", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / 2 - 1j / 2, 1 / 2 + 1j / 2], [math.pi / 2]), ("Rot", [1, 0], [1 / math.sqrt(2) - 1j / math.sqrt(2), 0], [math.pi / 2, 0, 0]), ("Rot", [1, 0], [1 / math.sqrt(2), 1 / math.sqrt(2)], [0, math.pi / 2, 0]), ("Rot", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / 2 - 1j / 2, 1 / 2 + 1j / 2], [0, 0, math.pi / 2]), ("Rot", [1, 0], [-1j / math.sqrt(2), -1 / math.sqrt(2)], [math.pi / 2, -math.pi / 2, math.pi / 2]), ("Rot", [1 / math.sqrt(2), 1 / math.sqrt(2)], [1 / 2 + 1j / 2, -1 / 2 + 1j / 2], [-math.pi / 2, math.pi, math.pi]), ("QubitUnitary", [1, 0], [1j / math.sqrt(2), 1j / math.sqrt(2)], [ np.array([ [1j / math.sqrt(2), 1j / math.sqrt(2)], [1j / math.sqrt(2), -1j / math.sqrt(2)] ]) ]), ("QubitUnitary", [0, 1], [1j / math.sqrt(2), -1j / math.sqrt(2)], [ np.array([ [1j / math.sqrt(2), 1j / math.sqrt(2)], [1j / math.sqrt(2), -1j / math.sqrt(2)] ]) ]), ("QubitUnitary", [1 / math.sqrt(2), -1 / math.sqrt(2)], [0, 1j], [ np.array([ [1j / math.sqrt(2), 1j / math.sqrt(2)], [1j / math.sqrt(2), -1j / math.sqrt(2)] ]) ]), ]) # fmt: on def test_apply_operation_single_wire_with_parameters( self, simulator_device_1_wire, tol, name, input, expected_output, par ): """Tests that applying an operation yields the expected output state for single wire operations that have no parameters.""" simulator_device_1_wire._obs_queue = [] simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply(name, wires=[0], par=par) simulator_device_1_wire.initial_state = np.array(input, dtype=np.complex64) simulator_device_1_wire.pre_measure() assert np.allclose( simulator_device_1_wire.state, np.array(expected_output), **tol ) # fmt: off @pytest.mark.parametrize("name,input,expected_output,par", [ ("CRX", [0, 1, 0, 0], [0, 1, 0, 0], [math.pi / 2]), ("CRX", [0, 0, 0, 1], [0, 0, -1j, 0], [math.pi]), ("CRX", [0, 1 / math.sqrt(2), 1 / math.sqrt(2), 0], [0, 1 / math.sqrt(2), 1 / 2, -1j / 2], [math.pi / 2]), ("CRY", [0, 0, 0, 1], [0, 0, -1 / math.sqrt(2), 1 / math.sqrt(2)], [math.pi / 2]), ("CRY", [0, 0, 0, 1], [0, 0, -1, 0], [math.pi]), ("CRY", [1 / math.sqrt(2), 1 / math.sqrt(2), 0, 0], [1 / math.sqrt(2), 1 / math.sqrt(2), 0, 0], [math.pi / 2]), ("CRZ", [0, 0, 0, 1], [0, 0, 0, 1 / math.sqrt(2) + 1j / math.sqrt(2)], [math.pi / 2]), ("CRZ", [0, 0, 0, 1], [0, 0, 0, 1j], [math.pi]), ("CRZ", [1 / math.sqrt(2), 1 / math.sqrt(2), 0, 0], [1 / math.sqrt(2), 1 / math.sqrt(2), 0, 0], [math.pi / 2]), ("CRot", [0, 0, 0, 1], [0, 0, 0, 1 / math.sqrt(2) + 1j / math.sqrt(2)], [math.pi / 2, 0, 0]), ("CRot", [0, 0, 0, 1], [0, 0, -1 / math.sqrt(2), 1 / math.sqrt(2)], [0, math.pi / 2, 0]), ("CRot", [0, 0, 1 / math.sqrt(2), 1 / math.sqrt(2)], [0, 0, 1 / 2 - 1j / 2, 1 / 2 + 1j / 2], [0, 0, math.pi / 2]), ("CRot", [0, 0, 0, 1], [0, 0, 1 / math.sqrt(2), 1j / math.sqrt(2)], [math.pi / 2, -math.pi / 2, math.pi / 2]), ("CRot", [0, 1 / math.sqrt(2), 1 / math.sqrt(2), 0], [0, 1 / math.sqrt(2), 0, -1 / 2 + 1j / 2], [-math.pi / 2, math.pi, math.pi]), ("QubitUnitary", [1, 0, 0, 0], [1, 0, 0, 0], [ np.array([ [1, 0, 0, 0], [0, 1 / math.sqrt(2), 1 / math.sqrt(2), 0], [0, 1 / math.sqrt(2), -1 / math.sqrt(2), 0], [0, 0, 0, 1], ]) ]), ("QubitUnitary", [0, 1, 0, 0], [0, 1 / math.sqrt(2), 1 / math.sqrt(2), 0], [ np.array([ [1, 0, 0, 0], [0, 1 / math.sqrt(2), 1 / math.sqrt(2), 0], [0, 1 / math.sqrt(2), -1 / math.sqrt(2), 0], [0, 0, 0, 1], ]) ]), ("QubitUnitary", [1 / 2, 1 / 2, -1 / 2, 1 / 2], [1 / 2, 0, 1 / math.sqrt(2), 1 / 2], [ np.array([ [1, 0, 0, 0], [0, 1 / math.sqrt(2), 1 / math.sqrt(2), 0], [0, 1 / math.sqrt(2), -1 / math.sqrt(2), 0], [0, 0, 0, 1], ]) ]), ]) # fmt: on def test_apply_operation_two_wires_with_parameters( self, simulator_device_2_wires, tol, name, input, expected_output, par ): """Tests that applying an operation yields the expected output state for single wire operations that have no parameters.""" simulator_device_2_wires._obs_queue = [] simulator_device_2_wires.pre_apply() simulator_device_2_wires.apply(name, wires=[0, 1], par=par) simulator_device_2_wires.initial_state = np.array(input, dtype=np.complex64) simulator_device_2_wires.pre_measure() assert np.allclose( simulator_device_2_wires.state, np.array(expected_output), **tol ) # fmt: off @pytest.mark.parametrize("operation,par,match", [ ("BasisState", [[2]], "Argument for BasisState can only contain 0 and 1"), ("BasisState", [[1.2]], "Argument for BasisState can only contain 0 and 1"), ("BasisState", [[0, 0, 1]], "For BasisState, the state has to be specified for the correct number of qubits"), ("BasisState", [[0, 0]], "For BasisState, the state has to be specified for the correct number of qubits"), ("QubitStateVector", [[0, 0, 1]], "For QubitStateVector, the state has to be specified for the correct number of qubits"), ("QubitStateVector", [[0, 0, 1, 0]], "For QubitStateVector, the state has to be specified for the correct number of qubits"), ("QubitStateVector", [[1]], "For QubitStateVector, the state has to be specified for the correct number of qubits"), ("QubitStateVector", [[0.5, 0.5]], "The given state for QubitStateVector is not properly normalized to 1"), ("QubitStateVector", [[1.1, 0]], "The given state for QubitStateVector is not properly normalized to 1"), ("QubitStateVector", [[0.7, 0.7j]], "The given state for QubitStateVector is not properly normalized to 1"), ]) # fmt: on def test_state_preparation_error(self, simulator_device_1_wire, operation, par, match): """Tests that the state preparation routines raise proper errors for wrong parameter values.""" simulator_device_1_wire._obs_queue = [] simulator_device_1_wire.pre_apply() with pytest.raises(qml.DeviceError, match=match): simulator_device_1_wire.apply(operation, wires=[0], par=par) def test_basis_state_not_at_beginning_error(self, simulator_device_1_wire): """Tests that application of BasisState raises an error if is not the first operation.""" simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply("PauliX", wires=[0], par=[]) with pytest.raises(qml.DeviceError, match="The operation BasisState is only supported at the beginning of a circuit."): simulator_device_1_wire.apply("BasisState", wires=[0], par=[[0]]) def test_qubit_state_vector_not_at_beginning_error(self, simulator_device_1_wire): """Tests that application of QubitStateVector raises an error if is not the first operation.""" simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply("PauliX", wires=[0], par=[]) with pytest.raises(qml.DeviceError, match="The operation QubitStateVector is only supported at the beginning of a circuit."): simulator_device_1_wire.apply("QubitStateVector", wires=[0], par=[[0, 1]]) @pytest.mark.parametrize("shots,analytic", [(100, False)]) class TestStatePreparationErrorsNonAnalytic: """Tests state preparation errors that occur for non-analytic devices.""" def test_basis_state_not_analytic_error(self, simulator_device_1_wire): """Tests that application of BasisState raises an error if the device is not in analytic mode.""" simulator_device_1_wire.pre_apply() with pytest.raises(qml.DeviceError, match="The operation BasisState is only supported in analytic mode."): simulator_device_1_wire.apply("BasisState", wires=[0], par=[[0]]) def test_qubit_state_vector_not_analytic_error(self, simulator_device_1_wire): """Tests that application of QubitStateVector raises an error if the device is not in analytic mode.""" dev = qml.device("cirq.simulator", wires=1, shots=1000, analytic=False) simulator_device_1_wire.pre_apply() with pytest.raises(qml.DeviceError, match="The operation QubitStateVector is only supported in analytic mode."): simulator_device_1_wire.apply("QubitStateVector", wires=[0], par=[[0, 1]]) @pytest.mark.parametrize("shots,analytic", [(100, True)]) class TestExpval: """Tests that expectation values are properly calculated or that the proper errors are raised.""" # fmt: off @pytest.mark.parametrize("operation,input,expected_output", [ (qml.Identity, [1, 0], 1), (qml.Identity, [0, 1], 1), (qml.Identity, [1/math.sqrt(2), -1/math.sqrt(2)], 1), (qml.PauliX, [1/math.sqrt(2), 1/math.sqrt(2)], 1), (qml.PauliX, [1/math.sqrt(2), -1/math.sqrt(2)], -1), (qml.PauliX, [1, 0], 0), (qml.PauliY, [1/math.sqrt(2), 1j/math.sqrt(2)], 1), (qml.PauliY, [1/math.sqrt(2), -1j/math.sqrt(2)], -1), (qml.PauliY, [1, 0], 0), (qml.PauliZ, [1, 0], 1), (qml.PauliZ, [0, 1], -1), (qml.PauliZ, [1/math.sqrt(2), 1/math.sqrt(2)], 0), (qml.Hadamard, [1, 0], 1/math.sqrt(2)), (qml.Hadamard, [0, 1], -1/math.sqrt(2)), (qml.Hadamard, [1/math.sqrt(2), 1/math.sqrt(2)], 1/math.sqrt(2)), ]) # fmt: on def test_expval_single_wire_no_parameters(self, simulator_device_1_wire, tol, operation, input, expected_output): """Tests that expectation values are properly calculated for single-wire observables without parameters.""" op = operation(0, do_queue=False) simulator_device_1_wire._obs_queue = [op] simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply("QubitStateVector", wires=[0], par=[input]) simulator_device_1_wire.post_apply() simulator_device_1_wire.pre_measure() res = simulator_device_1_wire.expval(op.name, wires=[0], par=[]) assert np.isclose(res, expected_output, **tol) # fmt: off @pytest.mark.parametrize("operation,input,expected_output,par", [ (qml.Hermitian, [1, 0], 1, [np.array([[1, 1j], [-1j, 1]])]), (qml.Hermitian, [0, 1], 1, [np.array([[1, 1j], [-1j, 1]])]), (qml.Hermitian, [1/math.sqrt(2), -1/math.sqrt(2)], 1, [np.array([[1, 1j], [-1j, 1]])]), ]) # fmt: on def test_expval_single_wire_with_parameters(self, simulator_device_1_wire, tol, operation, input, expected_output, par): """Tests that expectation values are properly calculated for single-wire observables with parameters.""" op = operation(par[0], 0, do_queue=False) simulator_device_1_wire._obs_queue = [op] simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply("QubitStateVector", wires=[0], par=[input]) simulator_device_1_wire.post_apply() simulator_device_1_wire.pre_measure() res = simulator_device_1_wire.expval(op.name, wires=[0], par=par) assert np.isclose(res, expected_output, **tol) # fmt: off @pytest.mark.parametrize("operation,input,expected_output,par", [ (qml.Hermitian, [0, 1, 0, 0], -1, [ np.array([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1], ]) ]), (qml.Hermitian, [1/math.sqrt(3), 0, 1/math.sqrt(3), 1/math.sqrt(3)], 5/3, [ np.array([ [1, 1j, 0, 1], [-1j, 1, 0, 0], [0, 0, 1, -1j], [1, 0, 1j, 1] ]) ]), (qml.Hermitian, [0, 0, 0, 1], 0, [ np.array([ [0, 1j, 0, 0], [-1j, 0, 0, 0], [0, 0, 0, -1j], [0, 0, 1j, 0] ]) ]), (qml.Hermitian, [1/math.sqrt(2), 0, -1/math.sqrt(2), 0], 1, [ np.array([ [1, 1j, 0, 0], [-1j, 1, 0, 0], [0, 0, 1, -1j], [0, 0, 1j, 1] ]) ]), (qml.Hermitian, [1/math.sqrt(3), -1/math.sqrt(3), 1/math.sqrt(6), 1/math.sqrt(6)], 1, [ np.array([ [1, 1j, 0, .5j], [-1j, 1, 0, 0], [0, 0, 1, -1j], [-.5j, 0, 1j, 1] ]) ]), (qml.Hermitian, [1/math.sqrt(2), 0, 0, 1/math.sqrt(2)], 1, [ np.array([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1] ]) ]), (qml.Hermitian, [0, 1/math.sqrt(2), -1/math.sqrt(2), 0], -1, [ np.array([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1] ]) ]), ]) # fmt: on def test_expval_two_wires_with_parameters(self, simulator_device_2_wires, tol, operation, input, expected_output, par): """Tests that expectation values are properly calculated for two-wire observables with parameters.""" op = operation(par[0], [0, 1], do_queue=False) simulator_device_2_wires._obs_queue = [op] simulator_device_2_wires.pre_apply() simulator_device_2_wires.apply("QubitStateVector", wires=[0, 1], par=[input]) simulator_device_2_wires.post_apply() simulator_device_2_wires.pre_measure() res = simulator_device_2_wires.expval(op.name, wires=[0, 1], par=par) assert np.isclose(res, expected_output, **tol) @pytest.mark.parametrize("shots,analytic", [(100, True)]) class TestVar: """Tests that variances are properly calculated.""" # fmt: off @pytest.mark.parametrize("operation,input,expected_output", [ (qml.PauliX, [1/math.sqrt(2), 1/math.sqrt(2)], 0), (qml.PauliX, [1/math.sqrt(2), -1/math.sqrt(2)], 0), (qml.PauliX, [1, 0], 1), (qml.PauliY, [1/math.sqrt(2), 1j/math.sqrt(2)], 0), (qml.PauliY, [1/math.sqrt(2), -1j/math.sqrt(2)], 0), (qml.PauliY, [1, 0], 1), (qml.PauliZ, [1, 0], 0), (qml.PauliZ, [0, 1], 0), (qml.PauliZ, [1/math.sqrt(2), 1/math.sqrt(2)], 1), (qml.Hadamard, [1, 0], 1/2), (qml.Hadamard, [0, 1], 1/2), (qml.Hadamard, [1/math.sqrt(2), 1/math.sqrt(2)], 1/2), ]) # fmt: on def test_var_single_wire_no_parameters(self, simulator_device_1_wire, tol, operation, input, expected_output): """Tests that variances are properly calculated for single-wire observables without parameters.""" op = operation(0, do_queue=False) simulator_device_1_wire._obs_queue = [op] simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply("QubitStateVector", wires=[0], par=[input]) simulator_device_1_wire.post_apply() simulator_device_1_wire.pre_measure() res = simulator_device_1_wire.var(op.name, wires=[0], par=[]) assert np.isclose(res, expected_output, **tol) # fmt: off @pytest.mark.parametrize("operation,input,expected_output,par", [ (qml.Identity, [1, 0], 0, []), (qml.Identity, [0, 1], 0, []), (qml.Identity, [1/math.sqrt(2), -1/math.sqrt(2)], 0, []), (qml.Hermitian, [1, 0], 1, [[[1, 1j], [-1j, 1]]]), (qml.Hermitian, [0, 1], 1, [[[1, 1j], [-1j, 1]]]), (qml.Hermitian, [1/math.sqrt(2), -1/math.sqrt(2)], 1, [[[1, 1j], [-1j, 1]]]), ]) # fmt: on def test_var_single_wire_with_parameters(self, simulator_device_1_wire, tol, operation, input, expected_output, par): """Tests that expectation values are properly calculated for single-wire observables with parameters.""" if par: op = operation(np.array(*par), 0, do_queue=False) else: op = operation(0, do_queue=False) simulator_device_1_wire._obs_queue = [op] simulator_device_1_wire.pre_apply() simulator_device_1_wire.apply("QubitStateVector", wires=[0], par=[input]) simulator_device_1_wire.post_apply() simulator_device_1_wire.pre_measure() if par: res = simulator_device_1_wire.var(op.name, wires=[0], par=[
np.array(*par)
numpy.array
import time import sys import math import itertools import numpy as np import shapely.geometry import shapely.ops import scenic.simulators.webots.world_parser as world_parser from scenic.simulators.webots.common import webotsToScenicPosition, webotsToScenicRotation from scenic.core.workspaces import Workspace from scenic.core.vectors import PolygonalVectorField from scenic.core.regions import PolygonalRegion, PolylineRegion, nowhere from scenic.core.geometry import (normalizeAngle, rotateVector, polygonUnion, cleanChain, plotPolygon) from scenic.syntax.veneer import verbosePrint def polygonWithPoints(points): polygon = shapely.geometry.Polygon(points) if not polygon.is_valid: # TODO improve hack? verbosePrint(f'WARNING: simplifying invalid polygon with points {points}') polygon = polygon.simplify(0.5) if not polygon.is_valid: raise RuntimeError(f'unable to simplify polygon {polygon}') return polygon def regionWithPolygons(polygons, orientation=None): if len(polygons) == 0: return nowhere else: return PolygonalRegion(polygon=polygons, orientation=orientation) ## Classes for WBT nodes we are interested in class OSMObject: """Objects with OSM id tags""" def __init__(self, attrs): self.attrs = attrs self.osmID = attrs['id'] class Road(OSMObject): """OSM roads""" def __init__(self, attrs, driveOnLeft=False): super().__init__(attrs) self.driveOnLeft = driveOnLeft self.translation = attrs['translation'] pts = [np.array(webotsToScenicPosition(p + self.translation)) for p in attrs['wayPoints']] self.waypoints = tuple(cleanChain(pts, 0.05)) assert len(self.waypoints) > 1, pts self.width = float(attrs.get('width', 7)) self.lanes = int(attrs.get('numberOfLanes', 2)) if self.lanes < 1: raise RuntimeError(f'Road {self.osmID} has fewer than 1 lane!') self.forwardLanes = int(attrs.get('numberOfForwardLanes', 1)) # if self.forwardLanes < 1: # raise RuntimeError(f'Road {self.osmID} has fewer than 1 forward lane!') self.backwardLanes = self.lanes - self.forwardLanes self.hasLeftSidewalk = attrs.get('leftBorder', True) self.hasRightSidewalk = attrs.get('rightBorder', True) self.sidewalkWidths = list(attrs.get('roadBorderWidth', [0.8])) if ((self.hasLeftSidewalk or self.hasRightSidewalk) and len(self.sidewalkWidths) < 1): raise RuntimeError(f'Road {self.osmID} has sidewalk with empty width!') self.startCrossroad = attrs.get('startJunction') self.endCrossroad = attrs.get('endJunction') def computeGeometry(self, crossroads, snapTolerance=0.05): ## Approximate bounding polygon and sidewalks # TODO improve this!!! lefts, rights = [], [] leftSidewalk, rightSidewalk = [], [] headings = [] sidewalkWidths = itertools.chain(self.sidewalkWidths, itertools.repeat(self.sidewalkWidths[-1])) segments = zip(self.waypoints, sidewalkWidths) for i, segment in enumerate(segments): point, sidewalkWidth = segment if i+1 < len(self.waypoints): nextPt = self.waypoints[i+1] dx, dy = nextPt - point heading = normalizeAngle(math.atan2(dy, dx) - (math.pi / 2)) headings.append(heading) perp = np.array([-dy, dx]) perp /= np.linalg.norm(perp) else: pass # use perp from last segment toEdge = perp * (self.width / 2) left = point + toEdge right = point - toEdge lefts.append(left) rights.append(right) toEdge = perp * sidewalkWidth leftSidewalk.append(left + toEdge) rightSidewalk.append(right - toEdge) # Snap to adjacent crossroads if possible if snapTolerance > 0: sc = self.startCrossroad if sc is not None: if sc not in crossroads: raise RuntimeError(f'Road {self.osmID} begins at invalid crossroad {sc}') crossroad = crossroads[sc] if crossroad.region is not None: pt = shapely.geometry.Point(lefts[0]) pt = shapely.ops.snap(pt, crossroad.region.polygons, snapTolerance) lefts[0] = np.array([pt.x, pt.y]) pt = shapely.geometry.Point(rights[0]) pt = shapely.ops.snap(pt, crossroad.region.polygons, snapTolerance) rights[0] = np.array([pt.x, pt.y]) perp = lefts[0] - rights[0] toEdge = perp * (self.sidewalkWidths[0] / np.linalg.norm(perp)) leftSidewalk[0] = lefts[0] + toEdge rightSidewalk[0] = rights[0] - toEdge ec = self.endCrossroad if ec is not None: if ec not in crossroads: raise RuntimeError(f'Road {self.osmID} ends at invalid crossroad {ec}') crossroad = crossroads[ec] if crossroad.region is not None: pt = shapely.geometry.Point(lefts[-1]) pt = shapely.ops.snap(pt, crossroad.region.polygons, snapTolerance) lefts[-1] = np.array([pt.x, pt.y]) pt = shapely.geometry.Point(rights[-1]) pt = shapely.ops.snap(pt, crossroad.region.polygons, snapTolerance) rights[-1] = np.array([pt.x, pt.y]) perp = lefts[-1] - rights[-1] toEdge = perp * (self.sidewalkWidths[-1] / np.linalg.norm(perp)) leftSidewalk[-1] = lefts[-1] + toEdge rightSidewalk[-1] = rights[-1] - toEdge roadPoints = lefts + list(reversed(rights)) self.leftCurb = PolylineRegion(reversed(lefts)) self.rightCurb = PolylineRegion(rights) self.leftSidewalk = self.rightSidewalk = None if self.hasLeftSidewalk: points = lefts + list(reversed(leftSidewalk)) polygon = polygonWithPoints(points) assert polygon.is_valid, self.waypoints self.leftSidewalk = PolygonalRegion(polygon=polygon) if self.hasRightSidewalk: points = rights + list(reversed(rightSidewalk)) polygon = polygonWithPoints(points) assert polygon.is_valid, self.waypoints self.rightSidewalk = PolygonalRegion(polygon=polygon) ## Compute lanes and traffic directions cells = [] la, ra = lefts[0], rights[0] gapA = (ra - la) / self.lanes markerA = ra laneMarkers = [[] for lane in range(self.lanes)] for lb, rb, heading in zip(lefts[1:], rights[1:], headings): # Compute lanes for this segment of road gapB = (rb - lb) / self.lanes markerB = rb for lane, markers in enumerate(laneMarkers): forward = lane < self.forwardLanes if self.driveOnLeft: forward = not forward nextMarkerA = markerA - gapA nextMarkerB = markerB - gapB markers.append(nextMarkerA) cell = shapely.geometry.Polygon((markerA, markerB, nextMarkerB, nextMarkerA)) heading = heading if forward else normalizeAngle(heading + math.pi) cells.append((cell, heading)) markerA = nextMarkerA markerB = nextMarkerB gapA = gapB markerA = rb self.lanes = [] markerB = rb rightEdge = rights for lane, markers in enumerate(laneMarkers): markerB = markerB - gapB markers.append(markerB) self.lanes.append(PolygonalRegion(rightEdge + list(reversed(markers)))) rightEdge = markers self.laneMarkers = laneMarkers[:-1] self.cells = cells self.direction = PolygonalVectorField(f'Road{self.osmID}Direction', cells) roadPolygon = polygonWithPoints(roadPoints) self.region = PolygonalRegion(polygon=roadPolygon, orientation=self.direction) def show(self, plt): if self.hasLeftSidewalk: x, y = zip(*self.leftSidewalk.points) plt.fill(x, y, '#A0A0FF') if self.hasRightSidewalk: x, y = zip(*self.rightSidewalk.points) plt.fill(x, y, '#A0A0FF') self.region.show(plt, style='r:') x, y = zip(*self.lanes[0].points) plt.fill(x, y, color=(0.8, 1.0, 0.8)) for lane, markers in enumerate(self.laneMarkers): x, y = zip(*markers) color = (0.8, 0.8, 0) if lane == self.backwardLanes - 1 else (0.3, 0.3, 0.3) plt.plot(x, y, '--', color=color) class Crossroad(OSMObject): """OSM crossroads""" def __init__(self, attrs): super().__init__(attrs) self.translation = attrs['translation'] points = list(np.array(webotsToScenicPosition(p + self.translation)) for p in attrs['shape']) if len(points) > 0: self.points = points self.region = PolygonalRegion(self.points) else: verbosePrint(f'WARNING: Crossroad {self.osmID} has empty shape field!') self.region = None def show(self, plt): if self.region is not None: x, y = zip(*self.points) plt.fill(x, y, color=(1, 0.9, 0.9)) plt.plot(x, y, ':', color=(1, 0.5, 0)) class PedestrianCrossing: """PedestrianCrossing nodes""" def __init__(self, attrs): self.translation = attrs.get('translation',
np.array((0, 0, 0))
numpy.array
""" fiber.py Module containing classes and functions related to processing fiber information. """ import numpy as np import vtk from collections import defaultdict from . import misc def tree(): """ Creates tree to store quantitative information. INPUT: none OUTPUT: none """ return defaultdict(tree) def convertFromTuple(fiberTuple): """ Converts fiber data in form of type tuple (from extraction) to fiberTree. Output is of class FiberTree INPUT: fiberTuple - tuple containing fiber information to be converted OUTPUT: fiberTree - fiber information converted to a tree """ fiberTree = FiberTree() fiberTree.no_of_fibers = len(fiberTuple[0]) fiberTree.pts_per_fiber = len(fiberTuple[0][0]) for fidx in range(fiberTree.no_of_fibers): for pidx in range(fiberTree.pts_per_fiber): fiberTree.fiberTree[fidx][pidx]['x'] = fiberTuple[0][fidx][pidx] fiberTree.fiberTree[fidx][pidx]['y'] = fiberTuple[1][fidx][pidx] fiberTree.fiberTree[fidx][pidx]['z'] = fiberTuple[2][fidx][pidx] return fiberTree def calcEndPointSep(fiberData, rejIdx): """ Calculates distance between end points INPUT: fiberData - fiber tree containing tractography information rejIdx - indices of outlier OUTPUT: DArray - distance between end points """ endpt = fiberData.pts_per_fiber - 1 DArray = [] fidxes = [i for i in range(fiberData.no_of_fibers)] for i in rejIdx: del fidxes[i] for fidx in fidxes: x1 = fiberData.fiberTree[fidx][0]['x'] x2 = fiberData.fiberTree[fidx][endpt]['x'] y1 = fiberData.fiberTree[fidx][0]['y'] y2 = fiberData.fiberTree[fidx][endpt]['y'] z1 = fiberData.fiberTree[fidx][0]['z'] z2 = fiberData.fiberTree[fidx][endpt]['z'] DArray.append(np.sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)) return DArray def calcFiberLength(fiberData, rejIdx=[]): """ Calculates the fiber length via arc length NOTE: same function as ufiber module without removing any fibers INPUT: fiberData - fiber tree containing tractography information rejIdx - indices of outlier OUTPUT: LArray - array containing length of fibers """ no_of_pts = fiberData.pts_per_fiber if no_of_pts < 2: print("Not enough samples to determine length of fiber") raise ValueError LArray = [] fidxes = [i for i in range(fiberData.no_of_fibers)] for i in rejIdx: del fidxes[i] for fidx in fidxes: L = 0 for idx in range(1, no_of_pts): x1 = fiberData.fiberTree[fidx][idx]['x'] x2 = fiberData.fiberTree[fidx][idx - 1]['x'] y1 = fiberData.fiberTree[fidx][idx]['y'] y2 = fiberData.fiberTree[fidx][idx - 1]['y'] z1 = fiberData.fiberTree[fidx][idx]['z'] z2 = fiberData.fiberTree[fidx][idx - 1]['z'] L = L + np.sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2) LArray.append(L) return LArray def addLDRatio(DArray, LArray, polyData): """ Calculates and adds LD Ratio to VTK INPUT: DArray - array of distances between end points for fibers LArray - array of lengths of fibers polyData - tractography data to add L/D ratio OUTPUT: none """ LDScalar = vtk.vtkFloatArray() LDScalar.SetNumberOfComponents(1) LDScalar.SetName('LDRatio') LDRatio = np.divide(DArray, LArray) for fidx in range(len(LArray)): LDScalar.InsertNextTuple1(LDRatio[fidx]) polyData.GetCellData().AddArray(LDScalar) class FiberTree: """ Data pertaining to a group of fibers. Value returned is of class FiberTree """ def __init__(self): self.fiberTree = tree() # Info related to fibers self.no_of_fibers = None self.pts_per_fiber = None def _calc_fiber_indices(self, fiberLength, pts_per_fiber): """ *INTERNAL FUNCTION* Determine indices to traverse data along a fiber. Indices include both end points of the fiber plus evenly spaced points along the line. Module determines which indices are wanted based on fiber length and desired number of points along the length. INPUT: fiberLength - number of points along a fiber pts_per_fiber - number of desired points along fiber OUTPUT: idxList - corresponding new indices to traverse along fiber """ # Step length between points along fiber stepLength = (fiberLength - 1.0) / (pts_per_fiber - 1.0) # Output indices along fiber idxList = [] for idx in range(0, pts_per_fiber): idxList.append(idx * stepLength) return idxList def getFiber(self, fiberIdx): """ Extract a single fiber from the group with corresponding data. Value returned is of class Fiber. INPUT: fiberIdx - index of fiber to be extracted OUTPUT fiber_x - array of "x" spatial component at each sample fiber_y - array of "y" spatial component at each sample fiber_z - array of "z" spatial component at each sample """ # Fiber data fiber_x = np.zeros(self.pts_per_fiber) fiber_y = np.zeros(self.pts_per_fiber) fiber_z = np.zeros(self.pts_per_fiber) for pidx in range(0, self.pts_per_fiber): fiber_x[pidx] = float(self.fiberTree[fiberIdx][pidx]['x']) fiber_y[pidx] = float(self.fiberTree[fiberIdx][pidx]['y']) fiber_z[pidx] = float(self.fiberTree[fiberIdx][pidx]['z']) return fiber_x, fiber_y, fiber_z def getFibers(self, fidxes, rejIdx=[]): """ Extracts a subset of fibers corresponding to inputted indices. Returned fibers are of class fiberArray. INPUT: fidxes - Indices of subset of fibers to be extracted OUTPUT: fiberArray_x - array of "x" spatial component at each sample for fiber bundle fiberArray_y - array of "y" spatial component at each sample for fiber bundle fiberArray_z - array of "z" spatial component at each sample for fiber bundle """ fiberArray_x = np.zeros((len(fidxes)-len(rejIdx), self.pts_per_fiber)) fiberArray_y = np.zeros((len(fidxes)-len(rejIdx), self.pts_per_fiber)) fiberArray_z = np.zeros((len(fidxes)-len(rejIdx), self.pts_per_fiber)) # Fiber data idx = 0 fidxes = list(fidxes) if len(rejIdx) is not 0: for i in rejIdx: if i > (len(fidxes) - 1): continue else: del fidxes[i] for fidx in fidxes: for pidx in range(0, self.pts_per_fiber): fiberArray_x[idx][pidx] = float(self.fiberTree[fidx][pidx]['x']) fiberArray_y[idx][pidx] = float(self.fiberTree[fidx][pidx]['y']) fiberArray_z[idx][pidx] = float(self.fiberTree[fidx][pidx]['z']) idx += 1 return fiberArray_x, fiberArray_y, fiberArray_z def addClusterInfo(self, clusterLabels, centroids): """ Add and save cluster label to fiber tree storing tractography data. INPUT: clusterLabels - array of cluster labels sorted in fiber index order centroids - array of centroids associated with fiber clusters OUTPUT: none """ uniqueLabels = np.unique(clusterLabels, return_counts=False) for label in uniqueLabels: for fidx in
np.where(clusterLabels == label)
numpy.where
""" Tests related to connecing inputs to outputs.""" import unittest import numpy as np from six.moves import cStringIO, range from six import assertRaisesRegex from openmdao.api import Problem, Group, IndepVarComp, ExecComp, ExplicitComponent from openmdao.utils.assert_utils import assert_rel_error class TestConnections(unittest.TestCase): def setUp(self): self.setup_model(None, None) def setup_model(self, c1meta=None, c3meta=None): self.p = Problem() root = self.p.model if c1meta is None: c1meta = {} if c3meta is None: c3meta = {} self.G1 = root.add_subsystem("G1", Group()) self.G2 = self.G1.add_subsystem("G2", Group()) self.C1 = self.G2.add_subsystem("C1", ExecComp('y=x*2.0', **c1meta)) self.C2 = self.G2.add_subsystem("C2", IndepVarComp('x', 1.0)) self.G3 = root.add_subsystem("G3", Group()) self.G4 = self.G3.add_subsystem("G4", Group()) self.C3 = self.G4.add_subsystem("C3", ExecComp('y=x*2.0', **c3meta)) self.C4 = self.G4.add_subsystem("C4", ExecComp('y=x*2.0')) def test_no_conns(self): self.p.setup() self.p['G1.G2.C1.x'] = 111. self.p['G3.G4.C3.x'] = 222. self.p['G3.G4.C4.x'] = 333. self.p.final_setup() self.assertEqual(self.C1._inputs['x'], 111.) self.assertEqual(self.C3._inputs['x'], 222.) self.assertEqual(self.C4._inputs['x'], 333.) def test_inp_inp_explicit_conn_w_src(self): raise unittest.SkipTest("explicit input-input connections not supported yet") self.p.model.connect('G3.G4.C3.x', 'G3.G4.C4.x') # connect inputs self.p.model.connect('G1.G2.C2.x', 'G3.G4.C3.x') # connect src to one of connected inputs self.p.setup() self.p['G1.G2.C2.x'] = 999. self.assertEqual(self.C3._inputs['x'], 0.) self.assertEqual(self.C4._inputs['x'], 0.) self.p.run_model() self.assertEqual(self.C3._inputs['x'], 999.) self.assertEqual(self.C4._inputs['x'], 999.) def test_pull_size_from_source(self): raise unittest.SkipTest("setting input size based on src size not supported yet") class Src(ExplicitComponent): def setup(self): self.add_input('x', 2.0) self.add_output('y1', np.zeros((3, ))) self.add_output('y2', shape=((3, ))) def solve_nonlinear(self, inputs, outputs, resids): x = inputs['x'] outputs['y1'] = x * np.array([1.0, 2.0, 3.0]) outputs['y2'] = x * np.array([1.0, 2.0, 3.0]) class Tgt(ExplicitComponent): def setup(self): self.add_input('x1') self.add_input('x2') self.add_output('y1', 0.0) self.add_output('y2', 0.0) def solve_nonlinear(self, inputs, outputs, resids): x1 = inputs['x1'] x2 = inputs['x2'] outputs['y1'] = np.sum(x1) outputs['y2'] = np.sum(x2) p = Problem() p.model.add_subsystem('src', Src()) p.model.add_subsystem('tgt', Tgt()) p.model.connect('src.y1', 'tgt.x1') p.model.connect('src.y2', 'tgt.x2') p.setup() p.run_model() self.assertEqual(p['tgt.y1'], 12.0) self.assertEqual(p['tgt.y2'], 12.0) def test_pull_size_from_source_with_indices(self): raise unittest.SkipTest("setting input size based on src size not supported yet") class Src(ExplicitComponent): def setup(self): self.add_input('x', 2.0) self.add_output('y1', np.zeros((3, ))) self.add_output('y2', shape=((3, ))) self.add_output('y3', 3.0) def solve_nonlinear(self, inputs, outputs, resids): """ counts up. """ x = inputs['x'] outputs['y1'] = x * np.array([1.0, 2.0, 3.0]) outputs['y2'] = x * np.array([1.0, 2.0, 3.0]) outputs['y3'] = x * 4.0 class Tgt(ExplicitComponent): def setup(self): self.add_input('x1') self.add_input('x2') self.add_input('x3') self.add_output('y1', 0.0) self.add_output('y2', 0.0) self.add_output('y3', 0.0) def solve_nonlinear(self, inputs, outputs, resids): """ counts up. """ x1 = inputs['x1'] x2 = inputs['x2'] x3 = inputs['x3'] outputs['y1'] = np.sum(x1) outputs['y2'] = np.sum(x2) outputs['y3'] = np.sum(x3) top = Problem() top.model.add_subsystem('src', Src()) top.model.add_subsystem('tgt', Tgt()) top.model.connect('src.y1', 'tgt.x1', src_indices=(0, 1)) top.model.connect('src.y2', 'tgt.x2', src_indices=(0, 1)) top.model.connect('src.y3', 'tgt.x3') top.setup() top.run_model() self.assertEqual(top['tgt.y1'], 6.0) self.assertEqual(top['tgt.y2'], 6.0) self.assertEqual(top['tgt.y3'], 8.0) def test_inp_inp_conn_no_src(self): raise unittest.SkipTest("no setup testing yet") self.p.model.connect('G3.G4.C3.x', 'G3.G4.C4.x') stream = cStringIO() self.p.setup(out_stream=stream) self.p['G3.G4.C3.x'] = 999. self.assertEqual(self.p.model.G3.G4.C3._inputs['x'], 999.) self.assertEqual(self.p.model.G3.G4.C4._inputs['x'], 999.) content = stream.getvalue() self.assertTrue("The following parameters have no associated unknowns:\n" "G1.G2.C1.x\nG3.G4.C3.x\nG3.G4.C4.x" in content) self.assertTrue("The following components have no connections:\n" "G1.G2.C1\nG1.G2.C2\nG3.G4.C3\nG3.G4.C4\n" in content) self.assertTrue("No recorders have been specified, so no data will be saved." in content) def test_diff_conn_input_vals(self): raise unittest.SkipTest("no checking yet of connected inputs without a src") # set different initial values self.C1._inputs['x'] = 7. self.C3._inputs['x'] = 5. # connect two inputs self.p.model.connect('G1.G2.C1.x', 'G3.G4.C3.x') try: self.p.setup() except Exception as err: self.assertTrue( "The following sourceless connected inputs have different initial values: " "[('G1.G2.C1.x', 7.0), ('G3.G4.C3.x', 5.0)]. Connect one of them to the output of " "an IndepVarComp to ensure that they have the same initial value." in str(err)) else: self.fail("Exception expected") def test_diff_conn_input_units(self): raise unittest.SkipTest("no compatability checking of connected inputs yet") # set different but compatible units self.setup_model(c1meta={'x': {'units': 'ft'}}, c3meta={'x': {'units': 'inch'}}) # connect two inputs self.p.model.connect('G1.G2.C1.x', 'G3.G4.C3.x') try: self.p.setup() except Exception as err: msg = "The following connected inputs have no source and different units: " \ "[('G1.G2.C1.x', 'ft'), ('G3.G4.C3.x', 'inch')]. " \ "Connect 'G1.G2.C1.x' to a source (such as an IndepVarComp) with defined units." self.assertTrue(msg in str(err)) else: self.fail("Exception expected") def test_diff_conn_input_units_swap(self): raise unittest.SkipTest("no compatability checking of connected inputs yet") # set different but compatible units self.setup_model(c1meta={'x': {'units': 'ft'}}, c3meta={'x': {'units': 'inch'}}) # connect two inputs self.p.model.connect('G3.G4.C3.x', 'G1.G2.C1.x') try: self.p.setup() except Exception as err: msg = "The following connected inputs have no source and different units: " \ "[('G1.G2.C1.x', 'ft'), ('G3.G4.C3.x', 'inch')]. " \ "Connect 'G3.G4.C3.x' to a source (such as an IndepVarComp) with defined units." self.assertTrue(msg in str(err)) else: self.fail("Exception expected") def test_diff_conn_input_units_w_src(self): raise unittest.SkipTest("no compatability checking of connected inputs yet") p = Problem() root = p.model num_comps = 50 root.add_subsystem("desvars", IndepVarComp('dvar1', 1.0)) # add a bunch of comps for i in range(num_comps): if i % 2 == 0: units = "ft" else: units = "m" root.add_subsystem("C%d" % i, ExecComp('y=x*2.0', units={'x': units})) # connect all of their inputs (which have different units) for i in range(1, num_comps): root.connect("C%d.x" % (i-1), "C%d.x" % i) try: p.setup() except Exception as err: self.assertTrue("The following connected inputs have no source and different units" in str(err)) else: self.fail("Exception expected") # now, connect a source and the error should go away p.cleanup() root.connect('desvars.dvar1', 'C10.x') p.setup() class TestConnectionsPromoted(unittest.TestCase): def test_inp_inp_promoted_no_src(self): p = Problem() root = p.model G1 = root.add_subsystem("G1", Group()) G2 = G1.add_subsystem("G2", Group()) G2.add_subsystem("C1", ExecComp('y=x*2.0')) G2.add_subsystem("C2", ExecComp('y=x*2.0')) G3 = root.add_subsystem("G3", Group()) G4 = G3.add_subsystem("G4", Group(), promotes=['x']) G4.add_subsystem("C3", ExecComp('y=x*2.0'), promotes=['x']) G4.add_subsystem("C4", ExecComp('y=x*2.0'), promotes=['x']) p.setup() p.final_setup() # setting promoted name should set both inputs mapped to that name with self.assertRaises(Exception) as context: p['G3.x'] = 999. self.assertEqual(str(context.exception), "The promoted name G3.x is invalid because it refers to multiple inputs: " "[G3.G4.C3.x, G3.G4.C4.x] that are not connected to an output variable.") def test_inp_inp_promoted_w_prom_src(self): p = Problem() root = p.model G1 = root.add_subsystem("G1", Group(), promotes=['x']) G2 = G1.add_subsystem("G2", Group(), promotes=['x']) G2.add_subsystem("C1", ExecComp('y=x*2.0')) G2.add_subsystem("C2", IndepVarComp('x', 1.0), promotes=['x']) G3 = root.add_subsystem("G3", Group(), promotes=['x']) G4 = G3.add_subsystem("G4", Group(), promotes=['x']) C3 = G4.add_subsystem("C3", ExecComp('y=x*2.0'), promotes=['x']) C4 = G4.add_subsystem("C4", ExecComp('y=x*2.0'), promotes=['x']) p.setup() p.set_solver_print(level=0) # setting promoted name will set the value into the outputs, but will # not propagate it to the inputs. That will happen during run_model(). p['x'] = 999. p.run_model() self.assertEqual(C3._inputs['x'], 999.) self.assertEqual(C4._inputs['x'], 999.) def test_inp_inp_promoted_w_explicit_src(self): p = Problem() root = p.model G1 = root.add_subsystem("G1", Group()) G2 = G1.add_subsystem("G2", Group(), promotes=['x']) G2.add_subsystem("C1", ExecComp('y=x*2.0')) G2.add_subsystem("C2", IndepVarComp('x', 1.0), promotes=['x']) G3 = root.add_subsystem("G3", Group()) G4 = G3.add_subsystem("G4", Group(), promotes=['x']) C3 = G4.add_subsystem("C3", ExecComp('y=x*2.0'), promotes=['x']) C4 = G4.add_subsystem("C4", ExecComp('y=x*2.0'), promotes=['x']) p.model.connect('G1.x', 'G3.x') p.setup() p.set_solver_print(level=0) # setting promoted name will set the value into the outputs, but will # not propagate it to the inputs. That will happen during run_model(). p['G1.x'] = 999. p.run_model() self.assertEqual(C3._inputs['x'], 999.) self.assertEqual(C4._inputs['x'], 999.) def test_unit_conv_message(self): raise unittest.SkipTest("no units yet") prob = Problem() root = prob.model root.add_subsystem("C1", ExecComp('y=x*2.0', units={'x': 'ft'}), promotes=['x']) root.add_subsystem("C2", ExecComp('y=x*2.0', units={'x': 'inch'}), promotes=['x']) root.add_subsystem("C3", ExecComp('y=x*2.0', units={'x': 'm'}), promotes=['x']) try: prob.setup() except Exception as err: msg = "The following connected inputs are promoted to 'x', but have different units: " \ "[('C1.x', 'ft'), ('C2.x', 'inch'), ('C3.x', 'm')]. " \ "Connect 'x' to a source (such as an IndepVarComp) with defined units." self.assertTrue(msg in str(err)) else: self.fail("Exception expected") # Remedy the problem with an Indepvarcomp prob = Problem() root = prob.model root.add_subsystem("C1", ExecComp('y=x*2.0', units={'x': 'ft'}), promotes=['x']) root.add_subsystem("C2", ExecComp('y=x*2.0', units={'x': 'inch'}), promotes=['x']) root.add_subsystem("C3", ExecComp('y=x*2.0', units={'x': 'm'}), promotes=['x']) root.add_subsystem('p', IndepVarComp('x', 1.0, units='cm'), promotes=['x']) prob.setup() def test_overlapping_system_names(self): # This ensures that _setup_connections does not think g1 and g1a are the same system prob = Problem() model = prob.model g1 = model.add_subsystem('g1', Group()) g1a = model.add_subsystem('g1a', Group()) g1.add_subsystem('c', ExecComp('y=x')) g1a.add_subsystem('c', ExecComp('y=x')) model.connect('g1.c.y', 'g1a.c.x') model.connect('g1a.c.y', 'g1.c.x') prob.setup(check=True) class TestConnectionsIndices(unittest.TestCase): def setUp(self): class ArrayComp(ExplicitComponent): def setup(self): self.add_input('inp', val=np.ones((2))) self.add_input('inp1', val=0) self.add_output('out', val=np.zeros((2))) def compute(self, inputs, outputs): outputs['out'] = inputs['inp'] * 2. indep_var_comp = IndepVarComp() indep_var_comp.add_output('blammo', val=3.) indep_var_comp.add_output('arrout', val=np.ones(5)) prob = Problem() prob.model.add_subsystem('idvp', indep_var_comp) prob.model.add_subsystem('arraycomp', ArrayComp()) self.prob = prob def test_bad_shapes(self): # Should not be allowed because the source and target shapes do not match self.prob.model.connect('idvp.blammo', 'arraycomp.inp') expected = (r"The source and target shapes do not match or are ambiguous for the " r"connection 'idvp.blammo' to 'arraycomp.inp'." r" The source shape is \(1.*,\) but the target shape is \(2.*,\).") with assertRaisesRegex(self, ValueError, expected): self.prob.setup() def test_bad_length(self): # Should not be allowed because the length of src_indices is greater than # the shape of arraycomp.inp self.prob.model.connect('idvp.blammo', 'arraycomp.inp', src_indices=[0, 1, 0]) expected = (r"The source indices \[0 1 0\] do not specify a valid shape " r"for the connection 'idvp.blammo' to 'arraycomp.inp'. " r"The target shape is \(2.*,\) but indices are \(3.*,\).") with assertRaisesRegex(self, ValueError, expected): self.prob.setup() def test_bad_value(self): # Should not be allowed because the index value within src_indices is outside # the valid range for the source self.prob.model.connect('idvp.arrout', 'arraycomp.inp1', src_indices=[100000]) expected = ("Group (<model>): The source indices do not specify a valid index for the " "connection 'idvp.arrout' to 'arraycomp.inp1'. " "Index '100000' is out of range for source dimension of " "size 5.") try: self.prob.setup() except ValueError as err: self.assertEqual(str(err), expected) else: self.fail('Exception expected.') class TestShapes(unittest.TestCase): def test_connect_flat_array_to_row_vector(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10))) p.model.add_subsystem('C1', ExecComp('y=dot(x, A)', x={'value': np.zeros((1, 10))}, A={'value': np.eye(10)}, y={'value': np.zeros((1, 10))})) p.model.connect('indep.x', 'C1.x') p.setup() p.run_model() assert_rel_error(self, p['C1.y'], np.arange(10)[np.newaxis, :]) def test_connect_flat_array_to_col_vector(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10))) p.model.add_subsystem('C1', ExecComp('y=dot(A, x)', x={'value': np.zeros((10, 1))}, A={'value': np.eye(10)}, y={'value': np.zeros((10, 1))})) p.model.connect('indep.x', 'C1.x') p.setup() p.run_model() assert_rel_error(self, p['C1.y'], np.arange(10)[:, np.newaxis]) def test_connect_row_vector_to_flat_array(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10)[np.newaxis, :])) p.model.add_subsystem('C1', ExecComp('y=5*x', x={'value': np.zeros(10)}, y={'value': np.zeros(10)})) p.model.connect('indep.x', 'C1.x') p.setup() p.run_model() assert_rel_error(self, p['C1.y'], 5 * np.arange(10)) def test_connect_col_vector_to_flat_array(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10)[:, np.newaxis])) p.model.add_subsystem('C1', ExecComp('y=5*x', x={'value': np.zeros(10)}, y={'value': np.zeros(10)})) p.model.connect('indep.x', 'C1.x') p.setup() p.run_model() assert_rel_error(self, p['C1.y'], 5 * np.arange(10)) def test_connect_flat_to_3d_array(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10))) p.model.add_subsystem('C1', ExecComp('y=5*x', x={'value': np.zeros((1, 10, 1))}, y={'value': np.zeros((1, 10, 1))})) p.model.connect('indep.x', 'C1.x') p.setup() p.run_model() assert_rel_error(self, p['C1.y'], 5 * np.arange(10)[np.newaxis, :, np.newaxis]) def test_connect_flat_nd_to_flat_nd(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10)[np.newaxis, :, np.newaxis, np.newaxis])) p.model.add_subsystem('C1', ExecComp('y=5*x', x={'value': np.zeros((1, 1, 1, 10))}, y={'value': np.zeros((1, 1, 1, 10))})) p.model.connect('indep.x', 'C1.x') p.setup() p.run_model() assert_rel_error(self, p['C1.y'], 5 * np.arange(10)[np.newaxis, np.newaxis, np.newaxis, :]) def test_connect_incompatible_shapes(self): p = Problem() p.model.add_subsystem('indep', IndepVarComp('x', val=np.arange(10)[np.newaxis, :, np.newaxis, np.newaxis])) p.model.add_subsystem('C1', ExecComp('y=5*x', x={'value': np.zeros((5, 2))}, y={'value': np.zeros((5, 2))})) p.model.connect('indep.x', 'C1.x') with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "Group (<model>): The source and target shapes do not match or are ambiguous " "for the connection 'indep.x' to 'C1.x'. The source shape is (1, 10, 1, 1) but " "the target shape is (5, 2).") class TestMultiConns(unittest.TestCase): def test_mult_conns(self): class SubGroup(Group): def setup(self): self.add_subsystem('c1', ExecComp('y = 2*x', x=np.ones(4), y=2*np.ones(4)), promotes=['y', 'x']) self.add_subsystem('c2', ExecComp('z = 2*y', y=np.ones(4), z=2*np.ones(4)), promotes=['z', 'y']) prob = Problem() indeps = prob.model.add_subsystem('indeps', IndepVarComp(), promotes=['*']) indeps.add_output('x', 10*np.ones(4)) indeps.add_output('y',
np.ones(4)
numpy.ones
import numpy as np class DrawObj: """ General class for drawing object by using matplotlib.animation. Multiple ships can be drawn by using this class. """ def __init__(self, ax): self.ax = ax self.img = [] self.img.append(ax.plot([], [], color="b")) self.img.append(ax.plot([], [], color="y")) def draw_obj_with_angle( self, center_x_list, center_y_list, shape_list, angle_list, obj="ship" ): """Draw square image with angle Args: center_x_list (List[float]): list of the center x position of the square center_y_list (List[float]): list of the center y position of the square shape_list (List[float]): list of the square's shape(length/2, width/2) angle_list (List[float]): list of in radians obj (str: optional): object type, 'ship' or 'square' Returns: Image: List of Image """ for i in range(len(shape_list)): if obj == "square": square_x, square_y, angle_x, angle_y = self.__square_with_angle( center_x_list[i], center_y_list[i], shape_list[i], angle_list[i] ) elif obj == "ship": square_x, square_y, angle_x, angle_y = self.__ship_with_angle( center_x_list[i], center_y_list[i], shape_list[i], angle_list[i] ) self.img[i][0].set_xdata(square_x) self.img[i][0].set_ydata(square_y) return self.img def __rotate_pos(self, pos, angle): """Transformation the coordinate in the angle Args: pos (numpy.ndarray): local state, shape(data_size, 2) angle (float): rotate angle, in radians Returns: rotated_pos (numpy.ndarray): shape(data_size, 2) """ rot_mat = np.array( [[np.cos(angle), -np.sin(angle)], [
np.sin(angle)
numpy.sin
#! /usr/bin/env python3 import argparse import glob import numpy as np import matplotlib.pyplot as plt import pickle from sklearn.preprocessing import quantile_transform as qt import statsmodels.api as sm from statsmodels.stats.multitest import fdrcorrection as fdr from scipy import stats np.set_printoptions(precision=2, suppress=True, edgeitems=100) # Gene-TR mapping relation def getSize(f): bed = np.loadtxt(f, usecols=[1,2], dtype=int) return bed[:,1] - bed[:,0] def getLociList(): lociList = np.loadtxt(args.TRbed, dtype=object, usecols=[0,1,2]) loci2ind = {} for ind, row in enumerate(lociList): loci2ind["_".join(row)] = ind return lociList, loci2ind def indexGeneList(tissue): tisGeneList = np.loadtxt(f'{args.expDir}/{tissue}.v8.normalized_expression.bed.gz', dtype=object, skiprows=1, usecols=[3]) tisGene2ind = {} for ind, gene in enumerate(tisGeneList): tisGene2ind[gene] = ind return tisGeneList, tisGene2ind def getLocusi2tisGenei(tisGene2ind): locusi2tisGenei = {} ncomb = 0 for row in TRxGene: locusname = "_".join(row[:-1]) locusi = loci2ind[locusname] if row[-1] in tisGene2ind: if locusi not in locusi2tisGenei: locusi2tisGenei[locusi] = [] locusi2tisGenei[locusi].append(tisGene2ind[row[-1]]) ncomb += 1 print(f'\t{len(locusi2tisGenei)} TRs') print(f'\t{ncomb} TR x Gene tests') return locusi2tisGenei def getGenei2nloci(locusi2tisGenei): genei2nloci = {} for locusi, geneindices in locusi2tisGenei.items(): for genei in geneindices: if genei not in genei2nloci: genei2nloci[genei] = 0 genei2nloci[genei] += 1 return genei2nloci # expression matrix def loadSNPPCinfo(): if args.SNPPC is None: return None, None ndim = 838 # XXX tmp = np.loadtxt(args.SNPPC, usecols=np.arange(11), dtype=object)[:ndim] # XXX SNP_PCs = tmp[:,1:].astype(float) SNP_sampleList = [s.split("-")[-1] for s in tmp[:,0]] return SNP_PCs, SNP_sampleList def getTisSNPResTpmMat(tissue, SNP_PCs, SNP_sampleList): # SNP PCs tmp = np.loadtxt(f'{args.expDir}/{tissue}.v8.normalized_expression.bed.gz', dtype=object, max_rows=1, comments="!")[4:] tisSampleList = np.array([s[5:] for s in tmp]) snpSample2ind = {} for sind, sample in enumerate(SNP_sampleList): snpSample2ind[sample] = sind sampleMap_tis2snp = np.zeros(tisSampleList.size, dtype=int) for ind in range(tisSampleList.size): sampleMap_tis2snp[ind] = snpSample2ind[tisSampleList[ind]] tisSNP_PCs = SNP_PCs[sampleMap_tis2snp] # GTEx PCs gtexPCs = np.loadtxt(f'{args.covDir}/{tissue}.v8.covariates.txt', dtype=object, skiprows=1)[:,1:].astype(float).T C = np.hstack((gtexPCs, tisSNP_PCs)) tisTpmMat = np.loadtxt(f'{args.expDir}/{tissue}.v8.normalized_expression.bed.gz', dtype=object, skiprows=1)[:,4:].astype(float).T tisResTpmMat = (1 - C @ np.linalg.inv(C.T @ C) @ C.T) @ tisTpmMat return tisResTpmMat.T # genotype matrix def getGenotypeMat(): genMat = np.zeros([nloci, nwgs], dtype=float) kmerfnames = glob.glob(f'{args.genDir}/*.tr.kmers') for fi, fname in enumerate(kmerfnames): print(".", end='', flush=True) if fi % 100 == 99: print("") with open(fname) as f: locusi = -1 # XXX was -14 kms = 0 for line in f: if line[0] == ">": if locusi >= 0: genMat[locusi, fi] = kms kms = 0 locusi += 1 else: kms += int(line.split()[1]) else: genMat[locusi, fi] = kms print("done reading genotypes", flush=True) return genMat def processBamCov(bamcovmat, mth=1.2, sth=0.1): ctrlsize = getSize(args.ctrlbed) badmask = np.zeros_like(ctrlsize, dtype=bool) ### compute coverage for each locus; normalize wrt sample global coverage pnormcovmat = bamcovmat / (bamcovmat@ctrlsize / np.sum(ctrlsize))[:,None] ### check variance stds = np.std(pnormcovmat, axis=0) normstds = stds badmask = np.logical_or(badmask, normstds > sth) ### check if mean is biased mnormcov = np.mean(pnormcovmat, axis=0) badmask = np.logical_or(badmask, mnormcov > mth) ### reject outliers pctrlsize = ctrlsize[~badmask] pcovmat = bamcovmat[:,~badmask] return pcovmat@pctrlsize / np.sum(pctrlsize) def correctGenMat(): gtexSex = np.loadtxt(args.phenotype, dtype=object, usecols=[0,1])[1:] sample2sex = {} for i in range(gtexSex.shape[0]): sample = gtexSex[i,0].split("-")[1] sample2sex[sample] = int(gtexSex[i,1]) print(len(sample2sex)) print(genMat.shape) wgsSex = np.zeros_like(genomes, dtype=int) for ind, g in enumerate(genomes): wgsSex[ind] = sample2sex[g] covmat = np.loadtxt(f'{args.outDir}/ctrl.cov', dtype=object) gcov = processBamCov(covmat[:,2:].astype(float)) normGenMat = genMat / gcov normGenMat[:args.NL1] /= 2 normGenMat[args.NL1:args.NL2] /= wgsSex print(normGenMat.shape) return normGenMat def getTissueGenMat(tissue): genoSample2ind = {} for ind, sample in enumerate(genomes): genoSample2ind[sample] = ind tmp = np.loadtxt(f'{args.expDir}/{tissue}.v8.normalized_expression.bed.gz', dtype=object, max_rows=1, comments="!")[4:] tisSampleList = np.array([s[5:] for s in tmp]) sampleMap_tis2geno = np.zeros(tisSampleList.shape[0], dtype=int) for ind, sample in enumerate(tisSampleList): sampleMap_tis2geno[ind] = genoSample2ind[sample] return genMat[:,sampleMap_tis2geno] # eQTL mapping def runRegressionZ3(tisResTpmMat, tisGenMat, locusi2tisGenei, genei2nloci): outs = {} Y_zscore = (tisResTpmMat - np.mean(tisResTpmMat, axis=1)[:,None]) /
np.std(tisResTpmMat, axis=1)
numpy.std
#!/usr/bin/python import sys, getopt import os import pandas as pd import numpy as np import pyquaternion as pyq from pyquaternion import Quaternion from scipy import signal from scipy.spatial.transform import Slerp from scipy.spatial.transform import Rotation as R def main(argv): inputfile = '' calfile = '' outputfile = '' try: opts, args = getopt.getopt(argv,"hi:c:o:",["ifile=", "cfile=","ofile="]) except getopt.GetoptError: print('test.py -i <inputfile> -c <calfile> -o <outputfile>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('test.py -i <inputfile> -c calfile -o <outputfile>') sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-c", "--ifile"): calfile = arg elif opt in ("-o", "--ofile"): outputfile = arg # Creating Functions def orientation_matrix(q0, q1, q2, q3): # based on https://automaticaddison.com/how-to-convert-a-quaternion-to-a-rotation-matrix/ r11 = 2 * (q0 ** 2 + q1 ** 2) - 1 r12 = 2 * (q1 * q2 - q0 * q3) r13 = 2 * (q1 * q3 + q0 * q2) r21 = 2 * (q1 * q2 + q0 * q3) r22 = 2 * (q0 ** 2 + q2 ** 2) - 1 r23 = 2 * (q2 * q3 - q0 * q1) r31 = 2 * (q1 * q3 - q0 * q2) r32 = 2 * (q2 * q3 + q0 * q1) r33 = 2 * (q0 ** 2 + q3 ** 2) - 1 return r11, r12, r13, r21, r22, r23, r31, r32, r33 def compute_relative_orientation(seg, cal): ''' Calculating the relative orientation between two matrices. This is used for the initial normalization procedure using the standing calibration ''' R_11 = np.array([]) R_12 = np.array([]) R_13 = np.array([]) R_21 = np.array([]) R_22 = np.array([]) R_23 = np.array([]) R_31 = np.array([]) R_32 = np.array([]) R_33 = np.array([]) for i in range(seg.shape[0]): segment = np.asmatrix([ [np.array(seg['o11'])[i], np.array(seg['o12'])[i], np.array(seg['o13'])[i]], [np.array(seg['o21'])[i], np.array(seg['o22'])[i], np.array(seg['o23'])[i]], [np.array(seg['o31'])[i], np.array(seg['o32'])[i], np.array(seg['o33'])[i]] ]) segment_cal = np.asmatrix([ [np.array(cal['o11'])[i], np.array(cal['o12'])[i], np.array(cal['o13'])[i]], [np.array(cal['o21'])[i], np.array(cal['o22'])[i], np.array(cal['o23'])[i]], [np.array(cal['o31'])[i], np.array(cal['o32'])[i], np.array(cal['o33'])[i]] ]) # normalization r = np.matmul(segment, segment_cal.T) new_orientations = np.asarray(r).reshape(-1) R_11 = np.append(R_11, new_orientations[0]) R_12 = np.append(R_12, new_orientations[1]) R_13 = np.append(R_13, new_orientations[2]) R_21 = np.append(R_21, new_orientations[3]) R_22 = np.append(R_22, new_orientations[4]) R_23 = np.append(R_23, new_orientations[5]) R_31 = np.append(R_31, new_orientations[6]) R_32 = np.append(R_32, new_orientations[7]) R_33 = np.append(R_33, new_orientations[8]) return R_11, R_12, R_13, R_21, R_22, R_23, R_31, R_32, R_33 def compute_joint_angle(df, child, parent): c = df[df[' jointType'] == child] p = df[df[' jointType'] == parent] ml = np.array([]) ap = np.array([]) v = np.array([]) # Compute Rotation Matrix Components for i in range(c.shape[0]): segment = np.asmatrix([ [np.array(c['n_o11'])[i], np.array(c['n_o12'])[i], np.array(c['n_o13'])[i]], [np.array(c['n_o21'])[i], np.array(c['n_o22'])[i], np.array(c['n_o23'])[i]], [np.array(c['n_o31'])[i], np.array(c['n_o32'])[i], np.array(c['n_o33'])[i]] ]) reference_segment = np.asmatrix([ [np.array(p['n_o11'])[i], np.array(p['n_o12'])[i], np.array(p['n_o13'])[i]], [np.array(p['n_o21'])[i], np.array(p['n_o22'])[i], np.array(p['n_o23'])[i]], [np.array(p['n_o31'])[i], np.array(p['n_o32'])[i], np.array(p['n_o33'])[i]] ]) # transformation of segment to reference segment r = np.matmul(reference_segment.T, segment) # decomposition to Euler angles rotations = R.from_matrix(r).as_euler('xyz', degrees=True) ml = np.append(ml, rotations[0]) ap = np.append(ap, rotations[1]) v = np.append(v, rotations[2]) return ml, ap, v def resample_df(d, new_freq=30, method='linear'): # Resamples data at 30Hz unless otherwise specified joints_without_quats = [3, 15, 19, 21, 22, 23, 24] resampled_df = pd.DataFrame( columns=['# timestamp', ' jointType', ' orientation.X', ' orientation.Y', ' orientation.Z', ' orientation.W', ' position.X', ' position.Y', ' position.Z']) new_df = pd.DataFrame() for i in d[' jointType'].unique(): current_df = d.loc[d[' jointType'] == i].copy() old_times = np.array(current_df['# timestamp']) new_times = np.arange(min(current_df['# timestamp']), max(current_df['# timestamp']), 1 / new_freq) o_x = np.array(current_df[' orientation.X']) o_y = np.array(current_df[' orientation.Y']) o_z = np.array(current_df[' orientation.Z']) o_w = np.array(current_df[' orientation.W']) p_x = np.array(current_df[' position.X']) p_y = np.array(current_df[' position.Y']) p_z = np.array(current_df[' position.Z']) if i in joints_without_quats: orientation_x = np.repeat(0.0, len(new_times)) orientation_y = np.repeat(0.0, len(new_times)) orientation_z = np.repeat(0.0, len(new_times)) orientation_w = np.repeat(0.0, len(new_times)) else: if method == "linear": orientation_x = np.interp(new_times, old_times, o_x) orientation_y = np.interp(new_times, old_times, o_y) orientation_z = np.interp(new_times, old_times, o_z) orientation_w = np.interp(new_times, old_times, o_w) elif method == 'slerp': quats = [] for t in range(len(old_times)): quats.append([o_x[t], o_y[t], o_z[t], o_w[t]]) # Create rotation object quats_object = R.from_quat(quats) # Spherical Linear Interpolation slerp = Slerp(np.array(current_df['# timestamp']), quats_object) interp_rots = slerp(new_times) new_quats = interp_rots.as_quat() # Create new orientation objects orientation_x = np.array([item[0] for item in new_quats]) orientation_y = np.array([item[1] for item in new_quats]) orientation_z = np.array([item[2] for item in new_quats]) orientation_w = np.array([item[3] for item in new_quats]) else: raise ValueError("Method must be either linear or spherical (slerp) interpolation.") position_x = signal.resample(p_x, num=int(max(current_df['# timestamp']) * new_freq)) position_y = signal.resample(p_y, num=int(max(current_df['# timestamp']) * new_freq)) position_z = signal.resample(p_z, num=int(max(current_df['# timestamp']) * new_freq)) new_df['# timestamp'] = pd.Series(new_times) new_df[' jointType'] = pd.Series(np.repeat(i, len(new_times))) new_df[' orientation.X'] = pd.Series(orientation_x) new_df[' orientation.Y'] = pd.Series(orientation_y) new_df[' orientation.Z'] = pd.Series(orientation_z) new_df[' orientation.W'] = pd.Series(orientation_w) new_df[' position.X'] = pd.Series(position_x) new_df[' position.Y'] = pd.Series(position_y) new_df[' position.Z'] = pd.Series(position_z) resampled_df = resampled_df.append(new_df, ignore_index=True) return resampled_df def smooth_rotations(o_x, o_y, o_z, o_w): o_x = np.array(o_x) o_y = np.array(o_y) o_z = np.array(o_z) o_w = np.array(o_w) trajNoisy = [] for i in range(len(o_x)): trajNoisy.append([o_x[i], o_y[i], o_z[i], o_w[i]]) trajNoisy = np.array(trajNoisy) # This code was adapted from https://ww2.mathworks.cn/help/nav/ug/lowpass-filter-orientation-using-quaternion-slerp.html # As explained in the link above, "The interpolation parameter to slerp is in the closed-interval [0,1], so the output of dist # must be re-normalized to this range. However, the full range of [0,1] for the interpolation parameter gives poor performance, # so it is limited to a smaller range hrange centered at hbias." hrange = 0.4 hbias = 0.4 low = max(min(hbias - (hrange / 2), 1), 0) high = max(min(hbias + (hrange / 2), 1), 0) hrangeLimited = high - low # initial filter state is the quaternion at frame 0 y = trajNoisy[0] qout = [] for i in range(1, len(trajNoisy)): x = trajNoisy[i] # x = mathutils.Quaternion(x) # y = mathutils.Quaternion(y) # d = x.rotation_difference(y).angle x = pyq.Quaternion(x) y = pyq.Quaternion(y) d = (x.conjugate * y).angle # Renormalize dist output to the range [low, high] hlpf = (d / np.pi) * hrangeLimited + low # y = y.slerp(x, hlpf) y = Quaternion.slerp(y, x, hlpf).elements qout.append(np.array(y)) # because a frame of data is lost during this process, I've (arbitrarily) decided to append an extra quaternion at the end of the trial # that is identical to the n-1th frame. This keeps the length consistent (so there is no issues with merging later) and should not # negatively impact the data since the last frame is rarely of interest (and the data collector can decide to collect for a split second # after their trial of interest has completed to attenuate any of these "errors" that may propogate in the analyses) qout.append(qout[int(len(qout) - 1)]) orientation_x = [item[0] for item in qout] orientation_y = [item[1] for item in qout] orientation_z = [item[2] for item in qout] orientation_w = [item[3] for item in qout] return orientation_x, orientation_y, orientation_z, orientation_w def smooth_quaternions(d): for i in d[' jointType'].unique(): current_df = d.loc[d[' jointType'] == i].copy() current_df[' orientation.X'], current_df[' orientation.Y'], current_df[' orientation.Z'], current_df[ ' orientation.W'] = smooth_rotations(current_df[' orientation.X'], current_df[' orientation.Y'], current_df[' orientation.Z'], current_df[' orientation.W']) d[d[' jointType'] == i] = current_df return d def compute_segment_angle(df, SEGMENT): s = df[df[' jointType'] == SEGMENT] ml = np.array([]) ap = np.array([]) v = np.array([]) # Compute Rotation Matrix Components for i in range(s.shape[0]): segment = np.asmatrix([ [np.array(s['n_o11'])[i], np.array(s['n_o12'])[i], np.array(s['n_o13'])[i]], [np.array(s['n_o21'])[i], np.array(s['n_o22'])[i], np.array(s['n_o23'])[i]], [np.array(s['n_o31'])[i], np.array(s['n_o32'])[i], np.array(s['n_o33'])[i]] ]) # decomposition to Euler angles rotations = R.from_matrix(segment).as_euler('xyz', degrees=True) ml = np.append(ml, rotations[0]) ap = np.append(ap, rotations[1]) v = np.append(v, rotations[2]) return ml, ap, v dir = os.getcwd() # Loading Data print('... Loading data') cal = pd.read_csv(os.path.join(dir, calfile)) df = pd.read_csv(os.path.join(dir, inputfile)) df['# timestamp'] = df['# timestamp'] * 10 ** -3 cal['# timestamp'] = cal['# timestamp'] * 10 ** -3 df_reoriented = df.copy() cal_reoriented = cal.copy() print('... Reorienting LCSs') # Hips df_reoriented.loc[df[' jointType'] == 16, ' orientation.X'] = df.loc[df[' jointType'] == 16, ' orientation.Z'] df_reoriented.loc[df[' jointType'] == 16, ' orientation.Y'] = df.loc[df[' jointType'] == 16, ' orientation.X'] df_reoriented.loc[df[' jointType'] == 16, ' orientation.Z'] = df.loc[df[' jointType'] == 16, ' orientation.Y'] cal_reoriented.loc[cal[' jointType'] == 16, ' orientation.X'] = cal.loc[cal[' jointType'] == 16, ' orientation.Z'] cal_reoriented.loc[cal[' jointType'] == 16, ' orientation.Y'] = cal.loc[cal[' jointType'] == 16, ' orientation.X'] cal_reoriented.loc[cal[' jointType'] == 16, ' orientation.Z'] = cal.loc[cal[' jointType'] == 16, ' orientation.Y'] df_reoriented.loc[df[' jointType'] == 12, ' orientation.X'] = df.loc[df[' jointType'] == 12, ' orientation.Z'] df_reoriented.loc[df[' jointType'] == 12, ' orientation.Y'] = df.loc[df[' jointType'] == 12, ' orientation.X'] * -1 df_reoriented.loc[df[' jointType'] == 12, ' orientation.Z'] = df.loc[df[' jointType'] == 12, ' orientation.Y'] * -1 cal_reoriented.loc[cal[' jointType'] == 12, ' orientation.X'] = cal.loc[cal[' jointType'] == 12, ' orientation.Z'] cal_reoriented.loc[cal[' jointType'] == 12, ' orientation.Y'] = cal.loc[cal[' jointType'] == 12, ' orientation.X'] * -1 cal_reoriented.loc[cal[' jointType'] == 12, ' orientation.Z'] = cal.loc[cal[' jointType'] == 12, ' orientation.Y'] * -1 # Knees df_reoriented.loc[df[' jointType'] == 17, ' orientation.X'] = df.loc[df[' jointType'] == 17, ' orientation.X'] * -1 df_reoriented.loc[df[' jointType'] == 17, ' orientation.Y'] = df.loc[df[' jointType'] == 17, ' orientation.Y'] * -1 df_reoriented.loc[df[' jointType'] == 17, ' orientation.Z'] = df.loc[df[' jointType'] == 17, ' orientation.Z'] cal_reoriented.loc[cal[' jointType'] == 17, ' orientation.X'] = cal.loc[cal[' jointType'] == 17, ' orientation.X'] * -1 cal_reoriented.loc[cal[' jointType'] == 17, ' orientation.Y'] = cal.loc[cal[' jointType'] == 17, ' orientation.Y'] * -1 cal_reoriented.loc[cal[' jointType'] == 17, ' orientation.Z'] = cal.loc[cal[' jointType'] == 17, ' orientation.Z'] df_reoriented.loc[df[' jointType'] == 13, ' orientation.X'] = df.loc[df[' jointType'] == 13, ' orientation.X'] df_reoriented.loc[df[' jointType'] == 13, ' orientation.Y'] = df.loc[df[' jointType'] == 13, ' orientation.Y'] * -1 df_reoriented.loc[df[' jointType'] == 13, ' orientation.Z'] = df.loc[df[' jointType'] == 13, ' orientation.Z'] * -1 cal_reoriented.loc[cal[' jointType'] == 13, ' orientation.X'] = cal.loc[cal[' jointType'] == 13, ' orientation.X'] cal_reoriented.loc[cal[' jointType'] == 13, ' orientation.Y'] = cal.loc[cal[' jointType'] == 13, ' orientation.Y'] * -1 cal_reoriented.loc[cal[' jointType'] == 13, ' orientation.Z'] = cal.loc[cal[' jointType'] == 13, ' orientation.Z'] * -1 # Ankles df_reoriented.loc[df[' jointType'] == 18, ' orientation.X'] = df.loc[df[' jointType'] == 18, ' orientation.X'] * -1 df_reoriented.loc[df[' jointType'] == 18, ' orientation.Y'] = df.loc[df[' jointType'] == 18, ' orientation.Y'] * -1 df_reoriented.loc[df[' jointType'] == 18, ' orientation.Z'] = df.loc[df[' jointType'] == 18, ' orientation.Z'] cal_reoriented.loc[cal[' jointType'] == 18, ' orientation.X'] = cal.loc[cal[' jointType'] == 18, ' orientation.X'] * -1 cal_reoriented.loc[cal[' jointType'] == 18, ' orientation.Y'] = cal.loc[cal[' jointType'] == 18, ' orientation.Y'] * -1 cal_reoriented.loc[cal[' jointType'] == 18, ' orientation.Z'] = cal.loc[cal[' jointType'] == 18, ' orientation.Z'] df_reoriented.loc[df[' jointType'] == 14, ' orientation.X'] = df.loc[df[' jointType'] == 14, ' orientation.X'] df_reoriented.loc[df[' jointType'] == 14, ' orientation.Y'] = df.loc[df[' jointType'] == 14, ' orientation.Y'] * -1 df_reoriented.loc[df[' jointType'] == 14, ' orientation.Z'] = df.loc[df[' jointType'] == 14, ' orientation.Z'] * -1 cal_reoriented.loc[cal[' jointType'] == 14, ' orientation.X'] = cal.loc[cal[' jointType'] == 14, ' orientation.X'] cal_reoriented.loc[cal[' jointType'] == 14, ' orientation.Y'] = cal.loc[cal[' jointType'] == 14, ' orientation.Y'] * -1 cal_reoriented.loc[cal[' jointType'] == 14, ' orientation.Z'] = cal.loc[cal[' jointType'] == 14, ' orientation.Z'] * -1 # Resampling data to 30Hz df_reoriented = resample_df(df_reoriented, new_freq=30, method='slerp') # Smooth Quaternion Rotations df_reoriented = smooth_quaternions(df_reoriented) # need to re-sort and reset the index following the resampling df_reoriented = df_reoriented.sort_values(by=['# timestamp', ' jointType']).reset_index() df_reoriented['o11'], df_reoriented['o12'], df_reoriented['o13'], df_reoriented['o21'], df_reoriented['o22'], \ df_reoriented['o23'], df_reoriented['o31'], df_reoriented['o32'], df_reoriented['o33'] \ = orientation_matrix(df_reoriented[' orientation.W'], df_reoriented[' orientation.X'], df_reoriented[' orientation.Y'], df_reoriented[' orientation.Z']) cal_reoriented['o11'], cal_reoriented['o12'], cal_reoriented['o13'], cal_reoriented['o21'], cal_reoriented['o22'], \ cal_reoriented['o23'], cal_reoriented['o31'], cal_reoriented['o32'], cal_reoriented['o33'] \ = orientation_matrix(cal_reoriented[' orientation.W'], cal_reoriented[' orientation.X'], cal_reoriented[' orientation.Y'], cal_reoriented[' orientation.Z']) df_reoriented.set_index(' jointType', inplace=True) cal_reoriented.set_index(' jointType', inplace=True) cal_reoriented = cal_reoriented.groupby(' jointType').mean().drop(columns=['# timestamp']) cal_reoriented = pd.concat([cal_reoriented] * np.int64(df_reoriented.shape[0] / 25)) print('... Normalizing to calibration pose') # Normalize orientations to calibration pose df_reoriented['n_o11'], df_reoriented['n_o12'], df_reoriented['n_o13'], df_reoriented['n_o21'], df_reoriented[ 'n_o22'], \ df_reoriented['n_o23'], df_reoriented['n_o31'], df_reoriented['n_o32'], df_reoriented['n_o33'] \ = np.array(compute_relative_orientation(cal_reoriented, df_reoriented)) df_reoriented.reset_index(inplace=True) print('... Computing joint angles') r_hipFlexion, r_hipAbduction, r_hipV = compute_joint_angle(df_reoriented, child=17, parent=16) l_hipFlexion, l_hipAbduction, l_hipV = compute_joint_angle(df_reoriented, child=13, parent=12) r_kneeFlexion, r_kneeAbduction, r_kneeV = compute_joint_angle(df_reoriented, child=18, parent=17) l_kneeFlexion, l_kneeAbduction, l_kneeV = compute_joint_angle(df_reoriented, child=14, parent=13) # Note that 16 or 12 can be used for the pelvis (given Kinect's definitions) pelvis_rotation = compute_segment_angle(df_reoriented, 16)[0] r_thigh_rotation = compute_segment_angle(df_reoriented, 17)[0] l_thigh_rotation = compute_segment_angle(df_reoriented, 13)[0] r_shank_rotation = compute_segment_angle(df_reoriented, 18)[0] l_shank_rotation = compute_segment_angle(df_reoriented, 14)[0] new_df = pd.DataFrame({ 'frame': np.arange(df_reoriented['# timestamp'].unique().shape[0]), 'timeStamp': df_reoriented['# timestamp'].unique(), # Below are adjusted for relatively easy anatomical interpretations 'r_hipFlexion' : r_hipFlexion, 'l_hipFlexion' : l_hipFlexion*-1, 'r_hipAbduction' : r_hipAbduction*-1, 'l_hipAbduction' : l_hipAbduction, 'r_hipV' : r_hipV *-1, 'l_hipV' : l_hipV *-1, 'r_kneeFlexion' : r_kneeFlexion*-1, 'l_kneeFlexion' : l_kneeFlexion, 'r_kneeAdduction' : r_kneeAbduction, 'l_kneeAdduction' : l_kneeAbduction*-1, 'r_kneeV' : r_kneeV*-1, 'l_kneeV' : l_kneeV, # Below are adjusted specifically for use with relative phase analyses 'pelvis_rotation': pelvis_rotation, 'r_thigh_rotation': r_thigh_rotation, 'l_thigh_rotation': l_thigh_rotation*-1, 'r_shank_rotation': r_shank_rotation, 'l_shank_rotation': l_shank_rotation*-1, # Below are left in the GCS 'r_hip_x': np.array(df_reoriented[df_reoriented[' jointType'] == 16][' position.X']), 'r_hip_y': np.array(df_reoriented[df_reoriented[' jointType'] == 16][' position.Y']), 'r_hip_z': np.array(df_reoriented[df_reoriented[' jointType'] == 16][' position.Z']), 'l_hip_x': np.array(df_reoriented[df_reoriented[' jointType'] == 12][' position.X']), 'l_hip_y': np.array(df_reoriented[df_reoriented[' jointType'] == 12][' position.Y']), 'l_hip_z': np.array(df_reoriented[df_reoriented[' jointType'] == 12][' position.Z']), 'r_knee_x': np.array(df_reoriented[df_reoriented[' jointType'] == 17][' position.X']), 'r_knee_y': np.array(df_reoriented[df_reoriented[' jointType'] == 17][' position.Y']), 'r_knee_z': np.array(df_reoriented[df_reoriented[' jointType'] == 17][' position.Z']), 'l_knee_x': np.array(df_reoriented[df_reoriented[' jointType'] == 13][' position.X']), 'l_knee_y': np.array(df_reoriented[df_reoriented[' jointType'] == 13][' position.Y']), 'l_knee_z': np.array(df_reoriented[df_reoriented[' jointType'] == 13][' position.Z']), 'r_ankle_x': np.array(df_reoriented[df_reoriented[' jointType'] == 18][' position.X']), 'r_ankle_y': np.array(df_reoriented[df_reoriented[' jointType'] == 18][' position.Y']), 'r_ankle_z': np.array(df_reoriented[df_reoriented[' jointType'] == 18][' position.Z']), 'l_ankle_x': np.array(df_reoriented[df_reoriented[' jointType'] == 14][' position.X']), 'l_ankle_y': np.array(df_reoriented[df_reoriented[' jointType'] == 14][' position.Y']), 'l_ankle_z': np.array(df_reoriented[df_reoriented[' jointType'] == 14][' position.Z']), 'r_foot_x': np.array(df_reoriented[df_reoriented[' jointType'] == 19][' position.X']), 'r_foot_y': np.array(df_reoriented[df_reoriented[' jointType'] == 19][' position.Y']), 'r_foot_z': np.array(df_reoriented[df_reoriented[' jointType'] == 19][' position.Z']), 'l_foot_x': np.array(df_reoriented[df_reoriented[' jointType'] == 15][' position.X']), 'l_foot_y': np.array(df_reoriented[df_reoriented[' jointType'] == 15][' position.Y']), 'l_foot_z': np.array(df_reoriented[df_reoriented[' jointType'] == 15][' position.Z']), 'spinebase_x': np.array(df_reoriented[df_reoriented[' jointType'] == 0][' position.X']), 'spinebase_y': np.array(df_reoriented[df_reoriented[' jointType'] == 0][' position.Y']), 'spinebase_z': np.array(df_reoriented[df_reoriented[' jointType'] == 0][' position.Z']), 'spinemid_x': np.array(df_reoriented[df_reoriented[' jointType'] == 1][' position.X']), 'spinemid_y': np.array(df_reoriented[df_reoriented[' jointType'] == 1][' position.Y']), 'spinemid_z': np.array(df_reoriented[df_reoriented[' jointType'] == 1][' position.Z']), 'neck_x': np.array(df_reoriented[df_reoriented[' jointType'] == 2][' position.X']), 'neck_y':
np.array(df_reoriented[df_reoriented[' jointType'] == 2][' position.Y'])
numpy.array
"""PMAC Parser Library for parsing and running PMAC programs """ import numpy as np from pygments.token import Number from pmacparser.pmac_lexer import PmacLexer class ParserError(Exception): """Parser error exception.""" def __init__(self, message, token): super(ParserError, self).__init__() self.message = message self.line = token.line def __str__(self): return '[Line %s] %s' % (self.line, self.message) class Variables(object): """Represents a PMAC Variable (I, M, P, Q).""" def __init__(self): self.variable_dict = {} def get_i_variable(self, var_num): """Return the value of the specified I variable.""" return self.get_var('I', var_num) def get_p_variable(self, var_num): """Return the value of the specified P variable.""" return self.get_var('P', var_num) def get_q_variable(self, var_num): """Return the value of the specified Q variable.""" return self.get_var('Q', var_num) def get_m_variable(self, var_num): """Return the value of the specified M variable.""" return self.get_var('M', var_num) def set_i_variable(self, var_num, value): """Set the value of the specified I variable.""" self.set_var('I', var_num, value) def set_p_variable(self, var_num, value): """Set the value of the specified P variable.""" self.set_var('P', var_num, value) def set_q_variable(self, var_num, value): """Set the value of the specified Q variable.""" self.set_var('Q', var_num, value) def set_m_variable(self, var_num, value): """Set the value of the specified M variable.""" self.set_var('M', var_num, value) def get_var(self, var_type, var_num): """Return the value of the specified variable type and number.""" addr = '%s%s' % (var_type, var_num) if addr in self.variable_dict: result = self.variable_dict[addr] else: result = 0 npvalue = np.array(result) return npvalue.astype(float) def set_var(self, var_type, var_num, value): """Set the value of the variable type and number with the value specified.""" addr = '%s%s' % (var_type, var_num) self.variable_dict[addr] = value def populate_with_dict(self, dictionary): """Copy the input dictionary into the local variable dictionary.""" self.variable_dict = dictionary.copy() def to_dict(self): """Return the variables as a dictionary.""" return self.variable_dict class PMACParser(object): """Parses a PMAC program, and runs an emulator for forward kinematic programs Uses the PMAC Lexer to tokenise a list of strings, and then parses the tokens, using an input dictionary or variables to evaluate the expressions in the code, populating a dictionary with the results of the program operations. It is a modification of the dls_pmacanalyse code developed by <NAME>. """ def __init__(self, program_lines): self.lexer = PmacLexer() self.lines = program_lines self.lexer.lex(self.lines) self.variable_dict = Variables() self.if_level = 0 self.while_level = 0 self.while_dict = {} self.pre_process() def pre_process(self): """Evaluate and replace any Constants Expressions (e.g. 4800+17).""" token = self.lexer.get_token() while token is not None: if token.type == Number.ConstantExpression: token_text = str(token) token_text = token_text.replace("(", "") token_text = token_text.replace(")", "") tokens = token_text.split("+") int1 = int(tokens[0]) int2 = int(tokens[1]) val = int1 + int2 token.set(str(val), token.line) token.type = Number token = self.lexer.get_token() self.lexer.reset() def parse(self, variable_dict): """Top level kinematic program parser.""" self.variable_dict.populate_with_dict(variable_dict) token = self.lexer.get_token() while token is not None: if token == 'Q': self.parseQ() elif token == 'P': self.parseP() elif token == 'I': self.parseI() elif token == 'M': self.parseM() elif token == 'IF': self.parseIf() elif token == 'ELSE': self.parseElse(token) elif token in ('ENDIF', 'ENDI'): self.parseEndIf(token) elif token == 'WHILE': self.parseWhile(token) elif token in ('ENDWHILE', 'ENDW'): self.parseEndWhile(token) elif token in ('RETURN', 'RET'): self.parseReturn(token) else: raise ParserError('Unexpected token: %s' % token, token) token = self.lexer.get_token() self.lexer.reset() return self.variable_dict.to_dict() def parseM(self): """Parse an M expression - typically an assignment.""" num = self.lexer.get_token() if num.is_int(): num = num.to_int() token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_m_variable(num, val) else: self.lexer.put_token(token) # Report M variable values (do nothing) else: raise ParserError('Unexpected statement: M %s' % num, num) def parseI(self): """Parse an I expression - typically an assignment.""" num = self.lexer.get_token() if num.is_int(): num = num.to_int() token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_i_variable(num, val) else: self.lexer.put_token(token) # Report I variable values (do nothing) elif num == '(': num = self.parseExpression() self.lexer.get_token(')') token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_i_variable(num, val) else: self.lexer.put_token(token) # Report I variable values (do nothing) else: raise ParserError('Unexpected statement: I %s' % num, num) def parseP(self): """Parse a P expression - typically an assignment.""" num = self.lexer.get_token() if num.is_int(): num = num.to_int() token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_p_variable(num, val) else: self.lexer.put_token(token) # Report P variable values (do nothing) elif num == '(': num = self.parseExpression() self.lexer.get_token(')') token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_p_variable(num, val) else: self.lexer.put_token(token) # Report P variable values (do nothing) else: self.lexer.put_token(num) # Do nothing def parseQ(self): """Parse a Q expression - typically an assignment.""" num = self.lexer.get_token() if num.is_int(): num = num.to_int() token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_q_variable(num, val) else: self.lexer.put_token(token) # Report Q variable values (do nothing) elif num == '(': num = self.parseExpression() self.lexer.get_token(')') token = self.lexer.get_token() if token == '=': val = self.parseExpression() self.variable_dict.set_q_variable(num, val) else: self.lexer.put_token(token) # Report Q variable values (do nothing) else: self.lexer.put_token(num) # Do nothing def parseCondition(self): """Parse a condition, return the result of the condition.""" has_parenthesis = True token = self.lexer.get_token() if token != '(': self.lexer.put_token(token) has_parenthesis = False value1 = self.parseExpression() token = self.lexer.get_token() comparator = token value2 = self.parseExpression() if comparator == '=': result = value1 == value2 elif comparator == '!=': result = value1 != value2 elif comparator == '>': result = value1 > value2 elif comparator == '!>': result = value1 <= value2 elif comparator == '<': result = value1 < value2 elif comparator == '!<': result = value1 >= value2 else: raise ParserError('Expected comparator, got: %s' % comparator, comparator) # Take ) or AND or OR token = self.lexer.get_token() if token == 'AND' or token == 'OR': self.lexer.put_token(token) result = self.parseConditionalOR(result) if has_parenthesis: self.lexer.get_token(')') elif token == ')': if not has_parenthesis: self.lexer.put_token(token) elif token != ')': raise ParserError('Expected ) or AND/OR, got: %s' % comparator, comparator) return result def parseConditionalOR(self, current_value): """Parse a conditional OR token, return the result of the condition.""" result = self.parseConditionalAND(current_value) token = self.lexer.get_token() if token == 'OR': condition_result = self.parseCondition() result = self.parseConditionalOR(condition_result) or current_value elif token == 'AND': self.lexer.put_token(token) result = self.parseConditionalOR(result) else: self.lexer.put_token(token) return result def parseConditionalAND(self, current_value): """Parse a conditional AND token, return the result of the condition.""" token = self.lexer.get_token() if token == 'AND': result = self.parseCondition() and current_value else: self.lexer.put_token(token) result = current_value return result def parseIf(self): """Parse an IF token, skipping to after the else if necessary.""" condition = self.parseCondition() if_condition = self.parseConditionalOR(condition) # Condition could be numpy array, check and throw if not all True or all False if np.all(if_condition): if_condition = True elif not np.any(if_condition): if_condition = False else: raise Exception('If conditions is an array with not all the same value') self.if_level += 1 if not if_condition: this_if_level = self.if_level token = self.lexer.get_token() while (token != 'ELSE' and token not in ('ENDIF', 'ENDI')) or this_if_level != self.if_level: if token in ('ENDIF', 'ENDI'): self.if_level -= 1 token = self.lexer.get_token() if token == 'IF': self.if_level += 1 if token in ('ENDIF', 'ENDI'): self.parseEndIf(token) def parseElse(self, token): """Parse an ELSE token, skipping to ENDIF if necessary.""" if self.if_level > 0: this_if_level = self.if_level while token not in ('ENDIF', 'ENDI') or this_if_level != self.if_level: if token in ('ENDIF', 'ENDI'): self.if_level -= 1 token = self.lexer.get_token() if token == 'IF': self.if_level += 1 else: raise ParserError('Unexpected ELSE', token) def parseEndIf(self, t): """Parse an ENDIF token, closing off the current IF level.""" if self.if_level > 0: self.if_level -= 1 else: raise ParserError('Unexpected ENDIF/ENDI', t) def parseWhile(self, token): """Parse a WHILE token, skipping to the ENDWHILE the condition is false.""" self.while_level += 1 # Get all tokens up to the ENDWHILE while_tokens = [] this_while_level = self.while_level while_tokens.append(token) while (token not in ('ENDWHILE', 'ENDW')) or this_while_level != self.while_level: if token in ('ENDWHILE', 'ENDW'): self.while_level -= 1 token = self.lexer.get_token() while_tokens.append(token) if token == 'WHILE': self.while_level += 1 # Put the tokens back on self.lexer.put_tokens(while_tokens) # Get the WHILE token = self.lexer.get_token() condition = self.parseCondition() condition = self.parseConditionalOR(condition) # Condition could be numpy array, check and throw if not all True or all False if np.all(condition): condition = True elif not np.any(condition): condition = False else: raise Exception('While conditions is an array with not all the same value') if condition: self.while_dict[this_while_level] = while_tokens else: while (token not in ('ENDWHILE', 'ENDW')) or this_while_level != self.while_level: if token in ('ENDWHILE', 'ENDW'): self.while_level -= 1 token = self.lexer.get_token() while_tokens.append(token) if token == 'WHILE': self.while_level += 1 self.while_level -= 1 def parseEndWhile(self, t): """Parse an ENDWHILE statement, placing the tokens within the while back on to the list to be executed.""" if self.while_level > 0: while_tokens = self.while_dict[self.while_level] # Put the tokens back on self.lexer.put_tokens(while_tokens) self.while_level -= 1 else: raise ParserError('Unexpected ENDWHILE/ENDW', t) def parseReturn(self, t): """Parse a RETURN statement, which can just be ignored.""" pass def parseExpression(self): """Return the result of the expression.""" # Currently supports syntax of the form: # <expression> ::= <e1> { <sumop> <e1> } # <e1> ::= <e2> { <multop> <e2> } # <e2> ::= [ <monop> ] <e3> # <e3> ::= '(' <expression> ')' | <constant> | 'P'<integer> | 'Q'<integer> | 'I'<integer> | 'M' <integer> # | <mathop><float> # <sumop> ::= '+' | '-' | '|' | '^' # <multop> ::= '*' | '/' | '%' | '&' # <monop> ::= '+' | '-' # <mathop> ::= 'SIN' | 'COS' | 'TAB' | 'ASIN' | 'ACOS' | 'ATAN' | 'ATAN2' # | 'SQRT' | 'ABS' | 'EXT' | 'IN' | 'LN' result = self.parseE1() going = True while going: token = self.lexer.get_token() if token == '+': result = result + self.parseE1() elif token == '-': result = result - self.parseE1() elif token == '|': result = np.bitwise_or(np.array(result).astype(int), np.array(self.parseE1()).astype(int)) elif token == '^': result = np.bitwise_xor(np.array(result).astype(int), np.array(self.parseE1()).astype(int)) else: self.lexer.put_token(token) going = False return result def parseE1(self): """Return the result of a sub-expression containing multiplicative operands.""" result = self.parseE2() going = True while going: token = self.lexer.get_token() if token == '*': result = result * self.parseE2() elif token == '/': result = result / self.parseE2() elif token == '%': result = result % self.parseE2() elif token == '&': result = np.bitwise_and(np.array(result).astype(int), np.array(self.parseE2()).astype(int)) else: self.lexer.put_token(token) going = False return result def parseE2(self): """Return the result of a sub-expression containing monadic operands.""" monop = self.lexer.get_token() if monop not in ['+', '-']: self.lexer.put_token(monop) monop = '+' result = self.parseE3() if monop == '-': result = -result return result def parseE3(self): """Return the result of a sub-expression containing a value. This could be an I,P,Q or M variable, or a constant or a parenthesised expression, or a mathematical operation. """ token = self.lexer.get_token() if token == '(': result = self.parseExpression() self.lexer.get_token(')') elif token == 'Q': token = self.lexer.get_token() if token == '(': value = self.parseExpression() self.lexer.get_token(')') else: value = token result = self.variable_dict.get_q_variable(value) elif token == 'P': token = self.lexer.get_token() if token == '(': value = self.parseExpression() self.lexer.get_token(')') else: value = token result = self.variable_dict.get_p_variable(value) elif token == 'I': token = self.lexer.get_token() if token == '(': value = self.parseExpression() self.lexer.get_token(')') else: value = token result = self.variable_dict.get_i_variable(value) elif token == 'M': token = self.lexer.get_token() if token == '(': value = self.parseExpression() self.lexer.get_token(')') else: value = token result = self.variable_dict.get_m_variable(value) elif token == 'SIN': token = self.lexer.get_token() if token == '(': value = self.parseExpression() self.lexer.get_token(')') else: value = token I15 = self.variable_dict.get_i_variable(15) if I15 == 0: value = np.radians(value) result = np.sin(value) elif token == 'COS': token = self.lexer.get_token() if token == '(': value = self.parseExpression() self.lexer.get_token(')') else: value = token I15 = self.variable_dict.get_i_variable(15) if I15 == 0: value =
np.radians(value)
numpy.radians
# Author: <NAME> # email: <EMAIL> import os, sys, numpy as np, pytest from PIL import Image import init_paths from type_check import isimsize, isimage_dimension, iscolorimage_dimension, isgrayimage_dimension, isuintimage, isfloatimage, isnpimage, ispilimage, isimage def test_isimsize(): input_test = np.zeros((100, 100), dtype='uint8') input_test = input_test.shape assert isimsize(input_test) input_test = [100, 200] assert isimsize(input_test) input_test = (100, 200) assert isimsize(input_test) input_test = np.array([100, 200]) assert isimsize(input_test) input_test = np.zeros((100, 100, 3), dtype='float32') input_test = input_test.shape assert isimsize(input_test) is False input_test = [100, 200, 3] assert isimsize(input_test) is False input_test = (100, 200, 3) assert isimsize(input_test) is False def test_ispilimage(): input_test = Image.fromarray(np.zeros((100, 100, 3), dtype='uint8')) assert ispilimage(input_test) input_test = Image.fromarray(np.zeros((100, 100), dtype='uint8')) assert ispilimage(input_test) input_test = np.zeros((100, 100), dtype='uint8') assert ispilimage(input_test) is False input_test = np.zeros((100, 100), dtype='float32') assert ispilimage(input_test) is False def test_iscolorimage_dimension(): input_test = np.zeros((100, 100, 4), dtype='uint8') assert iscolorimage_dimension(input_test) input_test = np.zeros((100, 100, 3), dtype='uint8') assert iscolorimage_dimension(input_test) input_test = np.zeros((100, 100, 4), dtype='float32') assert iscolorimage_dimension(input_test) input_test = np.zeros((100, 100, 3), dtype='float64') assert iscolorimage_dimension(input_test) input_test = Image.fromarray(np.zeros((100, 100, 3), dtype='uint8')) assert iscolorimage_dimension(input_test) input_test = Image.fromarray(np.zeros((100, 100), dtype='uint8')) assert iscolorimage_dimension(input_test) is False input_test = np.zeros((100, 100), dtype='float32') assert iscolorimage_dimension(input_test) is False input_test = np.zeros((100, 100, 1), dtype='uint8') assert iscolorimage_dimension(input_test) is False input_test =
np.zeros((100, 100, 2), dtype='uint8')
numpy.zeros
""" Utility functions operating on operation matrices """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np import scipy.linalg as _spl import scipy.sparse as _sps import scipy.sparse.linalg as _spsl import warnings as _warnings import collections as _collections from . import jamiolkowski as _jam from . import matrixtools as _mt from . import lindbladtools as _lt from . import basistools as _bt from ..objects.basis import Basis as _Basis, ExplicitBasis as _ExplicitBasis, DirectSumBasis as _DirectSumBasis from ..objects.label import Label as _Label IMAG_TOL = 1e-7 # tolerance for imaginary part being considered zero def _flat_mut_blks(i, j, blockDims): # like _mut(i,j,dim).flatten() but works with basis *blocks* N = sum(blockDims) mx = _np.zeros((N, N), 'd'); mx[i, j] = 1.0 ret = _np.zeros(sum([d**2 for d in blockDims]), 'd') i = 0; off = 0 for d in blockDims: ret[i:i + d**2] = mx[off:off + d, off:off + d].flatten() i += d**2; off += d return ret def _hack_sqrtm(A): sqrt, _ = _spl.sqrtm(A, disp=False) # Travis found this scipy function # to be incorrect in certain cases (we need a workaround) if _np.any(_np.isnan(sqrt)): # this is sometimes a good fallback when sqrtm doesn't work. ev, U = _np.linalg.eig(A) sqrt = _np.dot(U, _np.dot(_np.diag(_np.sqrt(ev)), _np.linalg.inv(U))) return sqrt def fidelity(A, B): """ Returns the quantum state fidelity between density matrices A and B given by : F = Tr( sqrt{ sqrt(A) * B * sqrt(A) } )^2 To compute process fidelity, pass this function the Choi matrices of the two processes, or just call :function:`entanglement_fidelity` with the operation matrices. Parameters ---------- A : numpy array First density matrix. B : numpy array Second density matrix. Returns ------- float The resulting fidelity. """ evals, U = _np.linalg.eig(A) if len([ev for ev in evals if abs(ev) > 1e-8]) == 1: # special case when A is rank 1, A = vec * vec^T and sqrt(A) = A ivec = _np.argmax(evals) vec = U[:, ivec:(ivec + 1)] F = evals[ivec].real * _np.dot(_np.conjugate(_np.transpose(vec)), _np.dot(B, vec)).real # vec^T * B * vec return float(F) evals, U = _np.linalg.eig(B) if len([ev for ev in evals if abs(ev) > 1e-8]) == 1: # special case when B is rank 1 (recally fidelity is sym in args) ivec = _np.argmax(evals) vec = U[:, ivec:(ivec + 1)] F = evals[ivec].real * _np.dot(_np.conjugate(_np.transpose(vec)), _np.dot(A, vec)).real # vec^T * A * vec return float(F) #if _np.array_equal(A, B): return 1.0 # HACK - some cases when A and B are perfecty equal sqrtm(A) fails... sqrtA = _hack_sqrtm(A) # _spl.sqrtm(A) # test the scipy sqrtm function - sometimes fails when rank defficient #assert(_np.linalg.norm(_np.dot(sqrtA, sqrtA) - A) < 1e-8) if _np.linalg.norm(_np.dot(sqrtA, sqrtA) - A) > 1e-8: evals = _np.linalg.eigvals(A) _warnings.warn(("sqrtm(A) failure when computing fidelity - beware result. " "Maybe due to rank defficiency - eigenvalues of A are: %s") % evals) F = (_mt.trace(_hack_sqrtm(_np.dot(sqrtA, _np.dot(B, sqrtA)))).real)**2 # Tr( sqrt{ sqrt(A) * B * sqrt(A) } )^2 return float(F) def frobeniusdist(A, B): """ Returns the frobenius distance between gate or density matrices A and B given by : sqrt( sum( (A_ij-B_ij)^2 ) ) Parameters ---------- A : numpy array First matrix. B : numpy array Second matrix. Returns ------- float The resulting frobenius distance. """ return _mt.frobeniusnorm(A - B) def frobeniusdist2(A, B): """ Returns the square of the frobenius distance between gate or density matrices A and B given by : sum( (A_ij-B_ij)^2 ) Parameters ---------- A : numpy array First matrix. B : numpy array Second matrix. Returns ------- float The resulting frobenius distance. """ return _mt.frobeniusnorm2(A - B) def residuals(A, B): """ Calculate residuals between the elements of two matrices Parameters ---------- A : numpy array First matrix. B : numpy array Second matrix. Returns ------- np.array residuals """ return (A - B).flatten() def tracenorm(A): """ Compute the trace norm of matrix A given by: Tr( sqrt{ A^dagger * A } ) Parameters ---------- A : numpy array The matrix to compute the trace norm of. """ if _np.linalg.norm(A - _np.conjugate(A.T)) < 1e-8: #Hermitian, so just sum eigenvalue magnitudes return _np.sum(_np.abs(_np.linalg.eigvals(A))) else: #Sum of singular values (positive by construction) return _np.sum(_np.linalg.svd(A, compute_uv=False)) def tracedist(A, B): """ Compute the trace distance between matrices A and B, given by: D = 0.5 * Tr( sqrt{ (A-B)^dagger * (A-B) } ) Parameters ---------- A, B : numpy array The matrices to compute the distance between. """ return 0.5 * tracenorm(A - B) def diamonddist(A, B, mxBasis='pp', return_x=False): """ Returns the approximate diamond norm describing the difference between gate matrices A and B given by : D = ||A - B ||_diamond = sup_rho || AxI(rho) - BxI(rho) ||_1 Parameters ---------- A, B : numpy array The *gate* matrices to use when computing the diamond norm. mxBasis : Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). return_x : bool, optional Whether to return a numpy array encoding the state (rho) at which the maximal trace distance occurs. Returns ------- dm : float Diamond norm W : numpy array Only returned if `return_x = True`. Encodes the state rho, such that `dm = trace( |(J(A)-J(B)).T * W| )`. """ mxBasis = _bt.build_basis_for_matrix(A, mxBasis) #currently cvxpy is only needed for this function, so don't import until here import cvxpy as _cvxpy #Check if using version < 1.0 old_cvxpy = bool(tuple(map(int, _cvxpy.__version__.split('.'))) < (1, 0)) # This SDP implementation is a modified version of Kevin's code #Compute the diamond norm #Uses the primal SDP from arXiv:1207.5726v2, Sec 3.2 #Maximize 1/2 ( < J(phi), X > + < J(phi).dag, X.dag > ) #Subject to [[ I otimes rho0, X], # [X.dag, I otimes rho1]] >> 0 # rho0, rho1 are density matrices # X is linear operator #Jamiolkowski representation of the process # J(phi) = sum_ij Phi(Eij) otimes Eij #< A, B > = Tr(A.dag B) #def vec(matrix_in): # # Stack the columns of a matrix to return a vector # return _np.transpose(matrix_in).flatten() # #def unvec(vector_in): # # Slice a vector into columns of a matrix # d = int(_np.sqrt(vector_in.size)) # return _np.transpose(vector_in.reshape( (d,d) )) #Code below assumes *un-normalized* Jamiol-isomorphism, so multiply by # density mx dimension (`smallDim`) below JAstd = _jam.fast_jamiolkowski_iso_std(A, mxBasis) JBstd = _jam.fast_jamiolkowski_iso_std(B, mxBasis) #Do this *after* the fast_jamiolkowski_iso calls above because these will convert # A & B to a "single-block" basis representation when mxBasis has multiple blocks. dim = JAstd.shape[0] smallDim = int(_np.sqrt(dim)) JAstd *= smallDim # see above comment JBstd *= smallDim # see above comment assert(dim == JAstd.shape[1] == JBstd.shape[0] == JBstd.shape[1]) #CHECK: Kevin's jamiolowski, which implements the un-normalized isomorphism: # smallDim * _jam.jamiolkowski_iso(M, "std", "std") #def kevins_jamiolkowski(process, representation = 'superoperator'): # # Return the Choi-Jamiolkowski representation of a quantum process # # Add methods as necessary to accept different representations # process = _np.array(process) # if representation == 'superoperator': # # Superoperator is the linear operator acting on vec(rho) # dimension = int(_np.sqrt(process.shape[0])) # print "dim = ",dimension # jamiolkowski_matrix = _np.zeros([dimension**2, dimension**2], dtype='complex') # for i in range(dimension**2): # Ei_vec= _np.zeros(dimension**2) # Ei_vec[i] = 1 # output = unvec(_np.dot(process,Ei_vec)) # tmp = _np.kron(output, unvec(Ei_vec)) # print "E%d = \n" % i,unvec(Ei_vec) # #print "contrib =",_np.kron(output, unvec(Ei_vec)) # jamiolkowski_matrix += tmp # return jamiolkowski_matrix #JAstd_kev = jamiolkowski(A) #JBstd_kev = jamiolkowski(B) #print "diff A = ",_np.linalg.norm(JAstd_kev/2.0-JAstd) #print "diff B = ",_np.linalg.norm(JBstd_kev/2.0-JBstd) #Kevin's function: def diamondnorm( jamiolkowski_matrix ): jamiolkowski_matrix = JBstd - JAstd # Here we define a bunch of auxiliary matrices because CVXPY doesn't use complex numbers K = jamiolkowski_matrix.real # J.real L = jamiolkowski_matrix.imag # J.imag if old_cvxpy: Y = _cvxpy.Variable(dim, dim) # X.real Z = _cvxpy.Variable(dim, dim) # X.imag sig0 = _cvxpy.Variable(smallDim, smallDim) # rho0.real sig1 = _cvxpy.Variable(smallDim, smallDim) # rho1.real tau0 = _cvxpy.Variable(smallDim, smallDim) # rho1.imag tau1 = _cvxpy.Variable(smallDim, smallDim) # rho1.imag else: Y = _cvxpy.Variable(shape=(dim, dim)) # X.real Z = _cvxpy.Variable(shape=(dim, dim)) # X.imag sig0 = _cvxpy.Variable(shape=(smallDim, smallDim)) # rho0.real sig1 = _cvxpy.Variable(shape=(smallDim, smallDim)) # rho1.real tau0 = _cvxpy.Variable(shape=(smallDim, smallDim)) # rho1.imag tau1 = _cvxpy.Variable(shape=(smallDim, smallDim)) # rho1.imag ident = _np.identity(smallDim, 'd') objective = _cvxpy.Maximize(_cvxpy.trace(K.T * Y + L.T * Z)) constraints = [_cvxpy.bmat([ [_cvxpy.kron(ident, sig0), Y, -_cvxpy.kron(ident, tau0), -Z], [Y.T, _cvxpy.kron(ident, sig1), Z.T, -_cvxpy.kron(ident, tau1)], [_cvxpy.kron(ident, tau0), Z, _cvxpy.kron(ident, sig0), Y], [-Z.T, _cvxpy.kron(ident, tau1), Y.T, _cvxpy.kron(ident, sig1)]]) >> 0, _cvxpy.bmat([[sig0, -tau0], [tau0, sig0]]) >> 0, _cvxpy.bmat([[sig1, -tau1], [tau1, sig1]]) >> 0, sig0 == sig0.T, sig1 == sig1.T, tau0 == -tau0.T, tau1 == -tau1.T, _cvxpy.trace(sig0) == 1., _cvxpy.trace(sig1) == 1.] prob = _cvxpy.Problem(objective, constraints) try: prob.solve(solver="CVXOPT") # prob.solve(solver="ECOS") # prob.solve(solver="SCS")#This always fails except _cvxpy.error.SolverError as e: _warnings.warn("CVXPY failed: %s - diamonddist returning -2!" % str(e)) return (-2, _np.zeros((dim, dim))) if return_x else -2 except: _warnings.warn("CVXOPT failed (uknown err) - diamonddist returning -2!") return (-2, _np.zeros((dim, dim))) if return_x else -2 #Validate result #assert( abs(_np.trace(_np.dot(K.T,Y.value) + _np.dot(L.T,Z.value))-prob.value) < 1e-6 ), \ # "Diamondnorm mismatch" if return_x: X = Y.value + 1j * Z.value # encodes state at which maximum trace-distance occurs return prob.value, X else: return prob.value def jtracedist(A, B, mxBasis='pp'): # Jamiolkowski trace distance: Tr(|J(A)-J(B)|) """ Compute the Jamiolkowski trace distance between operation matrices A and B, given by: D = 0.5 * Tr( sqrt{ (J(A)-J(B))^2 } ) where J(.) is the Jamiolkowski isomorphism map that maps a operation matrix to it's corresponding Choi Matrix. Parameters ---------- A, B : numpy array The matrices to compute the distance between. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). """ JA = _jam.fast_jamiolkowski_iso_std(A, mxBasis) JB = _jam.fast_jamiolkowski_iso_std(B, mxBasis) return tracedist(JA, JB) def entanglement_fidelity(A, B, mxBasis='pp'): """ Returns the "entanglement" process fidelity between gate matrices A and B given by : F = Tr( sqrt{ sqrt(J(A)) * J(B) * sqrt(J(A)) } )^2 where J(.) is the Jamiolkowski isomorphism map that maps a operation matrix to it's corresponding Choi Matrix. Parameters ---------- A, B : numpy array The matrices to compute the fidelity between. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The basis of the matrices. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). """ d2 = A.shape[0] def isTP(x): return _np.isclose(x[0, 0], 1.0) and all( [_np.isclose(x[0, i], 0) for i in range(d2)]) def isUnitary(x): return _np.allclose(_np.identity(d2, 'd'), _np.dot(x, x.conjugate().T)) if isTP(A) and isTP(B) and isUnitary(B): # then assume TP-like gates & use simpler formula TrLambda = _np.trace(_np.dot(A, B.conjugate().T)) # same as using _np.linalg.inv(B) d2 = A.shape[0] return TrLambda / d2 JA = _jam.jamiolkowski_iso(A, mxBasis, mxBasis) JB = _jam.jamiolkowski_iso(B, mxBasis, mxBasis) return fidelity(JA, JB) def average_gate_fidelity(A, B, mxBasis='pp'): """ Computes the average gate fidelity (AGF) between two gates. Average gate fidelity (F_g) is related to entanglement fidelity (F_p), via: F_g = (d * F_p + 1)/(1 + d), where d is the Hilbert space dimension. This formula, and the definition of AGF, can be found in Phys. Lett. A 303 249-252 (2002). Parameters ---------- A : array or gate The gate to compute the AGI to B of. E.g., an imperfect implementation of B. B : array or gate The gate to compute the AGI to A of. E.g., the target gate corresponding to A. mxBasis : {"std","gm","pp"} or Basis object, optional The basis of the matrices. Returns ------- AGI : float The AGI of A to B. """ d = int(round(_np.sqrt(A.shape[0]))) PF = entanglement_fidelity(A, B, mxBasis=mxBasis) AGF = (d * PF + 1) / (1 + d) return float(AGF) def average_gate_infidelity(A, B, mxBasis="gm"): """ Computes the average gate infidelity (AGI) between two gates. Average gate infidelity is related to entanglement infidelity (EI) via: AGI = (d * (1-EI) + 1)/(1 + d), where d is the Hilbert space dimension. This formula, and the definition of AGI, can be found in Phys. Lett. A 303 249-252 (2002). Parameters ---------- A : array or gate The gate to compute the AGI to B of. E.g., an imperfect implementation of B. B : array or gate The gate to compute the AGI to A of. E.g., the target gate corresponding to A. mxBasis : {"std","gm","pp"} or Basis object, optional The basis of the matrices. Returns ---------- AGI : float The AGI of A to B. """ return 1 - average_gate_fidelity(A, B, mxBasis) def entanglement_infidelity(A, B, mxBasis='pp'): """ Returns the entanglement infidelity (EI) between gate matrices A and B given by : EI = 1 - Tr( sqrt{ sqrt(J(A)) * J(B) * sqrt(J(A)) } )^2 where J(.) is the Jamiolkowski isomorphism map that maps a operation matrix to it's corresponding Choi Matrix. Parameters ---------- A, B : numpy array The matrices to compute the fidelity between. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The basis of the matrices. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). Returns ------- EI : float The EI of A to B. """ return 1 - float(entanglement_fidelity(A, B, mxBasis)) def gateset_infidelity(mdl, target_model, itype='EI', weights=None, mxBasis=None): """ Computes the average-over-gates of the infidelity between gates in `mdl` and the gates in `target_model`. If `itype` is 'EI' then the "infidelity" is the entanglement infidelity; if `itype` is 'AGI' then the "infidelity" is the average gate infidelity (AGI and EI are related by a dimension dependent constant). This is the quantity that RB error rates are sometimes claimed to be related to directly related. Parameters ---------- mdl : Model The model to calculate the average infidelity, to `target_model`, of. target_model : Model The model to calculate the average infidelity, to `mdl`, of. itype : str, optional The infidelity type. Either 'EI', corresponding to entanglement infidelity, or 'AGI', corresponding to average gate infidelity. weights : dict, optional If not None, a dictionary of floats, whereby the keys are the gates in `mdl` and the values are, possibly unnormalized, probabilities. These probabilities corresponding to the weighting in the average, so if the model contains gates A and B and weights[A] = 2 and weights[B] = 1 then the output is Inf(A)*2/3 + Inf(B)/3 where Inf(X) is the infidelity (to the corresponding element in the other model) of X. If None, a uniform-average is taken, equivalent to setting all the weights to 1. mxBasis : {"std","gm","pp"} or Basis object, optional The basis of the models. If None, the basis is obtained from the model. Returns ------- float The weighted average-over-gates infidelity between the two models. """ assert(itype == 'AGI' or itype == 'EI'), \ "The infidelity type must be `AGI` (average gate infidelity) or `EI` (entanglement infidelity)" if mxBasis is None: mxBasis = mdl.basis sum_of_weights = 0 I_list = [] for gate in list(target_model.operations.keys()): if itype == 'AGI': I = average_gate_infidelity(mdl.operations[gate], target_model.operations[gate], mxBasis=mxBasis) if itype == 'EI': I = entanglement_infidelity(mdl.operations[gate], target_model.operations[gate], mxBasis=mxBasis) if weights is None: w = 1 else: w = weights[gate] I_list.append(w * I) sum_of_weights += w assert(sum_of_weights > 0), "The sum of the weights should be positive!" AI = _np.sum(I_list) / sum_of_weights return AI def unitarity(A, mxBasis="gm"): """ Returns the "unitarity" of a channel, as defined in Wallman et al, ``Estimating the Coherence of noise'' NJP 17 113020 (2015). The unitarity is given by (Prop 1 in Wallman et al): u(A) = Tr( A_u^{\dagger} A_u ) / (d^2 - 1), where A_u is the unital submatrix of A, and d is the dimension of the Hilbert space. When A is written in any basis for which the first element is the normalized identity (e.g., the pp or gm bases), The unital submatrix of A is the matrix obtained when the top row and left hand column is removed from A. Parameters ---------- A : array or gate The gate for which the unitarity is to be computed. mxBasis : {"std","gm","pp"} or a Basis object, optional The basis of the matrix. d : int, optional The dimension of the Hilbert space. Returns ---------- u : float The unitarity of the gate A. """ d = int(round(_np.sqrt(A.shape[0]))) basisMxs = _bt.basis_matrices(mxBasis, A.shape[0]) if _np.allclose(basisMxs[0], _np.identity(d, 'd')): B = A else: B = _bt.change_basis(A, mxBasis, "gm") # everything should be able to be put in the "gm" basis unital = B[1:d**2, 1:d**2] u = _np.trace(_np.dot(_np.conj(_np.transpose(unital)), unital)) / (d**2 - 1) return u def fidelity_upper_bound(operationMx): """ Get an upper bound on the fidelity of the given operation matrix with any unitary operation matrix. The closeness of the result to one tells how "unitary" the action of operationMx is. Parameters ---------- operationMx : numpy array The operation matrix to act on. Returns ------- float The resulting upper bound on fidelity(operationMx, anyUnitaryGateMx) """ choi = _jam.jamiolkowski_iso(operationMx, choiMxBasis="std") choi_evals, choi_evecs = _np.linalg.eig(choi) maxF_direct = max([_np.sqrt(max(ev.real, 0.0)) for ev in choi_evals]) ** 2 iMax = _np.argmax([ev.real for ev in choi_evals]) # index of maximum eigenval closestVec = choi_evecs[:, iMax:(iMax + 1)] # #print "DEBUG: closest evec = ", closestUnitaryVec # new_evals = _np.zeros( len(closestUnitaryVec) ); new_evals[iClosestU] = 1.0 # # gives same result: # closestUnitaryJmx = _np.dot(choi_evecs, _np.dot( _np.diag(new_evals), _np.linalg.inv(choi_evecs) ) ) closestJmx = _np.kron(closestVec, _np.transpose(_np.conjugate(closestVec))) # closest rank-1 Jmx closestJmx /= _mt.trace(closestJmx) # normalize so trace of Jmx == 1.0 maxF = fidelity(choi, closestJmx) if not _np.isnan(maxF): #Uncomment for debugging #if abs(maxF - maxF_direct) >= 1e-6: # print "DEBUG: operationMx:\n",operationMx # print "DEBUG: choiMx:\n",choi # print "DEBUG choi_evals = ",choi_evals, " iMax = ",iMax # #print "DEBUG: J = \n", closestUnitaryJmx # print "DEBUG: eigvals(J) = ", _np.linalg.eigvals(closestJmx) # print "DEBUG: trace(J) = ", _mt.trace(closestJmx) # print "DEBUG: maxF = %f, maxF_direct = %f" % (maxF, maxF_direct) # raise ValueError("ERROR: maxF - maxF_direct = %f" % (maxF -maxF_direct)) assert(abs(maxF - maxF_direct) < 1e-6) else: maxF = maxF_direct # case when maxF is nan, due to scipy sqrtm function being buggy - just use direct F closestOpMx = _jam.jamiolkowski_iso_inv(closestJmx, choiMxBasis="std") return maxF, closestOpMx #closestU_evals, closestU_evecs = _np.linalg.eig(closestUnitaryGateMx) #print "DEBUG: U = \n", closestUnitaryGateMx #print "DEBUG: closest U evals = ",closestU_evals #print "DEBUG: evecs = \n",closestU_evecs def get_povm_map(model, povmlbl): """ Constructs a gate-like quantity for the POVM within `model`. This is done by embedding the `k`-outcome classical output space of the POVM in the Hilbert-Schmidt space of `k` by `k` density matrices by placing the classical probability distribution along the diagonal of the density matrix. Currently, this is only implemented for the case when `k` equals `d`, the dimension of the POVM's Hilbert space. Parameters ---------- model : Model The model supplying the POVM effect vectors and the basis those vectors are in. povmlbl : str The POVM label Returns ------- numpy.ndarray The matrix of the "POVM map" in the `model.basis` basis. """ povmVectors = [v.todense()[:, None] for v in model.povms[povmlbl].values()] if isinstance(model.basis, _DirectSumBasis): # HACK - need to get this to work with general bases blkDims = [int(_np.sqrt(comp.dim)) for comp in model.basis.component_bases] else: blkDims = [int(round(_np.sqrt(model.dim)))] # [d] where density matrix is dxd nV = len(povmVectors) #assert(d**2 == model.dim), "Model dimension (%d) is not a perfect square!" % model.dim #assert( nV**2 == d ), "Can only compute POVM metrics when num of effects == H space dimension" # I don't think above assert is needed - should work in general (Robin?) povm_mx = _np.concatenate(povmVectors, axis=1).T # "povm map" ( B(H) -> S_k ) (shape= nV,model.dim) Sk_embedding_in_std = _np.zeros((model.dim, nV)) for i in range(nV): Sk_embedding_in_std[:, i] = _flat_mut_blks(i, i, blkDims) std_to_basis = model.basis.reverse_transform_matrix("std") # _bt.transform_matrix("std", model.basis, blkDims) assert(std_to_basis.shape == (model.dim, model.dim)) return _np.dot(std_to_basis, _np.dot(Sk_embedding_in_std, povm_mx)) def povm_fidelity(model, targetModel, povmlbl): """ Computes the process (entanglement) fidelity between POVM maps. Parameters ---------- model, targetModel : Model Models containing the two POVMs to compare. povmlbl : str The POVM label Returns ------- float """ povm_mx = get_povm_map(model, povmlbl) target_povm_mx = get_povm_map(targetModel, povmlbl) return entanglement_fidelity(povm_mx, target_povm_mx, targetModel.basis) def povm_jtracedist(model, targetModel, povmlbl): """ Computes the Jamiolkowski trace distance between POVM maps using :func:`jtracedist`. Parameters ---------- model, targetModel : Model Models containing the two POVMs to compare. povmlbl : str The POVM label Returns ------- float """ povm_mx = get_povm_map(model, povmlbl) target_povm_mx = get_povm_map(targetModel, povmlbl) return jtracedist(povm_mx, target_povm_mx, targetModel.basis) def povm_diamonddist(model, targetModel, povmlbl): """ Computes the diamond distance between POVM maps using :func:`diamonddist`. Parameters ---------- model, targetModel : Model Models containing the two POVMs to compare. povmlbl : str The POVM label Returns ------- float """ povm_mx = get_povm_map(model, povmlbl) target_povm_mx = get_povm_map(targetModel, povmlbl) return diamonddist(povm_mx, target_povm_mx, targetModel.basis) #decompose operation matrix into axis of rotation, etc def decompose_gate_matrix(operationMx): """ Compute how the action of a operation matrix can be is decomposed into fixed points, axes of rotation, angles of rotation, and decays. Also determines whether a gate appears to be valid and/or unitary. Parameters ---------- operationMx : numpy array The operation matrix to act on. Returns ------- dict A dictionary describing the decomposed action. Keys are: 'isValid' : bool whether decomposition succeeded 'isUnitary' : bool whether operationMx describes unitary action 'fixed point' : numpy array the fixed point of the action 'axis of rotation' : numpy array or nan the axis of rotation 'decay of diagonal rotation terms' : float decay of diagonal terms 'rotating axis 1' : numpy array or nan 1st axis orthogonal to axis of rotation 'rotating axis 2' : numpy array or nan 2nd axis orthogonal to axis of rotation 'decay of off diagonal rotation terms' : float decay of off-diagonal terms 'pi rotations' : float angle of rotation in units of pi radians """ op_evals, op_evecs = _np.linalg.eig(_np.asarray(operationMx)) # fp_eigenvec = None # aor_eval = None; aor_eigenvec = None # ra_eval = None; ra1_eigenvec = None; ra2_eigenvec = None TOL = 1e-4 # 1e-7 unit_eval_indices = [i for (i, ev) in enumerate(op_evals) if abs(ev - 1.0) < TOL] #unit_eval_indices = [ i for (i,ev) in enumerate(op_evals) if ev > (1.0-TOL) ] conjpair_eval_indices = [] for (i, ev) in enumerate(op_evals): if i in unit_eval_indices: continue # don't include the unit eigenvalues in the conjugate pair count # don't include existing conjugate pairs if any([(i in conjpair) for conjpair in conjpair_eval_indices]): continue for (j, ev2) in enumerate(op_evals[i + 1:]): if abs(ev - _np.conjugate(ev2)) < TOL: conjpair_eval_indices.append((i, j + (i + 1))) break # don't pair i-th eigenvalue with any other (pairs should be disjoint) real_eval_indices = [] # indices of real eigenvalues that are not units or a part of any conjugate pair complex_eval_indices = [] # indices of complex eigenvalues that are not units or a part of any conjugate pair for (i, ev) in enumerate(op_evals): if i in unit_eval_indices: continue # don't include the unit eigenvalues if any([(i in conjpair) for conjpair in conjpair_eval_indices]): continue # don't include the conjugate pairs if abs(ev.imag) < TOL: real_eval_indices.append(i) else: complex_eval_indices.append(i) #if len(real_eval_indices + unit_eval_indices) > 0: # max_real_eval = max([ op_evals[i] for i in real_eval_indices + unit_eval_indices]) # min_real_eval = min([ op_evals[i] for i in real_eval_indices + unit_eval_indices]) #else: # max_real_eval = _np.nan # min_real_eval = _np.nan # #fixed_points = [ op_evecs[:,i] for i in unit_eval_indices ] #real_eval_axes = [ op_evecs[:,i] for i in real_eval_indices ] #conjpair_eval_axes = [ (op_evecs[:,i],op_evecs[:,j]) for (i,j) in conjpair_eval_indices ] # #ret = { } nQubits = _np.log2(operationMx.shape[0]) / 2 if nQubits == 1: #print "DEBUG: 1 qubit decomp --------------------------" #print " --> evals = ", op_evals #print " --> unit eval indices = ", unit_eval_indices #print " --> conj eval indices = ", conjpair_eval_indices #print " --> unpaired real eval indices = ", real_eval_indices #Special case: if have two conjugate pairs, check if one (or both) are real # and break the one with the largest (real) value into two unpaired real evals. if len(conjpair_eval_indices) == 2: iToBreak = None if abs(_np.imag(op_evals[conjpair_eval_indices[0][0]])) < TOL and \ abs(_np.imag(op_evals[conjpair_eval_indices[1][0]])) < TOL: iToBreak = _np.argmax([_np.real(conjpair_eval_indices[0][0]), _np.real(conjpair_eval_indices[1][0])]) elif abs(_np.imag(op_evals[conjpair_eval_indices[0][0]])) < TOL: iToBreak = 0 elif abs(_np.imag(op_evals[conjpair_eval_indices[1][0]])) < TOL: iToBreak = 1 if iToBreak is not None: real_eval_indices.append(conjpair_eval_indices[iToBreak][0]) real_eval_indices.append(conjpair_eval_indices[iToBreak][1]) del conjpair_eval_indices[iToBreak] #Find eigenvector corresponding to fixed point (or closest we can get). This # should be a unit eigenvalue with identity eigenvector. if len(unit_eval_indices) > 0: #Find linear least squares solution within possibly degenerate unit-eigenvalue eigenspace # of eigenvector closest to identity density mx (the desired fixed point), then orthogonalize # the remaining eigenvectors w.r.t this one. A = _np.take(op_evecs, unit_eval_indices, axis=1) b = _np.array([[1], [0], [0], [0]], 'd') # identity density mx x = _np.dot(_np.linalg.pinv(_np.dot(A.T, A)), _np.dot(A.T, b)) fixedPtVec = _np.dot(A, x) # fixedPtVec / _np.linalg.norm(fixedPtVec) fixedPtVec = fixedPtVec[:, 0] iLargestContrib = _np.argmax(_np.abs(x)) # index of gate eigenvector which contributed the most for ii, i in enumerate(unit_eval_indices): if ii == iLargestContrib: op_evecs[:, i] = fixedPtVec iFixedPt = i else: op_evecs[:, i] = op_evecs[:, i] - _np.vdot(fixedPtVec, op_evecs[:, i]) * fixedPtVec for jj, j in enumerate(unit_eval_indices[:ii]): if jj == iLargestContrib: continue op_evecs[:, i] = op_evecs[:, i] - _np.vdot(op_evecs[:, j], op_evecs[:, i]) * op_evecs[:, j] op_evecs[:, i] /= _np.linalg.norm(op_evecs[:, i]) elif len(real_eval_indices) > 0: # just take eigenvector corresponding to the largest real eigenvalue? #iFixedPt = real_eval_indices[ _np.argmax( [ op_evals[i] for i in real_eval_indices ] ) ] # ...OR take eigenvector corresponding to a real unpaired eigenvalue closest to identity: idmx = _np.array([[1], [0], [0], [0]], 'd') # identity density mx iFixedPt = real_eval_indices[_np.argmin([_np.linalg.norm(op_evecs[i] - idmx) for i in real_eval_indices])] else: #No unit or real eigenvalues => two complex conjugate pairs or unpaired complex evals --> bail out return {'isValid': False, 'isUnitary': False, 'msg': "All evals are complex."} #Find eigenvector corresponding to axis of rotation: find the *largest* unpaired real/unit eval indsToConsider = (unit_eval_indices + real_eval_indices)[:] del indsToConsider[indsToConsider.index(iFixedPt)] # don't consider fixed pt evec if len(indsToConsider) > 0: iRotAxis = indsToConsider[_np.argmax([op_evals[i] for i in indsToConsider])] else: #No unit or real eigenvalues => an unpaired complex eval --> bail out return {'isValid': False, 'isUnitary': False, 'msg': "Unpaired complex eval."} #There are only 2 eigenvalues left -- hopefully a conjugate pair giving rotation inds = list(range(4)) del inds[inds.index(iFixedPt)] del inds[inds.index(iRotAxis)] if abs(op_evals[inds[0]] - _np.conjugate(op_evals[inds[1]])) < TOL: iConjPair1, iConjPair2 = inds else: return {'isValid': False, 'isUnitary': False, 'msg': "No conjugate pair for rotn."} return {'isValid': True, 'isUnitary': bool(len(unit_eval_indices) >= 2), 'fixed point': op_evecs[:, iFixedPt], 'axis of rotation': op_evecs[:, iRotAxis], 'rotating axis 1': op_evecs[:, iConjPair1], 'rotating axis 2': op_evecs[:, iConjPair2], 'decay of diagonal rotation terms': 1.0 - abs(op_evals[iRotAxis]), 'decay of off diagonal rotation terms': 1.0 - abs(op_evals[iConjPair1]), 'pi rotations': _np.angle(op_evals[iConjPair1]) / _np.pi, 'msg': "Success"} else: return {'isValid': False, 'isUnitary': False, 'msg': "Unsupported number of qubits: %d" % nQubits} def state_to_dmvec(psi): """ Compute the vectorized density matrix which acts as the state `psi`. This is just the outer product map |psi> => |psi><psi| with the output flattened, i.e. `dot(psi, conjugate(psi).T)`. Parameters ---------- psi : numpy array The state vector. Returns ------- numpy array The vectorized density matrix. """ psi = psi.reshape((psi.size, 1)) # convert to (N,1) shape if necessary dm = _np.dot(psi, _np.conjugate(psi.T)) return dm.flatten() def dmvec_to_state(dmvec, tol=1e-6): """ Compute the pure state describing the action of density matrix vector `dmvec`. If `dmvec` represents a mixed state, ValueError is raised. Parameters ---------- dmvec : numpy array The vectorized density matrix, assumed to be in the standard (matrix unit) basis. tol : float, optional tolerance for determining whether an eigenvalue is zero. Returns ------- numpy array The pure state, as a column vector of shape = (N,1) """ d2 = dmvec.size; d = int(round(_np.sqrt(d2))) dm = dmvec.reshape((d, d)) evals, evecs = _np.linalg.eig(dm) k = None for i, ev in enumerate(evals): if abs(ev) > tol: if k is None: k = i else: raise ValueError("Cannot convert mixed dmvec to pure state!") if k is None: raise ValueError("Cannot convert zero dmvec to puse state!") psi = evecs[:, k] * _np.sqrt(evals[k]) psi.shape = (d, 1) return psi def unitary_to_process_mx(U): """ Compute the super-operator which acts on (row)-vectorized density matrices from a unitary operator (matrix) U which acts on state vectors. This super-operator is given by the tensor product of U and conjugate(U), i.e. kron(U,U.conj). Parameters ---------- U : numpy array The unitary matrix which acts on state vectors. Returns ------- numpy array The super-operator process matrix. """ # U -> kron(U,Uc) since U rho U_dag -> kron(U,Uc) # since AXB --row-vectorize--> kron(A,B.T)*vec(X) return _np.kron(U, _np.conjugate(U)) def process_mx_to_unitary(superop): """ Compute the unitary corresponding to the (unitary-action!) super-operator `superop` which acts on (row)-vectorized density matrices. The super-operator must be of the form `kron(U,U.conj)` or an error will be thrown. Parameters ---------- superop : numpy array The superoperator matrix which acts on vectorized density matrices (in the 'std' matrix-unit basis). Returns ------- numpy array The unitary matrix which acts on state vectors. """ d2 = superop.shape[0]; d = int(round(_np.sqrt(d2))) U = _np.empty((d, d), 'complex') for i in range(d): densitymx_i = _np.zeros((d, d), 'd'); densitymx_i[i, i] = 1.0 # |i><i| UiiU = _np.dot(superop, densitymx_i.flat).reshape((d, d)) # U|i><i|U^dag if i > 0: j = 0 densitymx_ij = _np.zeros((d, d), 'd'); densitymx_ij[i, j] = 1.0 # |i><i| UijU = _np.dot(superop, densitymx_ij.flat).reshape((d, d)) # U|i><j|U^dag Uj = U[:, j] Ui = _np.dot(UijU, Uj) else: ##method1: use random state projection #rand_state = _np.random.rand(d) #projected_rand_state = _np.dot(UiiU, rand_state) #assert(_np.linalg.norm(projected_rand_state) > 1e-8) #projected_rand_state /= _np.linalg.norm(projected_rand_state) #Ui = projected_rand_state #method2: get eigenvector corresponding to largest eigenvalue (more robust) evals, evecs = _np.linalg.eig(UiiU) imaxeval = _np.argmax(_np.abs(evals)) #TODO: assert other eigenvalues are much smaller? Ui = evecs[:, imaxeval] Ui /= _np.linalg.norm(Ui) U[:, i] = Ui return U def spam_error_generator(spamvec, target_spamvec, mxBasis, typ="logGTi"): """ Construct an error generator from a SPAM vector and it's target. Computes the value of the error generator given by `errgen = log( diag(spamvec / target_spamvec) )`, where division is element-wise. This results in a (non-unique) error generator matrix `E` such that `spamvec = exp(E) * target_spamvec`. Note: This is currently of very limited use, as the above algorithm fails whenever `target_spamvec` has zero elements where `spamvec` doesn't. Parameters ---------- spamvec : ndarray The SPAM vector. target_spamvec : ndarray The target SPAM vector. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). typ : {"logGTi"} The type of error generator to compute. Allowed values are: - "logGTi" : errgen = log( diag(spamvec / target_spamvec) ) Returns ------- errgen : ndarray The error generator. """ # Compute error generator for rho: rho = exp(E)rho0 => rho = A*rho0 => A = diag(rho/rho0) assert(typ == "logGTi"), "Only logGTi type is supported so far" d2 = len(spamvec) errgen = _np.zeros((d2, d2), 'd') # type assumes this is density-mx evolution diags = [] for a, b in zip(spamvec, target_spamvec): if _np.isclose(b, 0.0): if _np.isclose(a, b): d = 1 else: raise ValueError("Cannot take spam_error_generator") else: d = a / b diags.append(d) errgen[_np.diag_indices(d2)] = diags return _spl.logm(errgen) def error_generator(gate, target_op, mxBasis, typ="logG-logT"): """ Construct the error generator from a gate and its target. Computes the value of the error generator given by errgen = log( inv(target_op) * gate ), so that gate = target_op * exp(errgen). Parameters ---------- gate : ndarray The operation matrix target_op : ndarray The target operation matrix mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). typ : {"logG-logT", "logTiG", "logGTi"} The type of error generator to compute. Allowed values are: - "logG-logT" : errgen = log(gate) - log(target_op) - "logTiG" : errgen = log( dot(inv(target_op), gate) ) - "logGTi" : errgen = log( dot(gate,inv(target_op)) ) Returns ------- errgen : ndarray The error generator. """ TOL = 1e-8 if typ == "logG-logT": try: logT = _mt.unitary_superoperator_matrix_log(target_op, mxBasis) except AssertionError: # if not unitary, fall back to just taking the real log logT = _mt.real_matrix_log(target_op, "raise", TOL) # make a fuss if this can't be done logG = _mt.approximate_matrix_log(gate, logT) # Both logG and logT *should* be real, so we just take the difference. if _np.linalg.norm(_np.imag(logG)) < TOL and \ _np.linalg.norm(_np.imag(logT)) < TOL: return _np.real(logG - logT) #Otherwise, there could be branch cut issues or worse, so just # raise an error for now (maybe return a dummy if needed elsewhere?) raise ValueError("Could not construct a real logarithms for the " "'logG-logT' generator. Perhaps you should use " "the 'logTiG' or 'logGTi' generator instead?") elif typ == "logTiG": target_op_inv = _spl.inv(target_op) try: errgen = _mt.near_identity_matrix_log(_np.dot(target_op_inv, gate), TOL) except AssertionError: # not near the identity, fall back to the real log _warnings.warn(("Near-identity matrix log failed; falling back " "to approximate log for logTiG error generator")) errgen = _mt.real_matrix_log(_np.dot(target_op_inv, gate), "warn", TOL) if _np.linalg.norm(errgen.imag) > TOL: _warnings.warn("Falling back to approximate log for logTiG error generator") errgen = _mt.approximate_matrix_log(_np.dot(target_op_inv, gate), _np.zeros(gate.shape, 'd'), TOL=TOL) elif typ == "logGTi": target_op_inv = _spl.inv(target_op) try: errgen = _mt.near_identity_matrix_log(_np.dot(gate, target_op_inv), TOL) except AssertionError as e: # not near the identity, fall back to the real log _warnings.warn(("Near-identity matrix log failed; falling back " "to approximate log for logGTi error generator:\n%s") % str(e)) errgen = _mt.real_matrix_log(_np.dot(gate, target_op_inv), "warn", TOL) if _np.linalg.norm(errgen.imag) > TOL: _warnings.warn("Falling back to approximate log for logGTi error generator") errgen = _mt.approximate_matrix_log(_np.dot(gate, target_op_inv), _np.zeros(gate.shape, 'd'), TOL=TOL) else: raise ValueError("Invalid error-generator type: %s" % typ) if _np.linalg.norm(_np.imag(errgen)) > TOL: raise ValueError("Could not construct a real generator!") #maybe this is actually ok, but a complex error generator will # need to be plotted differently, etc -- TODO return _np.real(errgen) def operation_from_error_generator(error_gen, target_op, typ="logG-logT"): """ Construct a gate from an error generator and a target gate. Inverts the computation fone in :func:`error_generator` and returns the value of the gate given by gate = target_op * exp(error_gen). Parameters ---------- error_gen : ndarray The error generator matrix target_op : ndarray The target operation matrix typ : {"logG-logT", "logTiG"} The type of error generator to compute. Allowed values are: - "logG-logT" : errgen = log(gate) - log(target_op) - "logTiG" : errgen = log( dot(inv(target_op), gate) ) Returns ------- ndarray The operation matrix. """ if typ == "logG-logT": return _spl.expm(error_gen + _spl.logm(target_op)) elif typ == "logTiG": return _np.dot(target_op, _spl.expm(error_gen)) elif typ == "logGTi": return _np.dot(_spl.expm(error_gen), target_op) else: raise ValueError("Invalid error-generator type: %s" % typ) def std_scale_factor(dim, projection_type): """ Returns the multiplicative scaling that should be applied to the output of :func"`std_error_generators`, before using them as projectors, in order to compute the "standard" reported projection onto that type of error (i.e. the coefficient of the standard generator terms built un-normalized-Paulis). Parameters ---------- dim : int The dimension of the error generators; also the associated gate dimension. This must be a perfect square, as `sqrt(dim)` is the dimension of density matrices. For a single qubit, dim == 4. projection_type : {"hamiltonian", "stochastic", "affine"} The type/class of error generators to get the scaling for. Returns ------- float """ d2 = dim d = int(_np.sqrt(d2)) if projection_type == "hamiltonian": scaleFctr = 1.0 / (d * _np.sqrt(2)) # so projection is coefficient of Hamiltonian term (w/un-normalized Paulis) elif projection_type == "stochastic": scaleFctr = 1.0 / d # so projection is coefficient of P*rho*P stochastic term in generator (w/un-normalized Paulis) elif projection_type == "affine": scaleFctr = 1.0 # so projection is coefficient of P affine term in generator (w/un-normalized Paulis) else: raise ValueError("Invalid projection_type argument: %s" % projection_type) return scaleFctr def std_error_generators(dim, projection_type, projection_basis): """ Compute the gate error generators for a standard set of errors which correspond to "Hamiltonian"- or "Stochastic"-type errors in terms of the elements of the specified basis. Parameters ---------- dim : int The dimension of the error generators to be returned. This is also the associated gate dimension, and must be a perfect square, as `sqrt(dim)` is the dimension of density matrices. For a single qubit, dim == 4. projection_type : {"hamiltonian", "stochastic", "affine"} The type of error generators to construct. If "hamiltonian", then the Hamiltonian generators which take a density matrix rho -> -i*[ H, rho ] for Pauli-product matrix H. If "stochastic", then the Stochastic error generators which take rho -> P*rho*P for Pauli-product matrix P. If "affine", then the affine generators which take rho -> P. projection_basis : {'std', 'gm', 'pp', 'qt'} Which basis is used to construct the error generators. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp) and Qutrit (qt). Returns ------- generators : numpy.ndarray An array of shape (#basis-elements,dim,dim). `generators[i]` is the generator corresponding to the ith basis matrix in the *std* (matrix unit) basis. (Note that in most cases #basis-elements == dim, so the size of `generators` is (dim,dim,dim) ). Each generator is normalized so that as a vector it has unit Frobenius norm. """ d2 = dim d = int(_np.sqrt(d2)) #Get a list of the basis matrices mxs = _bt.basis_matrices(projection_basis, d2) assert(len(mxs) <= d2) # OK if there are fewer basis matrices (e.g. for bases w/multiple blocks) assert(_np.isclose(d * d, d2)) # d2 must be a perfect square lindbladMxs = _np.empty((len(mxs), d2, d2), 'complex') for i, basisMx in enumerate(mxs): if projection_type == "hamiltonian": lindbladMxs[i] = _lt.hamiltonian_to_lindbladian(basisMx) # in std basis elif projection_type == "stochastic": lindbladMxs[i] = _lt.stochastic_lindbladian(basisMx) # in std basis elif projection_type == "affine": lindbladMxs[i] = _lt.affine_lindbladian(basisMx) # in std basis else: raise ValueError("Invalid projection_type argument: %s" % projection_type) norm = _np.linalg.norm(lindbladMxs[i].flat) if not _np.isclose(norm, 0): lindbladMxs[i] /= norm # normalize projector assert(_np.isclose(_np.linalg.norm(lindbladMxs[i].flat), 1.0)) return lindbladMxs def std_errgen_projections(errgen, projection_type, projection_basis, mxBasis="gm", return_generators=False, return_scale_fctr=False): """ Compute the projections of a gate error generator onto generators for a standard set of errors constructed from the elements of a specified basis. Parameters ---------- errgen: : ndarray The error generator matrix to project. projection_type : {"hamiltonian", "stochastic", "affine"} The type of error generators to project the gate error generator onto. If "hamiltonian", then use the Hamiltonian generators which take a density matrix rho -> -i*[ H, rho ] for Pauli-product matrix H. If "stochastic", then use the Stochastic error generators which take rho -> P*rho*P for Pauli-product matrix P (recall P is self adjoint). If "affine", then use the affine error generators which take rho -> P (superop is |P>><<1|). projection_basis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). return_generators : bool, optional If True, return the error generators projected against along with the projection values themseves. return_scale_fctr : bool, optional If True, also return the scaling factor that was used to multply the projections onto *normalized* error generators to get the returned values. Returns ------- projections : numpy.ndarray An array of length equal to the number of elements in the basis used to construct the projectors. Typically this is is also the dimension of the gate (e.g. 4 for a single qubit). generators : numpy.ndarray Only returned when `return_generators == True`. An array of shape (#basis-els,op_dim,op_dim) such that `generators[i]` is the generator corresponding to the i-th basis element. Note that these matricies are in the *std* (matrix unit) basis. scale : float Only returned when `return_scale_fctr == True`. A mulitplicative scaling constant that *has already been applied* to `projections`. """ if isinstance(mxBasis, _Basis): errgen_std = _bt.change_basis(errgen, mxBasis, mxBasis.equivalent('std')) #expand operation matrix so it acts on entire space of dmDim x dmDim density matrices errgen_std = _bt.resize_std_mx(errgen_std, 'expand', mxBasis.equivalent('std'), mxBasis.simple_equivalent('std')) else: errgen_std = _bt.change_basis(errgen, mxBasis, "std") d2 = errgen_std.shape[0] d = int(_np.sqrt(d2)) # nQubits = _np.log2(d) #Get a list of the d2 generators (in corresspondence with the # Pauli-product matrices given by _basis.pp_matrices(d) ). lindbladMxs = std_error_generators(d2, projection_type, projection_basis) # in std basis assert(len(lindbladMxs) <= d2) # can be fewer projection matrices (== lenght of projection_basis) assert(_np.isclose(d * d, d2)) # d2 must be a perfect square projections = _np.empty(len(lindbladMxs), 'd') for i, lindbladMx in enumerate(lindbladMxs): proj = _np.real_if_close(_np.vdot(errgen_std.flatten(), lindbladMx.flatten()), tol=1000) # # DEBUG - for checking why perfect gates gave weird projections --> log ambiguity # print("DB: rawproj(%d) = " % i, proj) # errgen_pp = errgen.copy() #_bt.change_basis(errgen_std,"std","pp") # lindbladMx_pp = _bt.change_basis(lindbladMx,"std","pp") # if proj > 1.0: # for k in range(errgen_std.shape[0]): # for j in range(errgen_std.shape[1]): # if abs(errgen_pp[k,j].conjugate() * lindbladMx_pp[k,j]) > 1e-2: # print(" [%d,%d]: + " % (k,j), errgen_pp[k,j].conjugate(), # "*", lindbladMx_pp[k,j], # "=", (errgen_pp[k,j].conjugate() * lindbladMx_pp[i,j])) #assert(_np.isreal(proj)), "non-real projection: %s" % str(proj) #just a warning now if not _np.isreal(proj): _warnings.warn("Taking abs() of non-real projection: %s" % str(proj)) proj = abs(proj) projections[i] = proj scaleFctr = std_scale_factor(d2, projection_type) projections *= scaleFctr lindbladMxs /= scaleFctr # so projections * generators give original ret = [projections] if return_generators: ret.append(lindbladMxs) if return_scale_fctr: ret.append(scaleFctr) return ret[0] if len(ret) == 1 else tuple(ret) def _assert_shape(ar, shape, sparse=False): """ Asserts ar.shape == shape ; works with sparse matrices too """ if not sparse or len(shape) == 2: assert(ar.shape == shape), \ "Shape mismatch: %s != %s!" % (str(ar.shape), str(shape)) else: if len(shape) == 3: # first "dim" is a list assert(len(ar) == shape[0]), \ "Leading dim mismatch: %d != %d!" % (len(ar), shape[0]) assert(shape[0] == 0 or ar[0].shape == (shape[1], shape[2])), \ "Shape mismatch: %s != %s!" % (str(ar[0].shape), str(shape[1:])) elif len(shape) == 4: # first 2 dims are lists assert(len(ar) == shape[0]), \ "Leading dim mismatch: %d != %d!" % (len(ar), shape[0]) assert(shape[0] == 0 or len(ar[0]) == shape[1]), \ "Second dim mismatch: %d != %d!" % (len(ar[0]), shape[1]) assert(shape[0] == 0 or shape[1] == 0 or ar[0][0].shape == (shape[2], shape[3])), \ "Shape mismatch: %s != %s!" % (str(ar[0][0].shape), str(shape[2:])) else: raise NotImplementedError("Number of dimensions must be <= 4!") def lindblad_error_generators(dmbasis_ham, dmbasis_other, normalize, other_mode="all"): """ Compute the superoperator-generators corresponding to Lindblad terms. This routine computes the Hamiltonian and Non-Hamiltonian ("other") superoperator generators which correspond to the terms of the Lindblad expression: L(rho) = sum_i( h_i [A_i,rho] ) + sum_ij( o_ij * (B_i rho B_j^dag - 0.5( rho B_j^dag B_i + B_j^dag B_i rho) ) ) where {A_i} and {B_i} are bases (possibly the same) for Hilbert Schmidt (density matrix) space with the identity element removed so that each A_i and B_i are traceless. If we write L(rho) in terms of superoperators H_i and O_ij, L(rho) = sum_i( h_i H_i(rho) ) + sum_ij( o_ij O_ij(rho) ) then this function computes the matrices for H_i and O_ij using the given density matrix basis. Thus, if `dmbasis` is expressed in the standard basis (as it should be), the returned matrices are also in this basis. If these elements are used as projectors it may be usedful to normalize them (by setting `normalize=True`). Note, however, that these projectors are not all orthogonal - in particular the O_ij's are not orthogonal to one another. Parameters ---------- dmbasis_ham : list A list of basis matrices {B_i} *including* the identity as the first element, for the returned Hamiltonian-type error generators. This argument is easily obtained by call to :func:`pp_matrices` or a similar function. The matrices are expected to be in the standard basis, and should be traceless except for the identity. Matrices should be NumPy arrays or SciPy CSR sparse matrices. dmbasis_other : list A list of basis matrices {B_i} *including* the identity as the first element, for the returned Stochastic-type error generators. This argument is easily obtained by call to :func:`pp_matrices` or a similar function. The matrices are expected to be in the standard basis, and should be traceless except for the identity. Matrices should be NumPy arrays or SciPy CSR sparse matrices. normalize : bool Whether or not generators should be normalized so that numpy.linalg.norm(generator.flat) == 1.0 Note that the generators will still, in general, be non-orthogonal. other_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian Lindblad error generators to construct. Allowed values are: `"diagonal"` (only the diagonal Stochastic generators are returned; that is, the generators corresponding to the `i==j` terms in the Lindblad expression.), `"diag_affine"` (diagonal + affine generators), and `"all"` (all generators). Returns ------- ham_generators : numpy.ndarray or list of SciPy CSR matrices If dense matrices where given, an array of shape (d-1,d,d), where d is the size of the basis, i.e. d == len(dmbasis). `ham_generators[i]` gives the matrix for H_i. If sparse matrices were given, a list of shape (d,d) CSR matrices. other_generators : numpy.ndarray or list of lists of SciPy CSR matrices If dense matrices where given, An array of shape (d-1,d-1,d,d), (2,d-1,d,d), or (d-1,d,d), where d is the size of the basis, for `other_mode` equal to `"all"`, `"diag_affine"`, or `"diagonal"`, respectively. For instance, in the `"all"` case, `other_generators[i,j]` gives the matrix for O_ij. If sparse matrices were given, the all but the final 2 dimensions are lists (e.g. the `"all"` case returns a list of lists of shape (d,d) CSR matrices). """ if dmbasis_ham is not None: ham_mxs = dmbasis_ham # list of basis matrices (assumed to be in std basis) ham_nMxs = len(ham_mxs) # usually == d2, but not necessary (e.g. w/maxWeight) else: ham_nMxs = 0 if dmbasis_other is not None: other_mxs = dmbasis_other # list of basis matrices (assumed to be in std basis) other_nMxs = len(other_mxs) # usually == d2, but not necessary (e.g. w/maxWeight) else: other_nMxs = 0 if ham_nMxs > 0: d = ham_mxs[0].shape[0] sparse = _sps.issparse(ham_mxs[0]) elif other_nMxs > 0: d = other_mxs[0].shape[0] sparse = _sps.issparse(other_mxs[0]) else: d = 0 # will end up returning no generators sparse = False d2 = d**2 normfn = _spsl.norm if sparse else _np.linalg.norm identityfn = (lambda d: _sps.identity(d, 'd', 'csr')) if sparse else _np.identity if ham_nMxs > 0 and other_nMxs > 0: assert(other_mxs[0].shape[0] == ham_mxs[0].shape[0]), \ "Bases must have the same dimension!" if ham_nMxs > 0: assert(_np.isclose(normfn(ham_mxs[0] - identityfn(d) / _np.sqrt(d)), 0)),\ "The first matrix in 'dmbasis_ham' must be the identity" hamLindbladTerms = [None] * (ham_nMxs - 1) if sparse else \ _np.empty((ham_nMxs - 1, d2, d2), 'complex') for i, B in enumerate(ham_mxs[1:]): # don't include identity hamLindbladTerms[i] = _lt.hamiltonian_to_lindbladian(B, sparse) # in std basis if normalize: norm = normfn(hamLindbladTerms[i]) # same as norm(term.flat) if not _np.isclose(norm, 0): hamLindbladTerms[i] /= norm # normalize projector assert(_np.isclose(normfn(hamLindbladTerms[i]), 1.0)) else: hamLindbladTerms = None if other_nMxs > 0: assert(_np.isclose(normfn(other_mxs[0] - identityfn(d) / _np.sqrt(d)), 0)),\ "The first matrix in 'dmbasis_other' must be the identity" if other_mode == "diagonal": otherLindbladTerms = [None] * (other_nMxs - 1) if sparse else \ _np.empty((other_nMxs - 1, d2, d2), 'complex') for i, Lm in enumerate(other_mxs[1:]): # don't include identity otherLindbladTerms[i] = _lt.nonham_lindbladian(Lm, Lm, sparse) if normalize: norm = normfn(otherLindbladTerms[i]) # same as norm(term.flat) if not _np.isclose(norm, 0): otherLindbladTerms[i] /= norm # normalize projector assert(_np.isclose(normfn(otherLindbladTerms[i]), 1.0)) elif other_mode == "diag_affine": otherLindbladTerms = [[None] * (other_nMxs - 1)] * 2 if sparse else \ _np.empty((2, other_nMxs - 1, d2, d2), 'complex') for i, Lm in enumerate(other_mxs[1:]): # don't include identity otherLindbladTerms[0][i] = _lt.nonham_lindbladian(Lm, Lm, sparse) otherLindbladTerms[1][i] = _lt.affine_lindbladian(Lm, sparse) if normalize: for k in (0, 1): norm = normfn(otherLindbladTerms[k][i]) # same as norm(term.flat) if not _np.isclose(norm, 0): otherLindbladTerms[k][i] /= norm # normalize projector assert(_np.isclose(normfn(otherLindbladTerms[k][i]), 1.0)) else: # other_mode == "all" otherLindbladTerms = \ [[None] * (other_nMxs - 1) for i in range(other_nMxs - 1)] if sparse else \ _np.empty((other_nMxs - 1, other_nMxs - 1, d2, d2), 'complex') for i, Lm in enumerate(other_mxs[1:]): # don't include identity for j, Ln in enumerate(other_mxs[1:]): # don't include identity #print("DEBUG NONHAM LIND (%d,%d)" % (i,j)) #DEBUG!!! otherLindbladTerms[i][j] = _lt.nonham_lindbladian(Lm, Ln, sparse) if normalize: norm = normfn(otherLindbladTerms[i][j]) # same as norm(term.flat) if not _np.isclose(norm, 0): otherLindbladTerms[i][j] /= norm # normalize projector assert(_np.isclose(normfn(otherLindbladTerms[i][j]), 1.0)) #I don't think this is true in general, but appears to be true for "pp" basis (why?) #if j < i: # check that other[i,j] == other[j,i].C, i.e. other is Hermitian # assert(_np.isclose(_np.linalg.norm( # otherLindbladTerms[i][j]- # otherLindbladTerms[j][i].conjugate()),0)) else: otherLindbladTerms = None #Check for orthogonality - otherLindblad terms are *not* orthogonal! #N = otherLindbladTerms.shape[0] #for i in range(N): # for j in range(N): # v1 = otherLindbladTerms[i,j].flatten() # for k in range(N): # for l in range(N): # if k == i and l == j: continue # v2 = otherLindbladTerms[k,l].flatten() # if not _np.isclose(0, _np.vdot(v1,v2)): # print("%d,%d <-> %d,%d dot = %g [%g]" % (i,j,k,l,_np.vdot(v1,v2),_np.dot(v1,v2))) # #print("v1 = ",v1) # #print("v2 = ",v2) # # assert(False) # #assert(_np.isclose(0, _np.vdot(v1,v2))) #Check hamiltonian error gens are orthogonal to others #N = otherLindbladTerms.shape[0] #for i,hlt in enumerate(hamLindbladTerms): # v1 = hlt.flatten() # for j in range(N): # for k in range(N): # v2 = otherLindbladTerms[j,k].flatten() # assert(_np.isclose(0, _np.vdot(v1,v2))) return hamLindbladTerms, otherLindbladTerms def lindblad_errgen_projections(errgen, ham_basis, other_basis, mxBasis="gm", normalize=True, return_generators=False, other_mode="all", sparse=False): """ Compute the projections of a gate error generator onto generators for the Lindblad-term errors when expressed in the given "projection basis". Parameters ---------- errgen: : ndarray The error generator matrix to project. ham_basis: {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis used to construct the Hamiltonian-type lindblad error Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. other_basis : {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis used to construct the Stochastic-type lindblad error Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source basis. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). normalize : bool, optional Whether or not the generators being projected onto are normalized, so that numpy.linalg.norm(generator.flat) == 1.0. Note that the generators will still, in general, be non-orthogonal. return_generators : bool, optional If True, return the error generators projected against along with the projection values themseves. other_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian Lindblad error projections to obtain. Allowed values are: `"diagonal"` (only the diagonal Stochastic), `"diag_affine"` (diagonal + affine generators), and `"all"` (all generators). sparse : bool, optional Whether to create sparse or dense basis matrices when strings are given as `ham_basis` and `other_basis` Returns ------- ham_projections : numpy.ndarray An array of length d-1, where d is the dimension of the gate, giving the projections onto the Hamiltonian-type Lindblad terms. other_projections : numpy.ndarray An array of shape (d-1,d-1), (2,d-1), or (d-1,), where d is the dimension of the gate, for `other_mode` equal to `"all"`, `"diag_affine"`, or `"diagonal"`, respectively. Values give the projections onto the non-Hamiltonian-type Lindblad terms. ham_generators : numpy.ndarray The Hamiltonian-type Lindblad term generators, as would be returned from `lindblad_error_generators(pp_matrices(sqrt(d)), normalize)`. Shape is (d-1,d,d), and `ham_generators[i]` is in the standard basis. other_generators : numpy.ndarray The Stochastic-type Lindblad term generators, as would be returned from `lindblad_error_generators(pp_matrices(sqrt(d)), normalize)`. Shape is (d-1,d-1,d,d), (2,d-1,d,d), or (d-1,d,d) for `other_mode` equal to `"all"`, `"diag_affine"`, or `"diagonal"`, respectively, and `other_generators[i]` is in the std basis. """ errgen_std = _bt.change_basis(errgen, mxBasis, "std") if _sps.issparse(errgen_std): errgen_std_flat = errgen_std.tolil().reshape( (errgen_std.shape[0] * errgen_std.shape[1], 1)).tocsr() # b/c lil's are only type that can reshape... else: errgen_std_flat = errgen_std.flatten() errgen_std = None # ununsed below, and sparse reshape doesn't copy, so mark as None d2 = errgen.shape[0] d = int(_np.sqrt(d2)) #nQubits = _np.log2(d) #Get a list of the generators in corresspondence with the # specified basis elements. if isinstance(ham_basis, _Basis): hamBasisMxs = ham_basis.elements elif isinstance(ham_basis, str): hamBasisMxs = _bt.basis_matrices(ham_basis, d2, sparse=sparse) else: hamBasisMxs = ham_basis if isinstance(other_basis, _Basis): otherBasisMxs = other_basis.elements elif isinstance(other_basis, str): otherBasisMxs = _bt.basis_matrices(other_basis, d2, sparse=sparse) else: otherBasisMxs = other_basis hamGens, otherGens = lindblad_error_generators( hamBasisMxs, otherBasisMxs, normalize, other_mode) # in std basis if hamBasisMxs is not None: bsH = len(hamBasisMxs) # basis size (not necessarily d2) else: bsH = 0 if otherBasisMxs is not None: bsO = len(otherBasisMxs) # basis size (not necessarily d2) else: bsO = 0 if bsH > 0: sparse = _sps.issparse(hamBasisMxs[0]) elif bsO > 0: sparse = _sps.issparse(otherBasisMxs[0]) else: sparse = False # default? assert(_np.isclose(d * d, d2)) # d2 must be a perfect square if bsH > 0: _assert_shape(hamGens, (bsH - 1, d2, d2), sparse) if bsO > 0: if other_mode == "diagonal": _assert_shape(otherGens, (bsO - 1, d2, d2), sparse) elif other_mode == "diag_affine": _assert_shape(otherGens, (2, bsO - 1, d2, d2), sparse) else: # other_mode == "all" _assert_shape(otherGens, (bsO - 1, bsO - 1, d2, d2), sparse) #Perform linear least squares solve to find "projections" onto each otherGens element - defined so that # sum_i projection_i * otherGen_i = (errgen_std-ham_errgen) as well as possible. #ham_error_gen = _np.einsum('i,ijk', hamProjs, hamGens) #other_errgen = errgen_std - ham_error_gen #what's left once hamiltonian errors are projected out #Do linear least squares soln to expressing errgen_std as a linear combo # of the lindblad generators if bsH > 0: if not sparse: H = hamGens.reshape((bsH - 1, d2**2)).T # ham generators == columns Hdag = H.T.conjugate() #Do linear least squares: this is what takes the bulk of the time hamProjs = _np.linalg.solve(_np.dot(Hdag, H), _np.dot(Hdag, errgen_std_flat)) hamProjs.shape = (hamGens.shape[0],) else: rows = [hamGen.tolil().reshape((1, d2**2)) for hamGen in hamGens] H = _sps.vstack(rows, 'csr').transpose() Hdag = H.copy().transpose().conjugate() #Do linear least squares: this is what takes the bulk of the time if _mt.safenorm(errgen_std_flat) < 1e-8: # protect against singular RHS hamProjs = _np.zeros(bsH - 1, 'd') else: hamProjs = _spsl.spsolve(Hdag.dot(H), Hdag.dot(errgen_std_flat)) if _sps.issparse(hamProjs): hamProjs = hamProjs.toarray().flatten() hamProjs.shape = (bsH - 1,) else: hamProjs = None if bsO > 0: if not sparse: if other_mode == "diagonal": O = otherGens.reshape((bsO - 1, d2**2)).T # other generators == columns elif other_mode == "diag_affine": O = otherGens.reshape((2 * (bsO - 1), d2**2)).T # other generators == columns else: O = otherGens.reshape(((bsO - 1)**2, d2**2)).T # other generators == columns Odag = O.T.conjugate() #Do linear least squares: this is what takes the bulk of the time otherProjs = _np.linalg.solve(_np.dot(Odag, O), _np.dot(Odag, errgen_std_flat)) if other_mode == "diagonal": otherProjs.shape = (otherGens.shape[0],) elif other_mode == "diag_affine": otherProjs.shape = (2, otherGens.shape[1]) else: otherProjs.shape = (otherGens.shape[0], otherGens.shape[1]) else: if other_mode == "diagonal": rows = [oGen.tolil().reshape((1, d2**2)) for oGen in otherGens] O = _sps.vstack(rows, 'csr').transpose() # other generators == columns else: # "diag_affine" or "all" rows = [oGen.tolil().reshape((1, d2**2)) for oGenRow in otherGens for oGen in oGenRow] O = _sps.vstack(rows, 'csr').transpose() # other generators == columns Odag = O.copy().transpose().conjugate() # TODO: maybe conjugate copies data? #Do linear least squares: this is what takes the bulk of the time if _mt.safenorm(errgen_std_flat) < 1e-8: # protect against singular RHS if other_mode == "diagonal": otherProjs = _np.zeros(bsO - 1, 'd') elif other_mode == "diag_affine": otherProjs = _np.zeros((2, bsO - 1), 'd') else: otherProjs = _np.zeros((bsO - 1, bsO - 1), 'd') else: otherProjs = _spsl.spsolve(Odag.dot(O), Odag.dot(errgen_std_flat)) if _sps.issparse(otherProjs): otherProjs = otherProjs.toarray().flatten() if other_mode == "diagonal": otherProjs.shape = (bsO - 1,) elif other_mode == "diag_affine": otherProjs.shape = (2, bsO - 1) else: # other_mode == "all" otherProjs.shape = (bsO - 1, bsO - 1) else: otherProjs = None #check err gens are linearly independent -- but can take a very long time, so comment out! #assert(_np.linalg.matrix_rank(H,1e-7) == H.shape[1]) #assert(_np.linalg.matrix_rank(O,1e-7) == O.shape[1]) #if False: # further check against older (slower) version # M = _np.concatenate( (hamGens.reshape((bs-1,d2**2)).T, otherGens.reshape(((bs-1)**2,d2**2)).T), axis=1) # assert(_np.linalg.matrix_rank(M,1e-7) == M.shape[1]) #check err gens are linearly independent # Mdag = M.T.conjugate() # print("DB D: %.1f" % (time.time()-t)); t = time.time() # projs = _np.linalg.solve(_np.dot(Mdag,M), _np.dot(Mdag,errgen_std_flat)) # hamProjs_chk = projs[0:(bs-1)] # otherProjs_chk = projs[(bs-1):] # assert(_np.linalg.norm(hamProjs-hamProjs_chk) < 1e-6) # assert(_np.linalg.norm(otherProjs-otherProjs_chk) < 1e-6) if return_generators: return hamProjs, otherProjs, hamGens, otherGens else: return hamProjs, otherProjs def projections_to_lindblad_terms(hamProjs, otherProjs, ham_basis, other_basis, other_mode="all", return_basis=True): """ Converts the projections of an error generator onto basis elements into the Lindblad-term dictionary and basis used to individually specify Lindblad terms. Parameters ---------- hamProjs : numpy.ndarray An array of length d-1, where d is the dimension of the projected error generator, giving the projections onto the Hamiltonian-type Lindblad terms. otherProjs : numpy.ndarray An array of shape (d-1,d-1), (2,d-1), or (d-1,), where d is the dimension of the projected error generator, for `other_mode` equal to `"all"`, `"diag_affine"`, or `"diagonal"`, respectively. Values give the projections onto the non-Hamiltonian-type Lindblad terms. ham_basis: {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis used to construct `hamProjs`. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. other_basis : {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis used to construct `otherProjs`. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. other_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian Lindblad error projections `otherProjs` includes. Allowed values are: `"diagonal"` (only the diagonal Stochastic), `"diag_affine"` (diagonal + affine generators), and `"all"` (all generators). return_basis : bool, optional Whether to return a :class:`Basis` containing the elements corresponding to labels within the returned `Ltermdict`. Returns ------- Ltermdict : dict Keys are `(termType, basisLabel1, <basisLabel2>)` tuples, where `termType` is `"H"` (Hamiltonian), `"S"` (Stochastic), or `"A"` (Affine). Hamiltonian and Affine terms always have a single basis label (so key is a 2-tuple) whereas Stochastic tuples have 1 basis label to indicate a *diagonal* term and otherwise have 2 basis labels to specify off-diagonal non-Hamiltonian Lindblad terms. Basis labels are taken from `ham_basis` and `other_basis`. Values are complex coefficients (the projections). basis : Basis A single basis containing all the basis labels used in `Ltermdict` (and *only* those elements). Only returned when `return_basis == True`. """ assert(not (ham_basis is None and other_basis is None)), \ "At least one of `ham_basis` and `other_basis` must be non-None" # Make None => length-0 arrays so iteration code works below (when basis is None) if hamProjs is None: hamProjs = _np.empty(0, 'd') if otherProjs is None: otherProjs = _np.empty(0, 'd') if other_mode == "diagonal" \ else _np.empty((0, 0), 'd') # Construct a pair of dictionaries describing all of the # Lindblad-terms: # Ltermdict keys= ('H',basisLbl), ('S',basisLbl), or ('S',bLbl1,bLbl2) # vals= coefficients of these terms (projections from errgen) # basisdict keys= basis labels (just has to match Ltermdict keys) # vals= basis matrices - can be either sparse or dense Ltermdict = _collections.OrderedDict() basisdict = _collections.OrderedDict() if return_basis: def set_basis_el(blbl, bel): """ Sets an elment of basisdict, checking for consistency """ if blbl in basisdict: assert(_mt.safenorm(basisdict[blbl] - bel) < 1e-8), "Ambiguous basis el label %s" % blbl else: basisdict[blbl] = bel else: def set_basis_el(blbl, bel): pass #Add Hamiltonian error elements if ham_basis is not None: ham_lbls = ham_basis.labels ham_mxs = ham_basis.elements # can be sparse assert(len(ham_mxs[1:]) == len(hamProjs)) for coeff, lbl, bmx in zip(hamProjs, ham_lbls[1:], ham_mxs[1:]): # skip identity Ltermdict[('H', lbl)] = coeff set_basis_el(lbl, bmx) else: ham_lbls = [] #Add "other" error elements if other_basis is not None: other_lbls = other_basis.labels other_mxs = other_basis.elements # can be sparse if other_mode == "diagonal": assert(len(other_mxs[1:]) == len(otherProjs)) for coeff, lbl, bmx in zip(otherProjs, other_lbls[1:], other_mxs[1:]): # skip identity Ltermdict[('S', lbl)] = coeff set_basis_el(lbl, bmx) elif other_mode == "diag_affine": assert((2, len(other_mxs[1:])) == otherProjs.shape) for coeff, lbl, bmx in zip(otherProjs[0], other_lbls[1:], other_mxs[1:]): # skip identity Ltermdict[('S', lbl)] = coeff set_basis_el(lbl, bmx) for coeff, lbl, bmx in zip(otherProjs[1], other_lbls[1:], other_mxs[1:]): # skip identity Ltermdict[('A', lbl)] = coeff set_basis_el(lbl, bmx) else: assert((len(other_mxs[1:]), len(other_mxs[1:])) == otherProjs.shape) for i, (lbl1, bmx1) in enumerate(zip(other_lbls[1:], other_mxs[1:])): # skip identity set_basis_el(lbl1, bmx1) for j, (lbl2, bmx2) in enumerate(zip(other_lbls[1:], other_mxs[1:])): # skip identity set_basis_el(lbl2, bmx2) Ltermdict[('S', lbl1, lbl2)] = otherProjs[i, j] else: other_lbls = [] #Turn basisdict into a Basis to return if return_basis: if ham_basis == other_basis: basis = ham_basis elif ham_basis is None or set(ham_lbls).issubset(set(other_lbls)): basis = other_basis elif other_basis is None or set(other_lbls).issubset(set(ham_lbls)): basis = ham_basis else: #Create an ExplictBasis using the matrices in basisdict plus the identity sparse = True; real = True if ham_basis is not None: elshape = ham_basis.elshape sparse = sparse and ham_basis.sparse real = real and ham_basis.real if other_basis is not None: elshape = other_basis.elshape sparse = sparse and other_basis.sparse real = real and other_basis.real d = elshape[0] Id = _sps.identity(d, 'complex', 'csr') / _np.sqrt(d) if sparse \ else _np.identity(d, 'complex') / _np.sqrt(d) lbls = ['I'] + list(basisdict.keys()) mxs = [Id] + list(basisdict.values()) basis = _ExplicitBasis(mxs, lbls, name=None, real=real, sparse=sparse) return Ltermdict, basis else: return Ltermdict def lindblad_terms_to_projections(Ltermdict, basis, other_mode="all"): """ Convert a set of Lindblad terms into a dense matrix/grid of projections. Essentially the inverse of :function:`projections_to_lindblad_terms`. Parameters ---------- Ltermdict : dict A dictionary specifying which Linblad terms are present in the gate parameteriztion. Keys are `(termType, basisLabel1, <basisLabel2>)` tuples, where `termType` is `"H"` (Hamiltonian), `"S"` (Stochastic), or `"A"` (Affine). Hamiltonian and Affine terms always have a single basis label (so key is a 2-tuple) whereas Stochastic tuples with 1 basis label indicate a *diagonal* term, and are the only types of terms allowed when `nonham_mode != "all"`. Otherwise, Stochastic term tuples can include 2 basis labels to specify "off-diagonal" non-Hamiltonian Lindblad terms. Basis labels can be strings or integers. Values are complex coefficients (error rates). basis : Basis, optional A basis mapping the labels used in the keys of `Ltermdict` to basis matrices (e.g. numpy arrays or Scipy sparse matrices). The first element of this basis should be an identity element, and will be propagated to the returned `ham_basis` and `other_basis`. other_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian terms are allowed in `Ltermdict`. Allowed values are: `"diagonal"` (only the diagonal Stochastic), `"diag_affine"` (diagonal + affine generators), and `"all"` (all generators). Returns ------- hamProjs : numpy.ndarray An array of length `basisdim-1`, giving the projections onto a full set of the Hamiltonian-type Lindblad terms (onto each element of `ham_basis`). otherProjs : numpy.ndarray An array of shape (d-1,d-1), (2,d-1), or (d-1,), where d=`basisdim` for `other_mode` equal to `"all"`, `"diag_affine"`, or `"diagonal"`, respectively. Values give the projections onto the non-Hamiltonian -type Lindblad terms. ham_basis: Basis The basis used to construct `hamProjs`. other_basis : Basis The basis used to construct `otherProjs`. hamBasisIndices : OrderedDict A dictionary mapping the some or all of the basis labels of `basisdict` to the integers 0 to `len(ham_basis)`. These are indices into `hamProjs`, giving the projection associated with each Hamiltonian basis element. otherBasisIndices : OrderedDict A dictionary mapping the some or all of the basis labels of `basisdict` to the integers 0 to `len(other_basis)`. These are row and column indices into `otherProjs`, giving the projection associated with each pair of "other" basis elements (or single basis element if `other_mode!="all"`). """ #Separately enumerate the (distinct) basis elements used for Hamiltonian # and non-Hamiltonian error terms #print("DB: lindblad term to proj: \n",Ltermdict,"\n",basis) hamBasisLabels = [] otherBasisLabels = [] for termLbl, coeff in Ltermdict.items(): if isinstance(termLbl, str): termLbl = (termLbl[0], termLbl[1:]) # e.g. "HXX" => ('H','XX') termType = termLbl[0] if termType == "H": # Hamiltonian assert(len(termLbl) == 2), "Hamiltonian term labels should have form ('H',<basis element label>)" if termLbl[1] not in hamBasisLabels: hamBasisLabels.append(termLbl[1]) elif termType == "S": # Stochastic if other_mode in ("diagonal", "diag_affine"): assert(len(termLbl) == 2), "Stochastic term labels should have form ('S',<basis element label>)" if termLbl[1] not in otherBasisLabels: otherBasisLabels.append(termLbl[1]) else: assert(len(termLbl) == 3), "Stochastic term labels should have form ('S',<bel1>, <bel2>)" if termLbl[1] not in otherBasisLabels: otherBasisLabels.append(termLbl[1]) if termLbl[2] not in otherBasisLabels: otherBasisLabels.append(termLbl[2]) elif termType == "A": # Affine assert(other_mode == "diag_affine"), "Affine labels are only allowed in an affine mode" assert(len(termLbl) == 2), "Affine term labels should have form ('A',<basis element label>)" if termLbl[1] not in otherBasisLabels: otherBasisLabels.append(termLbl[1]) #Construct bases # Note: the lists of basis matrices shouldn't contain the identity, since # the terms above shouldn't contain identity terms - but `basis` should # contain an identity element as it's first element, so add this identity el # to non-empty bases (empty bases stay empty!) to be consistent with the # rest of the framework (bases *have* Ids) sparse = basis.sparse if set(hamBasisLabels) == set(basis.labels): ham_basis = basis else: Id = basis[0] ham_basis_mxs = [basis[bl] for bl in hamBasisLabels] if len(ham_basis_mxs) > 0: ham_basis = _ExplicitBasis([Id] + ham_basis_mxs, ['I'] + hamBasisLabels, name=None, real=True, sparse=sparse) else: ham_basis = _ExplicitBasis(ham_basis_mxs, name=None, real=True, sparse=sparse) if set(otherBasisLabels) == set(basis.labels): other_basis = basis else: Id = basis[0] other_basis_mxs = [basis[bl] for bl in otherBasisLabels] if len(other_basis_mxs) > 0: other_basis = _ExplicitBasis([Id] + other_basis_mxs, ['I'] + otherBasisLabels, name=None, real=True, sparse=sparse) else: other_basis = _ExplicitBasis(other_basis_mxs, name=None, real=True, sparse=sparse) bsH, bsO = len(ham_basis), len(other_basis) #print("DB: constructed ham_basis = ",ham_basis) #print("DB: other basis = ",other_basis) #Create projection (term coefficient) arrays - or return None if # the corresponding basis is empty (as per our convention) hamProjs = _np.zeros(bsH - 1, 'complex') if bsH > 0 else None if bsO > 0: if other_mode == "diagonal": # OK if this runs for 'auto' too since then len(otherBasisIndices) == 0 otherProjs = _np.zeros(bsO - 1, 'complex') elif other_mode == "diag_affine": otherProjs = _np.zeros((2, bsO - 1), 'complex') else: otherProjs = _np.zeros((bsO - 1, bsO - 1), 'complex') else: otherProjs = None #Fill arrays hamBasisIndices = {lbl: i - 1 for i, lbl in enumerate(ham_basis.labels)} # -1 to compensate for identity as otherBasisIndices = {lbl: i - 1 for i, lbl in enumerate(other_basis.labels)} # first element (not in projections). for termLbl, coeff in Ltermdict.items(): if isinstance(termLbl, str): termLbl = (termLbl[0], termLbl[1:]) # e.g. "HXX" => ('H','XX') termType = termLbl[0] if termType == "H": # Hamiltonian k = hamBasisIndices[termLbl[1]] # index of coefficient in array hamProjs[k] = coeff elif termType == "S": # Stochastic if other_mode == "diagonal": k = otherBasisIndices[termLbl[1]] # index of coefficient in array otherProjs[k] = coeff elif other_mode == "diag_affine": k = otherBasisIndices[termLbl[1]] # index of coefficient in array otherProjs[0, k] = coeff else: # other_mode == "all" k = otherBasisIndices[termLbl[1]] # index of row in "other" coefficient matrix j = otherBasisIndices[termLbl[2]] # index of col in "other" coefficient matrix otherProjs[k, j] = coeff elif termType == "A": # Affine assert(other_mode == "diag_affine") k = otherBasisIndices[termLbl[1]] # index of coefficient in array otherProjs[1, k] = coeff return hamProjs, otherProjs, ham_basis, other_basis def lindblad_projections_to_paramvals(hamProjs, otherProjs, param_mode="cptp", other_mode="all", truncate=True): """ Construct the array of Lindblad-gate parameter values from the separate arrays of Hamiltonian and non-Hamiltonian Lindblad-term projections. When `cptp=True`, this function handles parameterizing the projections to that for (real) parameter values correspond to projections for a valid CPTP gate (e.g. by parameterizing the Cholesky decomposition of `otherProjs` instead of otherProjs itself). This function is closely related to implementation details of the LindbladOp class. Parameters ---------- hamProjs : numpy.ndarray An array of length d-1, where d is the gate dimension, giving the projections onto a full set of the Hamiltonian-type Lindblad terms. otherProjs : numpy.ndarray An array of shape (d-1,d-1), (2,d-1), or (d-1,), where d is the gate dimension, for `other_mode` equal to `"all"`,`"diag_affine"`, or `"diagonal"`, respectively. Values give the projections onto a full set of non-Hamiltonian-type Lindblad terms. param_mode : {"unconstrained", "cptp", "depol", "reldepol"} Describes how values in `hamProjs` and `otherProj` relate to the returned parameter values. Allowed values are: `"unconstrained"` (projs are independent unconstrained parameters), `"cptp"` (independent parameters but constrained so map is CPTP), `"reldepol"` (all non-Ham. diagonal projs take the *same* value), `"depol"` (same as `"reldepol"` but projs must be *positive*) other_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian Lindblad error projections `otherProjs` includes. Allowed values are: `"diagonal"` (only the diagonal Stochastic), `"diag_affine"` (diagonal + affine generators), and `"all"`. truncate : bool, optional Whether to truncate the projections onto the Lindblad terms in order to meet constraints (e.g. to preserve CPTP) when necessary. If False, then an error is thrown when the given projections cannot be parameterized as specified. Returns ------- numpy.ndarray A 1D array of real parameter values consisting of d-1 Hamiltonian values followed by either (d-1)^2, 2*(d-1), or just d-1 non-Hamiltonian values for `other_mode` equal to `"all"`, `"diag_affine"`, or `"diagonal"`, respectively. """ if hamProjs is not None: assert(_np.isclose(_np.linalg.norm(hamProjs.imag), 0)), \ "Hamiltoian projections (coefficients) are not all real!" hamParams = hamProjs.real else: hamParams = _np.empty(0, 'd') if otherProjs is not None: if other_mode == "diagonal": assert(_np.isclose(_np.linalg.norm(_np.imag(otherProjs)), 0)), \ "Diagonal stochastic projections (coefficients) are not all real!" if param_mode == "depol": # otherParams is a *single-element* 1D vector of the sqrt of each diagonal el assert(truncate or all([v >= -1e-12 for v in otherProjs])), \ "Lindblad coefficients are not CPTP (truncate == False)!" assert(truncate or all([_np.isclose(v, otherProjs[0]) for v in otherProjs])), \ "Diagonal lindblad coefficients are not equal (truncate == False)!" otherProj = _np.mean(otherProjs.clip(1e-16, 1e100)) otherParams = _np.array(_np.sqrt(_np.real(otherProj)), 'd') # shape (1,) elif param_mode == "cptp": # otherParams is a 1D vector of the sqrts of diagonal els assert(truncate or all([v >= -1e-12 for v in otherProjs])), \ "Lindblad coefficients are not CPTP (truncate == False)!" otherProjs = otherProjs.clip(1e-16, 1e100) otherParams = _np.sqrt(otherProjs.real) # shape (bsO-1,) else: # "unconstrained": otherParams is a 1D vector of the real diagonal els of otherProjs otherParams = otherProjs.real # shape (bsO-1,) elif other_mode == "diag_affine": assert(_np.isclose(_np.linalg.norm(_np.imag(otherProjs)), 0)), \ "Diagonal stochastic and affine projections (coefficients) are not all real!" if param_mode == "depol": # otherParams is a single depol value + unconstrained affine coeffs assert(truncate or all([v >= -1e-12 for v in otherProjs[0]])), \ "Lindblad coefficients are not CPTP (truncate == False)!" assert(truncate or all([_np.isclose(v, otherProjs[0, 0]) for v in otherProjs[0]])), \ "Diagonal lindblad coefficients are not equal (truncate == False)!" depolProj = _np.mean(otherProjs[0, :].clip(1e-16, 1e100)) otherParams = _np.concatenate(([_np.sqrt(_np.real(depolProj))], otherProjs[1].real)) # shape (1+(bsO-1),) elif param_mode == "cptp": # Note: does not constrained affine coeffs to CPTP assert(truncate or all([v >= -1e-12 for v in otherProjs[0]])), \ "Lindblad coefficients are not CPTP (truncate == False)!" diagParams = _np.sqrt(_np.real(otherProjs[0, :]).clip(1e-16, 1e100)) # shape (bsO-1,) otherParams = _np.concatenate((diagParams, otherProjs[1].real)) # diag + affine params else: # param_mode == "unconstrained": otherParams is a 1D vector of the real diagonal els of otherProjs otherParams = otherProjs.real # shape (2,bsO-1) else: # other_mode == "all" assert(_np.isclose(_np.linalg.norm(otherProjs - otherProjs.T.conjugate()), 0) ), "Other projection/coefficient mx is not Hermitian!" assert(param_mode != "depol"), "`depol` is not supported when `other_mode == 'all'`" bsO = otherProjs.shape[0] + 1 # +1 to keep convention that this is the basis (w/Identity) size otherParams = _np.empty((bsO - 1, bsO - 1), 'd') if param_mode == "cptp": # otherParams mx stores Cholesky decomp #push any slightly negative evals of otherProjs positive so that # the Cholesky decomp will work. evals, U = _np.linalg.eig(otherProjs) Ui = _np.linalg.inv(U) assert(truncate or all([ev >= -1e-12 for ev in evals])), \ "Lindblad coefficients are not CPTP (truncate == False)!" pos_evals = evals.clip(1e-16, 1e100) otherProjs = _np.dot(U, _np.dot(_np.diag(pos_evals), Ui)) try: Lmx = _np.linalg.cholesky(otherProjs) # if Lmx not postitive definite, try again with 1e-12 (same lines as above) except _np.linalg.LinAlgError: # pragma: no cover pos_evals = evals.clip(1e-12, 1e100) # pragma: no cover otherProjs = _np.dot(U, _np.dot(_np.diag(pos_evals), Ui)) # pragma: no cover Lmx = _np.linalg.cholesky(otherProjs) # pragma: no cover for i in range(bsO - 1): assert(_np.linalg.norm(_np.imag(Lmx[i, i])) < IMAG_TOL) otherParams[i, i] = Lmx[i, i].real for j in range(i): otherParams[i, j] = Lmx[i, j].real otherParams[j, i] = Lmx[i, j].imag else: # param_mode == "unconstrained": otherParams mx stores otherProjs (hermitian) directly for i in range(bsO - 1): assert(_np.linalg.norm(_np.imag(otherProjs[i, i])) < IMAG_TOL) otherParams[i, i] = otherProjs[i, i].real for j in range(i): otherParams[i, j] = otherProjs[i, j].real otherParams[j, i] = otherProjs[i, j].imag else: otherParams = _np.empty(0, 'd') assert(not _np.iscomplexobj(hamParams)) # params should always assert(not _np.iscomplexobj(otherParams)) # be *real* return _np.concatenate((hamParams, otherParams.flat)) def paramvals_to_lindblad_projections(paramvals, ham_basis_size, other_basis_size, param_mode="cptp", other_mode="all", Lmx=None): """ Construct the separate arrays of Hamiltonian and non-Hamiltonian Lindblad-term projections from the array of Lindblad-gate parameter values. This function essentially performs the inverse of :function:`lindblad_projections_to_paramvals`. Parameters ---------- paramvals : numpy.ndarray A 1D array of real parameter values consisting of d-1 Hamiltonian values followed by either (d-1)^2 or just d-1 non-Hamiltonian values (the latter when `other_mode in ('diagonal','diag_affine')`). ham_basis_size, other_basis_size : int The number of elements in the Hamiltonian and non-Hamiltonian bases used to construct `paramvals`. As such, `ham_basis_size` gives the offset into `paramvals` where the non-Hamiltonian parameters begin. param_mode : {"unconstrained", "cptp", "depol", "reldepol"} Specifies how the Lindblad-term coefficients are mapped to the set of (real) parameter values. This really just applies to the "other" (non-Hamiltonian) coefficients. "unconstrained" means that ranging over the parameter values lets the coefficient-matrix vary over all matrices, "cptp" restricts this to postitive matrices. "depol" maps all of the coefficients to the *same, positive* parameter (only available for "diagonal" and "diag_affine" other-modes), and "reldepol" does the same thing but without the positivity constraint. other_mode : {"all", "diagonal", "diag_affine"} Specifies the structure of the matrix of other (non-Hamiltonian) coefficients. If d is the gate dimension, "all" means a (d-1,d-1) matrix is used; "diagonal" means just the (d2-1,) diagonal of this matrix is used; "diag_affine" means the coefficients are in a (2,d2-1) array with the diagonal-term coefficients being the first row and the affine coefficients being the second row. Lmx : ndarray, optional Scratch space that is used to store the lower-triangular Cholesky decomposition matrix that is used to construct the "other" projections when there is a CPTP constraint. Returns ------- hamProjs : numpy.ndarray An array of length d-1, where d is the gate dimension, giving the projections onto a full set of the Hamiltonian-type Lindblad terms. otherProjs : numpy.ndarray An array of shape (d-1,d-1) or (d-1,) or (2,d-1) where d is the gate dimension, giving the projections onto a full set of non-Hamiltonian -type Lindblad terms (see `other_mode` above). """ bsH = ham_basis_size bsO = other_basis_size if Lmx is None: Lmx = _np.zeros((bsO - 1, bsO - 1), 'complex') if bsO > 0 else None # self.paramvals = [hamCoeffs] + [otherParams] # where hamCoeffs are *real* and of length d2-1 (self.dim == d2) if bsH > 0: hamCoeffs = paramvals[0:bsH - 1] nHam = bsH - 1 else: hamCoeffs = None nHam = 0 #built up otherCoeffs based on param_mode and nonham_mode if bsO > 0: if other_mode == "diagonal": otherParams = paramvals[nHam:] expected_shape = (1,) if (param_mode in ("depol", "reldepol")) else (bsO - 1,) assert(otherParams.shape == expected_shape) if param_mode in ("depol", "reldepol"): otherParams = otherParams[0] * _np.ones(bsO - 1, 'd') # replicate single param bsO-1 times if param_mode in ("cptp", "depol"): otherCoeffs = otherParams**2 # Analagous to L*L_dagger else: # "unconstrained" otherCoeffs = otherParams elif other_mode == "diag_affine": if param_mode in ("depol", "reldepol"): otherParams = paramvals[nHam:].reshape((1 + bsO - 1,)) otherCoeffs = _np.empty((2, bsO - 1), 'd') # leave as real type b/c doesn't have complex entries if param_mode == "depol": otherCoeffs[0, :] = otherParams[0]**2 else: otherCoeffs[0, :] = otherParams[0] otherCoeffs[1, :] = otherParams[1:] else: otherParams = paramvals[nHam:].reshape((2, bsO - 1)) if param_mode == "cptp": otherCoeffs = otherParams.copy() otherCoeffs[0, :] = otherParams[0]**2 else: # param_mode == "unconstrained" #otherCoeffs = _np.empty((2,bsO-1),'complex') otherCoeffs = otherParams else: # other_mode == "all" otherParams = paramvals[nHam:].reshape((bsO - 1, bsO - 1)) if param_mode == "cptp": # otherParams is an array of length (bs-1)*(bs-1) that # encodes a lower-triangular matrix "Lmx" via: # Lmx[i,i] = otherParams[i,i] # Lmx[i,j] = otherParams[i,j] + 1j*otherParams[j,i] (i > j) for i in range(bsO - 1): Lmx[i, i] = otherParams[i, i] for j in range(i): Lmx[i, j] = otherParams[i, j] + 1j * otherParams[j, i] #The matrix of (complex) "other"-coefficients is build by # assuming Lmx is its Cholesky decomp; means otherCoeffs # is pos-def. # NOTE that the Cholesky decomp with all positive real diagonal # elements is *unique* for a given positive-definite otherCoeffs # matrix, but we don't care about this uniqueness criteria and so # the diagonal els of Lmx can be negative and that's fine - # otherCoeffs will still be posdef. otherCoeffs = _np.dot(Lmx, Lmx.T.conjugate()) #DEBUG - test for pos-def #evals = _np.linalg.eigvalsh(otherCoeffs) #DEBUG_TOL = 1e-16; #print("EVALS DEBUG = ",evals) #assert(all([ev >= -DEBUG_TOL for ev in evals])) else: # param_mode == "unconstrained" #otherParams holds otherCoeff real and imaginary parts directly otherCoeffs = _np.empty((bsO - 1, bsO - 1), 'complex') for i in range(bsO - 1): otherCoeffs[i, i] = otherParams[i, i] for j in range(i): otherCoeffs[i, j] = otherParams[i, j] + 1j * otherParams[j, i] otherCoeffs[j, i] = otherParams[i, j] - 1j * otherParams[j, i] else: otherCoeffs = None return hamCoeffs, otherCoeffs #TODO: replace two_qubit_gate, one_qubit_gate, unitary_to_pauligate_* with # calls to this one and unitary_to_processmx def rotation_gate_mx(r, mxBasis="gm"): """ Construct a rotation operation matrix. Build the operation matrix corresponding to the unitary `exp(-i * (r[0]/2*PP[0]*sqrt(d) + r[1]/2*PP[1]*sqrt(d) + ...) )` where `PP' is the array of Pauli-product matrices obtained via `pp_matrices(d)`, where `d = sqrt(len(r)+1)`. The division by 2 is for convention, and the sqrt(d) is to essentially un-normalise the matrices returned by `pp_matrices` to they are equal to products of the *standard* Pauli matrices. Parameters ---------- r : tuple A tuple of coeffiecients, one per non-identity Pauli-product basis element mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). . Returns ------- numpy array a d^2 x d^2 operation matrix in the specified basis. """ d = int(round(_np.sqrt(len(r) + 1))) assert(d**2 == len(r) + 1), "Invalid number of rotation angles" #get Pauli-product matrices (in std basis) pp = _bt.basis_matrices('pp', d**2) assert(len(r) == len(pp[1:])) #build unitary (in std basis) ex = _np.zeros((d, d), 'complex') for rot, pp_mx in zip(r, pp[1:]): ex += rot / 2.0 * pp_mx * _np.sqrt(d) U = _spl.expm(-1j * ex) stdGate = unitary_to_process_mx(U) ret = _bt.change_basis(stdGate, 'std', mxBasis) return ret def project_model(model, targetModel, projectiontypes=('H', 'S', 'H+S', 'LND'), genType="logG-logT"): """ Construct one or more new models by projecting the error generator of `model` onto some sub-space then reconstructing. Parameters ---------- model : Model The model whose error generator should be projected. targetModel : Model The set of target (ideal) gates. projectiontypes : tuple of {'H','S','H+S','LND','LNDCP'} Which projections to use. The length of this tuple gives the number of `Model` objects returned. Allowed values are: - 'H' = Hamiltonian errors - 'S' = Stochastic Pauli-channel errors - 'H+S' = both of the above error types - 'LND' = errgen projected to a normal (CPTP) Lindbladian - 'LNDF' = errgen projected to an unrestricted (full) Lindbladian genType : {"logG-logT", "logTiG"} The type of error generator to compute. Allowed values are: - "logG-logT" : errgen = log(gate) - log(target_op) - "logTiG" : errgen = log( dot(inv(target_op), gate) ) Returns ------- projected_models : list of Models Elements are projected versions of `model` corresponding to the elements of `projectiontypes`. Nps : list of parameter counts Integer parameter counts for each model in `projected_models`. Useful for computing the expected log-likelihood or chi2. """ opLabels = list(model.operations.keys()) # operation labels basis = model.basis #The projection basis needs to be a basis for density matrices # (i.e. 2x2 mxs in 1Q case) rather than superoperators (4x4 mxs # in 1Q case) - whcih is what model.basis is. So, we just extract # a builtin basis name for the projection basis. if basis.name in ('pp', 'gm', 'std', 'qt'): proj_basis_name = basis.name else: proj_basis_name = 'pp' # model.basis is weird so just use paulis as projection basis if basis.name != targetModel.basis.name: raise ValueError("Basis mismatch between model (%s) and target (%s)!" % (model.basis.name, targetModel.basis.name)) # Note: set to "full" parameterization so we can set the gates below # regardless of what parameterization the original model had. gsDict = {}; NpDict = {} for p in projectiontypes: gsDict[p] = model.copy() gsDict[p].set_all_parameterizations("full") NpDict[p] = 0 errgens = [error_generator(model.operations[gl], targetModel.operations[gl], targetModel.basis, genType) for gl in opLabels] for gl, errgen in zip(opLabels, errgens): if ('H' in projectiontypes) or ('H+S' in projectiontypes): hamProj, hamGens = std_errgen_projections( errgen, "hamiltonian", proj_basis_name, basis, True) #ham_error_gen = _np.einsum('i,ijk', hamProj, hamGens) ham_error_gen = _np.tensordot(hamProj, hamGens, (0, 0)) ham_error_gen = _bt.change_basis(ham_error_gen, "std", basis) if ('S' in projectiontypes) or ('H+S' in projectiontypes): stoProj, stoGens = std_errgen_projections( errgen, "stochastic", proj_basis_name, basis, True) #sto_error_gen = _np.einsum('i,ijk', stoProj, stoGens) sto_error_gen = _np.tensordot(stoProj, stoGens, (0, 0)) sto_error_gen = _bt.change_basis(sto_error_gen, "std", basis) if ('LND' in projectiontypes) or ('LNDF' in projectiontypes): HProj, OProj, HGens, OGens = \ lindblad_errgen_projections( errgen, proj_basis_name, proj_basis_name, basis, normalize=False, return_generators=True) #Note: return values *can* be None if an empty/None basis is given #lnd_error_gen = _np.einsum('i,ijk', HProj, HGens) + \ # _np.einsum('ij,ijkl', OProj, OGens) lnd_error_gen = _np.tensordot(HProj, HGens, (0, 0)) + \ _np.tensordot(OProj, OGens, ((0, 1), (0, 1))) lnd_error_gen = _bt.change_basis(lnd_error_gen, "std", basis) targetOp = targetModel.operations[gl] if 'H' in projectiontypes: gsDict['H'].operations[gl] = operation_from_error_generator( ham_error_gen, targetOp, genType) NpDict['H'] += len(hamProj) if 'S' in projectiontypes: gsDict['S'].operations[gl] = operation_from_error_generator( sto_error_gen, targetOp, genType) NpDict['S'] += len(stoProj) if 'H+S' in projectiontypes: gsDict['H+S'].operations[gl] = operation_from_error_generator( ham_error_gen + sto_error_gen, targetOp, genType) NpDict['H+S'] += len(hamProj) + len(stoProj) if 'LNDF' in projectiontypes: gsDict['LNDF'].operations[gl] = operation_from_error_generator( lnd_error_gen, targetOp, genType) NpDict['LNDF'] += HProj.size + OProj.size if 'LND' in projectiontypes: evals, U = _np.linalg.eig(OProj) pos_evals = evals.clip(0, 1e100) # clip negative eigenvalues to 0 OProj_cp = _np.dot(U, _np.dot(_np.diag(pos_evals), _np.linalg.inv(U))) #OProj_cp is now a pos-def matrix #lnd_error_gen_cp = _np.einsum('i,ijk', HProj, HGens) + \ # _np.einsum('ij,ijkl', OProj_cp, OGens) lnd_error_gen_cp = _np.tensordot(HProj, HGens, (0, 0)) + \ _np.tensordot(OProj_cp, OGens, ((0, 1), (0, 1))) lnd_error_gen_cp = _bt.change_basis(lnd_error_gen_cp, "std", basis) gsDict['LND'].operations[gl] = operation_from_error_generator( lnd_error_gen_cp, targetOp, genType) NpDict['LND'] += HProj.size + OProj.size #Removed attempt to contract H+S to CPTP by removing positive stochastic projections, # but this doesn't always return the gate to being CPTP (maybe b/c of normalization)... #sto_error_gen_cp = _np.einsum('i,ijk', stoProj.clip(None,0), stoGens) # # (only negative stochastic projections OK) #sto_error_gen_cp = _tools.std_to_pp(sto_error_gen_cp) #gsHSCP.operations[gl] = _tools.operation_from_error_generator( # ham_error_gen, targetOp, genType) #+sto_error_gen_cp #DEBUG!!! #print("DEBUG: BEST sum neg evals = ",_tools.sum_of_negative_choi_evals(model)) #print("DEBUG: LNDCP sum neg evals = ",_tools.sum_of_negative_choi_evals(gsDict['LND'])) #Check for CPTP where expected #assert(_tools.sum_of_negative_choi_evals(gsHSCP) < 1e-6) #assert(_tools.sum_of_negative_choi_evals(gsDict['LND']) < 1e-6) #Collect and return requrested results: ret_gs = [gsDict[p] for p in projectiontypes] ret_Nps = [NpDict[p] for p in projectiontypes] return ret_gs, ret_Nps def get_a_best_case_gauge_transform(gate_mx, target_gate_mx, returnAll=False): """ Returns a gauge transformation that maps `gate_mx` into a matrix that is co-diagonal with `target_gate_mx`, i.e. they share a common set of eigenvectors. Gauge transformations effectively change the basis of all the gates in a model. From the perspective of a single gate a gauge transformation leaves it's eigenvalues the same and changes its eigenvectors. This function finds a *real* transformation that transforms the eigenspaces of `gate_mx` so that there exists a set of eigenvectors which diagonalize both `gate_mx` and `target_gate_mx`. Parameters ---------- gate_mx, target_gate_mx : numpy.ndarray The gate and target-gate matrices. returnAll : bool, optional If true, also return the matrices of eigenvectors for `Ugate` for gate_mx and `Utgt` for target_gate_mx such that `U = dot(Utgt, inv(Ugate))` is real. Returns ------- U : numpy.ndarray A gauge transformation such that if `epgate = U * gate_mx * U_inv`, then `epgate` (which has the same eigenalues as `gate_mx`), can be diagonalized with a set of eigenvectors that also diagonalize `target_gate_mx`. Furthermore, `U` is real. Ugate, Utgt : numpy.ndarray only if `returnAll == True`. See above. """ # A complication that must be dealt with is that # the eigenvalues of `target_gate_mx` can be degenerate, # and so matching up eigenvalues can't be done *just* based on value. # Our algorithm consists of two steps: # 1) match gate & target eigenvalues based on value, ensuring conjugacy # relationships between eigenvalues are preserved. # 2) for each eigenvalue/vector of `gate`, project the eigenvector onto # the eigenspace of `tgt_gate` corresponding to the matched eigenvalue. # (treat conj-pair eigenvalues of `gate` together). # we want a matrix that gauge-transforms gate_mx into a matrix as # close to target_gate_mx as possible, i.e. that puts gate_mx's # eigenvalues in the eigenspaces of target_gate_mx. This is done # by Ubest = _np.dot(Utgt, inv(Uop)), but there are often degrees # of freedom in Uop because of its degeneracies. Also, we want Ubest # to be *real*, so we need to ensure the conjugacy structure of Utgt # and Uop match... assert(_np.linalg.norm(gate_mx.imag) < 1e-8) assert(_np.linalg.norm(target_gate_mx.imag) < 1e-8) if True: # NEW approach that gives sorted eigenvectors def get_eigenspace_pairs(mx, TOL=1e-6): evals, U = _np.linalg.eig(mx) # so mx = U * evals * Uinv espace_pairs = {}; conj_pair_indices = [] #Pass 1: real evals and positive-imaginary-element-of-conjugate pair evals # (these are the representatives of "eigenspace pairs") for i, ev in enumerate(evals): if ev.imag < -TOL: conj_pair_indices.append(i); continue # save for pass2 #see if ev is already in espace_pairs for k, v in espace_pairs.items(): if abs(k - ev) < TOL: espace_pairs[k]['indices'].append(i) espace_pairs[k]['conj_pair_indices'].append(None) #espace_pairs[k]['evecs'].append(U[:,i]) break else: espace_pairs[ev] = {'indices': [i], 'conj_pair_indices': [None]} #Pass 2: negative-imaginary-part elements of evals that occur in conjugate pairs for i in conj_pair_indices: ev_pos = _np.conjugate(evals[i]) for k, v in espace_pairs.items(): # ev_pos *should* be in espace_pairs if abs(k - ev_pos) < TOL: #found the correct eigenspace-pair to add this eval & evec to, # now figure our where to put this index based on conjugacy relationships, # i.e. U[:,esp['indices'][i]] is always conjugate to U[:,esp['conj_pair_indices'][i]] for jj, j in enumerate(espace_pairs[k]['indices']): if espace_pairs[k]['conj_pair_indices'][jj] is None: # an empty slot espace_pairs[k]['conj_pair_indices'][jj] = i U[:, i] = U[:, j].conj() break else: raise ValueError("Nowhere to place a conjugate eigenvector %d-dim eigenbasis for %s!" % (len(espace_pairs[k]['indices']), str(k))) break else: raise ValueError("Expected to find %s as an espace-pair representative in %s" % (str(ev_pos), str(espace_pairs.keys()))) #if not (_np.allclose(mx, _np.dot(U, _np.dot(_np.diag(evals), _np.linalg.inv(U))))): # import bpdb; bpdb.set_trace() return evals, U, espace_pairs def standard_diag(mx, TOL=1e-6): evals, U, espairs = get_eigenspace_pairs(mx) std_evals = [] std_evecs = [] sorted_rep_evals = sorted(list(espairs.keys()), key=lambda x: (x.real, x.imag)) for ev in sorted_rep_evals: # iterate in sorted order just for definitiveness info = espairs[ev] dim = len(info['indices']) # dimension of this eigenspace (and it's pair, if there is one) #Ensure real eigenvalue blocks should have real eigenvectors if abs(ev.imag) < TOL: #find linear combinations of the eigenvectors that are real Usub = U[:, info['indices']] if _np.linalg.norm(Usub.imag) > TOL: # Im part of Usub * combo = Usub.real*combo.imag + Usub.imag*combo.real combo_real_imag = _mt.nullspace(_np.concatenate((Usub.imag, Usub.real), axis=1)) combos = combo_real_imag[0:dim, :] + 1j * combo_real_imag[dim:, :] if combos.shape[1] != dim: raise ValueError(("Can only find %d (< %d) *real* linear combinations of" " vectors in eigenspace for %s!") % (combos.shape[1], dim, str(ev))) U[:, info['indices']] = _np.dot(Usub, combos) assert(_np.linalg.norm(U[:, info['indices']].imag) < TOL) #Add real eigenvalues and vectors std_evals.extend([ev] * dim) std_evecs.extend([U[:, i] for i in info['indices']]) else: # complex eigenvalue case - should have conjugate pair info #Ensure blocks for conjugate-pairs of eigenvalues follow one after another and # corresponding eigenvectors (e.g. the first of each block) are conjugate pairs # (this is already done in the eigenspace construction) assert(len(info['conj_pair_indices']) == dim) std_evals.extend([ev] * dim) std_evals.extend([_np.conjugate(ev)] * dim) std_evecs.extend([U[:, i] for i in info['indices']]) std_evecs.extend([U[:, i] for i in info['conj_pair_indices']]) return _np.array(std_evals), _np.array(std_evecs).T #Create "gate_tilde" which has the eigenvectors of gate_mx around the matched eigenvalues of target_gate_mx # Doing this essentially decouples the problem of eigenvalue matching from the rest of the task - # after gate_tilde is created, it and target_gate_mx have exactly the *same* eigenvalues. evals_tgt, Utgt = _np.linalg.eig(target_gate_mx) evals_gate, Uop = _np.linalg.eig(gate_mx) pairs = _mt.minweight_match_realmxeigs(evals_gate, evals_tgt) replace_evals = _np.array([evals_tgt[j] for _, j in pairs]) gate_tilde = _np.dot(Uop, _np.dot(_np.diag(replace_evals), _np.linalg.inv(Uop))) #Create "standard diagonalizations" of gate_tilde and target_gate_mx, which give # sort the eigenvalues and ensure eigenvectors occur in *corresponding* conjugate pairs # (e.g. even when evals +1j and -1j have multiplicity 4, the first 4-D eigenspace, the evals_tgt, Utgt = standard_diag(target_gate_mx) evals_tilde, Uop = standard_diag(gate_tilde) assert(_np.allclose(evals_tgt, evals_tilde)) #Update Utgt so that Utgt * inv_Uop is close to the identity kite = _mt.get_kite(evals_tgt) # evals are grouped by standard_diag, so this works D_prior_to_proj = _np.dot(_np.linalg.inv(Utgt), Uop) #print("D prior to projection to ",kite," kite:"); _mt.print_mx(D_prior_to_proj) D = _mt.project_onto_kite(D_prior_to_proj, kite) start = 0 for i, k in enumerate(kite): slc = slice(start, start + k) dstart = start + k for kk in kite[i + 1:]: if k == kk and _np.isclose(evals_tgt[start], evals_tgt[dstart].conj()): # conjugate block! dslc = slice(dstart, dstart + kk) # enforce block conjugacy needed to retain Uproj conjugacy structure D[dslc, dslc] = D[slc, slc].conj() break dstart += kk start += k Utgt = _np.dot(Utgt, D) # update Utgt Utrans = _np.dot(Utgt, _np.linalg.inv(Uop)) assert(_np.linalg.norm(_np.imag(Utrans)) < 1e-7) Utrans = Utrans.real # _np.real_if_close(Utrans, tol=1000) if returnAll: return Utrans, Uop, Utgt, evals_tgt else: return Utrans evals_tgt, Utgt = _np.linalg.eig(target_gate_mx) evals_gate, Uop =
_np.linalg.eig(gate_mx)
numpy.linalg.eig
from gym_kuka_mujoco.utils.kinematics import forwardKin, inverseKin, identity_quat from gym_kuka_mujoco.utils.quaternion import mat2Quat import numpy as np def hole_insertion_samples(sim, nsamples=10, range=(0, 0.05)): # The points to be transformed. pos = np.array([0., 0., 0.]) peg_body_id = sim.model.body_name2id('peg') tip_site_id = sim.model.site_name2id('peg_tip') tip_body_pos = sim.model.site_pos[tip_site_id] # The desired world coordinates hole_id = sim.model.body_name2id('hole') world_pos_desired, _ = forwardKin(sim, np.zeros(3), identity_quat, hole_id) world_pos_delta =
np.zeros((nsamples, 3))
numpy.zeros
# 元データと低次元表現それぞれに対し精度を計算する # X:特徴行列, L: ラベル import numpy as np from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from munkres import Munkres import csv from numpy import savetxt from pandas import DataFrame from sklearn.metrics import adjusted_rand_score, adjusted_mutual_info_score import os import glob from matplotlib.backends.backend_pdf import PdfPages from MantelTest import Mantel from hub_toolbox.distances import euclidean_distance from sklearn.model_selection import StratifiedShuffleSplit import pandas as pd import numba from sklearn import neighbors from sklearn.metrics.pairwise import pairwise_distances from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler def kNN_acc(X, L): X_train, X_test, Y_train, Y_test = train_test_split(X, L, random_state=0) knc = KNeighborsClassifier(n_neighbors=1) knc.fit(X_train, Y_train) Y_pred = knc.predict(X_test) score = knc.score(X_test, Y_test) return score def kNN_acc_kfold(X, y, n_neighbors=1): """ Returns the average 10-fold validation accuracy of a NN classifier trained on the given embeddings Args: X (np.array): feature matrix of size n x d y (np.array): label matrix of size n x 1 n_neighbors (int): number of nearest neighbors to be used for inference Returns: score (float): Accuracy of the NN classifier """ kf = KFold(n_splits=10) kf.get_n_splits(X) scores = [] for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf = neighbors.KNeighborsClassifier(n_neighbors) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores.append(accuracy_score(y_test, y_pred)) return np.average(scores) def visualize(X, L, cmap='Spectral', s=10): sns.set(context="paper", style="white") fig, ax = plt.subplots(figsize=(12, 10)) color = L.astype(int) plt.scatter( X[:, 0], X[:, 1], c=color, cmap=cmap, s=s ) plt.setp(ax, xticks=[], yticks=[]) # plt.title("MNIST data embedded into two dimensions by UMAP", fontsize=18) plt.show() def save_visualization(X, L, cmap='viridis', s=0.1, dir='./fig_vis/', dataset = 'F-MNIST', hub_org = 'org', i=0): sns.set(context="paper", style="white") fig, ax = plt.subplots(figsize=(12, 10)) color = L.astype(int) plt.scatter( X[:, 0], X[:, 1], c=color, cmap=cmap, s=s ) plt.setp(ax, xticks=[], yticks=[]) if hub_org == 'org': model = 'UMAP' else: model = 'HR-UMAP' # plt.title(dataset + " data by " + model, fontsize=18) # # pdfファイルの初期化 # pp = PdfPages(dir + dataset + '_' + model + str(i+1) + '.pdf') # # # figureをセーブする # plt.savefig(pp, format='pdf') # # # pdfファイルをクローズする。 # pp.close() plt.savefig(dir + dataset + '_' + model + str(i+1) + '.png') def kmeans_acc_ari_ami(X, L): """ Calculate clustering accuracy. Require scikit-learn installed # Arguments y: true labels, numpy.array with shape `(n_samples,)` y_pred: predicted labels, numpy.array with shape `(n_samples,)` # Return accuracy, in [0,1] """ n_clusters = len(np.unique(L)) kmeans = KMeans(n_clusters=n_clusters, n_init=20) y_pred = kmeans.fit_predict(X) y_pred = y_pred.astype(np.int64) y_true = L.astype(np.int64) assert y_pred.size == y_true.size y_pred = y_pred.reshape((1, -1)) y_true = y_true.reshape((1, -1)) # D = max(y_pred.max(), L.max()) + 1 # w = np.zeros((D, D), dtype=np.int64) # for i in range(y_pred.size): # w[y_pred[i], L[i]] += 1 # # from sklearn.utils.linear_assignment_ import linear_assignment # from scipy.optimize import linear_sum_assignment # row_ind, col_ind = linear_sum_assignment(w.max() - w) # # return sum([w[i, j] for i in row_ind for j in col_ind]) * 1.0 / y_pred.size if len(np.unique(y_pred)) == len(np.unique(y_true)): C = len(np.unique(y_true)) cost_m = np.zeros((C, C), dtype=float) for i in np.arange(0, C): a = np.where(y_pred == i) # print(a.shape) a = a[1] l = len(a) for j in np.arange(0, C): yj = np.ones((1, l)).reshape(1, l) yj = j * yj cost_m[i, j] = np.count_nonzero(yj - y_true[0, a]) mk = Munkres() best_map = mk.compute(cost_m) (_, h) = y_pred.shape for i in np.arange(0, h): c = y_pred[0, i] v = best_map[c] v = v[1] y_pred[0, i] = v acc = 1 - (np.count_nonzero(y_pred - y_true) / h) else: acc = 0 # print(y_pred.shape) y_pred = y_pred[0] y_true = y_true[0] ari, ami = adjusted_rand_score(y_true, y_pred), adjusted_mutual_info_score(y_true, y_pred) return acc, ari, ami @numba.jit() def mantel_test(X, L, embed, describe = True): sss = StratifiedShuffleSplit(n_splits=50, test_size=1000, random_state=0) sss.get_n_splits(X, L) label_type = list(set(L)) r_lst = np.array([]) p_lst = np.array([]) for _, idx in sss.split(X, L): # print('Index: ', idx) # X_test = X[idx] # y_train = X_high, L_hl = X[idx], L[idx] X_low = embed[idx] # print(X_high.shape, L_high.shape) # print(X_low.shape, L_low.shape) label_idx = [] for _, i in enumerate(label_type): l_idx = np.where(L_hl == i) label_idx.append(l_idx) # print(label_type) # label_idx X_high_lst = [] X_low_lst = [] # for _, i in enumerate(label_type): # X_high_lst.append(X_high[label_idx[i]]) for i, _ in enumerate(label_type): centroid =
np.mean(X_high[label_idx[i]], axis=0)
numpy.mean
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import itertools import random import numpy as np import pytest import sympy import cirq class PlusGate(cirq.Gate): """A qudit gate that increments a qudit state mod its dimension.""" def __init__(self, dimension, increment=1): self.dimension = dimension self.increment = increment % dimension def _qid_shape_(self): return (self.dimension,) def _unitary_(self): inc = (self.increment - 1) % self.dimension + 1 u = np.empty((self.dimension, self.dimension)) u[inc:] = np.eye(self.dimension)[:-inc] u[:inc] =
np.eye(self.dimension)
numpy.eye
import numpy as np import matplotlib from matplotlib import pyplot as plt import os import placentagen as pg import csv D0_list = [150,150,172.8,172.8,170.8,135.8,43,230,255.6,301.6,304.1,108.1,85.7,60.7,235.6,156.5,255.4,164.8,100.8,64.9] Cpass_list = [1.168,1.168,1.416,1.416,1.386,1.067,0.316,1.697,1.417,1.672,1.857,0.843,0.655,0.371,1.802,1.043,1.719,1.141,0.687,0.459] Cpassdash_list = [7.24,7.24,7.901,7.901,10.568,10.516,11.247,5.298,5.628,5.324,5.226,24.279,36.785,21.035,6.782,8.293,14.354,13.828,12.606,13.431] Cact_list = [1.108, 1.103, 1.499, 1.858, 1.514, 1.202, 0.392, 3.995, 2.649, 1.395, 3.748, 1.665, 1.024, 0.654, 0.908, 3.491, 1.564, 1.36, 1.131, 0.405] D0_list_act = [150,172.8,170.8,135.8,43,156.5,255.4,164.8,100.8,64.9] Cmyo_list = [7.479,8.871,8.462,7.973,24.934,9.018,4.674,7.508,15.977,22.252] expt_pressure = np.array([10.,30.,50.,70.,90.]) # defined in mmHg passive_diameter_preg = np.array([76.258, 122.33566667, 145.152, 137.5625, 144.64166667]) passive_se_preg = np.array([10.8693589, 10.23274183, 13.36969036, 11.7338111, 12.88427201]) passive_diameter = np.array([54.11314286, 74.08128571, 88.831, 89.99828571, 86.769]) passive_se = np.array([3.71311161,5.78277879,9.940847,9.98130157,12.93325597]) active_diameter_preg = np.array([92.70733333,113.74933333,121.8715,107.93166667,101.19983333]) active_se_preg = np.array([8.36576993,6.12886374,15.68328409,15.01816237,19.29603708]) active_diameter = np.array([65.587,74.17528571,79.87185714,83.58714286,80.92285714]) active_se = np.array([5.52633482,5.86497481,7.06835057,7.71278033,9.02834107]) num_plot= 101 def main(): ## Create a directory to output figures export_directory = 'output' if not os.path.exists(export_directory): os.makedirs(export_directory) passive_file = 'data/PassiveFits.csv' active_file = 'data/ActiveFits.csv' shear_file = 'data/FlowFits.csv' file = open(passive_file) passive_data = csv.reader(file) header = next(passive_data) rows = [] for row in passive_data: rows.append(row) file.close() D0 = float(rows[0][0]) Cpass = float(rows[1][0]) Cpassdash = float(rows[2][0]) Cpass_preg = float(rows[4][0]) Cpassdash_preg = float(rows[5][0]) D0_preg = float(rows[3][0]) file = open(active_file) active_data = csv.reader(file) header = next(active_data) rows = [] for row in active_data: rows.append(row) print(rows) file.close() Cact = float(rows[0][0]) Cactdash = float(rows[1][0]) Cactdashdash = float(rows[2][0]) Cmyo = float(rows[3][0]) Cdashdashtone = float(rows[4][0]) Cact_preg = float(rows[5][0]) Cactdash_preg = float(rows[6][0]) Cactdashdash_preg = float(rows[7][0]) Cmyo_preg = float(rows[8][0]) Cdashdashtone_preg = float(rows[9][0]) file = open(shear_file) shear_data = csv.reader(file) header = next(shear_data) rows = [] for row in shear_data: rows.append(row) print(rows) file.close() Cshear = float(rows[0][0]) Cshear1 = float(rows[1][0]) shear_offset1 = float(rows[2][0]) shear_offset2 = float(rows[3][0]) Cshear_preg = float(rows[4][0]) Cshear1_preg = float(rows[5][0]) shear_offset1_preg = float(rows[6][0]) shear_offset2_preg = float(rows[7][0]) print("Non-pregnant D0 (um) ", D0) print("Non-pregnant Cpass (N.m)", Cpass/1000.) print("Non-pregnant Cpassdash (no units)",Cpassdash) print("Non-pregnant Cact (N.m) ", Cact / 1000.) print("Non-pregnant Cactdash (no units) ", Cactdash) print("non-pregnant Cactdashdash (no units)", Cactdashdash) print("non-pregnant Cmyo (m/N)", Cmyo * 1000.) print("non-pregnant C'tone (no units)", Cdashdashtone) print("non-pregnant Cshear (no units)", Cshear) print("non-pregnant Cshear1 (no units)", Cshear1) print("non-pregnant tau1 (no units)", shear_offset1) print("non-pregnant tau2 (no units)", shear_offset2) print("-------------------------------------") print("pregnant D0 (um) ", D0_preg) print("pregnant Cpass (N.m)", Cpass_preg/1000.) print("pregnant Cpassdash (no units)",Cpassdash_preg) print("pregnant Cact (N.m) ", Cact_preg / 1000.) print("pregnant Cactdash (no units) ", Cactdash_preg) print("pregnant Cactdashdash (no units)", Cactdashdash_preg) print("pregnant Cmyo (m/N)", Cmyo_preg * 1000.) print("pregnant C'tone (no units)", Cdashdashtone_preg) print("pregnant Cshear (no units)", Cshear_preg) print("pregnant Cshear1 (no units)", Cshear1_preg) print("pregnant tau1 (no units)", shear_offset1_preg) print("pregnant tau2 (no units)", shear_offset2_preg) new_passive_d = np.zeros((num_plot, 1)) new_passive_d_preg = np.zeros((num_plot, 1)) new_active_d = np.zeros((num_plot, 1)) new_active_d_preg = np.zeros((num_plot, 1)) fit_passive_params = [D0, Cpass, Cpassdash] fit_passive_params_preg = [D0_preg, Cpass_preg, Cpassdash_preg] dummy_myo_params = [0., 0., 0., 0., 0.] fit_myo_params = [Cact, Cactdash,Cactdashdash,Cmyo,Cdashdashtone] fit_myo_params_preg = [Cact_preg, Cactdash_preg, Cactdashdash_preg, Cmyo_preg, Cdashdashtone_preg] flow_params = [Cshear,Cshear1,shear_offset1,shear_offset2] flow_params_preg = [Cshear_preg,Cshear1_preg,shear_offset1_preg,shear_offset2_preg] dummy_flow_params = [0., 0., 0., 0.] dummy_fixed_flow_params = [0., 0., 0.] new_pressure = np.linspace(10, 90, num_plot) * 133. / 1000. for i in range(0, num_plot): new_passive_d[i] = pg.diameter_from_pressure(fit_passive_params, dummy_myo_params, dummy_flow_params, dummy_fixed_flow_params, new_pressure[i], True) new_passive_d_preg[i] = pg.diameter_from_pressure(fit_passive_params_preg, dummy_myo_params, dummy_flow_params, dummy_fixed_flow_params, new_pressure[i], True) new_active_d[i] = pg.diameter_from_pressure(fit_passive_params, fit_myo_params, dummy_flow_params, dummy_fixed_flow_params, new_pressure[i], True) new_active_d_preg[i] = pg.diameter_from_pressure(fit_passive_params_preg, fit_myo_params_preg, dummy_flow_params, dummy_fixed_flow_params, new_pressure[i], True) ############################################### #Plot passive results against experimental data ############################################### plt.errorbar(expt_pressure, passive_diameter_preg, passive_se_preg, marker='s', ls='--', color='#F01D7F', label="Experimental data (pregnant)", capsize=5.) plt.errorbar(expt_pressure, passive_diameter, passive_se, marker='o', ls='--', color='.5', label="Experimental data (non-pregnant)", capsize=5.) plt.ylim((0, 250.)) plt.xlim((0., 100.)) plt.plot(np.linspace(10, 90, num_plot), new_passive_d_preg, '#F01D7F', label="Model fit (pregnant)") plt.plot(np.linspace(10, 90, num_plot), new_passive_d, '0.5', label="Model fit (non-pregnant)") plt.xlabel('Pressure (mmHg)') plt.ylabel('Inner diameter ($\mu$m)') plt.legend() plt.savefig(export_directory + '/PassiveFitsNonNormalised.png') plt.close() plt.errorbar(expt_pressure, passive_diameter_preg / passive_diameter_preg[0], passive_se_preg / passive_diameter_preg[0], marker='s', ls='--', color='#F01D7F', label="Experimental data (pregnant)", capsize=5.) plt.errorbar(expt_pressure, passive_diameter / passive_diameter[0], passive_se / passive_diameter[0], marker='o', ls='--', color='.5', label="Experimental data (non-pregnant)", capsize=5.) plt.ylim((0, 2.5)) plt.xlim((0., 100.)) plt.plot(np.linspace(10, 90, num_plot), new_passive_d_preg / passive_diameter_preg[0], '#F01D7F', label="Model fit (pregnant)") plt.plot(np.linspace(10, 90, num_plot), new_passive_d / passive_diameter[0], '0.5', label="Model fit (non-pregnant)") plt.xlabel('Pressure (mmHg)') plt.ylabel('Inner diameter / Diameter at 10mmHg') plt.legend() plt.savefig(export_directory + '/PassiveFitsNormalisedTo10mmHg.png') plt.close() ################################################################## #Plot active model results against experimental data ################################################################# plt.errorbar(expt_pressure, passive_diameter_preg, passive_se_preg, marker='s', markerfacecolor='none', ls='--', color='#F01D7F', label="Passive data (pregnant)", capsize=5.) plt.errorbar(expt_pressure, passive_diameter, passive_se, marker='o', markerfacecolor='none', ls='--', color='.5', label="Passive data (non-pregnant)", capsize=5.) plt.errorbar(expt_pressure, active_diameter_preg, active_se_preg, marker='s', color='#F01D7F', label="Active data (pregnant)", capsize=5.) plt.errorbar(expt_pressure, active_diameter, active_se, marker='o', color='.5', label="Active data (non-pregnant)", capsize=5.) plt.ylim((0, 250.)) plt.xlim((0., 100.)) plt.xlabel('Pressure (mmHg)') plt.ylabel('Inner diameter ($\mu$m)') plt.legend() plt.savefig(export_directory + '/ExperimentalDataActiveNoFlow.png') plt.close() plt.ylim((0, 250.)) plt.xlim((0., 100.)) plt.xlabel('Pressure (mmHg)') plt.ylabel('Inner diameter ($\mu$m)') plt.plot(np.linspace(10, 90, num_plot), new_passive_d_preg, color='#F01D7F', linestyle='--', label="Passive model fit (pregnant)") plt.plot(np.linspace(10, 90, num_plot), new_passive_d, color='0.5', linestyle='--', label="Passive model fit (non-pregnant)") plt.plot(np.linspace(10, 90, num_plot), new_active_d_preg, color='#F01D7F', label="Active model fit (pregnant)") plt.plot(np.linspace(10, 90, num_plot), new_active_d, color='0.5', label="Active model fit (non-pregnant)") plt.errorbar(expt_pressure, active_diameter_preg, active_se_preg, marker='s', ls=':', color='#F01D7F', label="Experimental data (pregnant)", capsize=5.) plt.errorbar(expt_pressure, active_diameter, active_se, marker='o', ls=':', color='0.5', label="Experimental data (non-pregnant)", capsize=5.) plt.savefig(export_directory + '/ActiveNoFlowFits.png') plt.close() ########################################################## #Plot Cpass Comparisons ############################################################ x = np.linspace(30, 320, 3) y = 0.0059 * x + 0.1892 plt.plot(D0_list, Cpass_list, color='k', marker='x', linestyle='None', label="Carlson and Secombe (2005)") plt.plot(x, y, color='k', ls=':', label='Fit to Carlson and Secombe data') plt.plot(D0, Cpass/1000., marker='o', color='#F01D7F', linestyle='None', label='Rat radial (non-pregnant)') plt.plot(D0_preg, Cpass_preg/1000., marker='s', color='#F01D7F', linestyle='None', label='Rat radial (pregnant)') plt.annotate("", xy=(0.975*D0_preg,0.975*Cpass_preg/1000.), xytext=(D0, Cpass/1000.), arrowprops=dict(headwidth=5, headlength=5, width=0.1,color='#F01D7F')) matplotlib.pyplot.text(48., 0.75, "R=0.94", fontsize=12) plt.xlabel('D$_0$ ($\mu$m)', fontsize=16) plt.ylabel('C$_{pass}$ (N/m)', fontsize=16) plt.legend() plt.savefig(export_directory + '/CpassComparison.png') plt.close() ########################################################## #Plot Cpass Comparisons ############################################################ x =
np.linspace(30, 320, 3)
numpy.linspace
"""Luminosity Function Constructor and Modeller This script allows the user to construct and model Galaxian Luminosity Functions using the 1/Vmax estimator and Schechter function. Rest-frame magnitudes and spatial variance on the counts can be obtained. Plotting function for easy visualisation are included. This file can also be imported as a module and contains the following functions: * get_maggy - converts magnitudes into maggies * get_maggy_inv_var - returns inverse variances on maggies * get_obs_maggies_file - saves file of calculated maggies and inverse variances * get_rec_maggies_files - saves file of reconstructed maggies at input redshift * get_rest_maggy_ratio_file - saves file of calculated rest-frame maggy ratios * get_rest_mag - converts apparent magnitudes into rest-frame magnitudes * get_maggy_ratio_file - saves file of calculated reconstructed maggy ratios * get_all_maggy_ratios_file - consolidates files of calculated maggy ratios * get_volume - returns comoving volume of input survey area and redshift * get_binned_phi - bins and weights galaxy counts per magnitude by 1/Vmax * get_patch_centers - saves file of centers of equal patches over survey area * get_patch_labels - divides survey into equal patches * get_binned_phi_error - returns spatial variance of the luminosity function * get_plot - plots magnitude-binned and 1/Vmax weighted luminosity function * filter_plot_by_colour - plots luminosity functions filtered by galaxy colour * SchechterMagModel - single Schechter function in terms of magnitude * DoubleSchechterMagModel - double Schechter function in terms of magnitude * get_gof - returns reduced chi squared estimate of goodness of fit * get_schechter_phi - best fits single Schechter function on data * get_double_schechter_phi - best fits double Schechter function on data """ # ----------------------- # Package Imports # ----------------------- # import kcorrect import numpy as np from typing import Tuple import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt from scipy.optimize import curve_fit import kmeans_radec from kmeans_radec import KMeans, kmeans_sample from astropy.io import ascii from astropy.cosmology import FlatLambdaCDM import astropy.units as u cosmo = FlatLambdaCDM(H0=70 * u.km / u.s / u.Mpc, Tcmb0=2.725 * u.K, Om0=0.3) # ----------------------- # Methods # ----------------------- def get_maggy(app_mag_list: np.ndarray) -> np.ndarray: """ Converts magnitudes into maggies. Parameters ---------- app_mag_list : np.ndarray apparent magnitude of each data point (galaxy) Returns ------- np.ndarray all corresponding maggy values """ maggies_list = 10**(app_mag_list / (-2.5)) return maggies_list def get_maggy_inv_var(maggies_list: np.ndarray, app_mag_err_list: np.ndarray) -> np.ndarray: """ Returns inverse variances on maggies using maggies and magnitude errors. Parameters ---------- maggies_list : np.ndarray maggy value of each data point (galaxy) app_mag_err_list : np.ndarray all corresponding errors on apparent magnitude values Returns ------- np.ndarray all correspoding maggy inverse variance values """ inv_var_list = (0.4 * np.log(10) * maggies_list * app_mag_err_list)**(-2) return inv_var_list def get_obs_maggies_file(obs_maggies_outfile_name: str, bands: str, redshift_list: np.ndarray, u_app_mag_list: np.ndarray, g_app_mag_list: np.ndarray, r_app_mag_list: np.ndarray, i_app_mag_list: np.ndarray, Z_app_mag_list: np.ndarray, Y_app_mag_list=np.empty(0), J_app_mag_list=np.empty(0), H_app_mag_list=np.empty(0), Ks_app_mag_list=np.empty(0), u_app_mag_err_list=np.empty(0), g_app_mag_err_list=np.empty(0), r_app_mag_err_list=np.empty(0), i_app_mag_err_list=np.empty(0), Z_app_mag_err_list=np.empty(0), Y_app_mag_err_list=np.empty(0), J_app_mag_err_list=np.empty(0), H_app_mag_err_list=np.empty(0), Ks_app_mag_err_list=np.empty(0)): ''' Calculates maggy and inverse variance values from apparent magnitude and their error values and saves the values in a space delimited csv file with columns (without headers): redshift u_maggy g_maggy r_maggy... u_inv_var g_inv_var r_inv_var... File is required to be used with the get_rec_maggies_files function or other kcorrect_python functions that best-fit SED coefficients. WARNING: pre-existing file with same name will be over-written. Parameters ---------- obs_maggies_outfile_name : str name/path of file with '.csv' extention to save maggies and respective inverse variance values in bands : str 'ugriz' or 'ugriZYJHKs' - refer source code if using other bands redshift_list : np.ndarray redshift of each data point (galaxy) u_app_mag_list : np.ndarray all corresponding apparent magnitudes in u-band g_app_mag_list : np.ndarray all corresponding apparent magnitudes in g-band r_app_mag_list : np.ndarray all corresponding apparent magnitudes in r-band i_app_mag_list : np.ndarray all corresponding apparent magnitudes in i-band Z_app_mag_list : np.ndarray all corresponding apparent magnitudes in Z-band Y_app_mag_list : np.ndarray all corresponding apparent magnitudes in Y-band J_app_mag_list : np.ndarray all corresponding apparent magnitudes in J-band H_app_mag_list : np.ndarray all corresponding apparent magnitudes in H-band Ks_app_mag_list : np.ndarray all corresponding apparent magnitudes in Ks-band u_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in u-band g_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in g-band r_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in r-band i_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in i-band Z_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in Z-band Y_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in Y-band J_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in J-band H_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in H-band Ks_app_mag_err_list : np.ndarray all corresponding errors on apparent magnitudes in Ks-band ''' if bands == 'ugriz': maggy_inv_var_table = np.column_stack( (redshift_list, get_maggy(u_app_mag_list), get_maggy(g_app_mag_list), get_maggy(r_app_mag_list), get_maggy(i_app_mag_list), get_maggy(Z_app_mag_list), get_maggy_inv_var(get_maggy(u_app_mag_list), u_app_mag_err_list), get_maggy_inv_var(get_maggy(g_app_mag_list), g_app_mag_err_list), get_maggy_inv_var(get_maggy(r_app_mag_list), r_app_mag_err_list), get_maggy_inv_var(get_maggy(i_app_mag_list), i_app_mag_err_list), get_maggy_inv_var(get_maggy(Z_app_mag_list), Z_app_mag_err_list))) ascii.write(maggy_inv_var_table, obs_maggies_outfile_name, overwrite=True, format='no_header', names=[ 'redshift', 'u_maggy', 'g_maggy', 'r_maggy', 'i_maggy', 'z_maggy', 'u_inv_var', 'g_inv_var', 'r_inv_var', 'i_inv_var', 'z_inv_var' ]) print( '\tRedshifts, and ' + bands + ' maggies and their inverse variances calculated, stacked and saved in ' + obs_maggies_outfile_name + '.') elif bands == 'ugriZYJHKs': maggy_inv_var_table = np.column_stack( (redshift_list, get_maggy(u_app_mag_list), get_maggy(g_app_mag_list), get_maggy(r_app_mag_list), get_maggy(i_app_mag_list), get_maggy(Z_app_mag_list), get_maggy(Y_app_mag_list), get_maggy(J_app_mag_list), get_maggy(H_app_mag_list), get_maggy(Ks_app_mag_list), get_maggy_inv_var(get_maggy(u_app_mag_list), u_app_mag_err_list), get_maggy_inv_var(get_maggy(g_app_mag_list), g_app_mag_err_list), get_maggy_inv_var(get_maggy(r_app_mag_list), r_app_mag_err_list), get_maggy_inv_var(get_maggy(i_app_mag_list), i_app_mag_err_list), get_maggy_inv_var(get_maggy(Z_app_mag_list), Z_app_mag_err_list), get_maggy_inv_var(get_maggy(Y_app_mag_list), Y_app_mag_err_list), get_maggy_inv_var(get_maggy(J_app_mag_list), J_app_mag_err_list), get_maggy_inv_var(get_maggy(H_app_mag_list), H_app_mag_err_list), get_maggy_inv_var(get_maggy(Ks_app_mag_list), Ks_app_mag_err_list))) ascii.write(maggy_inv_var_table, obs_maggies_outfile_name, overwrite=True, format='no_header', names=[ 'redshift', 'u_maggy', 'g_maggy', 'r_maggy', 'i_maggy', 'Z_maggy', 'Y_maggy', 'J_maggy', 'H_maggy', 'Ks_maggy', 'u_inv_var', 'g_inv_var', 'r_inv_var', 'i_inv_var', 'Z_inv_var', 'Y_inv_var', 'J_inv_var', 'H_inv_var', 'Ks_inv_var' ]) print( '\tRedshifts, and ' + bands + ' maggies and their inverse variances calculated, stacked and saved in ' + obs_maggies_outfile_name + '.') else: print('\tOnly valid for bands ugriz or ugriZYJHKs.') print( '\tCheck the source code for basic structure of this function that creates the required file if using other bands.' ) # def get_rec_maggies_files(obs_maggies_file_path: str, # n_bands: int, # rec_z_list: np.ndarray, # rec_maggies_outfile_affix='', # survey='sdss', # band_z_shift=0.0, # template_vmatrix_file_path='vmatrix.default.dat', # template_lambda_file_path='lambda.default.dat', # filters_list_file_path='sdss_filters.dat'): # ''' # Reconstructs the observed maggy values at required redshift values # by best-fitting galaxy SEDs on data using templates and filter transmission curves, # and saves the reconstructed maggy values in a space delimited csv file with columns (without headers): # redshift rec_u_maggy rec_g_maggy rec_r_maggy... # File is required to be used with the get_maggy_ratio_file or get_rest_maggy_ratio_file functions. # WARNING: pre-existing file with same name will be over-written. # Parameters # ---------- # obs_maggies_file_path : str # path of '.csv' file with the observed maggies and respective inverse variance values. File can be obtained from the get_obs_maggies_file function # n_bands : int # number of bands used in the survey (and present in the obs_maggies_file) # rec_z_list : np.ndarray # redshift values required to reconstruct maggies at # rec_maggies_outfile_affix : str # output file identifier - reconstructed maggies will be saved in 'maggies_at_z[redshift-value]_[identifier].csv' # survey : str # name of survey being used. Set as 'sdss' by default - do not change if sdss-ugriz are being used # band_z_shift : float # redshift value to shift the bandpasses/filters by, default is set at 0.0 i.e. no shift # template_vmatrix_file_path : str # path of '.dat' file with vmatrix of SED templates - must change if survey parameter is not 'sdss' # template_lambda_file_path : str # path of '.dat' file with lambda of SED templates - must change if survey parameter is not 'sdss' # filters_list_file_path : str # path of '.dat' file with the list of '.dat' files corresponding to each band and containing its filter transmission curve - must change if survey parameter is not 'sdss' # ''' # if survey == 'sdss': # kcorrect.load_templates() # print('\tTemplates loaded.') # kcorrect.load_filters(band_shift=band_z_shift) # print('\tFilters loaded.') # else: # kcorrect.load_templates(v=template_vmatrix_file_path, # l=template_lambda_file_path) # print('\tTemplates loaded.') # kcorrect.load_filters(filters_list_file_path, band_shift=band_z_shift) # print('\tFilters loaded.') # maggy_inv_var_table = np.genfromtxt(obs_maggies_file_path, delimiter=' ') # print('\tRead ' + obs_maggies_file_path + '.') # for rec_z in rec_z_list: # rec_maggies_outfile_name = 'maggies_at_z' + str(rec_z) + '_' + rec_maggies_outfile_affix + '.csv' # rec_maggies_stack = [] # for i in range(len(maggy_inv_var_table[:, 0])): # redshift = maggy_inv_var_table[i, 0] # maggies = maggy_inv_var_table[i, 1:(n_bands + 1)] # maggies_inv_var = maggy_inv_var_table[i, (n_bands + 1):((2 * n_bands) + 1)] # coeffs = kcorrect.fit_nonneg(redshift, maggies, maggies_inv_var) # rec_maggies_row = kcorrect.reconstruct_maggies(coeffs, redshift=rec_z) # rec_maggies_stack.append(rec_maggies_row) # rec_maggies_table = np.array(rec_maggies_stack) # ascii.write(rec_maggies_table, # rec_maggies_outfile_name, # overwrite=True, # format='no_header') # print('\t' + rec_maggies_outfile_name + ' saved.') # print('\tMaggies reconstructed at all redshifts in input array rec_z_list.') def get_rest_maggy_ratio_file(ID_list: np.ndarray, obs_maggies_file_path: str, rest_maggies_file_path: str, band_index: int, rest_maggy_ratio_outfile_affix=''): ''' Calculates rest-frame maggy ratios i.e. (obs_maggy/rest_maggy), and saves the maggy ratio values in a csv file with 3 space delimited columns, of headers: ID rest_z maggy_ratio File can be unpacked and used with get_rest_mag function to calculate rest-frame magnitudes. WARNING: pre-existing file with same name will be over-written. Parameters ---------- ID_list: np.ndarray ID of each data point (galaxy) obs_maggies_file_path : str path of '.csv' file with the observed maggies and respective inverse variance values. File can be obtained from the get_obs_maggies_file function rest_maggies_file_path : str path of '.csv' file with the reconstructed maggies at redshift zero. File can be obtained from the get_rec_maggies_files function by setting rec_z_list to np.array([0.0]) band_index : int band number of required maggy ratio (e.g. 3 for r maggy in ugriz bands) rest_maggy_ratio_outfile_affix : str output file identifier - rest-frame maggy ratios will be saved in 'rest_maggy_ratios_[identifier].csv' ''' obs_maggies_table = np.genfromtxt(obs_maggies_file_path, delimiter=' ') rest_maggies_table = np.genfromtxt(rest_maggies_file_path, delimiter=' ') rest_z_list = rest_maggies_table[:, 0] obs_maggies_list = obs_maggies_table[:, band_index] rest_maggies_list = rest_maggies_table[:, band_index] rest_maggy_ratios_list = obs_maggies_list / rest_maggies_list rest_maggy_ratio_outfile_name = 'rest_maggy_ratios_' + rest_maggy_ratio_outfile_affix + '.csv' rest_maggy_ratios_table = np.column_stack( (ID_list, rest_z_list, rest_maggy_ratios_list)) ascii.write(rest_maggy_ratios_table, rest_maggy_ratio_outfile_name, overwrite=True, names=['ID', 'rest_z', 'maggy_ratio']) print('\t' + rest_maggy_ratio_outfile_name + ' created.') def get_rest_mag(redshift_list: np.ndarray, app_mag_list: np.ndarray, maggy_ratio_list: np.ndarray) -> np.ndarray: """ Converts apparent magnitudes into rest-frame magnitudes. It uses the apparent magnitudes, redshifts and maggy ratios. Parameters ---------- redshift_list : np.ndarray redshift of each data point (galaxy) app_mag_list : np.ndarray all corresponding apparent magnitudes maggy_ratio_list : np.ndarray all corresponding maggy ratios Returns ------- np.ndarray all corresponding rest-frame magnitudes """ # calculate luminosity distance lum_dist_list = cosmo.luminosity_distance(redshift_list).value print('\tLuminosity distance calculated.') # calculate abs mag abs_mag_list = app_mag_list - (5 * np.log10(lum_dist_list)) - 25 print('\tAbsolute magnitude calculated.') # calculate K corrections Kcorr_list = -2.5 * np.log10(maggy_ratio_list) print('\tK-corrections calculated.') # calculate rest mag rest_mag_list = abs_mag_list - Kcorr_list print('\tRest-frame magnitude calculated.') return rest_mag_list def get_maggy_ratio_file(ID_list: np.ndarray, rest_maggies_file_path: str, rec_maggies_file_path: str, rec_z: float, band_index: int, maggy_ratio_outfile_affix=''): ''' Calculates reconstructed maggy ratios i.e. (rec_maggy/rest_maggy), and saves the maggy ratio values in a csv file with 3 space delimited columns, of headers: ID rec_z maggy_ratio WARNING: pre-existing file with same name will be over-written. Parameters ---------- ID_list: np.ndarray ID of each data point (galaxy) rest_maggies_file_path : str path of '.csv' file with the reconstructed maggies at redshift zero. File can be obtained from the get_rec_maggies_files function by setting rec_z_list to np.array([0.0]) rec_maggies_file_path : str path of '.csv' file with the reconstructed maggies at required reconstruction redshift (rec_z). File can be obtained from the get_rec_maggies_files function by setting rec_z_list to np.array([rec_z]) rec_z : float redshift value where maggies have been reconstruct at band_index : int band number of required maggy ratio (e.g. 3 for r maggy in ugriz bands) rest_maggy_ratio_outfile_affix : str output file identifier - maggy ratios will be saved in 'maggy_ratios_at_z[redshift-value]_[identifier].csv' ''' rec_maggies_table = np.genfromtxt(rec_maggies_file_path, delimiter=' ') rest_maggies_table = np.genfromtxt(rest_maggies_file_path, delimiter=' ') rec_z_list = rec_maggies_table[:, 0] rec_maggies_list = rec_maggies_table[:, band_index] rest_maggies_list = rest_maggies_table[:, band_index] maggy_ratios_list = rec_maggies_list / rest_maggies_list maggy_ratio_outfile_name = 'maggy_ratios_at_z' + str(rec_z) + '_' + maggy_ratio_outfile_affix + '.csv' maggy_ratios_table = np.column_stack( (ID_list, rec_z_list, maggy_ratios_list)) ascii.write(maggy_ratios_table, maggy_ratio_outfile_name, overwrite=True, names=['ID', 'rec_z', 'maggy_ratio']) print('\t' + maggy_ratio_outfile_name + ' saved.') def get_all_maggy_ratios_file(rec_z_list: np.ndarray, ID_list: np.ndarray, band_index: int, maggies_and_out_files_affix=''): ''' Calculates reconstructed maggy ratios i.e. (rec_maggy/rest_maggy) and saves the maggy ratio values at each redshift value in rec_z_list in a separate csv file with 3 space delimited columns, of headers: ID rec_z maggy_ratio Finally, consolidates all maggy ratios by joining the above files in the order of rec_z_list in a single csv file with 3 space delimited columns, of headers: ID rec_z maggy_ratio File with all maggy ratios can be used to calculate z-max. WARNING: pre-existing file with same name will be over-written. Parameters ---------- rec_z_list : np.ndarray redshift values where maggies have been reconstruct at - array must have 0.0 redshift value at index 0 ID_list : np.ndarray ID of each data point (galaxy) band_index : int band number of required maggy ratio (e.g. 3 for r maggy in ugriz bands) maggies_and_out_files_affix : str output file identifier - values will be saved in 'maggy_ratios_at_z[redshift-value]_[identifier].csv' and 'all_maggy_ratios_[identifier].csv' - must be the same string as rec_maggies_outfile_affix parameter used in get_rec_maggies_files function ''' rest_maggies_file_name = 'maggies_at_z' + str(rec_z_list[0]) + '_' + maggies_and_out_files_affix + '.csv' for rec_z in rec_z_list: rec_maggies_file_name = 'maggies_at_z' + str(rec_z) + '_' + maggies_and_out_files_affix + '.csv' get_maggy_ratio_file(ID_list, rest_maggies_file_name, rec_maggies_file_name, rec_z, band_index, maggy_ratio_outfile_affix=maggies_and_out_files_affix) print('\tMaggy ratios calculated at all redshifts in input array rec_z_list.') all_maggy_ratios_outfile_name = 'all_maggy_ratios_' + maggies_and_out_files_affix + '.csv' rest_maggy_ratio_file_name = 'maggy_ratios_at_z' + str(rec_z_list[0]) + '_' + maggies_and_out_files_affix + '.csv' all_maggy_ratios_file = open(all_maggy_ratios_outfile_name, 'w') # first file: for line in open(rest_maggy_ratio_file_name): all_maggy_ratios_file.write(line) # now the rest: for i in range(len(rec_z_list) - 1): maggy_ratio_file_name = 'maggy_ratios_at_z' + str(rec_z_list[i + 1]) + '_' + maggies_and_out_files_affix + '.csv' maggy_ratio_file = open(maggy_ratio_file_name) maggy_ratio_lines = maggy_ratio_file.readlines()[1:] # skip the header for line in maggy_ratio_lines: all_maggy_ratios_file.write(line) maggy_ratio_file.close() all_maggy_ratios_file.close() print('\tAll maggy ratios consolidated in file ' + all_maggy_ratios_outfile_name + '.') def get_volume(survey_area: float, redshift_list: np.ndarray) -> np.ndarray: """ Returns comoving volume of input survey area and redshift. Parameters ---------- survey_area : float survey area in sq. deg. redshift_list : np.ndarray redshift of each data point (galaxy) Returns ------- np.ndarray all corresponding comoving volumes """ # calculate comoving distance com_dist_list = cosmo.comoving_distance(redshift_list).value print('\tComoving distance calculated.') # convert survey area to steradian survey_steradian = survey_area * ((np.pi / 180.)**2) print('\tSurvey area converted.') # calculate comoving volume vol_list = (com_dist_list**3) * (survey_steradian / 3) print('\tComoving volume calculated.') return vol_list def get_binned_phi(rest_mag_list: np.ndarray, Vmax_list: np.ndarray, n_mag_bins: int) -> np.ndarray: """ Bins and weighs galaxy counts per magnitude implementing the 1/Vmax estimator. Returns phi using rest-frame magnitude, maximum observed volume and the number of bins. Parameters ---------- rest_mag_list : np.ndarray rest-frame magnitude of each data point (galaxy) Vmax_list : np.ndarray all corresponding maximum volumes n_mag_bins: int number of magnitude bins required Returns ------- np.ndarray mid-magnitude (i.e. x) value of each bin np.ndarray magnitude-width/2 (i.e. x-error) value of each bin np.ndarray phi (i.e. y) value of each bin (with h = 0.7) """ # get bin_edges for diving the rest_mags in n_bins counts, bin_edges = np.histogram(rest_mag_list, bins=n_mag_bins) # sort rest_mag and Vmax lists per increasing mag sorted_index = np.argsort(rest_mag_list) sorted_Vmax_list = np.array(Vmax_list)[sorted_index] sorted_rest_mag_list = np.sort(rest_mag_list) # create empty lists for mid_M, phi and M_err mid_M_list = np.empty(n_mag_bins) M_err_list = np.empty(n_mag_bins) phi_list = np.empty(n_mag_bins) # loop over each bin for i in range(n_mag_bins): # find min and max M of bin max_M = bin_edges[i + 1] min_M = bin_edges[i] # add mid_M to list mid_M_list[i] = (min_M + max_M) / 2 # add M_err to list M_err_list[i] = (abs(min_M) - abs(max_M)) / 2 # find indicies upto the max_M up_lim_indices = np.where(sorted_rest_mag_list <= max_M)[0] # limit M and Vmax corresponding to max_M up_lim_rest_mag_list = sorted_rest_mag_list[up_lim_indices] up_lim_Vmax_list = sorted_Vmax_list[up_lim_indices] # find indicies from min_M to max_M value of bin if i != 0: lim_indices = np.where(up_lim_rest_mag_list > min_M)[0] else: lim_indices = np.where(up_lim_rest_mag_list >= min_M)[0] # limit Vmax corresponding from min_M to max_M Vmax_values = up_lim_Vmax_list[lim_indices] # calculate 1/Vmax phi_values = np.reciprocal(Vmax_values) # sum 1/Vmax all in this bin phi = sum(phi_values) # convert 1/Vmax to phi and add to list h = 0.7 phi_list[i] = phi * ((h)**3) / M_err_list[i] return mid_M_list, M_err_list, phi_list def get_patch_centers(uniform_random_RA_list: np.ndarray, uniform_random_DEC_list: np.ndarray, n_patches: int, survey='kids', max_iterations=int(100), tolerance=1.0e-5, patch_centers_outfile_affix=''): """ Divides the input uniform random survey into equally distributed and equally sized patches. Calculates n_patches centers [RA,Dec] from RA, Dec and number of patches and saves in a csv file with 2 space delimited columns (without headers): RA Dec Function does not overwrite any existing file with the same name. File need not be updated with every run. Parameters ---------- uniform_random_RA_list : np.ndarray RA values of each data point (galaxy) in a uniform random catalogue uniform_random_DEC_list : np.ndarray all corresponding Dec values in the uniform random catalogue n_patches : int number of equal survey area patches required survey : str, optional survey name - only change if survey area covers/connects over 320 degrees RA and does not connect over 360 to 0 degrees RA max_iterations : int, optional maximum number of iterations to run tolerance : float, optional relative change in the average distance to centers, signifies convergence patch_centers_outfile_affix : str output file identifier - values will be saved in 'patch_centers_tol[tolerance]_[identifier].csv' """ # MAKE SURE ALL PATCHES ARE SITCHED ON SKY # works for most surveys - GAMA, KiDS - check rest if survey == 'kids': corrected_uniform_random_RA_list = np.where( uniform_random_RA_list > 320., uniform_random_RA_list - 360., uniform_random_RA_list) # use if a survey patch covers/connects over 320 degrees RA # and does not connect over 360 to 0 degree RA if survey != 'kids': corrected_uniform_random_RA_list = uniform_random_RA_list # STACK RA AND DEC AS uniform_random_X uniform_random_X = np.column_stack( (corrected_uniform_random_RA_list, uniform_random_DEC_list)) # DIVIDE uniform_random_X INTO EQUAL n_patches uniform_random_km = kmeans_sample(uniform_random_X, n_patches, maxiter=max_iterations, tol=tolerance) center_guesses = uniform_random_km.centers ra_guesses = center_guesses[:, 0] dec_guesses = center_guesses[:, 1] centers_table = np.column_stack((ra_guesses, dec_guesses)) patch_centers_outfile_name = 'patch_centers_tol' + str(tolerance) + '_' + patch_centers_outfile_affix + '.csv' ascii.write(centers_table, patch_centers_outfile_name, overwrite=False, format='no_header') print('Patch center guesses saved in '+ patch_centers_outfile_name) def get_patch_labels(RA_list: np.ndarray, DEC_list: np.ndarray, n_patches: int, patch_centers_file_path: str, survey='kids', numba_installed=True, plot_savename='none') -> np.ndarray: """ Divides survey into equally distributed and equally sized patches. Returns labels for patches from RA, Dec, number of patches and patch center guesses file. WARNING: does not display plot, must specify plot_savename parameter to save plot Parameters ---------- RA_list : np.ndarray RA values of each data point (galaxy) DEC_list : np.ndarray all corresponding Dec values n_patches : int number of equal survey area patches required patch_centers_file_path : str path of '.csv' file with (n_patches x 2) patch center guesses (RA, Dec). File can be obtained from the get_patch_centers function survey : str, optional survey name - only change if survey area covers/connects over 320 degrees RA and does not connect over 360 to 0 degrees RA numba_installed : bool, optional mark as False if numba is not installed plot_savename : str, optional name and extension to save plot as, plot will not be saved if not changed Returns ------- np.ndarray array of patch assignment label for each data point """ # MAKE SURE ALL PATCHES ARE STITCHED ON SKY # works for most surveys - GAMA, KiDS - check rest if survey == 'kids': corrected_RA_list = np.where(RA_list > 320., RA_list - 360., RA_list) # use if a survey patch covers/connects over 320 degrees RA # and does not connect over 360 to 0 degree RA if survey != 'kids': corrected_RA_list = RA_list # STACK RA AND DEC AS X X = np.column_stack((corrected_RA_list, DEC_list)) #UNPACK PATCH CENTER GUESSES centers_table = np.genfromtxt(patch_centers_file_path, delimiter=' ') ra_guesses = centers_table[ : , 0] dec_guesses = centers_table[ : , 1] center_guesses = np.column_stack((ra_guesses, dec_guesses)) # FIND LABELS TO DIVIDE X INTO EQUAL n_patches if numba_installed: km = KMeans(center_guesses, method='fast') else: km = KMeans(center_guesses) labels = km.find_nearest(X) # VISUALISE ON PLOT if plot_savename != 'none': colors = cm.tab20(np.linspace(0, 1, n_patches)) plt.figure(figsize=(10, 10)) plt.suptitle("Galaxy Patches", fontsize=20) # get patch counts on histogram plt.subplot(211) plt.grid(True) N, b, p = plt.hist(labels, bins=n_patches) for n in range(n_patches): p[n].set_facecolor(colors[n]) plt.xlabel("Label", fontsize=20) plt.ylabel("Count", fontsize=20) # get patches on sky plt.subplot(212) plt.grid(True) for n in range(n_patches): subset_indices = np.where(labels == n) plt.scatter(corrected_RA_list[subset_indices], DEC_list[subset_indices], color=colors[n], s=1) # if 'gama' in datasetname: # plt.xlim(120, 240) # plt.ylim(-10, 10) # if 'kids' in datasetname: # plt.xlim(-50, 250) # plt.ylim(-40, 10) plt.xlabel("RA(J2000)/ deg", fontsize=20) plt.ylabel("Dec(J2000)/ deg", fontsize=20) plt.savefig(plot_savename, dpi=300) return labels def get_binned_phi_error(rest_mag_list: np.ndarray, Vmax_list: np.ndarray, labels: np.ndarray, n_patches: int, n_mag_bins: int) -> np.ndarray: """ Spatial variance on galaxy number density per magnitude. Returns error on phi from rest-frame magnitude, maximum observed volume, labels, number of patches and number of bins. Parameters ---------- rest_mag_list : np.ndarray rest-frame magnitude of each data point (galaxy) Vmax_list : np.ndarray all corresponding maximum volumes labels : np.ndarray all corresponding survey patch assignment labels n_patches : int number of equal survey area patches required n_mag_bins : int number of magnitude bins required Returns ------- np.ndarray phi error (i.e. y-error) value of each bin """ # GET PHI VALUES USING ONLY VALUES IN EACH PATCH patch_phis = [] for n in range(n_patches): patch_indices = np.where(labels == n) patch_M = rest_mag_list[patch_indices] patch_Vmax = Vmax_list[patch_indices] / n_patches mid_M_list, M_err_list, phi_list = get_binned_phi( patch_M, patch_Vmax, n_mag_bins) patch_phis.append(phi_list) # STANDARD ERRORS ON PHI VALUES BETWEEN EACH PATCH phi_err_list = np.std(patch_phis, axis=0) return phi_err_list def get_plot(rest_mag_list: np.ndarray, Vmax_list: np.ndarray, n_mag_bins: int, RA_list: np.ndarray, DEC_list: np.ndarray, n_patches: int, patch_centers_file_path: str, survey='kids', numba_installed=True, plot_savename='none') -> np.ndarray: """ Plots the 1/Vmax weighted luminosity function from data, binned by magnitude. WARNING: does not display plot, must specify plot_savename parameter to save plot Parameters ---------- rest_mag_list : np.ndarray rest-frame magnitude of each data point (galaxy) Vmax_list : np.ndarray all corresponding maximum volumes n_mag_bins : int number of magnitude bins required RA_list : np.ndarray all corresponding RA values DEC_list : np.ndarray all corresponding Dec values n_patches : int number of equal survey area patches required patch_centers_file_path : str path of '.csv' file with (n_patches x 2) patch center guesses (RA, Dec). File can be obtained from the get_patch_centers function survey : str, optional survey name - only change if survey area covers/connects over 320 degrees RA and does not connect over 360 to 0 degrees RA numba_installed : bool, optional mark as False if numba is not installed plot_savename : str, optional name and extension to save plot as, plot will not be saved if not changed Returns ------- np.ndarray mid-magnitude (i.e. x) value of each bin np.ndarray magnitude-width/2 (i.e. x-error) value of each bin np.ndarray phi (i.e. y) value of each bin (with h = 0.7) np.ndarray phi error (i.e. y-error) value of each bin """ # phi M_list, M_err_list, phi_list = get_binned_phi(rest_mag_list, Vmax_list, n_mag_bins) # patches labels = get_patch_labels(RA_list, DEC_list, n_patches, patch_centers_file_path, survey, numba_installed) # phi errors phi_err_list = get_binned_phi_error(rest_mag_list, Vmax_list, labels, n_patches, n_mag_bins) if plot_savename != 'none': plt.figure(figsize=(10, 10)) # plot data plt.errorbar(M_list, phi_list, xerr=M_err_list, yerr=phi_err_list, fmt='gx', mec='k', label='galaxies:' + str(len(rest_mag_list))) plt.yscale('log') # plt.xlim(-26,-12) # plt.ylim(1e-8,0.9) plt.xlabel("rest-frame magnitude/ $(M_{r})_{cal}$/ mag", fontsize=20) plt.ylabel( "number density / $\Phi (M_{r})/ h_{70}^{3}Mpc^{-3}mag^{-1}$", fontsize=20) # plt.title(plot_savename, fontsize=20) plt.grid(True) plt.legend(loc='upper left') plt.savefig(plot_savename, dpi=300) return M_list, M_err_list, phi_list, phi_err_list def filter_plot_by_colour(dichotomy_slope: float, dichotomy_intercept: float, rest_mag_list: np.ndarray, higher_band_rest_mag_list: np.ndarray, Vmax_list: np.ndarray, n_mag_bins: int, RA_list: np.ndarray, DEC_list: np.ndarray, n_patches: int, patch_centers_file_path: str, survey='kids', numba_installed=True, plot_savename='none') -> np.ndarray: """ Plots the 1/Vmax weighted luminosity function from data, binned by magnitude and filtered by galaxy colours. The galaxy colours are filtered by red and blue with the help of the input colour dichotomy line parameters. The colour dichotomy line parameters can be inferred from a CMD plot. WARNING: does not display plot, must specify plot_savename parameter to save plot Parameters ---------- dichotomy_slope : float slope of the colour dichotomy line dichotomy_intercept : float intercept of the colour dichotomy line rest_mag_list : np.ndarray rest-frame magnitude of each data point (galaxy) higher_band_rest_mag_list : np.ndarray rest-frame magnitudes of each data point (galaxy) from a higher wavelength band Vmax_list : np.ndarray all corresponding maximum volumes n_mag_bins : int number of magnitude bins required RA_list : np.ndarray all coressponding RA values DEC_list : np.ndarray all corresponding Dec values n_patches : int number of patches required patch_centers_file_path : str path of '.csv' file with (n_patches x 2) patch center guesses (RA, Dec). File can be obtained from the get_patch_centers function survey : str, optional survey name - only change if survey area covers/connects over 320 degrees RA and does not connect over 360 to 0 degrees RA numba_installed : bool, optional mark as False if numba is not installed plot_savename : str, optional name and extension to save plot as, plot will not be saved if not changed Returns ------- np.ndarray all galaxies' LF's mid-magnitude (i.e. x) value of each bin np.ndarray all galaxies' LF's magnitude-width/2 (i.e. x-error) value of each bin np.ndarray all galaxies' LF's phi (i.e. y) value of each bin (with h = 0.7) np.ndarray all galaxies' LF's phi error (i.e. y-error) value of each bin np.ndarray red galaxies' LF's mid-magnitude (i.e. x) value of each bin np.ndarray red galaxies' LF's magnitude-width/2 (i.e. x-error) value of each bin np.ndarray red galaxies' LF's phi (i.e. y) value of each bin (with h = 0.7) np.ndarray red galaxies' LF's phi error (i.e. y-error) value of each bin np.ndarray blue galaxies' LF's mid-magnitude (i.e. x) value of each bin np.ndarray blue galaxies' LF's magnitude-width/2 (i.e. x-error) value of each bin np.ndarray blue galaxies' LF's phi (i.e. y) value of each bin (with h = 0.7) np.ndarray blue galaxies' LF's phi error (i.e. y-error) value of each bin """ colour_mag_list = higher_band_rest_mag_list - rest_mag_list dichotomy_line = dichotomy_slope * rest_mag_list + dichotomy_intercept red_index = np.where(colour_mag_list >= dichotomy_line)[0] blue_index = np.where(colour_mag_list < dichotomy_line)[0] # all M_list, M_err_list, phi_list, phi_err_list = get_plot( rest_mag_list, Vmax_list, n_mag_bins, RA_list, DEC_list, n_patches, patch_centers_file_path, survey, numba_installed) # red red_M_list, red_M_err_list, red_phi_list, red_phi_err_list = get_plot( rest_mag_list[red_index], Vmax_list[red_index], n_mag_bins, RA_list[red_index], DEC_list[red_index], n_patches, patch_centers_file_path, survey, numba_installed) # blue blue_M_list, blue_M_err_list, blue_phi_list, blue_phi_err_list = get_plot( rest_mag_list[blue_index], Vmax_list[blue_index], n_mag_bins, RA_list[blue_index], DEC_list[blue_index], n_patches, patch_centers_file_path, survey, numba_installed) if plot_savename != 'none': plt.figure(figsize=(10, 10)) # plot all data plt.errorbar(M_list, phi_list, xerr=M_err_list, yerr=phi_err_list, fmt='gx', mec='k', label='all:' + str(len(rest_mag_list))) # plot red data plt.errorbar(red_M_list, red_phi_list, xerr=red_M_err_list, yerr=red_phi_err_list, fmt='rx', mec='k', label='red:' + str(len(rest_mag_list[red_index]))) # plot blue data plt.errorbar(blue_M_list, blue_phi_list, xerr=blue_M_err_list, yerr=blue_phi_err_list, fmt='bx', mec='k', label='blue:' + str(len(rest_mag_list[blue_index]))) plt.yscale('log') # plt.xlim(-26,-12) # plt.ylim(1e-8,0.9) plt.xlabel("rest-frame r-magnitude/ $(M_{r})_{cal}$/ mag", fontsize=20) plt.ylabel( "number density / $\Phi (M_{r})/ h_{70}^{3}Mpc^{-3}mag^{-1}$", fontsize=20) # plt.title(plot_savename, fontsize=20) plt.grid(True) plt.legend(loc='upper left') plt.savefig(plot_savename, dpi=300) return M_list, M_err_list, phi_list, phi_err_list, red_M_list, red_M_err_list, red_phi_list, red_phi_err_list, blue_M_list, blue_M_err_list, blue_phi_list, blue_phi_err_list def SchechterMagModel(M_list: np.ndarray, M_star: float, phi_star: float, alpha: float) -> np.ndarray: """ Single Schechter luminosity function in terms of magnitude from 3 free parameters of the model. Parameters ---------- M_list : np.ndarray array of magnitudes (i.e. x) M_star : float model parameter M_star phi_star : float model parameter phi_star alpha : float model parameter alpha Returns ------- np.ndarray array of Schechter modelled phi (i.e. y) """ # FACTOR factor = (2 / 5) * np.log(10) # POWER Mstar_Mlist = M_star - M_list power = (2 / 5) * Mstar_Mlist # PART 1 power1 = -10**(power) part1 = np.exp(power1) # PART 2 index = alpha + 1 power2 = power * index part2 = phi_star * 10**(power2) # PHI(M) phi_list = factor * part1 * part2 return phi_list def DoubleSchechterMagModel(M_list: np.ndarray, M_star: float, phi_star1: float, alpha1: float, phi_star2: float, alpha2: float) -> np.ndarray: """ Double Schechter luminosity function in terms of magnitude from 5 free parameters of the model. Parameters ---------- M_list : np.ndarray array of magnitudes (i.e. x) M_star : float model parameter M_star phi_star1 : float model parameter phi_star1 alpha1 : float model parameter alpha1 phi_star2 : float model parameter phi_star2 alpha2 : float model parameter alpha2 Returns ------- np.ndarray array of Double Schechter modelled phi (i.e. y) """ # FACTOR factor = (2 / 5) * np.log(10) # POWER Mstar_Mlist = M_star - M_list power = (2 / 5) * Mstar_Mlist # PART 1 power1 = -10**(power) part1 =
np.exp(power1)
numpy.exp
from compression_tools.pruning.helper_functions import get_layer_index import tensorflow as tf import numpy as np def delete_conv2d_output(new_model_param, layer_bias, index, filter, soft_prune=False): if not soft_prune: new_model_param[index][0] = np.delete(new_model_param[index][0], filter, axis=3) if layer_bias: new_model_param[index][1] = np.delete(new_model_param[index][1], filter, axis=0) else: new_model_param[index][0][:, :, :, filter] = float(0) if layer_bias: new_model_param[index][1][filter] = float(0) def delete_conv2d_intput(new_model_param, index, filter, soft_prune=False): if not soft_prune: new_model_param[index][0] = np.delete(new_model_param[index][0], filter, axis=2) # else: # initializer = tf.keras.initializers.GlorotNormal(seed=None) # new_model_param[index][0][:, :, filter, :] = initializer( # shape=new_model_param[index][0][:, :, filter, :].shape) def delete_dense_input(new_model_param, index, filter, soft_prune=False): if not soft_prune: new_model_param[index][0] = np.delete(new_model_param[index][0], filter, axis=0) # else: # initializer = tf.keras.initializers.RandomNormal(stddev=0.01) # new_model_param[index][0][filter, :] = initializer( # shape=new_model_param[index][0][filter, :].shape) def delete_dense_output(new_model_param, index, filter, layer_bias, soft_prune=False): if not soft_prune: new_model_param[index][0] = np.delete(new_model_param[index][0], filter, axis=1) if layer_bias: new_model_param[index][1] = np.delete(new_model_param[index][1], filter, axis=0) # else: # initializer = tf.keras.initializers.RandomNormal(stddev=0.01) # new_model_param[index][0][:, filter] = initializer( # shape=new_model_param[index][0][:, filter].shape) # if layer_bias: # new_model_param[index][1] = 0 def delete_bn_output(new_model_param, index, filter, soft_prune=False): if not soft_prune: new_model_param[index][0] = np.delete(new_model_param[index][0], filter) new_model_param[index][1] = np.delete(new_model_param[index][1], filter) new_model_param[index][2] = np.delete(new_model_param[index][2], filter) new_model_param[index][3] = np.delete(new_model_param[index][3], filter) # else: # new_model_param[index][0][filter] = float(1) # new_model_param[index][1][filter] = float(0) # new_model_param[index][2][filter] = float(0) # new_model_param[index][3][filter] = float(1) def get_down_left_layer(layer_index_dic, layer_index): left_layer = layer_index_dic[layer_index].outbound_nodes[0].layer return left_layer def get_down_right_layer(layer_index_dic, layer_index): right_layer = layer_index_dic[layer_index].outbound_nodes[1].layer return right_layer def get_up_layers(layer_index_dic, layer_index): up_layers = layer_index_dic[layer_index].inbound_nodes[0].inbound_layers return up_layers def get_up_left_layer(layer_index_dic, layer_index): left_layer = layer_index_dic[layer_index].inbound_nodes[0].inbound_layers[1] return left_layer def get_up_right_layer(layer_index_dic, layer_index): right_layer = layer_index_dic[layer_index].inbound_nodes[0].inbound_layers[0] return right_layer def up_delete_until_conv2D(layer_index_dic, new_model_param, layer_index, filter, soft_prune=False): layer = layer_index_dic[layer_index] while(not isinstance(layer, tf.compat.v1.keras.layers.Conv2D) or isinstance(layer, tf.keras.layers.DepthwiseConv2D)): if isinstance(layer, tf.keras.layers.BatchNormalization): left_end_index = get_layer_index(layer_index_dic, layer) if(new_model_param[layer_index][0].shape[0] == layer_index_dic[layer_index].output_shape[3]): delete_bn_output(new_model_param, left_end_index, filter, soft_prune) elif isinstance(layer, tf.keras.layers.DepthwiseConv2D): left_end_index = get_layer_index(layer_index_dic, layer) delete_conv2d_intput(new_model_param, left_end_index, filter, soft_prune) new_model_param[left_end_index][1] = np.delete(new_model_param[left_end_index][1], filter, axis=0) layer = layer.inbound_nodes[0].inbound_layers conv_end_index = get_layer_index(layer_index_dic, layer) layer_bias = layer.use_bias delete_conv2d_output(new_model_param, layer_bias, conv_end_index, filter, soft_prune) def delete_filter_after( new_model_param, layer_index, layer_index_dic, filter, soft_prune=False, layer_type="conv2D"): ''' Delete channels params related with pruned channels Args: new_model_param: (float list) weights or parameters in each layer layer_index: (int) Layer to be pruned layer_index_dic: (dictionary) [layer_index:layer] filter: pruned channels index soft_prune: whether or not use soft_prune strategy ''' current_layer = layer_index_dic[layer_index] layer_bias = current_layer.use_bias if layer_type == "Dense": following_layer = current_layer.outbound_nodes[0].layer if isinstance(following_layer, tf.keras.layers.Dense): following_index = get_layer_index(layer_index_dic, following_layer) delete_dense_output(new_model_param, layer_index, filter, layer_bias, soft_prune) delete_dense_input(new_model_param, following_index, filter, soft_prune) return new_model_param else: return new_model_param elif layer_type == "conv2D": while(not isinstance(current_layer.outbound_nodes[0].layer, tf.keras.layers.Flatten) and\ not isinstance(current_layer.outbound_nodes[0].layer, tf.keras.layers.Dense) and\ not isinstance(current_layer.outbound_nodes[0].layer, tf.keras.layers.AveragePooling2D)): following_layer = current_layer.outbound_nodes[0].layer following_index = get_layer_index(layer_index_dic, following_layer) if isinstance(following_layer, tf.keras.layers.BatchNormalization): if(new_model_param[following_index][0].shape[0] == following_layer.output_shape[3]): delete_bn_output(new_model_param, following_index, filter, soft_prune) # The conv2D layer is before a branch if(len(following_layer.outbound_nodes) == 2 and len(following_layer.inbound_nodes[0].flat_input_ids) == 1): branch_layer_index = following_index # Delete the output channels of current Conv2D delete_conv2d_output(new_model_param, layer_bias, layer_index, filter, soft_prune) # Delete the input channels of following left Conv2D left_down_conv_layer = get_down_left_layer(layer_index_dic, branch_layer_index) left_down_conv_layer_index = get_layer_index(layer_index_dic, left_down_conv_layer) if isinstance(left_down_conv_layer, tf.keras.layers.Conv2D): delete_conv2d_intput( new_model_param, left_down_conv_layer_index, filter, soft_prune) # Delete the input channels of following right Conv2D # elif isinstance(left_down_conv_layer, tf.keras.layers.GlobalAveragePooling2D): # dense_layer_index = get_layer_index( # layer_index_dic, left_down_conv_layer.outbound_nodes[0].layer) # delete_dense_input(new_model_param, dense_layer_index, filter, soft_prune) # Delete the input channels of following right Conv2D right_down_conv_layer = get_down_right_layer(layer_index_dic, branch_layer_index) right_down_conv_layer_index = get_layer_index( layer_index_dic, right_down_conv_layer) if isinstance(right_down_conv_layer, tf.keras.layers.Conv2D): delete_conv2d_intput( new_model_param, right_down_conv_layer_index, filter, soft_prune) # elif isinstance(right_down_conv_layer, tf.keras.layers.GlobalMaxPooling2D): # dense_layer_index = get_layer_index( # layer_index_dic, right_down_conv_layer.outbound_nodes[0].layer) # delete_dense_input(new_model_param, dense_layer_index, filter, soft_prune) # No Conv layer, direct connect to add layer add_layer_index = get_layer_index(layer_index_dic, right_down_conv_layer) if(not isinstance(left_down_conv_layer, tf.keras.layers.Conv2D)): add_layer_index = get_layer_index(layer_index_dic, left_down_conv_layer) else: ct_flag1 = True while(ct_flag1): # delete output channels of last conv2D layer on the other branch if(add_layer_index==right_down_conv_layer_index): left_end_index = get_layer_index( layer_index_dic, right_down_conv_layer.inbound_nodes[0].inbound_layers[1]) up_delete_until_conv2D( layer_index_dic, new_model_param, left_end_index, filter, soft_prune) else: right_end_index = get_layer_index( layer_index_dic, left_down_conv_layer.inbound_nodes[0].inbound_layers[1]) up_delete_until_conv2D( layer_index_dic, new_model_param, right_end_index, filter, soft_prune) act_layer_id = add_layer_index+1 left_down_conv_layer = get_down_left_layer( layer_index_dic, act_layer_id) right_down_conv_layer = get_down_right_layer( layer_index_dic, act_layer_id) next_add_layer = left_down_conv_layer if(isinstance(left_down_conv_layer, tf.keras.layers.Conv2D) and\ isinstance(right_down_conv_layer, tf.keras.layers.Conv2D)): ct_flag1 = False if(isinstance(left_down_conv_layer, tf.keras.layers.Conv2D)): left_down_conv_layer_index = get_layer_index( layer_index_dic, left_down_conv_layer) delete_conv2d_intput( new_model_param, left_down_conv_layer_index, filter, soft_prune) else: next_add_layer = left_down_conv_layer if(isinstance(right_down_conv_layer, tf.keras.layers.Conv2D)): right_down_conv_layer_index = get_layer_index( layer_index_dic, right_down_conv_layer) delete_conv2d_intput( new_model_param, right_down_conv_layer_index, filter, soft_prune) else: next_add_layer = left_down_conv_layer right_down_conv_layer = next_add_layer return new_model_param # This conv2D layer is followed by a conv2D elif isinstance(following_layer, tf.compat.v1.keras.layers.Conv2D): # # print("This Conv2D is before a Conv2D") # Delete the input channels of following Conv2D delete_conv2d_intput(new_model_param, following_index, filter, soft_prune) if (not isinstance(following_layer, tf.keras.layers.DepthwiseConv2D)): # Delete the output channels of current Conv2D delete_conv2d_output( new_model_param, layer_bias, layer_index, filter, soft_prune) return new_model_param else: new_model_param[following_index][1] = np.delete(new_model_param[following_index][1], filter, axis=0) # return new_model_param # This conv2D layer is followed by an Add layer elif isinstance(following_layer, tf.keras.layers.Add): add_layer = following_layer up_layer = get_up_layers(layer_index_dic, layer_index) # right layer if len(up_layer.outbound_nodes) == 2: # # print("This is a conv2D at right up position of a add layer") # 1. Delete the output channels of current Conv2D delete_conv2d_output( new_model_param, layer_bias, layer_index, filter, soft_prune) final_flag = False if True: next_layer = following_layer.outbound_nodes[0].layer while(len(next_layer.outbound_nodes) != 2): next_layer = next_layer.outbound_nodes[0].layer if(isinstance(next_layer, tf.keras.layers.AveragePooling2D)): end_layer = next_layer layer_index = get_layer_index(layer_index_dic, end_layer) while(not isinstance(end_layer, tf.keras.layers.Dense)): end_layer = end_layer.outbound_nodes[0].layer dense_layer = end_layer dense_layer_index = get_layer_index(layer_index_dic, dense_layer) layer_output = layer_index_dic[dense_layer_index-2] layer_output_shape = layer_output.output_shape shape = (layer_output_shape[1]*layer_output_shape[2]) filters = [] channels = layer_output_shape[3] new_filter = filter[0] for s in range(shape): filters = np.concatenate([filters, new_filter]) new_filter = new_filter+channels filters = [int(i) for i in filters] delete_dense_input(new_model_param, dense_layer_index, filters, soft_prune) final_flag = True break # return new_model_param # Start of next block end_layer = next_layer continue_flag = True while(continue_flag): next_layer_index = get_layer_index(layer_index_dic, end_layer) if final_flag: continue_flag = False before_layer = end_layer else: before_layer = end_layer.inbound_nodes[0].inbound_layers if len(end_layer.outbound_nodes) == 2: # 1. Delete the input channels of following LEFT Conv2D left_down_conv_layer = get_down_left_layer( layer_index_dic, next_layer_index) if isinstance( left_down_conv_layer, tf.compat.v1.keras.layers.Conv2D): left_down_conv_layer_index = get_layer_index( layer_index_dic, left_down_conv_layer) delete_conv2d_intput( new_model_param, left_down_conv_layer_index, filter, soft_prune) # 2. RIGHT Conv2D right_down_conv_layer = get_down_right_layer( layer_index_dic, next_layer_index) if isinstance( right_down_conv_layer, tf.compat.v1.keras.layers.Conv2D): continue_flag = False right_down_conv_layer_index = get_layer_index( layer_index_dic, right_down_conv_layer) delete_conv2d_intput( new_model_param, right_down_conv_layer_index, filter, soft_prune) if(isinstance( right_down_conv_layer, tf.compat.v1.keras.layers.Conv2D) and\ isinstance( left_down_conv_layer, tf.compat.v1.keras.layers.Conv2D)): continue_flag = False final_flag = True while(not isinstance(before_layer, tf.keras.layers.Add)): before_layer = before_layer.inbound_nodes[0].inbound_layers # 3. left end output left_end_index = get_layer_index( layer_index_dic, before_layer.inbound_nodes[0].inbound_layers[1]) up_delete_until_conv2D( layer_index_dic, new_model_param, left_end_index, filter, soft_prune) # find the next block if not final_flag: end_layer = end_layer.outbound_nodes[1].layer while(len(end_layer.outbound_nodes) != 2): if(isinstance(end_layer, tf.keras.layers.Dense)): dense_layer_index = get_layer_index( layer_index_dic, end_layer) delete_dense_input( new_model_param, dense_layer_index, filter, soft_prune) final_flag = True fore_layer = end_layer.inbound_nodes[0].inbound_layers while(not isinstance(fore_layer, tf.keras.layers.Add)): fore_layer = fore_layer.inbound_nodes[0].inbound_layers end_layer = fore_layer break end_layer = end_layer.outbound_nodes[0].layer return new_model_param else: # # print("LAST LEFT") # add_layer = following_layer # next_layer = add_layer.outbound_nodes[0].layer # while(len(next_layer.outbound_nodes) == 1): # if isinstance(next_layer, tf.keras.layers.AveragePooling2D): # dense_layer_index = get_layer_index(layer_index_dic, next_layer) # # # print("Got a Dense Layer at the end") # break # next_layer = next_layer.outbound_nodes[0].layer return new_model_param current_layer = following_layer # # print("Got a Dense Layer at the end") # Delete the output channels of current Conv2D if isinstance(current_layer.outbound_nodes[0].layer, tf.keras.layers.AveragePooling2D): delete_conv2d_output(new_model_param, layer_bias, layer_index, filter, soft_prune) while(not isinstance(current_layer.outbound_nodes[0].layer, tf.keras.layers.Dense)): current_layer = current_layer.outbound_nodes[0].layer dense_layer = current_layer.outbound_nodes[0].layer dense_layer_index = get_layer_index(layer_index_dic, dense_layer) layer_output = layer_index_dic[dense_layer_index-2] layer_output_shape = layer_output.output_shape shape = (layer_output_shape[1]*layer_output_shape[2]) filters = [] channels = layer_output_shape[3] new_filter = filter[0] for s in range(shape): filters =
np.concatenate([filters, new_filter])
numpy.concatenate
import numpy as np import pytest from climateforcing.utci import ( mean_radiant_temperature, universal_thermal_climate_index, ) def test_utci_array(): EXPECTED_RESULT = 273.15 + np.array([19.60850656, 21.2151128]) TEST_RESULT = universal_thermal_climate_index( { "tas": np.array([295, 296]), "sfcWind": np.array([6.0, 6.0]), "hurs": np.array([100, 100]), }, np.array([303, 304]), ) assert np.allclose(TEST_RESULT, EXPECTED_RESULT) def test_utci_huss(): EXPECTED_RESULT = 273.15 + np.array([19.81876334, 20.98888025]) TEST_RESULT = universal_thermal_climate_index( { "tas": np.array([295, 296]), "sfcWind": np.array([6.0, 6.0]), "huss": np.array([0.0167, 0.0167]), # approx 100% RH at 295K, 1000hPa }, np.array([303, 304]), ) assert np.allclose(TEST_RESULT, EXPECTED_RESULT) def test_utci_huss_ps(): EXPECTED_RESULT = 273.15 + np.array([17.86596553, 17.84009998]) TEST_RESULT = universal_thermal_climate_index( { "tas": np.array([295, 296]), "sfcWind": np.array([6.0, 6.0]), "huss": np.array([0.012, 0.010]), "ps": np.array([96000, 75000]), }, np.array([303, 304]), ) assert np.allclose(TEST_RESULT, EXPECTED_RESULT) def test_utci_raises(): with pytest.raises(ValueError): universal_thermal_climate_index( { "tas": np.array([295, 296]), "sfcWind": np.array([6.0, 6.0]), "hurs": np.array([100, 100]), "huss": np.array([0.006, 0.006]), }, np.array([303, 304]), ) with pytest.raises(ValueError): universal_thermal_climate_index({}, np.array([303, 304])) def test_mrt_array(): EXPECTED_RESULT = np.array([313.33875095746555, 291.2519186818613]) TEST_RESULT = mean_radiant_temperature( { "rlds": np.array([150, 50]), "rlus": np.array([350, 150]), "rsdsdiff": np.array([400, 200]), "rsus": np.array([100, 50]), "rsds":
np.array([700, 400])
numpy.array
import unittest from unittest.mock import patch from gym_powerworld.envs import voltage_control_env # noinspection PyProtectedMember from gym_powerworld.envs.voltage_control_env import LOSS, \ MinLoadBelowMinGenError, MaxLoadAboveMaxGenError, OutOfScenariosError, \ MIN_V, MAX_V, MIN_V_SCALED, MAX_V_SCALED, _scale_voltages import os import pandas as pd import numpy as np import numpy.testing as np_test import logging import warnings from esa import SAW, PowerWorldError from gym.spaces import Discrete import shutil # Get full path to this directory. THIS_DIR = os.path.dirname(os.path.abspath(__file__)) # Cases are within this directory. CASE_DIR = os.path.join(THIS_DIR, 'cases') # IEEE 14 bus DIR_14 = os.path.join(CASE_DIR, 'ieee_14') PWB_14 = os.path.join(DIR_14, 'IEEE 14 bus.pwb') AXD_14 = os.path.join(DIR_14, 'IEEE 14 bus.axd') CONTOUR = os.path.join(DIR_14, 'contour.axd') # Case with 3 gens modeled as condensers: PWB_14_CONDENSERS = os.path.join(DIR_14, 'IEEE 14 bus condensers.pwb') # Case with min and max MW limits on all 5 generators. PWB_14_LIMITS = os.path.join(DIR_14, 'IEEE 14 bus limits.pwb') # IL 200 PWB_200 = os.path.join(CASE_DIR, 'il_200', 'ACTIVSg200.pwb') # TX 2000 PWB_2000 = os.path.join(CASE_DIR, 'tx_2000', 'ACTIVSg2000_AUG-09-2018_Ride_mod.PWB') # Define some constants related to the IEEE 14 bus case. N_GENS_14 = 5 N_LOADS_14 = 11 LOAD_MW_14 = 259.0 # noinspection DuplicatedCode class DiscreteVoltageControlEnv14BusTestCase(unittest.TestCase): """Test initializing the environment with the 14 bus model.""" @classmethod def setUpClass(cls) -> None: # Initialize the environment. Then, we'll use individual test # methods to test various attributes, methods, etc. # Define inputs to the constructor. cls.num_scenarios = 1000 cls.max_load_factor = 2 cls.min_load_factor = 0.5 cls.min_load_pf = 0.8 cls.lead_pf_probability = 0.1 cls.load_on_probability = 0.8 cls.num_gen_voltage_bins = 9 cls.gen_voltage_range = (0.9, 1.1) cls.seed = 18 cls.log_level = logging.INFO cls.dtype = np.float32 cls.log_buffer = 100 cls.env = voltage_control_env.DiscreteVoltageControlEnv( pwb_path=PWB_14, num_scenarios=cls.num_scenarios, max_load_factor=cls.max_load_factor, min_load_factor=cls.min_load_factor, min_load_pf=cls.min_load_pf, lead_pf_probability=cls.lead_pf_probability, load_on_probability=cls.load_on_probability, num_gen_voltage_bins=cls.num_gen_voltage_bins, gen_voltage_range=cls.gen_voltage_range, seed=cls.seed, log_level=logging.INFO, dtype=cls.dtype, log_buffer=cls.log_buffer ) # For easy comparison with the original case, get a fresh SAW # object. Do not make any changes to this, use only "get" type # methods. cls.saw = SAW(PWB_14, early_bind=True) # noinspection PyUnresolvedReferences @classmethod def tearDownClass(cls) -> None: cls.saw.exit() cls.env.close() def test_branches_to_open(self): """Ensure branches_to_open is the right shape and is in the appropriate range. """ self.assertIsNotNone(self.env.branches_to_open) self.assertEqual((self.num_scenarios,), self.env.branches_to_open.shape) self.assertTrue(self.env.branches_to_open.min() >= 0) self.assertTrue( self.env.branches_to_open.max() < self.env.branch_init_data.shape[0]) def test_saw_load_state(self): """Ensure that calling saw.LoadState() works (testing that saw.SaveState() has already been called). """ # NOTE: This changes the state of self.env.saw, which can cause # issues in other tests. self.assertIsNone(self.env.saw.LoadState()) def test_gen_key_fields(self): """Ensure the gen key fields are correct. Hard coding style.""" self.assertListEqual(['BusNum', 'GenID'], self.env.gen_key_fields) def test_gen_init_fields(self): self.assertListEqual( self.env.gen_key_fields + self.env.GEN_INIT_FIELDS, self.env.gen_init_fields) def test_gen_obs_fields(self): self.assertListEqual(self.env.gen_key_fields + self.env.GEN_OBS_FIELDS, self.env.gen_obs_fields) def test_gen_init_data(self): self.assertIsInstance(self.env.gen_init_data, pd.DataFrame) self.assertListEqual(self.env.gen_init_fields, self.env.gen_init_data.columns.tolist()) def test_num_gens(self): # 15 bus case has 5 generators. self.assertEqual(5, self.env.num_gens) def test_zero_negative_gen_mw_limits(self): """Ensure the _zero_negative_gen_mw_limits function works as intended. """ # First, ensure it has been called. self.assertTrue((self.env.gen_init_data['GenMWMin'] >= 0).all()) # Now, patch gen_init_data and saw and call the function. gen_copy = self.env.gen_init_data.copy(deep=True) gen_copy['GenMWMin'] = -10 # I wanted to use self.assertLogs, but that has trouble working # with nested context managers... with patch.object(self.env, '_gen_init_data', new=gen_copy): with patch.object(self.env, 'saw') as p: self.env._zero_negative_gen_mw_limits() # The gen_copy should have had its GenMWMin values zeroed out. self.assertTrue((gen_copy['GenMWMin'] == 0).all()) # change_parameters_multiple_element_df should have been # called. p.change_and_confirm_params_multiple_element.assert_called_once() # Ensure the change was reflected in PowerWorld. gens = self.env.saw.GetParametersMultipleElement( 'gen', ['BusNum', 'GenID', 'GenMWMin']) self.assertTrue((gens['GenMWMin'] == 0).all()) # Finally, (this could have been done first, but oh well), make # sure that the case started with negative GenMWMin values. gens_orig = self.saw.GetParametersMultipleElement( 'gen', ['BusNum', 'GenID', 'GenMWMin']) self.assertTrue((gens_orig['GenMWMin'] < 0).any()) def test_gen_mw_capacity(self): # The generators are all set to a ridiculous maximum of 10 GW. self.assertEqual(5 * 10000.0, self.env.gen_mw_capacity) def test_gen_mvar_produce_capacity(self): self.assertEqual(50. + 40. + 24. + 24., round(self.env.gen_mvar_produce_capacity, 2)) def test_gen_mvar_consume_capacity(self): self.assertEqual(-40. - 6. - 6., round(self.env.gen_mvar_consume_capacity, 2)) def test_load_key_fields(self): # Hard coding! self.assertListEqual(self.env.load_key_fields, ['BusNum', 'LoadID']) def test_load_init_fields(self): self.assertListEqual(self.env.load_init_fields, self.env.load_key_fields + self.env.LOAD_INIT_FIELDS) def test_load_obs_fields(self): self.assertListEqual( self.env.load_obs_fields, self.env.load_key_fields + self.env.LOAD_OBS_FIELDS) def test_load_init_data(self): self.assertIsInstance(self.env.load_init_data, pd.DataFrame) self.assertListEqual(self.env.load_init_data.columns.tolist(), self.env.load_init_fields) def test_num_loads(self): self.assertEqual(11, self.env.num_loads) def test_zero_i_z_loads(self): """Patch the environment's load_init_data and ensure the method is working properly. """ data = self.env.load_init_data.copy(deep=True) data[voltage_control_env.LOAD_I_Z] = 1 with patch.object(self.env, '_load_init_data', new=data): with patch.object(self.env, 'saw') as p: self.env._zero_i_z_loads() self.assertTrue((data[voltage_control_env.LOAD_I_Z] == 0).all().all()) p.change_and_confirm_params_multiple_element.assert_called_once() def test_bus_key_fields(self): self.assertListEqual(['BusNum'], self.env.bus_key_fields) def test_bus_obs_fields(self): self.assertListEqual(self.env.bus_key_fields + self.env.BUS_OBS_FIELDS, self.env.bus_obs_fields) def test_bus_init_data(self): self.assertIsInstance(self.env.bus_init_data, pd.DataFrame) self.assertListEqual(self.env.bus_init_fields, self.env.bus_init_data.columns.tolist()) def test_num_buses(self): self.assertEqual(14, self.env.num_buses) def test_max_load_mw(self): # System loading obtained from PowerWorld's Case Summary # dialogue. self.assertEqual(round(self.env.max_load_mw, 2), self.max_load_factor * LOAD_MW_14) def test_check_max_load_exception(self): """Ensure that an exception is thrown if maximum loading exceeds maximum generation. """ with patch.object(self.env, 'max_load_mw', 10): with patch.object(self.env, 'gen_mw_capacity', 9.9): with self.assertRaisesRegex(MaxLoadAboveMaxGenError, 'The given max_load'): self.env._check_max_load(2) def test_check_max_load_warning(self): """Ensure we get a warning if the generation is in excess of 2x maximum load. """ with self.assertLogs(logger=self.env.log, level='WARNING'): self.env._check_max_load(2) def test_min_load_mw(self): # System loading obtained from PowerWorld's Case Summary # dialogue. self.assertEqual(round(self.env.min_load_mw, 2), self.min_load_factor * LOAD_MW_14) def test_check_min_load(self): # Get generator data. gens = self.env.gen_init_data.copy(deep=True) # Increase all minimum generation. gens['GenMWMin'] = 10 # Patch: with patch.object(self.env, '_gen_init_data', gens): with patch.object(self.env, 'min_load_mw', 9.9): with self.assertRaisesRegex(MinLoadBelowMinGenError, 'The given min_load'): self.env._check_min_load(2) def test_total_load_mw(self): # Ensure it's 1D. self.assertEqual(len(self.env.total_load_mw.shape), 1) # Check shape. self.assertEqual(self.env.total_load_mw.shape[0], self.env.num_scenarios) # Ensure all loads are less than the maximum. np_test.assert_array_less(self.env.total_load_mw, self.env.max_load_mw) # Ensure all loads are greater than the minimum. np_test.assert_array_less(self.env.min_load_mw, self.env.total_load_mw) def test_loads_mw(self): # Check shape self.assertEqual(self.env.loads_mw.shape, (self.num_scenarios, self.env.num_loads)) # Ensure the individual loads match total loading. np_test.assert_allclose(self.env.loads_mw.sum(axis=1), self.env.total_load_mw, rtol=1e-6) def test_loads_mvar(self): # Check shape. self.assertEqual(self.env.loads_mvar.shape, (self.num_scenarios, self.env.num_loads)) # Ensure that portion of negative var loads (leading power # factor) is close to the lead_pf_probability. neg_portion = (self.env.loads_mvar < 0).sum().sum() \ / (self.num_scenarios * self.env.num_loads) # Ensure we're within 0.75 * prob and 1.25 * prob. This seems # reasonable. self.assertLessEqual(neg_portion, 1.25 * self.lead_pf_probability) self.assertGreaterEqual(neg_portion, 0.75 * self.lead_pf_probability) def test_load_power_factors(self): """Ensure all loads have a power factor greater than the min.""" # Ensure all power factors are valid. pf = P / |S| s_mag = np.sqrt(np.square(self.env.loads_mw) + np.square(self.env.loads_mvar)) # Suppress numpy warnings - we'll be replacing NaNs. with warnings.catch_warnings(): warnings.simplefilter("ignore") pf = self.env.loads_mw / s_mag # For sake of testing, set loads with 0 power to have a # power factor of 1. pf[np.isnan(pf)] = 1 np_test.assert_array_less(self.min_load_pf, pf) def test_loads_on_match_probability(self): """Ensure the proportion of loads which are on matches the load_on_probability to a reasonable tolerance. """ # First, ensure the zeros match up between loads_mw and loads_mvar. mw_0 = self.env.loads_mw == 0 np.testing.assert_array_equal(mw_0, self.env.loads_mvar == 0) # Now, ensure the total portion of loads that are "on" is close # to the load_on_probability. # noinspection PyUnresolvedReferences portion = (~mw_0).sum().sum() \ / (self.num_scenarios * self.env.num_loads) # Ensure we're within 0.75 * prob and 1.25 * prob. This seems # reasonable. self.assertLessEqual(portion, 1.25 * self.load_on_probability) self.assertGreaterEqual(portion, 0.75 * self.load_on_probability) def test_gen_mw(self): # Start with shape. self.assertEqual(self.env.gen_mw.shape, (self.num_scenarios, self.env.num_gens)) # Ensure total generation is close to total load plus losses. np_test.assert_allclose(self.env.gen_mw.sum(axis=1), self.env.total_load_mw * (1 + LOSS), rtol=1e-6) # TODO: Since the generators in this case have ridiculously high # maximums, I'm not going to bother testing that all gens are # within their bounds. When we move to a more realistic case, # e.g. the Texas 2000 bus case, we need to test that. # # # Ensure generator outputs are within bounds. # for gen_idx, row in enumerate(env.gen_init_data.itertuples()): # gen_output = env.gen_mw[:, gen_idx] # # noinspection PyUnresolvedReferences # self.assertTrue((gen_output <= row.GenMWMax).all()) # # noinspection PyUnresolvedReferences # self.assertTrue((gen_output >= row.GenMWMin).all()) def test_gen_v(self): # Shape. self.assertEqual(self.env.gen_v.shape, (self.env.num_scenarios, self.env.num_gens)) # Values. self.assertTrue( ((self.env.gen_v >= self.gen_voltage_range[0]).all() and (self.env.gen_v <= self.gen_voltage_range[1]).all() ) ) def test_action_space(self): self.assertIsInstance(self.env.action_space, Discrete) # Plus 1 because no-op action self.assertEqual(self.env.action_space.n, self.env.num_gens * self.num_gen_voltage_bins + 1) def test_gen_bins(self): # Hard coding! np.testing.assert_allclose( np.array([0.9, 0.925, 0.95, 0.975, 1.0, 1.025, 1.05, 1.075, 1.1]), self.env.gen_bins) def test_gen_action_array(self): # Minus 1 because no-op action. self.assertEqual(self.env.action_space.n - 1, self.env.gen_action_array.shape[0]) self.assertEqual(2, self.env.gen_action_array.shape[1]) # Initialize array for comparison. Again, -1 due to no-op. a = np.zeros(shape=(self.env.action_space.n - 1, 2), dtype=int) # Put generator bus numbers in column 0. No need to worry about # multiple generators at the same bus for this case. a[:, 0] = np.array( self.env.gen_init_data['BusNum'].tolist() * self.num_gen_voltage_bins) # Write a crappy, simple, loop to put the indices of the # generator voltage levels in. b = [] for i in range(self.num_gen_voltage_bins): for _ in range(self.env.num_gens): b.append(i) a[:, 1] = np.array(b) np.testing.assert_array_equal(a, self.env.gen_action_array) def test_num_obs(self): """Ensure the number of observations matches the expected number """ # 14 buses + 3 * 5 gens + 3 * 11 loads self.assertEqual(14 + 3 * 5 + 3 * 11, self.env.num_obs) def test_observation_space(self): """Ensure the observation space has the appropriate properties. """ # Test shape. self.assertEqual(self.env.observation_space.shape, (self.env.num_obs,)) # Test bounds. Bus voltages should have a high of 2, and the # rest should have a high of 1. self.assertTrue((self.env.observation_space.high[ 0:self.env.num_buses] == 2.).all()) self.assertTrue((self.env.observation_space.high[ self.env.num_buses:] == 1.).all()) self.assertTrue((self.env.observation_space.low == 0.).all()) def test_observation_attributes(self): """After initialization, several observation related attributes should be initialized to None. """ self.assertIsNone(self.env.gen_obs_data) self.assertIsNone(self.env.load_obs_data) self.assertIsNone(self.env.bus_obs_data) self.assertIsNone(self.env.gen_obs_data_prev) self.assertIsNone(self.env.load_obs_data_prev) self.assertIsNone(self.env.bus_obs_data_prev) def test_action_count(self): """After initialization, the action count should be 0.""" self.assertEqual(0, self.env.action_count) def test_reward_matches(self): """For this simple initialization, the rewards should be the same as the class constant. """ self.assertDictEqual(self.env.rewards, self.env.REWARDS) def test_override_reward(self): """Ensure overriding a portion of the rewards behaves as expected. """ # Create a new env, but use new rewards. env = voltage_control_env.DiscreteVoltageControlEnv( pwb_path=PWB_14, num_scenarios=10, max_load_factor=self.max_load_factor, min_load_factor=self.min_load_factor, num_gen_voltage_bins=5, rewards={'v_delta': 1000}) # Loop and assert. for key, value in env.rewards.items(): if key == 'v_delta': self.assertNotEqual(env.REWARDS[key], value) else: self.assertEqual(env.REWARDS[key], value) # Ensure the keys are the same. self.assertListEqual(list(env.rewards.keys()), list(env.REWARDS.keys())) def test_bad_reward_key(self): """Ensure an exception is raised if a bad reward key is given. """ with self.assertRaisesRegex(KeyError, 'The given rewards key, v_detl'): _ = voltage_control_env.DiscreteVoltageControlEnv( pwb_path=PWB_14, num_scenarios=10, max_load_factor=self.max_load_factor, min_load_factor=self.min_load_factor, rewards={'v_detla': 1000}) def test_log_columns(self): """Ensure the log columns are as they should be.""" self.assertListEqual( ['episode', 'action_taken', 'reward'] + [f'bus_{x+1}_v' for x in range(14)] + [f'gen_{x}_{y}' for x, y in zip([1, 2, 3, 6, 8], [1] * 5)], self.env.log_columns ) def test_log_array(self): self.assertEqual(self.env.log_array.shape, # 14 + 3 --> num buses plus ep, action, reward, # and num gens. (self.log_buffer, 14 + 3 + 5)) def test_no_op_action(self): # Cover several data types because the action comes directly # from a neural network, which could have different data types. self.assertEqual(0, self.env.no_op_action) self.assertEqual(0.0, self.env.no_op_action) self.assertEqual(np.float64(0), self.env.no_op_action) self.assertEqual(np.float32(0), self.env.no_op_action) self.assertEqual(np.int(0.0), self.env.no_op_action) def test_last_action(self): self.assertIsNone(self.env.last_action) def test_gen_var_lim_zero_arr(self): """Ensure the gen_var_lim_zero_arr is as expected.""" # The swing bus (which is listed first) and generator at bus 3 # should have 0 limits. mask = np.ones(self.env.gen_var_lim_zero_arr.shape[0], dtype=bool) mask[0] = False mask[2] = False self.assertTrue(self.env.gen_var_lim_zero_arr[~mask].all()) self.assertFalse(self.env.gen_var_lim_zero_arr[mask].any()) # noinspection DuplicatedCode class DiscreteVoltageControlEnv14BusLimitsTestCase(unittest.TestCase): """Test initializing the environment with the 14 bus model with limits added. """ @classmethod def setUpClass(cls) -> None: # Initialize the environment. Then, we'll use individual test # methods to test various attributes, methods, etc. # Define inputs to the constructor. # Create a ton of scenarios so the generator dispatch is # thoroughly exercised. cls.num_scenarios = 100000 cls.max_load_factor = 1.44 cls.min_load_factor = 0.5 cls.min_load_pf = 0.8 cls.lead_pf_probability = 0.1 cls.load_on_probability = 0.8 cls.num_gen_voltage_bins = 9 cls.gen_voltage_range = (0.9, 1.1) cls.seed = 18 cls.log_level = logging.INFO cls.dtype = np.float32 cls.log_buffer = 100 cls.env = voltage_control_env.DiscreteVoltageControlEnv( pwb_path=PWB_14_LIMITS, num_scenarios=cls.num_scenarios, max_load_factor=cls.max_load_factor, min_load_factor=cls.min_load_factor, min_load_pf=cls.min_load_pf, lead_pf_probability=cls.lead_pf_probability, load_on_probability=cls.load_on_probability, num_gen_voltage_bins=cls.num_gen_voltage_bins, gen_voltage_range=cls.gen_voltage_range, seed=cls.seed, log_level=logging.INFO, dtype=cls.dtype, log_buffer=cls.log_buffer ) # noinspection PyUnresolvedReferences @classmethod def tearDownClass(cls) -> None: cls.env.close() # noinspection PyUnresolvedReferences def test_gens_in_bounds(self): self.assertTrue( (self.env.gen_mw <= self.env.gen_init_data['GenMWMax'].to_numpy()).all() ) self.assertTrue( (self.env.gen_mw >= self.env.gen_init_data['GenMWMin'].to_numpy()).all() ) def test_gen_meets_load(self): np.testing.assert_allclose(self.env.total_load_mw * (1 + LOSS), self.env.gen_mw.sum(axis=1)) # noinspection DuplicatedCode class DiscreteVoltageControlEnv14BusResetTestCase(unittest.TestCase): """Test the reset method of the environment.""" @classmethod def setUpClass(cls) -> None: # Initialize the environment. Then, we'll use individual test # methods to test various attributes, methods, etc. # Define inputs to the constructor. cls.num_scenarios = 1000 cls.max_load_factor = 2 cls.min_load_factor = 0.5 cls.min_load_pf = 0.8 cls.lead_pf_probability = 0.1 cls.load_on_probability = 0.8 cls.num_gen_voltage_bins = 9 cls.gen_voltage_range = (0.9, 1.1) cls.seed = 18 cls.log_level = logging.INFO cls.dtype = np.float32 cls.env = voltage_control_env.DiscreteVoltageControlEnv( pwb_path=PWB_14, num_scenarios=cls.num_scenarios, max_load_factor=cls.max_load_factor, min_load_factor=cls.min_load_factor, min_load_pf=cls.min_load_pf, lead_pf_probability=cls.lead_pf_probability, load_on_probability=cls.load_on_probability, num_gen_voltage_bins=cls.num_gen_voltage_bins, gen_voltage_range=cls.gen_voltage_range, seed=cls.seed, log_level=logging.INFO, dtype=cls.dtype ) # For easy comparison with the original case, get a fresh SAW # object. Do not make any changes to this, use only "get" type # methods. cls.saw = SAW(PWB_14, early_bind=True) # Extract generator data needed for testing the reset method. cls.gens = cls.saw.GetParametersMultipleElement( ObjectType='gen', ParamList=cls.env.gen_key_fields + cls.env.GEN_RESET_FIELDS) # Extract generator data needed for testing the reset method. cls.loads = cls.saw.GetParametersMultipleElement( ObjectType='load', ParamList=cls.env.load_key_fields + cls.env.LOAD_RESET_FIELDS ) # noinspection PyUnresolvedReferences @classmethod def tearDownClass(cls) -> None: cls.saw.exit() cls.env.close() def setUp(self) -> None: """Reset the scenario index for each run, and restore the case. """ self.env.scenario_idx = 0 self.env.saw.LoadState() def test_scenario_idx_increments(self): """Ensure subsequent calls to reset update the scenario index. """ # Patch the changing of parameters so that we'll get a # a consistent incrementing of the index (no failed power flow). with patch.object(self.env.saw, 'change_parameters_multiple_element_df'): self.env.reset() self.assertEqual(1, self.env.scenario_idx) self.env.reset() self.assertEqual(2, self.env.scenario_idx) self.env.reset() self.assertEqual(3, self.env.scenario_idx) def test_action_count_reset(self): """Ensure subsequent calls to reset reset the action_count.""" # Patch the changing of parameters so that we'll get a # a consistent incrementing of the index (no failed power flow). with patch.object(self.env.saw, 'change_parameters_multiple_element_df'): self.env.action_count = 10 self.env.reset() self.assertEqual(0, self.env.action_count) self.env.action_count = 17 self.env.reset() self.assertEqual(0, self.env.action_count) self.env.action_count = 1 self.env.reset() self.assertEqual(0, self.env.action_count) def test_load_state_called(self): """Ensure the SAW object's LoadState method is called in reset. """ # Patch the changing of parameters so that we'll get a # a consistent incrementing of the index (no failed power flow). with patch.object(self.env.saw, 'change_parameters_multiple_element_df'): with patch.object( self.env.saw, 'LoadState', side_effect=self.env.saw.LoadState) as p: self.env.reset() p.assert_called_once() def test_gens_and_loads_set_correctly(self): """Ensure that the appropriate generators get opened and closed, and that the power levels get set correctly in the case for both generators and loads. """ # There are 5 generators in the 14 bus case. In the base case, # only gens at buses 1 and 2 are providing active power, but # the others are "Closed" and thus regulating their voltage. # We'll patch the environment's gen_mw to have all gens on # and sharing the load evenly except the generator at bus 2. # We'll also patch all gens to be regulating to 1.05 per unit. p = LOAD_MW_14 / 4 gen_mw_row = np.array([p, 0, p, p, p]) gen_mw = self.env.gen_mw.copy() gen_mw[0, :] = gen_mw_row gen_v_row = np.array([1.05] * 5) gen_v = self.env.gen_v.copy() gen_v[0, :] = gen_v_row # Extract the original loading, but we'll bump one load by 1 MW # and 1 MVAR and decrement another by 1 MW and 1 MVAR. loads_mw_row = self.loads['LoadSMW'].to_numpy() loads_mw_row[3] += 1 loads_mw_row[4] -= 1 loads_mw = self.env.loads_mw.copy() loads_mw[0, :] = loads_mw_row loads_mvar_row = self.loads['LoadSMVR'].to_numpy() loads_mvar_row[3] += 1 loads_mvar_row[4] -= 1 loads_mvar = self.env.loads_mvar.copy() loads_mvar[0, :] = loads_mvar_row # Patch the scenario index, generator output, and loading. Then # reset the environment. with patch.object(self.env, 'gen_mw', new=gen_mw): with patch.object(self.env, 'gen_v', new=gen_v): with patch.object(self.env, 'loads_mw', new=loads_mw): with patch.object(self.env, 'loads_mvar', new=loads_mvar): # Patch branches_to_open so a line does not get # opened. with patch.object(self.env, 'branches_to_open', new=None): self.env.reset() # Pull the generator data from PowerWorld and ensure that both # the status and output match up. gen_reset_data = self.env.saw.GetParametersMultipleElement( ObjectType='gen', ParamList=self.env.gen_key_fields + self.env.GEN_RESET_FIELDS) # All gens except for the 2nd should be closed. status = ['Closed'] * 5 status[1] = 'Open' self.assertListEqual(status, gen_reset_data['GenStatus'].tolist()) # Excluding the slack, generator MW output should exactly match # what was commanded. np.testing.assert_allclose( gen_mw_row[1:], gen_reset_data['GenMW'].to_numpy()[1:]) # The slack should be equal to within our assumed line losses. np.testing.assert_allclose( gen_mw_row[0], gen_reset_data['GenMW'].to_numpy()[0], rtol=LOSS, atol=0 ) # Generator voltage setpoints should match. np.testing.assert_allclose( gen_v_row, gen_reset_data['GenVoltSet'].to_numpy() ) # Pull the load data from PowerWorld and ensure that both the # MW and MVAR outputs match up. load_init_data = self.env.saw.GetParametersMultipleElement( ObjectType='load', ParamList=self.env.load_key_fields + self.env.LOAD_RESET_FIELDS ) np.testing.assert_allclose( loads_mw_row, load_init_data['LoadSMW'].to_numpy() ) np.testing.assert_allclose( loads_mvar_row, load_init_data['LoadSMVR'].to_numpy() ) def test_failed_power_flow(self): """Ensure that if the power flow fails to solve, we move on to the next scenario. """ # Patch SolvePowerFlow so that the second call fails, while # the first, third, and fourth succeed. with patch.object( self.env.saw, 'SolvePowerFlow', side_effect=[None, PowerWorldError('failure'), None, None]): self.env.reset() # Our first attempt should fail, and the second should succeed. # The index is always bumped at the end of each iteration, so # it should end up at 2 (starts at 0, bumped to 1 after first # failed iteration, bumped to 2 after second successful # iteration). self.assertEqual(2, self.env.scenario_idx) def test_hit_max_iterations(self): """Exception should be raised once all scenarios are exhausted. """ # We want every other power flow solve to fail. side_effect = [None, PowerWorldError('failure')] * 10 with patch.object(self.env.saw, 'SolvePowerFlow', side_effect=side_effect): with patch.object(self.env, 'num_scenarios', new=5): with self.assertRaisesRegex( OutOfScenariosError, 'We have gone through all scenarios'): self.env.reset() def test_reset_returns_proper_observation(self): """Ensure a single call to reset calls _get_observation and returns the observation. """ with patch.object(self.env, '_get_observation', side_effect=self.env._get_observation) as p: obs = self.env.reset() # _get_observation should be called once only. Note if we get # into a bad state where the voltages are two low, it may # be called more than once. Bad test design due to the fact # we can't just spin up new ESA instances for each test. p.assert_called_once() self.assertIsInstance(obs, np.ndarray) self.assertEqual(obs.shape, self.env.observation_space.shape) def test_extra_reset_actions_called(self): with patch.object(self.env, '_set_gens_for_scenario') as p: self.env.reset() p.assert_called_once() def test_set_gens_for_scenario_called(self): with patch.object(self.env, '_set_gens_for_scenario') as p: self.env.reset() p.assert_called_once() def test_set_loads_for_scenario_called(self): with patch.object(self.env, '_set_loads_for_scenario') as p: with patch.object(self.env, '_solve_and_observe'): self.env.reset() p.assert_called_once() def test_solve_and_observe_called(self): with patch.object(self.env, '_solve_and_observe') as p: self.env.reset() p.assert_called_once() def test_current_reward_cleared(self): self.env.current_reward = 10 self.env.reset() self.assertTrue(
np.isnan(self.env.current_reward)
numpy.isnan
import numpy as np from numba import njit import scipy as sp import scipy.optimize as spo from netket.stats import ( statistics as _statistics, mean as _mean, sum_inplace as _sum_inplace, ) from netket.utils import ( MPI_comm as _MPI_comm, n_nodes as _n_nodes, node_number as _rank ) from mpi4py import MPI from netket.machine import QGPSLinExp class SupervisedLearning(): def __init__(self, machine): self.machine = machine def mean_squared_error(self, basis, target_amplitudes, weightings): if len(target_amplitudes) > 0: local_error = np.sum(weightings * abs(np.exp(self.machine.log_val(basis)) - target_amplitudes)**2) else: local_error = 0.0 return _MPI_comm.allreduce(local_error) def mean_squared_error_der(self, basis, target_amplitudes, weightings): if len(target_amplitudes) > 0: estimates = np.exp(self.machine.log_val(basis)) der_log = self.machine.der_log(basis) residuals = (estimates - target_amplitudes).conj()*weightings der = 2 * np.einsum("ij,i,i->j", der_log, estimates, residuals) if self.machine.has_complex_parameters: der = np.concatenate((der.real, (1.j*der).real)) else: if self.machine.has_complex_parameters: der = np.zeros(2*self.machine._npar) else: der = np.zeros(self.machine._npar) return _sum_inplace(der) def mean_squared_error_hess(self, basis, target_amplitudes, weightings): if len(target_amplitudes) > 0: estimates = np.exp(self.machine.log_val(basis)) der = self.machine.der_log(basis) proper_der = (der.T * estimates) hess_el = self.machine.hess(basis) wfn_hess_first_term = hess_el.T * estimates wfn_hess_sec_term = np.einsum("ij,jk->ikj", proper_der, der) wfn_hess = wfn_hess_first_term + wfn_hess_sec_term residuals = (estimates-target_amplitudes).conj()*weightings hess_first_term = (np.dot(wfn_hess, residuals)) hess_sec_term = np.matmul(proper_der*weightings, proper_der.T.conj()) if self.machine.has_complex_parameters: hess_first_term = np.block([[hess_first_term.real, (1.j*hess_first_term).real],[(1.j*hess_first_term).real,-hess_first_term.real]]) hess_sec_term = np.block([[hess_sec_term, -1.j*hess_sec_term],[1.j*hess_sec_term, hess_sec_term]]) else: if self.machine.has_complex_parameters: hess = np.zeros(2*self.machine._npar) else: hess = np.zeros(self.machine._npar) hess = 2 * (hess_first_term + hess_sec_term) return _sum_inplace(hess) def overlap(self, basis, target_amplitudes, weightings): assert(len(target_amplitudes) > 0) predictions = np.exp(self.machine.log_val(basis)) overlap = abs(_MPI_comm.allreduce(np.sum(weightings * predictions * target_amplitudes.conj())))**2 norm = _MPI_comm.allreduce(np.sum(weightings * abs(predictions)**2)) * _MPI_comm.allreduce(np.sum(weightings * abs(target_amplitudes)**2)) return overlap/norm def overlap_der(self, basis, target_amplitudes, weightings): assert(len(target_amplitudes) > 0) estimates = np.exp(self.machine.log_val(basis)).conj() der = self.machine.der_log(basis).conj() overlap1 = _sum_inplace(np.einsum("i,ij->j", (weightings * estimates * target_amplitudes), der)) norm1 = _MPI_comm.allreduce(np.sum(weightings * estimates * target_amplitudes)) overlap2 = _sum_inplace(np.einsum("i,ij->j", (weightings * abs(estimates)**2), der)) norm2 = _MPI_comm.allreduce(np.sum(weightings * abs(estimates)**2)) derivative = overlap1/norm1 - overlap2/norm2 overlap = self.overlap(basis, target_amplitudes, weightings) if self.machine.has_complex_parameters: derivative = np.concatenate((derivative.real, derivative.imag)) return overlap * derivative.real def neg_log_overlap_der(self, basis, target_amplitudes, weightings): assert(len(target_amplitudes) > 0) estimates = np.exp(self.machine.log_val(basis)).conj() der = self.machine.der_log(basis).conj() overlap1 = _sum_inplace(np.einsum("i,ij->j", (weightings * estimates * target_amplitudes), der)) norm1 = _MPI_comm.allreduce(np.sum(weightings * estimates * target_amplitudes)) overlap2 = _sum_inplace(np.einsum("i,ij->j", (weightings * abs(estimates)**2), der)) norm2 = _MPI_comm.allreduce(np.sum(weightings * abs(estimates)**2)) derivative = -overlap1/norm1 + overlap2/norm2 if self.machine.has_complex_parameters: derivative = np.concatenate((derivative.real, derivative.imag)) return derivative.real def bayes_loss(self, basis, target_amplitudes, weightings, beta, alpha): parameters = self.machine.parameters if self.machine.has_complex_parameters: parameters = np.concatenate((parameters.real, parameters.imag)) return beta/2 * self.mean_squared_error(basis, target_amplitudes, weightings) + 0.5 * np.sum((parameters**2) * alpha) def grad_bayes(self, basis, target_amplitudes, weightings, beta, alpha): parameters = self.machine.parameters if self.machine.has_complex_parameters: parameters = np.concatenate((parameters.real, parameters.imag)) der = beta/2 * self.mean_squared_error_der(basis, target_amplitudes, weightings) der += parameters * alpha return der def hess_bayes(self, basis, target_amplitudes, weightings, beta, alpha): parameters = self.machine.parameters if self.machine.has_complex_parameters: parameters = np.concatenate((parameters.real, parameters.imag)) hess = beta/2 * self.mean_squared_error_hess(basis, target_amplitudes, weightings) hess += np.diag(alpha) return hess def get_bias(self, target_amplitudes, weightings=None, dtype=complex): if len(target_amplitudes) > 0: if weightings is None: local_sum = np.sum(np.log(target_amplitudes)) n_terms = len(target_amplitudes) else: local_sum = np.sum(np.log(target_amplitudes)*weightings) n_terms = np.sum(weightings) else: local_sum = 0. n_terms = 1 return _MPI_comm.allreduce(local_sum)/_MPI_comm.allreduce(n_terms) class QGPSLearning(SupervisedLearning): def __init__(self, machine, init_alpha=1.0, bond_min_id=0, bond_max_id=None, complex_expand=True): super().__init__(machine) self.K = None self.weights = None self.site_prod = None self.confs = None self.ref_site = None self.bond_min_id = bond_min_id if bond_max_id is None: self.bond_max_id = self.machine._epsilon.shape[1] else: self.bond_max_id = bond_max_id self.n_bond = self.bond_max_id - self.bond_min_id self.complex_expand = complex_expand self.local_dim = self.machine.hilbert._local_size if self.complex_expand and self.machine.dtype==complex: self.alpha_mat = np.ones((self.machine._epsilon.shape[0], self.local_dim*2*self.n_bond))*init_alpha else: self.alpha_mat = np.ones((self.machine._epsilon.shape[0], self.local_dim*self.n_bond))*init_alpha self.alpha_cutoff = 1.e10 self.kern_cutoff = 1.e-15 self.sinv_fallback = True self.alpha_convergence_tol = 1.e-15 @staticmethod @njit() def kernel_mat_inner(site_prod, ref_site, confs, Smap, sym_spin_flip_sign, K): K.fill(0.0) for i in range(site_prod.shape[0]): for x in range(site_prod.shape[1]): for t in range(site_prod.shape[2]): if sym_spin_flip_sign[t] * confs[i, Smap[t, ref_site]] < 0.0: K[i, 2*x] += site_prod[i, x, t] else: K[i, 2*x+1] += site_prod[i, x, t] return K @staticmethod @njit() def compute_site_prod_fast(epsilon, bond_min, bond_max, ref_site, confs, Smap, sym_spin_flip_sign, site_product): site_product.fill(1.0) for i in range(confs.shape[0]): for (x, w) in enumerate(range(bond_min, bond_max)): for t in range(Smap.shape[0]): for j in range(confs.shape[1]): if j != ref_site: if sym_spin_flip_sign[t] * confs[i, Smap[t,j]] < 0: site_product[i, x, t] *= epsilon[j, w, 0] else: site_product[i, x, t] *= epsilon[j, w, 1] return site_product @staticmethod @njit() def update_site_prod_fast(epsilon, bond_min, bond_max, ref_site, ref_site_old, confs, Smap, sym_spin_flip_sign, site_product): eps = np.finfo(np.double).eps for (x, w) in enumerate(range(bond_min, bond_max)): if abs(epsilon[ref_site, w, 0]) > 1.e4 * eps and abs(epsilon[ref_site, w, 1]) > 1.e4 * eps: for i in range(confs.shape[0]): for t in range(Smap.shape[0]): if sym_spin_flip_sign[t] * confs[i, Smap[t,ref_site]] < 0: site_product[i, x, t] /= epsilon[ref_site, w, 0] else: site_product[i, x, t] /= epsilon[ref_site, w, 1] if sym_spin_flip_sign[t] * confs[i, Smap[t,ref_site_old]] < 0: site_product[i, x, t] *= epsilon[ref_site_old, w, 0] else: site_product[i, x, t] *= epsilon[ref_site_old, w, 1] else: for i in range(confs.shape[0]): for t in range(Smap.shape[0]): site_product[i, x, t] = 1.0 for j in range(confs.shape[1]): if j != ref_site: if sym_spin_flip_sign[t] * confs[i, Smap[t,j]] < 0: site_product[i, x, t] *= epsilon[j, w, 0] else: site_product[i, x, t] *= epsilon[j, w, 1] return site_product @staticmethod @njit() def kernel_mat_inner_fermion(site_prod, ref_site, confs, Smap, sym_spin_flip_sign, K): K.fill(0.0) for i in range(site_prod.shape[0]): for x in range(site_prod.shape[1]): for t in range(site_prod.shape[2]): index = round(confs[i, Smap[t, ref_site]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 K[i, 4*x + index] += site_prod[i, x, t] return K @staticmethod @njit() def compute_site_prod_fast_fermion(epsilon, bond_min, bond_max, ref_site, confs, Smap, sym_spin_flip_sign, site_product): site_product.fill(1.0) for i in range(confs.shape[0]): for (x, w) in enumerate(range(bond_min, bond_max)): for t in range(Smap.shape[0]): for j in range(confs.shape[1]): if j != ref_site: index = round(confs[i, Smap[t, j]]) if sym_spin_flip_sign[t] < 0.0: if index == 1: index = 2 elif index == 2: index = 1 site_product[i, x, t] *= epsilon[j, w, index] return site_product @staticmethod @njit() def update_site_prod_fast_fermion(epsilon, bond_min, bond_max, ref_site, ref_site_old, confs, Smap, sym_spin_flip_sign, site_product): eps = np.finfo(np.double).eps for (x, w) in enumerate(range(bond_min, bond_max)): if np.min(
np.abs(epsilon[ref_site, w, :])
numpy.abs
import argparse import fnmatch import os import shutil import h5py as h5py import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sn from sklearn.metrics import confusion_matrix import sunrgbd import wrgbd51 from alexnet_model import AlexNet from basic_utils import Models, RunSteps from densenet_model import DenseNet from main import init_save_dirs from resnet_models import ResNet from vgg16_model import VGG16Net def get_rnn_model(params): if params.net_model == Models.AlexNet: model_rnn = AlexNet(params) elif params.net_model == Models.VGGNet16: model_rnn = VGG16Net(params) elif params.net_model == Models.ResNet50 or params.net_model == Models.ResNet101: model_rnn = ResNet(params) else: # params.net_model == Models.DenseNet121: model_rnn = DenseNet(params) return model_rnn def calc_scores(l123_preds, test_labels, model_rnn): model_rnn.test_labels = test_labels avg_res, true_preds, test_size = model_rnn.calc_scores(l123_preds) conf_mat = confusion_matrix(test_labels, l123_preds) return avg_res, true_preds, test_size, conf_mat def show_sunrgbd_conf_mat(conf_mat): num_ctgs = len(conf_mat) cm_sum = np.sum(conf_mat, axis=1, keepdims=True) cm_perc = conf_mat / cm_sum.astype(float) * 100 columns = sunrgbd.get_class_names(range(num_ctgs)) df_cm = pd.DataFrame(cm_perc, index=columns, columns=columns) plt.figure(figsize=(20, 15)) sn.set(font_scale=1.4) # for label size heatmap = sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, cmap='Oranges', fmt=".1f", vmax=100) # font size heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=16) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=16) # plt.ylabel('True Label') # plt.xlabel('Predicted Label') plt.show() # plt.savefig('sunrgb_confusion_matrix.eps', format='eps', dpi=1000) def calc_scores_conf_mat(svm_path): model_rnn = get_rnn_model(params) l1, l2, l3 = 'layer5', 'layer6', 'layer7' with h5py.File(svm_path, 'r') as f: l1_conf_scores = np.asarray(f[l1]) l2_conf_scores = np.asarray(f[l2]) l3_conf_scores = np.asarray(f[l3]) test_labels = np.asarray(f['labels']) f.close() print('Running Layer-[{}+{}+{}] Confidence Average Fusion...'.format(l1, l2, l3)) print('SVM confidence scores of {}, {} and {} are average fused'.format(l1, l2, l3)) print('SVM confidence average fusion') l123_avr_confidence = np.mean(np.array([l1_conf_scores, l2_conf_scores, l3_conf_scores]), axis=0) l123_preds = np.argmax(l123_avr_confidence, axis=1) avg_res, true_preds, test_size, conf_mat = calc_scores(l123_preds, test_labels, model_rnn) print('Fusion result: {0:.2f}% ({1}/{2})..'.format(avg_res, true_preds, test_size)) show_sunrgbd_conf_mat(conf_mat) def sunrgbd_combined_scores_conf_mat(rgb_svm_path, depth_svm_path): model_rnn = get_rnn_model(params) l1, l2, l3 = 'layer5', 'layer6', 'layer7' with h5py.File(rgb_svm_path, 'r') as f: rgb1_conf_scores = np.asarray(f[l1]) rgb2_conf_scores = np.asarray(f[l2]) rgb3_conf_scores = np.asarray(f[l3]) test_labels = np.asarray(f['labels']) f.close() with h5py.File(depth_svm_path, 'r') as f: depth1_conf_scores = np.asarray(f[l1]) depth2_conf_scores = np.asarray(f[l2]) depth3_conf_scores = np.asarray(f[l3]) f.close() rgb_l123_sum_confidence = np.sum(np.array([rgb1_conf_scores, rgb2_conf_scores, rgb3_conf_scores]), axis=0) depth_l123_sum_confidence = np.sum(np.array([depth1_conf_scores, depth2_conf_scores, depth3_conf_scores]), axis=0) print('Weighted Average SVM confidence scores of [RGB({}+{}+{})+Depth({}+{}+{})] are taken') print('SVMs confidence weighted fusion') w_rgb, w_depth = model_rnn.calc_modality_weights((rgb_l123_sum_confidence, depth_l123_sum_confidence)) rgbd_l123_wadd_confidence = np.add(rgb_l123_sum_confidence * w_rgb[:, np.newaxis], depth_l123_sum_confidence * w_depth[:, np.newaxis]) l123_preds = np.argmax(rgbd_l123_wadd_confidence, axis=1) avg_res, true_preds, test_size, conf_mat = calc_scores(l123_preds, test_labels, model_rnn) print('Combined Weighted Confidence result: {0:.2f}% ({1}/{2})..'.format(avg_res, true_preds, test_size)) show_sunrgbd_conf_mat(conf_mat) def sunrgbd_main(params): root_path = '../../data/sunrgbd/' svm_conf_paths = root_path + params.features_root + params.proceed_step + '/svm_confidence_scores/' rgb_svm_path = svm_conf_paths + params.net_model + '_RGB_JPG.hdf5' depth_svm_path = svm_conf_paths + params.net_model + '_Depth_Colorized_HDF5.hdf5' if params.data_type == 'rgb': calc_scores_conf_mat(rgb_svm_path) elif params.data_type == 'depth': calc_scores_conf_mat(depth_svm_path) else: sunrgbd_combined_scores_conf_mat(rgb_svm_path, depth_svm_path) def individual_class_scores(total_conf_mat): num_ctgs = len(total_conf_mat) cm_sum = np.sum(total_conf_mat, axis=1, keepdims=True) cm_perc = total_conf_mat / cm_sum.astype(float) * 100 indidual_scores = cm_perc.diagonal() categories = wrgbd51.get_class_names(range(num_ctgs)) i = 0 for category, category_score in zip(categories, indidual_scores): print(f'{category:<15} {category_score:>10.1f}') def show_wrgbd_conf_mat(conf_mat): num_ctgs = len(conf_mat) cm_sum = np.sum(conf_mat, axis=1, keepdims=True) cm_perc = conf_mat / cm_sum.astype(float) * 100 columns = wrgbd51.get_class_names(range(num_ctgs)) df_cm = pd.DataFrame(cm_perc, index=columns, columns=columns) plt.figure(figsize=(20, 15)) sn.set(font_scale=1.4) # for label size heatmap = sn.heatmap(df_cm, annot=True, annot_kws={"size": 10}, cmap='Oranges', fmt=".1f", vmax=100) # font size heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=12) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=12) plt.ylabel('True Label') plt.xlabel('Predicted Label') plt.show() def wrgb_scores_conf_mat(params, svm_conf_paths): model_rnn = get_rnn_model(params) if params.data_type == 'rgb': params.proceed_step = RunSteps.FIX_RECURSIVE_NN data_type_ex = 'crop' params.data_type = 'crop' l1, l2, l3 = model_rnn.get_best_trio_layers() params.data_type = 'rgb' else: params.proceed_step = RunSteps.FINE_RECURSIVE_NN data_type_ex = 'depthcrop' params.data_type = 'depthcrop' l1, l2, l3 = model_rnn.get_best_trio_layers() params.data_type = 'depths' all_splits_scores = [] for split in range(1, 11): conf_file = params.net_model + '_' + data_type_ex + '_split_' + str(split) + '.hdf5' svm_conf_file_path = svm_conf_paths + conf_file with h5py.File(svm_conf_file_path, 'r') as f: l1_conf_scores = np.asarray(f[l1]) l2_conf_scores = np.asarray(f[l2]) l3_conf_scores = np.asarray(f[l3]) test_labels = np.asarray(f['labels']) f.close() # print('Running Layer-[{}+{}+{}] Confidence Average Fusion...'.format(l1, l2, l3)) # print('SVM confidence scores of {}, {} and {} are average fused'.format(l1, l2, l3)) # print('SVM confidence average fusion') l123_avr_confidence = np.mean(np.array([l1_conf_scores, l2_conf_scores, l3_conf_scores]), axis=0) l123_preds = np.argmax(l123_avr_confidence, axis=1) avg_res, true_preds, test_size, conf_mat = calc_scores(l123_preds, test_labels, model_rnn) # print('Fusion result: {0:.2f}% ({1}/{2})..'.format(avg_res, true_preds, test_size)) all_splits_scores.append((avg_res, true_preds, test_size, conf_mat)) total_avg_res = 0.0 total_true_preds = 0.0 total_test_size = 0.0 total_conf_mat = np.zeros(shape=(51, 51), dtype=float) for avg_res, true_preds, test_size, conf_mat in all_splits_scores: total_avg_res += avg_res total_true_preds += true_preds total_test_size += test_size total_conf_mat += conf_mat print('Average score is {0:.1f}% ({1}/{2})'.format(total_avg_res / 10, total_true_preds, total_test_size)) individual_class_scores(total_conf_mat) # show_wrgbd_conf_mat(total_conf_mat) def wrgbd_combined_scores_conf_mat(params, svm_conf_paths): model_rnn = get_rnn_model(params) params.proceed_step = RunSteps.FIX_RECURSIVE_NN rgb_data_type_ex = 'crop' params.data_type = 'crop' rgb_l1, rgb_l2, rgb_l3 = model_rnn.get_best_trio_layers() params.proceed_step = RunSteps.FINE_RECURSIVE_NN depth_data_type_ex = 'depthcrop' params.data_type = 'depthcrop' depth_l1, depth_l2, depth_l3 = model_rnn.get_best_trio_layers() params.data_type = 'rgbd' all_splits_scores = [] for split in range(1, 11): rgb_conf_file = params.net_model + '_' + rgb_data_type_ex + '_split_' + str(split) + '.hdf5' rgb_svm_conf_file_path = svm_conf_paths + rgb_conf_file with h5py.File(rgb_svm_conf_file_path, 'r') as f: rgb1_conf_scores = np.asarray(f[rgb_l1]) rgb2_conf_scores =
np.asarray(f[rgb_l2])
numpy.asarray
# # Copyright 2020 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for testing the pyxir TF executor""" import unittest import numpy as np import pyxir as px from pyxir.shapes import TensorShape from pyxir.runtime import base from pyxir.graph.layer import xlayer from pyxir.graph.io import xlayer_io try: import tensorflow as tf from pyxir.runtime.tensorflow.x_2_tf_registry import * from pyxir.runtime.tensorflow.ops.tf_l0_input_and_other import * from pyxir.runtime.tensorflow.ops.tf_l2_convolutions import * except ModuleNotFoundError: raise unittest.SkipTest("Skipping Tensorflow related test because Tensorflow is not available") class TestTfL2Convolutions(unittest.TestCase): def test_conv2d(self): tf.compat.v1.reset_default_graph() K = np.reshape(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=np.float32), (2, 1, 2, 2)) B = np.array([0, 0], dtype=np.float32) X = xlayer.XLayer( name='test_conv2d', type=['Convolution'], shapes=[1, 2, 3, 3], sizes=[18], bottoms=['input'], tops=[], data=xlayer.ConvData(K, B), attrs={ 'data_layout': 'NCHW', 'kernel_layout': 'OIHW', 'padding': [[0, 0], [0, 0], [0, 0], [0, 0]], 'strides': [1, 1], 'dilation': [1, 1], 'groups': 1 }, targets=[] ) input_shapes = { 'input': TensorShape([1, 1, 4, 4]) } inputs = { 'input': np.ones((1, 1, 4, 4), dtype=np.float32) } params = { 'test_conv2d_kernel': np.reshape(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=np.float32), (2, 1, 2, 2)), 'test_conv2d_biases': np.array([0, 0], dtype=np.float32) } layers = base.get_conv2d_layer(ConvLayer, ConstantLayer)( X, input_shapes, params) assert(len(layers) == 3) inputs.update(params) for layer in layers: # print("-----------------------") # print("Run layer: {}".format(layer.name)) inpts = [inputs[name] for name in layer.inputs] outpt = layer.forward_exec(inpts) # print("Output:", outpt.shape, outpt) inputs[layer.name] = outpt expected_outpt = np.array([[[[10., 10., 10.], [10., 10., 10.], [10., 10., 10.]], [[26., 26., 26.], [26., 26., 26.], [26., 26., 26.]]]]) np.testing.assert_array_equal(outpt, expected_outpt) def test_conv2d_tfl(self): tf.compat.v1.reset_default_graph() K = np.transpose(np.reshape(np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=np.float32), (2, 1, 2, 2)), (0, 2, 3, 1)) B = np.array([0, 0], dtype=np.float32) X = xlayer.XLayer( name='test_conv2d_tfl', type=['Convolution'], shapes=[1, 3, 3, 2], sizes=[18], bottoms=['input'], tops=[], data=xlayer.ConvData(K, B), attrs={ 'data_layout': 'NHWC', 'kernel_layout': 'OHWI', 'padding': [[0, 0], [0, 0], [0, 0], [0, 0]], 'strides': [1, 1], 'dilation': [1, 1], 'groups': 1 }, targets=[] ) input_shapes = { 'input': TensorShape([1, 4, 4, 1]) } inputs = { 'input': np.transpose(
np.ones((1, 1, 4, 4), dtype=np.float32)
numpy.ones
import numpy as np import os import sharpy.utils.cout_utils as cout from sharpy.utils.solver_interface import solver, BaseSolver import sharpy.utils.settings as settings import sharpy.utils.algebra as algebra class ForcesContainer(object): def __init__(self): self.ts = 0 self.t = 0.0 self.forces = [] self.coords = [] @solver class AeroForcesCalculator(BaseSolver): """AeroForcesCalculator Calculates the total aerodynamic forces on the frame of reference ``A``. """ solver_id = 'AeroForcesCalculator' solver_classification = 'post-processor' settings_types = dict() settings_default = dict() settings_description = dict() settings_types['folder'] = 'str' settings_default['folder'] = './output' settings_description['folder'] = 'Output folder location' settings_types['write_text_file'] = 'bool' settings_default['write_text_file'] = False settings_description['write_text_file'] = 'Write ``txt`` file with results' settings_types['text_file_name'] = 'str' settings_default['text_file_name'] = 'aeroforces.txt' settings_description['text_file_name'] = 'Text file name' settings_types['screen_output'] = 'bool' settings_default['screen_output'] = True settings_description['screen_output'] = 'Show results on screen' settings_types['unsteady'] = 'bool' settings_default['unsteady'] = False settings_description['unsteady'] = 'Include unsteady contributions' settings_default['coefficients'] = False settings_types['coefficients'] = 'bool' settings_description['coefficients'] = 'Calculate aerodynamic coefficients' settings_types['q_ref'] = 'float' settings_default['q_ref'] = 1 settings_description['q_ref'] = 'Reference dynamic pressure' settings_types['S_ref'] = 'float' settings_default['S_ref'] = 1 settings_description['S_ref'] = 'Reference area' settings_table = settings.SettingsTable() __doc__ += settings_table.generate(settings_types, settings_default, settings_description) def __init__(self): self.settings = None self.data = None self.ts_max = 0 self.ts = 0 self.folder = '' self.caller = None def initialise(self, data, custom_settings=None, caller=None): self.data = data self.settings = data.settings[self.solver_id] if self.data.structure.settings['unsteady']: self.ts_max = self.data.ts + 1 else: self.ts_max = 1 self.ts_max = len(self.data.structure.timestep_info) settings.to_custom_types(self.settings, self.settings_types, self.settings_default) self.caller = caller def run(self, online=False): self.ts = 0 self.calculate_forces() if self.settings['write_text_file']: self.folder = (self.settings['folder'] + '/' + self.data.settings['SHARPy']['case'] + '/' + 'forces/') # create folder for containing files if necessary if not os.path.exists(self.folder): os.makedirs(self.folder) self.folder += self.settings['text_file_name'] self.file_output() if self.settings['screen_output']: self.screen_output() cout.cout_wrap('...Finished', 1) return self.data def calculate_forces(self): for self.ts in range(self.ts_max): rot = algebra.quat2rotation(self.data.structure.timestep_info[self.ts].quat) force = self.data.aero.timestep_info[self.ts].forces unsteady_force = self.data.aero.timestep_info[self.ts].dynamic_forces n_surf = len(force) for i_surf in range(n_surf): total_steady_force =
np.zeros((3,))
numpy.zeros
import numpy as np import pymc3 as pm from sklearn.metrics import r2_score import theano import theano.tensor as T from pymc3_models.exc import PyMC3ModelsError from pymc3_models.models import BayesianModel class LinearRegression(BayesianModel): """ Linear Regression built using PyMC3. """ def __init__(self): super(LinearRegression, self).__init__() def create_model(self, sd, dof): """ Creates and returns the PyMC3 model. Note: The size of the shared variables must match the size of the training data. Otherwise, setting the shared variables later will raise an error. See http://docs.pymc.io/advanced_theano.html Returns ------- the PyMC3 model """ model_input = theano.shared(
np.zeros([self.num_training_samples, self.num_pred])
numpy.zeros
from PIL import Image, ImageFile import numpy as np import os ImageFile.LOAD_TRUNCATED_IMAGES=True Image.MAX_IMAGE_PIXELS=None PIXEL_TO_RGB = { 0: [0, 0, 0], # blank 1: [255, 0, 0], # red --> bare-land 2: [0, 255, 0], # green 3: [0, 0, 255], # blue --> vegetation 4: [255, 255, 0], # yellow 5: [255, 0, 255], # pink --> building 6: [0, 255, 255], # cyan --> road 7: [127, 0, 0], # dark red 8: [0, 127, 0], # dark green 9: [0, 0, 127], # dark blue 10: [127, 127, 0], # dark yellow --> warter-body 11: [127, 0, 127], # dark pink 12: [0, 127, 127], # dark cyan } RGB_TO_PIXEL = {"_".join([str(v) for v in value]): key for key, value in PIXEL_TO_RGB.items()} def gray2RGB(img): H, W = img.shape print(">>>>>>>>>>", img) img_rgb = np.random.randint(0, 256, size=[H, W, 3], dtype=np.uint8) for i in range(H): for j in range(W): k = img[i][j] rgb = PIXEL_TO_RGB.get(k, [255, 255, 255]) img_rgb[i][j] = rgb return img_rgb def RGB2gray(img_rgb): H, W, C = img_rgb.shape img = np.zeros((H, W), dtype=np.uint8) for i in range(H): for j in range(W): rgb = img_rgb[i][j] rgb = "_".join([str(v) for v in rgb]) k = RGB_TO_PIXEL.get(rgb, 255) img[i][j] = k return img def convertGray2RGB(img_path, dest_path=None): print(">>> img_path={}, dest_path={}".format(img_path, dest_path)) img_data = Image.open(img_path).convert("L") img_np = np.array(img_data) print(">>> gray2RGB before, img_np.shape={}".format(img_np.shape)) img_np = gray2RGB(img_np) print(">>> gray2RGB after, img_np.shape={}".format(img_np.shape)) im = Image.fromarray(img_np) if dest_path is None: name = os.path.splitext(img_path)[0] ext = os.path.splitext(img_path)[1] dest_path = "{}_rgb{}".format(name, ext) elif os.path.isdir(dest_path): basename = os.path.basename(img_path) name = os.path.splitext(basename)[0] ext = os.path.splitext(basename)[1] dest_path = os.path.join(dest_path, "{}_rgb{}".format(name, ext)) print(">>> save to dest_path={} start...".format(dest_path)) im.save(dest_path) print(">>> save to dest_path={} success.".format(dest_path)) def convertGray2RGB_Muti(img_path, dest_path=None, h_num=1, w_num=1): print(">>> img_path={}, dest_path={}".format(img_path, dest_path)) img_data = Image.open(img_path).convert("L") img_np = np.array(img_data) from erhsh import utils as eut processor = eut.MutiProcessor(img_np, h_num, w_num, cube_func=gray2RGB) ret = processor.process() if dest_path is None: name = os.path.splitext(img_path)[0] ext = os.path.splitext(img_path)[1] dest_path = "{}_rgb{}".format(name, ext) elif os.path.isdir(dest_path): basename = os.path.basename(img_path) name = os.path.splitext(basename)[0] ext = os.path.splitext(basename)[1] dest_path = os.path.join(dest_path, "{}_rgb{}".format(name, ext)) to_image = Image.new("RGB", img_np.shape[:2][::-1]) for k, v in ret.items(): h_s, w_s, _, _ = tuple([int(x) for x in k.split("_")]) to_image.paste(Image.fromarray(v), (w_s, h_s)) to_image.save(dest_path) def convertRGB2Gray(img_path, dest_path=None): print(">>> img_path={}, dest_path={}".format(img_path, dest_path)) img_data = Image.open(img_path) img_rgb =
np.array(img_data)
numpy.array
import numpy as np from utils.disp.showphases import show_csignals # , show_signal, magnospec def get_erps(args): # args.ave_wind_all = np.zeros([args.channels.shape[0], args.len_uc, args.win_l + args.win_r]) # args.std_wind_all = np.zeros([args.channels.shape[0], args.len_uc, args.win_l + args.win_r]) for cnt in range(args.channels.shape[0]): signal = args.singled_out_filtered_notched[cnt, :] # show_signal(signal) # magnospec(signal, args.fs) wind_ = np.zeros([len(args.times), args.win_l + args.win_r]) for cnti, i in enumerate(args.times): baseline = np.mean(signal[i - args.win_l: i]) wind_[cnti, :] = signal[i - args.win_l: i + args.win_r] - baseline # baseline, faster ave_wind = np.zeros([args.len_uc, args.win_l + args.win_r]) std_wind =
np.zeros([args.len_uc, args.win_l + args.win_r])
numpy.zeros
#!/usr/bin/env python # encoding: utf-8 """ csystem.py Created by <NAME> on 2/21/2012. Copyright (c) NREL. All rights reserved. """ from __future__ import print_function import numpy as np class DirectionVector(object): """Handles rotation of direction vectors to appropriate coordinate systems. All angles must be in degrees. """ def __init__(self, x, y, z, dx=None, dy=None, dz=None): """3-Dimensional vector that depends on direction only (not position). Parameters ---------- x : float or ndarray x-direction of vector(s) y : float or ndarray y-direction of vector(s) z : float or ndarray z-direction of vector(s) """ self.x = np.array(x) self.y = np.array(y) self.z = np.array(z) if dx is None: dx = {} dx["dx"] = np.ones_like(self.x) dx["dy"] = np.zeros_like(self.y) dx["dz"] = np.zeros_like(self.z) dy = {} dy["dx"] = np.zeros_like(self.x) dy["dy"] = np.ones_like(self.y) dy["dz"] = np.zeros_like(self.z) dz = {} dz["dx"] = np.zeros_like(self.x) dz["dy"] = np.zeros_like(self.y) dz["dz"] = np.ones_like(self.z) self.dx = dx self.dy = dy self.dz = dz @classmethod def fromArray(cls, array): """initialize with NumPy array Parameters ---------- array : ndarray construct DirectionVector using array of size 3 """ return cls(array[0], array[1], array[2]) def toArray(self): """convert DirectionVector to NumPy array Returns ------- array : ndarray NumPy array in order x, y, z containing DirectionVector data """ return np.c_[self.x, self.y, self.z] def _rotateAboutZ(self, xstring, ystring, zstring, theta, thetaname, reverse=False): """ x X y = z. rotate c.s. about z, +theta all angles in degrees """ thetaM = 1.0 if reverse: thetaM = -1.0 x = getattr(self, xstring) y = getattr(self, ystring) z = getattr(self, zstring) dx = getattr(self, "d" + xstring) dy = getattr(self, "d" + ystring) dz = getattr(self, "d" + zstring) theta = np.radians(theta * thetaM) c = np.cos(theta) s = np.sin(theta) xnew = x * c + y * s ynew = -x * s + y * c znew = z angles = [] for key in dx.keys(): if not key in ["dx", "dy", "dz"]: angles.append(key) dxnew = {} dxnew["dx"] = dx["dx"] * c + dy["dx"] * s dxnew["dy"] = dx["dy"] * c + dy["dy"] * s dxnew["dz"] = dx["dz"] * c + dy["dz"] * s dxnew["d" + thetaname] = (-x * s + y * c) * np.radians(thetaM) for dangle in angles: dxnew[dangle] = dx[dangle] * c + dy[dangle] * s dynew = {} dynew["dx"] = -dx["dx"] * s + dy["dx"] * c dynew["dy"] = -dx["dy"] * s + dy["dy"] * c dynew["dz"] = -dx["dz"] * s + dy["dz"] * c dynew["d" + thetaname] = (-x * c - y * s) *
np.radians(thetaM)
numpy.radians
import EncoderFactory from DatasetManager import DatasetManager import pandas as pd import numpy as np from sklearn.metrics import roc_auc_score from sklearn.pipeline import FeatureUnion from sklearn.ensemble import RandomForestClassifier import time import os import sys from sys import argv import pickle def create_model(args): cls = RandomForestClassifier(n_estimators=500, max_features=float(args['max_features']), max_depth=args['max_depth'], random_state=22,n_jobs=-1) cls.fit(X_train, y_train) return cls dataset_name = argv[1] optimal_params_filename = argv[2] results_dir = argv[3] split_type = "temporal" train_ratio = 0.8 val_ratio = 0.2 # create results directory if not os.path.exists(os.path.join(results_dir)): os.makedirs(os.path.join(results_dir)) print('Preparing data...') start = time.time() # read the data dataset_manager = DatasetManager(dataset_name) data = dataset_manager.read_dataset() min_prefix_length = 1 max_prefix_length = int(np.ceil(data.groupby(dataset_manager.case_id_col).size().quantile(0.9))) cls_encoder_args = {'case_id_col': dataset_manager.case_id_col, 'static_cat_cols': dataset_manager.static_cat_cols, 'static_num_cols': dataset_manager.static_num_cols, 'dynamic_cat_cols': dataset_manager.dynamic_cat_cols, 'dynamic_num_cols': dataset_manager.dynamic_num_cols, 'fillna': True} print(time.time() - start) print("split into training and test") # split into training and test if split_type == "temporal": train, test = dataset_manager.split_data_strict(data, train_ratio, split=split_type) else: train, test = dataset_manager.split_data(data, train_ratio, split=split_type) train, val = dataset_manager.split_val(train, val_ratio) print(time.time() - start) print("generate data where each prefix is a separate instance") # generate data where each prefix is a separate instance dt_train_prefixes = dataset_manager.generate_prefix_data(train, min_prefix_length, max_prefix_length) dt_val_prefixes = dataset_manager.generate_prefix_data(val, min_prefix_length, max_prefix_length) dt_test_prefixes = dataset_manager.generate_prefix_data(test, min_prefix_length, max_prefix_length) print(time.time() - start) print("encode all prefixes") # encode all prefixes feature_combiner = FeatureUnion([(method, EncoderFactory.get_encoder(method, **cls_encoder_args)) for method in ["static", "agg"]],n_jobs=-1) arrayPrefixes = [dt_train_prefixes,dt_test_prefixes,dt_val_prefixes] X_train = feature_combiner.fit_transform(dt_train_prefixes) X_test = feature_combiner.fit_transform(dt_test_prefixes) X_val = feature_combiner.fit_transform(dt_val_prefixes) y_train = dataset_manager.get_label_numeric(dt_train_prefixes) y_test = dataset_manager.get_label_numeric(dt_test_prefixes) y_val = dataset_manager.get_label_numeric(dt_val_prefixes) print(time.time() - start) print("train the model with pre-tuned parameters") # train the model with pre-tuned parameters with open(optimal_params_filename, "rb") as fin: best_params = pickle.load(fin) print(time.time() - start) print("get predictions for test set") # get predictions for test set cls = create_model(best_params) preds_pos_label_idx =
np.where(cls.classes_ == 1)
numpy.where
from __future__ import division from matplotlib import pyplot as plt import numpy as np import math as m import matplotlib as mlp pgf_with_rc_fonts = { "font.family": "serif", "font.size": 16, "legend.fontsize": 16, "font.sans-serif": ["DejaVu Sans"], # use a specific sans-serif font } mlp.rcParams.update(pgf_with_rc_fonts) def estimate_time(x, y): angle = np.degrees(np.arctan2(y, x)) rot_time = np.abs(angle / velRot) # calculate the distance distance = np.hypot(x, y) distance_time = distance / velWalk total_time = distance_time + rot_time # type: np.ndarray for d1 in range(len(x)): for d2 in range(len(y)): total_time[d1, d2] = 1.5 * total_time[d1, d2] * m.exp(-total_time[d1, d2] * 0.1) if total_time[d1, d2] >= 5: total_time[d1, d2] = 5 total_time[d1, d2] -= 5 return total_time if __name__ == "__main__": # Constants for robot velRot = 60 # grad pro second velWalk = 200 # mm pro second size = 1000 x_val =
np.arange(-size, size, 10)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-11-07 at 13:28 @author: cook """ from astropy import constants as cc from astropy import units as uu import numpy as np from scipy.optimize import curve_fit import warnings import os from apero import core from apero.core import math as mp from apero import lang from apero.core import constants from apero.core.core import drs_log from apero.core.core import drs_file from apero.io import drs_data # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'polar.lsd.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict DrsFitsFile = drs_file.DrsFitsFile # Get Logging function WLOG = core.wlog # Get function string display_func = drs_log.display_func # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # Speed of light # noinspection PyUnresolvedReferences speed_of_light_ms = cc.c.to(uu.m / uu.s).value # noinspection PyUnresolvedReferences speed_of_light = cc.c.to(uu.km / uu.s).value # ============================================================================= # Define user functions # ============================================================================= def lsd_analysis_wrapper(params, pobjects, pprops, wprops, **kwargs): """ Function to call functions to perform Least Squares Deconvolution (LSD) analysis on the polarimetry data. :param params: ParamDict, parameter dictionary of constants :param pprops: ParamDict, parameter dictionary of polar data :param wprops: ParamDict, parameter dictionary of wavelength data :param kwargs: additional arguments (overwrite param properties) :return: """ # set function name func_name = display_func(params, 'lsd_analysis', __NAME__) # get parameters from params/kwargs do_lsd = pcheck(params, 'POLAR_LSD_ANALYSIS', 'do_lsd', kwargs, func_name) wl_lower = pcheck(params, 'POLAR_LSD_WL_LOWER', 'wl_lower', kwargs, func_name, mapf='list', dtype=float) wl_upper = pcheck(params, 'POLAR_LSD_WL_UPPER', 'wl_lower', kwargs, func_name, mapf='list', dtype=float) min_depth = pcheck(params, 'POLAR_LSD_MIN_LINEDEPTH', 'min_depth', kwargs, func_name) min_lande = pcheck(params, 'POLAR_LSD_MIN_LANDE', 'min_lande', kwargs, func_name) max_lande = pcheck(params, 'POLAR_LSD_MAX_LANDE', 'max_lande',kwargs, func_name) vinit = pcheck(params, 'POLAR_LSD_VINIT', 'vinit', kwargs, func_name) vfinal = pcheck(params, 'POLAR_LSD_VFINAL', 'vfinal', kwargs, func_name) normalize = pcheck(params, 'POLAR_LSD_NORM', 'normalize', kwargs, func_name) nbinsize1 = pcheck(params, 'POLAR_LSD_NBIN1', 'nbinsize1', kwargs, func_name) noverlap1 = pcheck(params, 'POLAR_LSD_NOVERLAP1', 'noverlap1', kwargs, func_name) nsigclip1 = pcheck(params, 'POLAR_LSD_NSIGCLIP1', 'nsigclip1', kwargs, func_name) nwindow1 = pcheck(params, 'POLAR_LSD_NWINDOW1', 'nwindow1', kwargs, func_name) nmode1 = pcheck(params, 'POLAR_LSD_NMODE1', 'nmode1', kwargs, func_name) nlfit1 = pcheck(params, 'POLAR_LSD_NLFIT1', 'nlfit1', kwargs, func_name) npoints = pcheck(params, 'POLAR_LSD_NPOINTS', 'npoints', kwargs, func_name) nbinsize2 = pcheck(params, 'POLAR_LSD_NBIN2', 'nbinsize2', kwargs, func_name) noverlap2 = pcheck(params, 'POLAR_LSD_NOVERLAP2', 'noverlap2', kwargs, func_name) nsigclip2 = pcheck(params, 'POLAR_LSD_NSIGCLIP1', 'nsigclip1', kwargs, func_name) nwindow2 = pcheck(params, 'POLAR_LSD_NWINDOW2', 'nwindow2', kwargs, func_name) nmode2 = pcheck(params, 'POLAR_LSD_NMODE2', 'nmode2', kwargs, func_name) nlfit2 = pcheck(params, 'POLAR_LSD_NLFIT2', 'nlfit2', kwargs, func_name) # define outputs lprops = ParamDict() # ---------------------------------------------------------------------- # log progress WLOG(params, '', TextEntry('40-021-00004')) # ---------------------------------------------------------------------- # deal with not running lsd if not do_lsd: oargs = [lprops, func_name, do_lsd, wl_lower, wl_upper, min_depth, min_lande, max_lande, vinit, vfinal, normalize, nbinsize1, noverlap1, nsigclip1, nwindow1, nmode1, nlfit1, npoints, nbinsize2, noverlap2, nsigclip2, nwindow2, nmode2, nlfit2] return add_outputs(*oargs) # ---------------------------------------------------------------------- # get lsd mask file name (if set) lsdmask = kwargs.get('lsdmask', None) if lsdmask is None: lsdmask = params['INPUTS'].get('lsdmask', None) # check that path exists if lsdmask is not None: # make sure path is absolute lsdmask = os.path.abspath(lsdmask) # check that lsd mask exists if not os.path.exists(lsdmask): # warn user we are not using LSD mask # TODO: move to language DB wmsg = 'LSD mask "{0}" does not exist - using defaults' wargs = [lsdmask] WLOG(params, 'warning', wmsg.format(*wargs)) # set lsdmask to None lsdmask = None # ---------------------------------------------------------------------- # get data from pprops pol = pprops['POL'] polerr = pprops['POLERR'] null = pprops['NULL2'] stokesi = pprops['STOKESI'] stokesierr = pprops['STOKESIERR'] # get data from wprops wavemap = wprops['WAVEMAP'] # get first file as reference pobj = pobjects['A_1'] # ---------------------------------------------------------------------- # get temperature from file temperature = pobj.infile.get_key('KW_OBJ_TEMP', dtype=float, required=False) # deal with no temperature if temperature is None and lsdmask is None: eargs = [pobj.filename, params['KW_OBJTEMP'][0], func_name] WLOG(params, 'warning', TextEntry('09-021-00008', args=eargs)) # return outputs oargs = [lprops, func_name, False, wl_lower, wl_upper, min_depth, vinit, vfinal, normalize, nbinsize1, noverlap1, nsigclip1, nwindow1, nmode1, nlfit1, npoints, nbinsize2, noverlap2, nsigclip2, nwindow2, nmode2, nlfit2] return add_outputs(*oargs) # ---------------------------------------------------------------------- # load the spectral lines # ---------------------------------------------------------------------- out = load_lsd_spectral_lines(params, temperature, wl_lower, wl_upper, min_depth, lsdmask) sp_filename, wavec, zn, depth, weight = out # ---------------------------------------------------------------------- # get wavelength ranges covering spectral lines in the ccf mask # ---------------------------------------------------------------------- fwave_lower, fwave_upper = get_wl_ranges(wavec, vinit, vfinal) # ---------------------------------------------------------------------- # prepare polarimetry data # ---------------------------------------------------------------------- # bunch normalisation params into nparams nparams = dict(binsize=nbinsize1, overlap=noverlap1, sigmaclip=nsigclip1, window=nwindow1, mode=nmode1, use_linear_fit=nlfit1) # prepare data out = prepare_polarimetry_data(params, wavemap, stokesi, stokesierr, pol, polerr, null, fwave_lower, fwave_upper, normalize, nparams) spfile, lsd_wave, lsd_stokesi, lsd_stokesierr, lsd_pol = out[:5] lsd_polerr, lsd_null = out[5:] # ---------------------------------------------------------------------- # call function to perform lsd analysis # ---------------------------------------------------------------------- # bunch normalisation params into nparams nparams = dict(binsize=nbinsize2, overlap=noverlap2, sigmaclip=nsigclip2, window=nwindow2, mode=nmode2, use_linear_fit=nlfit2) # run lsd analysis out = lsd_analysis(lsd_wave, lsd_stokesi, lsd_stokesierr, lsd_pol, lsd_polerr, lsd_null, wavec, depth, weight, vinit, vfinal, npoints, nparams) # ---------------------------------------------------------------------- # push into storage lprops['LSD_WAVE'] = lsd_wave lprops['LSD_VELOCITIES'] = out[0] lprops['LSD_STOKES_I'] = out[1] lprops['LSD_STOKES_I_ERR'] = lsd_stokesierr lprops['LSD_STOKES_I_MODEL'] = out[2] lprops['LSD_STOKES_I_FIT_RV'] = out[3] lprops['LSD_STOKES_FIT_RESOL'] = out[4] lprops['LSD_POL'] = lsd_pol lprops['LSD_POLERR'] = lsd_polerr lprops['LSD_POL_MEAN'] = out[5] lprops['LSD_POL_STD'] = out[6] lprops['LSD_POL_MEDIAN'] = out[7] lprops['LSD_POL_MED_ABS_DEV'] = out[8] lprops['LSD_STOKES_VQU'] = out[9] lprops['LSD_STOKES_VQU_MEAN'] = out[10] lprops['LSD_STOKES_VQU_STD'] = out[11] lprops['LSD_NULL'] = out[12] lprops['LSD_NULL_MEAN'] = out[13] lprops['LSD_NULL_STD'] = out[14] lprops['LSD_MASK'] = spfile # set source keys = ['LSD_WAVE', 'LSD_VELOCITIES', 'LSD_STOKES_I', 'LSD_STOKES_I_ERR', 'LSD_STOKES_I_MODEL', 'LSD_STOKES_I_FIT_RV', 'LSD_STOKES_FIT_RESOL', 'LSD_POL', 'LSD_POLERR', 'LSD_POL_MEAN', 'LSD_POL_STD', 'LSD_POL_MEDIAN', 'LSD_POL_MED_ABS_DEV', 'LSD_STOKES_VQU', 'LSD_STOKES_VQU_MEAN', 'LSD_STOKES_VQU_STD', 'LSD_NULL', 'LSD_NULL_MEAN', 'LSD_NULL_STD', 'LSD_MASK'] lprops.set_sources(keys, func_name) # return lsd properties oargs = [lprops, func_name, do_lsd, wl_lower, wl_upper, min_depth, vinit, vfinal, normalize, nbinsize1, noverlap1, nsigclip1, nwindow1, nmode1, nlfit1, npoints, nbinsize2, noverlap2, nsigclip2, nwindow2, nmode2, nlfit2] return add_outputs(*oargs) # ============================================================================= # Define worker functions # ============================================================================= def load_lsd_spectral_lines(params, temperature, wl_lower, wl_upper, min_depth, lsdmask=None): """ Function to load spectral lines data for LSD analysis. :param p: parameter dictionary, ParamDict containing constants Must contain at least: LOG_OPT: string, option for logging IC_POLAR_LSD_CCFLINES: list of strings, list of files containing spectral lines data IC_POLAR_LSD_WLRANGES: array of float pairs for wavelength ranges IC_POLAR_LSD_MIN_LINEDEPTH: float, line depth threshold :param loc: parameter dictionary, ParamDict to store data :return loc: parameter dictionaries, The updated parameter dictionary adds/updates the following: sp_filename: string, selected filename with CCF lines wavec: numpy array (1D), central wavelengths znum: numpy array (1D), atomic number (Z) loc['LSD_LINES_DEPTH']: numpy array (1D), line depths loc['LSD_LINES_POL_WEIGHT']: numpy array (1D), line weights = depth * lande * wlc """ # set function name func_name = display_func(params, 'load_lsd_spectral_lines', __NAME__) # ---------------------------------------------------------------------- # get temperature data sp_data, sp_filename = drs_data.load_sp_mask_lsd(params, temperature, filename=lsdmask) # get flag for lines flagf = np.array(sp_data['flagf'] == 1) # get data and mask by flag wavec = sp_data['wavec'][flagf] znum = sp_data['znum'][flagf] depth = sp_data['depth'][flagf] lande = sp_data['lande'][flagf] # ---------------------------------------------------------------------- # set up mask for wl ranges wl_mask = np.zeros(len(wavec), dtype=bool) # loop over spectral ranges to select only spectral lines within ranges for it in range(len(wl_lower)): wl_mask |= (wavec > wl_lower[it]) & (wavec < wl_upper[it]) # apply mask to data wavec = wavec[wl_mask] zn = znum[wl_mask] depth = depth[wl_mask] lande = lande[wl_mask] # ---------------------------------------------------------------------- # PS. Below it applies a line depth mask, however the cut in line depth # should be done according to the SNR. This will be studied and implemented # later. <NAME>, Aug 10 2018. # create mask to cutoff lines with lande g-factor without sensible values gmask = (lande > min_lande) & (lande < max_lande) # apply mask to the data wavec = wavec[gmask] zn = zn[gmask] depth = depth[gmask] lande = lande[gmask] # create mask to cut lines with depth lower than POLAR_LSD_MIN_LINEDEPTH dmask = np.where(depth > min_depth) # apply mask to the data wavec = wavec[dmask] zn = zn[dmask] depth = depth[dmask] lande = lande[dmask] # calculate weights for calculation of polarimetric Z-profile weight = wavec * depth * lande weight = weight / np.max(weight) # return variables return sp_filename, wavec, zn, depth, weight def get_wl_ranges(wavec, vinit, vfinal): """ Function to generate a list of spectral ranges covering all spectral lines in the CCF mask, where the width of each individual range is defined by the LSD velocity vector :param wavec: numpy array (1D), central wavelengths :param vinit: initial velocity for LSD profile :param vfinal: final velocity for LSD profile :returns: the wavelength ranges tuple of lower and upper bounds """ # calculate the velocity difference vdiff = vfinal - vinit # define the spectral ranges d_wave = wavec * vdiff / (2 * speed_of_light) wave_lower = wavec - d_wave wave_upper = wavec + d_wave # merge overlapping regions current_lower, current_upper = wave_lower[0], wave_upper[0] # storage for outputs final_wave_lower, final_wave_upper = [], [] # loop through limits and merge for it in range(len(wave_lower)): # if lower is less than current upper change the current upper value if wave_lower[it] <= current_upper: current_upper = wave_upper[it] # else append to final bounds else: final_wave_lower.append(current_lower) final_wave_upper.append(current_upper) # update the current bounds current_lower, current_upper = wave_lower[it], wave_upper[it] # append last bounds final_wave_lower.append(current_lower) final_wave_upper.append(current_upper) # return wlranges return final_wave_lower, final_wave_upper def prepare_polarimetry_data(params, wavemap, stokesi, stokesierr, pol, polerr, null, fwave_lower, fwave_upper, normalize=True, nparams=None): """ Function to prepare polarimetry data for LSD analysis. :param wave: numpy array (2D), wavelength data :param stokesi: numpy array (2D), Stokes I data :param stokesierr: numpy array (2D), errors of Stokes I :param pol: numpy array (2D), degree of polarization data :param polerr: numpy array (2D), errors of degree of polarization :param null2: numpy array (2D), 2nd null polarization :param normalize: bool, normalize Stokes I data :returns: updated data (wave, stokesi, stokesierr, pol, polerr, null2) """ # get the dimensions from wavemap nord, nbpix = wavemap.shape # get the wavelength mask (per order) # TODO: Question: Why do we need this? owltable, owlfilename = drs_data.load_order_mask(params) owl_lower = owltable['lower'] owl_upper = owltable['upper'] # ------------------------------------------------------------------ # storage for lsd lsd_wave, lsd_stokesi, lsd_stokesierr = [], [], [] lsd_pol, lsd_polerr, lsd_null = [], [], [] # ------------------------------------------------------------------ # loop over each order for order_num in range(nord): # ------------------------------------------------------------------ # mask the nan values nanmask = np.isfinite(stokesi[order_num]) & np.isfinite(pol[order_num]) # ------------------------------------------------------------------ # mask by wavelength wavemask = wavemap[order_num] > owl_lower[order_num] wavemask &= wavemap[order_num] < owl_upper[order_num] # ------------------------------------------------------------------ # combine masks mask = nanmask & wavemask # ------------------------------------------------------------------ # test if we still have valid elements if np.sum(mask) == 0: continue # ------------------------------------------------------------------ # normalise if required if normalize and nparams is not None: # add x and y to nparams nparams['x'] = wavemap[order_num][mask] nparams['y'] = stokesi[order_num][mask] # calculate continuum continuum, _, _ = mp.continuum(**nparams) # normalize stokesi flux = stokesi[order_num][mask] / continuum else: flux = stokesi[order_num][mask] # ------------------------------------------------------------------ # append to lsd storage lsd_wave += list(wavemap[order_num][mask]) lsd_stokesi += list(flux) lsd_stokesierr += list(stokesierr[order_num][mask]) lsd_pol += list(pol[order_num][mask]) lsd_polerr += list(polerr[order_num][mask]) lsd_null += list(null[order_num][mask]) # ---------------------------------------------------------------------- # sort by wavelength sortmask = np.argsort(lsd_wave) lsd_wave = np.array(lsd_wave)[sortmask] lsd_stokesi = np.array(lsd_stokesi)[sortmask] lsd_stokesierr = np.array(lsd_stokesierr)[sortmask] lsd_pol = np.array(lsd_pol)[sortmask] lsd_polerr = np.array(lsd_polerr)[sortmask] lsd_null = np.array(lsd_null)[sortmask] # ---------------------------------------------------------------------- # combine mask lsdmask = np.zeros(len(lsd_wave), dtype=bool) # loop over spectral ranges to select only spectral regions of interest for it in range(len(fwave_lower)): # create wavelength mask to limit wavelength range wavemask = lsd_wave > fwave_lower[it] wavemask &= lsd_wave < fwave_upper[it] # add to lsdmask lsdmask |= wavemask # ---------------------------------------------------------------------- # apply mask to lsd data lsd_wave = lsd_wave[lsdmask] lsd_stokesi = lsd_stokesi[lsdmask] lsd_stokesierr = lsd_stokesierr[lsdmask] lsd_pol = lsd_pol[lsdmask] lsd_polerr = lsd_polerr[lsdmask] lsd_null = lsd_null[lsdmask] # ---------------------------------------------------------------------- # return data return (owlfilename, lsd_wave, lsd_stokesi, lsd_stokesierr, lsd_pol, lsd_polerr, lsd_null) def lsd_analysis(lsd_wave, lsd_stokesi, lsd_stokesierr, lsd_pol, lsd_polerr, lsd_null, wavec, depths, weight, vinit, vfinal, npoints, nparams): # create velocity vector for output LSD profile velocities = np.linspace(vinit, vfinal, npoints) # ---------------------------------------------------------------------- # create line pattern matrix for flux LSD mmf, mmp = line_pattern_matrix(lsd_wave, wavec, depths, weight, velocities) # ---------------------------------------------------------------------- # calculate flux LSD profile stokesi = calculate_lsd_profile(lsd_stokesi, lsd_stokesierr, velocities, mmf, normalize=False) # ---------------------------------------------------------------------- # fit gaussian to the measured flux LSD profile out = fit_gauss_lsd_profile(velocities, stokesi) stokesi_model, fit_rv, fit_resol = out # ---------------------------------------------------------------------- # calculate polarimetry LSD profile stokes_vqu = calculate_lsd_profile(lsd_pol, lsd_polerr, velocities, mmp, nparams) # ---------------------------------------------------------------------- # calculate null polarimetry LSD profile null = calculate_lsd_profile(lsd_null, lsd_polerr, velocities, mmp, nparams) # ---------------------------------------------------------------------- # calculate statistical quantities # for pol pol_mean = mp.nanmean(lsd_pol) pol_std = mp.nanstd(lsd_pol) pol_median = mp.nanmedian(lsd_pol) pol_medabsdev = mp.nanmedian(abs(lsd_pol - pol_median)) # for stokesi stokesvqu_mean = mp.nanmean(stokes_vqu) stokesvqu_std = mp.nanstd(stokes_vqu) # for null null_mean = mp.nanmean(null) null_std = mp.nanstd(null) # return all lsd values return (velocities, stokesi, stokesi_model, fit_rv, fit_resol, pol_mean, pol_std, pol_median, pol_medabsdev, stokes_vqu, stokesvqu_mean, stokesvqu_std, null, null_mean, null_std) def line_pattern_matrix(wl, wlc, depth, weight, vels): """ Function to calculate the line pattern matrix M given in Eq (4) of paper Donati et al. (1997), MNRAS 291, 658-682 :param wl: numpy array (1D), input wavelength data (size n = spectrum size) :param wlc: numpy array (1D), central wavelengths (size = number of lines) :param depth: numpy array (1D), line depths (size = number of lines) :param weight: numpy array (1D), line polar weights (size = number of lines) :param vels: numpy array (1D), , LSD profile velocity vector (size = m) :return mm, mmp mm: numpy array (2D) of size n x m, line pattern matrix for flux LSD. mmp: numpy array (2D) of size n x m, line pattern matrix for polar LSD. """ # set number of points and velocity (km/s) limits in LSD profile mnum, vinit, vfinal = len(vels), vels[0], vels[-1] # set number of spectral points num = len(wl) # initialize line pattern matrix for flux LSD mmf = np.zeros((num, mnum)) # initialize line pattern matrix for polar LSD mmp =
np.zeros((num, mnum))
numpy.zeros
from keras.utils import Sequence import pandas as pd import numpy as np import random import math import pysam from dragonn.utils import ltrdict import threading def dinuc_shuffle(seq): #get list of dinucleotides nucs=[] for i in range(0,len(seq),2): nucs.append(seq[i:i+2]) #generate a random permutation random.shuffle(nucs) return ''.join(nucs) def revcomp(seq): seq=seq[::-1].upper() comp_dict=dict() comp_dict['A']='T' comp_dict['T']='A' comp_dict['C']='G' comp_dict['G']='C' rc=[] for base in seq: if base in comp_dict: rc.append(comp_dict[base]) else: rc.append(base) return ''.join(rc) def open_data_file(data_path,tasks,num_to_read=None): if data_path.endswith('.hdf5'): if (tasks is None) and (num_to_read is not None): data=pd.read_hdf(data_path,start=0,stop=num_to_read) elif (tasks is not None) and (num_to_read is None): data=pd.read_hdf(data_path,columns=tasks) elif (tasks is None) and (num_to_read is None): data=pd.read_hdf(data_path) else: data=pd.read_hdf(data_path,columns=tasks,start=0,stop=num_to_read) else: #treat as bed file if (tasks is None) and (num_to_read is not None): data=pd.read_csv(data_path,header=0,sep='\t',index_col=[0,1,2],start=0,stop=num_to_read) elif (tasks is None) and (num_to_read is None): data=pd.read_csv(data_path,header=0,sep='\t',index_col=[0,1,2]) else: data=pd.read_csv(data_path,header=0,sep='\t',nrows=1) chrom_col=data.columns[0] start_col=data.columns[1] end_col=data.columns[2] if num_to_read is None: data=pd.read_csv(data_path,header=0,sep='\t',usecols=[chrom_col,start_col,end_col]+tasks,index_col=[0,1,2]) else: data=pd.read_csv(data_path,header=0,sep='\t',usecols=[chrom_col,start_col,end_col]+tasks,index_col=[0,1,2],start=0,stop=num_to_read) return data #use wrappers for keras Sequence generator class to allow batch shuffling upon epoch end class DataGenerator(Sequence): def __init__(self,data_path,ref_fasta,batch_size=128,add_revcomp=True,tasks=None,shuffled_ref_negatives=False,upsample=True,upsample_ratio=0.1,upsample_thresh=0.5,num_to_read=None): self.lock = threading.Lock() self.batch_size=batch_size #decide if reverse complement should be used self.add_revcomp=add_revcomp if add_revcomp==True: self.batch_size=int(batch_size/2) #determine whether negative set should consist of the shuffled refs. # If so, split batch size in 2, as each batch will be augmented with shuffled ref negatives # in ratio equal to positives self.shuffled_ref_negatives=shuffled_ref_negatives if self.shuffled_ref_negatives==True: self.batch_size=int(self.batch_size/2) #open the reference file self.ref_fasta=ref_fasta self.data=open_data_file(data_path,tasks,num_to_read) self.indices=np.arange(self.data.shape[0]) num_indices=self.indices.shape[0] self.add_revcomp=add_revcomp #set variables needed for upsampling the positives self.upsample=upsample if self.upsample==True: self.upsample_ratio=upsample_ratio self.upsample_thresh=upsample_thresh self.ones = self.data.loc[(self.data >= self.upsample_thresh).any(axis=1)] self.zeros = self.data.loc[(self.data < self.upsample_thresh).all(axis=1)] self.pos_batch_size = int(self.batch_size * self.upsample_ratio) self.neg_batch_size = self.batch_size - self.pos_batch_size self.pos_indices=np.arange(self.ones.shape[0]) self.neg_indices=np.arange(self.zeros.shape[0]) #wrap the positive and negative indices to reach size of self.indices num_pos_wraps=math.ceil(num_indices/self.pos_indices.shape[0]) num_neg_wraps=math.ceil(num_indices/self.neg_indices.shape[0]) self.pos_indices=np.repeat(self.pos_indices,num_pos_wraps)[0:num_indices] np.random.shuffle(self.pos_indices) self.neg_indices=np.repeat(self.neg_indices,num_neg_wraps)[0:num_indices] np.random.shuffle(self.neg_indices) def __len__(self): return math.ceil(self.data.shape[0]/self.batch_size) def __getitem__(self,idx): with self.lock: self.ref=pysam.FastaFile(self.ref_fasta) if self.shuffled_ref_negatives==True: return self.get_shuffled_ref_negatives_batch(idx) elif self.upsample==True: return self.get_upsampled_positives_batch(idx) else: return self.get_basic_batch(idx) def get_shuffled_ref_negatives_batch(self,idx): #get seq positions inds=self.indices[idx*self.batch_size:(idx+1)*self.batch_size] bed_entries=self.data.index[inds] #get sequences seqs=[self.ref.fetch(i[0],i[1],i[2]) for i in bed_entries] if self.add_revcomp==True: #add in the reverse-complemented sequences for training. seqs_rc=[revcomp(s) for s in seqs] seqs=seqs+seqs_rc #generate the corresponding negative set by dinucleotide-shuffling the sequences seqs_shuffled=[dinuc_shuffle(s) for s in seqs] seqs=seqs+seqs_shuffled #one-hot-encode the fasta sequences seqs=np.array([[ltrdict.get(x,[0,0,0,0]) for x in seq] for seq in seqs]) x_batch=np.expand_dims(seqs,1) y_batch=np.asarray(self.data.iloc[inds]) if self.add_revcomp==True: y_batch=np.concatenate((y_batch,y_batch),axis=0) y_shape=y_batch.shape y_batch=np.concatenate((y_batch,np.zeros(y_shape))) return (x_batch,y_batch) def get_upsampled_positives_batch(self,idx): #get seq positions pos_inds=self.pos_indices[idx*self.pos_batch_size:(idx+1)*self.pos_batch_size] pos_bed_entries=self.ones.index[pos_inds] neg_inds=self.neg_indices[idx*self.neg_batch_size:(idx+1)*self.neg_batch_size] neg_bed_entries=self.zeros.index[neg_inds] #print(neg_inds[0:10]) #bed_entries=pos_bed_entries+neg_bed_entries #get sequences pos_seqs=[self.ref.fetch(i[0],i[1],i[2]) for i in pos_bed_entries] neg_seqs=[self.ref.fetch(i[0],i[1],i[2]) for i in neg_bed_entries] seqs=pos_seqs+neg_seqs if self.add_revcomp==True: #add in the reverse-complemented sequences for training. seqs_rc=[revcomp(s) for s in seqs] seqs=seqs+seqs_rc #one-hot-encode the fasta sequences seqs=np.array([[ltrdict.get(x,[0,0,0,0]) for x in seq] for seq in seqs]) x_batch=np.expand_dims(seqs,1) #extract the positive and negative labels at the current batch of indices y_batch_pos=self.ones.iloc[pos_inds] y_batch_neg=self.zeros.iloc[neg_inds] y_batch=np.concatenate((y_batch_pos,y_batch_neg),axis=0) #add in the labels for the reverse complement sequences, if used if self.add_revcomp==True: y_batch=np.concatenate((y_batch,y_batch),axis=0) return (x_batch,y_batch) def get_basic_batch(self,idx): #get seq positions inds=self.indices[idx*self.batch_size:(idx+1)*self.batch_size] bed_entries=self.data.index[inds] #get sequences seqs=[self.ref.fetch(i[0],i[1],i[2]) for i in bed_entries] if self.add_revcomp==True: #add in the reverse-complemented sequences for training. seqs_rc=[revcomp(s) for s in seqs] seqs=seqs+seqs_rc #one-hot-encode the fasta sequences seqs=np.array([[ltrdict.get(x,[0,0,0,0]) for x in seq] for seq in seqs]) x_batch=np.expand_dims(seqs,1) #extract the labels at the current batch of indices y_batch=np.asarray(self.data.iloc[inds]) #add in the labels for the reverse complement sequences, if used if self.add_revcomp==True: y_batch=np.concatenate((y_batch,y_batch),axis=0) return (x_batch,y_batch) def on_epoch_end(self): #if upsampling is being used, shuffle the positive and negative indices if self.upsample==True: np.random.shuffle(self.pos_indices) np.random.shuffle(self.neg_indices) else:
np.random.shuffle(self.indices)
numpy.random.shuffle
# -*- coding: utf-8 -*- #!/usr/bin/env python from data_iterator import * from state import * from dialog_encdec import * from utils import * import time import traceback import sys import argparse import cPickle import logging import search import pprint import numpy import collections import signal import math import gc import os import os.path # For certain clusters (e.g. Guillumin) we use flag 'DUMP_EXPERIMENT_LOGS_TO_DISC' # to force dumping log outputs to file. if 'DUMP_EXPERIMENT_LOGS_TO_DISC' in os.environ: if os.environ['DUMP_EXPERIMENT_LOGS_TO_DISC'] == '1': sys.stdout = open('Exp_Out.txt', 'a') sys.stderr = open('Exp_Err.txt', 'a') from os import listdir from os.path import isfile, join import matplotlib matplotlib.use('Agg') import pylab class Unbuffered: def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) sys.stdout = Unbuffered(sys.stdout) logger = logging.getLogger(__name__) ### Unique RUN_ID for this execution RUN_ID = str(time.time()) ### Additional measures can be set here measures = ["train_cost", "train_misclass", "train_kl_divergence_cost", "train_posterior_gaussian_mean_variance", "valid_cost", "valid_misclass", "valid_posterior_gaussian_mean_variance", "valid_kl_divergence_cost", "valid_emi"] def init_timings(): timings = {} for m in measures: timings[m] = [] return timings def save(model, timings, train_iterator, post_fix = ''): print("Saving the model...") # ignore keyboard interrupt while saving start = time.time() s = signal.signal(signal.SIGINT, signal.SIG_IGN) model.state['train_iterator_offset'] = train_iterator.get_offset() + 1 model.state['train_iterator_reshuffle_count'] = train_iterator.get_reshuffle_count() model.save(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + post_fix + 'model.npz') cPickle.dump(model.state, open(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + post_fix + 'state.pkl', 'w')) numpy.savez(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + post_fix + 'timing.npz', **timings) signal.signal(signal.SIGINT, s) print("Model saved, took {}".format(time.time() - start)) def load(model, filename, parameter_strings_to_ignore): print("Loading the model...") # ignore keyboard interrupt while saving start = time.time() s = signal.signal(signal.SIGINT, signal.SIG_IGN) model.load(filename, parameter_strings_to_ignore) signal.signal(signal.SIGINT, s) print("Model loaded, took {}".format(time.time() - start)) def main(args): logging.basicConfig(level = logging.DEBUG, format = "%(asctime)s: %(name)s: %(levelname)s: %(message)s") state = eval(args.prototype)() timings = init_timings() auto_restarting = False if args.auto_restart: assert not args.save_every_valid_iteration assert len(args.resume) == 0 directory = state['save_dir'] if not directory[-1] == '/': directory = directory + '/' auto_resume_postfix = state['prefix'] + '_auto_model.npz' if os.path.exists(directory): directory_files = [f for f in listdir(directory) if isfile(join(directory, f))] resume_filename = '' for f in directory_files: if len(f) > len(auto_resume_postfix): if f[len(f) - len(auto_resume_postfix):len(f)] == auto_resume_postfix: if len(resume_filename) > 0: print('ERROR: FOUND MULTIPLE MODELS IN DIRECTORY:', directory) assert False else: resume_filename = directory + f[0:len(f)-len('__auto_model.npz')] if len(resume_filename) > 0: logger.debug("Found model to automatically resume: %s" % resume_filename) auto_restarting = True # Setup training to automatically resume training with the model found args.resume = resume_filename + '__auto' # Disable training from reinitialization any parameters args.reinitialize_decoder_parameters = False args.reinitialize_latent_variable_parameters = False else: logger.debug("Could not find any model to automatically resume...") if args.resume != "": logger.debug("Resuming %s" % args.resume) state_file = args.resume + '_state.pkl' timings_file = args.resume + '_timing.npz' if os.path.isfile(state_file) and os.path.isfile(timings_file): logger.debug("Loading previous state") state = cPickle.load(open(state_file, 'r')) timings = dict(numpy.load(open(timings_file, 'r'))) for x, y in timings.items(): timings[x] = list(y) # Increment seed to make sure we get newly shuffled batches when training on large datasets state['seed'] = state['seed'] else: raise Exception("Cannot resume, cannot find files!") logger.debug("State:\n{}".format(pprint.pformat(state))) logger.debug("Timings:\n{}".format(pprint.pformat(timings))) if args.force_train_all_wordemb == True: state['fix_pretrained_word_embeddings'] = False model = DialogEncoderDecoder(state) rng = model.rng valid_rounds = 0 save_model_on_first_valid = False if args.resume != "": filename = args.resume + '_model.npz' if os.path.isfile(filename): logger.debug("Loading previous model") parameter_strings_to_ignore = [] if args.reinitialize_decoder_parameters: parameter_strings_to_ignore += ['Wd_'] parameter_strings_to_ignore += ['bd_'] save_model_on_first_valid = True if args.reinitialize_latent_variable_parameters: parameter_strings_to_ignore += ['latent_utterance_prior'] parameter_strings_to_ignore += ['latent_utterance_approx_posterior'] parameter_strings_to_ignore += ['kl_divergence_cost_weight'] parameter_strings_to_ignore += ['latent_dcgm_encoder'] save_model_on_first_valid = True load(model, filename, parameter_strings_to_ignore) else: raise Exception("Cannot resume, cannot find model file!") if 'run_id' not in model.state: raise Exception('Backward compatibility not ensured! (need run_id in state)') else: # assign new run_id key model.state['run_id'] = RUN_ID logger.debug("Compile trainer") if not state["use_nce"]: if ('add_latent_gaussian_per_utterance' in state) and (state["add_latent_gaussian_per_utterance"]): logger.debug("Training using variational lower bound on log-likelihood") else: logger.debug("Training using exact log-likelihood") train_batch = model.build_train_function() else: logger.debug("Training with noise contrastive estimation") train_batch = model.build_nce_function() eval_batch = model.build_eval_function() gamma_bounding = model.build_gamma_bounding_function() random_sampler = search.RandomSampler(model) beam_sampler = search.BeamSampler(model) logger.debug("Load data") train_data, \ valid_data, = get_train_iterator(state) train_data.start() # Start looping through the dataset step = 0 patience = state['patience'] start_time = time.time() train_cost = 0 train_kl_divergence_cost = 0 train_posterior_gaussian_mean_variance = 0 train_misclass = 0 train_done = 0 train_dialogues_done = 0.0 prev_train_cost = 0 prev_train_done = 0 ex_done = 0 is_end_of_batch = True start_validation = False batch = None while (step < state['loop_iters'] and (time.time() - start_time)/60. < state['time_stop'] and patience >= 0): # Flush to log files sys.stderr.flush() sys.stdout.flush() ### Sampling phase if step % 200 == 0: # First generate stochastic samples for param in model.params: print("%s = %.4f" % (param.name, numpy.sum(param.get_value() ** 2) ** 0.5)) samples, costs = random_sampler.sample([[]], n_samples=1, n_turns=3) print("Sampled : {}".format(samples[0])) ### Training phase batch = train_data.next() # Train finished if not batch: # Restart training logger.debug("Got None...") break logger.debug("[TRAIN] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length'])) x_data = batch['x'] x_data_reversed = batch['x_reversed'] max_length = batch['max_length'] x_cost_mask = batch['x_mask'] x_reset = batch['x_reset'] ran_gaussian_const_utterance = batch['ran_var_gaussian_constutterance'] ran_uniform_const_utterance = batch['ran_var_uniform_constutterance'] ran_decoder_drop_mask = batch['ran_decoder_drop_mask'] is_end_of_batch = False if numpy.sum(numpy.abs(x_reset)) < 1: # Print when we reach the end of an example (e.g. the end of a dialogue or a document) # Knowing when the training procedure reaches the end is useful for diagnosing training problems # print('END-OF-BATCH EXAMPLE!') is_end_of_batch = True if state['use_nce']: y_neg = rng.choice(size=(10, max_length, x_data.shape[1]), a=model.idim, p=model.noise_probs).astype('int32') c, kl_divergence_cost, posterior_gaussian_mean_variance = train_batch(x_data, x_data_reversed, y_neg, max_length, x_cost_mask, x_reset, ran_gaussian_const_utterance, ran_uniform_const_utterance, ran_decoder_drop_mask) else: latent_piecewise_utterance_variable_approx_posterior_alpha = 0.0 latent_piecewise_utterance_variable_prior_alpha = 0.0 kl_divergences_between_piecewise_prior_and_posterior = 0.0 kl_divergences_between_gaussian_prior_and_posterior = 0.0 latent_piecewise_posterior_sample = 0.0 posterior_gaussian_mean_variance = 0.0 if model.add_latent_piecewise_per_utterance and model.add_latent_gaussian_per_utterance: c, kl_divergence_cost, posterior_gaussian_mean_variance, latent_piecewise_utterance_variable_approx_posterior_alpha, latent_piecewise_utterance_variable_prior_alpha, kl_divergences_between_piecewise_prior_and_posterior, kl_divergences_between_gaussian_prior_and_posterior, latent_piecewise_posterior_sample = train_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_reset, ran_gaussian_const_utterance, ran_uniform_const_utterance, ran_decoder_drop_mask) elif model.add_latent_gaussian_per_utterance: c, kl_divergence_cost, posterior_gaussian_mean_variance, kl_divergences_between_gaussian_prior_and_posterior = train_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_reset, ran_gaussian_const_utterance, ran_uniform_const_utterance, ran_decoder_drop_mask) elif model.add_latent_piecewise_per_utterance: c, kl_divergence_cost, kl_divergences_between_piecewise_prior_and_posterior = train_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_reset, ran_gaussian_const_utterance, ran_uniform_const_utterance, ran_decoder_drop_mask) else: c = train_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_reset, ran_gaussian_const_utterance, ran_uniform_const_utterance, ran_decoder_drop_mask) kl_divergence_cost = 0.0 gamma_bounding() # Print batch statistics print('cost_sum', c) print('cost_mean', c / float(numpy.sum(x_cost_mask))) if model.add_latent_piecewise_per_utterance or model.add_latent_gaussian_per_utterance: print('kl_divergence_cost_sum', kl_divergence_cost) print('kl_divergence_cost_mean', kl_divergence_cost / float(len(numpy.where(x_data == model.eos_sym)[0]))) if model.add_latent_gaussian_per_utterance: print('posterior_gaussian_mean_variance', posterior_gaussian_mean_variance) print('kl_divergences_between_gaussian_prior_and_posterior', numpy.sum(kl_divergences_between_gaussian_prior_and_posterior), numpy.min(kl_divergences_between_gaussian_prior_and_posterior), numpy.max(kl_divergences_between_gaussian_prior_and_posterior)) if model.add_latent_piecewise_per_utterance: print('kl_divergences_between_piecewise_prior_and_posterior', numpy.sum(kl_divergences_between_piecewise_prior_and_posterior), numpy.min(kl_divergences_between_piecewise_prior_and_posterior), numpy.max(kl_divergences_between_piecewise_prior_and_posterior)) if numpy.isinf(c) or numpy.isnan(c): logger.warn("Got NaN cost .. skipping") gc.collect() continue train_cost += c train_kl_divergence_cost += kl_divergence_cost train_posterior_gaussian_mean_variance += posterior_gaussian_mean_variance train_done += batch['num_preds'] train_dialogues_done += batch['num_dialogues'] this_time = time.time() if step % state['train_freq'] == 0: elapsed = this_time - start_time # Keep track of training cost for the last 'train_freq' batches. current_train_cost = train_cost/train_done if prev_train_done >= 1 and abs(train_done - prev_train_done) > 0: current_train_cost = float(train_cost - prev_train_cost)/float(train_done - prev_train_done) if numpy.isinf(c) or numpy.isnan(c): current_train_cost = 0 prev_train_cost = train_cost prev_train_done = train_done h, m, s = ConvertTimedelta(this_time - start_time) # We need to catch exceptions due to high numbers in exp try: print(".. %.2d:%.2d:%.2d %4d mb # %d bs %d maxl %d acc_cost = %.4f acc_word_perplexity = %.4f cur_cost = %.4f cur_word_perplexity = %.4f acc_mean_word_error = %.4f acc_mean_kl_divergence_cost = %.8f acc_mean_posterior_variance = %.8f" % (h, m, s,\ state['time_stop'] - (time.time() - start_time)/60.,\ step, \ batch['x'].shape[1], \ batch['max_length'], \ float(train_cost/train_done), \ math.exp(float(train_cost/train_done)), \ current_train_cost, \ math.exp(current_train_cost), \ float(train_misclass)/float(train_done), \ float(train_kl_divergence_cost/train_done), \ float(train_posterior_gaussian_mean_variance/train_dialogues_done))) except: pass ### Inspection phase if (step % 20 == 0): if model.add_latent_gaussian_per_utterance and model.add_latent_piecewise_per_utterance: try: print('posterior_gaussian_mean_combination', model.posterior_mean_combination.W.get_value()) except: pass print('latent_piecewise_utterance_variable_approx_posterior_alpha', numpy.mean(latent_piecewise_utterance_variable_approx_posterior_alpha), latent_piecewise_utterance_variable_approx_posterior_alpha) print('latent_piecewise_utterance_variable_prior_alpha', numpy.mean(latent_piecewise_utterance_variable_prior_alpha), latent_piecewise_utterance_variable_prior_alpha) print('latent_piecewise_utterance_variable_alpha_diff', (latent_piecewise_utterance_variable_approx_posterior_alpha-latent_piecewise_utterance_variable_prior_alpha)) print('latent_piecewise_posterior_sample', numpy.min(latent_piecewise_posterior_sample), numpy.max(latent_piecewise_posterior_sample), latent_piecewise_posterior_sample[0, 0, :]) print('ran_uniform_const_utterance', numpy.min(ran_uniform_const_utterance), numpy.max(ran_uniform_const_utterance), ran_uniform_const_utterance[0, 0, :]) if model.utterance_decoder_gating.upper() == 'GRU' and model.decoder_bias_type.upper() == 'ALL': Wd_s_q = model.utterance_decoder.Wd_s_q.get_value() Wd_s_q_len = Wd_s_q.shape[0] print('model.utterance_decoder Wd_s_q full', numpy.mean(numpy.abs(Wd_s_q)), numpy.mean(Wd_s_q**2)) if model.add_latent_gaussian_per_utterance and model.add_latent_piecewise_per_utterance: Wd_s_q_gaussian = Wd_s_q[Wd_s_q_len-2*model.latent_piecewise_per_utterance_dim:Wd_s_q_len-model.latent_piecewise_per_utterance_dim, :] Wd_s_q_piecewise = Wd_s_q[Wd_s_q_len-model.latent_piecewise_per_utterance_dim:Wd_s_q_len, :] print('model.utterance_decoder Wd_s_q gaussian', numpy.mean(numpy.abs(Wd_s_q_gaussian)), numpy.mean(Wd_s_q_gaussian**2)) print('model.utterance_decoder Wd_s_q piecewise', numpy.mean(numpy.abs(Wd_s_q_piecewise)), numpy.mean(Wd_s_q_piecewise**2)) print('model.utterance_decoder Wd_s_q piecewise/gaussian', numpy.mean(numpy.abs(Wd_s_q_piecewise))/numpy.mean(numpy.abs(Wd_s_q_gaussian)), numpy.mean(Wd_s_q_piecewise**2)/numpy.mean(Wd_s_q_gaussian**2)) elif model.add_latent_gaussian_per_utterance: Wd_s_q_piecewise = Wd_s_q[Wd_s_q_len-model.latent_piecewise_per_utterance_dim:Wd_s_q_len, :] print('model.utterance_decoder Wd_s_q piecewise', numpy.mean(numpy.abs(Wd_s_q_piecewise)), numpy.mean(Wd_s_q_piecewise**2)) elif model.add_latent_piecewise_per_utterance: Wd_s_q_gaussian = Wd_s_q[Wd_s_q_len-model.latent_piecewise_per_utterance_dim:Wd_s_q_len, :] print('model.utterance_decoder Wd_s_q gaussian', numpy.mean(numpy.abs(Wd_s_q_gaussian)), numpy.mean(Wd_s_q_gaussian**2)) if model.utterance_decoder_gating.upper() == 'BOW' and model.decoder_bias_type.upper() == 'ALL': Wd_bow_W_in = model.utterance_decoder.Wd_bow_W_in.get_value() Wd_bow_W_in_len = Wd_bow_W_in.shape[0] print('model.utterance_decoder Wd_bow_W_in full', numpy.mean(numpy.abs(Wd_bow_W_in)), numpy.mean(Wd_bow_W_in**2)) if model.add_latent_gaussian_per_utterance and model.add_latent_piecewise_per_utterance: Wd_bow_W_in_gaussian = Wd_bow_W_in[Wd_bow_W_in_len-2*model.latent_piecewise_per_utterance_dim:Wd_bow_W_in_len-model.latent_piecewise_per_utterance_dim, :] Wd_bow_W_in_piecewise = Wd_bow_W_in[Wd_bow_W_in_len-model.latent_piecewise_per_utterance_dim:Wd_bow_W_in_len, :] print('model.utterance_decoder Wd_bow_W_in gaussian', numpy.mean(numpy.abs(Wd_bow_W_in_gaussian)), numpy.mean(Wd_bow_W_in_gaussian**2)) print('model.utterance_decoder Wd_bow_W_in piecewise', numpy.mean(numpy.abs(Wd_bow_W_in_piecewise)), numpy.mean(Wd_bow_W_in_piecewise**2)) print('model.utterance_decoder Wd_bow_W_in piecewise/gaussian', numpy.mean(numpy.abs(Wd_bow_W_in_piecewise))/numpy.mean(numpy.abs(Wd_bow_W_in_gaussian)), numpy.mean(Wd_bow_W_in_piecewise**2)/numpy.mean(Wd_bow_W_in_gaussian**2)) elif model.add_latent_gaussian_per_utterance: Wd_bow_W_in_piecewise = Wd_bow_W_in[Wd_bow_W_in_len-model.latent_piecewise_per_utterance_dim:Wd_bow_W_in_len, :] print('model.utterance_decoder Wd_bow_W_in piecewise', numpy.mean(
numpy.abs(Wd_bow_W_in_piecewise)
numpy.abs
#this programm simulates the flight of multistage rocket from lift-off to orbit insertion #input parameters are: #the empty mass of the rocket #the fuel mass of the rocket #the engine expansion ratio, exit area, chamber pressure, propellant molecular mass #the mass flow of the rocket engine #the drag coefficient of the rocket #the drag surface of the rocket #it is suggested that the input variables are taken out from a file that will be loaded in the beginning #the effects of wind and turbulences are neglected, as well as the rounded character of the earth and celestial effects #the result of the simulation are the graphs: #y-position vs x-position #y-position vs time #velocity vs time #acceleration vs time #dynamic pressure vs time #Mach number vs time #import all necessary funtions from math import sqrt, atan2, sin, cos, pi import xlrd import numpy as np import matplotlib.pyplot as plt import modules.aerodynamics as aero import modules.thrust as th import modules.controls as ctl import modules.fdm as fdm import modules.guidance as guid from modules.isatmos import press class vehicle: def __init__(self,fm,epsilon,Tc,Mw,kappa,At,pc,pratio, cd,S,nengines): self.fm = fm self.epsilon = epsilon self.Tc = Tc self.Mw = Mw self.kappa = kappa self.At = At self.pc = pc self.pratio = pratio self.cd = cd self.S = S self.nengines = nengines #read out data source #filename=raw_input("Please enter the data source file name.") filename="launcher_data/Saturn5.xls" table = xlrd.open_workbook(filename) sheet = table.sheet_by_name('Sheet') #define rocket technical data lists oem = [] fm = [] Tc = [] pc = [] epsilon = [] Mw = [] kappa = [] Ae = [] nengines = [] cd = [] S = [] t_ctl = [] sepdur = [] dt = sheet.cell_value(3,1) maxt = sheet.cell_value(4,1) nstages = int(sheet.cell_value(1,1)) payld = sheet.cell_value(2,1) targetalt = sheet.cell_value(5,1) targetvel = sheet.cell_value(6,1) for i in range(nstages): oem.append(sheet.cell_value(8,1+i)) fm.append(sheet.cell_value(9,1+i)) Tc.append(sheet.cell_value(10,1+i)) pc.append(sheet.cell_value(11,1+i)) epsilon.append(sheet.cell_value(12,1+i)) Mw.append(sheet.cell_value(13,1+i)) kappa.append(sheet.cell_value(14,1+i)) Ae.append(sheet.cell_value(15,1+i)) nengines.append(sheet.cell_value(16,1+i)) cd.append(sheet.cell_value(17,1+i)) S.append(sheet.cell_value(18,1+i)) t_ctl.append(sheet.cell_value(19,1+i)) sepdur.append(sheet.cell_value(20,1+i)) At = np.divide(Ae,epsilon) pratio = nstages * [0] for p in range(nstages): pratio[p] = th.pratio(epsilon[p],kappa[p]) ttab=[0] mtab=[sum(oem)+sum(fm)+payld] Ttab=[0] Dtab=[0] vtab=[0] atab=[0] xtab=[0] ytab=[0] thtab = [0] qtab=[0] Mtab=[0] m = sum(oem)+sum(fm)+payld I = 1. cg = 0. t = 0 x = 0. y = 0. theta = 90.*np.pi/180 vx = 0. vy = 0. th_dot = 0. ax = 0. ay = 0. th_ddot = 0. g0 = 9.81 T = 0. M = 0. D = 0. q = 0. state = np.array([x,y,theta,vx,vy,th_dot,ax,ay,th_ddot,m,I,cg,T,M,D,q,fm[0]]) startstage = [] reference = targetalt for i in range(nstages): print("Simulating stage:",i+1) if i>0: fm[i-1]=0 oem[i-1]=0 state[9] = sum(oem)+sum(fm)+payld state[16] = fm[i] stage = vehicle(fm[i],epsilon[i],Tc[i],Mw[i],kappa[i],At[i],pc[i],pratio[i],cd[i],S[i],nengines[i]) startstage.append(t) sep = False while y>=0 and t<2000 and not sep: t = t + dt ttab.append(t) throttle, T_angle, sep = ctl.control(state,reference) #A,B = fdm.linearize(stage,state,throttle,T_angle,dt) state = fdm.fdm(stage,state,throttle,T_angle,dt) y = state[1] fm[i] = state[16] mtab.append(state[9]) xtab.append(state[0]) ytab.append(y) Ttab.append(state[12]) vtab.append(np.sqrt(state[3]**2+state[4]**2)) qtab.append(state[15]) thtab.append(state[2]) atab.append(np.sqrt(state[6]**2+state[7]**2)) Mtab.append(state[13]) Dtab.append(state[14]) ttab = np.array(ttab)/60 plt.subplot(331) plt.plot(ttab, np.array(ytab)/1000) plt.title("flight profile: altitude [km] vs time [min]") plt.subplot(332) plt.plot(np.array(xtab)/1000, np.array(ytab)/1000, 'b') plt.title("flight profile: altitude [km] vs ground range [km]") plt.subplot(338) plt.plot(ttab, np.array(Ttab)/1000000) plt.title("Thrust [MN] vs time [min]") plt.subplot(334) plt.plot(ttab, np.array(vtab)/1000) plt.title("velocity [km/s] vs time [min]") plt.subplot(336) plt.plot(ttab, np.array(qtab)/1000) plt.title("dynamic pressure [kPa] vs time [min]") plt.subplot(335) plt.plot(ttab, np.array(thtab)*180/np.pi,'b') plt.title("pitch angle [deg] vs time [min]") plt.subplot(337) plt.plot(ttab, np.array(atab)/g0+1) plt.title("acceleration [g0] vs time [min]") plt.subplot(333) plt.plot(ttab, np.array(Mtab)) plt.title("Mach number [-] vs time [min]") plt.subplot(339) plt.plot(ttab, np.array(Dtab)/1000) plt.title("Drag [kN] vs time [min]") print('Orbit Insertion Velocity: ', round(targetvel), 'm/s') print('Horizontal Velocity: ', round(state[3]), 'm/s') print('Vertical Veloctity: ', round(state[4]), 'm/s') print('Orbit Height: ', round(state[1]/1000), 'km') plt.show() # Required Total Energy as function of orbit altitude mu = 398600.4418 Re = 6371.0 Vmax = targetvel/1000 hmax = targetalt/1000 rid =
np.linspace(Re,Re+hmax)
numpy.linspace
""" functinos for new stuff like non-thermal and prompyt dissoc. """ import numpy import automol import mess_io import mechanalyzer from mechlib.amech_io import reader def set_prod_density_param(rgts, pesgrp_num, pes_param_dct): """ Figure out if densities should be calculated """ if pes_param_dct is not None: # print('prod density test') all_peds = pes_param_dct['peds'] pes_peds = all_peds[pesgrp_num] calc_dens = (False, False) for ped in pes_peds: ped_spc = ped.split('_')[1] # Get a string with prds # print('ped_spc', ped_spc) # print('rgts', rgts) if all(rgt in ped_spc for rgt in rgts): calc_dens = (True, True) break else: calc_dens = tuple(False for _ in rgts) return calc_dens def energy_dist_params(pesgrp_num, pes_param_dct, hot_enes_dct, label_dct): """ set values to determine input parameters for handling energy distributions in MESS calculations maybe just call this before the writer and pass to make_pes_str """ if pes_param_dct is not None: # Grab the desired PED and hot enes for the PES in the group all_peds = pes_param_dct['peds'] pes_peds = all_peds[pesgrp_num] # Set the PEDs if any(pes_peds): ped_spc_lst = tuple() for ped in pes_peds: _ped = ped.split('_') ped_spc_lst += (f'{label_dct[_ped[0]]}_{label_dct[_ped[1]]}',) ped_str = ' '.join(ped_spc_lst) print(f'Species for PED: {ped_str}') else: ped_spc_lst = None # Set the Hot Energies section if hot_enes_dct is not None: _hot_enes_dct = {label_dct[spc]: enes for spc, enes in hot_enes_dct.items()} hot_str = ' '.join(_hot_enes_dct.keys()) print(f'Species for Hot: {hot_str}') else: _hot_enes_dct = None # Set the micro params for writing k(E)s # When to set this micro_out_params = (0.1, 320.0, 0.1) print(f'Ranges for k(E) calculations: {micro_out_params}') else: ped_spc_lst = None _hot_enes_dct = None micro_out_params = None return ped_spc_lst, _hot_enes_dct, micro_out_params def set_hot_enes(pesgrp_num, reacs, prods, chnl_enes, pes_param_dct, ene_range=None): """ Determine what hot energies should be for the requested species. Returns a dictionary where keys are the the mechanism names for the side of the reaction the hot spc appears and the values are the energies to set in the mechanism file. {side: ene_lst} """ if ene_range is None: ene_range =
numpy.arange(0.0, 226.0, 1.0)
numpy.arange
import numpy as np import tensorflow as tf from tensorflow.keras import models from tensorflow.keras import layers class MaskedConv2D(layers.Layer): def __init__(self, mask_type, kernel, filters): super(MaskedConv2D, self).__init__() self.kernel = kernel self.filters = filters self.mask_type = mask_type # this only runs once def build(self, input_shape): self.w = self.add_weight( shape=[ self.kernel, self.kernel, input_shape[-1], self.filters ], initializer='glorot_normal', trainable=True, name='w' ) self.b = self.add_weight( shape=(self.filters,), initializer='zeros', trainable=True, name='b' ) # create our mask mask =
np.ones(self.kernel**2, dtype=np.float32)
numpy.ones
from numpy import sin,cos,deg2rad,rad2deg,arctan2,sqrt import numpy import numexpr def cv_coord(a,b,c,fr=None,to=None,degr=False): if degr: degrad = deg2rad raddeg = rad2deg else: degrad = lambda x: x raddeg = lambda x: x if fr=='sph': x=c*cos(degrad(a))*cos(degrad(b)) y=c*sin(degrad(a))*cos(degrad(b)) z=c*sin(degrad(b)) elif fr=='rect': x=a y=b z=c elif fr is None: raise Exception('You must specify the input coordinate system') else: raise Exception('Unknown input coordinate system') if to=='rect': return (x,y,z) elif to=='sph': ra = raddeg(arctan2(y,x)) dec = raddeg(arctan2(z,sqrt(x**2+y**2))) rad = sqrt(x**2+y**2+z**2) return (ra,dec,rad) elif to is None: raise Exception('You must specify the output coordinate system') else: raise Exception('Unknown output coordinate system') def torect(ra,dec): x=numexpr.evaluate('cos(ra/57.295779513082323)*cos(dec/57.295779513082323)') y=numexpr.evaluate('sin(ra/57.295779513082323)*cos(dec/57.295779513082323)') z=numexpr.evaluate('sin(dec/57.295779513082323)') return x,y,z def fromrect(x,y,z): ra=numexpr.evaluate('arctan2(y,x)*57.295779513082323') dec=numexpr.evaluate('57.295779513082323*arctan2(z,sqrt(x**2+y**2))') return ra,dec def sphere_rotate(ra, dec, rapol, decpol, ra0): """ rotate ra,dec to a new spherical coordinate system where the pole is at rapol,decpol and the zeropoint is at ra=ra0 revert flag allows to reverse the transformation """ x,y,z=torect(ra,dec) tmppol=cv_coord(rapol,decpol,1,degr=True,fr='sph',to='rect') #pole axis tmpvec1=cv_coord(ra0,0,1,degr=True,fr='sph',to='rect') #x axis tmpvec1=
numpy.array(tmpvec1)
numpy.array
from gymenv_v2 import make_multiple_env import numpy as np import random import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import wandb wandb.login() run=wandb.init(project="finalproject", entity="ieor-4575", tags=["test"]) #run=wandb.init(project="finalproject", entity="ieor-4575", tags=["training-hard"]) #run=wandb.init(project="finalproject", entity="ieor-4575", tags=["test"]) ### TRAINING # Setup: You may generate your own instances on which you train the cutting agent. custom_config = { "load_dir" : 'instances/randomip_n60_m60', # this is the location of the randomly generated instances (you may specify a different directory) "idx_list" : list(range(20)), # take the first 20 instances from the directory "timelimit" : 50, # the maximum horizon length is 50 "reward_type" : 'obj' # DO NOT CHANGE reward_type } # Easy Setup: Use the following environment settings. We will evaluate your agent with the same easy config below: easy_config = { "load_dir" : 'instances/train_10_n60_m60', "idx_list" : list(range(10)), "timelimit" : 50, "reward_type" : 'obj' } # Hard Setup: Use the following environment settings. We will evaluate your agent with the same hard config below: hard_config = { "load_dir" : 'instances/train_100_n60_m60', "idx_list" : list(range(99)), "timelimit" : 50, "reward_type" : 'obj' } test_config = { "load_dir" : 'instances/test_100_n60_m60', "idx_list" : list(range(99)), "timelimit" : 50, "reward_type" : 'obj' } class LSTM_net(nn.Module): def __init__(self, input_size, hidden_size, bidirectional=False): super(LSTM_net, self).__init__() self.hidden_size = hidden_size self.input_size = input_size self.bidirectional = bidirectional self.lstm = nn.LSTM(input_size, hidden_size, bidirectional=bidirectional, batch_first=True) def forward(self, input): hidden = self.init_hidden() inputs = torch.FloatTensor(input).view(1, -1, self.input_size) output, _ = self.lstm(inputs) # output[-1] is same as last hidden state output = output[-1].reshape(-1, self.hidden_size) return output def init_hidden(self): return (torch.zeros(1 + int(self.bidirectional), 1, self.hidden_size), torch.zeros(1 + int(self.bidirectional), 1, self.hidden_size)) class Attention_Net(nn.Module): def __init__(self, input_size, hidden_size, hidden_size2): super(Attention_Net, self).__init__() # constrain and cuts dimension self.input_size = int(input_size) self.hidden_size = int(hidden_size) self.hidden_size2 = int(hidden_size2) self.lstm1 = LSTM_net(input_size, hidden_size) self.lstm2 = LSTM_net(input_size, hidden_size) self.linear1 = nn.Linear(self.hidden_size, self.hidden_size2) self.linear2 = nn.Linear(self.hidden_size2, self.hidden_size2) self.tanh = nn.Tanh() def forward(self, constraints, cuts): constraints = torch.FloatTensor(constraints) cuts = torch.FloatTensor(cuts) # lstm A_embed = self.lstm1.forward(constraints) D_embed = self.lstm2.forward(cuts) # dense A = self.linear2(self.tanh(self.linear1(A_embed))) D = self.linear2(self.tanh(self.linear1(D_embed))) # attention logits = torch.sum(torch.mm(D, A.T), axis=1) return logits # Policy network will just be copied from lab4 and make small modification class Policy(object): def __init__(self, input_size, hidden_size, hidden_size2, lr): self.model = Attention_Net(input_size, hidden_size, hidden_size2) # DEFINE THE OPTIMIZER self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr) def compute_prob(self, constraints, cuts): constraints = torch.FloatTensor(constraints) cuts = torch.FloatTensor(cuts) prob = torch.nn.functional.softmax(self.model(constraints, cuts), dim=-1) return prob.cpu().data.numpy() def _to_one_hot(self, y, num_classes): """ convert an integer vector y into one-hot representation """ scatter_dim = len(y.size()) y_tensor = y.view(*y.size(), -1) zeros = torch.zeros(*y.size(), num_classes, dtype=y.dtype) return zeros.scatter(scatter_dim, y_tensor, 1) def train(self, constraints, cuts, actions, Qs): """ states: numpy array (states) actions: numpy array (actions) Qs: numpy array (Q values) """ actions = torch.LongTensor(actions) Qs = torch.FloatTensor(Qs) total_loss = 0 # for a bunch of constraints and cuts, need to go one by one for i in range(len(constraints)): curr_constraints = constraints[i] curr_cuts = cuts[i] curr_action = actions[i] # COMPUTE probability vector pi(s) for all s in states logits = self.model(curr_constraints, curr_cuts) prob = torch.nn.functional.softmax(logits, dim=-1) # Compute probaility pi(s,a) for all s,a action_onehot = self._to_one_hot(curr_action, curr_cuts.shape[0]) prob_selected = torch.sum(prob * action_onehot, axis=-1) # FOR ROBUSTNESS prob_selected += 1e-8 loss = -torch.mean(Qs[i] * torch.log(prob_selected)) # BACKWARD PASS self.optimizer.zero_grad() loss.backward() # UPDATE self.optimizer.step() total_loss += loss.detach().cpu().data.numpy() return total_loss def discounted_rewards(r, gamma): """ take 1D float array of rewards and compute discounted reward """ discounted_r = np.zeros_like(r) running_sum = 0 for i in reversed(range(0,len(r))): discounted_r[i] = running_sum * gamma + r[i] running_sum = discounted_r[i] return list(discounted_r) def normalization(A, b, E, d): all_coeff =
np.concatenate((A, E), axis=0)
numpy.concatenate
from __future__ import division from builtins import range from past.utils import old_div from math import cos, sin, sqrt, atan2, acos, asin, pi import csv import os import numpy as np from proteus import AuxiliaryVariables, Archiver, Comm, Profiling from proteus.Profiling import logEvent as logEvent from collections import OrderedDict class RigidBody(AuxiliaryVariables.AV_base, object): """ Auxiliary variable used to calculate attributes of an associated shape class instance acting as a rigid body. To set a shape as a rigid body, use shape.setRigidBody(). The class instance is created automatically when shape.setRigidBody() has been called and after calling assembleDomain(). Parameters ---------- shape: proteus.mprans.SpatialTools.Shape_RANS Class instance of the shape associated to the rigid body calculations. cfl_target: Optional[float] UNUSED (to implement), sets the maximum displacement of the body allowed per time step. dt_init: float first time step of the simulation. """ def __init__(self, shape, cfl_target=0.9, dt_init=0.001, substeps=20): self.Shape = shape self.nd = nd = shape.Domain.nd # if isinstance(shape, (Rectangle, Cuboid)): # shape._setInertiaTensor() self.substeps = substeps self.dt_init = dt_init self.cfl_target = 0.9 self.rotation_matrix = np.eye(3) self.h = np.array([0., 0., 0.]) self.barycenter = np.zeros(3) self.i_start = None # will be retrieved from setValues() of Domain self.i_end = None # will be retrieved from setValues() of Domain self.It = self.Shape.It self.record_dict = OrderedDict() # variables self.position = np.zeros(3) self.last_position = np.array([0., 0., 0.]) self.velocity = np.zeros(3, 'd') self.last_velocity = np.zeros(3, 'd') self.acceleration = np.zeros(3, 'd') self.last_acceleration = np.zeros(3, 'd') self.rotation = np.eye(3) self.last_rotation = np.eye(3) self.ang_disp = np.zeros(3, 'd') self.last_ang_disp = np.zeros(3, 'd') self.ang_vel = np.zeros(3, 'd') self.last_ang_vel = np.zeros(3, 'd') self.ang_acc = np.zeros(3, 'd') self.last_ang_acc = np.zeros(3, 'd') self.F = np.zeros(3, 'd') self.M = np.zeros(3, 'd') self.last_F = np.zeros(3, 'd') self.last_M = np.zeros(3, 'd') self.ang = 0. self.barycenter = self.Shape.barycenter self.mass = 0. self.pivot = np.zeros(3) self.last_pivot = np.zeros(3) self.init_barycenter = self.Shape.barycenter.copy() self.InputMotion = False # variables for checking numerical method self.ux = 0.0 self.uy = 0.0 self.uz = 0.0 self.last_ux = 0.0 self.last_uy = 0.0 self.last_uz = 0.0 # gravity if 'RigidBody' not in shape.auxiliaryVariables: shape._attachAuxiliaryVariable('RigidBody', self) def attachModel(self, model, ar): """ Attaches model to auxiliary variable """ self.model = model self.ar = ar self.writer = Archiver.XdmfWriter() self.nd = model.levelModelList[-1].nSpace_global m = self.model.levelModelList[-1] flagMax = max(m.mesh.elementBoundaryMaterialTypes) # flagMin = min(m.mesh.elementBoundaryMaterialTypes) self.nForces = flagMax + 1 return self def calculate_init(self): """ Function called automatically at the very beginning of the simulation by proteus. """ nd = self.nd self.position[:] = self.Shape.barycenter.copy() self.last_position[:] = self.position self.rotation[:nd, :nd] = self.Shape.coords_system self.last_rotation[:nd, :nd] = self.Shape.coords_system self.rotation_euler = getEulerAngles(self.rotation) self.last_rotation_euler = getEulerAngles(self.last_rotation) def calculate(self): """ Function called automatically at each time step by proteus. """ # store previous values self._store_last_values() # for first time step try: self.dt = self.model.levelModelList[-1].dt_last except: self.dt = self.dt_init # get forces and moments self.F[:] = self.getTotalForces() * self.free_x self.M[:] = self.getTotalMoments() * self.free_r # calculate new properties with substepping self.step(self.dt) # record variables in .csv file if self.record_dict: self._recordValues() # print in proteus log file self._logTrace() def _store_last_values(self): """ Store values of previous time step for displacement calculation """ self.last_position[:] = self.position self.last_velocity[:] = self.velocity self.last_acceleration[:] = self.acceleration self.last_rotation[:] = self.rotation self.last_rotation_euler[:] = self.rotation_euler self.last_ang_disp[:] = self.ang_disp self.last_ang_vel[:] = self.ang_vel self.last_ang_acc[:] = self.ang_acc self.last_F[:] = self.F self.last_M[:] = self.M self.last_pivot = self.pivot self.last_ux = self.ux self.last_uy = self.uy self.last_uz = self.uz def getPressureForces(self): """ Gives the pressure forces applied on each segments/facets of the rigid body Returns ------- F_p: array_like pressure forces (x, y, z) as provided by Proteus """ i0, i1 = self.i_start, self.i_end F_p = self.model.levelModelList[-1].coefficients.netForces_p[i0:i1, :] return F_p def getShearForces(self): """ Gives the shear forces applied on each segments/facets of the rigid body Returns ------- F_v: array_like shear forces (x, y, z) as provided by Proteus """ i0, i1 = self.i_start, self.i_end F_v = self.model.levelModelList[-1].coefficients.netForces_v[i0:i1, :] return F_v def getGravityForce(self): """ Returns ------- Fg: array_like gravity force """ nd = self.nd if nd == 2: Fg = self.mass * np.array([0., -9.81, 0.]) if nd == 3: Fg = self.mass * np.array([0., 0., -9.81]) return Fg def getMoments(self): """ Gives the moments applied on each segments/facets of the rigid body Returns ------- M: array_like moments (x, y, z) as provided by Proteus """ i0, i1 = self.i_start, self.i_end M = self.model.levelModelList[-1].coefficients.netMoments[i0:i1, :] return M def getTotalMoments(self): """ Gives the total moments applied the rigid body Returns ------- M_t: array_like total moments (x, y, z) as provided by Proteus """ M = self.getMoments() M_t = np.sum(M, axis=0) return M_t def getTotalForces(self): """ Gives the total forces applied the rigid body: shear, pressure and gravity forces Returns ------- F_t: array_like total forces (x, y, z) as provided by Proteus """ F_p = self.getPressureForces() F_v = self.getShearForces() F_g = self.getGravityForce() F_t = np.sum(F_p + F_v, axis=0) + F_g return F_t def getAcceleration(self): """ Returns ------- a: array_like acceleration of current time step """ a = old_div(self.F, self.mass) return a def getAngularAcceleration(self): if sum(self.M) != 0: self.inertia = self.getInertia(self.M, self.Shape.barycenter) assert self.inertia != 0, 'Zero inertia: inertia tensor (It)' \ 'was not set correctly!' self.ang_acc = old_div(self.M[:], self.inertia) else: self.inertia = None self.ang_acc = np.array([0., 0., 0.]) return self.ang_acc def getDisplacement(self, dt): # acceleration from force self.acceleration = self.getAcceleration() # substeps for smoother motion between timesteps dt_sub = old_div(dt, float(self.substeps)) # Forward_Euler if self.scheme == 'Forward_Euler': for i in range(self.substeps): self.h[:], self.velocity[:] = forward_euler(p0=self.h, v0=self.velocity, a=self.acceleration, dt=dt_sub) # Runge_Kutta elif self.scheme == 'Runge_Kutta': # settings Kx, Ky, Kz = self.Kx, self.Ky, self.Kz Cx, Cy, Cz = self.Cx, self.Cy, self.Cz Fx, Fy, Fz = self.F mass = self.mass # initial condition ux0 = self.last_position[0] - self.init_barycenter[0] # x-axis displacement uy0 = self.last_position[1] - self.init_barycenter[1] # y-axis displacement uz0 = self.last_position[2] - self.init_barycenter[2] # z-axis displacement vx0 = self.last_velocity[0] # x-axis velocity vy0 = self.last_velocity[1] # y-axis velocity vz0 = self.last_velocity[2] # z-axis velocity ax0 = old_div((Fx - Cx * vx0 - Kx * ux0), mass) # x-axis acceleration ay0 = old_div((Fy - Cy * vy0 - Ky * uy0), mass) # y-axis acceleration az0 = old_div((Fz - Cz * vz0 - Kz * uz0), mass) # z-axis acceleration # solving numerical scheme ux, vx, ax = runge_kutta(u0=ux0, v0=vx0, a0=ax0, dt=dt_sub, substeps=self.substeps, F=Fx, K=Kx, C=Cx, m=mass, velCheck=False) uy, vy, ay = runge_kutta(u0=uy0, v0=vy0, a0=ay0, dt=dt_sub, substeps=self.substeps, F=Fy, K=Ky, C=Cy, m=mass, velCheck=False) uz, vz, az = runge_kutta(u0=uz0, v0=vz0, a0=az0, dt=dt_sub, substeps=self.substeps, F=Fz, K=Kz, C=Cz, m=mass, velCheck=False) # used for storing values of displacements through timesteps self.ux = ux self.uy = uy self.uz = uz # final values self.h[:] = np.array([self.ux - ux0, self.uy - uy0, self.uz - uz0]) self.velocity = np.array([vx, vy, vz]) self.acceleration = np.array([ax, ay, az]) return self.h def getAngularDisplacement(self, dt): # angular acceleration from moment self.ang_acc = self.getAngularAcceleration() dt_sub = old_div(dt, float(self.substeps)) # Forward_Euler if self.scheme == 'Forward_Euler': for i in range(self.substeps): # rotation self.ang_disp, self.ang_vel[:] = forward_euler(p0=self.ang_disp, v0=self.ang_vel, a=self.ang_acc, dt=dt_sub) # Runge_Kutta elif self.scheme == 'Runge_Kutta': # settings Krot = self.Krot Crot = self.Crot Fx, Fy, Fz = self.F # check for differenece between barycenter and pivot self.rp = (self.pivot - self.Shape.barycenter) rpx, rpy, rpz = self.rp Mpivot = np.array([(rpy * Fz - rpz * Fy), -(rpx * Fz - rpz * Fx), (rpx * Fy - rpy * Fx)]) # moment transformation calculated in pivot Mp = self.M - Mpivot # moment transformation self.inertia = self.getInertia(Mp, self.pivot) inertia = self.inertia # initial condition rz0 = atan2(self.last_rotation[0, 1], self.last_rotation[0, 0]) # angular displacement vrz0 = self.last_ang_vel[2] # angular velocity arz0 = old_div((Mp[2] - Crot * vrz0 - Krot * rz0), inertia) # angular acceleration # solving numerical scheme rz, vrz, arz = runge_kutta(u0=rz0, v0=vrz0, a0=arz0, dt=dt_sub, substeps=self.substeps, F=Mp[2], K=Krot, C=Crot, m=inertia, velCheck=False) # final values self.ang_disp[2] = rz - atan2(self.last_rotation[0, 1], self.last_rotation[0, 0]) self.ang_vel[2] = vrz self.ang_acc[2] = arz return self.ang_disp def setSprings(self, springs, Kx, Ky, Krot, Cx, Cy, Crot, Kz=0.0, Cz=0.0): """ Sets a system of uniform springs to model soil's reactions (for moving bodies) Parameters ---------- spring: string If True, spring module is switched on. Kx: float horizontal stiffness Ky: float vertical stiffness Krot: float rotational stiffness Cx: float horizontal damping parameter Cy: float vertical damping parameter Crot: float rotational damping parameter """ self.springs = springs self.Kx = Kx self.Ky = Ky self.Kz = Kz self.Krot = Krot self.Cx = Cx self.Cy = Cy self.Cz = Cz self.Crot = Crot def setPivot(self, pivot=None): """ Sets pivot centre of rotation for the angular calculation Parameters ---------- pivot: array """ self.pivot = pivot def setNumericalScheme(self, scheme): """ Sets the numerical scheme used to solve motion. Parameters ---------- scheme: string If Runge_Kutta, runge kutta scheme is applied. If Forward_Euler, forward euler scheme is applied. """ self.scheme = scheme def inputMotion(self, InputMotion=False, pivot=None, At=[0., 0., 0], Tt=[0., 0., 0], Ar=[0., 0., 0], Tr=[0., 0., 0]): """ Sets motion as an input. It's imposed rather than calculated. Parameters ---------- InputMotion: bool If True, motion as input is applied. pivot: list Centre of rotation. If only translation, write barycenter's coordinates At: list Amplitude of translational motion Tt: list Period of translational motion Ar: list Amplitude of rotational motion Tr: list Period of rotational motion """ self.InputMotion = InputMotion if pivot is None: self.pivot = self.Shape.barycenter else: self.pivot = np.array(pivot) self.At = np.array(At) self.Tt = np.array(Tt) self.Ar = np.array(Ar) self.Tr = np.array(Tr) def imposeSinusoidalMotion(self): """ Motion is imposed rather than calculated. Parameters """ t = self.model.stepController.t_model_last Tra = np.array([0., 0., 0.]) Rot = np.array([0., 0., 0.]) for ii in [0, 1, 2]: At, Tt = self.At[ii], self.Tt[ii] Ar, Tr = self.Ar[ii], self.Tr[ii] if Tt == 0.0: Wt = 0.0 else: Wt = 2. * 3.14 / Tt if Tr == 0.0: Wr = 0.0 else: Wr = 2. * 3.14 / Tr Dt = At * sin(Wt * t) Dr = Ar * sin(Wr * t) # motion update Tra[ii] = Dt - (self.last_position[ii] - self.init_barycenter[ii]) Rot[ii] = Dr - (self.last_rotation_euler[ii]) return Tra, Rot def step(self, dt): """ Step for rigid body calculations in Python Parameters ---------- dt: float time step """ nd = self.nd # reinitialise displacement values self.h[:] = np.zeros(3) self.ang_disp[:] = np.zeros(3) # Calculate or impose motion of the rigid body if self.InputMotion == True: # sinusoidal motion imposed self.h[:], self.ang_disp[:] = self.imposeSinusoidalMotion() else: # Translational motion calculation self.h[:] = self.getDisplacement(dt) # Rotational motion calculation self.ang_disp[:] = self.getAngularDisplacement(dt) # translate self.Shape.translate(self.h[:nd]) # rotate self.ang = np.linalg.norm(self.ang_disp[:]) if nd == 2 and self.ang_vel[2] < 0: self.ang = -self.ang if self.ang != 0.: self.Shape.rotate(self.ang, self.ang_vel, self.Shape.barycenter) self.rotation[:nd, :nd] = self.Shape.coords_system self.rotation_matrix[:] = np.dot(np.linalg.inv(self.last_rotation), self.rotation) self.rotation_euler[:] = getEulerAngles(self.rotation) else: self.rotation_matrix[:] = np.eye(3) self.barycenter[:] = self.Shape.barycenter self.position[:] = self.Shape.barycenter def setConstraints(self, free_x, free_r): """ Sets constraints on the Shape (for moving bodies) Parameters ---------- free_x: array_like Translational constraints. free_r: array_like Rotational constraints. """ self.free_x = np.array(free_x) self.free_r = np.array(free_r) def setMass(self, mass): """ Set mass of the shape. Parameters ---------- mass: float mass of the body """ self.mass = float(mass) def setInertiaTensor(self, It): """ Set the inertia tensor of the shape Parameters ---------- It: array_like, float Inertia tensor of the body (3x3 array in 3D, float in 2D) Notes ----- The inertia tensor should not be already scaled with the mass of the shape. """ It = np.array(It) if self.nd == 2: assert isinstance(It, float), 'the inertia tensor of a 2D shape ' \ 'must be a float' if self.nd == 3: assert It.shape == (3, 3), 'the inertia tensor of a 3D shape ' \ 'must have a (3, 3) shape' self.It = It def getInertia(self, vec=(0., 0., 1.), pivot=None): """ Gives the inertia of the shape from an axis and a pivot Parameters ---------- vec: array_like Vector around which the body rotates. pivot: Optional[array_like] Pivotal point around which the body rotates. If not set, it will be the barycenter coordinates Returns ------- I: float inertia of the mass Notes ----- The inertia is calculated relative to the coordinate system of the shape (self.coords_system). If the shape was not initialised with a position corresponding to its inertia tensor (e.g. shape was already rotated when initialised), set the coordinate system accordingly before calling this function """ assert self.It is not None, 'No inertia tensor! (' + self.name + ')' if pivot is None: pivot = self.barycenter # Pivot coords relative to shape centre of mass pivot = pivot - np.array(self.barycenter) # making unity vector/axis of rotation vec = vx, vy, vz = np.array(vec) length_vec = np.sqrt(vx**2 + vy**2 + vz**2) vec = old_div(vec, length_vec) if self.nd == 2: I = self.It * self.mass elif self.nd == 3: # vector relative to original position of shape: vec = np.dot(vec, np.linalg.inv(self.coords_system)) cx, cy, cz = vec # getting the tensor for calculaing moment of inertia # from arbitrary axis vt = np.array([[cx**2, cx * cy, cx * cz], [cx * cy, cy**2, cy * cz], [cx * cz, cy * cz, cz**2]]) # total moment of inertia I = np.einsum('ij,ij->', self.mass * self.It, vt) return I def setRecordValues(self, filename=None, all_values=False, pos=False, rot=False, ang_disp=False, F=False, M=False, inertia=False, vel=False, acc=False, ang_vel=False, ang_acc=False): """ Sets the rigid body attributes that are to be recorded in a csv file during the simulation. Parameters ---------- filename: Optional[string] Name of file, if not set, the file will be named as follows: 'record_[shape.name].csv' all_values: bool Set to True to record all values listed below. time: bool Time of recorded row (default: True). pos: bool Position of body (default: False. Set to True to record). rot: bool Rotation of body (default: False. Set to True to record). ang_disp: array Angular displecement calculated during rigid body calculation step. Applied on the body in order to make it rotating. F: bool Forces applied on body (default: False. Set to True to record). M: bool Moments applied on body (default: False. Set to True to record). inertia: bool Inertia of body (default: False. Set to True to record). vel: bool Velocity of body (default: False. Set to True to record). acc: bool Acceleration of body (default: False. Set to True to record). ang_vel: array Angular velocity of body (default: False. Set to True to record). ang_acc: bool Angular acceleration of body (default: False. Set to True to record). Notes ----- To add another value manually, add to dictionary self.record_dict: key: header of the column in .csv value: list of length 2: [variable name, index within variable] (if no index, use None) e.g. self.record_dict['m']['mass', None] """ if all_values is True: pos = rot = F = M = acc = vel = ang_acc = ang_vel = True if pos is True: self.record_dict['x'] = ['last_position', 0] self.record_dict['y'] = ['last_position', 1] self.record_dict['z'] = ['last_position', 2] if rot is True: self.record_dict['rx'] = ['last_rotation_euler', 0] self.record_dict['ry'] = ['last_rotation_euler', 1] self.record_dict['rz'] = ['last_rotation_euler', 2] if F is True: self.record_dict['Fx'] = ['F', 0] self.record_dict['Fy'] = ['F', 1] self.record_dict['Fz'] = ['F', 2] Fx = Fy = Fz = True if M is True: self.record_dict['Mx'] = ['M', 0] self.record_dict['My'] = ['M', 1] self.record_dict['Mz'] = ['M', 2] if acc is True: self.record_dict['ax'] = ['acceleration', 0] self.record_dict['ay'] = ['acceleration', 1] self.record_dict['az'] = ['acceleration', 2] if vel is True: self.record_dict['vx'] = ['velocity', 0] self.record_dict['vy'] = ['velocity', 1] self.record_dict['vz'] = ['velocity', 2] if ang_acc is True: self.record_dict['ang_ax'] = ['ang_acc', 0] self.record_dict['ang_ay'] = ['ang_acc', 1] self.record_dict['ang_az'] = ['ang_acc', 2] if ang_vel is True: self.record_dict['ang_vx'] = ['ang_vel', 0] self.record_dict['ang_vy'] = ['ang_vel', 1] self.record_dict['ang_vz'] = ['ang_vel', 2] if inertia is True: self.record_dict['inertia'] = ['inertia', None] if filename is None: self.record_filename = 'record_' + self.name + '.csv' else: self.record_filename = filename + '.csv' self.record_file = os.path.join(Profiling.logDir, self.record_filename) def _recordValues(self): """ Records values of rigid body attributes at each time step in a csv file. """ comm = Comm.get() if comm.isMaster(): t_last = self.model.stepController.t_model_last dt_last = self.model.levelModelList[-1].dt_last t = t_last - dt_last values_towrite = [t] if t == 0: headers = ['t'] for key in self.record_dict: headers += [key] with open(self.record_file, 'w') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerow(headers) for key, val in list(self.record_dict.items()): if val[1] is not None: values_towrite += [getattr(self, val[0])[val[1]]] else: values_towrite += [getattr(self, val[0])] with open(self.record_file, 'a') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerow(values_towrite) def _logTrace(self): # log values t_previous = self.model.stepController.t_model_last - self.dt t_current = self.model.stepController.t_model_last h = self.h last_pos, pos = self.last_position, self.position last_vel, vel = self.last_velocity, self.velocity rot = getEulerAngles(self.rotation) rot_x, rot_y, rot_z = rot[0], rot[1], rot[2] F = self.F M = self.M logEvent("================================================================") logEvent("=================== Rigid Body Calculation =====================") logEvent("================================================================") logEvent("Name: " + repr(self.Shape.name)) logEvent("================================================================") logEvent("[proteus] t=%1.5fsec to t=%1.5fsec" % (t_previous, t_current)) logEvent("[proteus] dt=%1.5fsec" % (self.dt)) logEvent("[body] ============== Pre-calculation attributes ==============") logEvent("[proteus] t=%1.5fsec" % (t_previous)) logEvent("[proteus] F=(% 12.7e, % 12.7e, % 12.7e)" % (F[0], F[1], F[2])) logEvent("[proteus] M=(% 12.7e, % 12.7e, % 12.7e)" % (M[0], M[1], M[2])) logEvent("[body] pos=(% 12.7e, % 12.7e, % 12.7e)" % (last_pos[0], last_pos[1], last_pos[2])) logEvent("[body] vel=(% 12.7e, % 12.7e, % 12.7e)" % (last_vel[0], last_vel[1], last_vel[2])) logEvent("[body] ===============Post-calculation attributes ==============") logEvent("[body] t=%1.5fsec" % (t_current)) logEvent("[body] h=(% 12.7e, % 12.7e, % 12.7e)" % (h[0], h[1], h[2])) logEvent("[body] pos=(% 12.7e, % 12.7e, % 12.7e)" % (pos[0], pos[1], pos[2])) logEvent("[body] vel=(% 12.7e, % 12.7e, % 12.7e)" % (vel[0], vel[1], vel[2])) logEvent("[body] rot=(% 12.7e, % 12.7e, % 12.7e)" % (rot_x, rot_y, rot_z)) logEvent("================================================================") class CaissonBody(RigidBody): """ Sub-class to create a caisson rigid body. """ def __init__(self, shape, substeps): super(CaissonBody, self).__init__(shape, substeps) # friciton module parameter used for switching to dynamic motion cases self.sliding = False self.sliding_last = False self.friction = False self.overturning = False # friction and overturning parameters to be initialised self.pivot_friction = np.zeros(3) self.last_pivot_friction = np.zeros(3) self.Ftan = 0.0 self.last_Ftan = 0.0 self.Mp = np.zeros(3, 'd') self.last_Mp = np.zeros(3, 'd') self.rp = np.zeros(3, 'd') self.last_rp =
np.zeros(3, 'd')
numpy.zeros
from __future__ import unicode_literals from django.db import models import datetime as dt from django.contrib.auth.mixins import LoginRequiredMixin from django.dispatch import receiver from django.db.models.signals import (post_save,pre_save,) # from PIL import Image from django.core.files import File from django.dispatch import receiver from django.contrib.auth.models import User from cloudinary.models import CloudinaryField from phonenumber_field.modelfields import PhoneNumberField import numpy as np from django.db.models import Avg, Max, Min # Create your models here. class Profile(models.Model): user = models.OneToOneField(User, null=True, on_delete=models.CASCADE) first_name = models.CharField(max_length = 60,null=True,blank=True) last_name = models.CharField(max_length = 60,null=True,blank=True) pic = CloudinaryField('pic',null=True) bio = models.TextField(null=True,blank=True) likes = models.IntegerField(default=0) email = models.EmailField(null=True) phone_number = PhoneNumberField(null=True) def get_total_likes(self): return self.likes.user.count() @classmethod def update_profile(cls, id, email, phone_number, first_name, last_name, bio, pic): profile = cls.objects.filter(id = id).update(pic = pic, id = id, first_name=first_name, last_name=last_name,bio=bio,phone_number=phone_number, email=email) return update def __str__(self): return str(self.user.username) class Meta: ordering = ['first_name'] def save_profile(self): self.save() def delete_profile(self): self.delete() def create_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) post_save.connect(create_profile, sender = User) class Project(models.Model): title = models.CharField(max_length = 60) pic = CloudinaryField('pic',null=True) description = models.TextField() link = models.URLField(max_length = 300) @classmethod def search_projects(cls, search_term): projects = cls.objects.filter(title__icontains=search_term) return projects def save_project(self): self.save() def delete_project(self): self.delete() @classmethod def update_project(cls, id, caption): update = cls.objects.filter(id = id).update(description = description) # return update @classmethod def get_all_projects(cls): projects = cls.objects.all() return projects @classmethod def get_project_by_id(cls,id): project = cls.objects.filter(id= id).all() return project def average_design(self): design_ratings = list(map(lambda x: x.design_rating, self.reviews.all())) return np.mean(design_ratings) def average_usability(self): usability_ratings = list(map(lambda x: x.usability_rating, self.reviews.all())) return np.mean(usability_ratings) def average_content(self): content_ratings = list(map(lambda x: x.content_rating, self.reviews.all())) return
np.mean(content_ratings)
numpy.mean
from typing import Tuple import numpy as np import pytest from ertk.utils.array import ( batch_arrays_by_length, check_3d, clip_arrays, flat_to_inst, frame_array, frame_arrays, inst_to_flat, make_array_array, pad_array, pad_arrays, shuffle_multiple, transpose_time, ) def test_make_array_array_vlen(): arr = make_array_array([
np.arange(i)
numpy.arange
from core.nnlib import * import unittest import numpy as np import pytest import numpy.testing as ntest from numpy._pytesttester import PytestTester class TestActivations: def test_leakyrelu_forward(self): X = np.array([1, 0, -1], dtype=np.float32) leakage = 0.1 comp = np.array( [i if i > 0 else i * leakage for i in X], dtype=np.float32) relu = LeakyRelu(leakage_ratio=leakage) ntest.assert_array_equal(comp, relu(X)) X = np.zeros((10, 10), dtype=np.float32) ntest.assert_array_equal(np.zeros((10, 10), dtype=np.float32), relu(X)) def test_leakyrelu_der(self): X = np.array([1, 0, -1], dtype=np.float32) leakage = 0.1 relu = LeakyRelu(leakage_ratio=leakage) ntest.assert_array_equal( np.array([1 if i >= 0 else leakage for i in X], dtype=np.float32), relu.derivative(X)) X = np.ones((10, 10), np.float32) ntest.assert_array_equal(X, relu.derivative(X)) def test_softmax(self): X =
np.array([[1, 0, -1], [1, 1, 0]], dtype=np.float32)
numpy.array
import numpy as np from scipy import linalg from core.utils import fidelidad_vec, dot_prod_vec def bases_2_3(a, b, fase): """ Bases basicas en dimension 2 y 3. IN a: float. Coeficiente acompañando a |0>. b: float. Coeficiente acompañando a |1>. fase: float. Fase acompañando a |1>. OUT B_2: array 2 x 2. B_3: array 3 x 3 """ #aseguramos que las bases sean complejas. a = a + 0.*1.j b = b + 0.*1.j B_3 = np.array([[a, np.exp(1j*fase)*b, 0.*1.j], [a*b, - np.exp(1j*fase)*a*a, np.exp(1j*fase)*b], [b*b, - np.exp(1j*fase)*b*a, -np.exp(1j*fase)*a]]).T B_2 = np.array([[a, np.exp(1j*fase)*b], [b, - np.exp(1j*fase)*a]]).T return B_2, B_3 def bases_separables_vec(dim, v_a, v_b, v_fase): """ Genera log2(dim) x n_bases bases separables IN: dim: int. Dimension del estado a reconstruir v_a, v_b: arrays. Coeficientes de los estados de las bases medidas v_fase: array. Angulos relativos de los estados de la base. OUT base_0: array n_qubits x n_qubits x n_qubits. Base diagonal bases_sep: array n_qubits x n_qubits x n_qubits x n_qubits x n_bases. Entrega las matrices con las que hay que calcular el producto tensorial para construir bases_sep. Estan almacenadas en el tercer indice "m". """ n_qubits = int(np.log2(dim)) n_bases = v_fase.shape[0] b_0 = np.array([[1, 0], [0, 1]], dtype="complex") base_0 = np.dstack([b_0]*n_qubits) bases_sep_vec = np.stack([np.stack([np.stack([b_0]*n_qubits, axis=-1)]*n_qubits, axis=-1)]*n_bases, axis=-1) for k in range(n_bases): B_2, B_3 = bases_2_3(v_a[k], v_b[k], v_fase[k]) for j in range(n_qubits): for m in range(n_qubits-j-1, n_qubits): bases_sep_vec[:, :, m, j, k] = B_2 return base_0, bases_sep_vec[:, :, :, ::-1, :] def tomography_vec(prob_diag_vec, prob_sep_vec, bases_sep_vec): """ Tomografia tres bases para estados en cualquier dimension IN prob_diag_vec: array dim. Contiene las mediciones de la base estandar prob_sep_vec: array dim x n_qubits x n_bases. Contiene las mediciones de las bases separables. Tenemos n_bases conjuntos de n_qubits bases separables bases_sep_vec: array 2 x 2 x nqubits x nqubits x n_bases. Bases de qubits tal que su producto tensorial sobre la tercera dimension entrega las bases separables a medir OUT psi_sis: array dim x 1. Estado del sistema. """ dim, n_qubits, n_bases = prob_sep_vec.shape # comenzamos llenando todas las hojas psi_list = [np.zeros((2**(j+1), 2**(n_qubits-j)), dtype="complex") for j in range(n_qubits)] psi_list.append(np.zeros((2**n_qubits, 1), dtype="complex")) for k in range(2**(n_qubits-1)): psi_list[0][:, 2*k] = np.array([np.sqrt(prob_diag_vec[2*k]), 0]) psi_list[0][:, 2*k+1] = np.array([0, np.sqrt(prob_diag_vec[2*k + 1])]) for lv in range(n_qubits-1, -1, -1): for k in range(2**lv): psi_j = psi_list[n_qubits-lv-1][:, 2*k] psi_k = psi_list[n_qubits-lv-1][:, 2*k+1] n_qubits_eff = n_qubits - lv slice = 2**(n_qubits_eff) prob = prob_sep_vec[slice*k:slice*(k+1), lv, :].reshape(-1, order="F") proyectores = bases_sep_vec[:, :, lv:, lv, :] psi_n = block_n_vec(psi_j, psi_k, prob, proyectores, n_qubits_eff, n_bases) pad = np.zeros(psi_n.shape[0]) if lv != 0: if k%2 == 0: psi_n = np.concatenate([psi_n, pad]) else: psi_n = np.concatenate([pad, psi_n]) psi_list[n_qubits-lv][:, k] = psi_n psi_sis = psi_list[-1] return psi_sis def block_n_vec(psi_j, psi_k, prob, proyectores, n_qubits_eff, n_bases): """ Reconstruye un subestado en dimension dim usando subestados en dimension k y j. IN psi_j, psi_k: arrays. Subestados que hay que acoplar. prob: array slice*n_bases. Una probabilidad por cada proyector. proyectores: array dim x slice*n_bases. Proyectores de las bases medidas OUT psi_n: array. Subestado de la union de psi_k y psi_j. """ # si uno de los dos subestados es cero no calculamos nada if np.all(psi_k == 0) | np.all(psi_j == 0): return psi_k + psi_j n_eqs_bas = 2**proyectores.shape[2] dot_j = np.zeros((n_eqs_bas*n_bases), dtype="complex") dot_k = np.zeros((n_eqs_bas*n_bases), dtype="complex") for r in range(n_bases): dot_j[r*n_eqs_bas:(r+1)*n_eqs_bas] = dot_prod_vec( psi_j, proyectores[:, :, :, r], n_qubits_eff ) dot_k[r*n_eqs_bas:(r+1)*n_eqs_bas] = dot_prod_vec( psi_k, proyectores[:, :, :, r], n_qubits_eff ) p_tilde = (prob - np.abs(dot_j)**2 - np.abs(dot_k)**2) X = dot_k*(dot_j.conj()) eqs =
np.zeros((n_eqs_bas*n_bases, 2))
numpy.zeros
from __future__ import division import os import numpy as np import fnmatch import re from lxml import etree import torch import cPickle import argparse def fetch_iamondb(data_path): strokes_path = os.path.join(data_path, "lineStrokes") ascii_path = os.path.join(data_path, "ascii") train_files_path = os.path.join(data_path, "train.txt") valid_files_path = os.path.join(data_path, "valid.txt") if not os.path.exists(strokes_path) or not os.path.exists(ascii_path): raise ValueError("You must download the data from IAMOnDB, and" "unpack in %s" % data_path) if not os.path.exists(train_files_path) or not os.path.exists(valid_files_path): raise ValueError("Cannot find concatenated train.txt and valid.txt" "files! See the README in %s" % data_path) partial_path = data_path def construct_ascii_path(f): primary_dir = f.split("-")[0] if f[-1].isalpha(): sub_dir = f[:-1] else: sub_dir = f file_path = os.path.join(ascii_path, primary_dir, sub_dir, f + ".txt") return file_path def construct_stroke_paths(f): primary_dir = f.split("-")[0] if f[-1].isalpha(): sub_dir = f[:-1] else: sub_dir = f files_path = os.path.join(strokes_path, primary_dir, sub_dir) #Dash is crucial to obtain correct match! files = fnmatch.filter(os.listdir(files_path), f + "-*.xml") files = [os.path.join(files_path, fi) for fi in files] files = sorted(files, key=lambda x: int(x.split(os.sep)[-1].split("-")[-1][:-4])) return files train_npy_x = os.path.join(partial_path, "train_npy_x.npy") train_npy_y = os.path.join(partial_path, "train_npy_y.npy") valid_npy_x = os.path.join(partial_path, "valid_npy_x.npy") valid_npy_y = os.path.join(partial_path, "valid_npy_y.npy") if not os.path.exists(train_npy_x): train_names = [f.strip() for f in open(train_files_path, mode='r').readlines()] valid_names = [f.strip() for f in open(valid_files_path, mode='r').readlines()] train_ascii_files = [construct_ascii_path(f) for f in train_names] valid_ascii_files = [construct_ascii_path(f) for f in valid_names] train_stroke_files = [construct_stroke_paths(f) for f in train_names] valid_stroke_files = [construct_stroke_paths(f) for f in valid_names] train_set = (zip(train_stroke_files, train_ascii_files), train_npy_x, train_npy_y) valid_set = (zip(valid_stroke_files, valid_ascii_files), valid_npy_x, valid_npy_y) for se, x_npy_file, y_npy_file in [train_set, valid_set]: x_set = [] y_set = [] se = list(se) for n, (strokes_files, ascii_file) in enumerate(se): if n % 100 == 0: print("Processing file %i of %i" % (n, len(se))) with open(ascii_file) as fp: cleaned = [t.strip() for t in fp.readlines() if t != '\r\n' and t != '\n' and t != ' \r\n'] # Try using CSR idx = [n for n, li in enumerate(cleaned) if li == "CSR:"][0] cleaned_sub = cleaned[idx + 1:] corrected_sub = [] for li in cleaned_sub: # Handle edge case with %%%%% meaning new line? if "%" in li: li2 = re.sub('\%\%+', '%', li).split("%") li2 = [l.strip() for l in li2] corrected_sub.extend(li2) else: corrected_sub.append(li) n_one_hot = 57 y = [np.zeros((len(li), n_one_hot), dtype='int16') for li in corrected_sub] # A-Z, a-z, space, apostrophe, comma, period charset = list(range(65, 90 + 1)) + list(range(97, 122 + 1)) + [32, 39, 44, 46] tmap = {k: n + 1 for n, k in enumerate(charset)} # 0 for UNK/other tmap[0] = 0 def tokenize_ind(line): t = [ord(c) if ord(c) in charset else 0 for c in line] r = [tmap[i] for i in t] return r for n, li in enumerate(corrected_sub): y[n][np.arange(len(li)), tokenize_ind(li)] = 1 x = [] for stroke_file in strokes_files: with open(stroke_file) as fp: tree = etree.parse(fp) root = tree.getroot() # Get all the values from the XML # 0th index is stroke ID, will become up/down s = np.array([[i, int(Point.attrib['x']), int(Point.attrib['y'])] for StrokeSet in root for i, Stroke in enumerate(StrokeSet) for Point in Stroke]) # flip y axis s[:, 2] = -s[:, 2] # Get end of stroke points c = s[1:, 0] != s[:-1, 0] ci =
np.where(c == True)
numpy.where
#!/usr/bin/env python import abc import numpy as np # third party imports from .dataset import DataSet from .geodict import GeoDict class Grid(DataSet): """ An abstract class to represent lat/lon gridded datasets. Grids are assumed to be pixel-registered - that is, grid coordinates represent the value at the *center* of the cells. """ @abc.abstractmethod # should be a classmethod when instantiated def getFileGeoDict(filename): """ Abstract method to return the bounding box, resolution, and shape of a file in whatever Grid format. :param filename: The path to the filename of whatever grid format this is being implemented in. :returns: A geodict specifying the bounding box, resolution, and shape of the data in a file. """ raise NotImplementedError @abc.abstractmethod # should be a classmethod when instantiated def getBoundsWithin(filename, geodict): """ Abstract method to return a geodict for this file that is guaranteed to be inside the input geodict defined, without resampling. :param filename: The name of the file whose resolution/extent should be used. :param geodict: The geodict which is used as the base for finding the bounds for this file guaranteed to be inside of this geodict. :raises NotImplementedError: Always in base class """ raise NotImplementedError @classmethod def _getPadding(cls, geodict, paddict, padvalue): # get pad left columns - go outside specified bounds if not exact edge pxmin, pxmax, pymin, pymax = ( paddict.xmin, paddict.xmax, paddict.ymin, paddict.ymax) gxmin, gxmax, gymin, gymax = ( geodict.xmin, geodict.xmax, geodict.ymin, geodict.ymax) dx, dy = (geodict.dx, geodict.dy) ny, nx = (geodict.ny, geodict.nx) padleftcols = int(np.ceil((gxmin - pxmin) / dx)) padrightcols = int(np.ceil((pxmax - gxmax) / dx)) padbottomrows = int(np.ceil((gymin - pymin) / dy)) padtoprows = int(np.ceil((pymax - gymax) / dy)) # if any of these are negative, set them to zero if padleftcols < 0: padleftcols = 0 if padrightcols < 0: padrightcols = 0 if padbottomrows < 0: padbottomrows = 0 if padtoprows < 0: padtoprows = 0 leftpad = np.ones((ny, padleftcols)) * padvalue rightpad = np.ones((ny, padrightcols)) * padvalue nx += padrightcols + padleftcols bottompad = np.ones((padbottomrows, nx)) * padvalue toppad =
np.ones((padtoprows, nx))
numpy.ones
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code to load, preprocess and train on CIFAR-10.""" from absl import app from absl import flags from absl import logging import functools import os import pickle import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds from do_wide_and_deep_networks_learn_the_same_things.resnet_cifar import ResNet_CIFAR from do_wide_and_deep_networks_learn_the_same_things.shake_shake import build_shake_shake_model tf.enable_v2_behavior() FLAGS = flags.FLAGS #Define training hyperparameters flags.DEFINE_integer('batch_size', 128, 'Batch size') flags.DEFINE_float('learning_rate', 0.01, 'Learning rate') flags.DEFINE_integer('epochs', 300, 'Number of epochs to train for') flags.DEFINE_float('weight_decay', 0.0001, 'L2 regularization') #Define model & data hyperparameters flags.DEFINE_integer('depth', 56, 'No. of layers to use in the ResNet model') flags.DEFINE_integer( 'width_multiplier', 1, 'How much to scale the width of the standard ResNet model by') flags.DEFINE_integer( 'copy', 0, 'If the same model configuration has been run before, train another copy with a different random initialization' ) flags.DEFINE_string('base_dir', None, 'Where the trained model will be saved') flags.DEFINE_string('data_path', '', 'Directory where CIFAR subsampled dataset is stored') flags.DEFINE_string('dataset_name', 'cifar10', 'Name of dataset used (CIFAR-10 of CIFAR-100)') flags.DEFINE_boolean('use_residual', True, 'Whether to include residual connections in the model') flags.DEFINE_boolean('randomize_labels', False, 'Whether to randomize labels during training') flags.DEFINE_string('pretrain_dir', '', 'Directory where the pretrained model is saved') flags.DEFINE_boolean( 'partial_init', False, 'Whether to initialize only the first few layers with pretrained weights') flags.DEFINE_boolean('shake_shake', False, 'Whether to use shake shake model') flags.DEFINE_boolean('distort_color', False, 'Whether to apply color distortion augmentation') flags.DEFINE_integer('epoch_save_freq', 0, 'Frequency at which ckpts are saved') flags.DEFINE_boolean( 'save_image', False, 'Whether to save metadata of images used for each minibatch') def find_stack_markers(model): """Finds the layers where a new stack starts.""" stack_markers = [] old_shape = None for i, layer in enumerate(model.layers): if i == 0: continue if 'conv' in layer.name: conv_weights_shape = layer.get_weights()[0].shape if conv_weights_shape[-1] != conv_weights_shape[-2] and conv_weights_shape[ 0] != 1 and conv_weights_shape[-2] % 16 == 0: stack_markers.append(i) assert (len(stack_markers) == 2) return stack_markers def random_apply(transform_fn, image, p): """Randomly apply with probability p a transformation to an image""" if tf.random.uniform([]) < p: return transform_fn(image) else: return image def color_distortion(image, s=1.0): """Color distortion data augmentation""" # image is a tensor with value range in [0, 1]. # s is the strength of color distortion. def color_jitter(x): # one can also shuffle the order of following augmentations # each time they are applied. x = tf.image.random_brightness(x, max_delta=0.8 * s) x = tf.image.random_contrast(x, lower=1 - 0.8 * s, upper=1 + 0.8 * s) x = tf.image.random_saturation(x, lower=1 - 0.8 * s, upper=1 + 0.8 * s) x = tf.image.random_hue(x, max_delta=0.2 * s) x = tf.clip_by_value(x, 0, 1) return x def color_drop(x): x = tf.image.rgb_to_grayscale(x) x = tf.tile(x, [1, 1, 3]) return x # randomly apply transformation with probability p. image = random_apply(color_jitter, image, p=0.8) image = random_apply(color_drop, image, p=0.2) return image def preprocess_data(image, label, is_training): """CIFAR data preprocessing""" image = tf.image.convert_image_dtype(image, tf.float32) if is_training: crop_padding = 4 image = tf.pad(image, [[crop_padding, crop_padding], [crop_padding, crop_padding], [0, 0]], 'REFLECT') image = tf.image.random_crop(image, [32, 32, 3]) image = tf.image.random_flip_left_right(image) if FLAGS.distort_color: image = color_distortion(image, s=1.0) else: image = tf.image.resize_with_crop_or_pad(image, 32, 32) # central crop return image, label def preprocess_data_with_id(data, is_training): """CIFAR data preprocessing when image ids are included in the data loader""" image = data['image'] image = tf.image.convert_image_dtype(image, tf.float32) if is_training: crop_padding = 4 image = tf.pad(image, [[crop_padding, crop_padding], [crop_padding, crop_padding], [0, 0]], 'REFLECT') image = tf.image.random_crop(image, [32, 32, 3]) image = tf.image.random_flip_left_right(image) else: image = tf.image.resize_with_crop_or_pad(image, 32, 32) # central crop return data['id'], image, data['label'] def load_train_data(batch_size, data_path='', dataset_name='cifar10', n_data=50000, randomize_labels=False, as_supervised=True): """Load CIFAR training data""" if not data_path: train_dataset = tfds.load( name=dataset_name, split='train', as_supervised=as_supervised) else: if 'tiny' in data_path: # load about 1/16 of the data train_dataset = tfds.load( name=dataset_name, split='train[:6%]', as_supervised=as_supervised) elif 'half' in data_path: # load half of the data train_dataset = tfds.load( name=dataset_name, split='train[:50%]', as_supervised=as_supervised) else: # load 1/4 of the data train_dataset = tfds.load( name=dataset_name, split='train[:25%]', as_supervised=as_supervised) if randomize_labels: all_labels = [] all_images = [] for images, labels in train_dataset: all_labels.extend([labels.numpy()]) all_images.append(images.numpy()[np.newaxis, :, :, :]) all_images = np.vstack(all_images) np.random.seed(FLAGS.copy) np.random.shuffle(all_labels) train_dataset = tf.data.Dataset.from_tensor_slices( (tf.convert_to_tensor(all_images, dtype=tf.float32), tf.convert_to_tensor(all_labels, dtype=tf.int64))) train_dataset = train_dataset.shuffle(buffer_size=n_data) if as_supervised: train_dataset = train_dataset.map( functools.partial(preprocess_data, is_training=True)) else: train_dataset = train_dataset.map( functools.partial(preprocess_data_with_id, is_training=True)) train_dataset = train_dataset.batch(batch_size, drop_remainder=True) train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) return train_dataset def load_test_data(batch_size, shuffle=False, data_path='', dataset_name='cifar10', n_data=10000, as_supervised=True): """Load CIFAR test data""" if 'random' in dataset_name: np.random.seed(0) test_labels =
np.zeros((n_data,), dtype=np.int64)
numpy.zeros
import numpy as np import pandas as pd import matplotlib as mpl mpl.use("agg", warn=False) # noqa import matplotlib.pyplot as plt import matplotlib.colors import matplotlib.patches import matplotlib.gridspec from mpl_toolkits.axes_grid1.inset_locator import inset_axes import seaborn as sns import networkx as nx from scedar.eda import mtype from collections import OrderedDict sns.set(style="ticks") def labs_to_cmap(labels, return_lut=False, shuffle_colors=False, random_state=None): np.random.seed(random_state) # Each label has its own index and color mtype.check_is_valid_labs(labels) labels = np.array(labels) uniq_lab_arr = np.unique(labels) num_uniq_labs = len(uniq_lab_arr) uniq_lab_inds = list(range(num_uniq_labs)) lab_col_list = list(sns.hls_palette(num_uniq_labs)) if shuffle_colors: np.random.shuffle(lab_col_list) lab_cmap = mpl.colors.ListedColormap(lab_col_list) # Need to keep track the order of unique labels, so that a labeled # legend can be generated. # Map unique label indices to unique labels uniq_lab_lut = dict(zip(range(num_uniq_labs), uniq_lab_arr)) # Map unique labels to indices uniq_ind_lut = dict(zip(uniq_lab_arr, range(num_uniq_labs))) # a list of label indices lab_ind_arr = np.array([uniq_ind_lut[x] for x in labels]) # map unique labels to colors # Used to generate legends lab_col_lut = dict(zip([uniq_lab_lut[i] for i in range(len(uniq_lab_arr))], lab_col_list)) # norm separates cmap to difference indices # https://matplotlib.org/tutorials/colors/colorbar_only.html lab_norm = mpl.colors.BoundaryNorm(uniq_lab_inds + [lab_cmap.N], lab_cmap.N) if return_lut: return lab_cmap, lab_norm, lab_ind_arr, lab_col_lut, uniq_lab_lut else: return lab_cmap, lab_norm def cluster_scatter(projection2d, labels=None, selected_labels=None, plot_different_markers=False, label_markers=None, shuffle_label_colors=False, gradient=None, xlim=None, ylim=None, title=None, xlab=None, ylab=None, figsize=(20, 20), add_legend=True, n_txt_per_cluster=3, alpha=1, s=0.5, random_state=None, **kwargs): """Scatter plot for clustering illustration Args: projection2d (2 col numeric array): (n, 2) matrix to plot labels (list of labels): labels of n samples selected_labels (list of labels): selected labels to plot plot_different_markers (bool): plot different markers for samples with different labels label_markers (list of marker shapes): passed to matplotlib plot shuffle_label_colors (bool): shuffle the color of labels to avoid similar colors show up in close clusters gradient (list of number): color gradient of n samples title (str) xlab (str): x axis label ylab (str): y axis label figsize (tuple of two number): (width, height) add_legend (bool) n_txt_per_cluster (number): the number of text to plot per cluster. Could be 0. alpha (number) s (number): size of the points random_state (int): random seed to shuffle features **kwards: passed to matplotlib plot Return: matplotlib figure of the created scatter plot """ kwargs = kwargs.copy() # randomly: # - select labels for annotation if required # - shuffle colors if required np.random.seed(random_state) # check projection2d projection2d = np.array(projection2d, dtype="float") if (projection2d.ndim != 2) or (projection2d.shape[1] != 2): raise ValueError("projection2d matrix should have shape " "(n_samples, 2). {}".format(projection2d)) # check gradient length if gradient is not None: gradient =
np.array(gradient)
numpy.array
import cv2 as cv import numpy as np import SimpleITK as sitk from cellori.netmap import get_touch_map from pathlib import Path from scipy import special from skimage import feature, filters, measure, morphology, segmentation class Cellori: """Cellori class object that takes the path to an image file or an image array. Parameters ---------- image : str or numpy.ndarray The path to an ND2 or TIFF file or a ``numpy.ndarray`` of an image that has already been loaded. nd2_overlap : float, optional, default 0.1 The overlap percentage used by StitchWell for ND2 stitching. If ``None``, the value will be determined by automatic overlap calculation. This value is ignored if ``image`` is not the path to an ND2 file. nd2_stitch_channel : float, optional, default 0 The index of the channel used by StitchWell for automatic overlap calculation during ND2 stitching. This value is ignored if automatic overlap calculation is not applicable. nuclei_channel : int, optional, default 0 The index of the channel containing the nuclei for segmentation. This value is ignored if ``image`` has a single channel. Raises ------ ValueError If ``image`` is an invalid image path or array. ValueError If ``nuclei_channel`` is not specified for an ``image`` with multiple channels. ValueError If ``image`` has invalid dimensions. """ def __init__(self, image, **kwargs): self.all_coords = None self.default_nuclei_diameter = None self.default_sigma = None self.masks = None if isinstance(image, np.ndarray): self.image = image elif Path(image).is_file(): if image.endswith('.nd2'): from stitchwell import StitchWell nd2_overlap = kwargs.get('nd2_overlap', 0.1) nd2_stitch_channel = kwargs.get('nd2_stitch_channel', 0) self.image = StitchWell(image).stitch(0, nd2_overlap, nd2_stitch_channel) elif image.endswith(('.tif', '.tiff')): from tifffile import imread self.image = imread(image) else: raise ValueError("Invalid image.") if self.image.ndim != 2: if self.image.ndim == 3: nuclei_channel = kwargs.get('nuclei_channel') if nuclei_channel is not None: self.image = self.image[nuclei_channel] else: raise ValueError("Nuclei channel not specified.") else: raise ValueError("Invalid image dimensions.") global_thresh = filters.threshold_otsu(self.image[self.image > 0]) self.global_binary = self.image > global_thresh background = np.ma.masked_array(self.image, self.global_binary) self.background_std = np.std(background) markers = measure.label(self.global_binary) watershed = sitk.MorphologicalWatershedFromMarkers(sitk.GetImageFromArray(np.zeros(self.image.shape)), sitk.GetImageFromArray(markers), markWatershedLine=False) watershed = sitk.GetArrayFromImage(watershed) self.watershed_labeled = measure.label(watershed) self.watershed_regions = measure.regionprops(self.watershed_labeled, cache=False) def gui(self, estimate_parameters=True): """Initiates the Cellori GUI. Parameters ---------- estimate_parameters : bool, optional, default True Whether or not to run automatic parameter detection. Returns ------- masks : numpy.ndarray Labeled array of the same size as the original image with background pixels as 0 and cells as 1, 2, 3, ..., N. The most recent segmentation result is returned, if any. coords : numpy.ndarray Array of size (N, 2) with the coordinates of cell nuclei. The most recent segmentation result is returned, if any. image : numpy.ndarray Array of the image for use in post-processing. The most recent segmentation result is returned, if any. """ from cellori.run_gui import run_gui if estimate_parameters: self._estimate_parameters() else: self.default_sigma = 1 self.default_nuclei_diameter = 6 self.masks = None run_gui(self) if self.masks is not None: masks = self.masks coords = self.all_coords image = self.image return masks, coords, image def segment(self, segmentation_mode='combined', threshold_locality=0.5, sigma=None, nuclei_diameter=None, coordinate_format='indices'): """Segments the image using the Cellori algorithm. Parameters ---------- segmentation_mode : {'combined', 'intensity', 'morphology'}, optional, default 'combined' * ‘combined’: Use a combined maxima metric that incorporates both intensity and morphology. * ‘intensity’: Use an intensity-only maxima metric. * ‘morphology’: Use a morphology-only maxima metric. threshold_locality : float, optional, default 0.5 Fractional weight on local intensity used in thresholding. The value must be between 0 (global thresholding) and 1 (local thresholding). sigma : float, optional, default 1.5 Gaussian sigma used for denoising. If ``None``, the value will be determined by automatic parameter detection. nuclei_diameter : int, optional, default None Estimated lower bound of nuclei diameters. Any objects smaller than this threshold will not be considered for segmentation. If ``None``, the value will be determined by automatic parameter detection. coordinate_format : {'xy', 'indices'}, optional, default 'indices' * ‘xy’: Format coordinates for plotting on standard XY axes. * ‘indices’: Format coordinates as indices of the original image array. Returns ------- masks : numpy.ndarray Labeled array of the same size as the original image with background pixels as 0 and cells as 1, 2, 3, ..., N. coords : numpy.ndarray Array of size (N, 2) with the coordinates of cell nuclei. image : numpy.ndarray Array of the image for use in post-processing. Raises ------ ValueError If ``segmentation_mode`` is an invalid segmentation mode. ValueError If ``coordinate_format`` is an invalid coordinate format. """ if segmentation_mode not in ['combined', 'intensity', 'morphology']: raise ValueError("Invalid segmentation mode.") if (sigma is None) or (nuclei_diameter is None): self._estimate_parameters() if sigma is None: sigma = self.default_sigma if nuclei_diameter is None: nuclei_diameter = self.default_nuclei_diameter masks, coords = self._segment(self.image, self.watershed_labeled, segmentation_mode, threshold_locality, sigma, nuclei_diameter) if coordinate_format == 'xy': coords = self._indices_to_xy(coords) elif coordinate_format != 'indices': raise ValueError("Invalid coordinate format.") image = self.image return masks, coords, image def _segment(self, image, watershed_labeled, segmentation_mode, threshold_locality, sigma, nuclei_diameter, origin=None): """(For internal use) Get masks and nuclei coordinates using the Cellori algorithm. Parameters ---------- image : numpy.ndarray Array of the image to be segmented. watershed_labeled : numpy.ndarray Array of labeled watershed regions. segmentation_mode : {'combined', 'intensity', 'morphology'} * ‘combined’: Use a combined maxima metric that incorporates both intensity and morphology. * ‘intensity’: Use an intensity-only maxima metric. * ‘morphology’: Use a morphology-only maxima metric. threshold_locality : float Fractional weight on local intensity used in thresholding. The value must be between 0 (global thresholding) and 1 (local thresholding). sigma : float Gaussian sigma used for denoising. If ``None``, the value will be determined by automatic parameter detection. nuclei_diameter : int Estimated lower bound of nuclei diameters. Any objects smaller than this threshold will not be considered for segmentation. If ``None``, the value will be determined by automatic parameter detection. origin : tuple, optional, default None Origin coordinates of the GUI preview region. Returns ------- masks : numpy.ndarray Labeled array of the same size as the original image with background pixels as 0 and cells as 1, 2, 3, ..., N. coords : numpy.ndarray Array of size (N, 2) with the coordinates of cell nuclei. """ self.min_area = np.pi * (nuclei_diameter / 2) ** 2 coords, binary = self._find_nuclei(image, watershed_labeled, segmentation_mode, sigma, threshold_locality, nuclei_diameter, origin) masks = self._get_masks(binary, coords) masks, coords = self._merge_correct(masks) return masks, coords def _find_nuclei(self, image, watershed_labeled, segmentation_mode, sigma, threshold_locality, nuclei_diameter, origin): """(For internal use) Find nuclei using the Cellori algorithm. Parameters ---------- image : numpy.ndarray Array of the image to be segmented. watershed_labeled : numpy.ndarray Array of labeled watershed regions. segmentation_mode : {'combined', 'intensity', 'morphology'} * ‘combined’: Use a combined maxima metric that incorporates both intensity and morphology. * ‘intensity’: Use an intensity-only maxima metric. * ‘morphology’: Use a morphology-only maxima metric. threshold_locality : float Fractional weight on local intensity used in thresholding. The value must be between 0 (global thresholding) and 1 (local thresholding). sigma : float Gaussian sigma used for denoising. If ``None``, the value will be determined by automatic parameter detection. nuclei_diameter : int Estimated lower bound of nuclei diameters. Any objects smaller than this threshold will not be considered for segmentation. If ``None``, the value will be determined by automatic parameter detection. origin : tuple Origin coordinates of the GUI preview region. Returns ------- coords : numpy.ndarray Array of size (N, 2) with the coordinates of cell nuclei. binary : numpy.ndarray Binarized array of the same size as the original image. """ block_size = 2 * round(nuclei_diameter) + 1 binary = np.zeros(image.shape, dtype=bool) if origin is None: watershed_regions = self.watershed_regions origin = (0, 0) else: watershed_regions = measure.regionprops(watershed_labeled, cache=False) for region in watershed_regions: indices = [region.bbox[0], region.bbox[2], region.bbox[1], region.bbox[3]] image_crop = image[indices[0]:indices[1], indices[2]:indices[3]] global_binary_crop = self.global_binary[indices[0] + origin[0]:indices[1] + origin[0], indices[2] + origin[1]:indices[3] + origin[1]] binary_crop = self._conditional_local_threshold(image_crop, region.image, global_binary_crop, block_size, threshold_locality, self.background_std) binary_crop = np.where(region.image, binary_crop, 0) binary_current = binary[indices[0]:indices[1], indices[2]:indices[3]] binary[indices[0]:indices[1], indices[2]:indices[3]] = np.where(binary_crop, True, binary_current) binary = morphology.remove_small_objects(binary, self.min_area) binary = morphology.remove_small_holes(binary, self.min_area) binary_labeled = morphology.label(binary) regions = measure.regionprops(binary_labeled, cache=False) coords = np.empty(0) for region in regions: indices = [region.bbox[0], region.bbox[2], region.bbox[1], region.bbox[3]] if segmentation_mode == 'combined' or segmentation_mode == 'intensity': image_crop = self.image[indices[0] + origin[0]:indices[1] + origin[0], indices[2] + origin[1]:indices[3] + origin[1]] image_crop = np.where(region.image, image_crop, 0) if segmentation_mode == 'combined' or segmentation_mode == 'morphology': binary_crop = binary[indices[0]:indices[1], indices[2]:indices[3]] binary_distance = cv.distanceTransform(binary_crop.astype(np.uint8), cv.DIST_L2, 0) if segmentation_mode == 'combined': binary_distance = self._normalize(binary_distance) image_crop = self._normalize(image_crop) metric = image_crop + binary_distance elif segmentation_mode == 'intensity': metric = image_crop elif segmentation_mode == 'morphology': metric = binary_distance metric = filters.gaussian(metric, sigma, preserve_range=True) maxima = feature.peak_local_max(metric, min_distance=round(nuclei_diameter / 4), threshold_rel=0.5, exclude_border=False) coords = np.append(coords, maxima + region.bbox[:2]) coords = np.reshape(coords, (-1, 2)) return coords, binary @staticmethod def _get_masks(binary, coords): """(For internal use) Get masks using the watershed algorithm. Parameters ---------- binary : numpy.ndarray Binarized array of the same size as the original image. coords : numpy.ndarray Array of size (N, 2) with the coordinates of cell nuclei. Returns ------- masks : numpy.ndarray Labeled array of the same size as the original image with background pixels as 0 and cells as 1, 2, 3, ..., N. """ markers = np.zeros(binary.shape, dtype=bool) markers[tuple(np.rint(coords).astype(np.uint).T)] = True markers = measure.label(markers) masks = segmentation.watershed(binary, markers, mask=binary) return masks def _merge_correct(self, masks): """(For internal use) Correct for oversegmentation via rule-based region merging. Parameters ---------- masks : numpy.ndarray Labeled array of the same size as the original image with background pixels as 0 and cells as 1, 2, 3, ..., N. Returns ------- masks : numpy.ndarray Labeled array of the image after region merging corrections. """ masks = measure.label(masks) regions = measure.regionprops(masks, cache=False) idx = get_touch_map(masks) cells = np.unique(list(idx.keys())) if len(cells) > 0: corrected_masks = masks.copy() merged_cells = list() cell_map = {cell: cell for cell in cells} for cell in cells: merge_candidates = [merge_candidate for merge_candidate in idx[cell] if merge_candidate not in merged_cells] merged_cells.append(cell) if len(merge_candidates) == 0: continue cell_region = regions[cell - 1] cell_indices = np.array( [cell_region.bbox[0], cell_region.bbox[2], cell_region.bbox[1], cell_region.bbox[3]]) for merge_candidate in merge_candidates: merge_candidate_region = regions[merge_candidate - 1] merge_candidate_indices = np.array( [merge_candidate_region.bbox[0], merge_candidate_region.bbox[2], merge_candidate_region.bbox[1], merge_candidate_region.bbox[3]]) merge_indices = np.array([min(cell_indices[0], merge_candidate_indices[0]), max(cell_indices[1], merge_candidate_indices[1]), min(cell_indices[2], merge_candidate_indices[2]), max(cell_indices[3], merge_candidate_indices[3])]) merge_crop = masks[merge_indices[0]:merge_indices[1], merge_indices[2]:merge_indices[3]] merge_test = np.where((merge_crop == cell) | (merge_crop == merge_candidate), 1, 0) merge_region = measure.regionprops(merge_test, cache=False)[0] average_solidity = (cell_region.solidity + merge_candidate_region.solidity) / 2 if (4 * cell_region.area < self.min_area) | (4 * merge_candidate_region.area < self.min_area) | ( (merge_region.area < 4 * self.min_area) & ( merge_region.solidity > 0.975 * average_solidity)): new_cell = min(cell_map[cell], cell_map[merge_candidate]) corrected_masks[merge_indices[0]:merge_indices[1], merge_indices[2]:merge_indices[3]][ merge_test > 0] = new_cell cell_map[merge_candidate] = new_cell masks = corrected_masks regions = measure.regionprops(masks) coords = np.array([region.centroid for region in regions]) return masks, coords @staticmethod def _conditional_local_threshold(image, mask, global_binary, block_size, k_max, c): """(For internal use) Calculate conditional local threshold. Parameters ---------- image : numpy.ndarray Array of the image to be thresholded. mask : numpy.ndarray Array marking the region to be thresholding. global_binary : numpy.ndarray Binarized array of the image using global thresholding. block_size : int Odd size of pixel neighborhood which is used for local thresholding (e.g., 3, 5, 7, ..., 21). k_max : float Maximum fractional weight on local intensity used in thresholding. The value must be between 0 (global thresholding) and 1 (local thresholding). c : float Global constant subtracted from local threshold array. Returns ------- threshold : numpy.ndarray Array of local threshold values. All pixels in the input image higher than the corresponding pixel in the threshold array are considered foreground. """ image_masked = np.float64(image) * mask background = image_masked * np.invert(global_binary) mask = np.float64(mask) image_blurred = cv.blur(image_masked, (block_size, block_size)) mask = cv.blur(mask, (block_size, block_size)) smooth = image_blurred / (mask + 1e-15) threshold = image_masked > smooth + c if (k_max > 0) & (np.sum(background) > 0): k = k_max * (1 - np.sqrt(np.sum(threshold) / np.sum(mask))) bg_std = np.std(background[background > 0]) offset = k * bg_std + (1 - k) * c threshold = image_masked > smooth + offset threshold = threshold * mask return threshold def _estimate_parameters(self): """(For internal use) Estimate parameters for segmentation. """ global_binary = cv.morphologyEx(self.global_binary.astype(np.uint8), cv.MORPH_ERODE, np.ones((3, 3))) global_binary = segmentation.clear_border(global_binary) foreground_labeled = measure.label(global_binary) regions = measure.regionprops(foreground_labeled, cache=False) equivalent_diameters = np.array([region.equivalent_diameter for region in regions]) self.default_nuclei_diameter = np.around(np.median(equivalent_diameters), 2) n = round(self.default_nuclei_diameter / 4) self.default_sigma = np.around(2 ** (2 * n) / (special.comb(2 * n, n) *
np.sqrt(2 * np.pi)
numpy.sqrt
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the catalog module. """ from astropy.coordinates import SkyCoord from astropy.modeling.models import Gaussian2D from astropy.table import QTable import astropy.units as u from numpy.testing import assert_allclose, assert_equal, assert_raises import numpy as np import pytest from ..catalog import SourceCatalog from ..core import SegmentationImage from ..detect import detect_sources from ...aperture import CircularAperture, EllipticalAperture from ...datasets import make_gwcs, make_wcs, make_noise_image from ...utils._optional_deps import HAS_GWCS, HAS_MATPLOTLIB, HAS_SCIPY # noqa @pytest.mark.skipif('not HAS_SCIPY') class TestSourceCatalog: def setup_class(self): xcen = 51. ycen = 52.7 major_sigma = 8. minor_sigma = 3. theta = np.pi / 6. g1 = Gaussian2D(111., xcen, ycen, major_sigma, minor_sigma, theta=theta) g2 = Gaussian2D(50, 20, 80, 5.1, 4.5) g3 = Gaussian2D(70, 75, 18, 9.2, 4.5) g4 = Gaussian2D(111., 11.1, 12.2, major_sigma, minor_sigma, theta=theta) g5 = Gaussian2D(81., 61, 42.7, major_sigma, minor_sigma, theta=theta) g6 = Gaussian2D(107., 75, 61, major_sigma, minor_sigma, theta=-theta) g7 = Gaussian2D(107., 90, 90, 4, 2, theta=-theta) yy, xx = np.mgrid[0:101, 0:101] self.data = (g1(xx, yy) + g2(xx, yy) + g3(xx, yy) + g4(xx, yy) + g5(xx, yy) + g6(xx, yy) + g7(xx, yy)) threshold = 27. self.segm = detect_sources(self.data, threshold, npixels=5) self.error = make_noise_image(self.data.shape, mean=0, stddev=2., seed=123) self.background = np.ones(self.data.shape) * 5.1 self.mask = np.zeros(self.data.shape, dtype=bool) self.mask[0:30, 0:30] = True self.wcs = make_wcs(self.data.shape) self.cat = SourceCatalog(self.data, self.segm, error=self.error, background=self.background, mask=self.mask, wcs=self.wcs, localbkg_width=24) unit = u.nJy self.unit = unit self.cat_units = SourceCatalog(self.data << unit, self.segm, error=self.error << unit, background=self.background << unit, mask=self.mask, wcs=self.wcs, localbkg_width=24) @pytest.mark.parametrize('with_units', (True, False)) def test_catalog(self, with_units): props1 = ('background_centroid', 'background_mean', 'background_sum', 'bbox', 'covar_sigx2', 'covar_sigxy', 'covar_sigy2', 'cxx', 'cxy', 'cyy', 'ellipticity', 'elongation', 'fwhm', 'equivalent_radius', 'gini', 'kron_radius', 'maxval_xindex', 'maxval_yindex', 'minval_xindex', 'minval_yindex', 'perimeter', 'sky_bbox_ll', 'sky_bbox_lr', 'sky_bbox_ul', 'sky_bbox_ur', 'sky_centroid_icrs', 'local_background', 'segment_flux', 'segment_fluxerr', 'kron_flux', 'kron_fluxerr') props2 = ('centroid', 'covariance', 'covariance_eigvals', 'cutout_centroid', 'cutout_maxval_index', 'cutout_minval_index', 'inertia_tensor', 'maxval_index', 'minval_index', 'moments', 'moments_central', 'background', 'background_ma', 'convdata', 'convdata_ma', 'data', 'data_ma', 'error', 'error_ma', 'segment', 'segment_ma') props = tuple(self.cat.default_columns) + props1 + props2 if with_units: cat1 = self.cat_units.copy() cat2 = self.cat_units.copy() else: cat1 = self.cat.copy() cat2 = self.cat.copy() # test extra properties cat1.circular_photometry(5.0, name='circ5') cat1.kron_photometry((2.0, 1.0), name='kron2') cat1.fluxfrac_radius(0.5, name='r_hl') segment_snr = cat1.segment_flux / cat1.segment_fluxerr cat1.add_extra_property('segment_snr', segment_snr) props = list(props) props.extend(cat1.extra_properties) idx = 1 # evaluate (cache) catalog properties before slice obj = cat1[idx] for prop in props: assert_equal(getattr(cat1, prop)[idx], getattr(obj, prop)) # slice catalog before evaluating catalog properties obj = cat2[idx] obj.circular_photometry(5.0, name='circ5') obj.kron_photometry((2.0, 1.0), name='kron2') obj.fluxfrac_radius(0.5, name='r_hl') segment_snr = obj.segment_flux / obj.segment_fluxerr obj.add_extra_property('segment_snr', segment_snr) for prop in props: assert_equal(getattr(obj, prop), getattr(cat1, prop)[idx]) @pytest.mark.parametrize('with_units', (True, False)) def test_catalog_detection_cat(self, with_units): """ Test aperture-based properties with an input detection catalog. """ error = 2.0 * self.error data2 = self.data + error if with_units: cat1 = self.cat_units.copy() cat2 = SourceCatalog(data2 << self.unit, self.segm, error=error << self.unit, background=self.background << self.unit, mask=self.mask, wcs=self.wcs, localbkg_width=24, detection_cat=None) cat3 = SourceCatalog(data2 << self.unit, self.segm, error=error << self.unit, background=self.background << self.unit, mask=self.mask, wcs=self.wcs, localbkg_width=24, detection_cat=cat1) else: cat1 = self.cat.copy() cat2 = SourceCatalog(data2, self.segm, error=error, background=self.background, mask=self.mask, wcs=self.wcs, localbkg_width=24, detection_cat=None) cat3 = SourceCatalog(data2, self.segm, error=error, background=self.background, mask=self.mask, wcs=self.wcs, localbkg_width=24, detection_cat=cat1) assert_equal(cat1.kron_radius, cat3.kron_radius) # assert not equal with assert_raises(AssertionError): assert_equal(cat1.kron_radius, cat2.kron_radius) with assert_raises(AssertionError): assert_equal(cat2.kron_flux, cat3.kron_flux) with assert_raises(AssertionError): assert_equal(cat2.kron_fluxerr, cat3.kron_fluxerr) with assert_raises(AssertionError): assert_equal(cat1.kron_flux, cat3.kron_flux) with assert_raises(AssertionError): assert_equal(cat1.kron_fluxerr, cat3.kron_fluxerr) flux1, fluxerr1 = cat1.circular_photometry(1.0) flux2, fluxerr2 = cat2.circular_photometry(1.0) flux3, fluxerr3 = cat3.circular_photometry(1.0) with assert_raises(AssertionError): assert_equal(flux2, flux3) with assert_raises(AssertionError): assert_equal(fluxerr2, fluxerr3) with assert_raises(AssertionError): assert_equal(flux1, flux2) with assert_raises(AssertionError): assert_equal(fluxerr1, fluxerr2) flux1, fluxerr1 = cat1.kron_photometry((2.0, 1.0)) flux2, fluxerr2 = cat2.kron_photometry((2.0, 1.0)) flux3, fluxerr3 = cat3.kron_photometry((2.0, 1.0)) with assert_raises(AssertionError): assert_equal(flux2, flux3) with assert_raises(AssertionError): assert_equal(fluxerr2, fluxerr3) with assert_raises(AssertionError): assert_equal(flux1, flux2) with assert_raises(AssertionError): assert_equal(fluxerr1, fluxerr2) radius1 = cat1.fluxfrac_radius(0.5) radius2 = cat2.fluxfrac_radius(0.5) radius3 = cat3.fluxfrac_radius(0.5) with assert_raises(AssertionError): assert_equal(radius2, radius3) with assert_raises(AssertionError): assert_equal(radius1, radius2) cat4 = cat3[0:1] assert len(cat4.kron_radius) == 1 def test_minimal_catalog(self): cat = SourceCatalog(self.data, self.segm) obj = cat[4] props = ('background', 'background_ma', 'error', 'error_ma') for prop in props: assert getattr(obj, prop) is None props = ('background_mean', 'background_sum', 'background_centroid', 'segment_fluxerr', 'kron_fluxerr') for prop in props: assert np.isnan(getattr(obj, prop)) assert obj.local_background_aperture is None assert obj.local_background == 0. def test_slicing(self): self.cat.to_table() # evaluate and cache several properties obj1 = self.cat[0] assert obj1.nlabels == 1 obj1b = self.cat.get_label(1) assert obj1b.nlabels == 1 obj2 = self.cat[0:1] assert obj2.nlabels == 1 assert len(obj2) == 1 obj3 = self.cat[0:3] obj3b = self.cat.get_labels((1, 2, 3)) assert_equal(obj3.label, obj3b.label) obj4 = self.cat[[0, 1, 2]] assert obj3.nlabels == 3 assert obj3b.nlabels == 3 assert obj4.nlabels == 3 assert len(obj3) == 3 assert len(obj4) == 3 obj5 = self.cat[[3, 2, 1]] labels = [4, 3, 2] obj5b = self.cat.get_labels(labels) assert_equal(obj5.label, obj5b.label) assert obj5.nlabels == 3 assert len(obj5) == 3 assert_equal(obj5.label, labels) obj6 = obj5[0] assert obj6.label == labels[0] mask = self.cat.label > 3 obj7 = self.cat[mask] assert obj7.nlabels == 4 assert len(obj7) == 4 with pytest.raises(TypeError): obj1 = self.cat[0] obj2 = obj1[0] def test_iter(self): labels = [] for obj in self.cat: labels.append(obj.label) assert len(labels) == len(self.cat) def test_table(self): columns = ['label', 'xcentroid', 'ycentroid'] tbl = self.cat.to_table(columns=columns) assert len(tbl) == 7 assert tbl.colnames == columns def test_invalid_inputs(self): # test 1D arrays img1d = np.arange(4) segm = SegmentationImage(img1d) with pytest.raises(ValueError): SourceCatalog(img1d, segm) wrong_shape = np.ones((3, 3)) with pytest.raises(ValueError): SourceCatalog(wrong_shape, self.segm) with pytest.raises(ValueError): SourceCatalog(self.data, self.segm, error=wrong_shape) with pytest.raises(ValueError): SourceCatalog(self.data, self.segm, background=wrong_shape) with pytest.raises(ValueError): SourceCatalog(self.data, self.segm, mask=wrong_shape) with pytest.raises(ValueError): segm = SegmentationImage(wrong_shape) SourceCatalog(self.data, segm) with pytest.raises(TypeError): SourceCatalog(self.data, wrong_shape) with pytest.raises(TypeError): obj = SourceCatalog(self.data, self.segm)[0] len(obj) with pytest.raises(ValueError): SourceCatalog(self.data, self.segm, localbkg_width=-1) with pytest.raises(ValueError): SourceCatalog(self.data, self.segm, localbkg_width=3.4) with pytest.raises(ValueError): apermask_method = 'invalid' SourceCatalog(self.data, self.segm, apermask_method=apermask_method) with pytest.raises(ValueError): kron_params = (2.5, 0.0, 3.0) SourceCatalog(self.data, self.segm, kron_params=kron_params) with pytest.raises(ValueError): kron_params = (-2.5, 0.0) SourceCatalog(self.data, self.segm, kron_params=kron_params) with pytest.raises(ValueError): kron_params = (2.5, -4.0) SourceCatalog(self.data, self.segm, kron_params=kron_params) def test_invalid_units(self): unit = u.uJy wrong_unit = u.km with pytest.raises(ValueError): SourceCatalog(self.data << unit, self.segm, error=self.error << wrong_unit) with pytest.raises(ValueError): SourceCatalog(self.data << unit, self.segm, background=self.background << wrong_unit) # all array inputs must have the same unit with pytest.raises(ValueError): SourceCatalog(self.data << unit, self.segm, error=self.error) with pytest.raises(ValueError): SourceCatalog(self.data, self.segm, background=self.background << unit) def test_wcs(self): mywcs = make_wcs(self.data.shape) cat = SourceCatalog(self.data, self.segm, wcs=mywcs) obj = cat[0] assert obj.sky_centroid is not None assert obj.sky_centroid_icrs is not None assert obj.sky_bbox_ll is not None assert obj.sky_bbox_ul is not None assert obj.sky_bbox_lr is not None assert obj.sky_bbox_ur is not None @pytest.mark.skipif('not HAS_GWCS') def test_gwcs(self): mywcs = make_gwcs(self.data.shape) cat = SourceCatalog(self.data, self.segm, wcs=mywcs) obj = cat[1] assert obj.sky_centroid is not None assert obj.sky_centroid_icrs is not None assert obj.sky_bbox_ll is not None assert obj.sky_bbox_ul is not None assert obj.sky_bbox_lr is not None assert obj.sky_bbox_ur is not None def test_nowcs(self): cat = SourceCatalog(self.data, self.segm, wcs=None) obj = cat[2] assert obj.sky_centroid is None assert obj.sky_centroid_icrs is None assert obj.sky_bbox_ll is None assert obj.sky_bbox_ul is None assert obj.sky_bbox_lr is None assert obj.sky_bbox_ur is None def test_to_table(self): cat = SourceCatalog(self.data, self.segm) assert len(cat) == 7 tbl = cat.to_table() assert isinstance(tbl, QTable) assert len(tbl) == 7 obj = cat[0] assert obj.nlabels == 1 tbl = obj.to_table() assert len(tbl) == 1 def test_masks(self): """ Test masks, including automatic masking of all non-finite (e.g., NaN, inf) values in the data array. """ data = np.copy(self.data) error = np.copy(self.error) background = np.copy(self.background) data[:, 55] = np.nan data[16, :] = np.inf error[:, 55] = np.nan error[16, :] = np.inf background[:, 55] = np.nan background[16, :] = np.inf cat = SourceCatalog(data, self.segm, error=error, background=background, mask=self.mask) props = ('xcentroid', 'ycentroid', 'area', 'orientation', 'segment_flux', 'segment_fluxerr', 'kron_flux', 'kron_fluxerr', 'background_mean') obj = cat[0] for prop in props: assert np.isnan(getattr(obj, prop)) objs = cat[1:] for prop in props: assert np.all(np.isfinite(getattr(objs, prop))) # test that mask=None is the same as mask=np.ma.nomask cat1 = SourceCatalog(data, self.segm, mask=None) cat2 = SourceCatalog(data, self.segm, mask=np.ma.nomask) assert cat1[0].xcentroid == cat2[0].xcentroid def test_repr_str(self): cat = SourceCatalog(self.data, self.segm) assert repr(cat) == str(cat) lines = ('Length: 7', 'labels: [1 2 3 4 5 6 7]') for line in lines: assert line in repr(cat) def test_kernel(self): kernel = np.array([[1., 2, 1], [2, 4, 2], [1, 2, 100]]) kernel /= kernel.sum() cat1 = SourceCatalog(self.data, self.segm, kernel=None) cat2 = SourceCatalog(self.data, self.segm, kernel=kernel) assert not np.array_equal(cat1.xcentroid, cat2.xcentroid) assert not np.array_equal(cat1.ycentroid, cat2.ycentroid) def test_detection_cat(self): data2 = self.data - 5 cat1 = SourceCatalog(data2, self.segm) cat2 = SourceCatalog(data2, self.segm, detection_cat=self.cat) assert len(cat2.kron_aperture) == len(cat2) assert not np.array_equal(cat1.kron_radius, cat2.kron_radius) assert not np.array_equal(cat1.kron_flux, cat2.kron_flux) assert_allclose(cat2.kron_radius, self.cat.kron_radius) assert not np.array_equal(cat2.kron_flux, self.cat.kron_flux) with pytest.raises(TypeError): SourceCatalog(data2, self.segm, detection_cat=np.arange(4)) with pytest.raises(ValueError): segm = self.segm.copy() segm.remove_labels((6, 7)) cat = SourceCatalog(self.data, segm) SourceCatalog(self.data, self.segm, detection_cat=cat) def test_kron_minradius(self): kron_params = (2.5, 10.0) cat = SourceCatalog(self.data, self.segm, mask=self.mask, apermask_method='none', kron_params=kron_params) assert cat.kron_aperture[0] is None assert isinstance(cat.kron_aperture[2], EllipticalAperture) assert isinstance(cat.kron_aperture[4], CircularAperture) def test_kron_masking(self): apermask_method = 'none' cat1 = SourceCatalog(self.data, self.segm, apermask_method=apermask_method) apermask_method = 'mask' cat2 = SourceCatalog(self.data, self.segm, apermask_method=apermask_method) apermask_method = 'correct' cat3 = SourceCatalog(self.data, self.segm, apermask_method=apermask_method) idx = 2 # source with close neighbors assert cat1[idx].kron_flux > cat2[idx].kron_flux assert cat3[idx].kron_flux > cat2[idx].kron_flux assert cat1[idx].kron_flux > cat3[idx].kron_flux def test_kron_negative(self): cat = SourceCatalog(self.data - 10, self.segm) assert np.all(np.isnan(cat.kron_radius.value)) assert np.all(np.isnan(cat.kron_flux)) def test_kron_photometry(self): flux1, fluxerr1 = self.cat.kron_photometry((2.5, 1.0)) assert_allclose(flux1, self.cat.kron_flux) assert_allclose(fluxerr1, self.cat.kron_fluxerr) flux1, fluxerr1 = self.cat.kron_photometry((1.0, 1.0), name='kron1') flux2, fluxerr2 = self.cat.kron_photometry((2.0, 1.0), name='kron2')
assert_allclose(flux1, self.cat.kron1_flux)
numpy.testing.assert_allclose
from qutiepy import * import numpy as np from scipy.linalg import expm import warnings warnings.filterwarnings('ignore') """ Ax = b """ def main(debug=False): A = np.array([[0.707,0.707], [0.707,-0.707]]) k = np.linalg.cond(A) print("k = ", k) bBits = int(np.log2(A.shape[0])) bAmps = [1, 0] b = register(bBits) b.setAmps(bAmps) answer = np.linalg.solve(A, b.amps).astype(float) t = 6 # bits in phi T = 2 ** t # states in phi amps = np.flip(np.sqrt(2/T) * np.array([np.sin((np.pi*(tau+0.5)/T)) for tau in range(T)])) phi0 = register(t) phi0.setAmps(amps) phi0b = prod(phi0, b) t0 = 1 ### HAMILTONIAN SIMULATION hamMatTerms = [] for tau in range(T): #construct hamilton operator tautau = np.zeros((T, T)) tautau[tau, tau] = 1 # t x t oper = expm(1j*tau*t0*A/T) # t x t term =
np.kron(tautau, oper)
numpy.kron
import unittest from functools import partial from pathlib import Path import numpy as np from brainbox.core import Bunch from oneibl.one import ONE from ibllib.qc import task_metrics as qcmetrics from brainbox.behavior.wheel import cm_to_rad class TestTaskMetrics(unittest.TestCase): def setUp(self): self.data = self.load_fake_bpod_data() self.wheel_gain = 4 wheel_data = self.load_fake_wheel_data(self.data, wheel_gain=self.wheel_gain) self.data.update(wheel_data) @staticmethod def load_fake_bpod_data(n=5): """Create fake extractor output of bpodqc.load_data :param n: the number of trials :return: a dict of simulated trial data """ trigg_delay = 1e-4 # an ideal delay between triggers and measured times resp_feeback_delay = 1e-3 # delay between feedback and response stimOff_itiIn_delay = 5e-3 # delay between stimOff and itiIn N = partial(np.random.normal, (n,)) # Convenience function for norm dist sampling choice = np.ones((n,), dtype=int) choice[[1, 3]] = -1 # a couple of incorrect trials choice[0] = 0 # a nogo trial # One trial of each type incorrect correct = choice != 0 correct[np.argmax(choice == 1)] = 0 correct[np.argmax(choice == -1)] = 0 quiescence_length = 0.2 + np.random.standard_exponential(size=(n,)) iti_length = 0.5 # inter-trial interval # trial lengths include quiescence period, a couple small trigger delays and iti trial_lengths = quiescence_length + resp_feeback_delay + (trigg_delay * 4) + iti_length # add on 60s for nogos + feedback time (1 or 2s) + ~0.5s for other responses trial_lengths += (choice == 0) * 60 + (~correct + 1) + (choice != 0) * N(0.5) start_times = np.concatenate(([0], np.cumsum(trial_lengths)[:-1])) end_times = np.cumsum(trial_lengths) - 1e-2 data = { "phase": np.random.uniform(low=0, high=2 * np.pi, size=(n,)), "quiescence": quiescence_length, "choice": choice, "correct": correct, "intervals": np.c_[start_times, end_times], "itiIn_times": end_times - iti_length + stimOff_itiIn_delay, "position": np.ones_like(choice) * 35 } data["stimOnTrigger_times"] = start_times + data["quiescence"] + 1e-4 data["stimOn_times"] = data["stimOnTrigger_times"] + 1e-1 data["goCueTrigger_times"] = data["stimOn_times"] + 1e-3 data["goCue_times"] = data["goCueTrigger_times"] + trigg_delay data["response_times"] = end_times - ( resp_feeback_delay + iti_length + (~correct + 1) ) data["feedback_times"] = data["response_times"] + resp_feeback_delay data["stimFreeze_times"] = data["response_times"] + 1e-2 data["stimFreezeTrigger_times"] = data["stimFreeze_times"] - trigg_delay data["feedbackType"] = np.vectorize(lambda x: -1 if x == 0 else x)(data["correct"]) outcome = data["feedbackType"].copy() outcome[data["choice"] == 0] = 0 data["outcome"] = outcome # Delay of 1 second if correct, 2 seconds if incorrect data["stimOffTrigger_times"] = data["feedback_times"] + (~correct + 1) data["stimOff_times"] = data["stimOffTrigger_times"] + trigg_delay # Error tone times nan on incorrect trials outcome_times = np.vectorize(lambda x, y: x + 1e-2 if y else np.nan) data["errorCueTrigger_times"] = outcome_times(data["feedback_times"], ~data["correct"]) data["errorCue_times"] = data["errorCueTrigger_times"] + trigg_delay data["valveOpen_times"] = outcome_times(data["feedback_times"], data["correct"]) data["rewardVolume"] = ~np.isnan(data["valveOpen_times"]) * 3.0 return data @staticmethod def load_fake_wheel_data(trial_data, wheel_gain=4): # Load a wheel fragment: a numpy array of the form [timestamps, positions], for a wheel # movement during one trial. Wheel is X1 bpod RE in radians. wh_path = Path(__file__).parent.joinpath('..', 'fixtures', 'qc').resolve() wheel_frag = np.load(wh_path.joinpath('wheel.npy')) resolution = np.mean(np.abs(np.diff(wheel_frag[:, 1]))) # pos diff between samples # abs displacement, s, in mm required to move 35 visual degrees POS_THRESH = 35 s_mm = np.abs(POS_THRESH / wheel_gain) # don't care about direction # convert abs displacement to radians (wheel pos is in rad) pos_thresh = cm_to_rad(s_mm * 1e-1) # index of threshold cross pos_thresh_idx = np.argmax(np.abs(wheel_frag[:, 1]) > pos_thresh) def qt_wheel_fill(start, end, t_step=0.001, p_step=None): if p_step is None: p_step = 2 * np.pi / 1024 t = np.arange(start, end, t_step) p = np.random.randint(-1, 2, len(t)) t = t[p != 0] p = p[p != 0].cumsum() * p_step return t, p wheel_data = [] # List generated of wheel data fragments movement_times = [] # List of generated first movement times def add_frag(t, p): """Add wheel data fragments to list, adjusting positions to be within one sample of one another""" last_samp = getattr(add_frag, 'last_samp', (0, 0)) p += last_samp[1] if np.abs(p[0] - last_samp[1]) == 0: p += resolution wheel_data.append((t, p)) add_frag.last_samp = (t[-1], p[-1]) for i in np.arange(len(trial_data['choice'])): # Iterate over trials generating wheel samples for the necessary periods # trial start to stim on; should be below quiescence threshold stimOn_trig = trial_data['stimOnTrigger_times'][i] trial_start = trial_data['intervals'][i, 0] t, p = qt_wheel_fill(trial_start, stimOn_trig, .5, resolution) if len(t) > 0: # Possible for no movement during quiescence add_frag(t, p) # stim on to trial end trial_end = trial_data['intervals'][i, 1] if trial_data['choice'][i] == 0: # Add random wheel movements for duration of trial goCue = trial_data['goCue_times'][i] t, p = qt_wheel_fill(goCue, trial_end, .1, resolution) add_frag(t, p) movement_times.append(t[0]) else: # Align wheel fragment with response time response_time = trial_data['response_times'][i] t = wheel_frag[:, 0] + response_time - wheel_frag[pos_thresh_idx, 0] p = np.abs(wheel_frag[:, 1]) * trial_data['choice'][i] assert t[0] > add_frag.last_samp[0] movement_times.append(t[1]) add_frag(t, p) # Fill in random movements between end of response and trial end t, p = qt_wheel_fill(t[-1] + 0.01, trial_end, p_step=resolution) add_frag(t, p) # Stitch wheel fragments and assert no skips wheel_data = np.concatenate(list(map(np.column_stack, wheel_data))) assert np.all(np.diff(wheel_data[:, 0]) > 0), "timestamps don't strictly increase" np.testing.assert_allclose(np.abs(np.diff(wheel_data[:, 1])), resolution) assert len(movement_times) == trial_data['intervals'].shape[0] return { 'wheel_timestamps': wheel_data[:, 0], 'wheel_position': wheel_data[:, 1], 'firstMovement_times': np.array(movement_times) } def test_check_stimOn_goCue_delays(self): metric, passed = qcmetrics.check_stimOn_goCue_delays(self.data) self.assertTrue(np.allclose(metric, 0.0011), "failed to return correct metric") # Set incorrect timestamp (goCue occurs before stimOn) self.data["goCue_times"][-1] = self.data["stimOn_times"][-1] - 1e-4 metric, passed = qcmetrics.check_stimOn_goCue_delays(self.data) n = len(self.data["stimOn_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_response_feedback_delays(self): metric, passed = qcmetrics.check_response_feedback_delays(self.data) self.assertTrue(np.allclose(metric, 0.001), "failed to return correct metric") # Set incorrect timestamp (feedback occurs before response) self.data["feedback_times"][-1] = self.data["response_times"][-1] - 1e-4 metric, passed = qcmetrics.check_response_feedback_delays(self.data) n = len(self.data["feedback_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_response_stimFreeze_delays(self): metric, passed = qcmetrics.check_response_stimFreeze_delays(self.data) self.assertTrue(np.allclose(metric, 1e-2), "failed to return correct metric") # Set incorrect timestamp (stimFreeze occurs before response) self.data["stimFreeze_times"][-1] = self.data["response_times"][-1] - 1e-4 metric, passed = qcmetrics.check_response_stimFreeze_delays(self.data) n = len(self.data["feedback_times"]) - np.sum(self.data["choice"] == 0) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_positive_feedback_stimOff_delays(self): metric, passed = qcmetrics.check_positive_feedback_stimOff_delays(self.data) self.assertTrue( np.allclose(metric[self.data["correct"]], 1e-4), "failed to return correct metric" ) # Set incorrect timestamp (stimOff occurs just after response) id = np.argmax(self.data["correct"]) self.data["stimOff_times"][id] = self.data["response_times"][id] + 1e-2 metric, passed = qcmetrics.check_positive_feedback_stimOff_delays(self.data) expected = (self.data["correct"].sum() - 1) / self.data["correct"].sum() self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_negative_feedback_stimOff_delays(self): err_trial = ~self.data["correct"] metric, passed = qcmetrics.check_negative_feedback_stimOff_delays(self.data) values = np.abs(metric[err_trial]) self.assertTrue(np.allclose(values, 1e-2), "failed to return correct metric") # Set incorrect timestamp (stimOff occurs 1s after response) id = np.argmax(err_trial) self.data["stimOff_times"][id] = self.data["response_times"][id] + 1 metric, passed = qcmetrics.check_negative_feedback_stimOff_delays(self.data) expected = (err_trial.sum() - 1) / err_trial.sum() self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_error_trial_event_sequence(self): metric, passed = qcmetrics.check_error_trial_event_sequence(self.data) self.assertTrue(np.all(metric == ~self.data['correct']), "failed to return correct metric") self.assertTrue(np.all(passed)) # Set incorrect timestamp (itiIn occurs before errorCue) err_trial = ~self.data["correct"] (id,) = np.where(err_trial) self.data["intervals"][id[0], 0] = np.inf self.data["errorCue_times"][id[1]] = 0 metric, passed = qcmetrics.check_error_trial_event_sequence(self.data) expected = (err_trial.sum() - 2) / err_trial.sum() self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_correct_trial_event_sequence(self): metric, passed = qcmetrics.check_correct_trial_event_sequence(self.data) self.assertTrue(np.all(metric == self.data['correct']), "failed to return correct metric") self.assertTrue(np.all(passed)) # Set incorrect timestamp correct = self.data["correct"] id = np.argmax(correct) self.data["intervals"][id, 0] = np.inf metric, passed = qcmetrics.check_correct_trial_event_sequence(self.data) expected = (correct.sum() - 1) / correct.sum() self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_trial_length(self): metric, passed = qcmetrics.check_trial_length(self.data) self.assertTrue(np.all(metric), "failed to return correct metric") # Set incorrect timestamp self.data["goCue_times"][-1] = 0 metric, passed = qcmetrics.check_trial_length(self.data) n = len(self.data["goCue_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_goCue_delays(self): metric, passed = qcmetrics.check_goCue_delays(self.data) self.assertTrue(np.allclose(metric, 1e-4), "failed to return correct metric") # Set incorrect timestamp self.data["goCue_times"][1] = self.data["goCueTrigger_times"][1] + 0.1 metric, passed = qcmetrics.check_goCue_delays(self.data) n = len(self.data["goCue_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_errorCue_delays(self): metric, passed = qcmetrics.check_errorCue_delays(self.data) err_trial = ~self.data["correct"] self.assertTrue(np.allclose(metric[err_trial], 1e-4), "failed to return correct metric") # Set incorrect timestamp id = np.argmax(err_trial) self.data["errorCue_times"][id] = self.data["errorCueTrigger_times"][id] + 0.1 metric, passed = qcmetrics.check_errorCue_delays(self.data) n = err_trial.sum() expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_stimOn_delays(self): metric, passed = qcmetrics.check_stimOn_delays(self.data) self.assertTrue(np.allclose(metric, 1e-1), "failed to return correct metric") # Set incorrect timestamp self.data["stimOn_times"][-1] = self.data["stimOnTrigger_times"][-1] + 0.2 metric, passed = qcmetrics.check_stimOn_delays(self.data) n = len(self.data["stimOn_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_stimOff_delays(self): metric, passed = qcmetrics.check_stimOff_delays(self.data) self.assertTrue(np.allclose(metric, 1e-4), "failed to return correct metric") # Set incorrect timestamp self.data["stimOff_times"][-1] = self.data["stimOffTrigger_times"][-1] + 0.2 metric, passed = qcmetrics.check_stimOff_delays(self.data) n = len(self.data["stimOff_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_stimFreeze_delays(self): metric, passed = qcmetrics.check_stimFreeze_delays(self.data) self.assertTrue(np.allclose(metric, 1e-4), "failed to return correct metric") # Set incorrect timestamp self.data["stimFreeze_times"][-1] = self.data["stimFreezeTrigger_times"][-1] + 0.2 metric, passed = qcmetrics.check_stimFreeze_delays(self.data) n = len(self.data["stimFreeze_times"]) expected = (n - 1) / n self.assertEqual(np.nanmean(passed), expected, "failed to detect dodgy timestamp") def test_check_reward_volumes(self): metric, passed = qcmetrics.check_reward_volumes(self.data) self.assertTrue(all(x in {0.0, 3.0} for x in metric), "failed to return correct metric") self.assertTrue(np.all(passed)) # Set incorrect volume id = np.array([np.argmax(self.data["correct"]), np.argmax(~self.data["correct"])]) self.data["rewardVolume"][id] = self.data["rewardVolume"][id] + 1 metric, passed = qcmetrics.check_reward_volumes(self.data) self.assertTrue(np.mean(passed) == 0.6, "failed to detect incorrect reward volumes") def test_check_reward_volume_set(self): metric, passed = qcmetrics.check_reward_volume_set(self.data) self.assertTrue(all(x in {0.0, 3.0} for x in metric), "failed to return correct metric") self.assertTrue(passed) # Add a new volume to the set id = np.argmax(self.data["correct"]) self.data["rewardVolume"][id] = 2.3 metric, passed = qcmetrics.check_reward_volume_set(self.data) self.assertFalse(passed, "failed to detect incorrect reward volume set") # Set 0 volumes to new value; set length still 2 but should fail anyway self.data["rewardVolume"][~self.data["correct"]] = 2.3 metric, passed = qcmetrics.check_reward_volume_set(self.data) self.assertFalse(passed, "failed to detect incorrect reward volume set") def test_check_audio_pre_trial(self): # Create Sound sync fake data that is OK BNC2_OK = { "times": self.data["goCue_times"] + 1e-1, "polarities": np.array([1, -1, 1, -1, 1]), } # Create Sound sync fake data that is NOT OK BNC2_NOK = { "times": self.data["goCue_times"] - 1e-1, "polarities": np.array([1, -1, 1, -1, 1]), } metric, passed = qcmetrics.check_audio_pre_trial(self.data, audio=BNC2_OK) self.assertTrue(~np.all(metric)) self.assertTrue(np.all(passed)) metric, passed = qcmetrics.check_audio_pre_trial(self.data, audio=BNC2_NOK) self.assertTrue(np.all(metric)) self.assertTrue(~np.all(passed)) def test_check_wheel_freeze_during_quiescence(self): metric, passed = qcmetrics.check_wheel_freeze_during_quiescence(self.data) self.assertTrue(np.all(passed)) # Make one trial move more n = 1 # Index of trial to manipulate t1 = self.data['intervals'][n, 0] t2 = self.data['stimOnTrigger_times'][n] ts, pos = (self.data['wheel_timestamps'], self.data['wheel_position']) wh_idx = np.argmax(ts > t1) if ts[wh_idx] > self.data['stimOnTrigger_times'][n]: # No sample during quiescence; insert one self.data['wheel_timestamps'] = np.insert(ts, wh_idx, t2 - .001) self.data['wheel_position'] = np.insert(pos, wh_idx, np.inf) else: # Otherwise make one sample infinite self.data['wheel_position'][wh_idx] = np.inf metric, passed = qcmetrics.check_wheel_freeze_during_quiescence(self.data) self.assertFalse(passed[n]) self.assertTrue(metric[n] > 2) def test_check_wheel_move_before_feedback(self): metric, passed = qcmetrics.check_wheel_move_before_feedback(self.data) nogo = self.data['choice'] == 0 self.assertTrue(np.all(passed[~nogo])) self.assertTrue(np.isnan(metric[nogo]).all()) self.assertTrue(np.isnan(passed[nogo]).all()) # Remove wheel data around feedback for choice trial assert self.data['choice'].any(), 'no choice trials in test data' n = np.argmax(self.data['choice'] != 0) # Index of choice trial mask = np.logical_xor(self.data['wheel_timestamps'] > self.data['feedback_times'][n] - 1, self.data['wheel_timestamps'] < self.data['feedback_times'][n] + 1) self.data['wheel_timestamps'] = self.data['wheel_timestamps'][mask] self.data['wheel_position'] = self.data['wheel_position'][mask] metric, passed = qcmetrics.check_wheel_move_before_feedback(self.data) self.assertFalse(passed[n] or metric[n] != 0) def test_check_wheel_move_during_closed_loop(self): gain = self.wheel_gain or 4 metric, passed = qcmetrics.check_wheel_move_during_closed_loop(self.data, gain) nogo = self.data['choice'] == 0 self.assertTrue(np.all(passed[~nogo])) self.assertTrue(np.isnan(metric[nogo]).all()) self.assertTrue(np.isnan(passed[nogo]).all()) # Remove wheel data for choice trial assert self.data['choice'].any(), 'no choice trials in test data' n = np.argmax(self.data['choice'] != 0) # Index of choice trial mask = np.logical_xor(self.data['wheel_timestamps'] < self.data['goCue_times'][n], self.data['wheel_timestamps'] > self.data['response_times'][n]) self.data['wheel_timestamps'] = self.data['wheel_timestamps'][mask] self.data['wheel_position'] = self.data['wheel_position'][mask] metric, passed = qcmetrics.check_wheel_move_during_closed_loop(self.data, gain) self.assertFalse(passed[n]) def test_check_wheel_integrity(self): metric, passed = qcmetrics.check_wheel_integrity(self.data, re_encoding='X1') self.assertTrue(np.all(passed)) # Insert some violations and verify that they're caught idx = np.random.randint(self.data['wheel_timestamps'].size, size=2) self.data['wheel_timestamps'][idx[0] + 1] -= 1 self.data['wheel_position'][idx[1]] -= 1 metric, passed = qcmetrics.check_wheel_integrity(self.data, re_encoding='X1') self.assertFalse(passed[idx].any()) def test_check_n_trial_events(self): metric, passed = qcmetrics.check_n_trial_events(self.data) self.assertTrue(np.all(passed == 1.) and np.all(metric)) # Change errorCueTriggers id = np.argmax(self.data['correct']) self.data['errorCueTrigger_times'][id] = self.data['intervals'][id, 0] + np.random.rand() _, passed = qcmetrics.check_n_trial_events(self.data) self.assertFalse(passed[id]) # Change another event id = id - 1 if id > 0 else id + 1 self.data['goCue_times'][id] = self.data['intervals'][id, 1] + np.random.rand() _, passed = qcmetrics.check_n_trial_events(self.data) self.assertFalse(passed[id]) def test_check_detected_wheel_moves(self): metric, passed = qcmetrics.check_detected_wheel_moves(self.data) self.assertTrue(np.all(self.data['firstMovement_times'] == metric)) self.assertTrue(np.all(passed)) # Change a movement time id = np.argmax(self.data['choice'] != 0) self.data['firstMovement_times'][id] = self.data['goCue_times'][id] - 0.3 _, passed = qcmetrics.check_detected_wheel_moves(self.data) self.assertEqual(0.75, np.nanmean(passed)) # Change the min_qt _, passed = qcmetrics.check_detected_wheel_moves(self.data, min_qt=0.3) self.assertTrue(np.all(passed)) @unittest.skip("not implemented") def test_check_stimulus_move_before_goCue(self): pass # TODO Nicco? def test_check_stimOff_itiIn_delays(self): metric, passed = qcmetrics.check_stimOff_itiIn_delays(self.data) self.assertTrue(np.nanmean(passed)) # No go should be NaN id = np.argmax(self.data['choice'] == 0) self.assertTrue(np.isnan(passed[id]), 'No go trials should be excluded') # Change a trial id = np.argmax(self.data['choice'] != 0) self.data['stimOff_times'][id] = self.data['itiIn_times'][id] + 1e-4 _, passed = qcmetrics.check_stimOff_itiIn_delays(self.data) # recompute self.assertEqual(0.75, np.nanmean(passed)) def test_check_iti_delays(self): metric, passed = qcmetrics.check_iti_delays(self.data) # We want the metric to return positive values that are close to 0.1, given the test data self.assertTrue(np.allclose(metric[:-1], 1e-2, atol=0.001), "failed to return correct metric") self.assertTrue(np.isnan(metric[-1]), "last trial should be NaN") self.assertTrue(np.all(passed)) # Mess up a trial id = 2 self.data["intervals"][id + 1, 0] += 0.5 # Next trial starts 0.5 sec later metric, passed = qcmetrics.check_iti_delays(self.data) n_trials = len(self.data["stimOff_times"]) - 1 # Last trial NaN here expected = (n_trials - 1) / n_trials self.assertTrue(expected, np.nanmean(passed)) @unittest.skip("not implemented") def test_check_frame_frequency(self): pass # TODO Miles @unittest.skip("not implemented") def test_check_frame_updates(self): pass # TODO Nicco? class TestHabituationQC(unittest.TestCase): """Test HabituationQC class NB: For complete coverage this should be run along slide the integration tests """ def setUp(self): eid = '8dd0fcb0-1151-4c97-ae35-2e2421695ad7' one = ONE(base_url='https://test.alyx.internationalbrainlab.org', username='test_user', password='<PASSWORD>') self.qc = qcmetrics.HabituationQC(eid, one=one) self.qc.extractor = Bunch({'data': self.load_fake_bpod_data()}) # Dummy extractor obj @staticmethod def load_fake_bpod_data(n=5): """Create fake extractor output of bpodqc.load_data :param n: the number of trials :return: a dict of simulated trial data """ trigg_delay = 1e-4 # an ideal delay between triggers and measured times iti_length = 0.5 # the so-called 'inter-trial interval' blank_length = 1. # the time between trial start and stim on stimCenter_length = 1. # the length of time the stimulus is in the center # the lengths of time between stim on and stim center stimOn_length = np.random.normal(size=(n,)) + 10 # trial lengths include couple small trigger delays and iti trial_lengths = blank_length + stimOn_length + 1e-1 + stimCenter_length start_times = np.concatenate(([0], np.cumsum(trial_lengths)[:-1])) end_times = np.cumsum(trial_lengths) - 1e-2 data = { "phase": np.random.uniform(low=0, high=2 * np.pi, size=(n,)), "stimOnTrigger_times": start_times + blank_length, "intervals": np.c_[start_times, end_times], "itiIn_times": end_times - iti_length, "position": np.random.choice([-1, 1], n, replace=True) * 35, "feedbackType":
np.ones(n)
numpy.ones
"""Define functions to create the triplet loss with online triplet mining.""" import logging import time import numpy as np import tensorflow as tf from pyxtools import calc_distance_pairs def _pairwise_distances(embeddings, squared=False): """Compute the 2D matrix of distances between all the embeddings. Args: embeddings: tensor of shape (batch_size, embed_dim) squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: pairwise_distances: tensor of shape (batch_size, batch_size) """ # Get the dot product between all embeddings # shape (batch_size, batch_size) dot_product = tf.matmul(embeddings, tf.transpose(embeddings)) # Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`. # This also provides more numerical stability (the diagonal of the result will be exactly 0). # shape (batch_size,) square_norm = tf.diag_part(dot_product) # Compute the pairwise distance matrix as we have: # ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2 # shape (batch_size, batch_size) distances = tf.expand_dims(square_norm, 1) - 2.0 * dot_product + tf.expand_dims(square_norm, 0) # Because of computation errors, some distances might be negative so we put everything >= 0.0 distances = tf.maximum(distances, 0.0) if not squared: # Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal) # we need to add a small epsilon where distances == 0.0 mask = tf.to_float(tf.equal(distances, 0.0)) distances = distances + mask * 1e-16 distances = tf.sqrt(distances) # Correct the epsilon added: set the distances on the mask to be exactly 0.0 distances = distances * (1.0 - mask) return distances def _get_anchor_positive_triplet_mask(labels): """Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label. Args: labels: tf.int32 `Tensor` with shape [batch_size] Returns: mask: tf.bool `Tensor` with shape [batch_size, batch_size] """ # Check that i and j are distinct indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) indices_not_equal = tf.logical_not(indices_equal) # Check if labels[i] == labels[j] # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1) labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) # Combine the two masks mask = tf.logical_and(indices_not_equal, labels_equal) return mask def _get_anchor_negative_triplet_mask(labels): """Return a 2D mask where mask[a, n] is True iff a and n have distinct labels. Args: labels: tf.int32 `Tensor` with shape [batch_size] Returns: mask: tf.bool `Tensor` with shape [batch_size, batch_size] """ # Check if labels[i] != labels[k] # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1) labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) mask = tf.logical_not(labels_equal) return mask def _get_triplet_mask(labels): """Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid. A triplet (i, j, k) is valid if: - i, j, k are distinct - labels[i] == labels[j] and labels[i] != labels[k] Args: labels: tf.int32 `Tensor` with shape [batch_size] """ # Check that i, j and k are distinct indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) indices_not_equal = tf.logical_not(indices_equal) i_not_equal_j = tf.expand_dims(indices_not_equal, 2) i_not_equal_k = tf.expand_dims(indices_not_equal, 1) j_not_equal_k = tf.expand_dims(indices_not_equal, 0) distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k) # Check if labels[i] == labels[j] and labels[i] != labels[k] label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) i_equal_j = tf.expand_dims(label_equal, 2) i_equal_k = tf.expand_dims(label_equal, 1) valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k)) # Combine the two masks mask = tf.logical_and(distinct_indices, valid_labels) return mask def batch_all_triplet_loss(labels, embeddings, margin, squared=False): """Build the triplet loss over a batch of embeddings. We generate all the valid triplets and average the loss over the positive ones. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) margin: margin for triplet loss squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: triplet_loss: scalar tensor containing the triplet loss """ # Get the pairwise distance matrix pairwise_dist = _pairwise_distances(embeddings, squared=squared) # shape (batch_size, batch_size, 1) anchor_positive_dist = tf.expand_dims(pairwise_dist, 2) assert anchor_positive_dist.shape[2] == 1, "{}".format(anchor_positive_dist.shape) # shape (batch_size, 1, batch_size) anchor_negative_dist = tf.expand_dims(pairwise_dist, 1) assert anchor_negative_dist.shape[1] == 1, "{}".format(anchor_negative_dist.shape) # Compute a 3D tensor of size (batch_size, batch_size, batch_size) # triplet_loss[i, j, k] will contain the triplet loss of anchor=i, positive=j, negative=k # Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1) # and the 2nd (batch_size, 1, batch_size) triplet_loss = anchor_positive_dist - anchor_negative_dist + margin # Put to zero the invalid triplets # (where label(a) != label(p) or label(n) == label(a) or a == p) mask = _get_triplet_mask(labels) mask = tf.to_float(mask) triplet_loss = tf.multiply(mask, triplet_loss) # Remove negative losses (i.e. the easy triplets) triplet_loss = tf.maximum(triplet_loss, 0.0) # Count number of positive triplets (where triplet_loss > 0) valid_triplets = tf.to_float(tf.greater(triplet_loss, 1e-16)) num_positive_triplets = tf.reduce_sum(valid_triplets) num_valid_triplets = tf.reduce_sum(mask) fraction_positive_triplets = num_positive_triplets / (num_valid_triplets + 1e-16) # Get final mean triplet loss over the positive valid triplets triplet_loss = tf.reduce_sum(triplet_loss) / (num_positive_triplets + 1e-16) return triplet_loss, fraction_positive_triplets def batch_hard_triplet_loss(labels, embeddings, margin, squared=False): """Build the triplet loss over a batch of embeddings. For each anchor, we get the hardest positive and hardest negative to form a triplet. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) margin: margin for triplet loss squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: triplet_loss: scalar tensor containing the triplet loss """ # Get the pairwise distance matrix pairwise_dist = _pairwise_distances(embeddings, squared=squared) # For each anchor, get the hardest positive # First, we need to get a mask for every valid positive (they should have same label) mask_anchor_positive = _get_anchor_positive_triplet_mask(labels) mask_anchor_positive = tf.to_float(mask_anchor_positive) # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p)) anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist) # shape (batch_size, 1) hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True) tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist)) # For each anchor, get the hardest negative # First, we need to get a mask for every valid negative (they should have different labels) mask_anchor_negative = _get_anchor_negative_triplet_mask(labels) mask_anchor_negative = tf.to_float(mask_anchor_negative) # We add the maximum value in each row to the invalid negatives (label(a) == label(n)) max_anchor_negative_dist = tf.reduce_max(pairwise_dist, axis=1, keepdims=True) anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative) # shape (batch_size,) hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True) tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist)) # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0) # Get final mean triplet loss triplet_loss = tf.reduce_mean(triplet_loss) return triplet_loss def _get_pair_sum_loss(xi, margin, squared=False): d12 = tf.linalg.norm(xi[0] - xi[1] + 1e-16) d13 = tf.linalg.norm(xi[0] - xi[2] + 1e-16) d14 = tf.linalg.norm(xi[0] - xi[3] + 1e-16) d23 = tf.linalg.norm(xi[1] - xi[2] + 1e-16) d24 = tf.linalg.norm(xi[1] - xi[3] + 1e-16) if squared: d12 = tf.square(d12) d13 = tf.square(d13) d14 = tf.square(d14) d23 = tf.square(d23) d24 = tf.square(d24) return tf.maximum(d12 - d13 + margin, 0.0) + \ tf.maximum(d12 - d14 + margin, 0.0) + \ tf.maximum(d12 - d23 + margin, 0.0) + \ tf.maximum(d12 - d24 + margin, 0.0) def test_numpy(): import numpy as np def calc_loss(x) -> float: loss_list = [] for i in range(x.shape[0]): d12 = np.linalg.norm(x[i][0] - x[i][1]) d13 = np.linalg.norm(x[i][0] - x[i][2]) d14 = np.linalg.norm(x[i][0] - x[i][3]) d23 = np.linalg.norm(x[i][1] - x[i][2]) d24 = np.linalg.norm(x[i][1] - x[i][3]) loss_list.append(np.maximum(d12 - d13 + 0.5, 0.0)) loss_list.append(np.maximum(d12 - d14 + 0.5, 0.0)) loss_list.append(
np.maximum(d12 - d23 + 0.5, 0.0)
numpy.maximum
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278':
np.array([0.050316962184345455, 0.9292276112117481])
numpy.array
from pioneer.common import platform from pioneer.das.api import categories from pioneer.das.api.samples.sample import Sample import cv2 import numpy as np class Poly2d(Sample): def __init__(self, index, datasource, virtual_raw = None, virtual_ts = None): super(Poly2d, self).__init__(index, datasource, virtual_raw, virtual_ts) def colored_image(self, resolution:tuple=None): polygons = self.raw _,_,ds_type = platform.parse_datasource_name(self.datasource.label) poly_source = categories.get_source(ds_type) image = np.zeros((polygons['resolution'][0],polygons['resolution'][1],3), dtype=np.uint8) for poly in polygons['data']: name, color = categories.get_name_color(poly_source,poly['classes']) color = np.array(color)/255 cv2.fillPoly(image, [poly['polygon']], color) return self.resize_mask(image, resolution) if resolution is not None else image def mask_category(self, category:str, resolution:tuple=None, confidence_threshold:float=0.5): polygons = self.raw _,_,ds_type = platform.parse_datasource_name(self.datasource.label) poly_source = categories.get_source(ds_type) mask =
np.zeros((polygons['resolution'][0],polygons['resolution'][1]), dtype=np.uint8)
numpy.zeros
from numpy import sqrt, pi, angle, fft, fix, zeros, roll, dot, mean, \ array, size, diag, tile, ones, asarray, polyfit, polyval, arange, \ percentile, ceil, float64 from thunder.rdds.series import Series from thunder.utils.common import loadMatVar, checkParams class TimeSeries(Series): """ Distributed collection of time series data. Backed by an RDD of key-value pairs where the key is an identifier and the value is a one-dimensional array. The common index specifies the time of each entry in the array. Parameters ---------- rdd : RDD of (tuple, array) pairs RDD containing the series data. index : array-like Time indices, must be same length as the arrays in the input data. Defaults to arange(len(data)) if not provided. dims : Dimensions Specify the dimensions of the keys (min, max, and count), can avoid computation if known in advance. See also -------- Series : base class for Series data """ # use superclass __init__ @property def _constructor(self): return TimeSeries def triggeredAverage(self, events, lag=0): """ Construct an average time series triggered on each of several events, considering a range of lags before and after the event Parameters ---------- events : array-like List of events to trigger on lag : int Range of lags to consider, will cover (-lag, +lag) """ events = asarray(events) m = zeros((lag*2+1, len(self.index))) for i, shift in enumerate(range(-lag, lag+1)): fillInds = events + shift fillInds = fillInds[fillInds >= 0] fillInds = fillInds[fillInds < len(self.index)] m[i, fillInds] = 1 if lag == 0: newIndex = 0 else: newIndex = range(-lag, lag+1) scale = m.sum(axis=1) rdd = self.rdd.mapValues(lambda x: dot(m, x) / scale) return self._constructor(rdd, index=newIndex).__finalize__(self) def blockedAverage(self, blockLength): """ Average blocks of a time series together, e.g. because they correspond to trials of some repeated measurement or process Parameters ---------- triallength : int Length of trial, must divide evenly into total length of time series """ n = len(self.index) if divmod(n, blockLength)[1] != 0: raise Exception('Trial length, %g, must evenly divide length of time series, %g' % (blockLength, n)) if n == blockLength: raise Exception('Trial length, %g, cannot be length of entire time series, %g' % (blockLength, n)) m = tile(diag(ones((blockLength,))), [n/blockLength, 1]).T newIndex = range(0, blockLength) scale = n / blockLength rdd = self.rdd.mapValues(lambda x: dot(m, x) / scale) return self._constructor(rdd, index=newIndex).__finalize__(self) def subsample(self, sampleFactor=2): """ Subsample time series by an integer factor Parameters ---------- sampleFactor : positive integer, optional, default=2 """ if sampleFactor < 0: raise Exception('Factor for subsampling must be postive, got %g' % sampleFactor) s = slice(0, len(self.index), sampleFactor) newIndex = self.index[s] return self._constructor( self.rdd.mapValues(lambda v: v[s]), index=newIndex).__finalize__(self) def fourier(self, freq=None): """ Compute statistics of a Fourier decomposition on time series data Parameters ---------- freq : int Digital frequency at which to compute coherence and phase """ def get(y, freq): y = y - mean(y) nframes = len(y) ft = fft.fft(y) ft = ft[0:int(fix(nframes/2))] ampFt = 2*abs(ft)/nframes amp = ampFt[freq] ampSum = sqrt(sum(ampFt**2)) co = amp / ampSum ph = -(pi/2) - angle(ft[freq]) if ph < 0: ph += pi * 2 return array([co, ph]) if freq >= int(fix(
size(self.index)
numpy.size
# -*- coding: utf-8 -*- ## @package som_cm.som # # Implementation of SOM. # @author tody # @date 2015/08/14 import os import numpy as np import matplotlib.pyplot as plt from som_cm.np.norm import normVectors ## SOM parameter. class SOMParam: # @param h image grid size. # @param L0 initial parameter for learning restraint. # @param lmbd iteration limit. # @param dimensoin target dimension for SOM. def __init__(self, h=32, L0=0.16, lmbd=0.6, sigma0=0.3, dimension=2): self.h = h self.L0 = L0 self.lmbd = lmbd self.sigma0 = sigma0 self.dimension = dimension ## Implementation of SOM. # # SOM with numpy functions. # - Compute nodes as n x 3 vector. # - Avoid the loops for x and y. # - xy coordinates are cached as n x 2 vector. class SOM: ## Constructor # @param samples training samples. # @param param SOM parameter. def __init__(self, samples, param=SOMParam()): self._h = param.h self._dimension = param.dimension self._samples = samples self._L0 = param.L0 self._nodes = self._initialNode(param.h, param.dimension) num_samples = self.numSamples() self._lmbd = param.lmbd * num_samples self._sigma0 = param.sigma0 * param.h self._computePositions(param.h, param.dimension) self._t = 0 ## Return the number of training samples. def numSamples(self): return len(self._samples) ## Return the current node image. def nodeImage(self): if self._dimension == 1: return self._nodeImage1D() else: return self._nodeImage2D() ## Return the current time step t. def currentStep(self): return self._t ## Return if the training is finished. def finished(self): return self._t == self.numSamples() ## Process all training process. def trainAll(self): while self._t < len(self._samples): self._train(self._t) self._t += 1 ## Process training step t to t+1. def trainStep(self): if self._t < len(self._samples): self._train(self._t) self._t += 1 def _nodeImage1D(self): h = 10 w = self._h node_image = np.zeros((h, w, 3)) for y in range(h): node_image[y, :, :] = self._nodes[:, :] return node_image def _nodeImage2D(self): return self._nodes.reshape(self._h, self._h, 3) ## Initial node. def _initialNode(self, h, dimension): if dimension == 1: return self._initialNode1D(h) else: return self._initialNode2D(h) def _initialNode1D(self, h): return np.random.rand(h, 3) def _initialNode2D(self, h): return np.random.rand(h, h, 3).reshape(-1, 3) ## Compute position. def _computePositions(self, h, dimension): if dimension == 1: self._computePositions1D(h) else: self._computePositions2D(h) def _computePositions1D(self, h): x = np.arange(h) self._positions = x def _computePositions2D(self, h): x = np.arange(h) y = np.arange(h) xs, ys = np.meshgrid(x, y) xs = xs.flatten() ys = ys.flatten() self._positions = np.array([xs, ys]).T ## Train process. def _train(self, t): sample = self._samples[t] # bmu bmu_id = self._bmu(sample) bmu_position = self._positions[bmu_id] # update weight D = normVectors(self._positions - bmu_position) L = self._learningRestraint(t) T = self._neighborhoodFunction(t, D) # update nodes for ci in range(3): self._nodes[:, ci] += L * T * (sample[ci] - self._nodes[:, ci]) ## BMU: best matching unit. # Return the unit of minimum distance from the sample. def _bmu(self, sample): norms = normVectors(self._nodes - sample) bmu_id = np.argmin(norms) return bmu_id ## Neighborhood function: exp (-D^2 / 2 sigma^2) def _neighborhoodFunction(self, t, D): sigma = self._sigma0 * np.exp(-t / self._lmbd) Theta =
np.exp(-D ** 2 / (2 * sigma ** 2))
numpy.exp
from flask import Flask, request import os import cv2 import dlib import numpy as np from keras.models import load_model import os # --------------------------------- # LOADING MODEL loadedModal = load_model('main.model') # --------------------------------- # CROPPING IMAGE FUNCTIONS detector = dlib.get_frontal_face_detector() new_path = './crops/' def MyRec(rgb, x, y, w, h, v=20, color=(200, 0, 0), thikness=2): """To draw stylish rectangle around the objects""" cv2.line(rgb, (x, y), (x+v, y), color, thikness) cv2.line(rgb, (x, y), (x, y+v), color, thikness) cv2.line(rgb, (x+w, y), (x+w-v, y), color, thikness) cv2.line(rgb, (x+w, y), (x+w, y+v), color, thikness) cv2.line(rgb, (x, y+h), (x, y+h-v), color, thikness) cv2.line(rgb, (x, y+h), (x+v, y+h), color, thikness) cv2.line(rgb, (x+w, y+h), (x+w, y+h-v), color, thikness) cv2.line(rgb, (x+w, y+h), (x+w-v, y+h), color, thikness) def save(img, name, bbox, width=48, height=48): x, y, w, h = bbox imgCrop = img[y:h, x: w] # we need this line to reshape the images imgCrop = cv2.resize(imgCrop, (width, height)) cv2.imwrite(name, imgCrop) def faces(image, imageFilename): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = detector(gray) # detect the face for counter, face in enumerate(faces): print(counter) x1, y1 = face.left(), face.top() x2, y2 = face.right(), face.bottom() cv2.rectangle(image, (x1, y1), (x2, y2), (220, 255, 220), 1) MyRec(image, x1, y1, x2 - x1, y2 - y1, 10, (0, 250, 0), 3) save(gray, "./images/" + imageFilename, (x1, y1, x2, y2)) newImg = cv2.imread("./images/" + imageFilename) print("done saving") return newImg # --------------------------------- # API app = Flask(__name__) @app.route('/') def hello_world(): return 'Muce - Facial Emotion Recognition Service' @app.route('/upload', methods=['POST']) def upload(): try: image = request.files['image'] if not image: return {'message': 'No image uploaded!'}, 404 image.save(os.path.join("images/", image.filename)) inputImg = cv2.imread("./images/" + image.filename) cropedImg = faces(inputImg, image.filename) cropedImg =
np.array([cropedImg])
numpy.array
import numpy as np import matplotlib.pyplot as plt from scipy.linalg import eigh from scipy.optimize import fsolve # Input Parameters a=0.35 # Dimension of square column area=np.square(a) # Area of C/S of column in m^2 I=np.power(a,4)/12 # Moment of inertia in m^4 ndof=3 # Number of degree of freedom in the system h=3 # Interfloor space in m E=25e9 # Young's modulus of concrete in N/m^2 # Mass of each floor m1=400000 m2=300000 m3=200000 # Loading the Response Spectra from Question 2 PeriodArray=np.load('DispResponseSpectra.npy')[:,0] PeakDispArray=np.load('DispResponseSpectra.npy')[:,1] PeakAcclnArray=np.load('AccResponseSpectra.npy')[:,1] # Lumped mass matrix M=np.diag([m1,m2,m3]) # Mass matrix print('Mass matrix (kg):\n'+str(M)+'\n') # Lateral stiffness k=12*E*I/np.power(h,3) # Stiffness for one column per floor k=6*k # Stiffness per floor K=np.matrix([[2*k,-k,0],[-k,2*k,-k],[0,-k,k]]) #Stiffness print('Stiffness matrix (N/m):\n'+str(K)+'\n') print('Moment of inetria (m^4): '+str(I)+'\n') # MODULE 1: using eigenvalue solution-Exact solution------------------ print('**************************EIGENVALUE SOLUTION*********************\n' ) OmegaSquare,EigVector=np.linalg.eig(K*np.linalg.inv(M)) OmegaExact=np.sqrt(OmegaSquare) # Natural frequency print('Omega (1/s): '+str(OmegaExact)) V1=EigVector[:,0]/EigVector[0,0] # Scale the modal shape V2=EigVector[:,1]/EigVector[0,1] V3=EigVector[:,2]/EigVector[0,2] # np.insert transpose the matrix, will use transpose again V1plot=np.transpose(np.insert(V1,0,0)) #inserting zero at the start of array for plotting V2plot=np.transpose(np.insert(V2,0,0)) V3plot=np.transpose(np.insert(V3,0,0)) xArray=np.arange(np.shape(V1plot)[0]) # Mode plots fig,ax=plt.subplots(1, 3,sharey=True) ax[0].grid(color='k', linestyle='-', linewidth=1) ax[0].plot(V3plot,xArray) ax[0].set_yticklabels([]) ax[0].set_xlabel('1st mode') ax[1].grid(color='k', linestyle='-', linewidth=1) ax[1].plot(V2plot,xArray) ax[1].set_xlabel('2nd mode') ax[2].grid(color='k', linestyle='-', linewidth=1) ax[2].plot(V1plot,xArray) ax[2].set_xlabel('3rd mode') plt.savefig('Modes_exact.jpg',dpi=200) OmegaExact=np.flip(OmegaExact) T=2*np.pi/OmegaExact # time period # Displacement calculation mBar2=np.zeros((ndof,1)) mBar2[0,0]=(np.matmul(np.matmul(np.transpose(V1),M),V1)) # Modal mass mBar2[1,0]=(np.matmul(np.matmul(np.transpose(V2),M),V2)) # Modal mass mBar2[2,0]=(np.matmul(np.matmul(np.transpose(V3),M),V3)) Sa2=np.zeros(ndof) Su2=np.zeros(ndof) T=2*np.pi/OmegaExact # time period # Using linear interpolation to find displacement corresponding to time period (T) for j in range(0,int(np.shape(Sa2)[0])): # for each Sa2 for i in range(0,int(np.shape(PeriodArray)[0])): # searching over period if PeriodArray[i]>T[j]: # Value after T i.e. T(i+2) T3=PeriodArray[i] T1=PeriodArray[i-1] Y3=PeakDispArray[i] Y1=PeakDispArray[i-1] A3=PeakAcclnArray[i] A1=PeakAcclnArray[i-1] Su2[j]=Y1+(Y3-Y1)/(T3-T1)*(T[j]-T1) # Peak displacement corresponding to T in the response spectra Sa2[j]=A1+(A3-A1)/(T3-T1)*(T[j]-T1) break # Load participation factor d=np.matrix([[1],[1],[1]]) # Earthquake input direction vector l2=np.matmul(np.matmul(np.transpose(V1),M),d)/mBar2 print('Load participation factor: \n'+str(l2)+'\n') # Maximum Displacement vectors uMax2_1=l2[0,0]*Su2[0]*V1 uMax2_2=l2[1,0]*Su2[1]*V2 uMax2_3=l2[2,0]*Su2[2]*V3 # Total maximum displacement using SRSS uMaxExact=np.zeros(ndof) uMaxExact[0]=np.square(uMax2_1[0,0])+ np.square(uMax2_2[0,0])+np.square(uMax2_3[0,0]) uMaxExact[1]=np.square(uMax2_1[1,0])+ np.square(uMax2_2[1,0])+np.square(uMax2_3[1,0]) uMaxExact[2]=np.square(uMax2_1[2,0])+ np.square(uMax2_2[2,0])+np.square(uMax2_3[2,0]) print('Maximum Displacment (m): '+str(uMaxExact)+'\n') # Maximum floor force vector F=np.zeros(ndof) F2_1=float(l2[0,0]*Sa2[0])*np.matmul(M,V1) F2_2=float(l2[1,0]*Sa2[1])*np.matmul(M,V2) F2_3=float(l2[2,0]*Sa2[2])*np.matmul(M,V3) # Using SRSS F[0]=np.square(F2_1[0,0])+ np.square(F2_2[0,0])+np.square(F2_3[0,0]) F[1]=np.square(F2_1[1,0])+ np.square(F2_2[1,0])+np.square(F2_3[1,0]) F[2]=np.square(F2_1[2,0])+ np.square(F2_2[2,0])+np.square(F2_3[2,0]) print('Shear forces (N): '+str(F)+'\n') # Base shear VbExact=np.sum(F) print('Base shear force (N): '+str(VbExact)+'\n') # Overturning moment z=np.arange(h,h*ndof+1,h) # Height of floors MbExact=np.sum(z[:]*F[:]) print('Overturning moment (N-m): '+str(MbExact)+'\n') # MODULE 2: Using linearly increasing mode--------------------------- print('*********************LINEARLY INCREASING MODE*********************\n' ) V1=np.matrix([[1],[2],[3]]) # Linearly increasing mode print('V1:\n'+str(V1)+'\n' ) mBar=float(np.matmul(np.matmul(np.transpose(V1),M),V1)) # Modal mass kBar=float(np.matmul(np.matmul(np.transpose(V1),K),V1)) # Modal stiffness Omega=np.sqrt(kBar/mBar) # Omega approx T=2*np.pi/Omega # time period # Using linear interpolation to find displacement corresponding to time period (T) for i in range(0,int(np.shape(PeriodArray)[0])): if PeriodArray[i]>T: # Value after T i.e. T(i+2) T3=PeriodArray[i] T1=PeriodArray[i-1] Y3=PeakDispArray[i] Y1=PeakDispArray[i-1] A3=PeakAcclnArray[i] A1=PeakAcclnArray[i-1] break Su=Y1+(Y3-Y1)/(T3-T1)*(T-T1) # Peak displacement corresponding to T in the response spectra Sa=A1+(A3-A1)/(T3-T1)*(T-T1) # Load participation factor d=np.matrix([[1],[1],[1]]) # Earthquake input direction vector l1=float(np.matmul(np.matmul(np.transpose(V1),M),d)/mBar) print('Load participation factor: \n'+str(l1)+'\n') # Maximum Displacement uMax=l1*Su*V1 # Umax for each floor print('Maximum Displacment(m): '+str(uMax)+'\n') # Base shear totalMass=m1+m2+m3 # Total mass of the structure Vb=totalMass*Sa # Base Shear force print('Base shear force (N): '+str(Vb)+'\n') # Floor shear force z=np.arange(h,h*ndof+1,h) # Height of floors F1=np.zeros(ndof) m=np.array([m1,m2,m3]) # Array is mass denominator=np.dot(m,z) for i in range(0,int(np.shape(F)[0])): F1[i]=Vb*m[i]*z[i]/denominator print('Shear forces (N): '+str(F1)+'\n') # Overturning moment Mb1=np.sum(z[:]*F1[:]) print('Overturning moment (N-m): '+str(Mb1)+'\n') # MODULE 3: Using two ritz vector------------------------ print('********************TWO RITZ VECTOR WITH SRSS********************\n' ) r1= np.matrix([[1],[2],[3]]) # Linearly increasing mode r2=np.matrix([[1],[4],[9]]) # Quadratically increasing mode print('R1:\n'+str(r1)+'\n') print('R2:\n'+str(r2)+'\n') R=np.append(r1,r2,1) M_Hat=np.matmul(np.matmul(np.transpose(R),M),R) K_Hat=np.matmul(np.matmul(np.transpose(R),K),R) OmegaSquare2,EigVector2=np.linalg.eig(K_Hat*np.linalg.inv(M_Hat)) Omega2=np.sqrt(OmegaSquare2) # Natural frequency x1=EigVector2[:,0]/EigVector2[0,0] # Scale the modal shape x2=EigVector2[:,1]/EigVector2[0,1] V1=np.matmul(R,x1) V2=np.matmul(R,x2) mBar2=np.zeros((2,1)) mBar2[0,0]=(np.matmul(np.matmul(np.transpose(V1),M),V1)) # Modal mass mBar2[1,0]=(np.matmul(np.matmul(np.transpose(V2),M),V2)) # Modal mass Sa2=np.zeros(2) Su2=np.zeros(2) T=2*np.pi/Omega2 # time period # Using linear interpolation to find displacement corresponding to time period (T) for j in range(0,int(np.shape(Sa2)[0])): for i in range(0,int(np.shape(PeriodArray)[0])): if PeriodArray[i]>T[j]: # Value after T i.e. T(i+2) T3=PeriodArray[i] T1=PeriodArray[i-1] Y3=PeakDispArray[i] Y1=PeakDispArray[i-1] A3=PeakAcclnArray[i] A1=PeakAcclnArray[i-1] Su2[j]=Y1+(Y3-Y1)/(T3-T1)*(T[j]-T1) # Peak displacement corresponding to T in the response spectra Sa2[j]=A1+(A3-A1)/(T3-T1)*(T[j]-T1) break # Load participation factor d=np.matrix([[1],[1],[1]]) # Earthquake input direction vector l2=np.matmul(np.matmul(np.transpose(V1),M),d)/mBar2 print('Load participation factor: \n'+str(l2)+'\n') # Maximum Displacement vectors uMax2_1=l2[0,0]*Su2[0]*V1 uMax2_2=l2[1,0]*Su2[1]*V2 # Total maximum displacement using SRSS uMax2=np.zeros(ndof) uMax2[0]=np.square(uMax2_1[0,0])+ np.square(uMax2_2[0,0]) uMax2[1]=np.square(uMax2_1[1,0])+ np.square(uMax2_2[1,0]) uMax2[2]=np.square(uMax2_1[2,0])+ np.square(uMax2_2[2,0]) print('Maximum Displacment (m): '+str(uMax2)+'\n') # Maximum floor force vector F2=np.zeros(ndof) F2_1=float(l2[0,0]*Sa2[0])*np.matmul(M,V1) F2_2=float(l2[1,0]*Sa2[1])*np.matmul(M,V2) # Using SRSS F2[0]=np.square(F2_1[0,0])+
np.square(F2_2[0,0])
numpy.square
""" Implement a Vanilla NBP and NRW model for MC simulation of the NTE. Code for the article "Monte Carlo Methods for the Neutron Transport Equation. By <NAME>, <NAME>, <NAME>, <NAME>. Thi sfile contains the code to produce the plots in the case of the 2D version of the NTE. MIT License Copyright (c) <NAME>, 2020. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from scipy.ndimage.filters import gaussian_filter class circle: """Shape to determine area of scatter/branching.""" def __init__(self, centre, radius): self.centre = centre self.radius = radius def time_in_circle(self, pos, theta, v): """Compute entry, exit times in circle for given trajectory.""" a = v**2 b = 2*v*((pos[0] - self.centre[0])*np.cos(theta) + (pos[1] - self.centre[1])*np.sin(theta)) c = ((pos[0] - self.centre[0])**2 + (pos[1] - self.centre[1])**2 - self.radius**2) det = b**2 - 4*a*c if det < 0: self.entry_time = -100 self.exit_time = -100 elif det == 0: self.entry_time = (-b - np.sqrt(det))/(2*a) self.exit_time = self.entry_time else: if -b - np.sqrt(det) < 0: if -b + np.sqrt(det) > 0: self.entry_time = 0 self.exit_time = (-b + np.sqrt(det))/(2*a) else: self.entry_time = -100 self.exit_time = -100 else: self.entry_time = (-b -
np.sqrt(det)
numpy.sqrt
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import os import coord import time import fitsio import treecorr from test_helper import assert_raises, do_pickle, timer, get_from_wiki, CaptureLog, clear_save from test_helper import profile def generate_shear_field(npos, nhalo, rng=None): # We do something completely different here than we did for 2pt patch tests. # A straight Gaussian field with a given power spectrum has no significant 3pt power, # so it's not a great choice for simulating a field for 3pt tests. # Instead we place N SIS "halos" randomly in the grid. # Then we translate that to a shear field via FFT. if rng is None: rng = np.random.RandomState() # Generate x,y values for the real-space field x = rng.uniform(0,1000, size=npos) y = rng.uniform(0,1000, size=npos) nh = rng.poisson(nhalo) # Fill the kappa values with SIS halo profiles. xc = rng.uniform(0,1000, size=nh) yc = rng.uniform(0,1000, size=nh) scale = rng.uniform(20,50, size=nh) mass = rng.uniform(0.01, 0.05, size=nh) # Avoid making huge nhalo * nsource arrays. Loop in blocks of 64 halos nblock = (nh-1) // 64 + 1 kappa = np.zeros_like(x) gamma = np.zeros_like(x, dtype=complex) for iblock in range(nblock): i = iblock*64 j = (iblock+1)*64 dx = x[:,np.newaxis]-xc[np.newaxis,i:j] dy = y[:,np.newaxis]-yc[np.newaxis,i:j] dx[dx==0] = 1 # Avoid division by zero. dy[dy==0] = 1 dx /= scale[i:j] dy /= scale[i:j] rsq = dx**2 + dy**2 r = rsq**0.5 k = mass[i:j] / r # "Mass" here is really just a dimensionless normalization propto mass. kappa += np.sum(k, axis=1) # gamma_t = kappa for SIS. g = -k * (dx + 1j*dy)**2 / rsq gamma += np.sum(g, axis=1) return x, y, np.real(gamma), np.imag(gamma), kappa @timer def test_kkk_jk(): # Test jackknife and other covariance estimates for kkk correlations. # Note: This test takes a while! # The main version I think is a pretty decent test of the code correctness. # It shows that bootstrap in particular easily gets to within 50% of the right variance. # Sometimes within 20%, but because of the randomness there, it varies a bit. # Jackknife isn't much worse. Just a little below 50%. But still pretty good. # Sample and Marked are not great for this test. I think they will work ok when the # triangles of interest are mostly within single patches, but that's not the case we # have here, and it would take a lot more points to get to that regime. So the # accuracy tests for those two are pretty loose. if __name__ == '__main__': # This setup takes about 740 sec to run. nhalo = 3000 nsource = 5000 npatch = 32 tol_factor = 1 elif False: # This setup takes about 180 sec to run. nhalo = 2000 nsource = 2000 npatch = 16 tol_factor = 2 elif False: # This setup takes about 51 sec to run. nhalo = 1000 nsource = 1000 npatch = 16 tol_factor = 3 else: # This setup takes about 20 sec to run. # So we use this one for regular unit test runs. # It's pretty terrible in terms of testing the accuracy, but it works for code coverage. # But whenever actually working on this part of the code, definitely need to switch # to one of the above setups. Preferably run the name==main version to get a good # test of the code correctness. nhalo = 500 nsource = 500 npatch = 16 tol_factor = 4 file_name = 'data/test_kkk_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): nruns = 1000 all_kkks = [] rng1 = np.random.RandomState() for run in range(nruns): x, y, _, _, k = generate_shear_field(nsource, nhalo, rng1) print(run,': ',np.mean(k),np.std(k)) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1) kkk.process(cat) print(kkk.ntri.ravel().tolist()) print(kkk.zeta.ravel().tolist()) all_kkks.append(kkk) mean_kkk = np.mean([kkk.zeta.ravel() for kkk in all_kkks], axis=0) var_kkk = np.var([kkk.zeta.ravel() for kkk in all_kkks], axis=0) np.savez(file_name, all_kkk=np.array([kkk.zeta.ravel() for kkk in all_kkks]), mean_kkk=mean_kkk, var_kkk=var_kkk) data = np.load(file_name) mean_kkk = data['mean_kkk'] var_kkk = data['var_kkk'] print('mean = ',mean_kkk) print('var = ',var_kkk) rng = np.random.RandomState(12345) x, y, _, _, k = generate_shear_field(nsource, nhalo, rng) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1, rng=rng) kkk.process(cat) print(kkk.ntri.ravel()) print(kkk.zeta.ravel()) print(kkk.varzeta.ravel()) kkkp = kkk.copy() catp = treecorr.Catalog(x=x, y=y, k=k, npatch=npatch) # Do the same thing with patches. kkkp.process(catp) print('with patches:') print(kkkp.ntri.ravel()) print(kkkp.zeta.ravel()) print(kkkp.varzeta.ravel()) np.testing.assert_allclose(kkkp.ntri, kkk.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) np.testing.assert_allclose(kkkp.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.6 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.5 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Now as a cross correlation with all 3 using the same patch catalog. print('with 3 patched catalogs:') kkkp.process(catp, catp, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Repeat this test with different combinations of patch with non-patch catalogs: # All the methods work best when the patches are used for all 3 catalogs. But there # are probably cases where this kind of cross correlation with only some catalogs having # patches could be desired. So this mostly just checks that the code runs properly. # Patch on 1 only: print('with patches on 1 only:') kkkp.process(catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 2 only: print('with patches on 2 only:') kkkp.process(cat, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.9 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 3 only: print('with patches on 3 only:') kkkp.process(cat, cat, catp) print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
numpy.testing.assert_allclose
from baselines.common import Dataset, explained_variance, fmt_row, zipsame from baselines import logger import baselines.common.tf_util as U import tensorflow as tf, numpy as np import time from baselines.common.mpi_adam import MpiAdam from baselines.common.mpi_moments import mpi_moments from mpi4py import MPI from collections import deque from tensorboardX import SummaryWriter from baselines.ppo1.gcn_policy import discriminator,discriminator_net,embnet,oracle import os import copy import random import math from keras.layers import Input,Reshape,Embedding,GRU,LSTM,Conv1D,LeakyReLU,MaxPooling1D,concatenate,Dropout,Dense,LeakyReLU,TimeDistributed from keras import regularizers from keras.optimizers import SGD,Adam from keras.losses import mean_squared_error from keras.models import Model import keras.backend as K from keras.activations import relu from keras.engine.topology import Layer from keras.callbacks import ModelCheckpoint,TensorBoard num_feat = 10 num_proj = 10 proj_type = "linear" lambda1 = 20 lambda2 = 10 nepis = 10 def traj_segment_generator(args, pi, env,disease_id, horizon, stochastic, d_step_func, d_final_func, num_episodes,env_ind): t = 0 ac = env.action_space.sample() # not used, just so we have the datatype new = True # marks if we're on first timestep of an episode disease_id = yield ob,disease_feat,disease_1hop,disease_genes = env.reset(disease_id) ob_adj = ob['adj'] ob_node = ob['node'] cur_ep_ret = 0 # return in current episode cur_ep_ret_env = 0 cur_ep_ret_d_step = 0 cur_ep_ret_d_final = 0 cur_ep_len = 0 # len of current episode cur_ep_len_valid = 0 ep_rets = [] # returns of completed episodes in this segment ep_rets_d_step = [] ep_rets_d_final = [] ep_rets_env = [] ep_lens = [] # lengths of ... ep_lens_valid = [] # lengths of ... ep_rew_final = [] ep_rew_final_stat = [] cur_num_epi = 1 #i = 0 # Initialize history arrays # obs = np.array([ob for _ in range(horizon)]) #ob_adjs = np.array([ob_adj for _ in range(horizon)]) #ob_nodes = np.array([ob_node for _ in range(horizon)]) #ob_adjs_final = [] #ob_nodes_final = [] #rews = np.zeros(horizon, 'float32') #vpreds = np.zeros(horizon, 'float32') #news = np.zeros(horizon, 'int32') #acs = np.array([ac for _ in range(horizon)]) #prevacs = acs.copy() ob_adjs = [] ob_nodes = [] ob_adjs_final = [] ob_smi_final = [] ob_nodes_final = [] rews = [] vpreds = [] news = [] acs = [] prevacs = [] while True: prevac = ac ac, vpred, debug = pi.act(stochastic, ob,disease_feat) # Slight weirdness here because we need value function at time T # before returning segment [0, T-1] so we get the correct # terminal value #if t > 0 and t % horizon == 0: if t > 0 and cur_num_epi % num_episodes == num_episodes -1: #i = 0 ob_adjs = np.array(ob_adjs) ob_nodes = np.array(ob_nodes) rews = np.array(rews, dtype=np.float32) vpreds = np.squeeze(np.array(vpreds, dtype=np.float32)) news = np.array(news, dtype=np.int32) acs = np.squeeze(np.array(acs)) prevacs = np.squeeze(np.array(prevacs)) yield {"ob_adj" : ob_adjs, "ob_node" : ob_nodes,"ob_adj_final" : np.array(ob_adjs_final), "ob_node_final" : np.array(ob_nodes_final), "rew" : rews, "vpred" : vpreds, "new" : news,"smi":np.array(ob_smi_final),"disease_1hop":disease_1hop,"disease_genes":disease_genes, "ac" : acs, "prevac" : prevacs, "nextvpred": vpred * (1 - new), "ep_rets" : ep_rets, "ep_lens" : ep_lens, "ep_lens_valid" : ep_lens_valid, "ep_final_rew":ep_rew_final, "ep_final_rew_stat":ep_rew_final_stat,"ep_rets_env" : ep_rets_env,"ep_rets_d_step" : ep_rets_d_step,"ep_rets_d_final" : ep_rets_d_final} # Be careful!!! if you change the downstream algorithm to aggregate # several of these batches, then be sure to do a deepcopy disease_id = yield ep_rets = [] ep_lens = [] ep_lens_valid = [] ep_rew_final = [] ep_rew_final_stat = [] ep_rets_d_step = [] ep_rets_d_final = [] ep_rets_env = [] ob_adjs_final = [] ob_smi_final = [] ob_nodes_final = [] ob_adjs = [] ob_nodes = [] rews = [] vpreds = [] news = [] acs = [] prevacs = [] cur_num_epi = 1 #i = t % horizon # obs[i] = ob ob_adjs.append(ob['adj']) ob_nodes.append(ob['node']) vpreds.append(vpred) news.append(new) acs.append(ac) prevacs.append(prevac) ob, rew_env, new, info,disease_feat,disease_1hop,disease_genes = env.step(ac) rew_d_step = 0 # default if rew_env>0: # if action valid cur_ep_len_valid += 1 # add stepwise discriminator reward if args.has_d_step==1: if args.gan_type=='normal' or args.gan_type=='wgan': rew_d_step = args.gan_step_ratio * ( d_step_func(ob['adj'][np.newaxis, :, :, :], ob['node'][np.newaxis, :, :, :])) / env.max_atom elif args.gan_type == 'recommend': rew_d_step = args.gan_step_ratio * ( max(1-d_step_func(ob['adj'][np.newaxis, :, :, :], ob['node'][np.newaxis, :, :, :]),-2)) / env.max_atom rew_d_final = 0 # default if new: if args.has_d_final==1: if args.gan_type == 'normal' or args.gan_type=='wgan': rew_d_final = args.gan_final_ratio * ( d_final_func(ob['adj'][np.newaxis, :, :, :], ob['node'][np.newaxis, :, :, :])) elif args.gan_type == 'recommend': rew_d_final = args.gan_final_ratio * ( max(1 - d_final_func(ob['adj'][np.newaxis, :, :, :], ob['node'][np.newaxis, :, :, :]), -2)) #print("reward d step: "+str(rew_d_step)) #print("reward d final: "+str(rew_d_final)) #print(rew_d_step,rew_env,rew_d_final) rews.append(rew_d_step + rew_env + rew_d_final) cur_ep_ret += rews[-1] cur_ep_ret_d_step += rew_d_step cur_ep_ret_d_final += rew_d_final cur_ep_ret_env += rew_env cur_ep_len += 1 if new: if args.env=='molecule': with open('molecule_gen/'+args.name_full+'_'+env_ind+'.csv', 'a') as f: str = ''.join(['{},']*(len(info)+4))[:-1]+'\n' f.write(str.format(info['smile'],info['smile_code'], disease_id,info['reward_valid'], info['reward_qed'], info['reward_sa'], info['final_stat'], rew_env, rew_d_step, rew_d_final, cur_ep_ret, info['flag_steric_strain_filter'], info['flag_zinc_molecule_filter'], info['stop'])) ob_adjs_final.append(ob['adj']) ob_smi_final.append(info['smile_code']) ob_nodes_final.append(ob['node']) ep_rets.append(cur_ep_ret) ep_rets_env.append(cur_ep_ret_env) ep_rets_d_step.append(cur_ep_ret_d_step) ep_rets_d_final.append(cur_ep_ret_d_final) ep_lens.append(cur_ep_len) ep_lens_valid.append(cur_ep_len_valid) ep_rew_final.append(rew_env) ep_rew_final_stat.append(info['final_stat']) cur_ep_ret = 0 cur_ep_len = 0 cur_ep_len_valid = 0 cur_ep_ret_d_step = 0 cur_ep_ret_d_final = 0 cur_ep_ret_env = 0 ob,disease_feat,disease_1hop,disease_genes = env.reset(disease_id) cur_num_epi += 1 t += 1 #i += 1 def traj_final_generator(pi, env, disease_id,batch_size, stochastic): ob,disease_feat,disease_1hop,disease_genes = env.reset(disease_id) ob_adj = ob['adj'] ob_node = ob['node'] ob_adjs = np.array([ob_adj for _ in range(batch_size)]) ob_nodes = np.array([ob_node for _ in range(batch_size)]) for i in range(batch_size): ob,disease_feat,disease_1hop,disease_genes = env.reset(disease_id) while True: ac, vpred, debug = pi.act(stochastic, ob,disease_feat) ob, rew_env, new, info,disease_feat,disease_1hop,disease_genes = env.step(ac) np.set_printoptions(precision=2, linewidth=200) # print('ac',ac) # print('ob',ob['adj'],ob['node']) if new: ob_adjs[i]=ob['adj'] ob_nodes[i]=ob['node'] break return ob_adjs,ob_nodes def get_binding(args,seg,loss_func,disease_genes): disease_1hop = np.array(seg["disease_1hop"])[disease_genes] num_prot = disease_1hop.shape[0] binding = np.zeros((len(seg["smi"]),num_prot)) size = 64 binding_thr = args.deepaffinity_thr num = math.ceil(num_prot/size) for i in range(len(seg["smi"])): print(i) drugs = np.tile(np.expand_dims(np.array(seg["smi"][i]),axis=0),[num_prot,1]) for j in range(num): if j == num -1: d_temp = drugs[(num - 1)*size:num_prot,:] p_temp = disease_1hop[(num - 1)*size:num_prot,:] binding[i,(num - 1)*size:num_prot] = np.squeeze(loss_func(p_temp,d_temp),axis=-1) else: d_temp = drugs[size*j:size*(j+1),:] p_temp = disease_1hop[size*j:size*(j+1),:] binding[i,size*j:size*(j+1)] = np.squeeze(loss_func(p_temp,d_temp),axis=-1) binding[np.where(binding < binding_thr )] = 0 binding[np.where(binding >= binding_thr )] = 1 return binding def get_classifier_reward(binding1,binding2): reward = np.sum(np.logical_xor(binding1,binding2),axis=1)/binding1.shape[1] adverse = np.sum(np.logical_and(binding1,binding2),axis=1)/binding1.shape[1] d1 = np.sum(binding1,axis=1)/binding1.shape[1] d2 = np.sum(binding2,axis=1)/binding2.shape[1] return reward,adverse,d1,d2 def add_vtarg_and_adv(args,seg, seg2, gamma, lam, loss_func1,loss_func2): """ Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) """ binding1 = get_binding(args,seg,loss_func1,seg["disease_genes"]) binding2 = get_binding(args,seg2,loss_func2,seg2["disease_genes"]) temp_loss,adverse,binding_d1,binding_d2 = get_classifier_reward(binding1,binding2) print("cls loss:") print(temp_loss) cls_weight = args.network_weight cls_loss = np.zeros_like(seg["rew"]) T = len(seg["rew"]) idx_new = 0 for i in range(T): if seg["new"][i]: cls_loss[i] = temp_loss[idx_new] idx_new +=1 seg["cls_loss"] = temp_loss seg["adverse"] = adverse seg["binding"] = binding_d1 seg["rew"] = cls_weight *cls_loss + seg["rew"] * args.others_weight new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"] cls_loss2 = np.zeros_like(seg2["rew"]) T2 = len(seg2["rew"]) idx_new2 = 0 for i in range(T2): if seg2["new"][i]: cls_loss2[i] = temp_loss[idx_new2] idx_new2 +=1 seg2["cls_loss"] = temp_loss seg2["adverse"] = adverse seg2["binding"] = binding_d2 seg2["rew"] = cls_weight * cls_loss2 + seg2["rew"] * args.others_weight new2 = np.append(seg2["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred2 = np.append(seg2["vpred"], seg2["nextvpred"]) seg2["adv"] = gaelam2 = np.empty(T2, 'float32') rew2 = seg2["rew"] lastgaelam2 = 0 for t in reversed(range(T2)): nonterminal2 = 1-new2[t+1] delta2 = rew2[t] + gamma * vpred2[t+1] * nonterminal2 - vpred2[t] gaelam2[t] = lastgaelam2 = delta2 + gamma * lam * nonterminal2 * lastgaelam2 seg2["tdlamret"] = seg2["adv"] + seg2["vpred"] def learn(args, env1, env2, policy_fn, num_disease,disease_id, *, timesteps_per_actorbatch, # timesteps per actor per update clip_param, entcoeff, # clipping parameter epsilon, entropy coeff optim_epochs, optim_stepsize, optim_batchsize,# optimization hypers gamma, lam, # advantage estimation max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint callback=None, # you can do anything in the callback, since it takes locals(), globals() adam_epsilon=1e-5, schedule='constant', # annealing for stepsize parameters (epsilon and adam) writer=None ): # Setup losses and stuff # ---------------------------------------- # ---------------------------------------- ob_space1 = env1.observation_space ac_space1 = env1.action_space disease_dim1 = env1.disease_feat.shape[1] pi1 = policy_fn("pi1", ob_space1, ac_space1, disease_dim1) # Construct network for new policy oldpi1 = policy_fn("oldpi1", ob_space1, ac_space1, disease_dim1) # Network for old policy atarg1 = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret1 = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult1 = tf.placeholder(name='lrmult1', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param1 = clip_param * lrmult1 # Annealed cliping parameter epislon # ---------------------------------------- ob_space2 = env2.observation_space ac_space2 = env2.action_space disease_dim2 = env1.disease_feat.shape[1] pi2 = policy_fn("pi2", ob_space2, ac_space2, disease_dim2) # Construct network for new policy oldpi2 = policy_fn("oldpi2", ob_space2, ac_space2, disease_dim2) # Network for old policy atarg2 = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret2 = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult2 = tf.placeholder(name='lrmult2', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param2 = clip_param * lrmult2 # Annealed cliping parameter epislon # ---------------------------------------- # ---------------------------------------- ob1 = {} ob1['adj'] = U.get_placeholder_cached(name="adj1") ob1['node'] = U.get_placeholder_cached(name="node1") ob_gen1 = {} ob_gen1['adj'] = U.get_placeholder(shape=[None, ob_space1['adj'].shape[0], None, None], dtype=tf.float32,name='adj_gen1') ob_gen1['node'] = U.get_placeholder(shape=[None, 1, None, ob_space1['node'].shape[2]], dtype=tf.float32,name='node_gen1') ob_real1 = {} ob_real1['adj'] = U.get_placeholder(shape=[None,ob_space1['adj'].shape[0],None,None],dtype=tf.float32,name='adj_real1') ob_real1['node'] = U.get_placeholder(shape=[None,1,None,ob_space1['node'].shape[2]],dtype=tf.float32,name='node_real1') disease_dim = 16 ac1 = tf.placeholder(dtype=tf.int64, shape=[None,4], name='ac_real1') disease = U.get_placeholder(shape=[None,disease_dim ], dtype=tf.float32,name='disease') ob2 = {} ob2['adj'] = U.get_placeholder_cached(name="adj2") ob2['node'] = U.get_placeholder_cached(name="node2") ob_gen2 = {} ob_gen2['adj'] = U.get_placeholder(shape=[None, ob_space2['adj'].shape[0], None, None], dtype=tf.float32,name='adj_gen2') ob_gen2['node'] = U.get_placeholder(shape=[None, 1, None, ob_space2['node'].shape[2]], dtype=tf.float32,name='node_gen2') ob_real2 = {} ob_real2['adj'] = U.get_placeholder(shape=[None,ob_space2['adj'].shape[0],None,None],dtype=tf.float32,name='adj_real2') ob_real2['node'] = U.get_placeholder(shape=[None,1,None,ob_space2['node'].shape[2]],dtype=tf.float32,name='node_real2') ac2 = tf.placeholder(dtype=tf.int64, shape=[None,4], name='ac_real2') # ---------------------------------------- # ---------------------------------------- prot_data_class = Input(shape=(152,)) drug1_data_class = Input(shape=(100,)) drug2_data_class = Input(shape=(100,)) linear1 = oracle(prot_data_class,drug1_data_class) linear2 = oracle(prot_data_class,drug2_data_class) class_model1 = Model(inputs=[prot_data_class,drug1_data_class],outputs=[linear1]) class_model2 = Model(inputs=[prot_data_class,drug2_data_class],outputs=[linear2]) loss1 = linear1 loss2 = linear2 loss_class_func1 = U.function([prot_data_class,drug1_data_class],loss1) loss_class_func2 = U.function([prot_data_class,drug2_data_class],loss2) ## PPO loss kloldnew1 = oldpi1.pd.kl(pi1.pd) ent1 = pi1.pd.entropy() meankl1 = tf.reduce_mean(kloldnew1) meanent1 = tf.reduce_mean(ent1) pol_entpen1 = (-entcoeff) * meanent1 pi_logp1 = pi1.pd.logp(ac1) oldpi_logp1 = oldpi1.pd.logp(ac1) ratio_log1 = pi1.pd.logp(ac1) - oldpi1.pd.logp(ac1) ratio1 = tf.exp(pi1.pd.logp(ac1) - oldpi1.pd.logp(ac1)) # pnew / pold surr11 = ratio1 * atarg1 # surrogate from conservative policy iteration surr21 = tf.clip_by_value(ratio1, 1.0 - clip_param1, 1.0 + clip_param1) * atarg1 # pol_surr1 = - tf.reduce_mean(tf.minimum(surr11, surr21)) # PPO's pessimistic surrogate (L^CLIP) vf_loss1 = tf.reduce_mean(tf.square(pi1.vpred - ret1)) total_loss1 = pol_surr1 + pol_entpen1 + vf_loss1 losses1 = [pol_surr1, pol_entpen1, vf_loss1, meankl1, meanent1] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] # ---------------------------------------- kloldnew2 = oldpi2.pd.kl(pi2.pd) ent2 = pi2.pd.entropy() meankl2 = tf.reduce_mean(kloldnew2) meanent2 = tf.reduce_mean(ent2) pol_entpen2 = (-entcoeff) * meanent2 pi_logp2 = pi2.pd.logp(ac2) oldpi_logp2 = oldpi2.pd.logp(ac2) ratio_log2 = pi2.pd.logp(ac2) - oldpi2.pd.logp(ac2) ratio2 = tf.exp(pi2.pd.logp(ac2) - oldpi2.pd.logp(ac2)) # pnew / pold surr12 = ratio2 * atarg2 # surrogate from conservative policy iteration surr22 = tf.clip_by_value(ratio2, 1.0 - clip_param2, 1.0 + clip_param2) * atarg2 # pol_surr2 = - tf.reduce_mean(tf.minimum(surr12, surr22)) # PPO's pessimistic surrogate (L^CLIP) vf_loss2 = tf.reduce_mean(tf.square(pi2.vpred - ret2)) total_loss2 = pol_surr2 + pol_entpen2 + vf_loss2 losses2 = [pol_surr2, pol_entpen2, vf_loss2, meankl2, meanent2] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] # ---------------------------------------- # ---------------------------------------- ## Expert loss loss_expert1 = -tf.reduce_mean(pi_logp1) ## Discriminator loss # loss_d_step, _, _ = discriminator(ob_real, ob_gen,args, name='d_step') # loss_d_gen_step,_ = discriminator_net(ob_gen,args, name='d_step') # loss_d_final, _, _ = discriminator(ob_real, ob_gen,args, name='d_final') # loss_d_gen_final,_ = discriminator_net(ob_gen,args, name='d_final') if args.gan_type=='normal': step_pred_real1, step_logit_real1 = discriminator_net(ob_real1, num_feat,args, name='d_step') step_pred_gen1, step_logit_gen1 = discriminator_net(ob_gen1, num_feat,args, name='d_step') loss_d_step_real1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_real1, labels=tf.ones_like(step_logit_real1)*0.9)) loss_d_step_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen1, labels=tf.zeros_like(step_logit_gen1))) loss_d_step1 = loss_d_step_real1 + loss_d_step_gen1 loss_g_step_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen1, labels=tf.zeros_like(step_logit_gen1))) elif args.gan_type=='recommend': step_pred_real1, step_logit_real1 = discriminator_net(ob_real1, num_feat,args, name='d_step') step_pred_gen1, step_logit_gen1 = discriminator_net(ob_gen1, num_feat,args, name='d_step') loss_d_step_real1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_real1, labels=tf.ones_like(step_logit_real1)*0.9)) loss_d_step_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen1, labels=tf.zeros_like(step_logit_gen1))) loss_d_step1 = loss_d_step_real1 + loss_d_step_gen1 loss_g_step_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen1, labels=tf.ones_like(step_logit_gen1)*0.9)) elif args.gan_type=='wgan': loss_d_step1, loss_g_step_gen1, _ = discriminator(ob_real1, ob_gen1, num_feat, num_proj, proj_type, lambda1, lambda2, args, name='d_step') #loss_d_step = loss_d_step*-1 #loss_g_step_gen,_ = discriminator_net(ob_gen,args, name='d_step') # ---------------------------------------- loss_expert2 = -tf.reduce_mean(pi_logp2) ## Discriminator loss # loss_d_step, _, _ = discriminator(ob_real, ob_gen,args, name='d_step') # loss_d_gen_step,_ = discriminator_net(ob_gen,args, name='d_step') # loss_d_final, _, _ = discriminator(ob_real, ob_gen,args, name='d_final') # loss_d_gen_final,_ = discriminator_net(ob_gen,args, name='d_final') if args.gan_type=='normal': step_pred_real2, step_logit_real2 = discriminator_net(ob_real2, num_feat, args, name='d_step') step_pred_gen2, step_logit_gen2 = discriminator_net(ob_gen2, num_feat, args, name='d_step') loss_d_step_real2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_real2, labels=tf.ones_like(step_logit_real2)*0.9)) loss_d_step_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen2, labels=tf.zeros_like(step_logit_gen2))) loss_d_step2 = loss_d_step_real2 + loss_d_step_gen2 loss_g_step_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen2, labels=tf.zeros_like(step_logit_gen2))) elif args.gan_type=='recommend': step_pred_real2, step_logit_real2 = discriminator_net(ob_real2, num_feat, args, name='d_step') step_pred_gen2, step_logit_gen2 = discriminator_net(ob_gen2, num_feat, args, name='d_step') loss_d_step_real2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_real2, labels=tf.ones_like(step_logit_real2)*0.9)) loss_d_step_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen2, labels=tf.zeros_like(step_logit_gen2))) loss_d_step2 = loss_d_step_real2 + loss_d_step_gen2 loss_g_step_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=step_logit_gen2, labels=tf.ones_like(step_logit_gen2)*0.9)) elif args.gan_type=='wgan': loss_d_step2, loss_g_step_gen2, _ = discriminator(ob_real2, ob_gen2, num_feat, num_proj, proj_type, lambda1, lambda2, args, name='d_step') #loss_d_step = loss_d_step*-1 #loss_g_step_gen,_ = discriminator_net(ob_gen,args, name='d_step') # ---------------------------------------- # ---------------------------------------- # loss_d_step = loss_d_step2 + loss_d_step1 # loss_g_step_gen = loss_g_step_gen2 + loss_g_step_gen1 # ---------------------------------------- # ---------------------------------------- final_pred_real1, final_logit_real1 = discriminator_net(ob_real1, num_feat, args, name='d_final') final_pred_gen1, final_logit_gen1 = discriminator_net(ob_gen1, num_feat, args, name='d_final') loss_d_final_real1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_real1, labels=tf.ones_like(final_logit_real1)*0.9)) loss_d_final_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_gen1, labels=tf.zeros_like(final_logit_gen1))) loss_d_final1 = loss_d_final_real1 + loss_d_final_gen1 if args.gan_type == 'normal': loss_g_final_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_gen1, labels=tf.zeros_like(final_logit_gen1))) elif args.gan_type == 'recommend': loss_g_final_gen1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_gen1, labels=tf.ones_like(final_logit_gen1)*0.9)) elif args.gan_type=='wgan': loss_d_final1, loss_g_final_gen1, _ = discriminator(ob_real1, ob_gen1, num_feat, num_proj, proj_type, lambda1, lambda2, args, name='d_final') #loss_d_final = loss_d_final*-1 #loss_g_final_gen,_ = discriminator_net(ob_gen,args, name='d_final') # ---------------------------------------- final_pred_real2, final_logit_real2 = discriminator_net(ob_real2, num_feat, args, name='d_final') final_pred_gen2, final_logit_gen2 = discriminator_net(ob_gen2, num_feat, args, name='d_final') loss_d_final_real2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_real2, labels=tf.ones_like(final_logit_real2)*0.9)) loss_d_final_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_gen2, labels=tf.zeros_like(final_logit_gen2))) loss_d_final2 = loss_d_final_real2 + loss_d_final_gen2 if args.gan_type == 'normal': loss_g_final_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_gen2, labels=tf.zeros_like(final_logit_gen2))) elif args.gan_type == 'recommend': loss_g_final_gen2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_logit_gen2, labels=tf.ones_like(final_logit_gen2)*0.9)) elif args.gan_type=='wgan': loss_d_final2, loss_g_final_gen2, _ = discriminator(ob_real2, ob_gen2, num_feat, num_proj, proj_type, lambda1, lambda2, args, name='d_final') #loss_d_final = loss_d_final*-1 #loss_g_final_gen,_ = discriminator_net(ob_gen,args, name='d_final') # ---------------------------------------- # ---------------------------------------- # loss_d_final = loss_d_final2 + loss_d_final1 # loss_g_final_gen = loss_g_final_gen2 + loss_g_final_gen1 # ---------------------------------------- # ---------------------------------------- var_list_pi1 = pi1.get_trainable_variables() var_list_pi_stop1 = [var for var in var_list_pi1 if ('emb' in var.name) or ('gcn' in var.name) or ('stop' in var.name)] var_list_pi2 = pi2.get_trainable_variables() var_list_pi_stop2 = [var for var in var_list_pi2 if ('emb' in var.name) or ('gcn' in var.name) or ('stop' in var.name)] var_list_d_step = [var for var in tf.global_variables() if 'd_step' in var.name] var_list_d_final = [var for var in tf.global_variables() if 'd_final' in var.name] var_list_classifier = [var for var in tf.global_variables() if 'class' in var.name] # ---------------------------------------- # ---------------------------------------- ## debug debug={} ## loss update function lossandgrad_ppo1 = U.function([ob1['adj'], ob1['node'], ac1, pi1.ac_real, oldpi1.ac_real, atarg1, ret1, lrmult1,disease], losses1 + [U.flatgrad(total_loss1, var_list_pi1)]) lossandgrad_expert1 = U.function([ob1['adj'], ob1['node'], ac1, pi1.ac_real,disease], [loss_expert1, U.flatgrad(loss_expert1, var_list_pi1)]) lossandgrad_expert_stop1 = U.function([ob1['adj'], ob1['node'], ac1, pi1.ac_real,disease], [loss_expert1, U.flatgrad(loss_expert1, var_list_pi_stop1)]) # ---------------------------------------- lossandgrad_ppo2 = U.function([ob2['adj'], ob2['node'], ac2, pi2.ac_real, oldpi2.ac_real, atarg2, ret2, lrmult2,disease], losses2 + [U.flatgrad(total_loss2, var_list_pi2)]) lossandgrad_expert2 = U.function([ob2['adj'], ob2['node'], ac2, pi2.ac_real,disease], [loss_expert2, U.flatgrad(loss_expert2, var_list_pi2)]) lossandgrad_expert_stop2 = U.function([ob2['adj'], ob2['node'], ac2, pi2.ac_real,disease], [loss_expert2, U.flatgrad(loss_expert2, var_list_pi_stop2)]) # ---------------------------------------- # ---------------------------------------- lossandgrad_d_step1 = U.function([ob_real1['adj'], ob_real1['node'], ob_gen1['adj'], ob_gen1['node']], [loss_d_step1, U.flatgrad(loss_d_step1, var_list_d_step)]) lossandgrad_d_final1 = U.function([ob_real1['adj'], ob_real1['node'], ob_gen1['adj'], ob_gen1['node']], [loss_d_final1, U.flatgrad(loss_d_final1, var_list_d_final)]) loss_g_gen_step_func1 = U.function([ob_gen1['adj'], ob_gen1['node']], loss_g_step_gen1) loss_g_gen_final_func1 = U.function([ob_gen1['adj'], ob_gen1['node']], loss_g_final_gen1) # ---------------------------------------- lossandgrad_d_step2 = U.function([ob_real2['adj'], ob_real2['node'], ob_gen2['adj'], ob_gen2['node']], [loss_d_step2, U.flatgrad(loss_d_step2, var_list_d_step)]) lossandgrad_d_final2 = U.function([ob_real2['adj'], ob_real2['node'], ob_gen2['adj'], ob_gen2['node']], [loss_d_final2, U.flatgrad(loss_d_final2, var_list_d_final)]) loss_g_gen_step_func2 = U.function([ob_gen2['adj'], ob_gen2['node']], loss_g_step_gen2) loss_g_gen_final_func2 = U.function([ob_gen2['adj'], ob_gen2['node']], loss_g_final_gen2) # ---------------------------------------- # ---------------------------------------- adam_pi1 = MpiAdam(var_list_pi1, epsilon=adam_epsilon) adam_pi_stop1 = MpiAdam(var_list_pi_stop1, epsilon=adam_epsilon) adam_pi2 = MpiAdam(var_list_pi2, epsilon=adam_epsilon) adam_pi_stop2 = MpiAdam(var_list_pi_stop2, epsilon=adam_epsilon) # ---------------------------------------- # ---------------------------------------- adam_d_step = MpiAdam(var_list_d_step, epsilon=adam_epsilon) adam_d_final = MpiAdam(var_list_d_final, epsilon=adam_epsilon) # ---------------------------------------- # ---------------------------------------- assign_old_eq_new1 = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi1.get_variables(), pi1.get_variables())]) # # compute_losses_expert = U.function([ob['adj'], ob['node'], ac, pi.ac_real], # loss_expert) compute_losses1 = U.function([ob1['adj'], ob1['node'], ac1, pi1.ac_real, oldpi1.ac_real, atarg1, ret1, lrmult1,disease], losses1) # ---------------------------------------- assign_old_eq_new2 = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi2.get_variables(), pi2.get_variables())]) # # compute_losses_expert = U.function([ob['adj'], ob['node'], ac, pi.ac_real], # loss_expert) compute_losses2 = U.function([ob2['adj'], ob2['node'], ac2, pi2.ac_real, oldpi2.ac_real, atarg2, ret2, lrmult2,disease], losses2) # ---------------------------------------- # ---------------------------------------- # Prepare for rollouts # ---------------------------------------- episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() # ---------------------------------------- # ---------------------------------------- lenbuffer1 = deque(maxlen=100) # rolling buffer for episode lengths lenbuffer_valid1 = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer1 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_env1 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_d_step1 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_d_final1 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_final1 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_final_stat1 = deque(maxlen=100) # rolling buffer for episode rewardsn # ---------------------------------------- lenbuffer2 = deque(maxlen=100) # rolling buffer for episode lengths lenbuffer_valid2 = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer2 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_env2 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_d_step2 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_d_final2 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_final2 = deque(maxlen=100) # rolling buffer for episode rewards rewbuffer_final_stat2 = deque(maxlen=100) # rolling buffer for episode rewardsn # ---------------------------------------- # ---------------------------------------- classifier_buffer = deque(maxlen=1) classifier_adverse_buffer = deque(maxlen=1) classifier_binding1_buffer = deque(maxlen=1) classifier_binding2_buffer = deque(maxlen=1) # ---------------------------------------- # ---------------------------------------- #disease_count = 0 #disease_list = list(range(num_disease)) #random.shuffle(disease_list) seg_gen1 = traj_segment_generator(args, pi1, env1,disease_id, timesteps_per_actorbatch, True, loss_g_gen_step_func1, loss_g_gen_final_func1, nepis,'1') seg_gen2 = traj_segment_generator(args, pi2, env2,disease_id, timesteps_per_actorbatch, True, loss_g_gen_step_func2, loss_g_gen_final_func2, nepis,'2') U.initialize() #saver_classifier = tf.train.Saver(var_list_classifier) #saver_classifier.restore(tf.get_default_session(), "/scratch/user/mostafa_karimi/rlproj/checkpoint_classifier/classifier_iter_99450") class_model1.load_weights('./ckpt/weights.best.hdf5') class_model2.load_weights('./ckpt/weights.best.hdf5') assert sum([max_iters>0, max_timesteps>0, max_episodes>0, max_seconds>0])==1, "Only one time constraint permitted" if args.load==1: try: fname1 = './ckpt/' + args.name_full_load1 fname2 = './ckpt/' + args.name_full_load2 sess = tf.get_default_session() # sess.run(tf.global_variables_initializer()) saver1 = tf.train.Saver(var_list_pi1) saver2 = tf.train.Saver(var_list_pi2) saver1.restore(sess, fname1) saver2.restore(sess, fname2) iters_so_far = int(fname1.split('_')[-2])+1 print('model restored!', fname1, 'iters_so_far:', iters_so_far,flush=True) print('model restored!', fname2, 'iters_so_far:', iters_so_far,flush=True) except: print(fname,'ckpt not found, start with iters 0') adam_pi1.sync() adam_pi_stop1.sync() adam_pi2.sync() adam_pi_stop2.sync() adam_d_step.sync() adam_d_final.sync() counter = 0 level = 0 ## start training while True: #if disease_count == len(disease_list): # disease_count = 0 # random.shuffle(disease_list) if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break elif max_seconds and time.time() - tstart >= max_seconds: break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError # logger.log("********** Iteration %i ************"%iters_so_far) seg_gen1.__next__() seg1 = seg_gen1.send(disease_id) seg_gen2.__next__() seg2 = seg_gen2.send(disease_id) add_vtarg_and_adv(args,seg1, seg2, gamma, lam, loss_class_func1,loss_class_func2) print("iter: ",iters_so_far,flush=True) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob_adj1, ob_node1, ac1, atarg1, tdlamret1 = seg1["ob_adj"], seg1["ob_node"], seg1["ac"], seg1["adv"], seg1["tdlamret"] vpredbefore1 = seg1["vpred"] # predicted value function before udpate atarg1 = (atarg1 - atarg1.mean()) / atarg1.std() # standardized advantage function estimate d1 = Dataset(dict(ob_adj=ob_adj1, ob_node=ob_node1, ac=ac1, atarg=atarg1, vtarg=tdlamret1), shuffle=not pi1.recurrent) optim_batchsize1 = optim_batchsize or ob_adj1.shape[0] ob_adj2, ob_node2, ac2, atarg2, tdlamret2 = seg2["ob_adj"], seg2["ob_node"], seg2["ac"], seg2["adv"], seg2["tdlamret"] vpredbefore2 = seg2["vpred"] # predicted value function before udpate atarg2 = (atarg2 - atarg2.mean()) / atarg2.std() # standardized advantage function estimate d2 = Dataset(dict(ob_adj=ob_adj2, ob_node=ob_node2, ac=ac2, atarg=atarg2, vtarg=tdlamret2), shuffle=not pi2.recurrent) optim_batchsize2 = optim_batchsize or ob_adj2.shape[0] # inner training loop, train policy for i_optim in range(optim_epochs): loss_expert1=0 loss_expert_stop1=0 g_expert1=0 g_expert_stop1=0 loss_expert2=0 loss_expert_stop2=0 g_expert2=0 g_expert_stop2=0 loss_d_step1 = 0 loss_d_final1 = 0 g_ppo1 = 0 g_d_step1 = 0 g_d_final1 = 0 loss_d_step2 = 0 loss_d_final2 = 0 g_ppo2 = 0 g_d_step2 = 0 g_d_final2 = 0 _, _,disease_feat = env1.get_expert(optim_batchsize1,disease_id) pretrain_shift = 5 ## Expert if iters_so_far>=args.expert_start and iters_so_far<=args.expert_end+pretrain_shift: ob_expert1, ac_expert1,_ = env1.get_expert(optim_batchsize1,disease_id) loss_expert1, g_expert1 = lossandgrad_expert1(ob_expert1['adj'], ob_expert1['node'], ac_expert1, ac_expert1,disease_feat) loss_expert1 = np.mean(loss_expert1) ob_expert2, ac_expert2,_ = env2.get_expert(optim_batchsize2,disease_id) loss_expert2, g_expert2 = lossandgrad_expert2(ob_expert2['adj'], ob_expert2['node'], ac_expert2, ac_expert2,disease_feat) loss_expert2 = np.mean(loss_expert2) ## PPO if iters_so_far>=args.rl_start and iters_so_far<=args.rl_end: assign_old_eq_new1() # set old parameter values to new parameter values batch1 = d1.next_batch(optim_batchsize1) assign_old_eq_new2() # set old parameter values to new parameter values batch2 = d2.next_batch(optim_batchsize2) # ppo # if args.has_ppo==1: if iters_so_far >= args.rl_start+pretrain_shift: # start generator after discriminator trained a well.. *newlosses1, g_ppo1 = lossandgrad_ppo1(batch1["ob_adj"], batch1["ob_node"], batch1["ac"], batch1["ac"], batch1["ac"], batch1["atarg"], batch1["vtarg"], cur_lrmult,disease_feat) losses_ppo1=newlosses1 *newlosses2, g_ppo2 = lossandgrad_ppo2(batch2["ob_adj"], batch2["ob_node"], batch2["ac"], batch2["ac"], batch2["ac"], batch2["atarg"], batch2["vtarg"], cur_lrmult,disease_feat) losses_ppo2=newlosses2 if args.has_d_step==1 and i_optim>=optim_epochs//2: # update step discriminator ob_expert1, _,_ = env1.get_expert(optim_batchsize1,disease_id,curriculum=args.curriculum,level_total=args.curriculum_num,level=level) loss_d_step1, g_d_step1 = lossandgrad_d_step1(ob_expert1["adj"], ob_expert1["node"], batch1["ob_adj"], batch1["ob_node"]) adam_d_step.update(g_d_step1, optim_stepsize * cur_lrmult) loss_d_step1 = np.mean(loss_d_step1) ob_expert2, _,_ = env2.get_expert(optim_batchsize2,disease_id,curriculum=args.curriculum,level_total=args.curriculum_num,level=level) loss_d_step2, g_d_step2 = lossandgrad_d_step2(ob_expert2["adj"], ob_expert2["node"], batch2["ob_adj"], batch2["ob_node"]) adam_d_step.update(g_d_step2, optim_stepsize * cur_lrmult) loss_d_step2 = np.mean(loss_d_step2) if args.has_d_final==1 and i_optim>=optim_epochs//4*3: # update final discriminator ob_expert1, _ ,_ = env1.get_expert(optim_batchsize1, disease_id,is_final=True, curriculum=args.curriculum,level_total=args.curriculum_num, level=level) seg_final_adj1, seg_final_node1 = traj_final_generator(pi1, copy.deepcopy(env1),disease_id, optim_batchsize1, True) # update final discriminator loss_d_final1, g_d_final1 = lossandgrad_d_final1(ob_expert1["adj"], ob_expert1["node"], seg_final_adj1, seg_final_node1) # loss_d_final, g_d_final = lossandgrad_d_final(ob_expert["adj"], ob_expert["node"], ob_adjs, ob_nodes) adam_d_final.update(g_d_final1, optim_stepsize * cur_lrmult) # logger.log(fmt_row(13, np.mean(losses, axis=0))) ob_expert2, _,_ = env2.get_expert(optim_batchsize2, disease_id,is_final=True, curriculum=args.curriculum,level_total=args.curriculum_num, level=level) seg_final_adj2, seg_final_node2 = traj_final_generator(pi2, copy.deepcopy(env2),disease_id, optim_batchsize2, True) # update final discriminator loss_d_final2, g_d_final2 = lossandgrad_d_final2(ob_expert2["adj"], ob_expert2["node"], seg_final_adj2, seg_final_node2) # loss_d_final, g_d_final = lossandgrad_d_final(ob_expert["adj"], ob_expert["node"], ob_adjs, ob_nodes) adam_d_final.update(g_d_final2, optim_stepsize * cur_lrmult) #print("gradient1 PPO: "+str(0.2*g_ppo1)+ " Expert: "+str(0.05*g_expert1)) #print("gradient2 PPO: "+str(0.2*g_ppo2)+ " Expert: "+str(0.05*g_expert2)) #print("step size: "+ str(optim_stepsize)+" and "+str(cur_lrmult)) adam_pi1.update(0.2*g_ppo1+0.05*g_expert1, optim_stepsize * cur_lrmult) adam_pi2.update(0.2*g_ppo2+0.05*g_expert2, optim_stepsize * cur_lrmult) losses1 = [] for batch1 in d1.iterate_once(optim_batchsize1): newlosses1 = compute_losses1(batch1["ob_adj"], batch1["ob_node"], batch1["ac"], batch1["ac"], batch1["ac"], batch1["atarg"], batch1["vtarg"], cur_lrmult,disease_feat) losses1.append(newlosses1) meanlosses1,_,_ = mpi_moments(losses1, axis=0) losses2 = [] for batch2 in d2.iterate_once(optim_batchsize2): newlosses2 = compute_losses2(batch2["ob_adj"], batch2["ob_node"], batch2["ac"], batch2["ac"], batch2["ac"], batch2["atarg"], batch2["vtarg"], cur_lrmult,disease_feat) losses2.append(newlosses2) meanlosses2,_,_ = mpi_moments(losses2, axis=0) if writer is not None: writer.add_scalar("loss_expert1", loss_expert1, iters_so_far) writer.add_scalar("loss_expert_stop1", loss_expert_stop1, iters_so_far) writer.add_scalar("loss_d_step1", loss_d_step1, iters_so_far) writer.add_scalar("loss_d_final1", loss_d_final1, iters_so_far) writer.add_scalar('grad_expert_min1', np.amin(g_expert1), iters_so_far) writer.add_scalar('grad_expert_max1', np.amax(g_expert1), iters_so_far) writer.add_scalar('grad_expert_norm1', np.linalg.norm(g_expert1), iters_so_far) writer.add_scalar('grad_expert_stop_min1', np.amin(g_expert_stop1), iters_so_far) writer.add_scalar('grad_expert_stop_max1', np.amax(g_expert_stop1), iters_so_far) writer.add_scalar('grad_expert_stop_norm1', np.linalg.norm(g_expert_stop1), iters_so_far) writer.add_scalar('grad_rl_min1', np.amin(g_ppo1), iters_so_far) writer.add_scalar('grad_rl_max1', np.amax(g_ppo1), iters_so_far) writer.add_scalar('grad_rl_norm1', np.linalg.norm(g_ppo1), iters_so_far) writer.add_scalar('g_d_step_min1', np.amin(g_d_step1), iters_so_far) writer.add_scalar('g_d_step_max1', np.amax(g_d_step1), iters_so_far) writer.add_scalar('g_d_step_norm1', np.linalg.norm(g_d_step1), iters_so_far) writer.add_scalar('g_d_final_min1', np.amin(g_d_final1), iters_so_far) writer.add_scalar('g_d_final_max1',
np.amax(g_d_final1)
numpy.amax
import numpy as np from pathlib import Path from scipy.ndimage import fourier_shift from skimage._shared import testing from skimage._shared.testing import assert_equal from skimage.data import camera from skimage.feature.register_translation import register_translation from skimage.feature.masked_register_translation import ( masked_register_translation, cross_correlate_masked) from skimage.io import imread # Location of test images # These images are taken from Dirk Padfields' MATLAB package # available on his website: www.dirkpadfield.com IMAGES_DIR = Path(__file__).parent / 'data' def test_masked_registration_vs_register_translation(): """masked_register_translation should give the same results as register_translation in the case of trivial masks.""" reference_image = camera() shift = (-7, 12) shifted = np.real(np.fft.ifft2(fourier_shift( np.fft.fft2(reference_image), shift))) trivial_mask = np.ones_like(reference_image) nonmasked_result, *_ = register_translation(reference_image, shifted) masked_result = masked_register_translation( reference_image, shifted, trivial_mask, overlap_ratio=1 / 10) assert_equal(nonmasked_result, masked_result) def test_masked_registration_random_masks(): """masked_register_translation should be able to register translations between images even with random masks.""" # See random number generator for reproducible results np.random.seed(23) reference_image = camera() shift = (-7, 12) shifted = np.real(np.fft.ifft2(fourier_shift(
np.fft.fft2(reference_image)
numpy.fft.fft2
# -*- coding: utf-8 -*- """ Created on Fri Jul 05 14:05:24 2013 Aug 15 2020: add brunnermunzel, rank_compare_2indep Author: <NAME> """ from statsmodels.compat.python import lzip import numpy as np from numpy.testing import (assert_allclose, assert_almost_equal, assert_approx_equal, assert_) from scipy import stats import pytest from statsmodels.stats.contingency_tables import ( mcnemar, cochrans_q, SquareTable) from statsmodels.sandbox.stats.runs import (Runs, runstest_1samp, runstest_2samp) from statsmodels.sandbox.stats.runs import mcnemar as sbmcnemar from statsmodels.stats.nonparametric import ( rank_compare_2indep, rank_compare_2ordinal, prob_larger_continuous, cohensd2problarger) from statsmodels.tools.testing import Holder def _expand_table(table): '''expand a 2 by 2 contingency table to observations ''' return np.repeat([[1, 1], [1, 0], [0, 1], [0, 0]], table.ravel(), axis=0) def test_mcnemar_exact(): f_obs1 = np.array([[101, 121], [59, 33]]) f_obs2 = np.array([[101, 70], [59, 33]]) f_obs3 = np.array([[101, 80], [59, 33]]) f_obs4 = np.array([[101, 30], [60, 33]]) f_obs5 = np.array([[101, 10], [30, 33]]) f_obs6 = np.array([[101, 10], [10, 33]]) #vassar college online computation res1 = 0.000004 res2 = 0.378688 res3 = 0.089452 res4 = 0.00206 res5 = 0.002221 res6 = 1. stat = mcnemar(f_obs1, exact=True) assert_almost_equal([stat.statistic, stat.pvalue], [59, res1], decimal=6) stat = mcnemar(f_obs2, exact=True) assert_almost_equal([stat.statistic, stat.pvalue], [59, res2], decimal=6) stat = mcnemar(f_obs3, exact=True) assert_almost_equal([stat.statistic, stat.pvalue], [59, res3], decimal=6) stat = mcnemar(f_obs4, exact=True) assert_almost_equal([stat.statistic, stat.pvalue], [30, res4], decimal=6) stat = mcnemar(f_obs5, exact=True) assert_almost_equal([stat.statistic, stat.pvalue], [10, res5], decimal=6) stat = mcnemar(f_obs6, exact=True) assert_almost_equal([stat.statistic, stat.pvalue], [10, res6], decimal=6) def test_mcnemar_chisquare(): f_obs1 = np.array([[101, 121], [59, 33]]) f_obs2 = np.array([[101, 70], [59, 33]]) f_obs3 = np.array([[101, 80], [59, 33]]) #> mcn = mcnemar.test(matrix(c(101, 121, 59, 33),nrow=2)) res1 = [2.067222e01, 5.450095e-06] res2 = [0.7751938, 0.3786151] res3 = [2.87769784, 0.08981434] stat = mcnemar(f_obs1, exact=False) assert_allclose([stat.statistic, stat.pvalue], res1, rtol=1e-6) stat = mcnemar(f_obs2, exact=False) assert_allclose([stat.statistic, stat.pvalue], res2, rtol=1e-6) stat = mcnemar(f_obs3, exact=False) assert_allclose([stat.statistic, stat.pvalue], res3, rtol=1e-6) # test correction = False res1 = [2.135556e01, 3.815136e-06] res2 = [0.9379845, 0.3327967] res3 = [3.17266187, 0.07488031] res = mcnemar(f_obs1, exact=False, correction=False) assert_allclose([res.statistic, res.pvalue], res1, rtol=1e-6) res = mcnemar(f_obs2, exact=False, correction=False) assert_allclose([res.statistic, res.pvalue], res2, rtol=1e-6) res = mcnemar(f_obs3, exact=False, correction=False) assert_allclose([res.statistic, res.pvalue], res3, rtol=1e-6) def test_mcnemar_vectorized(reset_randomstate): ttk = np.random.randint(5,15, size=(2,2,3)) with pytest.deprecated_call(): res = sbmcnemar(ttk, exact=False) with pytest.deprecated_call(): res1 = lzip(*[sbmcnemar(ttk[:, :, i], exact=False) for i in range(3)]) assert_allclose(res, res1, rtol=1e-13) with pytest.deprecated_call(): res = sbmcnemar(ttk, exact=False, correction=False) with pytest.deprecated_call(): res1 = lzip(*[sbmcnemar(ttk[:, :, i], exact=False, correction=False) for i in range(3)])
assert_allclose(res, res1, rtol=1e-13)
numpy.testing.assert_allclose
import numpy as np from river import base from river.utils import dict2numpy from .base_neighbors import BaseNeighbors class KNNRegressor(BaseNeighbors, base.Regressor): """k-Nearest Neighbors regressor. This non-parametric regression method keeps track of the last `window_size` training samples. Predictions are obtained by aggregating the values of the closest n_neighbors stored-samples with respect to a query sample. Parameters ---------- n_neighbors The number of nearest neighbors to search for. window_size The maximum size of the window storing the last observed samples. leaf_size scipy.spatial.cKDTree parameter. The maximum number of samples that can be stored in one leaf node, which determines from which point the algorithm will switch for a brute-force approach. The bigger this number the faster the tree construction time, but the slower the query time will be. p p-norm value for the Minkowski metric. When `p=1`, this corresponds to the Manhattan distance, while `p=2` corresponds to the Euclidean distance. Valid values are in the interval $[1, +\\infty)$ aggregation_method The method to aggregate the target values of neighbors. | 'mean' | 'median' | 'weighted_mean' kwargs Other parameters passed to scipy.spatial.cKDTree. Notes ----- This estimator is not optimal for a mixture of categorical and numerical features. This implementation treats all features from a given stream as numerical. Examples -------- >>> from river import datasets >>> from river import evaluate >>> from river import metrics >>> from river import neighbors >>> from river import preprocessing >>> dataset = datasets.TrumpApproval() >>> model = ( ... preprocessing.StandardScaler() | ... neighbors.KNNRegressor(window_size=50) ... ) >>> metric = metrics.MAE() >>> evaluate.progressive_val_score(dataset, model, metric) MAE: 0.441308 """ _MEAN = "mean" _MEDIAN = "median" _WEIGHTED_MEAN = "weighted_mean" def __init__( self, n_neighbors: int = 5, window_size: int = 1000, leaf_size: int = 30, p: float = 2, aggregation_method: str = "mean", **kwargs ): super().__init__( n_neighbors=n_neighbors, window_size=window_size, leaf_size=leaf_size, p=p, **kwargs ) if aggregation_method not in {self._MEAN, self._MEDIAN, self._WEIGHTED_MEAN}: raise ValueError( "Invalid aggregation_method: {}.\n" "Valid options are: {}".format( aggregation_method, {self._MEAN, self._MEDIAN, self._WEIGHTED_MEAN} ) ) self.aggregation_method = aggregation_method self.kwargs = kwargs def _unit_test_skips(self): return {"check_emerging_features", "check_disappearing_features"} def learn_one(self, x, y): """Update the model with a set of features `x` and a real target value `y`. Parameters ---------- x A dictionary of features. y A numeric target. Returns ------- self Notes ----- For the K-Nearest Neighbors regressor, fitting the model is the equivalent of inserting the newer samples in the observed window, and if the `window_size` is reached, removing older results. """ x_arr = dict2numpy(x) self.data_window.append(x_arr, y) return self def predict_one(self, x): """Predict the target value of a set of features `x`. Search the KDTree for the `n_neighbors` nearest neighbors. Parameters ---------- x A dictionary of features. Returns ------- The prediction. """ if self.data_window.size == 0: # Not enough information available, return default prediction return 0.0 x_arr = dict2numpy(x) dists, neighbor_idx = self._get_neighbors(x_arr) target_buffer = self.data_window.targets_buffer # If the closest neighbor has a distance of 0, then return it's output if dists[0][0] == 0: return target_buffer[neighbor_idx[0][0]] if self.data_window.size < self.n_neighbors: # Select only the valid neighbors neighbor_vals = [ target_buffer[index] for cnt, index in enumerate(neighbor_idx[0]) if cnt < self.data_window.size ] dists = [dist for cnt, dist in enumerate(dists[0]) if cnt < self.data_window.size] else: neighbor_vals = [target_buffer[index] for index in neighbor_idx[0]] dists = dists[0] if self.aggregation_method == self._MEAN: return np.mean(neighbor_vals) elif self.aggregation_method == self._MEDIAN: return
np.median(neighbor_vals)
numpy.median
import HaPPPy import unittest import numpy as np import scipy.integrate import math from math import sqrt from scipy import constants hbar = constants.hbar e = constants.e m = 3 intersection = 0 sigma = 1 n_i = 200 l_i = 50 target_n = 1000 target_l = 200 step_n = 200 step_l = 50 unit_gauss = 1 omega = 1.875537349*(10**13) class OneBodyTestSuite(unittest.TestCase): """A test class to the OneBody module. First of all, i would like to test the import and if the constants are choosen. These are the Main target of my first few tests. """ def test_input(self): """ This test should confirm, that the ammount of gridpoints are positive.""" self.assertTrue((n_i > 0),msg ="You have to choose a positive ammount of gridpoints.") def test_OneBody_exists(self): """ This test, checks wether the One Body module exists. """ self.assertTrue(hasattr(HaPPPy, 'OneBody'),msg ="One Body Module doesn't exist") def test_ammount_cutted_eigenvalues(self): """ This confirm that the user didn't want to get more cutted eigenvalues then eigenvalues exists.""" self.assertTrue((m <= n_i),msg =" You want to get more cutted eigenvalues, then eigenvalues.") """ Now the test start to check the kinetic matrices from the chosen potential.""" def test_OneBody_Harmonic_kinetic(self): """ This test check the kinetic Matrix in the harmonic potential by building diagonalarrays.""" for n in range (n_i,target_n,step_n): for l in range (l_i,target_l,step_l): OBSolver = HaPPPy.OneBody.OneBodySolver(l,n,m) _,_,_,kin_mat,_,_,_,_ = OBSolver.calcualteHarmonicPotential(intersection) diagonalarray_harm_kin_main = np.diagonal(kin_mat, 0) """ all elements in the diagonalarray of the main "diagonale" should be positive.""" self.assertTrue(
np.all(diagonalarray_harm_kin_main > 0)
numpy.all
"""Defines a polyhedron.""" import numpy as np import rowan from scipy.sparse.csgraph import connected_components from .base_classes import Shape3D from .convex_polygon import ConvexPolygon, _is_convex from .polygon import Polygon, _is_simple from .sphere import Sphere from .utils import _generate_ax, _set_3d_axes_equal, translate_inertia_tensor try: import miniball MINIBALL = True except ImportError: MINIBALL = False def _face_to_edges(face, reverse=False): """Convert a face into a sequence of edges (tuples). Args: face (array-like): A face composed of vertex indices. reverse (bool): Whether to return the edges in reverse. Returns: list[tuple[int, int]]: A list of edges where each is a tuple of a pair of vertices. """ shift = 1 if reverse else -1 return list(zip(*np.stack((face, np.roll(face, shift))))) class Polyhedron(Shape3D): """A three-dimensional polytope. A polyhedron is defined by a set of vertices and a set of faces composed of the vertices. On construction, the faces are reordered counterclockwise with respect to an outward normal. The polyhedron provides various standard geometric calculations, such as volume and surface area. Most features of the polyhedron can be accessed via properties, including the plane equations defining the faces and the neighbors of each face. .. note:: For the purposes of calculations like moments of inertia, the polyhedron is assumed to be of constant, unit density. Args: vertices (:math:`(N, 3)` :class:`numpy.ndarray`): The vertices of the polyhedron. faces (list(list)): The faces of the polyhedron. faces_are_convex (bool, optional): Whether or not the faces of the polyhedron are all convex. This is used to determine whether certain operations like coplanar face merging are allowed (Default value: False). Example: >>> cube = coxeter.shapes.ConvexPolyhedron( ... [[1, 1, 1], [1, -1, 1], [1, 1, -1], [1, -1, -1], ... [-1, 1, 1], [-1, -1, 1], [-1, 1, -1], [-1, -1, -1]]) >>> cube = coxeter.shapes.Polyhedron( ... vertices=cube.vertices, faces=cube.faces) >>> bounding_sphere = cube.bounding_sphere >>> import numpy as np >>> assert np.isclose(bounding_sphere.radius, np.sqrt(3)) >>> cube.center array([0., 0., 0.]) >>> cube.circumsphere <coxeter.shapes.sphere.Sphere object at 0x...> >>> cube.faces [array([4, 5, 1, 0], dtype=int32), array([0, 2, 6, 4], dtype=int32), array([6, 7, 5, 4], dtype=int32), array([0, 1, 3, 2], dtype=int32), array([5, 7, 3, 1], dtype=int32), array([2, 3, 7, 6], dtype=int32)] >>> cube.gsd_shape_spec {'type': 'Mesh', 'vertices': [[1.0, 1.0, 1.0], [1.0, -1.0, 1.0], [1.0, 1.0, -1.0], [1.0, -1.0, -1.0], [-1.0, 1.0, 1.0], [-1.0, -1.0, 1.0], [-1.0, 1.0, -1.0], [-1.0, -1.0, -1.0]], 'faces': [array([4, 5, 1, 0], dtype=int32), array([0, 2, 6, 4], dtype=int32), array([6, 7, 5, 4], dtype=int32), array([0, 1, 3, 2], dtype=int32), array([5, 7, 3, 1], dtype=int32), array([2, 3, 7, 6], dtype=int32)]} >>> assert np.allclose( ... cube.inertia_tensor, ... np.diag([16. / 3., 16. / 3., 16. / 3.])) >>> assert np.isclose(cube.iq, np.pi / 6.) >>> cube.neighbors [array([1, 2, 3, 4]), array([0, 2, 3, 5]), array([0, 1, 4, 5]), array([0, 1, 4, 5]), array([0, 2, 3, 5]), array([1, 2, 3, 4])] >>> cube.normals array([[ 0., 0., 1.], [ 0., 1., -0.], [-1., 0., 0.], [ 1., -0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]]) >>> cube.num_faces 6 >>> cube.num_vertices 8 >>> assert np.isclose(cube.surface_area, 24.0) >>> cube.vertices array([[ 1., 1., 1.], [ 1., -1., 1.], [ 1., 1., -1.], [ 1., -1., -1.], [-1., 1., 1.], [-1., -1., 1.], [-1., 1., -1.], [-1., -1., -1.]]) >>> assert np.isclose(cube.volume, 8.0) """ def __init__(self, vertices, faces, faces_are_convex=None): self._vertices = np.array(vertices, dtype=np.float64) self._faces = [face for face in faces] if faces_are_convex is None: faces_are_convex = all(len(face) == 3 for face in faces) self._faces_are_convex = faces_are_convex self._find_equations() self._find_neighbors() def _find_equations(self): """Find the plane equations of the polyhedron faces.""" self._equations = np.empty((len(self.faces), 4)) for i, face in enumerate(self.faces): # The direction of the normal is selected such that vertices that # are already ordered counterclockwise will point outward. normal = np.cross( self.vertices[face[2]] - self.vertices[face[1]], self.vertices[face[0]] - self.vertices[face[1]], ) normal /= np.linalg.norm(normal) self._equations[i, :3] = normal # Sign conventions chosen to match scipy.spatial.ConvexHull # We use ax + by + cz + d = 0 (not ax + by + cz = d) self._equations[i, 3] = -normal.dot(self.vertices[face[0]]) def _find_neighbors(self): """Find neighbors of faces.""" self._neighbors = [[] for _ in range(self.num_faces)] for i, j, _ in self._get_face_intersections(): self._neighbors[i].append(j) self._neighbors[j].append(i) self._neighbors = [np.array(neigh) for neigh in self._neighbors] def _get_face_intersections(self): """Get pairs of faces and their common edges. This function yields a generator of tuples of the form (face, neighbor, (vertex1, vertex2)) indicating neighboring faces and their common edge. """ # First enumerate all edges of each neighbor. We include both # directions of the edges for comparison. face_edges = [ set(_face_to_edges(f) + _face_to_edges(f, True)) for f in self.faces ] for i in range(self.num_faces): for j in range(i + 1, self.num_faces): common_edges = face_edges[i].intersection(face_edges[j]) if len(common_edges) > 0: # Can never have multiple intersections, but we should have # the same edge show up twice (forward and reverse). assert len(common_edges) == 2 common_edge = list(common_edges)[0] yield (i, j, (common_edge[0], common_edge[1])) @property def gsd_shape_spec(self): """dict: Get a :ref:`complete GSD specification <shapes>`.""" # noqa: D401 return { "type": "Mesh", "vertices": self._vertices.tolist(), "faces": self._faces, } def merge_faces(self, atol=1e-8, rtol=1e-5): """Merge coplanar faces to a given tolerance. Whether or not faces should be merged is determined using :func:`numpy.allclose` to compare the plane equations of neighboring faces. Connected components of mergeable faces are then merged into a single face. This method can be safely called many times with different tolerances, however, the operation is destructive in the sense that merged faces cannot be recovered. Users wishing to undo a merge to attempt a less expansive merge must build a new polyhedron. Args: atol (float): Absolute tolerance for :func:`numpy.allclose`. rtol (float): Relative tolerance for :func:`numpy.allclose`. """ if not self._faces_are_convex: # Can only sort faces if they are guaranteed to be convex. raise ValueError( "Faces cannot be merged unless they are convex because the " "correct ordering of vertices in a face cannot be determined " "for nonconvex faces." ) # Construct a graph where connectivity indicates merging, then identify # connected components to merge. merge_graph =
np.zeros((self.num_faces, self.num_faces))
numpy.zeros
import functools import numpy as np from scipy.ndimage import map_coordinates def uv_meshgrid(w, h): uv = np.stack(np.meshgrid(range(w), range(h)), axis=-1) uv = uv.astype(np.float64) uv[..., 0] = ((uv[..., 0] + 0.5) / w - 0.5) * 2 * np.pi uv[..., 1] = ((uv[..., 1] + 0.5) / h - 0.5) * np.pi return uv @functools.lru_cache() def _uv_tri(w, h): uv = uv_meshgrid(w, h) sin_u = np.sin(uv[..., 0]) cos_u = np.cos(uv[..., 0]) tan_v = np.tan(uv[..., 1]) return sin_u, cos_u, tan_v def uv_tri(w, h): sin_u, cos_u, tan_v = _uv_tri(w, h) return sin_u.copy(), cos_u.copy(), tan_v.copy() def coorx2u(x, w=1024): return ((x + 0.5) / w - 0.5) * 2 * np.pi def coory2v(y, h=512): return ((y + 0.5) / h - 0.5) * np.pi def u2coorx(u, w=1024): return (u / (2 * np.pi) + 0.5) * w - 0.5 def v2coory(v, h=512): return (v / np.pi + 0.5) * h - 0.5 def uv2xy(u, v, z=-50): c = z / np.tan(v) x = c * np.cos(u) y = c * np.sin(u) return x, y def pano_connect_points(p1, p2, z=-50, w=1024, h=512): if p1[0] == p2[0]: return np.array([p1, p2], np.float32) u1 = coorx2u(p1[0], w) v1 = coory2v(p1[1], h) u2 = coorx2u(p2[0], w) v2 = coory2v(p2[1], h) x1, y1 = uv2xy(u1, v1, z) x2, y2 = uv2xy(u2, v2, z) if abs(p1[0] - p2[0]) < w / 2: pstart = np.ceil(min(p1[0], p2[0])) pend = np.floor(max(p1[0], p2[0])) else: pstart = np.ceil(max(p1[0], p2[0])) pend = np.floor(min(p1[0], p2[0]) + w) coorxs = (np.arange(pstart, pend + 1) % w).astype(np.float64) vx = x2 - x1 vy = y2 - y1 us = coorx2u(coorxs, w) ps = (np.tan(us) * x1 - y1) / (vy - np.tan(us) * vx) cs = np.sqrt((x1 + ps * vx) ** 2 + (y1 + ps * vy) ** 2) vs = np.arctan2(z, cs) coorys = v2coory(vs) return np.stack([coorxs, coorys], axis=-1) def pano_stretch(img, mask, corners, kx, ky, order=1): ''' img: [H, W, C] corners: [N, 2] in image coordinate (x, y) format kx: Stretching along front-back direction ky: Stretching along left-right direction order: Interpolation order. 0 for nearest-neighbor. 1 for bilinear. ''' # Process image sin_u, cos_u, tan_v = uv_tri(img.shape[1], img.shape[0]) u0 =
np.arctan2(sin_u * kx / ky, cos_u)
numpy.arctan2
import os from utils.file import load_from_json from utils.model import load_lenet import numpy as np from utils.model import load_pool from utils.metrics import error_rate, get_corrections from models.athena import Ensemble, ENSEMBLE_STRATEGY def generate_ae(model, data, labels, attack_configs, save=False, output_dir=None): """ Generate adversarial examples :param model: WeakDefense. The targeted model. :param data: array. The benign samples to generate adversarial for. :param labels: array or list. The true labels. :param attack_configs: dictionary. Attacks and corresponding settings. :param save: boolean. True, if save the adversarial examples. :param output_dir: str or path. Location to save the adversarial examples. It cannot be None when save is True. :return: """ img_rows, img_cols = data.shape[1], data.shape[2] num_attacks = attack_configs.get("num_attacks") data_loader = (data, labels) if len(labels.shape) > 1: labels = np.asarray([np.argmax(p) for p in labels]) # generate attacks one by one for id in range(num_attacks): key = "configs{}".format(id) data_adv = generate(model=model, data_loader=data_loader, attack_args=attack_configs.get(key) ) # predict the adversarial examples predictions = model.predict(data_adv) predictions = np.asarray([np.argmax(p) for p in predictions]) err = error_rate(y_pred=predictions, y_true=labels) print(">>> error rate:", err) # plotting some examplesjsm num_plotting = min(data.shape[0], 2) for i in range(num_plotting): img = data_adv[i].reshape((img_rows, img_cols)) plt.imshow(img, cmap='gray') title = '{}: {}->{}'.format(attack_configs.get(key).get("description"), labels[i], predictions[i] ) plt.title(title) plt.show() plt.close() # save the adversarial example if save: if output_dir is None: raise ValueError("Cannot save images to a none path.") # save with a random name file = os.path.join(output_dir, "{}.npy".format(time.monotonic())) print("Save the adversarial examples to file [{}].".format(file)) np.save(file, data_adv) model_configs = load_from_json("./md.json") data_configs = load_from_json("./dt.json") attack_configs = load_from_json("./at.json") # load the targeted model model_file = os.path.join(model_configs.get("dir"), model_configs.get("um_file")) target = load_lenet(file=model_file, wrap=True) # load the benign samples data_file = os.path.join(data_configs.get('dir'), data_configs.get('bs_file')) data_bs = np.load(data_file) # load the corresponding true labels label_file = os.path.join(data_configs.get('dir'), data_configs.get('label_file')) labels = np.load(label_file) # generate adversarial examples for a small subset data_bs = data_bs[:10] labels = labels[:10] generate_ae(model=target, data=data_bs, labels=labels, attack_configs=attack_configs) # copied from tutorials/eval_model.py def evaluate(trans_configs, model_configs, data_configs, save=False, output_dir=None): """ Apply transformation(s) on images. :param trans_configs: dictionary. The collection of the parameterized transformations to test. in the form of { configsx: { param: value, } } The key of a configuration is 'configs'x, where 'x' is the id of corresponding weak defense. :param model_configs: dictionary. Defines model related information. Such as, location, the undefended model, the file format, etc. :param data_configs: dictionary. Defines data related information. Such as, location, the file for the true labels, the file for the benign samples, the files for the adversarial examples, etc. :param save: boolean. Save the transformed sample or not. :param output_dir: path or str. The location to store the transformed samples. It cannot be None when save is True. :return: """ # Load the baseline defense (PGD-ADT model) baseline = load_lenet(file=model_configs.get('jsma_trained'), trans_configs=None, use_logits=False, wrap=False) # get the undefended model (UM) file = os.path.join(model_configs.get('dir'), model_configs.get('um_file')) undefended = load_lenet(file=file, trans_configs=trans_configs.get('configs0'), wrap=True) print(">>> um:", type(undefended)) # load weak defenses into a pool pool, _ = load_pool(trans_configs=trans_configs, model_configs=model_configs, active_list=True, wrap=True) # create an AVEP ensemble from the WD pool wds = list(pool.values()) print(">>> wds:", type(wds), type(wds[0])) ensemble = Ensemble(classifiers=wds, strategy=ENSEMBLE_STRATEGY.AVEP.value) # load the benign samples bs_file = os.path.join(data_configs.get('dir'), data_configs.get('bs_file')) x_bs = np.load(bs_file) img_rows, img_cols = x_bs.shape[1], x_bs.shape[2] # load the corresponding true labels label_file = os.path.join(data_configs.get('dir'), data_configs.get('label_file')) labels = np.load(label_file) # get indices of benign samples that are correctly classified by the targeted model print(">>> Evaluating UM on [{}], it may take a while...".format(bs_file)) pred_bs = undefended.predict(x_bs) corrections = get_corrections(y_pred=pred_bs, y_true=labels) # Evaluate AEs. results = {} ae_list = data_configs.get('ae_files') ae_file = os.path.join(data_configs.get('dir'), ae_list[4]) x_adv =
np.load(ae_file)
numpy.load
""" Base divergence estimators. """ from numpy import mean, log, absolute, sqrt, floor, sum, arange, vstack, \ dot, abs from scipy.spatial.distance import cdist, pdist from ite.cost.x_initialization import InitX, InitKnnK, InitKnnKiTi, \ InitKnnKAlpha, InitKnnKAlphaBeta, \ InitKernel, InitEtaKernel from ite.cost.x_verification import VerEqualDSubspaces, \ VerEqualSampleNumbers, \ VerEvenSampleNumbers from ite.shared import knn_distances, estimate_d_temp2, estimate_i_alpha,\ estimate_d_temp3, volume_of_the_unit_ball,\ estimate_d_temp1 class BDKL_KnnK(InitKnnK, VerEqualDSubspaces): """ Kullback-Leibler divergence estimator using the kNN method (S={k}). Initialization is inherited from 'InitKnnK', verification comes from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). Examples -------- >>> import ite >>> co1 = ite.cost.BDKL_KnnK() >>> co2 = ite.cost.BDKL_KnnK(knn_method='cKDTree', k=5, eps=0.1) >>> co3 = ite.cost.BDKL_KnnK(k=4) """ def estimation(self, y1, y2): """ Estimate KL divergence. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated KL divergence. References ---------- <NAME>. Estimation of Information Theoretic Measures for Continuous Random Variables. Advances in Neural Information Processing Systems (NIPS), pp. 1257-1264, 2008. <NAME>, <NAME>, and <NAME>. A class of Renyi information estimators for multidimensional densities. Annals of Statistics, 36(5):2153-2182, 2008. <NAME>, <NAME>, and <NAME>. Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Transactions on Information Theory, 55:2392-2405, 2009. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) # sizes: num_of_samples1, dim = y1.shape num_of_samples2 = y2.shape[0] # computation: distances_y1y1 = knn_distances(y1, y1, True, self.knn_method, self.k, self.eps, 2)[0] distances_y2y1 = knn_distances(y2, y1, False, self.knn_method, self.k, self.eps, 2)[0] d = dim * mean(log(distances_y2y1[:, -1] / distances_y1y1[:, -1])) + \ log(num_of_samples2/(num_of_samples1-1)) return d class BDEnergyDist(InitX, VerEqualDSubspaces): """ Energy distance estimator using pairwise distances of the samples. Initialization is inherited from 'InitX', verification comes from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). Examples -------- >>> import ite >>> co = ite.cost.BDEnergyDist() """ def estimation(self, y1, y2): """ Estimate energy distance. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated energy distance. References ---------- <NAME> and <NAME>. A new test for multivariate normality. Journal of Multivariate Analysis, 93:58-80, 2005. (metric space of negative type) <NAME> and <NAME>. Testing for equal distributions in high dimension. InterStat, 5, 2004. (R^d) <NAME> and <NAME>. On a new multivariate two-sample test. Journal of Multivariate Analysis, 88, 190-206, 2004. (R^d) <NAME>. N-Distances and Their Applications. Charles University, Prague, 2005. (N-distance) <NAME> and <NAME> and <NAME>. A characterization of distributions by mean values of statistics and certain probabilistic metrics. Journal of Soviet Mathematics, 1992 (N-distance, general case). Examples -------- d = co.estimation(y1, y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) # Euclidean distances: num_of_samples1, num_of_samples2 = y1.shape[0], y2.shape[0] mean_dist_y1y1 = 2 * sum(pdist(y1)) / num_of_samples1**2 mean_dist_y2y2 = 2 * sum(pdist(y2)) / num_of_samples2**2 mean_dist_y1y2 = mean(cdist(y1, y2)) d = 2 * mean_dist_y1y2 - mean_dist_y1y1 - mean_dist_y2y2 return d class BDBhattacharyya_KnnK(InitKnnK, VerEqualDSubspaces): """ Bhattacharyya distance estimator using the kNN method (S={k}). Partial initialization comes from 'InitKnnK', verification is inherited from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). """ def __init__(self, mult=True, knn_method='cKDTree', k=3, eps=0, pxdx=True): """ Initialize the estimator. Parameters ---------- mult : bool, optional 'True': multiplicative constant relevant (needed) in the estimation. 'False': estimation up to 'proportionality'. (default is True) knn_method : str, optional kNN computation method; 'cKDTree' or 'KDTree'. k : int, >= 1, optional k-nearest neighbors (default is 3). eps : float, >= 0 The k^th returned value is guaranteed to be no further than (1+eps) times the distance to the real kNN (default is 0). pxdx : boolean, optional If pxdx == True, then we rewrite the Bhattacharyya distance as \int p^{1/2}(x)q^{1/2}(x)dx = \int p^{-1/2}(x)q^{1/2}(x) p(x)dx. [p(x)dx] Else, the Bhattacharyya distance is rewritten as \int p^{1/2}(x)q^{1/2}(x)dx = \int q^{-1/2}(x)p^{1/2}(x) q(x)dx. [q(x)dx] Examples -------- >>> import ite >>> co1 = ite.cost.BDBhattacharyya_KnnK() >>> co2 = ite.cost.BDBhattacharyya_KnnK(k=4) """ # initialize with 'InitKnnK': super().__init__(mult=mult, knn_method=knn_method, k=k, eps=eps) # other attributes (pxdx,_a,_b): self.pxdx, self._a, self._b = pxdx, -1/2, 1/2 def estimation(self, y1, y2): """ Estimate Bhattacharyya distance. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated Bhattacharyya distance. References ---------- <NAME> and <NAME> and <NAME> and <NAME>. Support Distribution Machines. Technical Report, 2012. "http://arxiv.org/abs/1202.0302" (estimation of d_temp2) Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) if self.pxdx: d_ab = estimate_d_temp2(y1, y2, self) else: d_ab = estimate_d_temp2(y2, y1, self) # absolute() to avoid possible 'log(negative)' values due to the # finite number of samples: d = -log(absolute(d_ab)) return d class BDBregman_KnnK(InitKnnKAlpha, VerEqualDSubspaces): """ Bregman distance estimator using the kNN method (S={k}). Initialization comes from 'InitKnnKAlpha', verification is inherited from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). Examples -------- >>> import ite >>> co1 = ite.cost.BDBregman_KnnK() >>> co2 = ite.cost.BDBregman_KnnK(alpha=0.9, k=5, eps=0.1) """ def estimation(self, y1, y2): """ Estimate Bregman distance. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated Bregman distance. References ---------- <NAME>, <NAME>, and <NAME>. A class of Renyi information estimators for multidimensional densities. Annals of Statistics, 36(5):2153-2182, 2008. <NAME>. Generalized projections for non-negative functions. Acta Mathematica Hungarica, 68:161-185, 1995. <NAME>. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7:200-217, 1967. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) i_alpha_y1 = estimate_i_alpha(y1, self) i_alpha_y2 = estimate_i_alpha(y2, self) d_temp3 = estimate_d_temp3(y1, y2, self) d = i_alpha_y2 + i_alpha_y1 / (self.alpha - 1) -\ self.alpha / (self.alpha - 1) * d_temp3 return d class BDChi2_KnnK(InitKnnK, VerEqualDSubspaces): """ Chi-square distance estimator using the kNN method (S={k}). Partial initialization comes from 'InitKnnK', verification is inherited from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). """ def __init__(self, mult=True, knn_method='cKDTree', k=3, eps=0, pxdx=True): """ Initialize the estimator. Parameters ---------- mult : bool, optional 'True': multiplicative constant relevant (needed) in the estimation. 'False': estimation up to 'proportionality'. (default is True) knn_method : str, optional kNN computation method; 'cKDTree' or 'KDTree'. k : int, >= 1, optional k-nearest neighbors (default is 3). eps : float, >= 0 The k^th returned value is guaranteed to be no further than (1+eps) times the distance to the real kNN (default is 0). pxdx : boolean, optional If pxdx == True, then we rewrite the Pearson chi-square divergence as \int p^2(x)q^{-1}(x)dx - 1 = \int p^1(x)q^{-1}(x) p(x)dx - 1. [p(x)dx] Else, the Pearson chi-square divergence is rewritten as \int p^2(x)q^{-1}(x)dx - 1= \int q^{-2}(x)p^2(x) q(x)dx -1. [q(x)dx] Examples -------- >>> import ite >>> co1 = ite.cost.BDChi2_KnnK() >>> co2 = ite.cost.BDChi2_KnnK(k=4) """ # initialize with 'InitKnnK': super().__init__(mult=mult, knn_method=knn_method, k=k, eps=eps) # other attributes (pxdx,_a,_b): self.pxdx = pxdx if pxdx: self._a, self._b = 1, -1 else: self._a, self._b = -2, 2 def estimation(self, y1, y2): """ Estimate Pearson chi-square divergence. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated Pearson chi-square divergence. References ---------- <NAME>, <NAME>, <NAME>, and <NAME>. Support distribution machines. Technical Report, Carnegie Mellon University, 2012. http://arxiv.org/abs/1202.0302. (estimation of d_temp2) <NAME>. On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonable supposed to have arisen from random sampling. Philosophical Magazine Series, 50:157-172, 1900. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) if self.pxdx: d = estimate_d_temp2(y1, y2, self) - 1 else: d = estimate_d_temp2(y2, y1, self) - 1 return d class BDHellinger_KnnK(InitKnnK, VerEqualDSubspaces): """ Hellinger distance estimator using the kNN method (S={k}). Partial initialization comes from 'InitKnnK', verification is inherited from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). """ def __init__(self, mult=True, knn_method='cKDTree', k=3, eps=0, pxdx=True): """ Initialize the estimator. Parameters ---------- mult : bool, optional 'True': multiplicative constant relevant (needed) in the estimation. 'False': estimation up to 'proportionality'. (default is True) knn_method : str, optional kNN computation method; 'cKDTree' or 'KDTree'. k : int, >= 1, optional k-nearest neighbors (default is 3). eps : float, >= 0 The k^th returned value is guaranteed to be no further than (1+eps) times the distance to the real kNN (default is 0). pxdx : boolean, optional If pxdx == True, then we rewrite the Pearson chi-square divergence as \int p^{1/2}(x)q^{1/2}(x)dx = \int p^{-1/2}(x)q^{1/2}(x) p(x)dx. [p(x)dx] Else, the Pearson chi-square divergence is rewritten as \int p^{1/2}(x)q^{1/2}(x)dx = \int q^{-1/2}(x)p^{1/2}(x) q(x)dx. [q(x)dx] Examples -------- >>> import ite >>> co1 = ite.cost.BDHellinger_KnnK() >>> co2 = ite.cost.BDHellinger_KnnK(k=4) """ # initialize with 'InitKnnK': super().__init__(mult=mult, knn_method=knn_method, k=k, eps=eps) # other attributes (pxdx,_a,_b): self.pxdx, self._a, self._b = pxdx, -1/2, 1/2 def estimation(self, y1, y2): """ Estimate Hellinger distance. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated Hellinger distance. References ---------- <NAME>, <NAME>, <NAME>, and <NAME>. Support distribution machines. Technical Report, Carnegie Mellon University, 2012. http://arxiv.org/abs/1202.0302. (estimation of d_temp2) Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) # D_ab (Bhattacharyya coefficient): if self.pxdx: d_ab = estimate_d_temp2(y1, y2, self) else: d_ab = estimate_d_temp2(y2, y1, self) # absolute() to avoid possible 'sqrt(negative)' values due to the # finite number of samples: d = sqrt(absolute(1 - d_ab)) return d class BDKL_KnnKiTi(InitKnnKiTi, VerEqualDSubspaces): """ Kullback-Leibler divergence estimator using the kNN method. In the kNN method: S_1={k_1}, S_2={k_2}; ki-s depend on the number of samples. Initialization is inherited from 'InitKnnKiTi', verification comes from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). Examples -------- >>> import ite >>> co1 = ite.cost.BDKL_KnnKiTi() >>> co2 = ite.cost.BDKL_KnnKiTi(knn_method='cKDTree', eps=0.1) """ def estimation(self, y1, y2): """ Estimate KL divergence. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated KL divergence. References ---------- <NAME>, <NAME>, and <NAME>. Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Transactions on Information Theory, 55:2392-2405, 2009. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) # sizes: num_of_samples1, dim = y1.shape num_of_samples2 = y2.shape[0] # ki-s depend on the number of samples: k1 = int(floor(sqrt(num_of_samples1))) k2 = int(floor(sqrt(num_of_samples2))) # computation: dist_k1_y1y1 = knn_distances(y1, y1, True, self.knn_method, k1, self.eps, 2)[0] dist_k2_y2y1 = knn_distances(y2, y1, False, self.knn_method, k2, self.eps, 2)[0] d = dim * mean(log(dist_k2_y2y1[:, -1] / dist_k1_y1y1[:, -1])) +\ log(k1 / k2 * num_of_samples2 / (num_of_samples1 - 1)) return d class BDL2_KnnK(InitKnnK, VerEqualDSubspaces): """ L2 divergence estimator using the kNN method (S={k}). Initialization is inherited from 'InitKnnK', verification comes from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). Examples -------- >>> import ite >>> co1 = ite.cost.BDL2_KnnK() >>> co2 = ite.cost.BDL2_KnnK(knn_method='cKDTree', k=5, eps=0.1) >>> co3 = ite.cost.BDL2_KnnK(k=4) """ def estimation(self, y1, y2): """ Estimate L2 divergence. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated L2 divergence. References ---------- <NAME>, <NAME>, <NAME>. Nonparametric divergence estimators for Independent Subspace Analysis. European Signal Processing Conference (EUSIPCO), pages 1849-1853, 2011. <NAME>, <NAME>, <NAME>. Nonparametric Divergence: Estimation with Applications to Machine Learning on Distributions. Uncertainty in Artificial Intelligence (UAI), 2011. <NAME> and <NAME>. On the Estimation of alpha-Divergences. International Conference on Artificial Intelligence and Statistics (AISTATS), pages 609-617, 2011. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) # sizes: num_of_samples1, dim = y1.shape num_of_samples2 = y2.shape[0] c = volume_of_the_unit_ball(dim) dist_k_y1y1 = knn_distances(y1, y1, True, self.knn_method, self.k, self.eps, 2)[0][:, -1] dist_k_y2y1 = knn_distances(y2, y1, False, self.knn_method, self.k, self.eps, 2)[0][:, -1] term1 = \ mean(dist_k_y1y1**(-dim)) * (self.k - 1) /\ ((num_of_samples1 - 1) * c) term2 = \ mean(dist_k_y2y1**(-dim)) * 2 * (self.k - 1) /\ (num_of_samples2 * c) term3 = \ mean((dist_k_y1y1**dim) / (dist_k_y2y1**(2 * dim))) *\ (num_of_samples1 - 1) * (self.k - 2) * (self.k - 1) /\ (num_of_samples2**2 * c * self.k) l2 = term1 - term2 + term3 # absolute() to avoid possible 'sqrt(negative)' values due to the # finite number of samples: d = sqrt(absolute(l2)) return d class BDRenyi_KnnK(InitKnnKAlpha, VerEqualDSubspaces): """ Renyi divergence estimator using the kNN method (S={k}). Initialization comes from 'InitKnnKAlpha', verification is inherited from 'VerEqualDSubspaces' (see 'ite.cost.x_initialization.py', 'ite.cost.x_verification.py'). The Renyi divergence (D_{R,alpha}) equals to the Kullback-Leibler divergence (D) in limit: D_{R,alpha} -> D, as alpha -> 1. Examples -------- >>> import ite >>> co1 = ite.cost.BDRenyi_KnnK() >>> co2 = ite.cost.BDRenyi_KnnK(alpha=0.9, k=5, eps=0.1) """ def estimation(self, y1, y2): """ Estimate Renyi divergence. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated Renyi divergence. References ---------- <NAME>, <NAME>, <NAME>. Nonparametric divergence estimators for Independent Subspace Analysis. European Signal Processing Conference (EUSIPCO), pages 1849-1853, 2011. <NAME>, <NAME>. On the Estimation of alpha-Divergences. International conference on Artificial Intelligence and Statistics (AISTATS), pages 609-617, 2011. <NAME>, <NAME>, <NAME>. Nonparametric Divergence: Estimation with Applications to Machine Learning on Distributions. Uncertainty in Artificial Intelligence (UAI), 2011. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) d_temp1 = estimate_d_temp1(y1, y2, self) d =
log(d_temp1)
numpy.log
import numpy as np from typing import * from numpy.typing import ArrayLike from scipy.spatial import Delaunay from tallem.utility import ask_package_install, package_exists def flywing(): ''' Fly wings example (Klingenberg, 2015 | https://en.wikipedia.org/wiki/Procrustes_analysis) ''' arr1 = np.array([[588.0, 443.0], [178.0, 443.0], [56.0, 436.0], [50.0, 376.0], [129.0, 360.0], [15.0, 342.0], [92.0, 293.0], [79.0, 269.0], [276.0, 295.0], [281.0, 331.0], [785.0, 260.0], [754.0, 174.0], [405.0, 233.0], [386.0, 167.0], [466.0, 59.0]]) arr2 = np.array([[477.0, 557.0], [130.129, 374.307], [52.0, 334.0], [67.662, 306.953], [111.916, 323.0], [55.119, 275.854], [107.935, 277.723], [101.899, 259.73], [175.0, 329.0], [171.0, 345.0], [589.0, 527.0], [591.0, 468.0], [299.0, 363.0], [306.0, 317.0], [406.0, 288.0]]) return([arr1, arr2]) def gaussian_blob(n_pixels: int, r: float): ''' Generates a closure which, given a 2D location *mu=(x,y)*, generates a white blob with [normalized] radius 0 < r <= 1 in a (n_pixels x n_pixels) image. If *mu* is in [0,1] x [0,1], the center of the white blob should be visible If *mu* has as both of its coordinates outside of [0,1]x[0,1], the blob may be partially visible If *mu* has both of its coordinates outside of [-r, 1+r]x[-r, 1+r], then image should be essentially black The returned closure completely autograd's numpy wrapper to do the image generation. Thus, the resulting function can be differentiated (w.r.t *mu*) using the reverse-mode differentiation process that *autograd* provides. This function also returns the global normalizing constant needed normalize the pixel intensities in [0,1], for plotting or other purposes. Return: (blob, c) where - blob := differentiable closure which, given a vector (x,y), generates the blob image a flat vector. - c := maximum value of the intensity of any given pixel for any choice of *mu*. ''' import autograd.numpy as auto_np sd = r/3.090232 sigma = sd**2 sigma_inv = 1.0/sigma denom = np.sqrt(((2*auto_np.pi)**2) * (sigma**2)) def blob(mu): # mu can be anywhere; center of image is [0.5, 0.5] loc = auto_np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels) x,y = auto_np.meshgrid(loc, loc) grid = auto_np.exp(-0.5*(sigma_inv * ((x-mu[0])**2 + (y-mu[1])**2)))/denom return(auto_np.ravel(grid).flatten()) return(blob, auto_np.exp(0)/denom) def plot_image(P, figsize=(8,8), max_val = "default"): if max_val == "default": max_val = np.max(P) import matplotlib.pyplot as plt fig = plt.figure(figsize=figsize) plt.imshow(P, cmap='gray', vmin=0, vmax=max_val) fig.gca().axes.get_xaxis().set_visible(False) fig.gca().axes.get_yaxis().set_visible(False) def plot_images(P, shape, max_val = "default", figsize=(8,8), layout = None): ''' P := numpy array where each row is a grayscale image shape := the shape to reshape each row of P prior to plotting ''' import matplotlib.pyplot as plt if max_val == "default": max_val = np.max(P) if P.ndim == 1: fig = plt.figure(figsize=figsize) plt.imshow(P.reshape(shape), cmap='gray', vmin=0, vmax=max_val) fig.gca().axes.get_xaxis().set_visible(False) fig.gca().axes.get_yaxis().set_visible(False) return(fig, ax) else: assert layout is not None, "missing layout" fig, axs = plt.subplots(*layout, figsize=figsize) axs = axs.flatten() for i, (img, ax) in enumerate(zip(P, axs)): #fig.add_subplot(layout[0], layout[1], i+1) plt.axis("off") ax.imshow(P[i,:].reshape(shape), cmap='gray', vmin=0, vmax=max_val, aspect='auto') ax.axes.xaxis.set_visible(False) ax.axes.yaxis.set_visible(False) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.1, hspace=0.1) return(fig, axs) def scatter2D(P, layout = None, figsize=(8,8), **kwargs): import matplotlib.pyplot as plt if isinstance(P, np.ndarray): if "fig" in kwargs.keys() and "ax" in kwargs.keys(): fig, ax = kwargs["fig"], kwargs["ax"] kwargs.pop('fig', None) kwargs.pop('ax', None) else: fig = plt.figure(figsize=figsize) ax = fig.add_subplot() ax.scatter(*P.T, **kwargs) return(fig, ax) elif isinstance(P, Iterable): assert layout is not None, "missing layout" assert len(P) == np.prod(layout) if "fig" in kwargs.keys() and "ax" in kwargs.keys(): fig, ax = kwargs["fig"], kwargs["ax"] kwargs.pop('fig', None) else: fig = plt.figure(figsize=figsize) for i, p in enumerate(P): ax = fig.add_subplot(layout[0], layout[1], i+1) ax.scatter(*p.T, **kwargs) return(fig, ax) def scatter3D(P, angles = None, layout = None, figsize=(8,8), **kwargs): import matplotlib.pyplot as plt if isinstance(P, np.ndarray): import numbers if angles is not None: if isinstance(angles, numbers.Integral): angles = np.linspace(0, 360, angles, endpoint=False) assert len(angles) == np.prod(layout) if "fig" in kwargs.keys() and "ax" in kwargs.keys(): fig, ax = kwargs["fig"], kwargs["ax"] kwargs.pop('fig', None) kwargs.pop('ax', None) else: fig, ax = plt.subplots(*layout, figsize=figsize) for i, theta in enumerate(angles): ax = fig.add_subplot(layout[0], layout[1], i+1, projection='3d') ax.scatter3D(*P.T, **kwargs) ax.view_init(30, theta) else: if "fig" in kwargs.keys() and "ax" in kwargs.keys(): fig, ax = kwargs["fig"], kwargs["ax"] kwargs.pop('fig', None) kwargs.pop('ax', None) else: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(projection='3d') ax.scatter3D(*P.T, **kwargs) elif isinstance(P, Iterable): import numbers assert layout is not None, "missing layout" if angles is None: angles = np.repeat(60, len(P)) elif isinstance(angles, numbers.Integral): angles = np.linspace(0, 2*np.pi, len(P), endpoint=False) assert len(angles) == np.prod(layout) if "fig" in kwargs.keys() and "ax" in kwargs.keys(): fig, ax = kwargs["fig"], kwargs["ax"] kwargs.pop('fig', None) kwargs.pop('ax', None) else: fig, ax = plt.subplots(*layout, figsize=figsize) for i, p in enumerate(P): ax = fig.add_subplot(layout[0], layout[1], i+1, projection='3d') ax.scatter3D(*p.T, **kwargs) ax.view_init(30, angles[i]) plt.setp(plt.gcf().get_axes(), xticks=[], yticks=[]); return(fig, ax) def rotating_disk(n_pixels: int, r: float, sigma: float = 1.0): from scipy.ndimage import gaussian_filter import numpy as np I = np.zeros(shape=(n_pixels, n_pixels)) p = np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels) # center locations of pixels, in normalized space z = np.array([r, 0.0]).reshape((2,1)) d = np.array([0.5, 0.5]).reshape((2,1)) x,y = np.meshgrid(p, p) def disk_image(theta: float): R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) c = (R @ z) + d # center of disk in [0,1]^2 D = np.flipud(np.sqrt((x - c[0])**2 + (y - c[1])**2)) D[D <= r] = -1.0 D[D > r] = 0.0 D[D == -1.0] = 1.0 return(np.ravel(gaussian_filter(D, sigma=1.0)).flatten()) return(disk_image, 1.0) # D = np.zeros(np.prod(x.shape)) # for i, (xi,yi) in enumerate(zip(x.flatten(),y.flatten())): # p = np.array([xi,yi]) # D[i] = np.dot(p-b, u)# np.linalg.norm(z-v) def white_bars(n_pixels: int, r: float, sigma: float = 1.0): ''' Returns a parameterization that yields a white vertical bar at various orientations in an image. Fixed parameters: n_pixels := number of pixels to make square image r := constant between [0,1] indicating how wide to make the bar sigma := kernel parameter for gaussian blur Returns: bar := closure w/ parameters y_offset in [0, 1] and theta in [0, pi] c := normalizing constant for plotting ''' from scipy.ndimage import gaussian_filter import numpy as np w = r p = np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels) # center locations of pixels, in normalized space x,y = np.meshgrid(p,p) c = np.array([0.5, 0.5]) # center of image def bar(theta: float, d: float): assert np.all(np.bitwise_and(d >= -1.0, d <= 1.0)), "d must be in the range [-1, 1]" assert np.all(np.bitwise_and(theta >= 0.0, theta <= np.pi)), "theta must be in the range [0, pi]" u = np.array([ 1.0, np.tan(theta) ]) u = u / np.linalg.norm(u) c = np.array([0.5, 0.5]) # center of image d = d * (np.sqrt(2) / 2) # scale where to place center of bar if theta > np.pi/2: d = -d b = c + d*u # center of bar D = np.zeros(np.prod(x.shape)) for i, (xi,yi) in enumerate(zip(x.flatten(),y.flatten())): p = np.array([xi,yi]) D[i] = np.dot(p-b, u)# np.linalg.norm(z-v) I = abs(D.reshape((n_pixels, n_pixels))).T I[I > w] = 1 I = 1.0 - I return(gaussian_filter(I, sigma=sigma)) c = np.max(bar(0.0, 0.0)) return(bar, c) # u = np.array([ 1.0, np.tan(theta) ]) # u = u / np.linalg.norm(u) # d = np.array([-di if ti <= np.pi/2 else di for di,ti in zip(d, theta)])*(np.sqrt(2) / 2) # U = np.c_[np.repeat(1.0, len(theta)), theta] # U = U / np.linalg.norm(U, axis = 1, keepdims = True) # B = c + d.reshape((len(d), 1)) * U # center of bars # D = [abs((x - b[0])*u[0] + (y - b[1])*u[1]).T for (u, b) in zip(U, B)] # # b = c + d*u # center of bar # # D = (x - b[0])*u[0] + (y - b[1])*u[1] # # I = abs(D.reshape((n_pixels, n_pixels))).T # images = np.zeros((B.shape[0], n_pixels**2)) # for i, img in enumerate(D): # img[img > w] = 1 # img = 1.0 - img # images[i,:] = np.ravel(gaussian_filter(img, sigma=sigma).flatten()) # return(images) # from scipy.ndimage import gaussian_filter # import numpy as np # w = r*np.sqrt(2) # p = np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels) # center locations of pixels, in normalized space # x,y = np.meshgrid(p,p) # def bar(y_offset: float, theta: float): # assert y_offset >= 0.0 and y_offset <= 1.0 # assert theta >= 0.0 and theta <= np.pi # # z = np.array([0.5, y_offset]) # intercept # # dist_to_line = np.cos(theta)*(z[1] - y) - np.sin(theta)*(z[0]-x) # # dist_to_line = ((y - y_offset)/np.tan(theta))*np.sin(theta) # # Z = np.array([np.array([xi,yi]) for xi,yi in zip(x.flatten(),y.flatten())]) # # fig,ax = scatter2D(Z, c="blue") # # fig,ax = scatter2D(np.array(P), c="red", fig=fig, ax=ax) # # fig,ax = scatter2D(np.array([0.5, 0.5]), c="green", fig=fig, ax=ax) # # fig,ax = scatter2D(np.c_[x.flatten(), x.flatten()*m + b], c="purple", fig=fig, ax=ax) # m, b = np.tan(theta), y_offset # #pt = np.array([1.0, m + b]) # z1 = np.array([0.50, b]) # z2 = np.array([1.0, 1.0*m + b]) # pt = z2 - z1 # d = [] # P = [] # for xi,yi in zip(x.flatten(),y.flatten()): # u = pt / np.linalg.norm(pt) # v = np.array([xi,yi]) # z = u*np.dot(v-np.array([0.5, b]), u)+np.array([0.5, b]) # d.append(np.linalg.norm(z-v)) # P.append(z) # dist_to_line = np.array(d) # # fig, ax = scatter2D(np.array(P)) # I = abs(dist_to_line.reshape((n_pixels, n_pixels))) # I = np.flipud(I) # make origin lower-left, not top-left # # I = (np.sqrt(2)/2)*(I/np.max(I)) # I[I > w] = np.sqrt(2) # I = np.sqrt(2) - I ## invert intensity # # I[I < (np.sqrt(2) - w)] = 0.0 # # B = I.copy() # # I[I <= w] = -1.0 # # I[I > w] = 0.0 # # I[I == -1.0] = np.max(B[B <= w]) - B[B <= w] # 1.0 # return(gaussian_filter(I, sigma=sigma)) # c = np.max(bar(0.0, 0.0)) # return(bar, c) # def _gaussian_pixel(d, n_pixels): # from scipy.stats import norm # sigma = d/3.0 # Sigma = auto_np.diag([sigma, sigma]) # sigma_inv = auto_np.linalg.inv(Sigma)[0,0] # denom = np.sqrt(((2*np.pi)**2) * auto_np.linalg.det(Sigma)) # normal_constant = norm.pdf(0, loc=0, scale=sigma) # def blob(mu): # generates blob at location mu # # mu = mu.reshape((2, 1)) # # np.exp(-0.5 * ((x - mu).T @ SigmaI @ (x - mu))).flatten() # #x, y = auto_np.meshgrid(auto_np.arange(n_pixels), auto_np.arange(n_pixels)) # loc = auto_np.linspace(0, 1, n_pixels, False) + (1/(2*n_pixels)) # x,y = auto_np.meshgrid(loc, loc) # grid = auto_np.exp(-0.5*(sigma_inv * ((x-mu[0])**2 + (y-mu[1])**2)))/denom # #grid = auto_np.exp(-0.5*((x - mu[0])**2 + (y - mu[1])**2))/denom # #return(auto_np.ravel(grid).flatten()) # return(grid/normal_constant) # return(blob) # plot_image(gaussian_pixel2(1/32, 11)([-0.5, 0.5])) def white_dot(n_pixels: int, r: float, n: Optional[int], method: Optional[str] = "grid", mu: Optional[ArrayLike] = None): ''' Generates a grayscale image data set where white blobs are placed on a (n_pixels x n_pixels) grid using a multivariate normal density whose standard deviation sigma (in both directions) is sigma=d/3. If 'n' is specified, then 'n' samples are generated from a larger space s([-d, 1+d]^2) where s(*) denotes the scaling of the interval [-d,1+d] by 'n_pixels'. Parameters: n_pixels := number of pixels wide/tall to make the resulting images r := relative radius of dot (in (0, 1]) n := (optional) number of samples desired method := (optional) how to generate samples in the parameter space. Can be either "grid" or "random". mu := (optional) locations of dot centers to generate the dots at Returns: samples := generated image samples params := (x,y,i) parameters associated with each sample, f := closure for generating more samples. See gaussian_blob() for more details. c := normalizing constant. See gaussian_blob() for more details. ''' assert r > 0 and r <= 1.0, "r must be in the range 0 < r <= 1.0" assert isinstance(n, int) or isinstance(n, tuple), "n must be integer of tuple of integers" ask_package_install("autograd") import numpy as np import autograd.numpy as auto_np ## First generate the closure to make the images blob, c = gaussian_blob(n_pixels, r) if not(mu is None): samples = np.vstack([blob(auto_np.array([x,y])) for x,y in mu]) params = mu elif method == "random": ## Generate uniformly random locations (in domain) assert n is not None, "'n' must be supplied if 'mu' is not." n1, n2 = (n, n) if isinstance(n, int) else (n[0], n[1]) samples, params = [], [] X, Y = np.random.uniform(size=n1,low=-r,high=1+r), np.random.uniform(size=n1,low=-r,high=1+r) for x,y in zip(X, Y): samples.append(blob(auto_np.array([x,y]))) params.append([x, y, 1.0]) NP = blob(auto_np.array([0.5, 0.5])) for t in np.random.uniform(size=n2, low=0.0, high=1.0): samples.append(t*NP) params.append([0.5, 0.5, 1-t]) ## Vertically stack samples, params = np.vstack(samples), np.vstack(params) elif method == "grid": assert n is not None, "'n' must be supplied if 'mu' is not." if isinstance(n, int): n1, n2 = (n, n) else: n1, n2 = (n[0], n[1]) ng = int(np.floor(np.sqrt(n1))) samples, params = [], [] for x in np.linspace(0.0-r,1.0+r,ng): for y in np.linspace(0.0-r,1.0+r,ng): samples.append(blob(auto_np.array([x, y]))) params.append([x, y, 1.0]) ## Generate the pole NP = blob(auto_np.array([0.5, 0.5])) for t in np.linspace(0, 1, n2): samples.append(t*NP) params.append([0.5, 0.5, 1-t]) ## Vertically stack samples, params = np.vstack(samples), np.vstack(params) ## Return the data return(samples, params, blob, c) def mobius_band(n_polar=66, n_wide=9, scale_band=0.25): ''' Generates stratified samples on a Mobius band embedded in R^3 To get uniform samples, N = (n_polar*n_wide) uniformly spaced coordinates are generated initially from the intrinsic space of M. These points are converted to their extrinsic (3D) coordinates and are then triangulated using a Delaunay triangulation. Finally, using the Delaunay triangles as stratum, a stratified sampling scheme is employed by sampling randomly from each triangle using its barycentric coordinates. This stratification ensures the samples are both sufficiently random but sufficiently "uniformly spaced" around the band. Returns: - M := (n x 3) matrix of embedding coordinates - B := (n x 2) matrix of intrinsic coordinates In the intrinsic coordinates, B[:,0] is the width parameter and B[:,1] is the angular coordinate ''' ## Generate random (deterministic) polar coordinates around Mobius Band np.random.seed(0) s =
np.linspace(-scale_band, scale_band, 2*n_wide)
numpy.linspace
import unittest import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.metrics import pairwise_distances from graphs.construction import neighbor_graph from graphs.construction.incremental import incremental_neighbor_graph from graphs.mini_six import zip_longest, range
np.set_printoptions(precision=3, suppress=True)
numpy.set_printoptions
""" Test for file IO """ import pickle from pickle import PicklingError import re import pytest import numpy as np from bioptim import InterpolationType, OdeSolver from .utils import TestUtils @pytest.mark.parametrize("n_threads", [1, 2]) @pytest.mark.parametrize("use_sx", [False, True]) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.RK8, OdeSolver.IRK, OdeSolver.COLLOCATION]) def test_pendulum(ode_solver, use_sx, n_threads): bioptim_folder = TestUtils.bioptim_folder() pendulum = TestUtils.load_module(bioptim_folder + "/examples/getting_started/pendulum.py") ode_solver = ode_solver() if isinstance(ode_solver, OdeSolver.IRK) and use_sx: with pytest.raises(NotImplementedError, match="use_sx=True and OdeSolver.IRK are not yet compatible"): pendulum.prepare_ocp( biorbd_model_path=bioptim_folder + "/examples/getting_started/models/pendulum.bioMod", final_time=2, n_shooting=10, n_threads=n_threads, use_sx=use_sx, ode_solver=ode_solver, ) return ocp = pendulum.prepare_ocp( biorbd_model_path=bioptim_folder + "/examples/getting_started/models/pendulum.bioMod", final_time=1, n_shooting=30, n_threads=n_threads, use_sx=use_sx, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) if isinstance(ode_solver, OdeSolver.RK8): np.testing.assert_almost_equal(f[0, 0], 41.57063948309302) elif isinstance(ode_solver, OdeSolver.IRK): np.testing.assert_almost_equal(f[0, 0], 65.8236055171619) elif isinstance(ode_solver, OdeSolver.COLLOCATION): np.testing.assert_almost_equal(f[0, 0], 46.667345680854794) else: np.testing.assert_almost_equal(f[0, 0], 41.58259426) # Check constraints g = np.array(sol.constraints) if ode_solver.is_direct_collocation: np.testing.assert_equal(g.shape, (600, 1)) np.testing.assert_almost_equal(g, np.zeros((600, 1))) else: np.testing.assert_equal(g.shape, (120, 1)) np.testing.assert_almost_equal(g, np.zeros((120, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot, tau = states["q"], states["qdot"], controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0))) # initial and final controls if isinstance(ode_solver, OdeSolver.RK8): np.testing.assert_almost_equal(tau[:, 0], np.array((6.03763589, 0))) np.testing.assert_almost_equal(tau[:, -2], np.array((-13.59527556, 0))) elif isinstance(ode_solver, OdeSolver.IRK): np.testing.assert_almost_equal(tau[:, 0], np.array((5.40765381, 0))) np.testing.assert_almost_equal(tau[:, -2], np.array((-25.26494109, 0))) elif isinstance(ode_solver, OdeSolver.COLLOCATION): np.testing.assert_almost_equal(tau[:, 0], np.array((5.78386563, 0))) np.testing.assert_almost_equal(tau[:, -2], np.array((-18.22245512, 0))) else: np.testing.assert_almost_equal(tau[:, 0], np.array((6.01549798, 0))) np.testing.assert_almost_equal(tau[:, -2], np.array((-13.68877181, 0))) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) @pytest.mark.parametrize("n_threads", [1, 2]) @pytest.mark.parametrize("use_sx", [False, True]) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.RK8, OdeSolver.IRK, OdeSolver.COLLOCATION]) def test_pendulum_save_and_load(n_threads, use_sx, ode_solver): bioptim_folder = TestUtils.bioptim_folder() pendulum = TestUtils.load_module(bioptim_folder + "/examples/getting_started/example_save_and_load.py") ode_solver = ode_solver() if isinstance(ode_solver, OdeSolver.IRK): if use_sx: with pytest.raises(NotImplementedError, match="use_sx=True and OdeSolver.IRK are not yet compatible"): pendulum.prepare_ocp( biorbd_model_path=bioptim_folder + "/examples/getting_started/models/pendulum.bioMod", final_time=1, n_shooting=30, n_threads=n_threads, use_sx=use_sx, ode_solver=ode_solver, ) else: ocp = pendulum.prepare_ocp( biorbd_model_path=bioptim_folder + "/examples/getting_started/models/pendulum.bioMod", final_time=1, n_shooting=30, n_threads=n_threads, use_sx=use_sx, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (120, 1)) np.testing.assert_almost_equal(g, np.zeros((120, 1))) # Check some of the results q, qdot, tau = sol.states["q"], sol.states["qdot"], sol.controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0))) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) else: ocp = pendulum.prepare_ocp( biorbd_model_path=bioptim_folder + "/examples/getting_started/models/pendulum.bioMod", final_time=1, n_shooting=30, n_threads=n_threads, use_sx=use_sx, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value is_collocation = isinstance(ode_solver, OdeSolver.COLLOCATION) and not isinstance(ode_solver, OdeSolver.IRK) f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) if isinstance(ode_solver, OdeSolver.RK8): np.testing.assert_almost_equal(f[0, 0], 9.821989132327003) elif is_collocation: pass else: np.testing.assert_almost_equal(f[0, 0], 9.834017207589055) # Check constraints g = np.array(sol.constraints) if is_collocation: np.testing.assert_equal(g.shape, (600, 1)) np.testing.assert_almost_equal(g, np.zeros((600, 1))) else: np.testing.assert_equal(g.shape, (120, 1)) np.testing.assert_almost_equal(g, np.zeros((120, 1))) # Check some of the results q, qdot, tau = sol.states["q"], sol.states["qdot"], sol.controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1],
np.array((0, 0))
numpy.array
__author__ = 'Chronis' import numpy as np import matplotlib.pyplot as plt from astropy.io import fits import time # UTILITY FUNCTIONS def myfft2(wave_in): return np.fft.fftshift(np.fft.fft2(
np.fft.ifftshift(wave_in)
numpy.fft.ifftshift
import numpy as np import matplotlib.pyplot as plt state_colormap = 'viridis' # other sequential colormaps: 'plasma', 'gray' change_colormap = 'coolwarm' # other diverging colormaps: 'bwr', 'RdBu' def visualise(data, initial_conditions = [], include_end_state = False, state_colormap = state_colormap, change_colormap = change_colormap): Q_map = data['Q_map'] Q_V = data['Q_V'] grids = data['grids'] s_grid = grids['states'] a_grid = grids['actions'] s_min = s_grid[0] s_max = s_grid[-1] a_min = a_grid[0] a_max = a_grid[-1] initial_state = np.repeat(
np.array([s_grid])
numpy.array
""" Module to search for the supergroup symmetry """ from copy import deepcopy from random import sample import itertools import numpy as np from scipy.optimize import minimize from pymatgen.core.operations import SymmOp import pymatgen.analysis.structure_matcher as sm import pyxtal.symmetry as sym from pyxtal.lattice import Lattice from pyxtal.wyckoff_site import atom_site from pyxtal.operations import apply_ops from pyxtal.wyckoff_split import wyckoff_split def new_solution(A, refs): """ check if A is already in the reference solutions """ for B in refs: match = True for a, b in zip(A, B): a.sort() b.sort() if a != b: match = False break if match: return False return True def find_mapping_per_element(sites1, sites2,max_num=720): """ search for all mappings for a given splitter Args: sites1 (list): e.g., l layer ['4a', '8b', '4c'] sites2 (list): e.g., 2 layers [['4a'], ['8b', '4c']] max_num (int): maximum number of atomic mapping Returns: unique solutions: e.g. 3 layers: [[[0], [1,2]]] """ unique_letters=list(set(sites1)) site1_letter_indices=[] for letter in unique_letters: site1_letter_indices.append([i for i, x in enumerate(sites1) if x==letter]) site2_letter_bins=[] for lbin in sites2: site2_letter_bins.append([unique_letters.index(x) for x in lbin]) combo_list=[] for s in site2_letter_bins: ls=list(set(s)) rs=[s.count(r) for r in ls] p=[] for i, l in enumerate(ls): combo=itertools.combinations(site1_letter_indices[l],rs[i]) combo=[list(x) for x in combo] p.append(deepcopy(combo)) pr=p[0] for i in range(1,len(p)): pr=itertools.product(pr,p[i]) pr=[sum(list(x),[]) for x in pr] combo_list.append(pr) unique_solutions=[[x] for x in combo_list[0]] for i in range(1,len(combo_list)): unique_solutions=[x+[y] for x in unique_solutions for y in combo_list[i] if len(set(sum(x,[])).intersection(y))==0] return unique_solutions #depreciated mapping function # print('sites1=',sites1) # print('sites2=',sites2) # unique_solutions = [] # solution_template = [[None]*len(site2) for site2 in sites2] # assigned_ids = [] # # first identify the unique assignment # for i, site2 in enumerate(sites2): # wp_letters = set(site2) # if len(wp_letters) == len(site2): #site2: ['a', 'b'] or ['a'] # for j, s2 in enumerate(site2): # ids = [id for id, s1 in enumerate(sites1) if s1==s2] # if len(ids) == 1: # solution_template[i][j] = ids[0] # assigned_ids.append(ids[0]) # elif len(wp_letters)==1: #site2: ['a','a'] or ['a','a','a'] # ids = [id for id, s1 in enumerate(sites1) if s1==list(wp_letters)[0]] # if len(ids) == len(site2): # solution_template[i] = ids # assigned_ids.extend(ids) # elif len(wp_letters)==2: #site2: ['a','a','b'] # count = 0 # for j in range(2): # ids = [id for id, s1 in enumerate(sites1) if s1==list(wp_letters)[j]] # if len(ids) == site2.count(list(wp_letters)[j]): # solution_template[i][count:count+len(ids)] = ids # assigned_ids.extend(ids) # count += len(ids) # #raise NotImplementedError("unsupported:", site2) # #print(assigned_ids) # ids = [id for id, site in enumerate(sites1) if id not in assigned_ids] # all_permutations = list(itertools.permutations(ids)) # if len(all_permutations) > max_num: # print("Warning: ignore some mapping: ", str(len(all_permutations)-max_num)) # print(solution_template) # all_permutations = sample(all_permutations, max_num) # print('allpermuataions') # for x in all_permutations: # print(x) # #print(solution_template) # for perm in all_permutations: # solution = deepcopy(solution_template) # perm = list(perm) # valid = True # count = 0 # for i, sol in enumerate(solution): # if None in sol: # for j, s2 in enumerate(sites2[i]): # if sol[j] is None: # if s2 == sites1[perm[count]]: # solution[i][j] = deepcopy(perm[count]) # count += 1 # else: # valid = False # break # if not valid: # break # if valid and new_solution(solution, unique_solutions): # unique_solutions.append(solution) # print('unique_solutions') # for x in unique_solutions: # print(x) # return unique_solutions def find_mapping(atom_sites, splitter, max_num=720): """ search for all mappings for a given splitter Args: atom_sites: list of wyc object splitter: wyc_splitter object max_num (int): maximum number of atomic mapping Returns: unique solutions """ eles = set([site.specie for site in atom_sites]) # loop over the mapping for each element # then propogate the possible mapping via itertools.product lists = [] for ele in eles: # ids of atom sites site_ids = [id for id, site in enumerate(atom_sites) if site.specie==ele] # ids to be assigned wp2_ids = [id for id, e in enumerate(splitter.elements) if e==ele] letters1 = [atom_sites[id].wp.letter for id in site_ids] letters2 = [] for id in wp2_ids: wp2 = splitter.wp2_lists[id] letters2.append([wp.letter for wp in wp2]) #print(ele, letters1, letters2) res = find_mapping_per_element(letters1, letters2, max_num=720) lists.append(res) mappings = list(itertools.product(*lists)) # resort the mapping ordered_mappings = [] for mapping in mappings: ordered_mapping = [None]*len(splitter.wp2_lists) for i, ele in enumerate(eles): site_ids = [id for id, site in enumerate(atom_sites) if site.specie==ele] count = 0 for j, wp2 in enumerate(splitter.wp2_lists): if splitter.elements[j] == ele: ordered_mapping[j] = [site_ids[m] for m in mapping[i][count]] count += 1 #print("res", ordered_mapping) ordered_mappings.append(ordered_mapping) #if len(ordered_mappings)==0: import sys; sys.exit() return ordered_mappings def search_G1(G, rot, tran, pos, wp1, op): if np.linalg.det(rot) < 1: shifts = np.array([[0,0,0],[0,1,0],[1,0,0],[0,0,1],[0,1,1],[1,1,0],[1,0,1],[1,1,1]]) else: shifts = np.array([[0,0,0]]) diffs = [] coords = [] for shift in shifts: res = np.dot(rot, pos + shift) + tran.T tmp = sym.search_cloest_wp(G, wp1, op, res) diff = res - tmp diff -= np.round(diff) dist = np.linalg.norm(diff) diffs.append(dist) coords.append(tmp) if dist < 1e-1: break diffs = np.array(diffs) minID = np.argmin(diffs) tmp = coords[minID] tmp -= np.round(tmp) return tmp, np.min(diffs) def search_G2(rot, tran, pos1, pos2, cell=None, ortho=True): """ apply symmetry operation on pos1 when it involves cell change. e.g., when the transformation is (a+b, a-b, c), trial translation needs to be considered to minimize the difference between the transformed pos1 and reference pos2 """ pos1 -= np.round(pos1) if np.linalg.det(rot) < 1: shifts = np.array([[0,0,0],[0,1,0],[1,0,0],[0,0,1],[0,1,1],[1,1,0],[1,0,1],[1,1,1]]) elif not ortho: shifts = np.array([[0,0,0],[0,1,0],[1,0,0],[0,0,1],[0,1,1],[1,1,0],[1,0,1],[1,1,1]]) else: shifts = np.array([[0,0,0]]) shifts = np.array([[0,0,0],[0,1,0],[1,0,0],[0,0,1],[0,1,1],[1,1,0],[1,0,1],[1,1,1]]) dists = [] for shift in shifts: res = np.dot(rot, pos1 + shift + tran.T) diff = res - pos2 diff -= np.round(diff) dist = np.linalg.norm(diff) dists.append(dist) if dist < 1e-1: break #print("TTTTTTTTT", dists, np.linalg.det(rot)) dists = np.array(dists) dist = np.min(dists) shift = shifts[np.argmin(dists)] pos = np.dot(rot, pos1 + shift + tran.T) diff = pos - pos2 diff -= np.round(diff) if cell is not None: diff = np.dot(diff, cell) dist = np.linalg.norm(diff) return pos, dist def find_xyz(G2_op, coord, quadrant=[0,0,0]): """ Finds the x,y,z free parameter values for positions in the G_2 basis. Args: G2_op: a symmetry operation in G2 coord: the coordinate that matches G2_op quadrant: a 3 item list (ex:[1,1,-1]) that contains information on the orientation of the molecule Returns: G2_holder: The corresponding x,y,z parameters written in the G2 basis """ if np.all(quadrant==[0,0,0]): for i,n in enumerate(coord): if n>=0.: quadrant[i]=1 else: quadrant[i]=-1 #prepare the rotation matrix and translation vector seperately G2_holder=[1,1,1] G2_op=np.array(G2_op.as_dict()['matrix']) rot_G2=G2_op[:3,:3].T tau_G2=G2_op[:3,3] b=coord-tau_G2 for k in range(3): b[k]=b[k]%quadrant[k] #eliminate any unused free parameters in G2 #The goal is to reduce the symmetry operations to be a full rank matrix #any free parameter that is not used has its spot deleted from the rotation matrix and translation vector for i,x in reversed(list(enumerate(rot_G2))): if set(x)=={0.}: G2_holder[i]=0 rot_G2=np.delete(rot_G2,i,0) quadrant=np.delete(quadrant,i) #eliminate any leftover empty rows to have fulll rank matrix rot_G2=rot_G2.T for i,x in reversed(list(enumerate(rot_G2))): if set(x)=={0.}: rot_G2=np.delete(rot_G2,i,0) b=np.delete(b,i) while len(rot_G2)!=0 and len(rot_G2)!=len(rot_G2[0]): rot_G2=np.delete(rot_G2,len(rot_G2)-1,0) b=np.delete(b,len(b)-1) #Must come back later and add Schwarz Inequality check to elininate any dependent vectors #solves a linear system to find the free parameters if set(G2_holder)=={0.}: return np.array(G2_holder) else: try: G2_basis_xyz=np.linalg.solve(rot_G2,b) for i in range(len(quadrant)): G2_basis_xyz[i]=G2_basis_xyz[i]%quadrant[i] # print("!ST G2 HOLDER") for i in range(G2_holder.count(1)): G2_holder[G2_holder.index(1)]=G2_basis_xyz[i] # print('second G## holder') return np.array(G2_holder) except: raise RuntimeError('unable to find free parameters using this operation') def new_structure(struc, refs): """ check if struc is already in the reference solutions """ g1 = struc.group.number pmg1 = struc.to_pymatgen() for ref in refs: g2 = ref.group.number if g1 == g2: pmg2 = ref.to_pymatgen() if sm.StructureMatcher().fit(pmg1, pmg2): return False return True def get_best_match(positions, ref, cell): """ find the best match with the reference from a set of positions Args: positions: N*3 array ref: 1*3 array Returns: position: matched position id: matched id """ diffs = positions - ref diffs -= np.round(diffs) diffs = np.dot(diffs, cell) dists = np.linalg.norm(diffs, axis=1) id = np.argmin(dists) return positions[id], dists[id] def check_freedom(G, solutions): """ check if the solutions are valid a special WP such as (0,0,0) cannot be occupied twice """ valid_solutions = [] #G = sym.Group(G) for solution in solutions: sites = [] for s in solution: sites.extend(s) if G.is_valid_combination(sites): valid_solutions.append(solution) return valid_solutions def check_lattice(G, trans, struc, tol=1.0, a_tol=10): """ check if the lattice mismatch is big used to save some computational cost """ matrix = np.dot(trans.T, struc.lattice.get_matrix()) l1 = Lattice.from_matrix(matrix) l2 = Lattice.from_matrix(matrix, ltype=G.lattice_type) (a1,b1,c1,alpha1,beta1,gamma1)=l1.get_para(degree=True) (a2,b2,c2,alpha2,beta2,gamma2)=l2.get_para(degree=True) abc_diff = np.abs(np.array([a2-a1, b2-b1, c2-c1])).max() ang_diff = np.abs(np.array([alpha2-alpha1, beta2-beta1, gamma2-gamma1])).max() #print(l1, l2) if abc_diff > tol or ang_diff > a_tol: return False else: return True def check_compatibility(G, relation, sites, elements): """ find the compatible splitter to let the atoms of subgroup H fit the group G. Args: G: the target space group with high symmetry relation: a dictionary to describe the relation between G and H """ #G = sym.Group(G) #results = {} wyc_list = [(str(x.multiplicity)+x.letter) for x in G] wyc_list.reverse() good_splittings_list=[] # A lot of integer math below. # The goal is to find all the integer combinations of supergroup # wyckoff positions with the same number of atoms # each element is solved one at a time for i in range(len(elements)): site = np.unique(sites[i]) site_counts = [sites[i].count(x) for x in site] possible_wyc_indices = [] # the sum of all positions should be fixed. total_units = 0 for j, x in enumerate(site): total_units += int(x[:-1])*site_counts[j] # collect all possible supergroup transitions # make sure all sites are included in the split for j, split in enumerate(relation): # print(j, split) if np.all([x in site for x in split]): possible_wyc_indices.append(j) # for the case of 173 ['2b'] -> 176 # print(possible_wyc_indices) [2, 3, 5] # a vector to represent the possible combinations of positions # when the site is [6c, 2b] # the split from [6c, 6c] to [12i] will be counted as [2,0]. # a entire split from [6c, 6c, 6c, 2b] will need [3, 1] possible_wycs = [wyc_list[x] for x in possible_wyc_indices] blocks = [np.array([relation[j].count(s) for s in site]) for j in possible_wyc_indices] block_units = [sum([int(x[:-1])*block[j] for j,x in enumerate(site)]) for block in blocks] # print(possible_wycs) # ['2c', '2d', '4f'] # print(blocks) # [array([1]), array([1]), array([2])] # print(block_units) # [2, 2, 4] # the position_block_units stores the total sum multiplicty # from the available G's wyckoff positions. # below is a brute force search for the valid combinations combo_storage = [np.zeros(len(block_units))] good_list = [] # print(combo_storage) # print(block_units) # print(blocks) # print(possible_wycs) # print(total_units) # print(site_counts) while len(combo_storage)!=0: holder = [] for j, x in enumerate(combo_storage): for k in range(len(block_units)): trial = np.array(deepcopy(x)) # trial solution trial[k] += 1 if trial.tolist() in holder: continue sum_units = np.dot(trial, block_units) if sum_units > total_units: continue elif sum_units < total_units: holder.append(trial.tolist()) else: tester = np.zeros(len(site_counts)) for l, z in enumerate(trial): tester += z*blocks[l] if np.all(tester == site_counts): G_sites = [] for l, number in enumerate(trial): if number==0: continue elif number==1: G_sites.append(possible_wycs[l]) else: for i in range(int(number)): G_sites.append(possible_wycs[l]) if G_sites not in good_list: good_list.append(G_sites) combo_storage=holder if len(good_list)==0: # print("cannot find the valid split, quit the search asap") return None else: good_splittings_list.append(good_list) # if len(good_splittings_list[0])==1: # print(good_splittings_list[0]) return good_splittings_list def search_paths(H, G, max_layers=5): """ Search function throws away paths that take a roundabout. if path1:a>>e>>f>>g path2:a>>b>>c>>e>>f>>g path 2 will not be counted as there is already a shorter path from a>>e Args: H: starting structure IT group number G: final supergroup IT Group number max_layers: the number of supergroup calculations needed. Return: list of possible paths ordered from smallest to biggest """ layers={} layers[0]={'groups':[G], 'subgroups':[]} final=[] traversed=[] # searches for every subgroup of the the groups from the previous layer. # Stores the possible groups of each layer and their subgroups # in a dictinoary to avoid redundant calculations. # Starts from G and goes down to H for l in range(1,max_layers+1): previous_layer_groups=layers[l-1]['groups'] groups=[] subgroups=[] for g in previous_layer_groups: subgroup_numbers=np.unique(sym.Group(g).get_max_subgroup_numbers()) # If a subgroup list has been found with H, will trace # a path through the dictionary to build the path if H in subgroup_numbers: paths=[[g]] for j in reversed(range(l-1)): holder=[] for path in paths: tail_number=path[-1] indices=[] for idx, numbers in enumerate(layers[j]['subgroups']): if tail_number in numbers: indices.append(idx) for idx in indices: holder.append(path+[layers[j]['groups'][idx]]) paths=deepcopy(holder) final.extend(paths) subgroups.append([]) #will continue to generate a layer of groups if the path to H has not been found. else: subgroups.append(subgroup_numbers) [groups.append(x) for x in subgroup_numbers if (x not in groups) and (x not in traversed)] traversed.extend(groups) layers[l]={'groups':deepcopy(groups),'subgroups':[]} layers[l-1]['subgroups']=deepcopy(subgroups) return final def new_path(path, paths): """ check if struc is already in the reference solutions """ for ref in paths: if path[:len(ref)] == ref: return False return True class supergroups(): """ Class to search for the feasible transition to a given super group Args: struc: pyxtal structure G (int): the desired super group number path: the path to connect G and H, e.g, [62, 59, 74] d_tol (float): tolerance for largest atomic displacement show (bool): whether or not show the detailed process """ def __init__(self, struc, G=None, path=None, d_tol=1.0, max_per_G=100, show=False): self.struc0 = struc self.show = show self.d_tol = d_tol self.max_per_G = max_per_G if path is None: paths = search_paths(struc.group.number, G, max_layers=5) else: paths = [path] print("{:d} paths will be checked".format(len(paths))) self.strucs = None failed_paths = [] for i, p in enumerate(paths): status = "path{:2d}: {:s}, ".format(i, str(p)) #print(status) if new_path(p, failed_paths): strucs, w_path, valid = self.struc_along_path(p) status += "stops at: {:s}".format(str(w_path)) if valid: self.strucs = strucs if len(strucs) > len(p): self.path = [self.struc0.group.number] + p else: self.path = p break else: failed_paths.append(w_path) else: status += "skipped..." #print(status) def __str__(self): s = "\nTransition to super group: " if self.strucs is None: s += "Unsuccessful, check your input" else: s += "{:d}".format(self.path[0]) for i, p in enumerate(self.path[1:]): s += " -> {:d}[{:5.3f}]".format(p, self.strucs[i+1].disp) s += '\n' for struc in self.strucs: s += str(struc) return s def __repr__(self): return str(self) def struc_along_path(self, path): """ search for the super group structure along a given path """ strucs = [] G_strucs = [self.struc0] working_path = [] for G in path: working_path.append(G) H = G_strucs[0].group.number #print(G, H) #if G != H: if sym.get_point_group(G) == sym.get_point_group(H): group_type = 'k' else: group_type = 't' for G_struc in G_strucs: my = supergroup(G_struc, [G], group_type) solutions = my.search_supergroup(self.d_tol, self.max_per_G) new_G_strucs = my.make_supergroup(solutions, show_detail=self.show) if len(new_G_strucs) > 0: strucs.append(G_struc) G_strucs = new_G_strucs break if len(new_G_strucs) == 0: break # add the final struc if len(new_G_strucs) > 0: ds = [st.disp for st in new_G_strucs] minID = np.argmin(np.array(ds)) strucs.append(new_G_strucs[minID]) valid = True else: valid = False return strucs, working_path, valid class supergroup(): """ Class to find the structure with supergroup symmetry Args: struc: pyxtal structure G: list of possible supergroup numbers, default is None group_type: `t` or `k` """ def __init__(self, struc, G=None, group_type='t'): # initilize the necesary parameters self.group_type = group_type self.error = False # extract the supergroup information self.wyc_supergroups = struc.group.get_min_supergroup(group_type, G) # list of all alternative wycsets strucs = struc.get_alternatives() for struc in strucs: # group the elements, sites, positions elements = [] sites = [] for at_site in struc.atom_sites: e = at_site.specie site = str(at_site.wp.multiplicity) + at_site.wp.letter if e not in elements: elements.append(e) sites.append([site]) else: id = elements.index(e) sites[id].append(site) # search for the compatible solutions solutions = [] for idx in range(len(self.wyc_supergroups['supergroup'])): G = sym.Group(self.wyc_supergroups['supergroup'][idx]) relation = self.wyc_supergroups['relations'][idx] id = self.wyc_supergroups['idx'][idx] trans = np.linalg.inv(self.wyc_supergroups['transformation'][idx][:,:3]) if check_lattice(G, trans, struc): #print(G, relation) results = check_compatibility(G, relation, sites, elements) if results is not None: sols = list(itertools.product(*results)) trials = check_freedom(G, sols) sol = {'group': G, 'id': id, 'splits': trials} solutions.append(sol) if len(solutions) > 0: # exit if one solution is found break if len(solutions) == 0: self.solutions = [] self.error = True #print("No compatible solution exists") else: #print(struc) self.sites = sites self.elements = elements self.struc = struc self.solutions = solutions self.cell = struc.lattice.matrix def search_supergroup(self, d_tol=1.0, max_per_G=2500): """ search for valid supergroup transition Args: d_tol (float): tolerance for atomic displacement max_per_G (int): maximum number of possible solution for each G Returns: valid_solutions: dictionary """ #self.d_tol = d_tol valid_solutions = [] if len(self.solutions) > 0: # extract the valid for sols in self.solutions: G, id, sols = sols['group'], sols['id'], sols['splits'] if len(sols) > max_per_G: print("Warning: ignore some solutions: ", len(sols)-max_per_G) sols = sample(sols, max_per_G) #sols = [[['2f'], ['1a'], ['4n']]] #sols=[(['8c'], ['4a', '4b'], ['4b', '8c', '8c'])] for sol in sols: #print(sol) mae, disp, mapping, sp = self.get_displacement(G, id, sol, d_tol*1.1) #print(G.number, sol, mae, disp) if mae < d_tol: valid_solutions.append((sp, mapping, disp, mae)) return valid_solutions def make_supergroup(self, solutions, once=False, show_detail=False): """ create supergroup structures based on the list of solutions Args: solutions: list of tuples (splitter, mapping, disp) show_detail (bool): print out the detail Returns: list of pyxtal structures """ G_strucs = [] if len(solutions) > 0: if once: disps = np.array([sol[-1] for sol in solutions]) ID = np.argmin(disps) solutions = [solutions[ID]] for solution in solutions: (sp, mapping, disp, mae) = solution lat1 = np.dot(np.linalg.inv(sp.R[:3,:3]).T, self.struc.lattice.matrix) lattice = Lattice.from_matrix(lat1, ltype=sp.G.lattice_type) details = self.symmetrize(sp, mapping, disp) coords_G1, coords_G2, coords_H1, elements = details G_struc = self.struc.copy() G_struc.group = sp.G G_sites = [] for i, wp in enumerate(sp.wp1_lists): pos = coords_G1[i] pos -= np.floor(pos) pos1 = sym.search_matched_position(sp.G, wp, pos) if pos1 is not None: site = atom_site(wp, pos1, sp.elements[i]) G_sites.append(site) else: print(">>>>>>>>>>>>>>") print(self.struc.group.number) print(pos) print(wp) print(">>>>>>>>>>>>>>") raise RuntimeError("cannot assign the right wp") G_struc.atom_sites = G_sites G_struc.source = 'supergroup {:6.3f}'.format(mae) G_struc.lattice = lattice G_struc.numIons *= int(round(np.abs(np.linalg.det(sp.R[:3,:3])))) G_struc._get_formula() G_struc.disp = mae if new_structure(G_struc, G_strucs): G_strucs.append(G_struc) if show_detail: G = sp.G.number self.print_detail(G, coords_H1, coords_G2, elements, disp) print(G_struc) return G_strucs def get_displacement(self, G, split_id, solution, d_tol): """ For a given solution, search for the possbile supergroup structure Args: G: group object split_id (int): integer solution (list): e.g., [['2d'], ['6h'], ['2c', '6h', '12i']] d_tol (float): tolerance Returns: mae: mean absolute atomic displcement disp: overall cell translation """ sites_G = [] elements = [] muls = [] for i, e in enumerate(self.elements): sites_G.extend(solution[i]) elements.extend([e]*len(solution[i])) muls.extend([int(sol[:-1]) for sol in solution[i]]) # resort the sites_G by multiplicity ids = np.argsort(np.array(muls)) elements = [elements[id] for id in ids] sites_G = [sites_G[id] for id in ids] #print(G, self.struc.group.number, sites_G) splitter = wyckoff_split(G, split_id, sites_G, self.group_type, elements) mappings = find_mapping(self.struc.atom_sites, splitter) dists = [] disps = [] masks = [] if len(mappings) > 0: for mapping in mappings: dist, disp, mask = self.symmetrize_dist(splitter, mapping, None, None, d_tol) dists.append(dist) disps.append(disp) masks.append(mask) dists =
np.array(dists)
numpy.array
import pyopencl as cl import numpy as np import matplotlib.pyplot as plt kernel_disp = ''' float3 mattranspose(__global float* mat) { float temp; temp = mat[1]; mat[1] = mat[3]; mat[3] = temp; temp = mat[2]; mat[2] = mat[6]; mat[6] = temp; temp = mat[5]; mat[5] = mat[7]; mat[7] = temp; //return mat; } float3 matmulvec(__global float* mat, float3 vec) { float3 out; out.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z; out.y = mat[3] * vec.x + mat[4] * vec.y + mat[5] * vec.z; out.z = mat[6] * vec.x + mat[7] * vec.y + mat[8] * vec.z; return out; } __kernel void difference(__global float *in_out, __global float *in, float dz) { int xid = get_global_id(1); int zid = get_global_id(0); int xsiz = get_global_size(1); int id = xid + zid * xsiz; in_out[id] = (-in[id] + in_out[id]) / dz;//should this change sign??? } __kernel void displacement(__global float *image_out, __global float *c2d, __global float *d2c, float pix2nm, float3 u, float3 g, float3 b, float3 b_unit, float3 b_edge_d, float b_screw, float dt, float dz, float nu, float phi, float psi, float theta) { // x-coordinate int xid = get_global_id(1); // z-coordinate int zid = get_global_id(0); // x-dimension int xsiz = get_global_size(1); // z-dimension int zsiz = get_global_size(0); // position of this pixel in the 1D array int id = xid + zid * xsiz; // vector from dislocation to this pixel, in nm float xR = ((float) xid + 0.5f - (float) xsiz / 2);// / pix2nm; float til = sin(phi) + (float) xsiz * tan(psi)/( 2* (float) zsiz); float yR = (((float) zid + 0.5f + dz - (float) zsiz / 2)*til*dt );// / pix2nm + xR*tan(theta); float3 r_d = {xR, yR, 0.0f}; float r_mag = sqrt(dot(r_d, r_d)); //cos(theta) & sin(theta) relative to Burgers vector float ct = dot(r_d, b_unit) / r_mag; //-ve of v2.1 float3 tz = {0.0f,0.0f,1.0f}; float st = dot(tz, cross(b_unit, r_d) / r_mag); //Screw displacement in dislocation frame float d_screw = b_screw * ( atan(r_d.y / (r_d.x)) - M_PI_F * (r_d.x < 0) ) / (2.0f * M_PI_F); float3 screw_1 = (float3) {0.0f, 0.0f, d_screw}; //edge part 1 in dislocation frame float3 edge_1 = b_edge_d * ct * st / (2.0f * M_PI_F * (1.0f - nu));//error fixed from v2.1, 2 not 4 //edge part 2 in dislocation frame float3 edge_2 = cross(b, u) * (((2.0f - 4.0f * nu) * log(r_mag) + (ct * ct - st * st)) / (8.0f * M_PI_F * (1.0f - nu))); float3 r_sum = matmulvec(d2c, (screw_1 + edge_1 + edge_2) ); // // image_out[id] += r_sum.x; image_out[id] += dot(g, r_sum); } ''' kernel_image = ''' float2 complexconj(float2 a) { return (float2) {a.x, -a.y}; } float2 complexmul(float2 a, float2 b) { return (float2) { a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x }; } float4 matmulvec(float2* mat, float4 vec) { float4 out; out.xy = complexmul(mat[0], vec.xy) + complexmul(mat[1], vec.zw); out.zw = complexmul(mat[2], vec.xy) + complexmul(mat[3], vec.zw); return out; } __kernel void amplitude2intensity(__global float4 *in_out) { int xid = get_global_id(0); int yid = get_global_id(1); int xsiz = get_global_size(1); int id = xid * xsiz + yid; float2 f_0 = in_out[id].xy; float2 f_1 = in_out[id].zw; float2 bf = complexmul(f_0, complexconj(f_0)); float2 df = complexmul(f_1, complexconj(f_1)); in_out[id] = (float4) {bf, df}; } __kernel void propagate_wave(__global float4 *in_out, __global float *sxz, float3 g, float3 b, float3 nS, int zsiz, float t, float dt, float pix2nm, int zlen, float s, float2 x_g, float x_0_i, float phi, float psi, float theta, int k) { float eps = 0.000000000001f; int xid = get_global_id(0); int xsiz = get_global_size(0); int yid = get_global_id(1); int ysiz = get_global_size(1); // position of the current pixel in the linear array int id = xid * ysiz + yid; //top of the foil for this pixel float top = (zsiz-zlen)*( (float) yid / (float) ysiz); int h = (int) top; float m = top - h; //position of pixels in linear array int id_2 = (h + k) * xsiz + xid; int id_3 = (h + k + 1) * xsiz + xid; float s_local = s + (1.0f - m) * sxz[id_2] + m * sxz[id_3]; float alpha = 0.0f; //if (xid > firs && xid < las && h + k - (int) (z_range / 2.0f) == 0.0f) // alpha = 2.0f * M_PI_F * dot(g, b); // Howie-Whelan bit float x_g_r = x_g.x; float x_g_i = x_g.y; s_local += eps; float s_local2 = s_local * s_local; float recip_x_g_r = 1.0f / x_g_r; float recip_x_0_i_2 = 0.5f / x_0_i; float gamma_term = sqrt(s_local2 + recip_x_g_r * recip_x_g_r); float2 gamma = (float2) { (s_local - gamma_term) * 0.5f, (s_local + gamma_term) * 0.5f }; float q_term = 0.5f / (x_g_i * sqrt(1.0f + (s_local * x_g_r) * (s_local * x_g_r))); float2 q = (float2) { recip_x_0_i_2 - q_term, recip_x_0_i_2 + q_term }; float beta_2 = 0.5f * acos( s_local * x_g_r / sqrt( 1.0f + s_local2 * x_g_r * x_g_r ) ); float2 sin_beta_2 = (float2) {sin(beta_2), 0.0f}; float2 cos_beta_2 = (float2) {cos(beta_2), 0.0f}; float2 exp_alpha = (float2) {cos(alpha), sin(alpha)}; float2 big_c[4] = {cos_beta_2, sin_beta_2, -sin_beta_2.x * exp_alpha, cos_beta_2.x * exp_alpha}; float2 big_c_t[4] = {big_c[0], big_c[2], big_c[1], big_c[3]}; float2 big_g_g = 2.0f * M_PI_F * gamma * dt ; float2 big_g_q = -2.0f * M_PI_F * q * dt ; float2 big_g_0 = exp(big_g_q.x) * (float2) { cos(big_g_g.x), sin(big_g_g.x) }; float2 big_g_3 = exp(big_g_q.y) * (float2) { cos(big_g_g.y), sin(big_g_g.y) }; float2 big_g[4] = {big_g_0, 0.0f, 0.0f, big_g_3}; float4 out = matmulvec(big_c, matmulvec(big_g, matmulvec(big_c_t, in_out[id]))); // float4 out = {top,0.0f,yid, 0.0f}; in_out[id] = out; } ''' class ClHowieWhelan: def __init__(self): self.ctx = cl.create_some_context() self.queue = cl.CommandQueue(self.ctx) self.disp_r_prog = cl.Program(self.ctx, kernel_disp).build() self.image_prog = cl.Program(self.ctx, kernel_image).build() self.sxz_buf = None def calculate_deviations(self, xsiz, zsiz, pix2nm, dt, u, g, b, c2d, d2c, nu, phi, psi, theta): #fills up sxz array #set up buffers to pass between python and C++ buf_size = xsiz * (zsiz+1) * 4 mf = cl.mem_flags self.sxz_buf = cl.Buffer(self.ctx, mf.READ_WRITE, buf_size) out_buf_2 = cl.Buffer(self.ctx, mf.READ_WRITE, buf_size) c2d_buf = cl.Buffer(self.ctx, mf.READ_ONLY, c2d.size * 4) d2c_buf = cl.Buffer(self.ctx, mf.READ_ONLY, d2c.size * 4) shape = np.array([(zsiz+1), xsiz], dtype=np.int32) # set up contiguous buffers c2d_ = np.ascontiguousarray(c2d.ravel().astype(np.float32)) cl.enqueue_copy(self.queue, c2d_buf, c2d_) d2c_ = np.ascontiguousarray(d2c.ravel().astype(np.float32)) cl.enqueue_copy(self.queue, d2c_buf, d2c_) # fill with zeros as we add to initial buffer (makes handling the 2 bs easier) cl.enqueue_fill_buffer(self.queue, self.sxz_buf, np.float32(0.0), 0, buf_size) cl.enqueue_fill_buffer(self.queue, out_buf_2, np.float32(0.0), 0, buf_size) # the actual calculation #small change in z-coordinate to get derivative dz = 0.0 #calculate x-z array of displacements self.displace_r(shape, self.sxz_buf, c2d_buf, d2c_buf, pix2nm, u, g, b, c2d, nu, phi, psi, theta, dt, dz) # calculate second array at a small z-shift dz = 0.01 self.displace_r(shape, out_buf_2, c2d_buf, d2c_buf, pix2nm, u, g, b, c2d, nu, phi, psi, theta, dt, dz) # subtract one from the other to get the gradient dz_32 = np.float32(dz*dt) self.disp_r_prog.difference(self.queue, shape, None, self.sxz_buf, out_buf_2, dz_32) def displace_r(self, shape, out_buf, c2d_buf, d2c_buf, pix2nm, u, g, b, c2d, nu, phi, psi, theta, dt, dz): #this simply converts the variables into float32 type and sends it off to the C++ subroutine b_screw = np.dot(b, u) b_edge = c2d @ (b - b_screw * u) # NB a vector b_unit = b_edge / (np.dot(b_edge, b_edge) ** 0.5) gD = c2d @ g # float3 is actually a float4 in disguise? nu_32 = np.float32(nu) dt_32 = np.float32(dt) dz_32 = np.float32(dz) b_screw_32 = np.float32(b_screw) pix2nm_32 = np.float32(pix2nm) phi_32 = np.float32(phi) psi_32 = np.float32(psi) theta_32 = np.float32(theta) u_32 = np.append(u, 0.0).astype(np.float32) g_32 = np.append(g, 0.0).astype(np.float32) b_32 = np.append(b, 0.0).astype(np.float32) b_unit_32 = np.append(b_unit, 0.0).astype(np.float32) b_edge_32 = np.append(b_edge, 0.0).astype(np.float32) self.disp_r_prog.displacement(self.queue, shape, None, out_buf, c2d_buf, d2c_buf, pix2nm_32, u_32, g_32, b_32, b_unit_32, b_edge_32, b_screw_32, dt_32, dz_32, nu_32, phi_32, psi_32, theta_32) def get_sxz_buffer(self, xsiz, zsiz): output =
np.zeros((zsiz, xsiz), dtype=np.float32)
numpy.zeros
import numpy as np import torch import torch.optim as optim from dataset import * from train import train, loss_func, test from model import NN, CNN def main(): dataset = 'cifar10' ite = 10 num_nu_data = 1000 num_de_data = 1000 Net = CNN learning_rate = 1e-4 epoch = 500 batchsize = 256 seed = 2020 train_loss_pu = np.zeros((ite, epoch)) test_loss_pu = np.zeros((ite, epoch)) test_auc_pu = np.zeros((ite, epoch)) mean_dr_pu = np.zeros((ite, epoch)) train_loss_ulsif = np.zeros((ite, epoch)) test_loss_ulsif = np.zeros((ite, epoch)) test_auc_ulsif = np.zeros((ite, epoch)) mean_dr_ulsif = np.zeros((ite, epoch)) train_loss_kliep = np.zeros((ite, epoch)) test_loss_kliep = np.zeros((ite, epoch)) test_auc_kliep = np.zeros((ite, epoch)) mean_dr_kliep = np.zeros((ite, epoch)) train_loss_nnpu = np.zeros((ite, epoch)) test_loss_nnpu = np.zeros((ite, epoch)) test_auc_nnpu = np.zeros((ite, epoch)) mean_dr_nnpu = np.zeros((ite, epoch)) train_loss_nnulsif = np.zeros((ite, epoch)) test_loss_nnulsif = np.zeros((ite, epoch)) test_auc_nnulsif = np.zeros((ite, epoch)) mean_dr_nnulsif = np.zeros((ite, epoch)) train_loss_boundedulsif = np.zeros((ite, epoch)) test_loss_boundedulsif = np.zeros((ite, epoch)) test_auc_boundedulsif = np.zeros((ite, epoch)) mean_dr_boundedulsif = np.zeros((ite, epoch)) for i in range(ite): np.random.seed(seed) x_train, t_train, x_test, t_test = load_dataset(dataset) dim = x_train.shape[1] perm = np.random.permutation(len(x_train)) x_train_de = x_train[perm[:num_de_data]] x_train_nu = x_train[t_train==1] perm = np.random.permutation(len(x_train_nu)) x_train_nu = x_train_nu[perm[:num_nu_data]] x_data =
np.concatenate([x_train_nu, x_train_de], axis=0)
numpy.concatenate
#!/usr/bin/env python3 from collections import defaultdict from heapq import heappush, heappop import sys import numpy as np sys.setrecursionlimit(10**6) input = sys.stdin.buffer.readline INF = 10 ** 9 + 1 # sys.maxsize # float("inf") def debug(*x): print(*x) def get_longest(start, values, next, head, longest): ret = longest[start] if ret != -1: return ret ret = 0 p = head[start] while p: v = values[p] x = get_longest(v, values, next, head, longest) + 1 if x > ret: ret = x p = next[p] longest[start] = ret return ret def solve(N, M, data): longest = np.repeat(-1, N + 1) values =
np.zeros(M + 1, np.int32)
numpy.zeros
import numpy as np def braille(): return { 'a' : np.array([[1, 0], [0, 0], [0, 0]], dtype=bool), 'b' : np.array([[1, 0], [1, 0], [0, 0]], dtype=bool), 'c' : np.array([[1, 1], [0, 0], [0, 0]], dtype=bool), 'd' : np.array([[1, 1], [0, 1], [0, 0]], dtype=bool), 'e' : np.array([[1, 0], [0, 1], [0, 0]], dtype=bool), 'f' : np.array([[1, 1], [1, 0], [0, 0]], dtype=bool), 'g' :
np.array([[1, 1], [1, 1], [0, 0]], dtype=bool)
numpy.array
# need to have a more uniform method to exchange (pack/unpack) 1D and 2D PROCESSED data with hdf5 # type of data: Data1d, MatrixWithCoordinates (not just simple numpy arrays) import pylab as plt import h5py import numpy as np import time,datetime import os,copy,subprocess,re import json,pickle,fabio import multiprocessing as mp from py4xs.slnxs import Data1d,average,filter_by_similarity,trans_mode,estimate_scaling_factor from py4xs.utils import common_name,max_len,Schilling_p_value from py4xs.detector_config import create_det_from_attrs from py4xs.local import det_names,det_model,beamline_name # e.g. "_SAXS": "pil1M_image" from py4xs.data2d import Data2d,Axes2dPlot,MatrixWithCoords,DataType from py4xs.utils import run from itertools import combinations from scipy.interpolate import interp1d from scipy.ndimage.filters import gaussian_filter from scipy.interpolate import UnivariateSpline as uspline from scipy.integrate import simpson def lsh5(hd, prefix='', top_only=False, silent=False, print_attrs=True): """ list the content of a HDF5 file hd: a handle returned by h5py.File() prefix: use to format the output when lsh5() is called recursively top_only: returns the names of the top-level groups silent: suppress printouts if True """ if top_only: tp_grps = list(hd.keys()) if not silent: print(tp_grps) return tp_grps for k in list(hd.keys()): print(prefix, k) if isinstance(hd[k], h5py.Group): if print_attrs: print(list(hd[k].attrs.items())) lsh5(hd[k], prefix+"=", silent=silent, print_attrs=print_attrs) def create_linked_files(fn, fnlist): """ create a new file to links to data in existing files in the fn_list for now assume that all files have the same detector/qgrid configuration without checking """ ff = h5py.File(fn, 'w') for s in fnlist: fs = h5py.File(s, "r") if len(ff.attrs)==0: for an in fs.attrs: ff.attrs[an] = fs.attrs[an] ff.flush() for ds in lsh5(fs, top_only=True, silent=True): ff[ds] = h5py.ExternalLink(s, ds) fs.close() ff.close() def integrate_mon(em, ts, ts0, exp): """ integrate monitor counts monitor counts are given by em with timestamps ts ts0 is the timestamps on the exposures, with duration of exp """ ffe = interp1d(ts, em) em0 = [] for t in ts0: tt = np.concatenate(([t], ts[(ts>t) & (ts<t+exp)], [t+exp])) ee = ffe(tt) em0.append(simpson(ee, tt)) return np.asarray(em0)/exp def pack_d1(data, ret_trans=True): """ utility function to creat a list of [intensity, error] from a Data1d object or from a list of Data1s objects """ if isinstance(data, Data1d): if ret_trans: return
np.asarray([data.data,data.err])
numpy.asarray
import numpy as np import scipy as sp import networkx as nx import bct from scipy.spatial import distance import pandas as pd """ beta could be 0.5 or -0.5 """ def bonachic_centrality_und(CIJ, beta=0.5): alfa = 1 e = np.ones((1, CIJ.shape[0])) I = np.identity(CIJ.shape[0]) s = beta*CIJ g = I - s r = np.linalg.inv(g) b = np.dot(np.dot(alfa*e, r), CIJ) p = np.transpose(b) return p """ binarize """ def binarize(w, copy=True): if copy: w = w.copy() w[w != 0] = 1 return w """ betweenness_wei """ def betweenness_wei(G): n = len(G) BC = np.zeros((n,)) # vertex betweenness for u in range(n): D = np.tile(np.inf, (n,)) D[u] = 0 # distance from u NP = np.zeros((n,)) NP[u] = 1 # number of paths from u S = np.ones((n,), dtype=bool) # distance permanence P = np.zeros((n, n)) # predecessors Q = np.zeros((n,), dtype=int) # indices q = n - 1 # order of non-increasing distance G1 = G.copy() V = [u] while True: S[V] = 0 # distance u->V is now permanent G1[:, V] = 0 # no in-edges as already shortest for v in V: Q[q] = v q -= 1 W, = np.where(G1[v, :]) # neighbors of v for w in W: Duw = D[v] + G1[v, w] # path length to be tested if Duw < D[w]: # if new u->w shorter than old D[w] = Duw NP[w] = NP[v] # NP(u->w) = NP of new path P[w, :] = 0 P[w, v] = 1 # v is the only predecessor elif Duw == D[w]: # if new u->w equal to old NP[w] += NP[v] # NP(u->w) sum of old and new P[w, v] = 1 # v is also predecessor if D[S].size == 0: break # all nodes were reached if np.isinf(np.min(D[S])): # some nodes cannot be reached Q[:q + 1], = np.where(np.isinf(D)) # these are first in line break V, = np.where(D == np.min(D[S])) DP = np.zeros((n,)) for w in Q[:n - 1]: BC[w] += DP[w] for v in
np.where(P[w, :])
numpy.where
import time import numpy as np import collections class PrettyTable(): ''' For format output the simplex table ''' def __init__(self): # all element is str self.table = [] return None def add_row(self, row): self.table.append(row) return None def pretty(self, hlines=[], vlines=[], col_width='c'): n_row, n_col = len(self.table), len(self.table[0]) for i, e in enumerate(hlines): if e < 0: hlines[i] = n_row + e - 1 for i, e in enumerate(vlines): if e < 0: vlines[i] = n_col + e - 1 # column width col_width = [0 for j in range(n_col)] for row in self.table: for j, e in enumerate(row): col_width[j] = max(col_width[j], len(e)) if col_width in ['c', 'center']: col_width = np.array(col_width) col_width[1:-1] = np.max(col_width[1:-1]) elif col_width in ['e', 'each']: pass elif col_width in ['a', 'all']: col_width[:] = np.max(col_width) # extra char extra_width = n_col + 5 doub_line = '=' * (extra_width + np.sum(col_width)) sing_line = '-' * (extra_width + np.sum(col_width)) # head line cont = doub_line + '\n' for i, row in enumerate(self.table): cont_row = ' ' for j, e in enumerate(row): cont_row = cont_row + e.rjust(col_width[j]) + ' ' # vertical lines if j in vlines: cont_row = cont_row + '| ' cont = cont + cont_row + '\n' # horizontal lines if i in hlines: cont = cont + sing_line + '\n' # bottom line cont = cont + doub_line + '\n' return cont class RevisedSimplexMethod(): ''' The revised simplex method to solve the LP ''' def __init__(self, c, A, b, c_0=0., var_names=None, mini=True): ''' Args: --- A: nested list or ndarray, shape of (m, n) constraint coefficient matrix c: list or ndarray, shape of (n,) object coefficient vector b: list or ndarray, shape of (m,) right-hand side vector var_names: list, its length should equal to the number of decision variables (n) decision variables' names mini: bool mini=True, is to minimize the object function mini=False, is to maximize the object function ''' self.c = np.array(c, dtype=np.float_) self.A = np.array(A, dtype=np.float_) self.b = np.array(b, dtype=np.float_) self.c_0 = -c_0 self.mini = mini # the number of constraints self.m = self.A.shape[0] # the number of decision variables self.n = self.A.shape[1] # decision variables' names self.var_names = var_names if self.var_names is None: self.var_names = ['x'+str(i) for i in range(1, self.n+1)] # indicate the whether is a two-phase simplex method self.phase = False # True: two-phase # check matrix A self.check(self.A) # the statue of solution self.statue = None # logs: for procedure # number of iteration self.n_iter = 0 self.logs = {} self.logs['phase'] = [] self.logs['ent_var'] = [] self.logs['lev_var'] = [] self.logs['basis'] = [] self.logs['non_basis'] = [] self.logs['w'] = [] self.logs['c'] = [] self.logs['A'] = [] self.logs['b'] = [] self.logs['c_0'] = [] return None # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def check(self, A): ''' Check matrix A is fulfill the conditions of Standard Form of LP Args: ----- A: numpy.ndarray, shape of (m,n) ''' (_m, _n) = A.shape try: assert _m <= _n except AssertionError: print('The number of decision variables (n={0}) should not least than the number of constraints (m={1})!'.format(_n, _m)) raise try: assert np.linalg.matrix_rank(A) == _m except AssertionError: print('Redundant constraint exists! (Rank(A)={0} < m={1})'.format(np.linalg.matrix_rank(A), _m)) raise return None # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def record_logs(self, **kwargs): ''' record some useful logs Args: ----- **kwargs: ''' for key, value in kwargs.items(): self.logs[key].append(value) return None # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def init_basis(self, A): ''' From the constraint coefficient matrix, find a BFS Maybe return not a full basis Args: ----- A: numpy.ndarray, shape of (m,n) Return: ------- basis: non_basis: ''' (_m, _n) = A.shape basis = [] for i in range(_n): r = collections.Counter(A[:, i].tolist()) if (r[1.] == 1) and (r[0.] == _m-1): if not(i in basis): basis.append(i) # get the non-basic variable non_basis = list(range(_n)) for e in basis: non_basis.remove(e) return basis, non_basis # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def find_ent_var(self, c_D, non_basis, mini): ''' To find an entering variable x_r from non_basis Args: --- c_D: ndarray, shape of (n,) current object coefficient vector of non-basis non_basis: list, it's length equal to n-m the index of non-basic variables mini: bool To find the most negative element (mini=True) for minimum LP or the most positive element (mini=True) for maximum LP ''' if mini: index = np.argmin(c_D) else: index = np.argmax(c_D) return non_basis[index] # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def find_lev_var(self, b, p_s, basis): ''' To find leaving variable from basis To find the less ratio (b_i/p_is) of p_s for all p_is>0. Args: --- b: ndarray, shape of (m,) the current right-hand vector p_s: ndarray, shape of (m,) the current constrain coefficient vector of the entering variable x_r basis: list, it's length equal to m the index of basic variables ''' _m = p_s.shape[0] lev_var = None _ratio = np.inf for i in range(_m): if p_s[i] <= 0.: continue else: ratio = b[i]/p_s[i] if ratio < _ratio: lev_var = basis[i] _ratio = ratio return lev_var # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def find_art_lev_var(self, c_D, non_basis): ''' To find an entering variable x_r from non_basis and non-artifical variables Specially using for Phase I, it must be a minimal object, which indicates to find a most negative cost coefficient Args: --- c: ndarray, shape of (n,) current object coefficient vector of non-basis non_basis: list the index of non-basic variables ''' ent_c = 0. ent_var = None for i, e in enumerate(non_basis): if e < self.n: # is a non-artifical variable if c_D[i] < ent_c: ent_c = c_D[i] ent_var = e return ent_var # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def init_phase1(self, c, A, b): ''' Introduce artifical variables for two-phase simplex method in phase I: The standard form of Phase I: len: n m 1 1 |len n+m+1 1 | x | s | z | b | | x | b | -w | 0 | 1 | 0 | | 1 -w | 0 | 0 | 1 -z | c | 0 | 1 | c_0 | 1 => x_B | A | b | m+1 x_B | A | I | 0 | b | m Args: ----- A: ndarray, shape of (m,n) original constraint coefficient ''' (m, n) = A.shape # names of artifical variables self.art_names = ['S'+str(i) for i in range(1, m+1)] # basic variable for Phase I ph1_basis = list(range(n, n+m)) # get the non-basic variable ph1_non_basis = list(range(n+m)) for e in ph1_basis: ph1_non_basis.remove(e) # the cost coefficient of w(x) for Phase I ph1_w = np.zeros(n+m, dtype=np.float_) ph1_w[n:] = 1 ph1_c = np.concatenate((self.c, np.zeros(m, dtype=np.float_))) ph1_A = np.block([A, np.identity(m, dtype=np.float_)]) ph1_b = b return ph1_w, ph1_c, ph1_A, ph1_b, ph1_basis, ph1_non_basis # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def iteration(self, c, A, b, basis, mini, phase): ''' One iteration of simplex method, where the basis have be found Args: ----- c: A: b: basis: mini: phase: ''' (m, n) = A.shape # get the non-basic variable non_basis = list(range(n)) for e in basis: non_basis.remove(e) # Step 0: prepare B, B_inv, D, c_D, c_B, b, c_0 B, D = A[:, basis], A[:, non_basis] c_B, c_D = c[basis], c[non_basis] B_inv = np.linalg.inv(B) x_B = np.dot(B_inv, b) b = np.dot(B_inv, b) c_0 = np.dot(c_B, c_B) # Step 1:calculate current c_D c_D = (c_D.T - np.dot(np.dot(c_B.T, B_inv), D)).T # Step 2: Determine the entering variable enter_var = self.find_ent_var(c_D, non_basis, mini=mini) # calculate the corresponding p_s p_s = np.dot(B_inv, A[:, enter_var]) # Step 3: from non-basis variables find a leaving variable x_r leave_var = self.find_lev_var(b, p_s, basis) if leave_var is None: # no variable should leave basis self.statue = 2 # unbounded solution return enter_var, leave_var, basis, non_basis, c_D # Step 4: Updata basis and non-basis basis[basis.index(leave_var)] = enter_var basis.sort() non_basis[non_basis.index(enter_var)] = leave_var non_basis.sort() return enter_var, leave_var, basis, non_basis, c_D # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def compute(self): ''' Iteration procedures of revised simplex method ''' # record the running time start_time = time.process_time() # intial basis basis, non_basis = self.init_basis(self.A) c, A, b = self.c, self.A, self.b if len(basis) < self.m: self.phase = True ph1_w, ph1_c, ph1_A, ph1_b, ph1_basis, ph1_non_basis = self.init_phase1(c, A, b) self.ph1_w, self.ph1_c, self.ph1_A, self.ph1_b, self.ph1_basis = ph1_w, ph1_c, ph1_A, ph1_b, ph1_basis # Phase I: while np.any(np.array(ph1_basis) >= self.n): # stop until all non-artifical variable leave the basis # print(ph1_basis, ph1_non_basis, self.n) # record logs self.n_iter = self.n_iter + 1 self.record_logs(phase=True, basis=ph1_basis.copy(), non_basis=ph1_non_basis.copy()) # each iteration ph1_enter_var, ph1_leave_var, ph1_basis, ph1_non_basis, c_D = self.iteration(ph1_w, ph1_A, ph1_b, ph1_basis, mini=True, phase=True) self.record_logs(ent_var=ph1_enter_var, lev_var=ph1_leave_var) # Phase I terminated: ph1_c_B = ph1_c[ph1_basis] ph1_B_inv = np.linalg.inv(ph1_A[:, ph1_basis]) ph1_c = (self.ph1_c.T - np.dot(np.dot(ph1_c_B.T, ph1_B_inv), ph1_A)).T ph1_A = np.dot(ph1_B_inv, ph1_A) ph1_b = np.dot(ph1_B_inv, ph1_b) # self.ph1_c_0 = self.c_0 - np.dot(np.dot(ph1_c_B.T, ph1_B_inv), self.ph1_b) # print(ph1_basis, ph1_b, ph1_c[ph1_basis]) self.ph1_c_0 = self.c_0 - np.dot(ph1_c[ph1_basis], ph1_b) c = ph1_c[:self.n] A = ph1_A[:, :self.n] b = ph1_b basis = ph1_basis.copy() # Phase II: while True: # record logs self.n_iter = self.n_iter + 1 self.record_logs(phase=False, basis=basis.copy(), non_basis=non_basis.copy()) # each iteration enter_var, leave_var, basis, non_basis, c_D = self.iteration(c, A, b, basis, mini=self.mini, phase=False) self.record_logs(ent_var=enter_var, lev_var=leave_var) # stop criterion if self.mini: if np.all(c_D >= 0.): self.statue = 0 # successfully find the optimal solution break else: if np.all(c_D <= 0.): self.statue = 0 break # if leave_var is None: break # record the running time self.run_time = time.process_time() - start_time # the optimal BFS self.opt_basis = self.logs['basis'][-1] self.opt_non_basis = self.logs['non_basis'][-1] return None # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def get_optimal(self): ''' obtain the optimal solutions and objective function value Return: ------- sol: ndarray, shape of (n, ) The optimal solutions of the input LP obj: float, The optimal objective function value ''' x_B = np.dot(
np.linalg.inv(self.A[:, self.opt_basis])
numpy.linalg.inv
#!/usr/bin/python """ atom_energy_reporter.py MIT License Copyright (c) 2018 Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, and Authors Authors: <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * from openmmtools import testsystems import mdtraj as md import netCDF4 from netCDF4 import Dataset import warnings import time # NOTE: # - currently only the most common energy were implemented # TODO: # - implement AMOEBA forces class AtomEnergyReporter(object): """ AtomEnergyReporter outputs information about every atom in a simulation, including the energy breakdown, to a file. to use it, create an AtomEnergyReporter, then add it to the list of reporters of the list of the Simulation. by default the data is written in CSV format. this module is written in order to implement the algorithm developed by <NAME> and <NAME> in University of Cambridge. this calculates the Eq.11 in the paper: $$ u_{X_a} = \\ \frac12(u_{electrostaic} + u_{Lennard-Jones} + u_{bonded} + u_{Urey-Bradley}) \\ + \frac13 u_{angle} \\ + \frac14 u_{dihedral} + u_{improper} $$ further data analysis is needed ref: https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00027 """ def __init__(self, file_path, reportInterval, idxs = None): """ create a AtomEnergyReporter parameters ---------- file : a string the file to write to reportInterval : int the interval at which to write """ self._reportInterval = reportInterval self.idxs = idxs self.force_map = { 'AmoebaAngleForce' : self.analyze_amoeba_angle_force, 'AmoebaBondForce' : self.analyze_amoeba_bond_force, 'AmoebaGeneralizedKirkwoodForce' : self.analyze_amoeba_generalized_kirkwood_force, 'AmoebaInPlaneAngleForce' : self.analyze_amoeba_in_plane_angle_force, 'AmoebaMultipoleForce' : self.analyze_amoeba_multipole_force, 'AmoebaOutOfPlaneBendForce' : self.analyze_amoeba_out_of_plane_bend_force, 'AmoebaPiTorsionForce' : self.analyze_amoeba_pi_torsion_force, 'AmoebaStretchBendForce' : self.analyze_amoeba_stretch_bend_force, 'AmoebaTorsionTorsionForce' : self.analyze_amoeba_torsion_torsion_force, 'AmoebaVdwForce' : self.analyze_amoeba_vdw_force, 'AmoebaWcaDispersionForce' : self.analyze_amoeba_wca_dispersion_force, 'AndersenThermostat' : self.analyze_andersen_thermostat, 'CMAPTorsionForce' : self.analyze_cmap_torsion_force, 'CMMotionRemover' : self.analyze_cmm_motion_remover, 'CustomAngleForce' : self.analyze_custom_angle_force, 'CustomBondForce' : self.analyze_custom_bond_force, 'CustomCVForce' : self.analyze_custom_cv_force, 'CustomCentroidBondForce' : self.analyze_centroid_bond_force, 'CustomCompoundBondForce' : self.analyze_custom_compound_bond_force, 'CustomExternalForce' : self.analyze_custom_external_force, 'CustomGBForce' : self.analyze_gb_force, 'CustomHbondForce' : self.analyze_hbond_force, 'CustomManyParticleForce' : self.analyze_custom_many_particle_force, 'CustomNonbondedForce' : self.analyze_custom_nonbonded_force, 'CustomTorsionForce' : self.analyze_custom_torsion_force, 'DrudeForce' : self.analyze_drude_force, 'GBSAOBCForce' : self.analyze_gbsaobc_force, 'GayBerneForce' : self.analyze_gay_berne_force, 'HarmonicAngleForce' : self.analyze_harmonic_angle_force, 'HarmonicBondForce' : self.analyze_harmonic_bond_force, 'MonteCarloAnisotropicBarostat' : self.analyze_monte_carlo_anisotropic_barostat, 'MonteCarloBarostat' : self.analyze_monte_carlo_barostat, 'MonteCarloMembraneBarostat' : self.analyze_monte_carlo_membrane_barostat, 'NonbondedForce' : self.analyze_nonbonded_force, 'PeriodicTorsionForce' : self.analyze_periodic_torsion_force, 'RBTorsionForce' : self.analyze_rb_torsion_force, 'RPMDMonteCarloBarostat' : self.analyze_rpmd_monte_carlo_barostat } # create a netCDF4 Dataset to record the energy self._out = Dataset(file_path ,'w') self._out.createDimension("time", None) times = self._out.createVariable("time", "i8", ("time",)) times.unit = str(self._reportInterval) self.time = 0 # let the analyzer register for once self.registered = False def describeNextReport(self, simulation): """ adopted from: openmm/wrappers/python/simtk/openmm/app/statedatareporter.py Get information about the next report this object will generate. Parameters ---------- simulation : Simulation The Simulation to generate a report for Returns ------- tuple A five element tuple. The first element is the number of steps until the next report. The remaining elements specify whether that report will require positions, velocities, forces, and energies respectively. """ steps = self._reportInterval - simulation.currentStep%self._reportInterval return (steps, True, False, True, True) def report(self, simulation, state): """ generate a report parameters ---------- simulation : an OpenMM simulation object state : an OpenMM state object """ # find the small molecule to analyze if self.registered == False: # if the system is not registered, register the system if self.idxs == None: self.find_small_mol(simulation, state) # set the attributes in Dataset self._out.description = 'record of an OpenMM run' self._out.history = 'created ' + time.ctime(time. time()) # initialize the Dataset self._out.createDimension("atom", len(self.idxs)) self._out.createVariable("atom", "i8", ("atom", )) atoms_name = ["idx = %s; mass = %s" % (idx, simulation.system.getParticleMass(idx)) for idx in self.idxs] self._out.setncattr('atoms_name', atoms_name) # get the forces self.forces = simulation.system.getForces() self.force_idx_mapping = [force for force in self.forces] forces_name = [force.__class__.__name__ for force in self.forces] self._out.setncattr('forces_name', forces_name) # create a force dimension, using idxs # and initialize the forces self._out.createDimension("force", len(self.forces)) self._out.createVariable("force", "i8", ("force", )) # initialize the energy variable # that stands on the dimensions of: time, atom, and force self.energy_var = self._out.createVariable("energy", "f4", ("time", "atom", "force")) self.energy_var.units = 'kJ/mol' # keep a copy of all the positions self._out.createDimension("xyz", 3) self.pos_var = self._out.createVariable("pos", "f4", ("time", "atom", "xyz")) # keep a copy of the parameters of atoms param_array = np.zeros((len(self.idxs), 3)) for force in self.forces: if force.__class__.__name__ == "NonbondedForce": for idx in self.idxs: charge, sigma, epsilon = force.getParticleParameters(idx) param_array[idx, 0], param_array[idx, 1], param_array[idx, 2] = charge._value, sigma._value, epsilon._value # note that the units here are: elementary charge, nanometer, kilojoule/mole self._out.setncattr('param_array', param_array) # set the registered flag to True, # since you only need to do this once self.registered = True # point these objects to the class, and update them self.simulation = simulation self.state = state # get the positions of the small molecules self.pos = tuple([state.getPositions()[idx] for idx in self.idxs]) pos_matrix = np.array([state.getPositions(asNumpy=True)[idx]._value for idx in self.idxs]) self.pos_var[self.time, :, :] = pos_matrix # analyze each force in the system for force_idx, force in enumerate(self.force_idx_mapping): energy_dict = self.get_energy(force) if energy_dict == None: warnings.warn("no force information could be extracted from %s" % force.__class__.__name__) continue for atom_idx, energy in energy_dict.items(): self.energy_var[self.time, atom_idx, force_idx] = energy._value # note that the unit here is kilojoule/mole # increase the time dimension by one self.time += 1 def find_small_mol(self, simulation, state): """ find the atoms of the smallest molecule, which is most likely to be the region of greates interest for a simulation parameters ---------- simulation : an OpenMM Simulation object state : an OpenMM State object returns ------- atoms : a tuple of indicies of atoms that belongs to the small molecule """ context = simulation.context mols = context.getMolecules() small_mol = sorted([mol for mol in mols if len(mol) > 4], key = lambda mol : len(mol), reverse = False)[0] # register the atoms and idxs in the class self.idxs = small_mol return small_mol def get_energy(self, force): """ anlyzes force and return the energy, to be more specific, match the force with a certain type of analysis function """ name = str(force.__class__.__name__) # get the name of the force energy_dict = self.force_map[name](force) # map the force to its specific analyze function and get the energy return energy_dict ################################################# # herlper functions to calculate distance, angles, # and dihedral angels from positions of atoms ################################################# def dist(self, atom0, atom1): """ calculate the distance between two atoms require that self.pos is defined parameters ---------- atom0 : the idx of the first atom atom1 : the idx of the second atom returns ------- dist : a float representing the distance between the two atoms """ pos0 = self.pos[atom0] pos1 = self.pos[atom1] dist = np.linalg.norm(pos0 - pos1) return dist def angle(self, center_atom, atom0, atom1): """ calculate the angle between bond: center_atom -- atom0 and center_atom -- atom1 $ cos(<v0, v1>) = (v0 \dot v1) / |v0||v1| $ parameters ---------- center_atom : the idx of the center atom atom0 : the idx of the first atom involved in the angle atom1 : the idx of the second atom involved in the angle returns ------- angle : the value of the angle in rads """ # get all the positions pos_center = self.pos[center_atom] pos0 = self.pos[atom0] pos1 = self.pos[atom1] # express the distance in vectors v0 = np.array(pos0) - np.array(pos_center) v1 = np.array(pos1) - np.array(pos_center) # to calculate: # $ cos(<v0, v1>) = (v0 \dot v1) / |v0||v1| $ v0_dot_v1 = np.dot(v0, v1) v0_norm = np.linalg.norm(v0) v1_norm = np.linalg.norm(v1) angle = np.arccos(np.true_divide(v0_dot_v1, v0_norm * v1_norm)) return Quantity(angle, radian) def dihedral(self, atom0, atom1, atom2, atom3): """ calculate the dihedral between the plane formed by: atom0, atom1, and atom2 and that by atom1, atom2, and atom3 $$ n_A = q_0 \cross q_1 \\ n_B = q_1 \cross q_2 \\ \Phi = |n_A \dot n_B| / |n_A||n_B| $$ parameters ---------- atom0 : the idx of the first atom involved in the torsion atom1 : the idx of the second atom involved in the torsion atom2 : the idx of the thrid atom involved in the torsion atom3 : the idx of the fourth atom involved in the torsion returns ------- angle : the value of the dihedral angle in rads """ # get the positions of the atoms pos0 = self.pos[atom0] pos1 = self.pos[atom1] pos2 = self.pos[atom2] pos3 = self.pos[atom3] # calculate the vectors between these atoms q1 = pos1 - pos0 q2 = pos2 - pos1 q3 = pos3 - pos2 # calculate the normal vectors na = np.cross(q1, q2) nb = np.cross(q2, q3) # calculate the dihedral angel na_dot_nb =
np.dot(na, nb)
numpy.dot
############################################################################### # DehnenBarPotential: Dehnen (2000)'s bar potential ############################################################################### import numpy from ..util import conversion from .Potential import Potential _degtorad= numpy.pi/180. class DehnenBarPotential(Potential): """Class that implements the Dehnen bar potential (`Dehnen 2000 <http://adsabs.harvard.edu/abs/2000AJ....119..800D>`__), generalized to 3D following `Monari et al. (2016) <http://adsabs.harvard.edu/abs/2016MNRAS.461.3835M>`__ .. math:: \\Phi(R,z,\\phi) = A_b(t)\\,\\cos\\left(2\\,(\\phi-\\Omega_b\\,t)\\right))\\,\\left(\\frac{R}{r}\\right)^2\\,\\times \\begin{cases} -(R_b/r)^3\\,, & \\text{for}\\ r \\geq R_b\\\\ (r/R_b)^3-2\\,, & \\text{for}\\ r\\leq R_b. \\end{cases} where :math:`r^2 = R^2+z^2` is the spherical radius and .. math:: A_b(t) = A_f\\,\\left(\\frac{3}{16}\\xi^5-\\frac{5}{8}\\xi^3+\\frac{15}{16}\\xi+\\frac{1}{2}\\right)\\,, \\xi = 2\\frac{t/T_b-t_\\mathrm{form}}{T_\mathrm{steady}}-1\\,,\ \mathrm{if}\ t_\\mathrm{form} \\leq \\frac{t}{T_b} \\leq t_\\mathrm{form}+T_\\mathrm{steady} and .. math:: A_b(t) = \\begin{cases} 0\\,, & \\frac{t}{T_b} < t_\mathrm{form}\\\\ A_f\\,, & \\frac{t}{T_b} > t_\mathrm{form}+T_\mathrm{steady} \\end{cases} where .. math:: T_b = \\frac{2\pi}{\\Omega_b} is the bar period and the strength can also be specified using :math:`\\alpha` .. math:: \\alpha = 3\\,\\frac{A_f}{v_0^2}\\,\\left(\\frac{R_b}{r_0}\\right)^3\,. """ normalize= property() # turn off normalize def __init__(self,amp=1.,omegab=None,rb=None,chi=0.8, rolr=0.9,barphi=25.*_degtorad, tform=-4.,tsteady=None,beta=0., alpha=0.01,Af=None,ro=None,vo=None): """ NAME: __init__ PURPOSE: initialize a Dehnen bar potential INPUT: amp - amplitude to be applied to the potential (default: 1., see alpha or Ab below) barphi - angle between sun-GC line and the bar's major axis (in rad; default=25 degree; or can be Quantity)) tform - start of bar growth / bar period (default: -4) tsteady - time from tform at which the bar is fully grown / bar period (default: -tform/2, st the perturbation is fully grown at tform/2) Either provide: a) rolr - radius of the Outer Lindblad Resonance for a circular orbit (can be Quantity) chi - fraction R_bar / R_CR (corotation radius of bar) alpha - relative bar strength (default: 0.01) beta - power law index of rotation curve (to calculate OLR, etc.) b) omegab - rotation speed of the bar (can be Quantity) rb - bar radius (can be Quantity) Af - bar strength (can be Quantity) OUTPUT: (none) HISTORY: 2010-11-24 - Started - Bovy (NYU) 2017-06-23 - Converted to 3D following Monari et al. (2016) - Bovy (UofT/CCA) """ Potential.__init__(self,amp=amp,ro=ro,vo=vo) barphi= conversion.parse_angle(barphi) rolr= conversion.parse_length(rolr,ro=self._ro) rb= conversion.parse_length(rb,ro=self._ro) omegab= conversion.parse_frequency(omegab,ro=self._ro,vo=self._vo) Af= conversion.parse_energy(Af,vo=self._vo) self.hasC= True self.hasC_dxdv= True self.isNonAxi= True self._barphi= barphi if omegab is None: self._rolr= rolr self._chi= chi self._beta= beta #Calculate omegab and rb self._omegab= 1./((self._rolr**(1.-self._beta))/(1.+numpy.sqrt((1.+self._beta)/2.))) self._rb= self._chi*self._omegab**(1./(self._beta-1.)) self._alpha= alpha self._af= self._alpha/3./self._rb**3. else: self._omegab= omegab self._rb= rb self._af= Af self._tb= 2.*numpy.pi/self._omegab self._tform= tform*self._tb if tsteady is None: self._tsteady= self._tform/2. else: self._tsteady= self._tform+tsteady*self._tb def _smooth(self,t): if isinstance(t,numpy.ndarray): smooth=numpy.ones(len(t)) indx=(t < self._tform) smooth[indx]=0. indx=(t < self._tsteady) * (t >= self._tform) deltat=t[indx]-self._tform xi= 2.*deltat/(self._tsteady-self._tform)-1. smooth[indx]= (3./16.*xi**5.-5./8*xi**3.+15./16.*xi+.5) else: if t < self._tform: smooth= 0. elif t < self._tsteady: deltat= t-self._tform xi= 2.*deltat/(self._tsteady-self._tform)-1. smooth= (3./16.*xi**5.-5./8*xi**3.+15./16.*xi+.5) else: #bar is fully on smooth= 1. return smooth def _evaluate(self,R,z,phi=0.,t=0.): """ NAME: _evaluate PURPOSE: evaluate the potential at R,phi,t INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z,phi,t) HISTORY: 2010-11-24 - Started - Bovy (NYU) """ #Calculate relevant time smooth=self._smooth(t) r2= R**2.+z**2. r= numpy.sqrt(r2) if isinstance(r,numpy.ndarray): if not isinstance(R,numpy.ndarray): R=numpy.repeat(R,len(r)) if not isinstance(z,numpy.ndarray): z=numpy.repeat(z,len(r)) out=numpy.empty(len(r)) indx= r <= self._rb out[indx]= ((r[indx]/self._rb)**3.-2.)\ *numpy.divide(R[indx]**2.,r2[indx],numpy.ones_like(R[indx]), where=R[indx]!=0) indx=numpy.invert(indx) out[indx]= -(self._rb/r[indx])**3.*1./(1.+z[indx]**2./R[indx]**2.) out*=self._af*smooth*numpy.cos(2.*(phi-self._omegab*t-self._barphi)) return out else: if r == 0: return -2.*self._af*smooth*numpy.cos(2.*(phi-self._omegab*t-self._barphi)) elif r <= self._rb: return self._af*smooth*numpy.cos(2.*(phi-self._omegab*t-self._barphi))\ *((r/self._rb)**3.-2.)*R**2./r2 else: return -self._af*smooth*numpy.cos(2.*(phi-self._omegab*t- self._barphi))\ *(self._rb/r)**3.\ *1./(1.+z**2./R**2.) def _Rforce(self,R,z,phi=0.,t=0.): """ NAME: _Rforce PURPOSE: evaluate the radial force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the radial force HISTORY: 2010-11-24 - Written - Bovy (NYU) """ #Calculate relevant time smooth=self._smooth(t) r= numpy.sqrt(R**2.+z**2.) if isinstance(r,numpy.ndarray): if not isinstance(R,numpy.ndarray): R=numpy.repeat(R,len(r)) if not isinstance(z,numpy.ndarray): z=numpy.repeat(z,len(r)) out=numpy.empty(len(r)) indx= r <= self._rb out[indx]= -((r[indx]/self._rb)**3.*R[indx]*(3.*R[indx]**2.+2.*z[indx]**2.)-4.*R[indx]*z[indx]**2.)/r[indx]**4. indx= numpy.invert(indx) out[indx]= -(self._rb/r[indx])**3.*R[indx]/r[indx]**4.*(3.*R[indx]**2.-2.*z[indx]**2.) out*=self._af*smooth*numpy.cos(2.*(phi-self._omegab*t-self._barphi)) return out else: if r <= self._rb: return -self._af*smooth*numpy.cos(2.*(phi-self._omegab*t -self._barphi))\ *((r/self._rb)**3.*R*(3.*R**2.+2.*z**2.)-4.*R*z**2.)/r**4. else: return -self._af*smooth*numpy.cos(2.*(phi-self._omegab*t- self._barphi))\ *(self._rb/r)**3.*R/r**4.*(3.*R**2.-2.*z**2.) def _phiforce(self,R,z,phi=0.,t=0.): """ NAME: _phiforce PURPOSE: evaluate the azimuthal force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the azimuthal force HISTORY: 2010-11-24 - Written - Bovy (NYU) """ #Calculate relevant time smooth=self._smooth(t) r2= R**2.+z**2. r=
numpy.sqrt(r2)
numpy.sqrt
import numpy as np from scipy import stats import matplotlib.pyplot as plt """ Created on Mon Feb 10 17:24 2020 @author: <NAME> ====================================================================== Purpose: Outputs max trends in gsat for a range of N year periods in each observational historical record, for use in Figure 3 ====================================================================== """ # Load in required directories basedir = 'Priestley-Centre/Near_term_warming/observation_data' savedir = 'Priestley-Centre/Near_term_warming/analysis_figure_code/'+\ 'Figure3/saved_arrays' # Load in data and apply scaling factors # to convert from GBST to GSAT temp_BE = np.loadtxt(basedir+'/BE_Land_and_Ocean.csv',\ delimiter=',')[:,1]*1.087 years_BE = np.loadtxt(basedir+'/BE_Land_and_Ocean.csv',\ delimiter=',')[:,0] nyear_BE = len(years_BE) temp_GI = np.loadtxt(basedir+'/GISTEMPv4.csv',\ delimiter=',')[:,1]*1.087 years_GI = np.loadtxt(basedir+'/GISTEMPv4.csv',\ delimiter=',')[:,0] nyear_GI = len(years_GI) temp_Ha = np.loadtxt(basedir+'/HadCRUT4.6.csv',\ delimiter=',')[:,1]*1.19 years_Ha = np.loadtxt(basedir+'/HadCRUT4.6.csv',\ delimiter=',')[:,0] nyear_Ha = len(years_Ha) temp_CW = np.loadtxt(basedir+'/CWv2_had4sst3.csv',\ delimiter=',')[:,1]*1.087 years_CW = np.loadtxt(basedir+'/CWv2_had4sst3.csv',\ delimiter=',')[:,0] nyear_CW = len(years_CW) # Calculate maximum Ny trends trend_lengths = np.linspace(10,50,41) max_trends =
np.zeros([41,4])
numpy.zeros
#! /usr/bin/python3 import os import time import numpy as np import math as m import matplotlib.pyplot as plt from matplotlib import animation from xarray import open_mfdataset # mesonhFiles = '/home/pnarvor/work/nephelae/data/MesoNH-2019-02/REFHR.1.ARMCu.4D.nc' # mesonhFiles = '/home/pnarvor/work/nephelae/data/nephelae-remote/MesoNH02/bomex_hf.nc' mesonhFiles = '/home/pnarvor/work/nephelae/data/skyscanner-remote/Nephelae/MesoNH-2019-10/L12zo.1.BOMEX.OUT.040.nc' atm = open_mfdataset(mesonhFiles) wt = atm.WT print("Shape :", wt.shape) # t0 = 40 t0 = 0 z0 = 40 borderSize = 10 snBorders = np.empty([wt.shape[2], 2*borderSize]) snBorders[:, :borderSize] = wt[t0,z0,:,-borderSize:] snBorders[:,-borderSize:] = wt[t0,z0,:, :borderSize] toRemove = 6 wt0 = wt[t0,z0,:,:-toRemove] snBorders0 = np.empty([wt0.shape[0], 2*borderSize]) snBorders0[:, :borderSize] = wt0[:,-borderSize:] snBorders0[:,-borderSize:] = wt0[:, :borderSize] pad = 0 bottom = np.array(wt[t0,z0,:,:(toRemove + pad)]).squeeze() top = np.array(wt[t0,z0,:,-(toRemove + pad):]).squeeze() diff0 = top - bottom print("Residual top/bottom:", np.linalg.norm(diff0.ravel())) pad = 0 left = np.array(wt[t0,z0,:(toRemove + pad) ,:]).squeeze() right =
np.array(wt[t0,z0,-(toRemove + pad):,:])
numpy.array
# general imports import numpy as np import sys import copy import matplotlib.pyplot as plt # local modul imports from pemfc import channel from pemfc import fluid from pemfc import species from pemfc import interpolation as ip np.set_printoptions(threshold=sys.maxsize, linewidth=10000, precision=9, suppress=True) np.seterr(all='raise') nodes = 20 mass_flow_hydrogen = 0.0001 # kg/s mass_flow_air = 0.0001 mass_flow_water = 0.002 wall_temp = None # 380 # wall_temp_1 = 380.0 # wall_temp_2 = 420.0 heat_flux = 1000.0 # W/m² inlet_temperature = 293.15 outlet_pressure = 101325.0 length = 0.1 width = 0.001 height = 0.001 hydrogen_dict = { 'name': 'Hydrogen', 'fluid_components': {'H2': 'gas'}, 'inlet_composition': 1.0, 'temp_init': inlet_temperature, 'press_init': outlet_pressure, 'nodes': nodes } air_dict = { 'name': 'Air', 'fluid_components': {'O2': 'gas', 'N2': 'gas'}, 'inlet_composition': [0.21, 0.79], 'temp_init': inlet_temperature, 'press_init': outlet_pressure, 'nodes': nodes } water_dict = { 'name': 'Water', 'fluid_components': None, 'inlet_composition': None, 'liquid_props': species.ConstantProperties('Liquid', specific_heat=4000.0, density=1000.0, viscosity=1e-3, thermal_conductivity=0.6), 'temp_init': inlet_temperature, 'press_init': outlet_pressure, 'nodes': nodes } channel_dict = { 'name': 'Channel', 'length': length, 'cross_sectional_shape': 'rectangular', 'p_out': outlet_pressure, 'temp_in': inlet_temperature, 'flow_direction': 1, 'width': width, 'height': height, 'bend_number': 0, 'bend_friction_factor': 500, 'additional_friction_fractor': 0.01 } hydrogen = fluid.factory(hydrogen_dict) air = fluid.factory(air_dict) water = fluid.factory(water_dict) fluids = [hydrogen, air, water] channel_dicts = [copy.deepcopy(channel_dict) for i in range(3)] channels = [channel.Channel(channel_dicts[i], fluids[i]) for i in range(3)] error = 1e5 iter_max = 50 temp_old = np.asarray([channel.temperature for channel in channels]) mass_flows = [mass_flow_hydrogen, mass_flow_air, mass_flow_water] delta_temp = 30.0 for i in range(iter_max): if error < 1e-4: break error = 0.0 for j, channel in enumerate(channels): channel.update(mass_flow_in=mass_flows[j], heat_flux=heat_flux, wall_temp=wall_temp) mass_flows[j] = np.sum(channel.heat) \ / (np.average(channel.fluid.specific_heat) * delta_temp) error += np.sum(np.abs(((temp_old[j] - channel.temperature) / channel.temperature))) temp_old[j, :] = channel.temperature x = ip.interpolate_1d(channels[0].x) for channel in channels: plt.plot(x, channel.temp_ele, label='Fluid Temperature - ' + channel.fluid.name) plt.plot(x, channel.wall_temp, label='Wall Temperature - ' + channel.fluid.name) plt.xlabel('Channel Location [m]') plt.ylabel('Temperature [K]') plt.legend() plt.show() for channel in channels: plt.plot(x, channel.heat, label='Heat Transfer - ' + channel.fluid.name) plt.xlabel('Channel Location [m]') plt.ylabel('Heat [W]') plt.legend() plt.show() print('Pumping Power:') for i, channel in enumerate(channels): print(channel.fluid.name + ': ', np.average(channel.vol_flow) * (channel.pressure[channel.id_in] - channel.pressure[channel.id_out])) print('Mass Flows:') for i, channel in enumerate(channels): print(channel.fluid.name + ': ',
np.average(channel.mass_flow_total)
numpy.average
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import fsolve from numpy import cos, sin from scipy.optimize import minimize from scipy.optimize import Bounds from scipy.optimize import LinearConstraint class Rover(): def __init__(self,l1, l2, l3, l4, alpha, beta, gamma, wheel_rad = 0.4, body_len = None, body_wid = None): self.l1 = l1 self.l2 = l2 self.l3 = l3 self.l4 = l4 self.alpha = alpha self.beta = beta self.gamma = gamma self.wheel_rad = wheel_rad self.body_len = body_len self.body_wid = body_wid def set_terrain(self, terr): self.terrain = terr def set_inertias(self, mass, g): self.mass = mass self.g = g def z_center(self, x): if not hasattr(self, 'terrain'): print("No terrain specified") z_gnd = 0.0 grad = 0.0 else: z_gnd = self.terrain.heightAt(x) grad = self.terrain.gradient(x) z_center = z_gnd + self.wheel_rad * np.cos(np.arctan(grad)) return z_center def func_th2(self, th2, x2, z2): l3 = self.l3 l4 = self.l4 beta = self.beta z_center = self.z_center x3 = x2 + l3*np.cos(th2) + l4*np.cos(np.pi - beta - th2) z3_gnd = z_center(x3) z3_kin = z2 + l3*np.sin(th2) - l4*np.sin(np.pi - beta - th2) return z3_gnd - z3_kin def func_th1(self, th1, xb, zb): l1 = self.l1 l2 = self.l2 alpha = self.alpha z_center = self.z_center x1 = xb - l2*np.cos(np.pi - alpha - th1) - l1*np.cos(th1) z1_gnd = z_center(x1) z1_kin = zb + l2*np.sin(np.pi - alpha - th1) - l1*np.sin(th1) return z1_gnd - z1_kin def find_angles(self, x2): z2 = self.z_center(x2) th2_guess = np.deg2rad(50) # guess th2 = fsolve(self.func_th2, th2_guess, args=(x2, z2))[0] xb = x2 + self.l3*np.cos(th2) zb = z2 + self.l3*np.sin(th2) th1_guess = np.deg2rad(50) # guess th1 = fsolve(self.func_th1, th1_guess, args=(xb, zb))[0] return th1, th2 def find_geom(self, x2): l1 = self.l1 l2 = self.l2 l3 = self.l3 l4 = self.l4 alpha = self.alpha beta = self.beta th1, th2 = self.find_angles(x2) z2 = self.z_center(x2) xb = x2 + l3*np.cos(th2) zb = z2 + l3*
np.sin(th2)
numpy.sin
# -*- coding: utf-8 -*- """ Created on Fri Jan 16 11:42:57 2015 @author: jmilli """ import sys from sympy import Symbol, nsolve import math import numpy as np import matplotlib.pyplot as plt #from scipy import ndimage sys.path.append('/Users/jmilli/Dropbox/lib_py/image_utilities') import rotation_images as rot from numpy.linalg import eig, inv import matplotlib.pylab as plt def ellipse_points(a,b,R,precision=0.2*math.pi/180, step_R=0.1,plot=True): """ Function ellipse_points finds points on an ellipse equaly spaced Arguments: 1. a: semi-major axis of the ellipse 2. b: semi-minor axis of the ellipse 3. R: spacing between points Optional arguments: 4. precision: the precision in radians on spacing 5. step_R: the step in spacing between each iteration """ x = Symbol('x') y = Symbol('y') ellipse = (x/a)**2 + (y/b)**2 - 1 t_final=math.pi/2 iter_nb=0 continue_loop = True while continue_loop: iter_nb += 1 if iter_nb > 1: print('Iterations: {0:.0f}, deviation at final position {1:4.2f} degrees'.format(iter_nb-1,(t-t_final)*180/math.pi)) t=0 #math.pi/10 x_sol=[a*math.cos(t)] y_sol=[b*math.sin(t)] t_sol=[t] while t < t_final-precision: x0 = a*math.cos(t) y0 = b*math.sin(t) cercle = (x-x0)**2 + (y-y0)**2 -R**2 trynextguess=True nbguessiter=0 while (trynextguess and nbguessiter < 10): try: derivative= [-a*math.sin(t),b*math.cos(t)] direction = R/np.linalg.norm(derivative)*np.array(derivative) guess = np.array([x0,y0])+direction sol=nsolve((ellipse,cercle), (x, y), (guess[0],guess[1])) trynextguess=False except ValueError as e: nbguessiter += 1 print(e) print('Initial guess changed. We retry: {0:4.0f} iterations'.format( nbguessiter)) t+=math.atan(R/4/a) #print(sol) t = math.acos(float(sol[0])/a) t_sol.append(t) x_sol.append(a*math.cos(t)) y_sol.append(b*math.sin(t)) if math.fabs(t-t_final) < precision: continue_loop = False else: R-=step_R print('Number of iterations: {0:4.0f}'.format(iter_nb)) print('Deviation in degrees at final position = {0:4.2f}'.format( (t-t_final)*180/math.pi)) print('Spacing between points = {0:4.2f}'.format(R)) if plot: nb_points = 100 theta = np.arange(0,math.pi/2,math.pi/2/nb_points) x_ellipse = np.array([a*math.cos(i) for i in theta]) y_ellipse = np.array([b*math.sin(i) for i in theta]) plt.plot(x_sol,y_sol, 'ro') plt.plot(x_ellipse,y_ellipse) plt.plot([0,a],[0,0]) plt.plot([0,0],[0,b]) plt.axis([0,a, 0, b]) plt.axis('equal') # ajout plt.show() return t_sol def elliptical_mask(size,a,b,epsilon=2.,delta=2.,yc=None,xc=None,theta=0): """ Function ellitical_mask builds an elliptical mask. Two ellipses of semi major axis a-epsilon and a+espislon and of semi-minor axis b-delta and b+delta are built. The mask is 0 everywhere outside the 2 ellipses and 1 within the 2 ellipses. Arguments: 1. a: semi-major axis of the ellipse 2. b: semi-minor axis of the ellipse Optional arguments: 4. epsilon: 2*epsilon+1 is the difference between the inner and outer ellipse. By default it is 2px 5. delta: 2*epsilon+1 is the difference between the inner and outer ellipse. By default it is 2px 6.yc: the center of the ellipse in y. By default, size/2 7.xc: the center of the ellipse in x. By default, size/2 8. theta: the position angle of the semi-major axis of the ellipse, measured anti-clockwise from the horizontal Output id_inner: indices of the pixels nested within the 2 ellipse """ x1 = np.arange(0,size) y1 = np.arange(0,size) x,y = np.meshgrid(y1,x1) if yc == None: yc = size/2 if xc == None: xc = size/2 ellipse_ext = (x-xc)**2/(a+delta)**2+(y-yc)**2/(b+epsilon)**2-1 ellipse_int = (x-xc)**2/(a-delta)**2+(y-yc)**2/(b-epsilon)**2-1 if theta != 0: ellipse_ext = rot.frame_rotate(ellipse_ext,-theta) ellipse_int = rot.frame_rotate(ellipse_int,-theta) id_inner_ellipse = np.where((ellipse_ext < 0) * (ellipse_int > 0)) return id_inner_ellipse def elliptical_mask_advanced(size,a1,b1,a2,b2,xc1=None,yc1=None,yc2=None, xc2=None,theta1=0,theta2=0): """ Function ellitical_mask builds an elliptical mask. Two ellipses of semi major axis a1 and a2 and of semi-minor axis b1 and b2 are built. The mask is 0 everywhere outside the 2 ellipses and 1 within the 2 ellipses. Arguments: 1. size: the size of the image 2. a1: semi-major axis of the inner ellipse 3. b1: semi-minor axis of the inner ellipse 4. a2: semi-major axis of the outer ellipse 5. b2: semi-minor axis of the outer ellipse Optional arguments: 6.yc1: the x center of the ellipse in y. By default, size/2 7.xc1: the y center of the ellipse in x. By default, size/2 8. theta1: the position angle of the semi-major axis of the inner ellipse, measured anti-clockwise from the horizontal Output id_inner: indices of the pixels nested within the 2 ellipse """ x1 = np.arange(0,size) y1 = np.arange(0,size) x,y = np.meshgrid(y1,x1) if yc1 == None: yc1 = size/2 if xc1 == None: xc1 = size/2 if yc2 == None: yc2 = size/2 if xc2 == None: xc2 = size/2 ellipse_int = (x-xc1)**2/a1**2+(y-yc1)**2/b1**2-1 ellipse_ext = (x-xc2)**2/a2**2+(y-yc2)**2/b2**2-1 if theta1 != 0: ellipse_int = rot.frame_rotate(ellipse_int,-theta1) if theta2 != 0: ellipse_ext = rot.frame_rotate(ellipse_ext,-theta2) id_inner_ellipse = np.where((ellipse_ext < 0) * (ellipse_int > 0)) id_outer_ellipse = np.where((ellipse_ext > 0) + (ellipse_int < 0)) return id_inner_ellipse,id_outer_ellipse def ellipse_polynomial_coeff(a,b,x0,y0,pa): """ This function returns the polynomial coefficient of an ellipse which is parametrized through a semi-major axis a, a semi-minor axis b, an offset (x0,y0) and a position angle pa measured from North counter-clockwise. The output is an array called coeff such that the ellipse equation is coeff[0]*x**2 + coeff[1]*x*y + coeff[2]*y**2 + coeff[3]*x + coeff[4]*y + coeff[5] = 0 with coeff[5]=1 """ trigo_pa=-pa-math.pi/2 cosa=np.cos(trigo_pa) sina=np.sin(trigo_pa) coeff=np.zeros(6) coeff[0]=a**2*cosa**2+b**2*sina**2 coeff[1]=2*cosa*sina*(b**2-a**2) coeff[2]=a**2*sina**2+b**2*cosa**2 coeff[3]=a**2*(-2*cosa**2*x0+2*cosa*sina*y0)+b**2*(-2*cosa*sina*y0 - 2*sina**2*x0) coeff[4]=a**2*(2*cosa*sina*x0 - 2*sina**2*y0)+b**2*(- 2*cosa**2*y0 - 2*cosa*sina*x0) coeff[5]=-a**2*b**2+a**2*(cosa**2*x0**2 - 2*cosa*sina*x0*y0 + sina**2*y0**2)+b**2*(cosa**2*y0**2+sina**2*x0**2+ 2*cosa*sina*x0*y0) return coeff/coeff[5] ############################################################################### ############################################################################### ## Algebraic solution for an ellipse fitting ## from http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html ############################################################################### ############################################################################### def fitEllipse(x,y): """ This function minimizes a[0]*x**2 + a[1]*x*y + a[2]*y**2 + a[3]*x + a[4]*y + a[5] for a set of points (x,y) and returns the coefficients. """ x = x[:,np.newaxis] y = y[:,np.newaxis] D = np.hstack((x*x, x*y, y*y, x, y, np.ones_like(x))) S = np.dot(D.T,D) C = np.zeros([6,6]) C[0,2] = C[2,0] = 2; C[1,1] = -1 E, V = eig(np.dot(inv(S), C)) n = np.argmax(np.abs(E)) a = V[:,n] return a def ellipse_center(coeff): """ This function converts a set of 6 polynomial coefficients defined as coeff[0]*x**2 + coeff[1]*x*y + coeff[2]*y**2 + coeff[3]*x + coeff[4]*y + coeff[5] to the ellipse parameters in a new frame aligned with the axis of the ellipse. It returns the offset of the ellipse center in this new frame. Adapted from http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html """ a,b,c,d,f,g = coeff[0], coeff[1]/2., coeff[2], coeff[3]/2., coeff[4]/2., coeff[5] delta = b*b-a*c if delta ==0: print('Warning the ellipse is degenerate: delta=0 (single point)') x0=(c*d-b*f)/delta y0=(a*f-b*d)/delta return np.array([x0,y0]) def ellipse_angle_of_rotation(coeff): """ This function converts a set of 6 polynomial coefficients defined as coeff[0]*x**2 + coeff[1]*x*y + coeff[2]*y**2 + coeff[3]*x + coeff[4]*y + coeff[5] to the ellipse parameters in a new frame aligned with the axis of the ellipse. It returns the position angle of the ellipse. Adapted from http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html """ a,b,c,d,f,g = coeff[0] , coeff[1]/2, coeff[2], coeff[3]/2, coeff[4]/2, coeff[5] if (a == c): print('Warning: the ellipse is degenerate to a circle, position angle set to 0 by default') return 0 return 0.5*np.arctan(2*b/(a-c)) #def ellipse_axis_length( a ): # b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0] # up = 2*(a*f*f+c*d*d+g*b*b-2*b*d*f-a*c*g) # down1=(b*b-a*c)*( (c-a)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a)) # down2=(b*b-a*c)*( (a-c)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a)) # res1=np.sqrt(up/down1) # res2=np.sqrt(up/down2) # return np.array([res1, res2]) def ellipse_axis_length(coeff): """ This function converts a set of 6 polynomial coefficients defined as coeff[0]*x**2 + coeff[1]*x*y + coeff[2]*y**2 + coeff[3]*x + coeff[4]*y + coeff[5] to the ellipse parameters in a new frame aligned with the axis of the ellipse. It returns the semi-major and semi-minor axis of the ellipse. Adapted from http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html """ a,b,c,d,f,g = coeff[0] , coeff[1]/2, coeff[2], coeff[3]/2, coeff[4]/2, coeff[5] up = 2*(a*f**2+c*d**2+g*b**2-2*b*d*f-a*c*g) # print((a-c)*(a-c)) down1=(b**2-a*c)*( np.sqrt((a-c)**2+4*b**2)-(a+c)) down2=(b**2-a*c)*(-np.sqrt((a-c)**2+4*b**2)-(a+c)) # print(down1,down2) res1=np.sqrt(up/down1) res2=np.sqrt(up/down2) return np.array([res1, res2]) ############################################################################### ############################################################################### ## Least square fit ############################################################################### ############################################################################### def chi2(param_model, theta, rho, rho_error): """ This functions defines a chi squared between measurements given as (theta,rho) and an ellipse parametrized in the sky plabe by param_model=x0, y0, a, b, alpha The error of each point is defined as the distance between the point of the ellipse at the same theta and rho. """ x0, y0, a, b, alpha = param_model x = rho*np.cos(theta) y = rho*np.sin(theta) distance_data_to_ell_center = np.sqrt((x-x0)**2+(y-y0)**2) p=(y0-y)/(x0-x) phi = np.arctan(a/b*(p*np.cos(alpha)-np.sin(alpha))/(p*np.sin(alpha)+np.cos(alpha))) distance_ell_to_ell_center = np.sqrt( a**2*np.cos(phi)**2+b**2*np.sin(phi)**2) sigma2 = rho_error**2 return np.sum((distance_data_to_ell_center-distance_ell_to_ell_center)**2/sigma2) def chi2_from_deprojected_ellipse(orbital_param_model, theta, rho, rho_error): """ This functions defines a chi squared between measurements given as (theta,rho) and an ellipse parametrized in the orbital plane by (a,e,itilt,omega,Omega). the angles must be expressed in radians. The error of each point is defined as the distance between the point of the ellipse at the same theta and rho. """ # a,e,itilt,omega,Omega=orbital_param_model a,b,x0,y0,alpha=projected_param_from_ellipse_param(*orbital_param_model[0:6],verbose=False) skyplane_param_model=x0,y0,a,b,alpha return chi2(skyplane_param_model, theta, rho, rho_error) ############################################################################### ############################################################################### ## Deprojection of the ellipse ############################################################################### ############################################################################### def deprojection_from_poly_coeff(coeff,verbose=True): """ This function takes in input the ellipse polynomial values a such as coeff[0]*x**2 + coeff[1]*x*y + coeff[2]*y**2 + coeff[3]*x + coeff[4]*y + coeff[5] and return the deprojected parameters of the ellipse : omega = argument of pericenter Omega = longitude of ascending node a = semi-major axis e = eccentricity """ # This nomenclature is from Smart 1930 A=coeff[0]/coeff[5] H=coeff[1]/2./coeff[5] B=coeff[2]/coeff[5] G=coeff[3]/2./coeff[5] F=coeff[4]/2./coeff[5] tan2Omega=(2*(H-F*G))/(F**2-G**2+A-B) # print(' tan(2Omega)={0:5.2f}'.format(tan2Omega)) Omega=(np.arctan(tan2Omega))/2 tan2ioverp2=2*(H-F*G)/np.sin(2*Omega) if tan2ioverp2 < 0: Omega=(np.arctan(tan2Omega)+math.pi)/2 tan2ioverp2=2*(H-F*G)/np.sin(2*Omega) if verbose: print('Warning: increase Omega by pi/2 to avoid inconsistency') p=np.sqrt(2/(F**2+G**2-A-B-tan2ioverp2)) itilt=np.arctan(p*np.sqrt(tan2ioverp2)) denom_tanomega=G*np.cos(Omega)+F*np.sin(Omega) # print(' denom tan(omega)={0:5.2f}'.format(denom_tanomega)) if denom_tanomega != 0: omega=np.arctan((F*np.cos(Omega)-G*np.sin(Omega))*np.cos(itilt)/(G*np.cos(Omega)+F*np.sin(Omega))) else: omega=0 e=-p/np.cos(omega)*(G*np.cos(Omega)+F*np.sin(Omega)) true_a=p/(1-e**2) if verbose: a,b=ellipse_axis_length(coeff) itilt_before=np.arccos(np.min([a,b])/np.max([a,b])) pa=ellipse_angle_of_rotation(coeff) x0,y0=ellipse_center(coeff) offset_distance=np.sqrt(x0**2+y0**2) omega_before=np.arctan(y0/x0) #+270 e_before=offset_distance/(b) print('Parameters of the ellipse before deprojection') print(' a={0:5.2f}'.format(np.max([a,b]))) print(' e={0:5.3f}'.format(e_before)) print(' offset={0:5.2f}'.format(offset_distance)) print(' direction of offset={0:5.2f} deg (from W ccw)'.format(np.rad2deg(omega_before))) print(' Omega={0:5.2f} deg'.format(np.rad2deg(pa))) print(' i={0:5.2f} deg'.format(np.rad2deg(itilt_before))) print('Parameters of the ellipse after deprojection') print(' a={0:5.2f}'.format(true_a)) print(' e={0:5.3f}'.format(e)) print(' p={0:5.3f}'.format(p)) print(' omega={0:5.2f} deg'.format(np.rad2deg(omega))) print(' Omega={0:5.2f} deg'.format(np.rad2deg(Omega))) print(' i={0:5.2f} deg'.format(np.rad2deg(itilt))) return [true_a, e, omega, Omega,itilt] def deprojection_from_ellipse_param(a,b,x0,y0,pa,verbose=True): """ This function takes in input the ellipse parameters param=a,b,x0,y0,pa (in radian) and returns the deprojected parameters of the ellipse : a = semi-major axis e = eccentricity omega = argument of pericenter in radian Omega = longitude of ascending node in radian i = inclination in radian """ coeff=ellipse_polynomial_coeff(a,b,x0,y0,pa) print(coeff) return deprojection_from_poly_coeff(coeff,verbose=verbose) #coeff = projected_coeff_from_ellipse_param(a,e,i,omega,Omega) def projected_coeff_from_ellipse_param(a,e,i,omega,Omega): """ This function takes in input true orbital parameters of an ellipse (a,e,i, omega,Omega), the angles being in radians, and projects them on the plane of the sky. It returns the polynomial coefficent of the ellipse in the plane of the sky (notation from Smart 1930) defined as coeff[0]*x**2 + coeff[1]*x*y + coeff[2]*y**2 + coeff[3]*x + coeff[4]*y + coeff[5] """ n3 = np.cos(i) cosomega=
np.cos(omega)
numpy.cos
import datetime import numpy as np import matplotlib.pyplot as plt from numpy.lib.function_base import append import sympy as sp from multiprocessing import Pool import os import cppsolver as cs from tqdm import tqdm from ..filter import Magnet_UKF, Magnet_KF from ..solver import Solver, Solver_jac class Simu_Data: def __init__(self, gt, snr, result): self.gt = gt self.snr = snr self.result = result def __len__(self): return self.gt.shape[0] def store(self): np.savez('result/test.npz', gt=self.gt, data=self.result) class expression: def __init__(self, mag_count=1): if mag_count == 1: x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs = sp.symbols( 'x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) vecR = sp.Matrix([xs - x, ys - y, zs - z]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0]**2 + vecR[1]**2 + vecR[2]**2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecM = 1e-7 * sp.exp(M) * sp.Matrix([ sp.sin(theta) * sp.cos(phy), sp.sin(theta) * sp.sin(phy), sp.cos(theta) ]) VecB = 3 * vecR * (VecM.T * vecR) / dis**5 - VecM / dis**3 + G VecB *= 1e6 # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x, y, z, M, theta, phy], VecB, 'numpy') elif mag_count == 2: x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1, gx, gy, gz, xs, ys, zs = sp.symbols( 'x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) x = [x0, x1] y = [y0, y1] z = [z0, z1] M = [M0, M1] theta = [theta0, theta1] phy = [phy0, phy1] VecB = G for i in range(mag_count): vecR = sp.Matrix( [xs - x[i], ys - y[i], zs - z[i]]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0] ** 2 + vecR[1] ** 2 + vecR[2] ** 2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecMi = 1e-7 * sp.exp(M[i]) * sp.Matrix([sp.sin(theta[i]) * sp.cos( phy[i]), sp.sin(theta[i]) * sp.sin(phy[i]), sp.cos(theta[i])]) VecBi = 3 * vecR * (VecMi.T * vecR) / \ dis ** 5 - VecMi / dis ** 3 VecB += VecBi VecB = 1e6 * VecB # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1], VecB, 'numpy') class Result_Handler: def __init__(self, simu_data, scale): self.track_result = [] self.simu_data = simu_data self.scale = scale def __add__(self, new): self.track_result.append(new) return self def get_gt_result(self): a = self.simu_data.gt b = [] for i in range(len(self.track_result)): b.append(np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ])) b = np.stack(b) return [a, b] def cal_loss(self): dist = [] loss = [] for i in range(len(self.simu_data)): point_gt = self.simu_data.gt[i] point_estimate = np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ]) dist.append(np.linalg.norm(point_gt, 2)) loss.append(np.linalg.norm(point_gt - point_estimate, 2)) dist = 1e2 * np.array(dist) loss = 1e2 * np.array(loss) return [self.scale, dist, loss] def gt_and_route(self): dist = [] route = [] for i in range(len(self.simu_data)): point_gt = self.simu_data.gt[i] dist.append(np.linalg.norm(point_gt, 2)) route.append(np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ])) dist = np.array(dist) route = np.stack(route, axis=0) idx = np.argsort(dist) gt = self.simu_data.gt[idx] route = route[idx] return [gt, route] # plt.plot(dist, loss, label='scale = {}'.format(self.scale)) # plt.legend() # print('debug') class Simu_Test: def __init__(self, start, stop, scales, pSensor=None, resolution=100): self.scales = scales self.M = 2.7 self.build_route(start, stop, resolution) if pSensor is None: self.build_psensor() else: self.pSensor = pSensor # self.build_expression() self.params = { 'm': np.log(self.M), 'theta': 0, 'phy': 0, 'gx': 50 / np.sqrt(2) * 1e-6, 'gy': 50 / np.sqrt(2) * 1e-6, 'gz': 0, } def build_expression(self): x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs = sp.symbols( 'x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) vecR = sp.Matrix([xs - x, ys - y, zs - z]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0]**2 + vecR[1]**2 + vecR[2]**2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecM = 1e-7 * sp.exp(M) * sp.Matrix([ sp.sin(theta) * sp.cos(phy), sp.sin(theta) * sp.sin(phy), sp.cos(theta) ]) VecB = 3 * vecR * (VecM.T * vecR) / dis**5 - VecM / dis**3 + G VecB *= 1e6 # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x, y, z, M, theta, phy], VecB, 'numpy') def build_route(self, start, stop, resolution): # linear route theta = 90 / 180.0 * np.pi route = np.linspace(start, stop, resolution) route = np.stack([route * np.cos(theta), route * np.sin(theta)]).T route = np.pad(route, ((0, 0), (1, 0)), mode='constant', constant_values=0) self.route = 1e-2 * route # curvy route tmp = np.linspace(start, stop, resolution) route = np.stack([np.sin((tmp-start)/(stop-start) * np.pi * 5), np.cos((tmp-start)/(stop-start) * np.pi * 5), tmp], axis=0).T self.route = 1e-2 * route def build_psensor(self): self.pSensor = 1e-2 * np.array([ [1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1], ]) def simulate_process(self, scale): print(scale) pSensori = scale * self.pSensor simu = self.estimate_B(pSensori) simu.store() model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result return results.cal_loss() def gt_and_result(self): pSensori = 1 * self.pSensor simu = self.estimate_B(pSensori) simu.store() model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, 1) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result return results.get_gt_result() def compare_noise_thread(self, choice): scale = 5 pSensori = scale * self.pSensor if choice == 1: simu = self.estimate_B(pSensori) elif choice == 0: simu = self.estimate_B_even_noise(pSensori) elif choice == 2: simu = self.estimate_B_singular_noise(pSensori) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [choice, dist, loss] def compare_3_noise(self, loop): results = [] pool = Pool() for i in range(loop): # self.calculate_process(scale) results.append( pool.apply_async(self.compare_noise_thread, args=(0, ))) results.append( pool.apply_async(self.compare_noise_thread, args=(1, ))) results.append( pool.apply_async(self.compare_noise_thread, args=(2, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['Even Noise', 'Raw Noise', 'Single Noise'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') plt.savefig('result/butterfly.jpg', dpi=900) def compare_noise_type(self, loop): results = [] pool = Pool() for i in range(loop): # self.calculate_process(scale) results.append( pool.apply_async(self.compare_noise_type_thread, args=(0, ))) results.append( pool.apply_async(self.compare_noise_type_thread, args=(1, ))) results.append( pool.apply_async(self.compare_noise_type_thread, args=(2, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['ALL Noise', 'Only Noise', 'Only Precision'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') plt.savefig('result/compare_noise_type.jpg', dpi=900) def compare_noise_type_thread(self, choice): scale = 5 pSensori = scale * self.pSensor simu = self.estimate_B(pSensori, choice) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [choice, dist, loss] def simulate(self, loop=1): results = [] pool = Pool() for scale in self.scales: # self.calculate_process(scale) # test(self, scale) for i in range(loop): # self.simulate_process(scale) results.append( pool.apply_async(self.simulate_process, args=(scale, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label='scale = {} cm'.format(int(key) * 2)) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') plt.savefig('result/compare_scale/{}.jpg'.format(name), dpi=900) def simu_readings(self, pSensor): simu = self.estimate_B(pSensor, noise_type=3) simu.store() def simu_gt_and_result(self, pSensor, route, path, name): pSensori = pSensor simu = self.estimate_B(pSensori, route=route) # simu.store() # params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( # self.M), 1e-2 * route[0, 0], 1e-2 * (route[0, 1]), 1e-2 * (route[0, # 2]), 0, 0]) model = Solver_jac(1, route[0, 0], route[0, 1], route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False gt_ang = [] rec_ang = [] results = Result_Handler(simu, 1) for i in tqdm(range(simu.result.shape[0])): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result gt_ang.append(np.array([0, 0, 1])) t1 = result['theta0'].value t2 = result['phy0'].value rec_ang.append( np.array( [np.sin(t1) * np.cos(t2), np.sin(t1) * np.sin(t2), np.cos(t1)])) [gt, route] = results.gt_and_route() gt_ang = np.stack(gt_ang) rec_ang = np.stack(rec_ang) if not os.path.exists(path): os.makedirs(path) np.savez(os.path.join(path, name), gt=gt * 1e2, result=route * 1e2, gt_ang=gt_ang, result_ang=rec_ang) def compare_layout_thread(self, index, pSensori): overall_noise = np.random.randn(3) simu = self.estimate_B(pSensori) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, 1) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [index, dist, loss] def compare_layouts(self, pSensors, loop=1): results = [] pool = Pool() for index, pSensor in enumerate(pSensors): # self.calculate_process(scale) # test(self, scale) for i in range(loop): # self.calculate_process(scale) # self.compare_layout_thread(index, pSensor) results.append( pool.apply_async(self.compare_layout_thread, args=(index, pSensor))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss # msg = ['Plane Layout(MIT)', 'Our Current Layout', 'Cube Layout'] msg = ['Best Layout', 'Current Layout'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # plt.savefig('result/compare_layout/{}.jpg'.format(name), dpi=900) plt.show() def estimate_B( self, pSensor, route=None, noise_type=0, overall_noise=None): # noise type: 0: noise+precision, 1:only noise, 2: only precision # 3:none result = [] exp = expression() if route is None: route = self.route for i in range(route.shape[0]): routei = route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = 0.8 * np.random.randn(result.shape[0]) Noise_y = 0.8 * np.random.randn(result.shape[0]) Noise_z = 1.2 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T if noise_type != 3: if noise_type != 2: result += Noise if overall_noise is not None: result += overall_noise # add sensor resolution if noise_type != 1: result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(np.power(result - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) result = result.reshape(-1, pSensor.size) SNR = SNR.reshape(-1, pSensor.shape[0]) # print('Debug') return Simu_Data(route, SNR, result) def estimate_B_even_noise(self, pSensor): result = [] exp = expression() for i in range(self.route.shape[0]): routei = self.route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = np.sqrt(2) / 2 * np.random.randn(result.shape[0]) Noise_y = np.sqrt(2) / 2 * np.random.randn(result.shape[0]) Noise_z = np.sqrt(2) / 2 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T result += Noise # add sensor resolution result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(np.power(result - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) result = result.reshape(-1, pSensor.size) SNR = SNR.reshape(-1, pSensor.shape[0]) # print('Debug') return Simu_Data(self.route, SNR, result) def compare_method_thread(self, choice): pSensori = 5 * self.pSensor simu = self.estimate_B(pSensori) if choice == 0: model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result if choice == 1: sensor_count = pSensori.shape[0] my_filter = Magnet_UKF( 1, pSensori, R_std=[0.8, 0.8, 1.5] * sensor_count) my_filter.lm_model.fit_params['m0'].value = np.log(self.M) my_filter.lm_model.fit_params['m0'].vary = False my_filter.lm_model.fit_params['X0'].value = self.route[0, 0] my_filter.lm_model.fit_params['Y0'].value = self.route[0, 1] my_filter.lm_model.fit_params['Z0'].value = self.route[0, 2] my_filter.ukf.x[0] = self.params['gx'] my_filter.ukf.x[1] = self.params['gy'] my_filter.ukf.x[2] = self.params['gz'] my_filter.kf.x[0] = self.params['gx'] my_filter.kf.x[1] = self.params['gy'] my_filter.kf.x[2] = self.params['gz'] my_filter.kf.x[3] = self.route[0, 0] my_filter.ukf.x[3] = self.route[0, 0] my_filter.kf.x[5] = self.route[0, 1] my_filter.ukf.x[5] = self.route[0, 1] my_filter.kf.x[7] = self.route[0, 2] my_filter.ukf.x[7] = self.route[0, 2] my_filter.kf.x[9] = self.params['theta'] my_filter.ukf.x[9] = self.params['theta'] my_filter.kf.x[11] = self.params['phy'] my_filter.ukf.x[11] = self.params['phy'] results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): my_filter.predict() datai = simu.result[i].reshape(-1) result = my_filter.update(datai) results += result if choice == 2: # simple kf sensor_count = pSensori.shape[0] my_filter = Magnet_KF(1, pSensori, R_std=[ 0.8, 0.8, 1.5] * sensor_count) my_filter.lm_model.fit_params['m0'].value = np.log(self.M) my_filter.lm_model.fit_params['m0'].vary = False my_filter.lm_model.fit_params['X0'].value = self.route[0, 0] my_filter.lm_model.fit_params['Y0'].value = self.route[0, 1] my_filter.lm_model.fit_params['Z0'].value = self.route[0, 2] my_filter.kf.x[0] = self.params['gx'] my_filter.kf.x[1] = self.params['gy'] my_filter.kf.x[2] = self.params['gz'] my_filter.kf.x[3] = self.route[0, 0] my_filter.kf.x[5] = self.route[0, 1] my_filter.kf.x[7] = self.route[0, 2] my_filter.kf.x[9] = self.params['theta'] my_filter.kf.x[11] = self.params['phy'] results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): my_filter.predict() datai = simu.result[i].reshape(-1, 3) result = my_filter.update(datai) results += result if choice == 3: # simple kf sensor_count = pSensori.shape[0] my_filter = Magnet_KF( 1, pSensori, R_std=[0.8, 0.8, 1.5] * sensor_count, ord=3) my_filter.lm_model.fit_params['m0'].value = np.log(self.M) my_filter.lm_model.fit_params['m0'].vary = False my_filter.lm_model.fit_params['X0'].value = self.route[0, 0] my_filter.lm_model.fit_params['Y0'].value = self.route[0, 1] my_filter.lm_model.fit_params['Z0'].value = self.route[0, 2] my_filter.kf.x[0] = self.params['gx'] my_filter.kf.x[1] = self.params['gy'] my_filter.kf.x[2] = self.params['gz'] my_filter.kf.x[3] = self.route[0, 0] my_filter.kf.x[6] = self.route[0, 1] my_filter.kf.x[9] = self.route[0, 2] my_filter.kf.x[12] = self.params['theta'] my_filter.kf.x[15] = self.params['phy'] results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): my_filter.predict() datai = simu.result[i].reshape(-1, 3) result = my_filter.update(datai) results += result return results.cal_loss() def compare_method(self, loop): results = [] pool = Pool() for i in range(loop): # self.compare_method_thread(1) results.append( pool.apply_async(self.compare_method_thread, args=(0, ))) results.append( pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(3, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['LM', 'MY UKF', "KF on LM results", "KF on LM results ord=3"] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') plt.savefig('result/compare_method/{}.jpg'.format(name), dpi=600) def compare_softiron(self, loop): results = [] pool = Pool() for i in range(loop): # self.compare_method_thread(1) results.append( pool.apply_async(self.compare_softiron_thread, args=(0, ))) results.append( pool.apply_async(self.compare_softiron_thread, args=(1, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(3, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['origin', 'Add softiron', ] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') root = 'result/compare_softiron' if not os.path.exists(root): os.makedirs(root) plt.savefig(os.path.join(root, '{}.jpg'.format(name)), dpi=600) def compare_softiron_thread(self, choice): pSensori = 5 * self.pSensor simu = self.estimate_B(pSensori) if choice == 0: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} if choice == 1: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) soft_iron_param = 0.05 * np.random.randn( simu.result.size//simu.result.shape[0])+1 for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1) datai *= soft_iron_param result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} return results.cal_loss() def compare_hardiron(self, loop): results = [] pool = Pool() for i in range(loop): # self.compare_method_thread(1) results.append( pool.apply_async(self.compare_hardiron_thread, args=(0, ))) results.append( pool.apply_async(self.compare_hardiron_thread, args=(1, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(3, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['origin', 'Add hardiron', ] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') root = 'result/compare_hardiron' if not os.path.exists(root): os.makedirs(root) plt.savefig(os.path.join(root, '{}.jpg'.format(name)), dpi=600) def compare_hardiron_thread(self, choice): pSensori = 5 * self.pSensor simu = self.estimate_B(pSensori, noise_type=0) if choice == 0: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} if choice == 1: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) soft_iron_param = 5.0 * np.random.randn( simu.result.size//simu.result.shape[0])+1 for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1) datai += soft_iron_param result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} return results.cal_loss() def estimate_B_singular_noise(self, pSensor): result = [] exp = expression() for i in range(self.route.shape[0]): routei = self.route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = np.sqrt(1.5) * np.random.randn(result.shape[0]) Noise_y = 0 * np.random.randn(result.shape[0]) Noise_z = 0 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T result += Noise # add sensor resolution result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(np.power(result - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) result = result.reshape(-1, pSensor.size) SNR = SNR.reshape(-1, pSensor.shape[0]) # print('Debug') return Simu_Data(self.route, SNR, result) def simulate_2mag_3type_thread(pSensor, params, typ, i): tmp = [] for j in range(pSensor.shape[0]): param = [ params['gx'], params['gy'], params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], params['X0'], params['Y0'], params['Z0'], params['m'], params['theta0'], params['phy0'], params['X1'], params['Y1'], params['Z1'], params['m'], params['theta1'], params['phy1'], ] tmp.append(simulate_2mag_3type.exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0) tmp = tmp.reshape(-1) print(i, ' finished ') return [tmp, typ] def simulate_2mag_3type_delta_thread(pSensor, params, typ, i): tmp = [] for j in range(pSensor.shape[0]): param = [ params['gx'], params['gy'], params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], params['X0'], params['Y0'], params['Z0'], params['m'], params['theta0'], params['phy0'], params['X1'], params['Y1'], params['Z1'], params['m'], params['theta1'], params['phy1'], ] # the result after a short period of time r = 1 * 1e-2 * np.random.rand() theta = np.random.rand() * np.pi phy = np.random.rand() * 2 * np.pi dx0 = r * np.sin(theta) * np.cos(phy) dy0 = r * np.sin(theta) * np.sin(phy) dz0 = r * np.cos(theta) r = 1 * 1e-2 * np.random.rand() theta = np.random.rand() * np.pi phy = np.random.rand() * 2 * np.pi dx1 = r * np.sin(theta) * np.cos(phy) dy1 = r * np.sin(theta) * np.sin(phy) dz1 = r * np.cos(theta) param2 = [ params['gx'], params['gy'], params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], params['X0'] + dx0, params['Y0'] + dy0, params['Z0'] + dz0, params['m'], params['theta0'], params['phy0'], params['X1'] + dx1, params['Y1'] + dy1, params['Z1'] + dz1, params['m'], params['theta1'], params['phy1'], ] aaa = np.concatenate( [simulate_2mag_3type.exp.VecB(*param).squeeze(), simulate_2mag_3type.exp.VecB(*param2).squeeze() - simulate_2mag_3type.exp.VecB(*param).squeeze()], axis=0) tmp.append(aaa) print(aaa.shape) tmp = np.concatenate(tmp, axis=0) tmp = tmp.reshape(-1) print(i, ' finished ') return [tmp, typ] def simulate_2mag_3type(pSensor, size=1000, cls=3, edge=20): size = int(size) results = [] types = [] simulate_2mag_3type.exp = expression(2) pool = Pool() pool_results = [] i = 0 # for i in range(size * cls): while(i < size * cls): # G's Spherical Coordinates t1 = np.pi * np.random.rand() t2 = 2 * np.pi * np.random.rand() # P1's Spherical Coordinates tt1 = np.pi *
np.random.rand()
numpy.random.rand
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.interpolate from scipy.spatial import distance from scipy import ndimage from PIL import Image, ImageDraw from skimage import measure from skimage import morphology from matplotlib.colors import LinearSegmentedColormap import time, sys import numba import matplotlib.colors as mcolors import matplotlib.gridspec as gridspec def update_progress(progress): """progress bar from https://stackoverflow.com/questions/3160699/python-progress-bar update_progress() : Displays or updates a console progress bar Accepts a float between 0 and 1. Any int will be converted to a float. A value under 0 represents a 'halt'. A value at 1 or bigger represents 100%""" barLength = 20 # Modify this to change the length of the progress bar status = "" if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 status = "error: progress var must be float\r\n" if progress < 0: progress = 0 status = "Halt...\r\n" if progress >= 1: progress = 1 status = "Done...\r\n" block = int(round(barLength*progress)) text = "\rPercent: [{0}] {1}% {2}".format( "#"*block + "-"*(barLength-block), progress*100, status) sys.stdout.write(text) sys.stdout.flush() class Channel: """class for Channel objects""" def __init__(self,x,y,z,W,D): """initialize Channel object x, y, z - coordinates of centerline W - channel width D - channel depth""" self.x = x self.y = y self.z = z self.W = W self.D = D class Cutoff: """class for Cutoff objects""" def __init__(self,x,y,z,W,D): """initialize Cutoff object x, y, z - coordinates of centerline W - channel width D - channel depth""" self.x = x self.y = y self.z = z self.W = W self.D = D class ChannelBelt3D: """class for 3D models of channel belts""" def __init__(self, model_type, topo, strat, facies, facies_code, dx, channels): """model_type - can be either 'fluvial' or 'submarine' topo - set of topographic surfaces (3D numpy array) strat - set of stratigraphic surfaces (3D numpy array) facies - facies volume (3D numpy array) facies_code - dictionary of facies codes, e.g. {0:'oxbow', 1:'point bar', 2:'levee'} dx - gridcell size (m) channels - list of channel objects that form 3D model""" self.model_type = model_type self.topo = topo self.strat = strat self.facies = facies self.facies_code = facies_code self.dx = dx self.channels = channels def plot_xsection(self, xsec, colors, ve): """method for plotting a cross section through a 3D model; also plots map of basal erosional surface and map of final geomorphic surface xsec - location of cross section along the x-axis (in pixel/ voxel coordinates) colors - list of RGB values that define the colors for different facies ve - vertical exaggeration""" strat = self.strat dx = self.dx fig1 = plt.figure(figsize=(20,5)) ax1 = fig1.add_subplot(111) r,c,ts = np.shape(strat) Xv = dx * np.arange(0,r) for xloc in range(xsec,xsec+1,1): for i in range(0,ts-1,3): X1 = np.concatenate((Xv, Xv[::-1])) Y1 = np.concatenate((strat[:,xloc,i], strat[::-1,xloc,i+1])) Y2 = np.concatenate((strat[:,xloc,i+1], strat[::-1,xloc,i+2])) Y3 = np.concatenate((strat[:,xloc,i+2], strat[::-1,xloc,i+3])) if self.model_type == 'submarine': ax1.fill(X1, Y1, facecolor=colors[2], linewidth=0.5, edgecolor=[0,0,0]) # oxbow mud ax1.fill(X1, Y2, facecolor=colors[0], linewidth=0.5, edgecolor=[0,0,0]) # point bar sand ax1.fill(X1, Y3, facecolor=colors[1], linewidth=0.5) # levee mud if self.model_type == 'fluvial': ax1.fill(X1, Y1, facecolor=colors[0], linewidth=0.5, edgecolor=[0,0,0]) # levee mud ax1.fill(X1, Y2, facecolor=colors[1], linewidth=0.5, edgecolor=[0,0,0]) # oxbow mud ax1.fill(X1, Y3, facecolor=colors[2], linewidth=0.5) # channel sand ax1.set_xlim(0,dx*(r-1)) ax1.set_aspect(ve, adjustable='datalim') fig2 = plt.figure() ax2 = fig2.add_subplot(111) ax2.contourf(strat[:,:,ts-1],100,cmap='viridis') ax2.contour(strat[:,:,ts-1],100,colors='k',linestyles='solid',linewidths=0.1,alpha=0.4) ax2.plot([xloc, xloc],[0,r],'k',linewidth=2) ax2.axis([0,c,0,r]) ax2.set_aspect('equal', adjustable='box') ax2.set_title('final geomorphic surface') ax2.tick_params(bottom=False,top=False,left=False,right=False,labelbottom=False,labelleft=False) fig3 = plt.figure() ax3 = fig3.add_subplot(111) ax3.contourf(strat[:,:,0],100,cmap='viridis') ax3.contour(strat[:,:,0],100,colors='k',linestyles='solid',linewidths=0.1,alpha=0.4) ax3.plot([xloc, xloc],[0,r],'k',linewidth=2) ax3.axis([0,c,0,r]) ax3.set_aspect('equal', adjustable='box') ax3.set_title('basal erosional surface') ax3.tick_params(bottom=False,top=False,left=False,right=False,labelbottom=False,labelleft=False) return fig1,fig2,fig3 class ChannelBelt: """class for ChannelBelt objects""" def __init__(self, channels, cutoffs, cl_times, cutoff_times): """initialize ChannelBelt object channels - list of Channel objects cutoffs - list of Cutoff objects cl_times - list of ages of Channel objects cutoff_times - list of ages of Cutoff objects""" self.channels = channels self.cutoffs = cutoffs self.cl_times = cl_times self.cutoff_times = cutoff_times def migrate(self,nit,saved_ts,deltas,pad,crdist,Cf,kl,kv,dt,dens,t1,t2,t3,aggr_factor,*D): """function for computing migration rates along channel centerlines and moving the centerlines accordingly inputs: nit - number of iterations saved_ts - which time steps will be saved deltas - distance between nodes on centerline pad - padding (number of nodepoints along centerline) crdist - threshold distance at which cutoffs occur Cf - dimensionless Chezy friction factor kl - migration rate constant (m/s) kv - vertical slope-dependent erosion rate constant (m/s) dt - time step (s) dens - density of fluid (kg/m3) t1 - time step when incision starts t2 - time step when lateral migration starts t3 - time step when aggradation starts aggr_factor - aggradation factor D - channel depth (m)""" channel = self.channels[-1] # first channel is the same as last channel of input x = channel.x; y = channel.y; z = channel.z W = channel.W; if len(D)==0: D = channel.D else: D = D[0] k = 1.0 # constant in HK equation xc = [] # initialize cutoff coordinates # determine age of last channel: if len(self.cl_times)>0: last_cl_time = self.cl_times[-1] else: last_cl_time = 0 dx, dy, dz, ds, s = compute_derivatives(x,y,z) slope = np.gradient(z)/ds # padding at the beginning can be shorter than padding at the downstream end: pad1 = int(pad/10.0) if pad1<5: pad1 = 5 omega = -1.0 # constant in curvature calculation (Howard and Knutson, 1984) gamma = 2.5 # from Ikeda et al., 1981 and Howard and Knutson, 1984 for itn in range(nit): # main loop update_progress(itn/nit) x, y = migrate_one_step(x,y,z,W,kl,dt,k,Cf,D,pad,pad1,omega,gamma) x,y,z,xc,yc,zc = cut_off_cutoffs(x,y,z,s,crdist,deltas) # find and execute cutoffs x,y,z,dx,dy,dz,ds,s = resample_centerline(x,y,z,deltas) # resample centerline slope = np.gradient(z)/ds # for itn<t1, z is unchanged if (itn>t1) & (itn<=t2): # incision if np.min(np.abs(slope))!=0: z = z + kv*dens*9.81*D*slope*dt else: z = z - kv*dens*9.81*D*dt*0.00001 if (itn>t2) & (itn<=t3): # lateral migration if np.min(np.abs(slope))!=0: z = z + kv*dens*9.81*D*slope*dt - kv*dens*9.81*D*np.median(slope)*dt else: z = z # no change in z if (itn>t3): # aggradation if np.min(np.abs(slope))!=0: z = z + kv*dens*9.81*D*slope*dt - aggr_factor*kv*dens*9.81*D*np.mean(slope)*dt else: z = z + aggr_factor*dt if len(xc)>0: # save cutoff data self.cutoff_times.append(last_cl_time+(itn+1)*dt/(365*24*60*60.0)) cutoff = Cutoff(xc,yc,zc,W,D) # create cutoff object self.cutoffs.append(cutoff) # saving centerlines: if np.mod(itn,saved_ts)==0: self.cl_times.append(last_cl_time+(itn+1)*dt/(365*24*60*60.0)) channel = Channel(x,y,z,W,D) # create channel object self.channels.append(channel) def plot(self,plot_type,pb_age,ob_age,*end_time): """plot ChannelBelt object plot_type - can be either 'strat' (for stratigraphic plot) or 'morph' (for morphologic plot) pb_age - age of point bars (in years) at which they get covered by vegetation ob_age - age of oxbow lakes (in years) at which they get covered by vegetation end_time (optional) - age of last channel to be plotted (in years)""" cot = np.array(self.cutoff_times) sclt = np.array(self.cl_times) if len(end_time)>0: cot = cot[cot<=end_time] sclt = sclt[sclt<=end_time] times = np.sort(np.hstack((cot,sclt))) times = np.unique(times) order = 0 # variable for ordering objects in plot # set up min and max x and y coordinates of the plot: xmin = np.min(self.channels[0].x) xmax = np.max(self.channels[0].x) ymax = 0 for i in range(len(self.channels)): ymax = max(ymax, np.max(np.abs(self.channels[i].y))) ymax = ymax+2*self.channels[0].W # add a bit of space on top and bottom ymin = -1*ymax # size figure so that its size matches the size of the model: fig = plt.figure(figsize=(20,(ymax-ymin)*20/(xmax-xmin))) if plot_type == 'morph': pb_crit = len(times[times<times[-1]-pb_age])/float(len(times)) ob_crit = len(times[times<times[-1]-ob_age])/float(len(times)) green = (106/255.0,159/255.0,67/255.0) # vegetation color pb_color = (189/255.0,153/255.0,148/255.0) # point bar color ob_color = (15/255.0,58/255.0,65/255.0) # oxbow color pb_cmap = make_colormap([green,green,pb_crit,green,pb_color,1.0,pb_color]) # colormap for point bars ob_cmap = make_colormap([green,green,ob_crit,green,ob_color,1.0,ob_color]) # colormap for oxbows plt.fill([xmin,xmax,xmax,xmin],[ymin,ymin,ymax,ymax],color=(106/255.0,159/255.0,67/255.0)) for i in range(0,len(times)): if times[i] in sclt: ind = np.where(sclt==times[i])[0][0] x1 = self.channels[ind].x y1 = self.channels[ind].y W = self.channels[ind].W xm, ym = get_channel_banks(x1,y1,W) if plot_type == 'morph': if times[i]>times[-1]-pb_age: plt.fill(xm,ym,facecolor=pb_cmap(i/float(len(times)-1)),edgecolor='k',linewidth=0.2) else: plt.fill(xm,ym,facecolor=pb_cmap(i/float(len(times)-1))) else: order = order+1 plt.fill(xm,ym,sns.xkcd_rgb["light tan"],edgecolor='k',linewidth=0.25,zorder=order) if times[i] in cot: ind = np.where(cot==times[i])[0][0] for j in range(0,len(self.cutoffs[ind].x)): x1 = self.cutoffs[ind].x[j] y1 = self.cutoffs[ind].y[j] xm, ym = get_channel_banks(x1,y1,self.cutoffs[ind].W) if plot_type == 'morph': plt.fill(xm,ym,color=ob_cmap(i/float(len(times)-1))) else: order = order+1 plt.fill(xm,ym,sns.xkcd_rgb["ocean blue"],edgecolor='k',linewidth=0.25,zorder=order) x1 = self.channels[len(sclt)-1].x y1 = self.channels[len(sclt)-1].y xm, ym = get_channel_banks(x1,y1,self.channels[len(sclt)-1].W) order = order+1 plt.fill(xm,ym,color=(16/255.0,73/255.0,90/255.0),zorder=order) #,edgecolor='k') plt.axis('equal') plt.xlim(xmin,xmax) plt.ylim(ymin,ymax) return fig def create_movie(self,xmin,xmax,plot_type,filename,dirname,pb_age,ob_age,scale,*end_time): """method for creating movie frames (PNG files) that capture the plan-view evolution of a channel belt through time movie has to be assembled from the PNG file after this method is applied xmin - value of x coodinate on the left side of frame xmax - value of x coordinate on right side of frame plot_type = - can be either 'strat' (for stratigraphic plot) or 'morph' (for morphologic plot) filename - first few characters of the output filenames dirname - name of directory where output files should be written pb_age - age of point bars (in years) at which they get covered by vegetation (if the 'morph' option is used for 'plot_type') ob_age - age of oxbow lakes (in years) at which they get covered by vegetation (if the 'morph' option is used for 'plot_type') scale - scaling factor (e.g., 2) that determines how many times larger you want the frame to be, compared to the default scaling of the figure """ sclt = np.array(self.cl_times) if len(end_time)>0: sclt = sclt[sclt<=end_time] channels = self.channels[:len(sclt)] ymax = 0 for i in range(len(channels)): ymax = max(ymax, np.max(np.abs(channels[i].y))) ymax = ymax+2*channels[0].W # add a bit of space on top and bottom ymin = -1*ymax for i in range(0,len(sclt)): fig = self.plot(plot_type,pb_age,ob_age,sclt[i]) fig_height = scale*fig.get_figheight() fig_width = (xmax-xmin)*fig_height/(ymax-ymin) fig.set_figwidth(fig_width) fig.set_figheight(fig_height) fig.gca().set_xlim(xmin,xmax) fig.gca().set_xticks([]) fig.gca().set_yticks([]) plt.plot([xmin+200, xmin+200+5000],[ymin+200, ymin+200], 'k', linewidth=2) plt.text(xmin+200+2000, ymin+200+100, '5 km', fontsize=14) fname = dirname+filename+'%03d.png'%(i) fig.savefig(fname, bbox_inches='tight') plt.close() def build_3d_model(self,model_type,h_mud,levee_width,h,w,bth,dcr,dx,delta_s,starttime,endtime,xmin,xmax,ymin,ymax): """method for building 3D model from set of centerlines (that are part of a ChannelBelt object) Inputs: model_type - model type ('fluvial' or 'submarine') h_mud - maximum thickness of overbank mud levee_width - width of overbank mud h - channel depth w - channel width bth - thickness of channel sand (only used in submarine models) dcr - critical channel depth where sand thickness goes to zero (only used in submarine models) dx - cell size in x and y directions delta_s - sampling distance alogn centerlines starttime - age of centerline that will be used as the first centerline in the model endtime - age of centerline that will be used as the last centerline in the model xmin,xmax,ymin,ymax - x and y coordinates that define the model domain; if xmin is set to zero, a plot of the centerlines is generated and the model domain has to be defined by clicking its upper left and lower right corners Returns: a ChannelBelt3D object """ sclt = np.array(self.cl_times) ind1 = np.where(sclt>=starttime)[0][0] ind2 = np.where(sclt<=endtime)[0][-1] sclt = sclt[ind1:ind2+1] channels = self.channels[ind1:ind2+1] cot =
np.array(self.cutoff_times)
numpy.array
import pandas as pd import thermotar as th import numpy as np import matplotlib.pyplot as plt import warnings from scipy import interpolate import thermotar as th from thermotar.sub_modules.potential_chunk import Potential # fit within specified range to specified orer polynomial def ranged_poly_fit(y,x,n=3,xl=None,xh=None,**kwargs): ''' In the range of data, in x, fit to a polynomial of the given order. Essentially just short hand for this if xh and xl are not specified, it is just a regular polyfit ''' if not xl: xl = x.min() if not xh: xh = x.max() select = (x >= xl) & (x <= xh) xs = x.loc[select] ys = y.loc[select] return np.polyfit(xs,ys,n,**kwargs) def get_poly_min(fit,xh=None,xl=None): ''' For a given set of polynomial coefficients, calculate the location of the minimum Looks only for global minimum for points in the range Finds the minima from the coefficients Ensure that only those taht are minima are added Maybe also validate that the value at the edge is not the same as the value of the minimum - if minimum is at edge, suggests that there isn't a true inversion. ''' poln = np.poly1d(fit) # create a polynomial from the coefficients crit_points = poln.deriv().r #roots of the derivative of the polynomial # filter crit points to be real crit_points_real = crit_points[crit_points.imag==0].real # filter further to ensure they are minima not maxima or points of inflection. if xh and xl: select = (crit_points_real <= xh) & (crit_points_real >= xl) crit_points_real = crit_points_real[select] # filter last so that crit_points_real = crit_points_real[poln.deriv(2)(crit_points_real) > 0] # NB 2nd derivative is strictly greater than so that inflection points aren't found # y_crits y_crits = poln(crit_points_real) # evaluate the polynomial at the critical points y_min = y_crits.min() # find the critical points with the lowest value of y ### Old Implementation #y = np.polyval(fit #y_min = np.min(y) x_min = np.asscalar(crit_points_real[y_crits==y_min]) # go back to finding which on is the minimum return x_min,y_min def basic_min(x,y): ''' Find the minimum indexes of a dataframe, by using .min() and find the corresponding x value ''' y_min = np.min(y) x_min = x[y == y_min] return x_min,y_min def choose_temp_range(df ,ptp = 200, pot_name = 'phi_tot',temp_name ='temp' ): ''' Take a chunk, find the absolute minimum potential and then return the range of ptp centred on this minimum, and an array of length grid points between the max and min The returned array is for use in interpolation with the poly fit later ''' T = df[temp_name] # get the temperature data pot = df[pot_name] # get the potential data T_min, _pot_min = basic_min(T,pot) # find the temperature corresponding to the absoulte lowest value of the potential T_min = np.asscalar(T_min) Tl = T_min - ptp/2 # upper and lower limits of an interval ptp wide centred about T_min Th = T_min + ptp/2 return Tl, Th def find_min(y,x, n, xl=None,xh=None,grid = 100000,err = False,validate = True): ''' Find the minimum of one series with respect to another, using polynomial fittings interp_grid = grid to use for interpolation Interpolate with polynomials??? y = data x = x data n = polynomial order to use TODO: Don't use a grid to find the minimum. Use a np.poly1d object to find the critical points, filter to be within the region ( and real) and the find the lowest of these!!!! Maybe also validate that the value at the edge is not the same as the value of the minimum - if minimum is at edge, suggests that there isn't a true inversion. Optional inputs: xmin, xmax = range to fit over ''' if not xh: xh = np.max(x) if not xl: xl = np.min(x) fit = ranged_poly_fit(y,x,n=n,xl=xl,xh=xh ) #xs = np.linspace(xl,xh,grid) try: x_min,y_min = get_poly_min(fit,xl=xl,xh=xh) # to do, find more precise analytical minimum. except ValueError: x_min,y_min = (np.nan, np.nan) return x_min,y_min, fit def find_phi_min(chunk,n,potential_name = 'phi_tot', temp_name = 'temp',temp_range = 300,temp_centre = None,show_plots = False,grid=100000,verbose = False,plot_markers = 10): temps = chunk.data[temp_name] phis = chunk.data[potential_name] if not temp_centre and (temp_range is not None): Tl,Th = choose_temp_range(chunk.data, ptp = temp_range,pot_name = potential_name, temp_name=temp_name) elif temp_range is not None: Tl,Th = (temp_centre - temp_range/2,temp_centre+temp_range/2) else: Tl,Th = (temps.min(),temps.max()) # don't over extend the range, otherwise and incorrect minima will be found!!!! if Th > temps.max(): Th = temps.max() if Tl < temps.min(): Tl = temps.min() if verbose: print(f'Fitting a {n}-order polynomial between T = {Tl:.3f},{Th:.3f} K.') T_min,phi_min,fit = find_min(phis,temps,n,xl=Tl,xh=Th,grid=grid) if verbose: print(f'Minimum found at T = {T_min:.3f} ') if show_plots: Ts = np.linspace(Tl,Th,grid) plt.plot(Ts,np.polyval(fit,Ts),c='b',label =f'{n} order fit ',ls = '--') plt.plot(temps,phis,'ro' ,markevery = plot_markers,label='data') plt.plot(T_min,phi_min,'ko') plt.xlabel(r'$T$/K') plt.ylabel(r'$\phi$/V') plt.legend() plt.show() return T_min,phi_min,fit def find_x_intercept(y,x,offset=0, xmin=None,xmax=None,interp_grid = None, interp_modde = 'linear'): ''' Find the x intercept of a set of data with a finite grid. Uses a scipy tool to find the closest match to zero(+offset), then the corresponding finite value of x can restrict to a range to prevent finding fake minima, for example noise in the data giving a minima that is not true?? interp grid is there to interpolate if need be. If used will interpolate y data between xmin and xmax with the specified number of points ''' # If not specified, set to maximum and minimum value of range if not xmin: xmin =
np.min(x)
numpy.min
#%% import os cwd = os.getcwd() dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) import argparse import sys import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import torchvision.utils import numpy as np import os.path from scipy.io import loadmat from model import * from utils import * from args_python import * from matplotlib import pyplot as plt from torch.utils.tensorboard import SummaryWriter from torch.utils.data import Dataset import torchvision.transforms as transforms from sklearn.model_selection import train_test_split import hdf5storage EulerN=3 QuaternionN=4 ScaleSpaceAndGainN=2 class CustomDataset(Dataset): """TensorDataset with support of transforms. """ def __init__(self, tensors, transform=None): assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors) self.tensors = tensors self.transform = transform def __getitem__(self, index): x = self.tensors[0][index] if self.transform: x = self.transform(x) y = self.tensors[1][index] return x, y def __len__(self): return self.tensors[0].size(0) #%% def train(args, model, device, train_loader, optimizer, epoch, writer, Rbeta, zipped_vals, scheduler): model.train() run_loss = 0.0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) R_est = euler2R(output[:,0:EulerN]) R_target = euler2R(target[:,0:EulerN]) gt, pred, rot_loss = getlossrotation(False, R_est, R_target) gain_scale_loss = getlossspacescale(output[:,EulerN],target[:,EulerN]) + getlossgain(output[:,EulerN+1],target[:,EulerN+1]) loss = rot_loss + gain_scale_loss if args.test: print("Ground truth : {} \n Predicted values : {}".format(torch.transpose(gt,1,2), pred)) break run_loss += loss.item() loss.backward() optimizer.step() scheduler.step() if (batch_idx+1) % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.8f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx * len(data) / len(train_loader.dataset), run_loss/args.log_interval)) # # grid = torchvision.utils.make_grid(data) writer.add_scalar('training_loss', run_loss/args.log_interval, epoch*len(train_loader)+batch_idx) # writer.add_image('images', grid) writer.add_graph(model, data) for tag, value in model.named_parameters(): tag = tag.replace('.', '/') writer.add_histogram(tag, value.detach().cpu().numpy(), batch_idx+1) run_loss = 0.0 def validate(args, model, device, val_loader, Rbeta, zipped_vals): model.eval() val_loss = 0.0 with torch.no_grad(): for data, target in val_loader: data, target = data.to(device), target.to(device) output = model(data) R_est = euler2R(output[:,0:EulerN]) R_target = euler2R(target[:,0:EulerN]) gt, pred, rot_loss = getlossrotation(False, R_est, R_target) gain_scale_loss = getlossspacescale(output[:,EulerN],target[:,EulerN]) + getlossgain(output[:,EulerN+1],target[:,EulerN+1]) loss_val = rot_loss + gain_scale_loss val_loss += loss_val val_loss /= len(val_loader) print('\nValidation set: Average loss: {:.8f}\n'.format(val_loss.item())) if args.test: print("Ground truth : {} \n\n Predicted values : {} \n".format(torch.transpose(gt,1,2), pred)) return val_loss def test(args, model, device, test_loader, Rbeta, zipped_vals, data_stat): if args.get_pred_only: model.eval() test_out_list = [] with torch.no_grad(): for data in test_loader: data = data[0].to(device) output = model(data) test_out_list.append(output.cpu().numpy()) save_mat = np.concatenate(test_out_list) hdf5storage.savemat(args.pred_folder+'/pred_labels.mat', {'labeldata':save_mat}) else: model.eval() test_loss = 0.0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) R_est = euler2R(output[:,0:EulerN]) R_target = euler2R(target[:,0:EulerN]) gt, pred, rot_loss = getlossrotation(True, R_est, R_target) gain_scale_loss = getlossspacescale(output[:,EulerN],target[:,EulerN]) + getlossgain(output[:,EulerN+1],target[:,EulerN+1]) loss_test = rot_loss + gain_scale_loss test_loss += loss_test test_loss /= len(test_loader) print('\nTest set: Average loss: {:.8f}\n'.format(test_loss.item())) print("Ground truth : {} \n\n Predicted values : {} \n".format(torch.transpose(gt,1,2), pred)) # value = torch.add(torch.matmul(pred,gt),-1*torch.eye(3)) # print("Loss value for these sample {}".format(torch.norm(value,p='fro',dim=(2, 3)))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch 3D angle regression from 2D images') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=100, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 30)') parser.add_argument('--no-cuda', action='store_false', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--UseQuaternionNotEuler', action='store_true', default=False, help='give this flag in order to use the Quaternion representation, otherwise the Euler angles representation will be used') parser.add_argument('--ScaleSpaceMin', type=float, default=0.8, help='minimum value of the space scaling') parser.add_argument('--ScaleSpaceMax', type=float, default=1.2, help='maximum value of the space scaling') parser.add_argument('--GainMin', type=float, default=0.8, help='minimum value of the gain') parser.add_argument('--GainMax', type=float, default=1.2, help='maximum value of the gain') parser.add_argument('--RootDirectory4Data', default='./', help='the name of the root director for the data') parser.add_argument('--arch', default='VGG',help='the architecture to use. options are VGG, MLP for now. Can add more') parser.add_argument('--carve_val', action='store_false', default=True, help='Whether validation set has to be carved out from the training set. Default is true') parser.add_argument('--test', action='store_true', default=False, help='Whether train or test mode. Default is train mode.') parser.add_argument('--get_pred_only', action='store_true', default=False, help='Get only predictions from images') parser.add_argument('--pred_folder', default='./', help='Directory of file with test images.') args = parser.parse_args() # args=Args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") trainingdirectory = args.RootDirectory4Data+"/"+"training" trainingimagefile="imagefile.mat" traininglabelfile="labelfile.mat" train_images = hdf5storage.loadmat(os.path.join(trainingdirectory, trainingimagefile))['imagedata'] train_labels = hdf5storage.loadmat(os.path.join(trainingdirectory, traininglabelfile))['labeldata'] if args.carve_val: print("Carving out validation set from training set") train_images, val_images, train_labels, val_labels = train_test_split(train_images, train_labels, test_size=0.1, random_state=42) else: print("Loading validation set") validationdirectory = args.RootDirectory4Data+"/"+"validation" validationimagefile="imagefile.mat" validationlabelfile="labelfile.mat" val_images = hdf5storage.loadmat(os.path.join(validationdirectory, validationimagefile))['imagedata'] val_labels = hdf5storage.loadmat(os.path.join(validationdirectory, validationlabelfile))['labeldata'] train_images = np.expand_dims(train_images,1) val_images =
np.expand_dims(val_images,1)
numpy.expand_dims
import unittest import numpy as np from controlinverilog import mechatronics from controlinverilog.state_space import StateSpace import controlinverilog as civ import matplotlib.pyplot as plt class TestLtiSystem(unittest.TestCase): def test_sequence(self): sys1 = get_system1() norm_infc = mechatronics.norm_hinf_discrete(*sys1.cofs) norm_2c = mechatronics.norm_h2_discrete(*sys1.cofs[:3]) self.assertTrue(abs(norm_infc - 12.9998) / 12.9998 < 0.01) self.assertTrue(abs(norm_2c - 1.3232) / 1.3232 < 0.01) # print('sysa Inf Norm: %g' % norm_infc) # print('sysa 2 Norm: %g' % norm_2c) sysa = get_system2() norm_infc = mechatronics.norm_hinf_continuous(*sysa.cofs) norm_2c = mechatronics.norm_h2_continuous(*sysa.cofs[:3]) self.assertTrue(abs(norm_infc - 0.9999) < 0.0001) self.assertTrue(abs(norm_2c - 75.1826) / 75.1826 < 0.0001) # print('sysa Inf Norm: %g' % norm_infc) # print('sysa 2 Norm: %g' % norm_2c) sysd = sysa.cont2shift(1 / 122.88e6) norm_infc = mechatronics.norm_hinf_discrete(*sysd.cofs) norm_2c = mechatronics.norm_h2_discrete(*sysd.cofs[:3]) self.assertTrue(abs(norm_infc - 0.9999) < 0.0001) self.assertTrue(abs(norm_2c - 0.00678229) / 0.00678229 < 0.0001) # print('sysd Inf Norm: %g' % norm_infc) # print('sysd 2 Norm: %g' % norm_2c) def test_gramians(self): sysa = get_system2() A, B, C, D = sysa.cofs Wc = mechatronics.controllability_gramian_continuous(A, B) Wo = mechatronics.observability_gramian_continuous(A, C) cWc = np.array( [[6.999969e-01, 1.114907e-05, 2.368522e-06, -1.562850e-06], [1.114907e-05, 2.353370e-01, -2.539451e-06, 6.104784e-07], [2.368522e-06, -2.539451e-06, 3.775594e-02, 2.332329e-07], [-1.562850e-06, 6.104784e-07, 2.332329e-07, 2.452912e-03]]) cWo = np.array( [[6.999969e-01, -1.114907e-05, 2.368522e-06, 1.562850e-06], [-1.114907e-05, 2.353370e-01, 2.539451e-06, 6.104784e-07], [2.368522e-06, 2.539451e-06, 3.775594e-02, -2.332329e-07], [1.562850e-06, 6.104784e-07, -2.332329e-07, 2.452912e-03]]) self.assertTrue(np.all(np.isclose(cWc, Wc, rtol=1e-5))) self.assertTrue(np.all(np.isclose(cWo, Wo, rtol=1e-5))) sysd = sysa.cont2shift(1 / 122.88e6) A, B, C, D = sysd.cofs Wc = mechatronics.controllability_gramian_discrete(A, B) Wo = mechatronics.observability_gramian_discrete(A, C) dWc = np.array( [[5.696589e-09, 9.073142e-14, 1.927509e-14, -1.271850e-14], [9.073142e-14, 1.915178e-09, -2.066611e-14, 4.968086e-15], [1.927509e-14, -2.066611e-14, 3.072586e-10, 1.898054e-15], [-1.271850e-14, 4.968086e-15, 1.898054e-15, 1.996185e-11]]) dWo = np.array( [[8.601562e+07, -1.369998e+03, 2.910440e+02, 1.920430e+02], [-1.369998e+03, 2.891821e+07, 3.120477e+02, 7.501562e+01], [2.910440e+02, 3.120477e+02, 4.639449e+06, -2.865966e+01], [1.920430e+02, 7.501562e+01, -2.865966e+01, 3.014138e+05]]) self.assertTrue(np.all(np.isclose(dWc, Wc, rtol=1e-5))) self.assertTrue(np.all(np.isclose(dWo, Wo, rtol=1e-5))) def test_cont2shift(self): sysa = get_system2() sysd = sysa.cont2shift(1 / 122.88e6) Ad = np.array([[1, 0.000113, 4.483e-05, -1.69e-05], [-0.000113, 0.9999, -0.0002071, 6.131e-05], [4.483e-05, 0.0002071, 0.9997, 0.0002602], [1.69e-05, 6.131e-05, -0.0002602, 0.9993]]) Bd =
np.array([[-5.879e-07], [-7.271e-07], [4.579e-07], [1.632e-07]])
numpy.array
import sys sys.path.insert(0, '../') import matplotlib.pyplot as plt import cv2 import json import numpy as np from mv3dpose.tracking import Track from os.path import isdir, join, isfile from os import listdir, makedirs import mv3dpose.geometry.camera as camera import shutil from mpl_toolkits.mplot3d import Axes3D from tqdm import tqdm import math dataset_dir = '/home/user/dataset' dataset_json = join(dataset_dir, 'dataset.json') vid_dir = join(dataset_dir, 'videos') cam_dir = join(dataset_dir, 'cameras') trk_dir = join(dataset_dir, 'tracks3d') assert isdir(trk_dir), "the tracks must be extracted!" assert isdir(cam_dir), "could not find cameras!" assert isdir(vid_dir), "could not find videos!" # ~~~~~ LOAD SETTINGS ~~~~~ Settings = json.load(open(dataset_json)) n_cameras = Settings['n_cameras'] valid_frames = Settings['valid_frames'] img_file_type = 'png' if 'image_extension' in Settings: img_file_type = Settings['image_extension'] print('CAMERAS', n_cameras) print("#frames", len(valid_frames)) tracks = [json.load(open(join(trk_dir, f))) for f in sorted(listdir(trk_dir))] print("#tracks", len(tracks)) # -- create lookups -- tracks_by_frame = {} pose_by_track_and_frame = {} for frame in valid_frames: assert frame not in tracks_by_frame tracks_by_frame[frame] = [] for tid, track in enumerate(tracks): frames = track['frames'] poses = track['poses'] for i, t in enumerate(frames): if t > frame: break elif t == frame: tracks_by_frame[frame].append(tid) pose_by_track_and_frame[tid, frame] = poses[i] def get_cmap(n, name='hsv'): return plt.cm.get_cmap(name, n) # colors = get_cmap(len(tracks)) n_tracks = len(tracks) if n_tracks > 11: # colors = np.random.random(size=(n_tracks, 1, 3)) colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # colors = [ # 'tab:blue', # 'tab:orange', # 'tab:green', # 'tab:red', # 'tab:purple', # 'red', # 'blue', # 'green', # 'navy', # 'maroon', # 'darkgreen' # ] else: colors = [ 'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'red', 'blue', 'green', 'navy', 'maroon', 'darkgreen' ] # colors = [ # 'red', # 0 # 'blue', # 1 # 'green', # 2 # 'yellow', # 3 # 'green', # 4 # 'blue', # 5 # 'white', # 6 # 'hotpink', # 7 # 'magenta', # 8 # 'lime', # 9 # 'peru' # 10 # ][:n_tracks] # colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # ~~~~~~~~~~~~~ # C A M E R A S # ~~~~~~~~~~~~~ print('\n[load cameras]') try: Calib = [] # { n_frames x n_cameras } for t in tqdm(valid_frames): calib = [] Calib.append(calib) for cid in range(n_cameras): local_camdir = join(cam_dir, 'camera%02d' % cid) assert isdir(local_camdir) cam_fname = join(local_camdir, 'frame%09d.json' % t) assert isfile(cam_fname), cam_fname cam = camera.Camera.load_from_file(cam_fname) calib.append(cam) except AssertionError: print('\tnew version of cameras is used...') class CamerasPerFrame: def __init__(self, cam_dir, n_cameras, valid_frames): self.n_cameras = n_cameras self.n_frames = len(valid_frames) self.first_frame = valid_frames[0] self.cameras = [] for cid in range(n_cameras): camfile = join(cam_dir, 'camera%02d.json' % cid) with open(camfile, 'r') as f: cam_as_dict_list = json.load(f) cam_as_object_list = [] for cam in cam_as_dict_list: start_frame = cam['start_frame'] end_frame = cam['end_frame'] K = np.array(cam['K']) rvec = np.array(cam['rvec']) tvec = np.array(cam['tvec']) distCoef = np.array(cam['distCoef']) w = int(cam['w']) h = int(cam['h']) cam = camera.ProjectiveCamera(K, rvec, tvec, distCoef, w, h) cam_as_object_list.append({ "start_frame": start_frame, "end_frame": end_frame, "cam": cam }) self.cameras.append(cam_as_object_list) def __getitem__(self, frame): """ :param frame: frame, starting at 0! """ frame += self.first_frame cameras = [1] * self.n_cameras for cid, cam_as_object_list in enumerate(self.cameras): for cam in cam_as_object_list: start_frame = cam['start_frame'] end_frame = cam['end_frame'] if start_frame <= frame <= end_frame: cameras[cid] = cam['cam'] break for cam in cameras: assert cam != 1 return cameras def __len__(self): return self.n_frames Calib = CamerasPerFrame(cam_dir, n_cameras, valid_frames) # ==================================== # ~~~~ PLOT FRAMES ~~~~ # ==================================== output_dir = join(dataset_dir, 'visualization') if isdir(output_dir): shutil.rmtree(output_dir) LIMBS = [ (0, 1), (0, 15), (0, 14), (15, 17), (14, 16), (1, 2), (2, 3), (3, 4), (1, 5), (5, 6), (6, 7), (2, 8), (5, 11), (8, 11), (8, 9), (9, 10), (10, 21), (21, 22), (22, 23), (11, 12), (12, 13), (13, 18), (18, 19), (19, 20) ] makedirs(output_dir) def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) for i, frame in tqdm(enumerate(valid_frames)): if True: cameras = [1, 2, 5] n_cameras = len(cameras) else: cameras = range(n_cameras) fig = plt.figure(figsize=(16, 12)) H = 2 if n_cameras < 8 else 3 W = int(math.ceil(n_cameras / H)) fname = join(output_dir, 'frame%09d.png' % i) tracks_on_frame = tracks_by_frame[frame] for camnbr, cid in enumerate(cameras): camera_img_dir = join(vid_dir, 'camera%02d' % cid) # img_file = join(camera_img_dir, 'frame%09d.png' % frame) img_file = join(camera_img_dir, ('frame%09d.' % frame) + img_file_type) assert isfile(img_file), img_file im = cv2.cvtColor(cv2.imread(img_file), cv2.COLOR_BGR2RGB) h, w, _ = im.shape cam = Calib[i][cid] ax = fig.add_subplot(H, W, camnbr+1) ax.axis('off') ax.set_xlim([0, w]) ax.set_ylim([h, 0]) ax.imshow(im) for tid in tracks_on_frame: color = colors[tid%len(colors)] pose3d = pose_by_track_and_frame[tid, frame] # we need to mask over None assert len(pose3d) == 24 mask = [True] * 24 for jid in range(24): if pose3d[jid] is None: pose3d[jid] = [0, 0, 0] mask[jid] = False else: mm = np.mean(pose3d[jid]) if isclose(0., mm): mask[jid] = False pose3d = np.array(pose3d, dtype=np.float32) pose2d = cam.projectPoints(pose3d) for jid in range(24): if mask[jid]: x, y = pose2d[jid] ax.scatter(x, y, color=color) for a, b in LIMBS: if mask[a] and mask[b]: x1, y1 = pose2d[a] x2, y2 = pose2d[b] if n_tracks > 11: # ax.plot([x1, x2], [y1, y2], c=np.squeeze(color)) ax.plot([x1, x2], [y1, y2], color=color) else: ax.plot([x1, x2], [y1, y2], color=color) # 3D plot ================ if True: # no 3D plot pls ax = fig.add_subplot(H, W, n_cameras + 1, projection='3d') # ax.axis('off') ax.set_xlim([0, 5]) ax.set_ylim([0, 5]) ax.set_zlim([0, 3.5]) ax.set_xlabel('X') ax.set_ylabel('Y') for tid in tracks_on_frame: color = colors[tid%len(colors)] pose3d = pose_by_track_and_frame[tid, frame] mask = [True] * 24 for jid in range(24): if pose3d[jid] is None: mask[jid] = False else: x, y, z = pose3d[jid] if np.isclose(x, .0) and
np.isclose(y, .0)
numpy.isclose
import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline import os,os.path import re from numpy.lib.recfunctions import append_fields from . import localpath class SN1a_feedback(object): def __init__(self): """ this is the object that holds the feedback table for SN1a .masses gives a list of masses .metallicities gives a list of possible yield metallicities .elements gives the elements considered in the yield table .table gives a dictionary where the yield table for a specific metallicity can be queried .table[0.02] gives a yield table. Keys of this object are ['Mass','mass_in_remnants','elements'] Mass is in units of Msun 'mass_in_remnants' in units of Msun but with a '-' 'elements' yield in Msun normalised to Mass. i.e. integral over all elements is unity """ def Seitenzahl(self): """ Seitenzahl 2013 from Ivo txt """ y = np.genfromtxt(localpath + 'input/yields/Seitenzahl2013/0.02.txt', names = True, dtype = None) self.metallicities = list([0.02]) self.masses = list([1.4004633930489443]) names = list(y.dtype.names) self.elements = names[2:] base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) for name in names: if name in ['Mass','mass_in_remnants']: yield_tables_final_structure_subtable[name] = y[name] else: yield_tables_final_structure_subtable[name] = np.divide(y[name],self.masses) yield_tables_final_structure = {} yield_tables_final_structure[0.02] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def Thielemann(self): """ Thilemann 2003 yields as compiled in Travaglio 2004 """ y = np.genfromtxt(localpath + 'input/yields/Thielemann2003/0.02.txt', names = True, dtype = None) metallicity_list = [0.02] self.metallicities = metallicity_list self.masses = [1.37409] names = y.dtype.names base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) for name in names: if name in ['Mass','mass_in_remnants']: yield_tables_final_structure_subtable[name] = y[name] else: yield_tables_final_structure_subtable[name] = np.divide(y[name],self.masses) self.elements = list(y.dtype.names[2:]) yield_tables_final_structure = {} yield_tables_final_structure[0.02] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def Iwamoto(self): ''' Iwamoto99 yields building up on Nomoto84 ''' import numpy.lib.recfunctions as rcfuncs tdtype = [('species1','|S4'),('W7',float),('W70',float),('WDD1',float),('WDD2',float),('WDD3',float),('CDD1',float),('CDD2',float)] metallicity_list = [0.02,0.0] self.metallicities = metallicity_list self.masses = [1.38] y = np.genfromtxt(localpath + 'input/yields/Iwamoto/sn1a_yields.txt',dtype = tdtype, names = None) ## Python3 need transformation between bytes and strings element_list2 = [] for j,jtem in enumerate(y['species1']): element_list2.append(jtem.decode('utf8')) y = rcfuncs.append_fields(y,'species',element_list2,usemask = False) ################################ without_radioactive_isotopes=True if without_radioactive_isotopes:### without radioactive isotopes it should be used this way because the radioactive nuclides are already calculated in here carbon_list = ['12C','13C'] nitrogen_list = ['14N','15N'] oxygen_list = ['16O','17O','18O'] fluorin_list = ['19F'] neon_list = ['20Ne','21Ne','22Ne']#,'22Na'] sodium_list = ['23Na'] magnesium_list = ['24Mg','25Mg','26Mg']#,'26Al'] aluminium_list = ['27Al'] silicon_list = ['28Si','29Si','30Si'] phosphorus_list = ['31P'] sulfur_list = ['32S','33S','34S','36S'] chlorine_list = ['35Cl','37Cl'] argon_list = ['36Ar','38Ar','40Ar']#, '36Cl'] potassium_list = ['39K','41K']#, '39Ar', '41Ca'] calcium_list = ['40Ca','42Ca','43Ca','44Ca','46Ca','48Ca']#, '40K'] scandium_list = ['45Sc']#,'44Ti'] titanium_list = ['46Ti','47Ti','48Ti','49Ti','50Ti']#,'48V','49V'] vanadium_list = ['50V','51V'] chromium_list = ['50Cr','52Cr','53Cr','54Cr']#,'53Mn'] manganese_list = ['55Mn'] iron_list = ['54Fe', '56Fe','57Fe','58Fe']#,'56Co','57Co'] cobalt_list = ['59Co']#,'60Fe','56Ni','57Ni','59Ni'] nickel_list = ['58Ni','60Ni','61Ni','62Ni','64Ni']#,'60Co'] copper_list = ['63Cu','65Cu']#,'63Ni'] zinc_list = ['64Zn','66Zn','67Zn','68Zn'] ##### with radioactive isotopes (unclear weather they are double, probably not but remnant mass is too big) else: carbon_list = ['12C','13C'] nitrogen_list = ['14N','15N'] oxygen_list = ['16O','17O','18O'] fluorin_list = ['19F'] neon_list = ['20Ne','21Ne','22Ne','22Na'] sodium_list = ['23Na'] magnesium_list = ['24Mg','25Mg','26Mg','26Al'] aluminium_list = ['27Al'] silicon_list = ['28Si','29Si','30Si'] phosphorus_list = ['31P'] sulfur_list = ['32S','33S','34S','36S'] chlorine_list = ['35Cl','37Cl'] argon_list = ['36Ar','38Ar','40Ar', '36Cl'] potassium_list = ['39K','41K', '39Ar', '41Ca'] calcium_list = ['40Ca','42Ca','43Ca','44Ca','46Ca','48Ca', '40K'] scandium_list = ['45Sc','44Ti'] titanium_list = ['46Ti','47Ti','48Ti','49Ti','50Ti','48V','49V'] vanadium_list = ['50V','51V'] chromium_list = ['50Cr','52Cr','53Cr','54Cr','53Mn'] manganese_list = ['55Mn'] iron_list = ['54Fe', '56Fe','57Fe','58Fe','56Co','57Co','56Ni','57Ni'] cobalt_list = ['59Co','60Fe','59Ni'] nickel_list = ['58Ni','60Ni','61Ni','62Ni','64Ni','60Co'] copper_list = ['63Cu','65Cu','63Ni'] zinc_list = ['64Zn','66Zn','67Zn','68Zn'] indexing = {} indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Ar'] = argon_list indexing['K'] = potassium_list indexing['Ca'] = calcium_list indexing['Sc'] = scandium_list indexing['Ti'] = titanium_list indexing['V'] = vanadium_list indexing['Cr'] = chromium_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list indexing['Cu'] = copper_list indexing['Zn'] = zinc_list self.elements = list(indexing.keys()) ################################# yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(metallicity_list[:]): if metallicity == 0.02: model = 'W7' elif metallicity == 0.0: model = 'W70' else: print('this metallicity is not represented in the Iwamoto yields. They only have solar (0.02) and zero (0.0001)') additional_keys = ['Mass', 'mass_in_remnants'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = self.masses[0] total_mass = [] for i,item in enumerate(self.elements): for j,jtem in enumerate(indexing[item]): cut = np.where(y['species']==jtem) yield_tables_final_structure_subtable[item] += y[model][cut] total_mass.append(y[model][cut]) yield_tables_final_structure_subtable['mass_in_remnants'] = -sum(total_mass) for i,item in enumerate(self.elements): yield_tables_final_structure_subtable[item] = np.divide(yield_tables_final_structure_subtable[item],-yield_tables_final_structure_subtable['mass_in_remnants']) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure class SN2_feedback(object): def __init__(self): """ This is the object that holds the feedback table for CC-SN. Different tables can be loaded by the methods. """ def Portinari(self): ''' Loading the yield table from Portinari1998. ''' self.metallicities = [0.0004,0.004,0.008,0.02,0.05] x = np.genfromtxt(localpath + 'input/yields/Portinari_1998/0.02.txt',names=True) self.masses = list(x['Mass']) self.elements = list(x.dtype.names[3:]) yield_tables_final_structure = {} for metallicity in self.metallicities: additional_keys = ['Mass', 'mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = np.array(self.masses) x = np.genfromtxt(localpath + 'input/yields/Portinari_1998/%s.txt' %(metallicity),names=True) for item in self.elements: yield_tables_final_structure_subtable[item] = np.divide(x[item],x['Mass']) yield_tables_final_structure_subtable['mass_in_remnants'] = np.divide(x['Mass'] - x['ejected_mass'], x['Mass']) for i,item in enumerate(self.masses): yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][i] = 1. - (yield_tables_final_structure_subtable['mass_in_remnants'][i] + sum(list(yield_tables_final_structure_subtable[self.elements][i]))) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def francois(self): ''' Loading the yield table of Francois et. al. 2004. Taken from the paper table 1 and 2 and added O H He from WW95 table 5A and 5B where all elements are for Z=Zsun and values for Msun > 40 have been stayed the same as for Msun=40. Values from 11-25 Msun used case A from WW95 and 30-40 Msun used case B. ''' y = np.genfromtxt(localpath + 'input/yields/Francois04/francois_yields.txt',names=True) self.elements = list(y.dtype.names[1:]) self.masses = y[y.dtype.names[0]] self.metallicities = [0.02] ######### going from absolute ejected masses to relative ejected masses normed with the weight of the initial star for i,item in enumerate(y.dtype.names[1:]): y[item] = np.divide(y[item],y['Mass']) yield_tables = {} for i,item in enumerate(self.metallicities): yield_tables[item] = y self.table = yield_tables def chieffi04(self): ''' Loading the yield table of chieffi04. ''' DATADIR = localpath + 'input/yields/Chieffi04' if not os.path.exists(DATADIR): os.mkdir(DATADIR) MASTERFILE = '{}/chieffi04_yields'.format(DATADIR) def _download_chieffi04(): """ Downloads chieffi 04 yields from Vizier. """ url = 'http://cdsarc.u-strasbg.fr/viz-bin/nph-Cat/tar.gz?J%2FApJ%2F608%2F405' import urllib print('Downloading Chieffi 04 yield tables from Vizier (should happen only at the first time)...') if os.path.exists(MASTERFILE): os.remove(MASTERFILE) urllib.urlretrieve(url,MASTERFILE) import tarfile tar = tarfile.open(MASTERFILE) tar.extractall(path=DATADIR) tar.close() if not os.path.exists(MASTERFILE): _download_chieffi04() tdtype = [('metallicity',float),('date_after_explosion',float),('species','|S5'),('13',float),('15',float),('20',float),('25',float),('30',float),('35',float)] y = np.genfromtxt('%s/yields.dat' %(DATADIR), dtype = tdtype, names = None) metallicity_list = np.unique(y['metallicity']) self.metallicities = np.sort(metallicity_list) number_of_species = int(len(y)/len(self.metallicities)) tables = [] for i, item in enumerate(self.metallicities): tables.append(y[(i*number_of_species):((i+1)*number_of_species)]) ############################################# for i in range(len(tables)): tables[i] = tables[i][np.where(tables[i]['date_after_explosion']==0)] element_list = tables[0]['species'][3:] # For python 3 the bytes need to be changed into strings element_list2 = [] for i, item in enumerate(element_list): element_list2.append(item.decode('utf8')) element_list = np.array(element_list2) indexing = [re.split(r'(\d+)', s)[1:] for s in element_list] element_position = [] for i,item in enumerate(element_list): element_position.append(indexing[i][1]) self.elements = list(np.unique(element_position)) masses = tables[0].dtype.names[3:] masses_list = [] for i,item in enumerate(masses): masses_list.append(int(item)) self.masses = masses_list yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yields_for_one_metallicity = tables[metallicity_index] additional_keys = ['Mass','mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = np.array(self.masses) for j,jtem in enumerate(self.masses): yield_tables_final_structure_subtable['mass_in_remnants'][j] = yields_for_one_metallicity[str(jtem)][1] / float(jtem) # ,yield_tables_final_structure_subtable['Mass'][i]) for i,item in enumerate(self.elements): ################### here we can change the yield that we need for processing. normalising 'ejected_mass' with the initial mass to get relative masses for t,ttem in enumerate(element_position): if ttem == item: yield_tables_final_structure_subtable[item][j] += yields_for_one_metallicity[str(jtem)][t+3] / float(jtem) # remnant + yields of all elements is less than the total mass. In the next loop the wind mass is calculated. name_list = list(yield_tables_final_structure_subtable.dtype.names[3:]) + ['mass_in_remnants'] for i in range(len(yield_tables_final_structure_subtable)): tmp = [] for j,jtem in enumerate(name_list): tmp.append(yield_tables_final_structure_subtable[jtem][i]) tmp = sum(tmp) yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][i] = 1 - tmp yield_tables_final_structure[self.metallicities[metallicity_index]] = yield_tables_final_structure_subtable#[::-1] self.table = yield_tables_final_structure def chieffi04_net(self): ''' Loading the yield table of chieffi04 corrected for Anders & Grevesse 1989 solar scaled initial yields ''' DATADIR = localpath + 'input/yields/Chieffi04' if not os.path.exists(DATADIR): os.mkdir(DATADIR) MASTERFILE = '{}/chieffi04_yields'.format(DATADIR) def _download_chieffi04(): """ Downloads chieffi 04 yields from Vizier. """ url = 'http://cdsarc.u-strasbg.fr/viz-bin/nph-Cat/tar.gz?J%2FApJ%2F608%2F405' import urllib print('Downloading Chieffi 04 yield tables from Vizier (should happen only at the first time)...') if os.path.exists(MASTERFILE): os.remove(MASTERFILE) urllib.urlretrieve(url,MASTERFILE) import tarfile tar = tarfile.open(MASTERFILE) tar.extractall(path=DATADIR) tar.close() if not os.path.exists(MASTERFILE): _download_chieffi04() tdtype = [('metallicity',float),('date_after_explosion',float),('species','|S5'),('13',float),('15',float),('20',float),('25',float),('30',float),('35',float)] y = np.genfromtxt('%s/yields.dat' %(DATADIR), dtype = tdtype, names = None) metallicity_list = np.unique(y['metallicity']) self.metallicities = np.sort(metallicity_list) number_of_species = int(len(y)/len(self.metallicities)) tables = [] for i, item in enumerate(self.metallicities): tables.append(y[(i*number_of_species):((i+1)*number_of_species)]) ############################################# for i in range(len(tables)): tables[i] = tables[i][np.where(tables[i]['date_after_explosion']==0)] element_list = tables[0]['species'][3:] # For python 3 the bytes need to be changed into strings element_list2 = [] for i, item in enumerate(element_list): element_list2.append(item.decode('utf8')) element_list = np.array(element_list2) indexing = [re.split(r'(\d+)', s)[1:] for s in element_list] element_position = [] for i,item in enumerate(element_list): element_position.append(indexing[i][1]) self.elements = list(np.unique(element_position)) masses = tables[0].dtype.names[3:] masses_list = [] for i,item in enumerate(masses): masses_list.append(int(item)) self.masses = masses_list yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yield_tables_final_structure[self.metallicities[metallicity_index]] = np.load(DATADIR + '/chieffi_net_met_ind_%d.npy' %(metallicity_index)) self.table = yield_tables_final_structure ############################################# def Nugrid(self): ''' loading the Nugrid sn2 stellar yields NuGrid stellar data set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01 The wind yields need to be added to the *exp* explosion yields. No r-process contribution but s and p process from AGB and massive stars delayed and rapid SN Explosiom postprocessing is included. Rapid is not consistent with very massive stars so we use the 'delayed' yield set mass in remnants not totally consistent with paper table: [ 6.47634087, 2.67590435, 1.98070676] vs. [6.05,2.73,1.61] see table 4 same with z=0.02 but other elements are implemented in the right way:[ 3.27070753, 8.99349996, 6.12286813, 3.1179861 , 1.96401573] vs. [3,8.75,5.71,2.7,1.6] we have a switch to change between the two different methods (rapid/delay explosion) ''' import numpy.lib.recfunctions as rcfuncs tdtype = [('empty',int),('element1','|S3'),('165',float),('200',float),('300',float),('500',float),('1500',float),('2000',float),('2500',float)] tdtype2 = [('empty',int),('element1','|S3'),('165',float),('200',float),('300',float),('500',float),('1500',float),('2000',float),('2500',float),('3200',float),('6000',float)] expdtype = [('empty',int),('element1','|S3'),('15_delay',float),('15_rapid',float),('20_delay',float),('20_rapid',float),('25_delay',float),('25_rapid',float)] expdtype2 = [('empty',int),('element1','|S3'),('15_delay',float),('15_rapid',float),('20_delay',float),('20_rapid',float),('25_delay',float),('32_delay',float),('32_rapid',float),('60_delay',float)] yield_tables = {} self.metallicities = [0.02,0.01] which_sn_model_to_use = 'delay' # 'rapid' for i,metallicity_index in enumerate([2,1]): if i == 0: z = np.genfromtxt(localpath + 'input/yields/NuGrid_AGB_SNII_2013/set1p%d/element_table_set1.%d_yields_winds.txt' %(metallicity_index,metallicity_index),dtype = tdtype2,names = None,skip_header = 3, delimiter = '&', autostrip = True) y = np.genfromtxt(localpath + 'input/yields/NuGrid_AGB_SNII_2013/set1p%d/element_table_set1.%d_yields_exp.txt' %(metallicity_index,metallicity_index),dtype = expdtype2,names = None,skip_header = 3, delimiter = '&', autostrip = True) y['15_%s' %(which_sn_model_to_use)] += z['1500'] y['20_%s' %(which_sn_model_to_use)] += z['2000'] y['25_delay'] += z['2500'] y['32_%s' %(which_sn_model_to_use)] += z['3200'] y['60_delay'] += z['6000'] else: z = np.genfromtxt(localpath +'input/yields/NuGrid_AGB_SNII_2013/set1p%d/element_table_set1.%d_yields_winds.txt' %(metallicity_index,metallicity_index),dtype = tdtype,names = None,skip_header = 3, delimiter = '&', autostrip = True) y = np.genfromtxt(localpath + 'input/yields/NuGrid_AGB_SNII_2013/set1p%d/element_table_set1.%d_yields_exp.txt' %(metallicity_index,metallicity_index),dtype = expdtype,names = None,skip_header = 3, delimiter = '&', autostrip = True) y['15_%s' %(which_sn_model_to_use)] += z['1500'] y['20_%s' %(which_sn_model_to_use)] += z['2000'] y['25_%s' %(which_sn_model_to_use)] += z['2500'] # For python 3 the bytes need to be changed into strings element_list2 = [] for j,item in enumerate(y['element1']): element_list2.append(item.decode('utf8')) y = rcfuncs.append_fields(y,'element',element_list2,usemask = False) yield_tables[self.metallicities[i]] = y self.elements = list(yield_tables[0.02]['element']) # For python 3 the bytes need to be changed into strings self.masses = np.array((15,20,25,32,60)) ###### ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yields_for_one_metallicity = yield_tables[metallicity] final_mass_name_tag = 'mass_in_remnants' additional_keys = ['Mass',final_mass_name_tag] names = additional_keys + self.elements if metallicity == 0.02: base = np.zeros(len(self.masses)) else: base = np.zeros(len(self.masses)-2) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) if metallicity == 0.02: yield_tables_final_structure_subtable['Mass'] = self.masses else: yield_tables_final_structure_subtable['Mass'] = self.masses[:-2] for i,item in enumerate(self.elements): ################### here we can change the yield that we need for processing. normalising 'ejected_mass' with the initial mass to get relative masses if metallicity == 0.02: line_of_one_element = yields_for_one_metallicity[np.where(yields_for_one_metallicity['element']==item)] temp1 = np.zeros(5) temp1[0] = line_of_one_element['15_%s' %(which_sn_model_to_use)] temp1[1] = line_of_one_element['20_%s' %(which_sn_model_to_use)] temp1[2] = line_of_one_element['25_delay'] temp1[3] = line_of_one_element['32_%s' %(which_sn_model_to_use)] temp1[4] = line_of_one_element['60_delay'] yield_tables_final_structure_subtable[item] = np.divide(temp1,self.masses) else: line_of_one_element = yields_for_one_metallicity[np.where(yields_for_one_metallicity['element']==item)] temp1 = np.zeros(3) temp1[0] = line_of_one_element['15_%s' %(which_sn_model_to_use)] temp1[1] = line_of_one_element['20_%s' %(which_sn_model_to_use)] temp1[2] = line_of_one_element['25_%s' %(which_sn_model_to_use)] yield_tables_final_structure_subtable[item] = np.divide(temp1,self.masses[:-2]) if metallicity == 0.02: yield_tables_final_structure_subtable[final_mass_name_tag][0] = (1-sum(yield_tables_final_structure_subtable[self.elements][0])) yield_tables_final_structure_subtable[final_mass_name_tag][1] = (1-sum(yield_tables_final_structure_subtable[self.elements][1])) yield_tables_final_structure_subtable[final_mass_name_tag][2] = (1-sum(yield_tables_final_structure_subtable[self.elements][2])) yield_tables_final_structure_subtable[final_mass_name_tag][3] = (1-sum(yield_tables_final_structure_subtable[self.elements][3])) yield_tables_final_structure_subtable[final_mass_name_tag][4] = (1-sum(yield_tables_final_structure_subtable[self.elements][4])) else: yield_tables_final_structure_subtable[final_mass_name_tag][0] = (1-sum(yield_tables_final_structure_subtable[self.elements][0])) yield_tables_final_structure_subtable[final_mass_name_tag][1] = (1-sum(yield_tables_final_structure_subtable[self.elements][1])) yield_tables_final_structure_subtable[final_mass_name_tag][2] = (1-sum(yield_tables_final_structure_subtable[self.elements][2])) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable#[::-1] self.table = yield_tables_final_structure def one_parameter(self, elements, element_fractions): """ This function was introduced in order to find best-fit yield sets where each element has just a single yield (no metallicity or mass dependence). One potential problem is that sn2 feedback has a large fraction of Neon ~ 0.01, the next one missing is Argon but that only has 0.05%. This might spoil the metallicity derivation a bit. Another problem: He and the remnant mass fraction is not constrained in the APOGEE data. Maybe these can be constrained externally by yield sets or cosmic abundance standard or solar abundances. """ self.metallicities = [0.01] self.masses = np.array([10]) self.elements = elements ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} additional_keys = ['Mass','mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_table = np.core.records.fromarrays(list_of_arrays,names=names) yield_table['Mass'] = self.masses yield_table['mass_in_remnants'] = 0.1 yield_table['unprocessed_mass_in_winds'] = 1 - yield_table['mass_in_remnants'] for i,item in enumerate(self.elements[1:]): yield_table[item] = element_fractions[i+1] yield_table['H'] = -sum(element_fractions[1:]) yield_tables_final_structure[self.metallicities[0]] = yield_table self.table = yield_tables_final_structure def Nomoto2013(self): ''' Nomoto2013 sn2 yields from 13Msun onwards ''' import numpy.lib.recfunctions as rcfuncs dt = np.dtype('a13,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8') yield_tables = {} self.metallicities = [0.0500,0.0200,0.0080,0.0040,0.0010] self.masses = np.array((13,15,18,20,25,30,40)) z = np.genfromtxt(localpath + 'input/yields/Nomoto2013/nomoto_2013_z=0.0200.dat',dtype=dt,names = True) yield_tables_dict = {} for item in self.metallicities: z = np.genfromtxt(localpath + 'input/yields/Nomoto2013/nomoto_2013_z=%.4f.dat' %(item),dtype=dt,names = True) yield_tables_dict[item]=z hydrogen_list = ['H__1','H__2'] helium_list = ['He_3','He_4'] lithium_list = ['Li_6','Li_7'] berillium_list = ['Be_9'] boron_list = ['B_10','B_11'] carbon_list = ['C_12','C_13'] nitrogen_list = ['N_14','N_15'] oxygen_list = ['O_16','O_17','O_18'] fluorin_list = ['F_19'] neon_list = ['Ne20','Ne21','Ne22'] sodium_list = ['Na23'] magnesium_list = ['Mg24','Mg25','Mg26'] aluminium_list = ['Al27'] silicon_list = ['Si28','Si29','Si30'] phosphorus_list = ['P_31'] sulfur_list = ['S_32','S_33','S_34','S_36'] chlorine_list = ['Cl35','Cl37'] argon_list = ['Ar36','Ar38','Ar40'] potassium_list = ['K_39','K_41'] calcium_list = ['K_40','Ca40','Ca42','Ca43','Ca44','Ca46','Ca48'] scandium_list = ['Sc45'] titanium_list = ['Ti46','Ti47','Ti48','Ti49','Ti50'] vanadium_list = ['V_50','V_51'] chromium_list = ['Cr50','Cr52','Cr53','Cr54'] manganese_list = ['Mn55'] iron_list = ['Fe54', 'Fe56','Fe57','Fe58'] cobalt_list = ['Co59'] nickel_list = ['Ni58','Ni60','Ni61','Ni62','Ni64'] copper_list = ['Cu63','Cu65'] zinc_list = ['Zn64','Zn66','Zn67','Zn68','Zn70'] gallium_list = ['Ga69','Ga71'] germanium_list = ['Ge70','Ge72','Ge73','Ge74'] indexing = {} indexing['H'] = hydrogen_list indexing['He'] = helium_list indexing['Li'] = lithium_list indexing['Be'] = berillium_list indexing['B'] = boron_list indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Ar'] = argon_list indexing['K'] = potassium_list indexing['Ca'] = calcium_list indexing['Sc'] = scandium_list indexing['Ti'] = titanium_list indexing['V'] = vanadium_list indexing['Cr'] = chromium_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list indexing['Cu'] = copper_list indexing['Zn'] = zinc_list indexing['Ga'] = gallium_list indexing['Ge'] = germanium_list self.elements = list(indexing.keys()) ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yields_for_one_metallicity = yield_tables_dict[metallicity] # For python 3 the bytes need to be changed into strings element_list2 = [] for j,item in enumerate(yields_for_one_metallicity['M']): element_list2.append(item.decode('utf8')) yields_for_one_metallicity = rcfuncs.append_fields(yields_for_one_metallicity,'element',element_list2,usemask = False) additional_keys = ['Mass','mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = self.masses #yield_tables_final_structure_subtable['mass_in_remnants'] = yields_for_one_metallicity['M'] temp1 = np.zeros(len(self.masses)) temp1[0] = yields_for_one_metallicity[0][21] temp1[1] = yields_for_one_metallicity[0][22] temp1[2] = yields_for_one_metallicity[0][23] temp1[3] = yields_for_one_metallicity[0][24] temp1[4] = yields_for_one_metallicity[0][25] temp1[5] = yields_for_one_metallicity[0][26] temp1[6] = yields_for_one_metallicity[0][27] yield_tables_final_structure_subtable['mass_in_remnants'] = np.divide(temp1,self.masses) for i,item in enumerate(self.elements): yield_tables_final_structure_subtable[item] = 0 for j,jtem in enumerate(indexing[item]): ################### here we can change the yield that we need for processing. normalising 'ejected_mass' with the initial mass to get relative masses line_of_one_element = yields_for_one_metallicity[np.where(yields_for_one_metallicity['element']==jtem)][0] temp1 = np.zeros(len(self.masses)) temp1[0] = line_of_one_element[21] temp1[1] = line_of_one_element[22] temp1[2] = line_of_one_element[23] temp1[3] = line_of_one_element[24] temp1[4] = line_of_one_element[25] temp1[5] = line_of_one_element[26] temp1[6] = line_of_one_element[27] yield_tables_final_structure_subtable[item] += np.divide(temp1,self.masses) yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][0] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][0]-sum(yield_tables_final_structure_subtable[self.elements][0]))#yields_for_one_metallicity[0][21]# yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][1] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][1]-sum(yield_tables_final_structure_subtable[self.elements][1]))#yields_for_one_metallicity[0][22]# yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][2] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][2]-sum(yield_tables_final_structure_subtable[self.elements][2]))#yields_for_one_metallicity[0][23]#divided by mass because 'mass in remnant' is also normalised yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][3] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][3]-sum(yield_tables_final_structure_subtable[self.elements][3]))#yields_for_one_metallicity[0][24]# yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][4] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][4]-sum(yield_tables_final_structure_subtable[self.elements][4]))#yields_for_one_metallicity[0][25]# yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][5] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][5]-sum(yield_tables_final_structure_subtable[self.elements][5]))#yields_for_one_metallicity[0][26]# yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][6] = (1-yield_tables_final_structure_subtable['mass_in_remnants'][6]-sum(yield_tables_final_structure_subtable[self.elements][6]))#yields_for_one_metallicity[0][27]# yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable#[::-1] self.table = yield_tables_final_structure def Nomoto2013_net(self): ''' Nomoto2013 sn2 yields from 13Msun onwards ''' import numpy.lib.recfunctions as rcfuncs dt = np.dtype('a13,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8') yield_tables = {} self.metallicities = [0.0500,0.0200,0.0080,0.0040,0.0010] self.masses = np.array((13,15,18,20,25,30,40)) z = np.genfromtxt(localpath + 'input/yields/Nomoto2013/nomoto_2013_z=0.0200.dat',dtype=dt,names = True) yield_tables_dict = {} for item in self.metallicities: z = np.genfromtxt(localpath + 'input/yields/Nomoto2013/nomoto_2013_z=%.4f.dat' %(item),dtype=dt,names = True) yield_tables_dict[item]=z hydrogen_list = ['H__1','H__2'] helium_list = ['He_3','He_4'] lithium_list = ['Li_6','Li_7'] berillium_list = ['Be_9'] boron_list = ['B_10','B_11'] carbon_list = ['C_12','C_13'] nitrogen_list = ['N_14','N_15'] oxygen_list = ['O_16','O_17','O_18'] fluorin_list = ['F_19'] neon_list = ['Ne20','Ne21','Ne22'] sodium_list = ['Na23'] magnesium_list = ['Mg24','Mg25','Mg26'] aluminium_list = ['Al27'] silicon_list = ['Si28','Si29','Si30'] phosphorus_list = ['P_31'] sulfur_list = ['S_32','S_33','S_34','S_36'] chlorine_list = ['Cl35','Cl37'] argon_list = ['Ar36','Ar38','Ar40'] potassium_list = ['K_39','K_41'] calcium_list = ['K_40','Ca40','Ca42','Ca43','Ca44','Ca46','Ca48'] scandium_list = ['Sc45'] titanium_list = ['Ti46','Ti47','Ti48','Ti49','Ti50'] vanadium_list = ['V_50','V_51'] chromium_list = ['Cr50','Cr52','Cr53','Cr54'] manganese_list = ['Mn55'] iron_list = ['Fe54', 'Fe56','Fe57','Fe58'] cobalt_list = ['Co59'] nickel_list = ['Ni58','Ni60','Ni61','Ni62','Ni64'] copper_list = ['Cu63','Cu65'] zinc_list = ['Zn64','Zn66','Zn67','Zn68','Zn70'] gallium_list = ['Ga69','Ga71'] germanium_list = ['Ge70','Ge72','Ge73','Ge74'] indexing = {} indexing['H'] = hydrogen_list indexing['He'] = helium_list indexing['Li'] = lithium_list indexing['Be'] = berillium_list indexing['B'] = boron_list indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Ar'] = argon_list indexing['K'] = potassium_list indexing['Ca'] = calcium_list indexing['Sc'] = scandium_list indexing['Ti'] = titanium_list indexing['V'] = vanadium_list indexing['Cr'] = chromium_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list indexing['Cu'] = copper_list indexing['Zn'] = zinc_list indexing['Ga'] = gallium_list indexing['Ge'] = germanium_list self.elements = list(indexing.keys()) ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yield_tables_final_structure[metallicity] = np.load(localpath + 'input/yields/Nomoto2013/nomoto_net_met_ind_%d.npy' %(metallicity_index)) self.table = yield_tables_final_structure ####################### class AGB_feedback(object): def __init__(self): """ This is the object that holds the feedback table for agb stars. The different methods load different tables from the literature. They are in the input/yields/ folder. """ def Ventura(self): """ Ventura 2013 net yields from Paolo himself """ self.metallicities = [0.04,0.018,0.008,0.004,0.001,0.0003] x = np.genfromtxt(localpath + 'input/yields/Ventura2013/0.018.txt',names=True) self.masses = x['Mass'] self.elements = ['H', 'He', 'Li','C','N','O','F','Ne','Na','Mg','Al','Si'] ### yield_tables_final_structure = {} for metallicity in self.metallicities: x = np.genfromtxt(localpath + 'input/yields/Ventura2013/%s.txt' %(str(metallicity)),names=True) additional_keys = ['Mass', 'mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements base = np.zeros(len(x['Mass'])) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = x['Mass'] yield_tables_final_structure_subtable['mass_in_remnants'] = np.divide(x['mass_in_remnants'],x['Mass']) for item in self.elements: if item == 'C': yield_tables_final_structure_subtable[item] = x['C12'] yield_tables_final_structure_subtable[item] += x['C13'] elif item == 'N': yield_tables_final_structure_subtable[item] = x['N14'] elif item == 'O': yield_tables_final_structure_subtable[item] = x['O16'] yield_tables_final_structure_subtable[item] += x['O17'] yield_tables_final_structure_subtable[item] += x['O18'] elif item == 'F': yield_tables_final_structure_subtable[item] = x['F19'] elif item == 'Ne': yield_tables_final_structure_subtable[item] = x['NE20'] yield_tables_final_structure_subtable[item] += x['NE22'] elif item == 'Na': yield_tables_final_structure_subtable[item] = x['NA23'] elif item == 'Mg': yield_tables_final_structure_subtable[item] = x['MG24'] yield_tables_final_structure_subtable[item] += x['MG25'] yield_tables_final_structure_subtable[item] += x['MG26'] elif item == 'Al': yield_tables_final_structure_subtable[item] = x['AL26'] yield_tables_final_structure_subtable[item] += x['AL27'] elif item == 'Si': yield_tables_final_structure_subtable[item] = x['SI28'] else: yield_tables_final_structure_subtable[item] = x[item] for item in self.elements: yield_tables_final_structure_subtable[item] = np.divide(yield_tables_final_structure_subtable[item],x['Mass']) for i,item in enumerate(x['Mass']): yield_tables_final_structure_subtable['unprocessed_mass_in_winds'][i] = 1. - (yield_tables_final_structure_subtable['mass_in_remnants'][i] + sum(list(yield_tables_final_structure_subtable[self.elements][i]))) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure ### def Nomoto2013(self): ''' Nomoto2013 agb yields up to 6.5Msun and are a copy of Karakas2010. Only that the yields here are given as net yields which does not help so much ''' dt = np.dtype('a13,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8') yield_tables = {} self.metallicities = [0.0500,0.0200,0.0080,0.0040,0.0010] self.masses = np.array((1.,1.2,1.5,1.8,1.9,2.0,2.2,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0))#,6.5,7.0,8.0,10.)) z = np.genfromtxt(localpath + 'input/yields/Nomoto2013/nomoto_2013_z=0.0200.dat',dtype=dt,names = True) yield_tables_dict = {} for item in self.metallicities: z = np.genfromtxt(localpath + 'input/yields/Nomoto2013/nomoto_2013_z=%.4f.dat' %(item),dtype=dt,names = True) yield_tables_dict[item]=z ######################### hydrogen_list = ['H__1','H__2'] helium_list = ['He_3','He_4'] lithium_list = ['Li_6','Li_7'] berillium_list = ['Be_9'] boron_list = ['B_10','B_11'] carbon_list = ['C_12','C_13'] nitrogen_list = ['N_14','N_15'] oxygen_list = ['O_16','O_17','O_18'] fluorin_list = ['F_19'] neon_list = ['Ne20','Ne21','Ne22'] sodium_list = ['Na23'] magnesium_list = ['Mg24','Mg25','Mg26'] aluminium_list = ['Al27'] silicon_list = ['Si28','Si29','Si30'] phosphorus_list = ['P_31'] sulfur_list = ['S_32','S_33','S_34','S_36'] chlorine_list = ['Cl35','Cl37'] argon_list = ['Ar36','Ar38','Ar40'] potassium_list = ['K_39','K_41'] calcium_list = ['K_40','Ca40','Ca42','Ca43','Ca44','Ca46','Ca48'] scandium_list = ['Sc45'] titanium_list = ['Ti46','Ti47','Ti48','Ti49','Ti50'] vanadium_list = ['V_50','V_51'] chromium_list = ['Cr50','Cr52','Cr53','Cr54'] manganese_list = ['Mn55'] iron_list = ['Fe54', 'Fe56','Fe57','Fe58'] cobalt_list = ['Co59'] nickel_list = ['Ni58','Ni60','Ni61','Ni62','Ni64'] copper_list = ['Cu63','Cu65'] zinc_list = ['Zn64','Zn66','Zn67','Zn68','Zn70'] gallium_list = ['Ga69','Ga71'] germanium_list = ['Ge70','Ge72','Ge73','Ge74'] indexing = {} indexing['H'] = hydrogen_list indexing['He'] = helium_list indexing['Li'] = lithium_list indexing['Be'] = berillium_list indexing['B'] = boron_list indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Ar'] = argon_list indexing['K'] = potassium_list indexing['Ca'] = calcium_list indexing['Sc'] = scandium_list indexing['Ti'] = titanium_list indexing['V'] = vanadium_list indexing['Cr'] = chromium_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list indexing['Cu'] = copper_list indexing['Zn'] = zinc_list indexing['Ga'] = gallium_list indexing['Ge'] = germanium_list self.elements = indexing.keys() ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yields_for_one_metallicity = yield_tables_dict[metallicity] final_mass_name_tag = 'mass_in_remnants' additional_keys = ['Mass',final_mass_name_tag] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = self.masses for i,item in enumerate(self.elements): yield_tables_final_structure_subtable[item] = 0 for j,jtem in enumerate(indexing[item]): ################### here we can change the yield that we need for processing. normalising 'ejected_mass' with the initial mass to get relative masses line_of_one_element = yields_for_one_metallicity[np.where(yields_for_one_metallicity['M']==jtem)][0] temp1 = np.zeros(len(self.masses)) for s in range(len(self.masses)): temp1[s] = line_of_one_element[s+2] yield_tables_final_structure_subtable[item] += np.divide(temp1,self.masses) for t in range(len(self.masses)): yield_tables_final_structure_subtable[final_mass_name_tag][t] = (1-sum(yield_tables_final_structure_subtable[self.elements][t]))#yields_for_one_metallicity[0][21]# yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable#[::-1] self.table = yield_tables_final_structure def Nugrid(self): ''' loading the Nugrid intermediate mass stellar yields NuGrid stellar data set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01 ''' import numpy.lib.recfunctions as rcfuncs tdtype = [('empty',int),('element1','|S3'),('165',float),('200',float),('300',float),('500',float),('1500',float),('2000',float),('2500',float)] yield_tables = {} self.metallicities = [0.02,0.01] for i,metallicity_index in enumerate([2,1]): y = np.genfromtxt(localpath + 'input/yields/NuGrid_AGB_SNII_2013/set1p%d/element_table_set1.%d_yields_winds.txt' %(metallicity_index,metallicity_index),dtype = tdtype,names = None,skip_header = 3, delimiter = '&', autostrip = True) ## Python3 need transformation between bytes and strings element_list2 = [] for j,jtem in enumerate(y['element1']): element_list2.append(jtem.decode('utf8')) y = rcfuncs.append_fields(y,'element',element_list2,usemask = False) yield_tables[self.metallicities[i]] = y self.elements = list(yield_tables[0.02]['element']) self.masses = np.array((1.65,2.0,3.0,5.0)) ###### ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(self.metallicities): yields_for_one_metallicity = yield_tables[metallicity] final_mass_name_tag = 'mass_in_remnants' additional_keys = ['Mass',final_mass_name_tag] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = self.masses for i,item in enumerate(self.elements): ################### here we can change the yield that we need for processing. normalising 'ejected_mass' with the initial mass to get relative masses line_of_one_element = yields_for_one_metallicity[np.where(yields_for_one_metallicity['element']==item)] temp1 = np.zeros(4) temp1[0] = line_of_one_element['165'] temp1[1] = line_of_one_element['200'] temp1[2] = line_of_one_element['300'] temp1[3] = line_of_one_element['500'] yield_tables_final_structure_subtable[item] = np.divide(temp1,self.masses) yield_tables_final_structure_subtable[final_mass_name_tag][0] = (1-sum(yield_tables_final_structure_subtable[self.elements][0])) yield_tables_final_structure_subtable[final_mass_name_tag][1] = (1-sum(yield_tables_final_structure_subtable[self.elements][1])) yield_tables_final_structure_subtable[final_mass_name_tag][2] = (1-sum(yield_tables_final_structure_subtable[self.elements][2])) yield_tables_final_structure_subtable[final_mass_name_tag][3] = (1-sum(yield_tables_final_structure_subtable[self.elements][3])) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable[::-1] self.table = yield_tables_final_structure ###### def Karakas(self): ''' loading the yield table of Karakas 2010. ''' import numpy.lib.recfunctions as rcfuncs DATADIR = localpath + 'input/yields/Karakas2010' if not os.path.exists(DATADIR): os.mkdir(DATADIR) MASTERFILE = '{}/karakas_yields'.format(DATADIR) def _download_karakas(): """ Downloads Karakas yields from Vizier. """ #url = 'http://zenodo.org/record/12800/files/dartmouth.h5' url = 'http://cdsarc.u-strasbg.fr/viz-bin/nph-Cat/tar.gz?J%2FMNRAS%2F403%2F1413' import urllib print('Downloading Karakas 2010 yield tables from Vizier (should happen only at the first time)...') if os.path.exists(MASTERFILE): os.remove(MASTERFILE) urllib.urlretrieve(url,MASTERFILE) import tarfile tar = tarfile.open(MASTERFILE) tar.extractall(path=DATADIR) tar.close() if not os.path.exists(MASTERFILE): _download_karakas() tdtype = [('imass',float),('metallicity',float),('fmass',float),('species1','|S4'),('A',int),('net_yield',float),('ejected_mass',float),('initial_wind',float),('average_wind',float),('initial_mass_fraction',float),('production_factor',float)] metallicity_list = [0.02, 0.008, 0.004 ,0.0001] self.metallicities = metallicity_list tables = [] for i,item in enumerate(metallicity_list): y = np.genfromtxt('%s/tablea%d.dat' %(DATADIR,i+2), dtype = tdtype, names = None) ## Python3 need transformation between bytes and strings element_list2 = [] for j,jtem in enumerate(y['species1']): element_list2.append(jtem.decode('utf8')) y = rcfuncs.append_fields(y,'species',element_list2,usemask = False) tables.append(y) ### easy to extend to other species just make a new list of isotopes (see karakas tables) ### and then also extend the indexing variable. ### The choice for specific elements can be done later when just using specific species hydrogen_list = ['n','p','d'] helium_list = ['he3','he4'] lithium_list = ['li7','be7','b8'] carbon_list = ['c12','c13','n13'] nitrogen_list = ['n14','n15','c14','o14','o15'] oxygen_list = [ 'o16','o17','o18','f17','f18'] fluorin_list = ['ne19','f19','o19'] neon_list = ['ne20','ne21','ne22','f20','na21','na22'] sodium_list = ['na23','ne23','mg23'] magnesium_list = ['mg24','mg25','mg26','al-6','na24','al25'] aluminium_list = ['mg27','al*6','al27','si27'] silicon_list = ['al28','si28','si29','si30','p29','p30'] phosphorus_list = ['si31','si32','si33','p31'] sulfur_list = ['s32','s33','s34','p32','p33','p34'] chlorine_list = ['s35'] iron_list = ['fe54', 'fe56','fe57','fe58'] manganese_list = ['fe55'] cobalt_list = ['ni59','fe59','co59'] nickel_list = ['ni58','ni60','ni61','ni62','co60','co61','fe60','fe61'] indexing = {} indexing['H'] = hydrogen_list indexing['He'] = helium_list indexing['Li'] = lithium_list indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list #indexing['S_el'] = ni_to_bi self.elements = list(indexing.keys()) #### little fix for karakas tablea5.dat: 6.0 M_sun is written two times. We chose the first one #tables[3]['imass'][-77:] = 6.5 # this is the fix if the second 6msun line was interpreted as 6.5 msun tables[3] = tables[3][:-77] #### making the general feedback table with yields for the individual elements ### loop for the different metallicities yield_tables = {} for metallicity_index,metallicity in enumerate(metallicity_list[:]): ### loop for the different elements yields_002 = {} for i,item1 in enumerate(indexing): unique_masses = len(np.unique(tables[metallicity_index]['imass'])) element = np.zeros((unique_masses,), dtype=[('imass',float),('species','|S4'),('fmass',float),('net_yield',float),('ejected_mass',float),('initial_mass_fraction',float),('initial_wind',float),('average_wind',float),('production_factor',float)]) for j,item in enumerate(indexing[item1]): cut = np.where(tables[metallicity_index]['species']==item) temp = tables[metallicity_index][cut] if j == 0: element['imass'] = temp['imass'] element['fmass'] = temp['fmass'] element['species'] = temp['species'] ### just for test purposes element['net_yield'] += temp['net_yield'] element['ejected_mass'] += temp['ejected_mass'] element['initial_mass_fraction'] += temp['initial_mass_fraction'] element['initial_wind'] += temp['initial_wind'] element['average_wind'] += temp['average_wind'] element['production_factor'] += temp['production_factor'] yields_002[item1] = element yield_tables[metallicity] = yields_002 self.masses = np.unique(tables[0]['imass']) ## table a3 and a4 and maybe a5 are missing 6.5 Msun its probably easier to skip the 6.5 Msun entries altogether for interpolation reasons ### restructuring the tables such that it looks like the sn2 dictionary: basic_agb[metallicicty][element] yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(metallicity_list[:]): yields_for_one_metallicity = yield_tables[metallicity] final_mass_name_tag = 'mass_in_remnants' additional_keys = ['Mass',final_mass_name_tag] names = additional_keys + self.elements if metallicity == 0.02: #or metallicity == 0.0001: base = np.zeros(len(self.masses)) else: base = np.zeros(len(self.masses)-1) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = yields_for_one_metallicity[self.elements[0]]['imass'] yield_tables_final_structure_subtable[final_mass_name_tag] =
np.divide(yields_for_one_metallicity[self.elements[0]]['fmass'],yield_tables_final_structure_subtable['Mass'])
numpy.divide