prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
import matplotlib
import matplotlib.collections
import matplotlib.pyplot as plt
import numpy as np
from .entropy_approximate import entropy_approximate
from .optim_complexity_delay import (
_embedding_delay_metric,
_embedding_delay_plot,
_embedding_delay_select,
)
from .optim_complexity_dimension import (
_embedding_dimension_afn,
_embedding_dimension_ffn,
_embedding_dimension_plot,
)
from .optim_complexity_tolerance import _optimize_tolerance_plot
def complexity_optimize(
signal,
delay_max=50,
delay_method="fraser1986",
dimension_max=10,
dimension_method="afnn",
tolerance_method="maxApEn",
show=False,
**kwargs
):
"""**Joint-estimation of optimal complexity parameters**
The selection of the parameters *Dimension* and *Delay* is a challenge. One approach is to
select them (semi) independently (as dimension selection often requires the delay) from each
other, using :func:`complexity_delay` and :func:`complexity_dimension`.
Estimate optimal complexity parameters Dimension (m), Time Delay (tau) and tolerance (r).
Parameters
----------
signal : Union[list, np.array, pd.Series]
The signal (i.e., a time series) in the form of a vector of values.
delay_max : int
See :func:`complexity_delay`.
delay_method : str
See :func:`complexity_delay`.
dimension_max : int
See :func:`complexity_dimension`.
dimension_method : str
See :func:`complexity_dimension`.
tolerance_method : str
See :func:`complexity_tolerance`.
show : bool
Defaults to ``False``.
Returns
-------
optimal_dimension : int
Optimal dimension.
optimal_delay : int
Optimal time delay.
optimal_tolerance : int
Optimal tolerance
See Also
------------
complexity_delay, complexity_dimension, complexity_tolerance
Examples
---------
.. ipython:: python
import neurokit2 as nk
signal = nk.signal_simulate(duration=10, frequency=[5, 7], noise=0.01)
parameters = nk.complexity_optimize(signal, show=True)
parameters
References
-----------
* <NAME>., <NAME>., & <NAME>. (2003, April). A differential entropy based
method for determining the optimal embedding parameters of a signal. In 2003 IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP'03). (Vol. 6, pp. VI-29). IEEE.
* <NAME>., & <NAME>. (2009). The role of the embedding dimension and time delay in time
series forecasting. IFAC Proceedings Volumes, 42(7), 316-320.
* <NAME>., <NAME>., & <NAME>. (1994). Reconstruction expansion as a
geometry-based framework for choosing proper delay times. Physica-Section D, 73(1), 82-98.
* <NAME>. (1997). Practical method for determining the minimum embedding dimension of a scalar
time series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50.
* <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2008). Automatic selection of
the threshold value r for approximate entropy. IEEE Transactions on Biomedical Engineering,
55(8), 1966-1972.
"""
out = {}
# Optimize delay
tau_sequence, metric, metric_values, out["Delay"] = _complexity_delay(
signal, delay_max=delay_max, method=delay_method
)
# Optimize dimension
dimension_seq, optimize_indices, out["Dimension"] = _complexity_dimension(
signal, delay=out["Delay"], dimension_max=dimension_max, method=dimension_method, **kwargs
)
# Optimize r
tolerance_method = tolerance_method.lower()
if tolerance_method in ["traditional"]:
out["Tolerance"] = 0.2 * np.std(signal, ddof=1)
if tolerance_method in ["maxapen", "optimize"]:
r_range, ApEn, out["Tolerance"] = _complexity_tolerance(
signal, delay=out["Delay"], dimension=out["Dimension"]
)
if show is True:
if tolerance_method in ["traditional"]:
raise ValueError(
"NeuroKit error: complexity_optimize():"
"show is not available for current tolerance_method"
)
if tolerance_method in ["maxapen", "optimize"]:
_complexity_plot(
signal,
out,
tau_sequence,
metric,
metric_values,
dimension_seq[:-1],
optimize_indices,
r_range,
ApEn,
dimension_method=dimension_method,
)
return out
# =============================================================================
# Plot
# =============================================================================
def _complexity_plot(
signal,
out,
tau_sequence,
metric,
metric_values,
dimension_seq,
optimize_indices,
r_range,
ApEn,
dimension_method="afnn",
):
# Prepare figure
fig = plt.figure(constrained_layout=False)
spec = matplotlib.gridspec.GridSpec(
ncols=2, nrows=3, height_ratios=[1, 1, 1], width_ratios=[1 - 1.2 / np.pi, 1.2 / np.pi]
)
ax_tau = fig.add_subplot(spec[0, :-1])
ax_dim = fig.add_subplot(spec[1, :-1])
ax_r = fig.add_subplot(spec[2, :-1])
if out["Dimension"] > 2:
plot_type = "3D"
ax_attractor = fig.add_subplot(spec[:, -1], projection="3d")
else:
plot_type = "2D"
ax_attractor = fig.add_subplot(spec[:, -1])
fig.suptitle("Otimization of Complexity Parameters", fontweight="bold", fontsize=16)
plt.subplots_adjust(hspace=0.4, wspace=0.05)
# Plot tau optimization
# Plot Attractor
_embedding_delay_plot(
signal,
metric_values=metric_values,
tau_sequence=tau_sequence,
tau=out["Delay"],
metric=metric,
ax0=ax_tau,
ax1=ax_attractor,
plot=plot_type,
)
# Plot dimension optimization
if dimension_method.lower() in ["afnn"]:
_embedding_dimension_plot(
method=dimension_method,
dimension_seq=dimension_seq,
min_dimension=out["Dimension"],
E1=optimize_indices[0],
E2=optimize_indices[1],
ax=ax_dim,
)
if dimension_method.lower() in ["fnn"]:
_embedding_dimension_plot(
method=dimension_method,
dimension_seq=dimension_seq,
min_dimension=out["Dimension"],
f1=optimize_indices[0],
f2=optimize_indices[1],
f3=optimize_indices[2],
ax=ax_dim,
)
# Plot r optimization
_optimize_tolerance_plot(out["Tolerance"], {"Values": r_range, "Scores": ApEn}, ax=ax_r)
return fig
# =============================================================================
# Internals
# ==============================================================================
def _complexity_delay(signal, delay_max=100, method="fraser1986"):
# Initalize vectors
if isinstance(delay_max, int):
tau_sequence = np.arange(1, delay_max)
else:
tau_sequence = np.array(delay_max)
# Get metric
# Method
method = method.lower()
if method in ["fraser", "fraser1986", "tdmi"]:
metric = "Mutual Information"
algorithm = "first local minimum"
elif method in ["theiler", "theiler1990"]:
metric = "Autocorrelation"
algorithm = "first 1/e crossing"
elif method in ["casdagli", "casdagli1991"]:
metric = "Autocorrelation"
algorithm = "first zero crossing"
elif method in ["rosenstein", "rosenstein1993", "adfd"]:
metric = "Displacement"
algorithm = "closest to 40% of the slope"
else:
raise ValueError("NeuroKit error: complexity_delay(): 'method' not recognized.")
metric_values = _embedding_delay_metric(signal, tau_sequence, metric=metric)
# Get optimal tau
optimal = _embedding_delay_select(metric_values, algorithm=algorithm)
if ~ | np.isnan(optimal) | numpy.isnan |
# coding: utf-8
import os
import sys
sys.path.append(os.path.abspath(os.path.join(sys.path[0], '../')))
from model.model import ResNetLayer3Feat, ResNetLayer4Feat
import torch
import torch.nn.functional as F
from torchvision import transforms
import numpy as np
from dataloader import TrainDataLoader
from torch.autograd import Variable
import outils
from tqdm import tqdm
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--outDir', type=str , help='output model directory')
##---- Loss Parameter ----####
parser.add_argument(
'--tripleLossThreshold', type=float , default = 1.0, help='threshold for triple loss')
##---- Search, Train, Validate Region ----####
parser.add_argument(
'--searchRegion', type=int, default=1, help='feat size')
##---- Training parameters ----####
parser.add_argument(
'--modelPth', type=str, default = '../model/net98_8.pth', help='finetune model weight path')
parser.add_argument(
'--searchDir', type=str, default= '../data/watermark/C_cross_domain/trainBG2/', help='searching directory')
parser.add_argument(
'--queryDir', type=str, default= '../data/watermark/C_cross_domain/trainBG2/', help='query image directory')
parser.add_argument(
'--nbEpoch', type=int , default = 300, help='Number of training epochs')
parser.add_argument(
'--lr', type=float , default = 1e-5, help='learning rate')
parser.add_argument(
'--batchSize', type=int , default = 8, help='batch size')
parser.add_argument(
'--cuda', action='store_true', help='cuda setting')
parser.add_argument(
'--nbSearchImgEpoch', type=int, default = 2000, help='maximum number of searching image in one epoch')
parser.add_argument(
'--featScaleBase', type=int, default= 22, help='median # of features in the scale list ')
parser.add_argument(
'--stepNbFeat', type=int, default= 3, help='difference nb feature in adjacent scales ')
parser.add_argument(
'--nbscale', type=int, default= 2, help='# of octaves')
parser.add_argument(
'--featLayer', type = str, default='conv4', choices=['conv4', 'conv5'], help='which feature, conv4 or conv5')
parser.add_argument(
'--labelInfo', type = str, default='../data/crossDomainTraining.json', help='label category')
parser.add_argument(
'--tmpTrainDir', type = str, default='./trainPair', help='temporal image directory to store training pairs')
parser.add_argument(
'--eta', type = float, default=1e-7, help='eta for calculate norm')
parser.add_argument(
'--margin', type = int, default=3, help='keep top K ')
parser.add_argument(
'--tolerance', type = float, default=4, help='tolerance')
parser.add_argument(
'--valK', type = int, default=300, help='keep top K for validation')
parser.add_argument(
'--K', type = int, default=300, help='keep top K ')
parser.add_argument(
'--dataset', type = str, default='watermark', choices = ['watermark', 'sketch'], help='running on which dataset')
args = parser.parse_args()
tqdm.monitor_interval = 0
print (args)
if os.path.exists(args.tmpTrainDir) :
cmd = 'rm -r {}'.format(args.tmpTrainDir)
os.system(cmd)
os.mkdir(args.tmpTrainDir)
## Dataset, Minimum dimension, Total patch during the training
with open(args.labelInfo, 'r') as f :
label = json.load(f)
QueryImgList = sorted(label['queryImg'])
SearchImgList = sorted(label['searchImg'])
labelCategory = label['annotation']
nbPatchTotal = args.nbSearchImgEpoch
imgFeatMin = args.searchRegion + 2 * args.margin + 1 ## Minimum dimension of feature map in a image
tolerance = args.tolerance / float(args.featScaleBase)
## Loading model
if args.dataset == 'watermark':
normalize = transforms.Normalize(mean = [ 0.75, 0.70, 0.65 ], std = [ 0.14,0.15,0.16 ]) ## watermark classification normalization
if args.featLayer == 'conv4' :
net = ResNetLayer3Feat( None )
msg = 'loading weight from {}'.format(args.modelPth)
print (msg)
modelParams = torch.load(args.modelPth)
for key in list(modelParams.keys()) :
if 'layer4' in key or 'fc.fc1' in key:
modelParams.pop(key, None)
else :
net = ResNetLayer4Feat( None )
msg = 'loading weight from {}'.format(args.modelPth)
print (msg)
for key in list(modelParams.keys()) :
if 'fc.fc1' in key:
modelParams.pop(key, None)
modelParams = torch.load(args.modelPth)
net.load_state_dict( modelParams )
else :
normalize = transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ], std = [ 0.229, 0.224, 0.225 ]) ## imagenet classification normalization
if args.featLayer == 'conv4' :
net = ResNetLayer3Feat( None )
msg = 'loading weight from {}'.format(args.modelPth)
print (msg)
modelParams = torch.load(args.modelPth)
for key in list(modelParams.keys()) :
if 'layer4' in key or 'fc' in key:
modelParams.pop(key, None)
else :
net = ResNetLayer4Feat( None )
msg = 'loading weight from {}'.format(args.modelPth)
print (msg)
for key in list(modelParams.keys()) :
if 'fc' in key:
modelParams.pop(key, None)
modelParams = torch.load(args.modelPth)
net.load_state_dict( modelParams )
if args.cuda :
net.cuda()
featChannel = 256 if args.featLayer == 'conv4' else 512
## stride size, min input size, channel of feature
strideNet = 16
minNet = 15
PATIENCE = 10 # 10 epochs no improved, training will be stopped
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, betas=(0.5, 0.999))
transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
## Scales
scales = [args.featScaleBase - args.stepNbFeat * i for i in range(args.nbscale, 0, -1)] + [args.featScaleBase] + [args.featScaleBase + args.stepNbFeat * i for i in range(1, args.nbscale + 1)]
msg = 'We search to match in {:d} scales, the max dimensions in the feature maps are:'.format(len(scales))
print (msg)
print (scales)
print ('\n\n')
## Output
if not os.path.exists(args.outDir) :
os.mkdir(args.outDir)
history = {'posLoss':[], 'negaLoss':[], 'nbPos':[]}
nbEpochNoImproved = 0
bestNbPos = 0
outHistory = os.path.join(args.outDir, 'history.json')
if len(QueryImgList) <= args.nbSearchImgEpoch :
valQueryImgList = QueryImgList
valSearchImgList = SearchImgList
else :
index = np.linspace(0, len(QueryImgList)-1, args.nbSearchImgEpoch).astype(np.int64)
valQueryImgList = [QueryImgList[i] for i in index]
valSearchImgList = [SearchImgList[i] for i in index]
## Main Loop
for i_ in range(args.nbEpoch) :
logPosLoss = []
logNegaLoss = []
print ('Training Epoch {:d}'.format(i_))
print ('---> Get query...')
net.eval()
if len(QueryImgList) <= args.nbSearchImgEpoch :
queryImgList = QueryImgList
else :
index = np.random.permutation(np.arange(len(QueryImgList)))[:args.nbSearchImgEpoch]
queryImgList = [QueryImgList[i] for i in index]
if len(SearchImgList) <= args.nbSearchImgEpoch :
searchImgList = SearchImgList
else :
index = np.random.permutation(np.arange(len(SearchImgList)))[:args.nbSearchImgEpoch]
searchImgList = [SearchImgList[i] for i in index]
featQuery, queryNameList = outils.RandomQueryFeat(nbPatchTotal, featChannel, args.searchRegion, imgFeatMin, minNet, strideNet, transform, net, args.searchDir, args.margin, queryImgList, args.cuda, args.featScaleBase)
print ('---> Get topK patches matching to query...')
topkImg, topkScale, topkValue, topkW, topkH = outils.RetrievalRes(nbPatchTotal, searchImgList, args.searchDir, args.margin, args.searchRegion, scales, minNet, strideNet, transform, net, featQuery, args.cuda, min(len(searchImgList), args.K))
print ('---> Get training pairs...')
posPair, negPair = outils.TrainPair(args.searchDir, searchImgList, topkImg, topkScale, topkW, topkH, transform, net, args.margin, args.cuda, featChannel, args.searchRegion, minNet, strideNet, labelCategory, min(len(searchImgList), args.K), queryNameList, tolerance)
outils.saveTrainImgPair(posPair, negPair, args.tmpTrainDir, args.margin, args.searchDir, searchImgList, topkImg, topkScale, topkW, topkH, minNet, strideNet, args.searchRegion)
msg = 'NB Pos Train Pair : {:d}, NB Neg Train Pair : {:d}'.format(len(posPair), len(negPair))
print (msg)
if len(posPair) < args.batchSize :
continue
trainloader = TrainDataLoader(args.tmpTrainDir, len(posPair), transform, args.batchSize)
## Calculate Loss
net.train() # switch to train mode
net.trainFreezeBN()
for batch in trainloader :
p1, p2, n1, n2 = batch['posI1'], batch['posI2'], batch['negI1'], batch['negI2']
if args.cuda :
p1, p2, n1, n2 = p1.cuda(), p2.cuda(), n1.cuda(), n2.cuda()
optimizer.zero_grad()
p1, p2, n1, n2 = net(p1), net(p2), net(n1), net(n2)
posSimilarityBatch, negaSimilarityBatch = outils.CosSimilarity(p1, p2, n1, n2, args.margin, args.eta)
## Triplet Loss
loss = torch.clamp(negaSimilarityBatch + args.tripleLossThreshold - 1, min=0) + torch.clamp(args.tripleLossThreshold - posSimilarityBatch, min=0)
## make sure that gradient is not zero
if (loss > 0).any() :
loss = loss.mean()
loss.backward()
optimizer.step()
logPosLoss.append( posSimilarityBatch.mean().item() )
logNegaLoss.append( negaSimilarityBatch.mean().item() )
# Save model, training history; print loss
msg = 'EPOCH {:d}, positive pairs similarity: {:.4f}, negative pairs similarity: {:.4f}'.format(i_, np.mean(logPosLoss), np.mean(logNegaLoss))
print (msg)
history['posLoss'].append(np.mean(logPosLoss))
history['negaLoss'].append( | np.mean(logNegaLoss) | numpy.mean |
# Lint as: python3
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for whitening module."""
import numpy as np
import tensorflow as tf
from delf.python import whiten
class WhitenTest(tf.test.TestCase):
def testApplyWhitening(self):
# Testing the application of the learned whitening.
vectors = np.array([[0.14022471, 0.96360618],
[0.37601032, 0.25528411]])
# Learn whitening for the `vectors`. First element in the `vectors` is
# viewed is the example query and the second element is the corresponding
# positive.
mean_vector, projection = whiten.learn_whitening(vectors, [0], [1])
# Apply the computed whitening.
whitened_vectors = whiten.apply_whitening(vectors, mean_vector, projection)
expected_whitened_vectors = np.array([[0., 9.99999000e-01],
[0., -2.81240452e-13]])
# Compare the obtained whitened vectors with the expected result.
self.assertAllClose(whitened_vectors, expected_whitened_vectors)
def testLearnWhitening(self):
# Testing whitening learning function.
input = np.array([[0.14022471, 0.96360618],
[0.37601032, 0.25528411]])
# Obtain the mean descriptor vector and the projection matrix.
mean_vector, projection = whiten.learn_whitening(input, [0], [1])
expected_mean_vector = np.array([[0.14022471],
[0.37601032]])
expected_projection = np.array([[1.18894378e+00, -1.74326044e-01],
[1.45071361e+04, 9.89421193e+04]])
# Check that the both calculated values are close to the expected values.
self.assertAllClose(mean_vector, expected_mean_vector)
self.assertAllClose(projection, expected_projection)
def testCholeskyPositiveDefinite(self):
# Testing the Cholesky decomposition for the positive definite matrix.
input = np.array([[1, -2j], [2j, 5]])
output = whiten.cholesky(input)
expected_output = np.array([[1. + 0.j, 0. + 0.j], [0. + 2.j, 1. + 0.j]])
# Check that the expected output is obtained.
self.assertAllClose(output, expected_output)
# Check that the properties of the Cholesky decomposition are satisfied.
self.assertAllClose(np.matmul(output, output.T.conj()), input)
def testCholeskyNonPositiveDefinite(self):
# Testing the Cholesky decomposition for a non-positive definite matrix.
input_matrix = np.array([[1., 2.], [-2., 1.]])
decomposition = whiten.cholesky(input_matrix)
expected_output = | np.array([[2., -2.], [-2., 2.]]) | numpy.array |
from __future__ import division, print_function
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mpl_toolkits.mplot3d import Axes3D
import streakline
#import streakline2
import myutils
import ffwd
from streams import load_stream, vcirc_potential, store_progparams, wrap_angles, progenitor_prior
#import streams
import astropy
import astropy.units as u
from astropy.constants import G
from astropy.table import Table
import astropy.coordinates as coord
import gala.coordinates as gc
import scipy.linalg as la
import scipy.interpolate
import scipy.optimize
import zscale
import itertools
import copy
import pickle
# observers
# defaults taken as in astropy v2.0 icrs
mw_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')}
vsun = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}
vsun0 = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}
gc_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 0.1*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')}
vgc = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}
vgc0 = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}
MASK = -9999
pparams_fid = [np.log10(0.5e10)*u.Msun, 0.7*u.kpc, np.log10(6.8e10)*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr]
#pparams_fid = [0.5e-5*u.Msun, 0.7*u.kpc, 6.8e-5*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr]
class Stream():
def __init__(self, x0=[]*u.kpc, v0=[]*u.km/u.s, progenitor={'coords': 'galactocentric', 'observer': {}, 'pm_polar': False}, potential='nfw', pparams=[], minit=2e4*u.Msun, mfinal=2e4*u.Msun, rcl=20*u.pc, dr=0.5, dv=2*u.km/u.s, dt=1*u.Myr, age=6*u.Gyr, nstars=600, integrator='lf'):
"""Initialize """
setup = {}
if progenitor['coords']=='galactocentric':
setup['x0'] = x0
setup['v0'] = v0
elif (progenitor['coords']=='equatorial') & (len(progenitor['observer'])!=0):
if progenitor['pm_polar']:
a = v0[1].value
phi = v0[2].value
v0[1] = a*np.sin(phi)*u.mas/u.yr
v0[2] = a*np.cos(phi)*u.mas/u.yr
# convert positions
xeq = coord.SkyCoord(x0[0], x0[1], x0[2], **progenitor['observer'])
xgal = xeq.transform_to(coord.Galactocentric)
setup['x0'] = [xgal.x.to(u.kpc), xgal.y.to(u.kpc), xgal.z.to(u.kpc)]*u.kpc
# convert velocities
setup['v0'] = gc.vhel_to_gal(xeq.icrs, rv=v0[0], pm=v0[1:], **vsun)
#setup['v0'] = [v.to(u.km/u.s) for v in vgal]*u.km/u.s
else:
raise ValueError('Observer position needed!')
setup['dr'] = dr
setup['dv'] = dv
setup['minit'] = minit
setup['mfinal'] = mfinal
setup['rcl'] = rcl
setup['dt'] = dt
setup['age'] = age
setup['nstars'] = nstars
setup['integrator'] = integrator
setup['potential'] = potential
setup['pparams'] = pparams
self.setup = setup
self.setup_aux = {}
self.fill_intid()
self.fill_potid()
self.st_params = self.format_input()
def fill_intid(self):
"""Assign integrator ID for a given integrator choice
Assumes setup dictionary has an 'integrator' key"""
if self.setup['integrator']=='lf':
self.setup_aux['iaux'] = 0
elif self.setup['integrator']=='rk':
self.setup_aux['iaux'] = 1
def fill_potid(self):
"""Assign potential ID for a given potential choice
Assumes d has a 'potential' key"""
if self.setup['potential']=='nfw':
self.setup_aux['paux'] = 3
elif self.setup['potential']=='log':
self.setup_aux['paux'] = 2
elif self.setup['potential']=='point':
self.setup_aux['paux'] = 0
elif self.setup['potential']=='gal':
self.setup_aux['paux'] = 4
elif self.setup['potential']=='lmc':
self.setup_aux['paux'] = 6
elif self.setup['potential']=='dipole':
self.setup_aux['paux'] = 8
elif self.setup['potential']=='quad':
self.setup_aux['paux'] = 9
elif self.setup['potential']=='octu':
self.setup_aux['paux'] = 10
def format_input(self):
"""Format input parameters for streakline.stream"""
p = [None]*12
# progenitor position
p[0] = self.setup['x0'].si.value
p[1] = self.setup['v0'].si.value
# potential parameters
p[2] = [x.si.value for x in self.setup['pparams']]
# stream smoothing offsets
p[3] = [self.setup['dr'], self.setup['dv'].si.value]
# potential and integrator choice
p[4] = self.setup_aux['paux']
p[5] = self.setup_aux['iaux']
# number of steps and stream stars
p[6] = int(self.setup['age']/self.setup['dt'])
p[7] = int(p[6]/self.setup['nstars'])
# cluster properties
p[8] = self.setup['minit'].si.value
p[9] = self.setup['mfinal'].si.value
p[10] = self.setup['rcl'].si.value
# time step
p[11] = self.setup['dt'].si.value
return p
def generate(self):
"""Create streakline model for a stream of set parameters"""
#xm1, xm2, xm3, xp1, xp2, xp3, vm1, vm2, vm3, vp1, vp2, vp3 = streakline.stream(*p)
stream = streakline.stream(*self.st_params)
self.leading = {}
self.leading['x'] = stream[:3]*u.m
self.leading['v'] = stream[6:9]*u.m/u.s
self.trailing = {}
self.trailing['x'] = stream[3:6]*u.m
self.trailing['v'] = stream[9:12]*u.m/u.s
def observe(self, mode='cartesian', wangle=0*u.deg, units=[], errors=[], nstars=-1, sequential=False, present=[], logerr=False, observer={'z_sun': 0.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_ra': 300*u.deg, 'galcen_dec': 20*u.deg}, vobs={'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}, footprint='none', rotmatrix=None):
"""Observe the stream
stream.obs holds all observations
stream.err holds all errors"""
x = np.concatenate((self.leading['x'].to(u.kpc).value, self.trailing['x'].to(u.kpc).value), axis=1) * u.kpc
v = np.concatenate((self.leading['v'].to(u.km/u.s).value, self.trailing['v'].to(u.km/u.s).value), axis=1) * u.km/u.s
if mode=='cartesian':
# returns coordinates in following order
# x(x, y, z), v(vx, vy, vz)
if len(units)<2:
units.append(self.trailing['x'].unit)
units.append(self.trailing['v'].unit)
if len(errors)<2:
errors.append(0.2*u.kpc)
errors.append(2*u.km/u.s)
# positions
x = x.to(units[0])
ex = np.ones(np.shape(x))*errors[0]
ex = ex.to(units[0])
# velocities
v = v.to(units[1])
ev = np.ones(np.shape(v))*errors[1]
ev = ev.to(units[1])
self.obs = np.concatenate([x,v]).value
self.err = np.concatenate([ex,ev]).value
elif mode=='equatorial':
# assumes coordinates in the following order:
# ra, dec, distance, vrad, mualpha, mudelta
if len(units)!=6:
units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr]
if len(errors)!=6:
errors = [0.2*u.deg, 0.2*u.deg, 0.5*u.kpc, 1*u.km/u.s, 0.2*u.mas/u.yr, 0.2*u.mas/u.yr]
# define reference frame
xgal = coord.Galactocentric(x, **observer)
#frame = coord.Galactocentric(**observer)
# convert
xeq = xgal.transform_to(coord.ICRS)
veq = gc.vgal_to_hel(xeq, v, **vobs)
# store coordinates
ra, dec, dist = [xeq.ra.to(units[0]).wrap_at(wangle), xeq.dec.to(units[1]), xeq.distance.to(units[2])]
vr, mua, mud = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])]
obs = np.hstack([ra, dec, dist, vr, mua, mud]).value
obs = np.reshape(obs,(6,-1))
if footprint=='sdss':
infoot = dec > -2.5*u.deg
obs = obs[:,infoot]
if np.allclose(rotmatrix, np.eye(3))!=1:
xi, eta = myutils.rotate_angles(obs[0], obs[1], rotmatrix)
obs[0] = xi
obs[1] = eta
self.obs = obs
# store errors
err = np.ones(np.shape(self.obs))
if logerr:
for i in range(6):
err[i] *= np.exp(errors[i].to(units[i]).value)
else:
for i in range(6):
err[i] *= errors[i].to(units[i]).value
self.err = err
self.obsunit = units
self.obserror = errors
# randomly select nstars from the stream
if nstars>-1:
if sequential:
select = np.linspace(0, np.shape(self.obs)[1], nstars, endpoint=False, dtype=int)
else:
select = np.random.randint(low=0, high=np.shape(self.obs)[1], size=nstars)
self.obs = self.obs[:,select]
self.err = self.err[:,select]
# include only designated dimensions
if len(present)>0:
self.obs = self.obs[present]
self.err = self.err[present]
self.obsunit = [ self.obsunit[x] for x in present ]
self.obserror = [ self.obserror[x] for x in present ]
def prog_orbit(self):
"""Generate progenitor orbital history"""
orbit = streakline.orbit(self.st_params[0], self.st_params[1], self.st_params[2], self.st_params[4], self.st_params[5], self.st_params[6], self.st_params[11], -1)
self.orbit = {}
self.orbit['x'] = orbit[:3]*u.m
self.orbit['v'] = orbit[3:]*u.m/u.s
def project(self, name, N=1000, nbatch=-1):
"""Project the stream from observed to native coordinates"""
poly = np.loadtxt("../data/{0:s}_all.txt".format(name))
self.streak = np.poly1d(poly)
self.streak_x = np.linspace(np.min(self.obs[0])-2, np.max(self.obs[0])+2, N)
self.streak_y = np.polyval(self.streak, self.streak_x)
self.streak_b = np.zeros(N)
self.streak_l = np.zeros(N)
pdot = np.polyder(poly)
for i in range(N):
length = scipy.integrate.quad(self._delta_path, self.streak_x[0], self.streak_x[i], args=(pdot,))
self.streak_l[i] = length[0]
XB = np.transpose(np.vstack([self.streak_x, self.streak_y]))
n = np.shape(self.obs)[1]
if nbatch<0:
nstep = 0
nbatch = -1
else:
nstep = np.int(n/nbatch)
i1 = 0
i2 = nbatch
for i in range(nstep):
XA = np.transpose(np.vstack([np.array(self.obs[0][i1:i2]), np.array(self.obs[1][i1:i2])]))
self.emdist(XA, XB, i1=i1, i2=i2)
i1 += nbatch
i2 += nbatch
XA = np.transpose(np.vstack([np.array(self.catalog['ra'][i1:]), np.array(self.catalog['dec'][i1:])]))
self.emdist(XA, XB, i1=i1, i2=n)
#self.catalog.write("../data/{0:s}_footprint_catalog.txt".format(self.name), format='ascii.commented_header')
def emdist(self, XA, XB, i1=0, i2=-1):
""""""
distances = scipy.spatial.distance.cdist(XA, XB)
self.catalog['b'][i1:i2] = np.min(distances, axis=1)
imin = np.argmin(distances, axis=1)
self.catalog['b'][i1:i2][self.catalog['dec'][i1:i2]<self.streak_y[imin]] *= -1
self.catalog['l'][i1:i2] = self.streak_l[imin]
def _delta_path(self, x, pdot):
"""Return integrand for calculating length of a path along a polynomial"""
return np.sqrt(1 + np.polyval(pdot, x)**2)
def plot(self, mode='native', fig=None, color='k', **kwargs):
"""Plot stream"""
# Plotting
if fig==None:
plt.close()
plt.figure()
ax = plt.axes([0.12,0.1,0.8,0.8])
if mode=='native':
# Color setup
cindices = np.arange(self.setup['nstars']) # colors of stream particles
nor = mpl.colors.Normalize(vmin=0, vmax=self.setup['nstars']) # colormap normalization
plt.plot(self.setup['x0'][0].to(u.kpc).value, self.setup['x0'][2].to(u.kpc).value, 'wo', ms=10, mew=2, zorder=3)
plt.scatter(self.trailing['x'][0].to(u.kpc).value, self.trailing['x'][2].to(u.kpc).value, s=30, c=cindices, cmap='winter', norm=nor, marker='o', edgecolor='none', lw=0, alpha=0.1)
plt.scatter(self.leading['x'][0].to(u.kpc).value, self.leading['x'][2].to(u.kpc).value, s=30, c=cindices, cmap='autumn', norm=nor, marker='o', edgecolor='none', lw=0, alpha=0.1)
plt.xlabel("X (kpc)")
plt.ylabel("Z (kpc)")
elif mode=='observed':
plt.subplot(221)
plt.plot(self.obs[0], self.obs[1], 'o', color=color, **kwargs)
plt.xlabel("RA")
plt.ylabel("Dec")
plt.subplot(223)
plt.plot(self.obs[0], self.obs[2], 'o', color=color, **kwargs)
plt.xlabel("RA")
plt.ylabel("Distance")
plt.subplot(222)
plt.plot(self.obs[3], self.obs[4], 'o', color=color, **kwargs)
plt.xlabel("V$_r$")
plt.ylabel("$\mu\\alpha$")
plt.subplot(224)
plt.plot(self.obs[3], self.obs[5], 'o', color=color, **kwargs)
plt.xlabel("V$_r$")
plt.ylabel("$\mu\delta$")
plt.tight_layout()
#plt.minorticks_on()
def read(self, fname, units={'x': u.kpc, 'v': u.km/u.s}):
"""Read stream star positions from a file"""
t = np.loadtxt(fname).T
n = np.shape(t)[1]
ns = int((n-1)/2)
self.setup['nstars'] = ns
# progenitor
self.setup['x0'] = t[:3,0] * units['x']
self.setup['v0'] = t[3:,0] * units['v']
# leading tail
self.leading = {}
self.leading['x'] = t[:3,1:ns+1] * units['x']
self.leading['v'] = t[3:,1:ns+1] * units['v']
# trailing tail
self.trailing = {}
self.trailing['x'] = t[:3,ns+1:] * units['x']
self.trailing['v'] = t[3:,ns+1:] * units['v']
def save(self, fname):
"""Save stream star positions to a file"""
# define table
t = Table(names=('x', 'y', 'z', 'vx', 'vy', 'vz'))
# add progenitor info
t.add_row(np.ravel([self.setup['x0'].to(u.kpc).value, self.setup['v0'].to(u.km/u.s).value]))
# add leading tail infoobsmode
tt = Table(np.concatenate((self.leading['x'].to(u.kpc).value, self.leading['v'].to(u.km/u.s).value)).T, names=('x', 'y', 'z', 'vx', 'vy', 'vz'))
t = astropy.table.vstack([t,tt])
# add trailing tail info
tt = Table(np.concatenate((self.trailing['x'].to(u.kpc).value, self.trailing['v'].to(u.km/u.s).value)).T, names=('x', 'y', 'z', 'vx', 'vy', 'vz'))
t = astropy.table.vstack([t,tt])
# save to file
t.write(fname, format='ascii.commented_header')
# make a streakline model of a stream
def stream_model(name='gd1', pparams0=pparams_fid, dt=0.2*u.Myr, rotmatrix=np.eye(3), graph=False, graphsave=False, observer=mw_observer, vobs=vsun, footprint='', obsmode='equatorial'):
"""Create a streakline model of a stream
baryonic component as in kupper+2015: 3.4e10*u.Msun, 0.7*u.kpc, 1e11*u.Msun, 6.5*u.kpc, 0.26*u.kpc"""
# vary progenitor parameters
mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb'))
for i in range(3):
mock['x0'][i] += pparams0[26+i]
mock['v0'][i] += pparams0[29+i]
# vary potential parameters
potential = 'octu'
pparams = pparams0[:26]
#print(pparams[0])
pparams[0] = (10**pparams0[0].value)*pparams0[0].unit
pparams[2] = (10**pparams0[2].value)*pparams0[2].unit
#pparams[0] = pparams0[0]*1e15
#pparams[2] = pparams0[2]*1e15
#print(pparams[0])
# adjust circular velocity in this halo
vobs['vcirc'] = vcirc_potential(observer['galcen_distance'], pparams=pparams)
# create a model stream with these parameters
params = {'generate': {'x0': mock['x0'], 'v0': mock['v0'], 'progenitor': {'coords': 'equatorial', 'observer': mock['observer'], 'pm_polar': False}, 'potential': potential, 'pparams': pparams, 'minit': mock['mi'], 'mfinal': mock['mf'], 'rcl': 20*u.pc, 'dr': 0., 'dv': 0*u.km/u.s, 'dt': dt, 'age': mock['age'], 'nstars': 400, 'integrator': 'lf'}, 'observe': {'mode': mock['obsmode'], 'wangle': mock['wangle'], 'nstars':-1, 'sequential':True, 'errors': [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s, 0.5*u.mas/u.yr, 0.5*u.mas/u.yr], 'present': [0,1,2,3,4,5], 'observer': mock['observer'], 'vobs': mock['vobs'], 'footprint': mock['footprint'], 'rotmatrix': rotmatrix}}
stream = Stream(**params['generate'])
stream.generate()
stream.observe(**params['observe'])
################################
# Plot observed stream and model
if graph:
observed = load_stream(name)
Ndim = np.shape(observed.obs)[0]
modcol = 'k'
obscol = 'orange'
ylabel = ['Dec (deg)', 'Distance (kpc)', 'Radial velocity (km/s)']
plt.close()
fig, ax = plt.subplots(1, 3, figsize=(12,4))
for i in range(3):
plt.sca(ax[i])
plt.gca().invert_xaxis()
plt.xlabel('R.A. (deg)')
plt.ylabel(ylabel[i])
plt.plot(observed.obs[0], observed.obs[i+1], 's', color=obscol, mec='none', ms=8, label='Observed stream')
plt.plot(stream.obs[0], stream.obs[i+1], 'o', color=modcol, mec='none', ms=4, label='Fiducial model')
if i==0:
plt.legend(frameon=False, handlelength=0.5, fontsize='small')
plt.tight_layout()
if graphsave:
plt.savefig('../plots/mock_observables_{}_p{}.png'.format(name, potential), dpi=150)
return stream
def progenitor_params(n):
"""Return progenitor parameters for a given stream"""
if n==-1:
age = 1.6*u.Gyr
mi = 1e4*u.Msun
mf = 2e-1*u.Msun
x0, v0 = gd1_coordinates(observer=mw_observer)
elif n==-2:
age = 2.7*u.Gyr
mi = 1e5*u.Msun
mf = 2e4*u.Msun
x0, v0 = pal5_coordinates(observer=mw_observer, vobs=vsun0)
elif n==-3:
age = 3.5*u.Gyr
mi = 5e4*u.Msun
mf = 2e-1*u.Msun
x0, v0 = tri_coordinates(observer=mw_observer)
elif n==-4:
age = 2*u.Gyr
mi = 2e4*u.Msun
mf = 2e-1*u.Msun
x0, v0 = atlas_coordinates(observer=mw_observer)
out = {'x0': x0, 'v0': v0, 'age': age, 'mi': mi, 'mf': mf}
return out
def gal2eq(x, v, observer=mw_observer, vobs=vsun0):
""""""
# define reference frame
xgal = coord.Galactocentric(np.array(x)[:,np.newaxis]*u.kpc, **observer)
# convert
xeq = xgal.transform_to(coord.ICRS)
veq = gc.vgal_to_hel(xeq, np.array(v)[:,np.newaxis]*u.km/u.s, **vobs)
# store coordinates
units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr]
xobs = [xeq.ra.to(units[0]), xeq.dec.to(units[1]), xeq.distance.to(units[2])]
vobs = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])]
return(xobs, vobs)
def gd1_coordinates(observer=mw_observer):
"""Approximate GD-1 progenitor coordinates"""
x = coord.SkyCoord(ra=154.377*u.deg, dec=41.5309*u.deg, distance=8.2*u.kpc, **observer)
x_ = x.galactocentric
x0 = [x_.x.value, x_.y.value, x_.z.value]
v0 = [-90, -250, -120]
return (x0, v0)
def pal5_coordinates(observer=mw_observer, vobs=vsun0):
"""Pal5 coordinates"""
# sdss
ra = 229.0128*u.deg
dec = -0.1082*u.deg
# bob's rrlyrae
d = 21.7*u.kpc
# harris
#d = 23.2*u.kpc
# odenkirchen 2002
vr = -58.7*u.km/u.s
# fritz & kallivayalil 2015
mua = -2.296*u.mas/u.yr
mud = -2.257*u.mas/u.yr
d = 24*u.kpc
x = coord.SkyCoord(ra=ra, dec=dec, distance=d, **observer)
x0 = x.galactocentric
v0 = gc.vhel_to_gal(x.icrs, rv=vr, pm=[mua, mud], **vobs).to(u.km/u.s)
return ([x0.x.value, x0.y.value, x0.z.value], v0.value.tolist())
def tri_coordinates(observer=mw_observer):
"""Approximate Triangulum progenitor coordinates"""
x = coord.SkyCoord(ra=22.38*u.deg, dec=30.26*u.deg, distance=33*u.kpc, **observer)
x_ = x.galactocentric
x0 = [x_.x.value, x_.y.value, x_.z.value]
v0 = [-40, 155, 155]
return (x0, v0)
def atlas_coordinates(observer=mw_observer):
"""Approximate ATLAS progenitor coordinates"""
x = coord.SkyCoord(ra=20*u.deg, dec=-27*u.deg, distance=20*u.kpc, **observer)
x_ = x.galactocentric
x0 = [x_.x.value, x_.y.value, x_.z.value]
v0 = [40, 150, -120]
return (x0, v0)
# great circle orientation
def find_greatcircle(stream=None, name='gd1', pparams=pparams_fid, dt=0.2*u.Myr, save=True, graph=True):
"""Save rotation matrix for a stream model"""
if stream==None:
stream = stream_model(name, pparams0=pparams, dt=dt)
# find the pole
ra = np.radians(stream.obs[0])
dec = np.radians(stream.obs[1])
rx = np.cos(ra) * np.cos(dec)
ry = np.sin(ra) * np.cos(dec)
rz = np.sin(dec)
r = np.column_stack((rx, ry, rz))
# fit the plane
x0 = np.array([0, 1, 0])
lsq = scipy.optimize.minimize(wfit_plane, x0, args=(r,))
x0 = lsq.x/np.linalg.norm(lsq.x)
ra0 = np.arctan2(x0[1], x0[0])
dec0 = np.arcsin(x0[2])
ra0 += np.pi
dec0 = np.pi/2 - dec0
# euler rotations
R0 = myutils.rotmatrix(np.degrees(-ra0), 2)
R1 = myutils.rotmatrix(np.degrees(dec0), 1)
R2 = myutils.rotmatrix(0, 2)
R = np.dot(R2, np.matmul(R1, R0))
xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R)
# put xi = 50 at the beginning of the stream
xi[xi>180] -= 360
xi += 360
xi0 = np.min(xi) - 50
R2 = myutils.rotmatrix(-xi0, 2)
R = np.dot(R2, np.matmul(R1, R0))
xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R)
if save:
np.save('../data/rotmatrix_{}'.format(name), R)
f = open('../data/mock_{}.params'.format(name), 'rb')
mock = pickle.load(f)
mock['rotmatrix'] = R
f.close()
f = open('../data/mock_{}.params'.format(name), 'wb')
pickle.dump(mock, f)
f.close()
if graph:
plt.close()
fig, ax = plt.subplots(1,2,figsize=(10,5))
plt.sca(ax[0])
plt.plot(stream.obs[0], stream.obs[1], 'ko')
plt.xlabel('R.A. (deg)')
plt.ylabel('Dec (deg)')
plt.sca(ax[1])
plt.plot(xi, eta, 'ko')
plt.xlabel('$\\xi$ (deg)')
plt.ylabel('$\\eta$ (deg)')
plt.ylim(-5, 5)
plt.tight_layout()
plt.savefig('../plots/gc_orientation_{}.png'.format(name))
return R
def wfit_plane(x, r, p=None):
"""Fit a plane to a set of 3d points"""
Np = np.shape(r)[0]
if np.any(p)==None:
p = np.ones(Np)
Q = np.zeros((3,3))
for i in range(Np):
Q += p[i]**2 * np.outer(r[i], r[i])
x = x/np.linalg.norm(x)
lsq = np.inner(x, np.inner(Q, x))
return lsq
# observed streams
#def load_stream(n):
#"""Load stream observations"""
#if n==-1:
#observed = load_gd1(present=[0,1,2,3])
#elif n==-2:
#observed = load_pal5(present=[0,1,2,3])
#elif n==-3:
#observed = load_tri(present=[0,1,2,3])
#elif n==-4:
#observed = load_atlas(present=[0,1,2,3])
#return observed
def endpoints(name):
""""""
stream = load_stream(name)
# find endpoints
amin = np.argmin(stream.obs[0])
amax = np.argmax(stream.obs[0])
ra = np.array([stream.obs[0][i] for i in [amin, amax]])
dec = np.array([stream.obs[1][i] for i in [amin, amax]])
f = open('../data/mock_{}.params'.format(name), 'rb')
mock = pickle.load(f)
# rotate endpoints
R = mock['rotmatrix']
xi, eta = myutils.rotate_angles(ra, dec, R)
#xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R)
mock['ra_range'] = ra
mock['xi_range'] = xi #np.percentile(xi, [10,90])
f.close()
f = open('../data/mock_{}.params'.format(name), 'wb')
pickle.dump(mock, f)
f.close()
def load_pal5(present, nobs=50, potential='gal'):
""""""
if len(present)==2:
t = Table.read('../data/pal5_members.txt', format='ascii.commented_header')
dist = 21.7
deltadist = 0.7
np.random.seed(34)
t = t[np.random.randint(0, high=len(t), size=nobs)]
nobs = len(t)
d = np.random.randn(nobs)*deltadist + dist
obs = np.array([t['ra'], t['dec'], d])
obsunit = [u.deg, u.deg, u.kpc]
err = np.repeat( np.array([2e-4, 2e-4, 0.7]), nobs ).reshape(3, -1)
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc]
if len(present)==3:
#t = Table.read('../data/pal5_kinematic.txt', format='ascii.commented_header')
t = Table.read('../data/pal5_allmembers.txt', format='ascii.commented_header')
obs = np.array([t['ra'], t['dec'], t['d']])
obsunit = [u.deg, u.deg, u.kpc]
err = np.array([t['err_ra'], t['err_dec'], t['err_d']])
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc]
if len(present)==4:
#t = Table.read('../data/pal5_kinematic.txt', format='ascii.commented_header')
t = Table.read('../data/pal5_allmembers.txt', format='ascii.commented_header')
obs = np.array([t['ra'], t['dec'], t['d'], t['vr']])
obsunit = [u.deg, u.deg, u.kpc, u.km/u.s]
err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']])
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s]
observed = Stream(potential=potential)
observed.obs = obs
observed.obsunit = obsunit
observed.err = err
observed.obserror = obserr
return observed
def load_gd1(present, nobs=50, potential='gal'):
""""""
if len(present)==3:
t = Table.read('../data/gd1_members.txt', format='ascii.commented_header')
dist = 0
deltadist = 0.5
np.random.seed(34)
t = t[np.random.randint(0, high=len(t), size=nobs)]
nobs = len(t)
d = np.random.randn(nobs)*deltadist + dist
d += t['l']*0.04836 + 9.86
obs = np.array([t['ra'], t['dec'], d])
obsunit = [u.deg, u.deg, u.kpc]
err = np.repeat( np.array([2e-4, 2e-4, 0.5]), nobs ).reshape(3, -1)
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc]
if len(present)==4:
#t = Table.read('../data/gd1_kinematic.txt', format='ascii.commented_header')
t = Table.read('../data/gd1_allmembers.txt', format='ascii.commented_header')
obs = np.array([t['ra'], t['dec'], t['d'], t['vr']])
obsunit = [u.deg, u.deg, u.kpc, u.km/u.s]
err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']])
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s]
ind = np.all(obs!=MASK, axis=0)
observed = Stream(potential=potential)
observed.obs = obs#[np.array(present)]
observed.obsunit = obsunit
observed.err = err#[np.array(present)]
observed.obserror = obserr
return observed
def load_tri(present, nobs=50, potential='gal'):
""""""
if len(present)==4:
t = Table.read('../data/tri_allmembers.txt', format='ascii.commented_header')
obs = np.array([t['ra'], t['dec'], t['d'], t['vr']])
obsunit = [u.deg, u.deg, u.kpc, u.km/u.s]
err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']])
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s]
if len(present)==3:
t = Table.read('../data/tri_allmembers.txt', format='ascii.commented_header')
obs = np.array([t['ra'], t['dec'], t['d']])
obsunit = [u.deg, u.deg, u.kpc]
err = np.array([t['err_ra'], t['err_dec'], t['err_d']])
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc]
ind = np.all(obs!=MASK, axis=0)
observed = Stream(potential=potential)
observed.obs = obs
observed.obsunit = obsunit
observed.err = err
observed.obserror = obserr
return observed
def load_atlas(present, nobs=50, potential='gal'):
""""""
ra, dec = atlas_track()
n = np.size(ra)
d = np.random.randn(n)*2 + 20
obs = np.array([ra, dec, d])
obsunit = [u.deg, u.deg, u.kpc]
err = np.array([np.ones(n)*0.05, np.ones(n)*0.05, np.ones(n)*2])
obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s]
observed = Stream(potential=potential)
observed.obs = obs
observed.obsunit = obsunit
observed.err = err
observed.obserror = obserr
return observed
def atlas_track():
""""""
ra0, dec0 = np.radians(77.16), np.radians(46.92 - 90)
# euler rotations
D = np.array([[np.cos(ra0), np.sin(ra0), 0], [-np.sin(ra0), np.cos(ra0), 0], [0, 0, 1]])
C = np.array([[np.cos(dec0), 0, np.sin(dec0)], [0, 1, 0], [-np.sin(dec0), 0, np.cos(dec0)]])
B = np.diag(np.ones(3))
R = np.dot(B, np.dot(C, D))
Rinv = np.linalg.inv(R)
l0 = np.linspace(0, 2*np.pi, 500)
b0 = np.zeros(500)
xeq, yeq, zeq = myutils.eq2car(l0, b0)
eq = np.column_stack((xeq, yeq, zeq))
eq_rot = np.zeros(np.shape(eq))
for i in range(np.size(l0)):
eq_rot[i] = np.dot(Rinv, eq[i])
l0_rot, b0_rot = myutils.car2eq(eq_rot[:, 0], eq_rot[:, 1], eq_rot[:, 2])
ra_s, dec_s = np.degrees(l0_rot), np.degrees(b0_rot)
ind_s = (ra_s>17) & (ra_s<30)
ra_s = ra_s[ind_s]
dec_s = dec_s[ind_s]
return (ra_s, dec_s)
def fancy_name(n):
"""Return nicely formatted stream name"""
names = {-1: 'GD-1', -2: 'Palomar 5', -3: 'Triangulum', -4: 'ATLAS'}
return names[n]
# model parameters
def get_varied_pars(vary):
"""Return indices and steps for a preset of varied parameters, and a label for varied parameters
Parameters:
vary - string setting the parameter combination to be varied, options: 'potential', 'progenitor', 'halo', or a list thereof"""
if type(vary) is not list:
vary = [vary]
Nt = len(vary)
vlabel = '_'.join(vary)
pid = []
dp = []
for v in vary:
o1, o2 = get_varied_bytype(v)
pid += o1
dp += o2
return (pid, dp, vlabel)
def get_varied_bytype(vary):
"""Get varied parameter of a particular type"""
if vary=='potential':
pid = [5,6,8,10,11]
dp = [20*u.km/u.s, 2*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1), 0.4e11*u.Msun]
elif vary=='bary':
pid = [0,1,2,3,4]
# gd1
dp = [1e-1*u.Msun, 0.005*u.kpc, 1e-1*u.Msun, 0.002*u.kpc, 0.002*u.kpc]
## atlas & triangulum
#dp = [0.4e5*u.Msun, 0.0005*u.kpc, 0.5e6*u.Msun, 0.0002*u.kpc, 0.002*u.kpc]
# pal5
dp = [1e-2*u.Msun, 0.000005*u.kpc, 1e-2*u.Msun, 0.000002*u.kpc, 0.00002*u.kpc]
dp = [1e-7*u.Msun, 0.5*u.kpc, 1e-7*u.Msun, 0.5*u.kpc, 0.5*u.kpc]
dp = [1e-2*u.Msun, 0.5*u.kpc, 1e-2*u.Msun, 0.5*u.kpc, 0.5*u.kpc]
elif vary=='halo':
pid = [5,6,8,10]
dp = [20*u.km/u.s, 2*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1)]
dp = [35*u.km/u.s, 2.9*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1)]
elif vary=='progenitor':
pid = [26,27,28,29,30,31]
dp = [1*u.deg, 1*u.deg, 0.5*u.kpc, 20*u.km/u.s, 0.3*u.mas/u.yr, 0.3*u.mas/u.yr]
elif vary=='dipole':
pid = [11,12,13]
#dp = [1e-11*u.Unit(1), 1e-11*u.Unit(1), 1e-11*u.Unit(1)]
dp = [0.05*u.pc/u.Myr**2, 0.05*u.pc/u.Myr**2, 0.05*u.pc/u.Myr**2]
elif vary=='quad':
pid = [14,15,16,17,18]
dp = [0.5*u.Gyr**-2 for x in range(5)]
elif vary=='octu':
pid = [19,20,21,22,23,24,25]
dp = [0.001*u.Gyr**-2*u.kpc**-1 for x in range(7)]
else:
pid = []
dp = []
return (pid, dp)
def get_parlabel(pid):
"""Return label for a list of parameter ids
Parameter:
pid - list of parameter ids"""
master = ['log $M_b$', '$a_b$', 'log $M_d$', '$a_d$', '$b_d$', '$V_h$', '$R_h$', '$\phi$', '$q_x$', '$q_y$', '$q_z$', '$a_{1,-1}$', '$a_{1,0}$', '$a_{1,1}$', '$a_{2,-2}$', '$a_{2,-1}$', '$a_{2,0}$', '$a_{2,1}$', '$a_{2,2}$', '$a_{3,-3}$', '$a_{3,-2}$', '$a_{3,-1}$', '$a_{3,0}$', '$a_{3,1}$', '$a_{3,2}$', '$a_{3,3}$', '$RA_p$', '$Dec_p$', '$d_p$', '$V_{r_p}$', '$\mu_{\\alpha_p}$', '$\mu_{\delta_p}$', ]
master_units = ['dex', 'kpc', 'dex', 'kpc', 'kpc', 'km/s', 'kpc', 'rad', '', '', '', 'pc/Myr$^2$', 'pc/Myr$^2$', 'pc/Myr$^2$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'deg', 'deg', 'kpc', 'km/s', 'mas/yr', 'mas/yr', ]
if type(pid) is list:
labels = []
units = []
for i in pid:
labels += [master[i]]
units += [master_units[i]]
else:
labels = master[pid]
units = master_units[pid]
return (labels, units)
def get_steps(Nstep=50, log=False):
"""Return deltax steps in both directions
Paramerets:
Nstep - number of steps in one direction (default: 50)
log - if True, steps are logarithmically spaced (default: False)"""
if log:
step = np.logspace(-10, 1, Nstep)
else:
step = np.linspace(0.1, 10, Nstep)
step = np.concatenate([-step[::-1], step])
return (Nstep, step)
def lmc_position():
""""""
ra = 80.8939*u.deg
dec = -69.7561*u.deg
dm = 18.48
d = 10**(1 + dm/5)*u.pc
x = coord.SkyCoord(ra=ra, dec=dec, distance=d)
xgal = [x.galactocentric.x.si, x.galactocentric.y.si, x.galactocentric.z.si]
print(xgal)
def lmc_properties():
""""""
# penarrubia 2016
mass = 2.5e11*u.Msun
ra = 80.8939*u.deg
dec = -69.7561*u.deg
dm = 18.48
d = 10**(1 + dm/5)*u.pc
c1 = coord.SkyCoord(ra=ra, dec=dec, distance=d)
cgal1 = c1.transform_to(coord.Galactocentric)
xgal = np.array([cgal1.x.to(u.kpc).value, cgal1.y.to(u.kpc).value, cgal1.z.to(u.kpc).value])*u.kpc
return (mass, xgal)
# fit bspline to a stream model
def fit_bspline(n, pparams=pparams_fid, dt=0.2*u.Myr, align=False, save='', graph=False, graphsave='', fiducial=False):
"""Fit bspline to a stream model and save to file"""
Ndim = 6
fits = [None]*(Ndim-1)
if align:
rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n))
else:
rotmatrix = None
stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix)
Nobs = 10
k = 3
isort = np.argsort(stream.obs[0])
ra = np.linspace(np.min(stream.obs[0])*1.05, np.max(stream.obs[0])*0.95, Nobs)
t = np.r_[(stream.obs[0][isort][0],)*(k+1), ra, (stream.obs[0][isort][-1],)*(k+1)]
for j in range(Ndim-1):
fits[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[j+1][isort], t, k=k)
if len(save)>0:
np.savez('../data/{:s}'.format(save), fits=fits)
if graph:
xlims, ylims = get_stream_limits(n, align)
ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)']
if align:
ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)']
if fiducial:
stream_fid = stream_model(n, pparams0=pparams_fid, dt=dt, rotmatrix=rotmatrix)
fidsort = np.argsort(stream_fid.obs[0])
ra = np.linspace(np.min(stream_fid.obs[0])*1.05, np.max(stream_fid.obs[0])*0.95, Nobs)
tfid = np.r_[(stream_fid.obs[0][fidsort][0],)*(k+1), ra, (stream_fid.obs[0][fidsort][-1],)*(k+1)]
llabel = 'b-spline fit'
else:
llabel = ''
plt.close()
fig, ax = plt.subplots(2,5,figsize=(20,5), sharex=True, gridspec_kw = {'height_ratios':[3, 1]})
for i in range(Ndim-1):
plt.sca(ax[0][i])
plt.plot(stream.obs[0], stream.obs[i+1], 'ko')
plt.plot(stream.obs[0][isort], fits[i](stream.obs[0][isort]), 'r-', lw=2, label=llabel)
if fiducial:
fits_fid = scipy.interpolate.make_lsq_spline(stream_fid.obs[0][fidsort], stream_fid.obs[i+1][fidsort], tfid, k=k)
plt.plot(stream_fid.obs[0], stream_fid.obs[i+1], 'wo', mec='k', alpha=0.1)
plt.plot(stream_fid.obs[0][fidsort], fits_fid(stream_fid.obs[0][fidsort]), 'b-', lw=2, label='Fiducial')
plt.ylabel(ylabel[i+1])
plt.xlim(xlims[0], xlims[1])
plt.ylim(ylims[i][0], ylims[i][1])
plt.sca(ax[1][i])
if fiducial:
yref = fits_fid(stream.obs[0])
ycolor = 'b'
else:
yref = fits[i](stream.obs[0])
ycolor = 'r'
plt.axhline(0, color=ycolor, lw=2)
if fiducial: plt.plot(stream.obs[0][isort], stream.obs[i+1][isort] - stream_fid.obs[i+1][fidsort], 'wo', mec='k', alpha=0.1)
plt.plot(stream.obs[0], stream.obs[i+1] - yref, 'ko')
if fiducial:
fits_diff = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[i+1][isort] - stream_fid.obs[i+1][fidsort], t, k=k)
plt.plot(stream.obs[0][isort], fits_diff(stream.obs[0][isort]), 'r--')
plt.plot(stream.obs[0][isort], fits[i](stream.obs[0][isort]) - yref[isort], 'r-', lw=2, label=llabel)
plt.xlabel(ylabel[0])
plt.ylabel('$\Delta$ {}'.format(ylabel[i+1].split(' ')[0]))
if fiducial:
plt.sca(ax[0][Ndim-2])
plt.legend(fontsize='small')
plt.tight_layout()
if len(graphsave)>0:
plt.savefig('../plots/{:s}.png'.format(graphsave))
def fitbyt_bspline(n, pparams=pparams_fid, dt=0.2*u.Myr, align=False, save='', graph=False, graphsave='', fiducial=False):
"""Fit each tail individually"""
Ndim = 6
fits = [None]*(Ndim-1)
if align:
rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n))
else:
rotmatrix = None
stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix)
Nobs = 10
k = 3
isort = np.argsort(stream.obs[0])
ra = np.linspace(np.min(stream.obs[0])*1.05, np.max(stream.obs[0])*0.95, Nobs)
t = np.r_[(stream.obs[0][isort][0],)*(k+1), ra, (stream.obs[0][isort][-1],)*(k+1)]
for j in range(Ndim-1):
fits[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[j+1][isort], t, k=k)
if len(save)>0:
np.savez('../data/{:s}'.format(save), fits=fits)
if graph:
xlims, ylims = get_stream_limits(n, align)
ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)']
if align:
ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)']
if fiducial:
stream_fid = stream_model(n, pparams0=pparams_fid, dt=dt, rotmatrix=rotmatrix)
plt.close()
fig, ax = plt.subplots(2,Ndim,figsize=(20,4), sharex=True, gridspec_kw = {'height_ratios':[3, 1]})
for i in range(Ndim):
plt.sca(ax[0][i])
Nhalf = int(0.5*np.size(stream.obs[i]))
plt.plot(stream.obs[i][:Nhalf], 'o')
plt.plot(stream.obs[i][Nhalf:], 'o')
if fiducial:
plt.plot(stream_fid.obs[i][:Nhalf], 'wo', mec='k', mew=0.2, alpha=0.5)
plt.plot(stream_fid.obs[i][Nhalf:], 'wo', mec='k', mew=0.2, alpha=0.5)
plt.ylabel(ylabel[i])
plt.sca(ax[1][i])
if fiducial:
plt.plot(stream.obs[i][:Nhalf] - stream_fid.obs[i][:Nhalf], 'o')
plt.plot(stream.obs[i][Nhalf:] - stream_fid.obs[i][Nhalf:], 'o')
if fiducial:
plt.sca(ax[0][Ndim-1])
plt.legend(fontsize='small')
plt.tight_layout()
if len(graphsave)>0:
plt.savefig('../plots/{:s}.png'.format(graphsave))
else:
return fig
def get_stream_limits(n, align=False):
"""Return lists with limiting values in different dimensions"""
if n==-1:
xlims = [260, 100]
ylims = [[-20, 70], [5, 15], [-400, 400], [-15,5], [-15, 5]]
elif n==-2:
xlims = [250, 210]
ylims = [[-20, 15], [17, 27], [-80, -20], [-5,0], [-5, 0]]
elif n==-3:
xlims = [27, 17]
ylims = [[10, 50], [34, 36], [-175, -50], [0.45, 1], [0.1, 0.7]]
elif n==-4:
xlims = [35, 10]
ylims = [[-40, -20], [15, 25], [50, 200], [-0.5,0.5], [-1.5, -0.5]]
if align:
ylims[0] = [-5, 5]
xup = [110, 110, 80, 80]
xlims = [xup[np.abs(n)-1], 40]
return (xlims, ylims)
# step sizes for derivatives
def iterate_steps(n):
"""Calculate derivatives for different parameter classes, and plot"""
for vary in ['bary', 'halo', 'progenitor']:
print(n, vary)
step_convergence(n, Nstep=10, vary=vary)
choose_step(n, Nstep=10, vary=vary)
def iterate_plotsteps(n):
"""Plot stream models for a variety of model parameters"""
for vary in ['bary', 'halo', 'progenitor']:
print(n, vary)
pid, dp, vlabel = get_varied_pars(vary)
for p in range(len(pid)):
plot_steps(n, p=p, Nstep=5, vary=vary, log=False)
def plot_steps(n, p=0, Nstep=20, log=True, dt=0.2*u.Myr, vary='halo', verbose=False, align=True, observer=mw_observer, vobs=vsun):
"""Plot stream for different values of a potential parameter"""
if align:
rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n))
else:
rotmatrix = None
pparams0 = pparams_fid
pid, dp, vlabel = get_varied_pars(vary)
plabel, punit = get_parlabel(pid[p])
Nstep, step = get_steps(Nstep=Nstep, log=log)
plt.close()
fig, ax = plt.subplots(5,5,figsize=(20,10), sharex=True, gridspec_kw = {'height_ratios':[3, 1, 1, 1, 1]})
# fiducial model
stream0 = stream_model(n, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix, observer=observer, vobs=vobs)
Nobs = 10
k = 3
isort = np.argsort(stream0.obs[0])
ra = np.linspace(np.min(stream0.obs[0])*1.05, np.max(stream0.obs[0])*0.95, Nobs)
t = np.r_[(stream0.obs[0][isort][0],)*(k+1), ra, (stream0.obs[0][isort][-1],)*(k+1)]
fits = [None]*5
for j in range(5):
fits[j] = scipy.interpolate.make_lsq_spline(stream0.obs[0][isort], stream0.obs[j+1][isort], t, k=k)
# excursions
stream_fits = [[None] * 5 for x in range(2 * Nstep)]
for i, s in enumerate(step[:]):
pparams = [x for x in pparams0]
pparams[pid[p]] = pparams[pid[p]] + s*dp[p]
stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix)
color = mpl.cm.RdBu(i/(2*Nstep-1))
#print(i, dp[p], pparams)
# fits
iexsort = np.argsort(stream.obs[0])
raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs)
tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)]
fits_ex = [None]*5
for j in range(5):
fits_ex[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k)
stream_fits[i][j] = fits_ex[j]
plt.sca(ax[0][j])
plt.plot(stream.obs[0], stream.obs[j+1], 'o', color=color, ms=2)
plt.sca(ax[1][j])
plt.plot(stream.obs[0], stream.obs[j+1] - fits[j](stream.obs[0]), 'o', color=color, ms=2)
plt.sca(ax[2][j])
plt.plot(stream.obs[0], fits_ex[j](stream.obs[0]) - fits[j](stream.obs[0]), 'o', color=color, ms=2)
plt.sca(ax[3][j])
plt.plot(stream.obs[0], (fits_ex[j](stream.obs[0]) - fits[j](stream.obs[0]))/(s*dp[p]), 'o', color=color, ms=2)
# symmetric derivatives
ra_der = np.linspace(np.min(stream0.obs[0])*1.05, np.max(stream0.obs[0])*0.95, 100)
for i in range(Nstep):
color = mpl.cm.Greys_r(i/Nstep)
for j in range(5):
dy = stream_fits[i][j](ra_der) - stream_fits[-i-1][j](ra_der)
dydx = -dy / np.abs(2*step[i]*dp[p])
plt.sca(ax[4][j])
plt.plot(ra_der, dydx, '-', color=color, lw=2, zorder=Nstep-i)
# labels, limits
xlims, ylims = get_stream_limits(n, align)
ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)']
if align:
ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)']
for j in range(5):
plt.sca(ax[0][j])
plt.ylabel(ylabel[j+1])
plt.xlim(xlims[0], xlims[1])
plt.ylim(ylims[j][0], ylims[j][1])
plt.sca(ax[1][j])
plt.ylabel('$\Delta$ {}'.format(ylabel[j+1].split(' ')[0]))
plt.sca(ax[2][j])
plt.ylabel('$\Delta$ {}'.format(ylabel[j+1].split(' ')[0]))
plt.sca(ax[3][j])
plt.ylabel('$\Delta${}/$\Delta${}'.format(ylabel[j+1].split(' ')[0], plabel))
plt.sca(ax[4][j])
plt.xlabel(ylabel[0])
plt.ylabel('$\langle$$\Delta${}/$\Delta${}$\\rangle$'.format(ylabel[j+1].split(' ')[0], plabel))
#plt.suptitle('Varying {}'.format(plabel), fontsize='small')
plt.tight_layout()
plt.savefig('../plots/observable_steps_{:d}_{:s}_p{:d}_Ns{:d}.png'.format(n, vlabel, p, Nstep))
def step_convergence(name='gd1', Nstep=20, log=True, layer=1, dt=0.2*u.Myr, vary='halo', align=True, graph=False, verbose=False, Nobs=10, k=3, ra_der=np.nan, Nra=50):
"""Check deviations in numerical derivatives for consecutive step sizes"""
mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb'))
if align:
rotmatrix = mock['rotmatrix']
xmm = mock['xi_range']
else:
rotmatrix = np.eye(3)
xmm = mock['ra_range']
# fiducial model
pparams0 = pparams_fid
stream0 = stream_model(name=name, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix)
if np.any(~np.isfinite(ra_der)):
ra_der = np.linspace(xmm[0]*1.05, xmm[1]*0.95, Nra)
Nra = np.size(ra_der)
# parameters to vary
pid, dp, vlabel = get_varied_pars(vary)
Np = len(pid)
dpvec = np.array([x.value for x in dp])
Nstep, step = get_steps(Nstep=Nstep, log=log)
dydx_all = np.empty((Np, Nstep, 5, Nra))
dev_der = np.empty((Np, Nstep-2*layer))
step_der = np.empty((Np, Nstep-2*layer))
for p in range(Np):
plabel = get_parlabel(pid[p])
if verbose: print(p, plabel)
# excursions
stream_fits = [[None] * 5 for x in range(2 * Nstep)]
for i, s in enumerate(step[:]):
if verbose: print(i, s)
pparams = [x for x in pparams0]
pparams[pid[p]] = pparams[pid[p]] + s*dp[p]
stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix)
# fits
iexsort = np.argsort(stream.obs[0])
raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs)
tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)]
fits_ex = [None]*5
for j in range(5):
fits_ex[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k)
stream_fits[i][j] = fits_ex[j]
# symmetric derivatives
dydx = np.empty((Nstep, 5, Nra))
for i in range(Nstep):
color = mpl.cm.Greys_r(i/Nstep)
for j in range(5):
dy = stream_fits[i][j](ra_der) - stream_fits[-i-1][j](ra_der)
dydx[i][j] = -dy / np.abs(2*step[i]*dp[p])
dydx_all[p] = dydx
# deviations from adjacent steps
step_der[p] = -step[layer:Nstep-layer] * dp[p]
for i in range(layer, Nstep-layer):
dev_der[p][i-layer] = 0
for j in range(5):
for l in range(layer):
dev_der[p][i-layer] += np.sum((dydx[i][j] - dydx[i-l-1][j])**2)
dev_der[p][i-layer] += np.sum((dydx[i][j] - dydx[i+l+1][j])**2)
np.savez('../data/step_convergence_{}_{}_Ns{}_log{}_l{}'.format(name, vlabel, Nstep, log, layer), step=step_der, dev=dev_der, ders=dydx_all, steps_all=np.outer(dpvec,step[Nstep:]))
if graph:
plt.close()
fig, ax = plt.subplots(1,Np,figsize=(4*Np,4))
for p in range(Np):
plt.sca(ax[p])
plt.plot(step_der[p], dev_der[p], 'ko')
#plabel = get_parlabel(pid[p])
#plt.xlabel('$\Delta$ {}'.format(plabel))
plt.ylabel('D')
plt.gca().set_yscale('log')
plt.tight_layout()
plt.savefig('../plots/step_convergence_{}_{}_Ns{}_log{}_l{}.png'.format(name, vlabel, Nstep, log, layer))
def choose_step(name='gd1', tolerance=2, Nstep=20, log=True, layer=1, vary='halo'):
""""""
pid, dp, vlabel = get_varied_pars(vary)
Np = len(pid)
plabels, units = get_parlabel(pid)
punits = ['({})'.format(x) if len(x) else '' for x in units]
t = np.load('../data/step_convergence_{}_{}_Ns{}_log{}_l{}.npz'.format(name, vlabel, Nstep, log, layer))
dev = t['dev']
step = t['step']
dydx = t['ders']
steps_all = t['steps_all'][:,::-1]
Nra = np.shape(dydx)[-1]
best = np.empty(Np)
# plot setup
da = 4
nrow = 2
ncol = Np
plt.close()
fig, ax = plt.subplots(nrow, ncol, figsize=(da*ncol, da*1.3), squeeze=False, sharex='col', gridspec_kw = {'height_ratios':[1.2, 3]})
for p in range(Np):
# choose step
dmin = np.min(dev[p])
dtol = tolerance * dmin
opt_step = np.min(step[p][dev[p]<dtol])
opt_id = step[p]==opt_step
best[p] = opt_step
## largest step w deviation smaller than 1e-4
#opt_step = np.max(step[p][dev[p]<1e-4])
#opt_id = step[p]==opt_step
#best[p] = opt_step
plt.sca(ax[0][p])
for i in range(5):
for j in range(10):
plt.plot(steps_all[p], np.tanh(dydx[p,:,i,np.int64(j*Nra/10)]), '-', color='{}'.format(i/5), lw=0.5, alpha=0.5)
plt.axvline(opt_step, ls='-', color='r', lw=2)
plt.ylim(-1,1)
plt.ylabel('Derivative')
plt.title('{}'.format(plabels[p])+'$_{best}$ = '+'{:2.2g}'.format(opt_step), fontsize='small')
plt.sca(ax[1][p])
plt.plot(step[p], dev[p], 'ko')
plt.axvline(opt_step, ls='-', color='r', lw=2)
plt.plot(step[p][opt_id], dev[p][opt_id], 'ro')
plt.axhline(dtol, ls='-', color='orange', lw=1)
y0, y1 = plt.gca().get_ylim()
plt.axhspan(y0, dtol, color='orange', alpha=0.3, zorder=0)
plt.gca().set_yscale('log')
plt.gca().set_xscale('log')
plt.xlabel('$\Delta$ {} {}'.format(plabels[p], punits[p]))
plt.ylabel('Derivative deviation')
np.save('../data/optimal_step_{}_{}'.format(name, vlabel), best)
plt.tight_layout(h_pad=0)
plt.savefig('../plots/step_convergence_{}_{}_Ns{}_log{}_l{}.png'.format(name, vlabel, Nstep, log, layer))
def read_optimal_step(name, vary, equal=False):
"""Return optimal steps for a range of parameter types"""
if type(vary) is not list:
vary = [vary]
dp = np.empty(0)
for v in vary:
dp_opt = np.load('../data/optimal_step_{}_{}.npy'.format(name, v))
dp = np.concatenate([dp, dp_opt])
if equal:
dp = np.array([0.05, 0.05, 0.2, 1, 0.01, 0.01, 0.05, 0.1, 0.05, 0.1, 0.1, 10, 1, 0.01, 0.01])
return dp
def visualize_optimal_steps(name='gd1', vary=['progenitor', 'bary', 'halo'], align=True, dt=0.2*u.Myr, Nobs=50, k=3):
""""""
mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb'))
if align:
rotmatrix = mock['rotmatrix']
xmm = mock['xi_range']
else:
rotmatrix = np.eye(3)
xmm = mock['ra_range']
# varied parameters
pparams0 = pparams_fid
pid, dp_fid, vlabel = get_varied_pars(vary)
Np = len(pid)
dp_opt = read_optimal_step(name, vary)
dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)]
fiducial = stream_model(name=name, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix)
iexsort = np.argsort(fiducial.obs[0])
raex = np.linspace(np.percentile(fiducial.obs[0], 10), np.percentile(fiducial.obs[0], 90), Nobs)
tex = np.r_[(fiducial.obs[0][iexsort][0],)*(k+1), raex, (fiducial.obs[0][iexsort][-1],)*(k+1)]
fit = scipy.interpolate.make_lsq_spline(fiducial.obs[0][iexsort], fiducial.obs[1][iexsort], tex, k=k)
nrow = 2
ncol = np.int64((Np+1)/nrow)
da = 4
c = ['b', 'b', 'b', 'r', 'r', 'r']
plt.close()
fig, ax = plt.subplots(nrow, ncol, figsize=(ncol*da, nrow*da), squeeze=False)
for p in range(Np):
plt.sca(ax[p%2][int(p/2)])
for i, s in enumerate([-1.1, -1, -0.9, 0.9, 1, 1.1]):
pparams = [x for x in pparams0]
pparams[pid[p]] = pparams[pid[p]] + s*dp[p]
stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix)
# bspline fits to stream centerline
iexsort = np.argsort(stream.obs[0])
raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs)
tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)]
fitex = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[1][iexsort], tex, k=k)
plt.plot(raex, fitex(raex) - fit(raex), '-', color=c[i])
plt.xlabel('R.A. (deg)')
plt.ylabel('Dec (deg)')
#print(get_parlabel(p))
plt.title('$\Delta$ {} = {:.2g}'.format(get_parlabel(p)[0], dp[p]), fontsize='medium')
plt.tight_layout()
plt.savefig('../plots/{}_optimal_steps.png'.format(name), dpi=200)
# observing modes
def define_obsmodes():
"""Output a pickled dictionary with typical uncertainties and dimensionality of data for a number of observing modes"""
obsmodes = {}
obsmodes['fiducial'] = {'sig_obs': np.array([0.1, 2, 5, 0.1, 0.1]), 'Ndim': [3,4,6]}
obsmodes['binospec'] = {'sig_obs': np.array([0.1, 2, 10, 0.1, 0.1]), 'Ndim': [3,4,6]}
obsmodes['hectochelle'] = {'sig_obs': np.array([0.1, 2, 1, 0.1, 0.1]), 'Ndim': [3,4,6]}
obsmodes['desi'] = {'sig_obs': np.array([0.1, 2, 10, np.nan, np.nan]), 'Ndim': [4,]}
obsmodes['gaia'] = {'sig_obs': np.array([0.1, 0.2, 10, 0.2, 0.2]), 'Ndim': [6,]}
obsmodes['exgal'] = {'sig_obs': np.array([0.5, np.nan, 20, np.nan, np.nan]), 'Ndim': [3,]}
pickle.dump(obsmodes, open('../data/observing_modes.info','wb'))
def obsmode_name(mode):
"""Return full name of the observing mode"""
if type(mode) is not list:
mode = [mode]
full_names = {'fiducial': 'Fiducial',
'binospec': 'Binospec',
'hectochelle': 'Hectochelle',
'desi': 'DESI-like',
'gaia': 'Gaia-like',
'exgal': 'Extragalactic'}
keys = full_names.keys()
names = []
for m in mode:
if m in keys:
name = full_names[m]
else:
name = m
names += [name]
return names
# crbs using bspline
def calculate_crb(name='gd1', dt=0.2*u.Myr, vary=['progenitor', 'bary', 'halo'], ra=np.nan, dd=0.5, Nmin=15, verbose=False, align=True, scale=False, errmode='fiducial', k=3):
""""""
mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb'))
if align:
rotmatrix = mock['rotmatrix']
xmm = np.sort(mock['xi_range'])
else:
rotmatrix = np.eye(3)
xmm = np.sort(mock['ra_range'])
# typical uncertainties and data availability
obsmodes = pickle.load(open('../data/observing_modes.info', 'rb'))
if errmode not in obsmodes.keys():
errmode = 'fiducial'
sig_obs = obsmodes[errmode]['sig_obs']
data_dim = obsmodes[errmode]['Ndim']
# mock observations
if np.any(~np.isfinite(ra)):
if (np.int64((xmm[1]-xmm[0])/dd + 1) < Nmin):
dd = (xmm[1]-xmm[0])/Nmin
ra = np.arange(xmm[0], xmm[1]+dd, dd)
#ra = np.linspace(xmm[0]*1.05, xmm[1]*0.95, Nobs)
#else:
Nobs = np.size(ra)
print(name, Nobs)
err = np.tile(sig_obs, Nobs).reshape(Nobs,-1)
# varied parameters
pparams0 = pparams_fid
pid, dp_fid, vlabel = get_varied_pars(vary)
Np = len(pid)
dp_opt = read_optimal_step(name, vary)
dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)]
fits_ex = [[[None]*5 for x in range(2)] for y in range(Np)]
if scale:
dp_unit = unity_scale(dp)
dps = [x*y for x,y in zip(dp, dp_unit)]
# calculate derivatives for all parameters
for p in range(Np):
for i, s in enumerate([-1, 1]):
pparams = [x for x in pparams0]
pparams[pid[p]] = pparams[pid[p]] + s*dp[p]
stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix)
# bspline fits to stream centerline
iexsort = np.argsort(stream.obs[0])
raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs)
tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)]
for j in range(5):
fits_ex[p][i][j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k)
# populate matrix of derivatives and calculate CRB
for Ndim in data_dim:
#for Ndim in [6,]:
Ndata = Nobs * (Ndim - 1)
cyd = np.empty(Ndata)
dydx = np.empty((Np, Ndata))
dy2 = np.empty((2, Np, Ndata))
for j in range(1, Ndim):
for p in range(Np):
dy = fits_ex[p][0][j-1](ra) - fits_ex[p][1][j-1](ra)
dy2[0][p][(j-1)*Nobs:j*Nobs] = fits_ex[p][0][j-1](ra)
dy2[1][p][(j-1)*Nobs:j*Nobs] = fits_ex[p][1][j-1](ra)
#positive = np.abs(dy)>0
#if verbose: print('{:d},{:d} {:s} min{:.1e} max{:1e} med{:.1e}'.format(j, p, get_parlabel(pid[p])[0], np.min(np.abs(dy[positive])), np.max(np.abs(dy)), np.median(np.abs(dy))))
if scale:
dydx[p][(j-1)*Nobs:j*Nobs] = -dy / np.abs(2*dps[p].value)
else:
dydx[p][(j-1)*Nobs:j*Nobs] = -dy / np.abs(2*dp[p].value)
#if verbose: print('{:d},{:d} {:s} min{:.1e} max{:1e} med{:.1e}'.format(j, p, get_parlabel(pid[p])[0], np.min(np.abs(dydx[p][(j-1)*Nobs:j*Nobs][positive])), np.max(np.abs(dydx[p][(j-1)*Nobs:j*Nobs])), np.median(np.abs(dydx[p][(j-1)*Nobs:j*Nobs]))))
#print(j, p, get_parlabel(pid[p])[0], dp[p], np.min(np.abs(dy)), np.max(np.abs(dy)), np.median(dydx[p][(j-1)*Nobs:j*Nobs]))
cyd[(j-1)*Nobs:j*Nobs] = err[:,j-1]**2
np.savez('../data/crb/components_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), dydx=dydx, y=dy2, cyd=cyd, dp=dp_opt)
# data component of the Fisher matrix
cy = np.diag(cyd)
cyi = np.diag(1. / cyd)
caux = np.matmul(cyi, dydx.T)
dxi = np.matmul(dydx, caux)
# component based on prior knowledge of model parameters
pxi = priors(name, vary)
# full Fisher matrix
cxi = dxi + pxi
if verbose:
cx = np.linalg.inv(cxi)
cx = np.matmul(np.linalg.inv(np.matmul(cx, cxi)), cx) # iteration to improve inverse at large cond numbers
sx = np.sqrt(np.diag(cx))
print('CRB', sx)
print('condition {:g}'.format(np.linalg.cond(cxi)))
print('standard inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0])))
cx = stable_inverse(cxi)
print('stable inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0])))
np.savez('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), cxi=cxi, dxi=dxi, pxi=pxi)
def priors(name, vary):
"""Return covariance matrix with prior knowledge about parameters"""
mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb'))
cprog = mock['prog_prior']
cbary = np.array([0.1*x.value for x in pparams_fid[:5]])**-2
chalo = np.zeros(4)
cdipole = np.zeros(3)
cquad = np.zeros(5)
coctu = np.zeros(7)
priors = {'progenitor': cprog, 'bary': cbary, 'halo': chalo, 'dipole': cdipole, 'quad': cquad, 'octu': coctu}
cprior = np.empty(0)
for v in vary:
cprior = np.concatenate([cprior, priors[v]])
pxi = np.diag(cprior)
return pxi
def scale2invert(name='gd1', Ndim=6, vary=['progenitor', 'bary', 'halo'], verbose=False, align=True, errmode='fiducial'):
""""""
pid, dp_fid, vlabel = get_varied_pars(vary)
#dp = read_optimal_step(name, vary)
d = np.load('../data/crb/components_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel))
dydx = d['dydx']
cyd = d['cyd']
y = d['y']
dp = d['dp']
dy = (y[1,:,:] - y[0,:,:])
dydx = (y[1,:,:] - y[0,:,:]) / (2*dp[:,np.newaxis])
scaling_par = np.median(np.abs(dydx), axis=1)
dydx = dydx / scaling_par[:,np.newaxis]
dydx_ = np.reshape(dydx, (len(dp), Ndim-1, -1))
scaling_dim = np.median(np.abs(dydx_), axis=(2,0))
dydx_ = dydx_ / scaling_dim[np.newaxis,:,np.newaxis]
cyd_ = np.reshape(cyd, (Ndim-1, -1))
cyd_ = cyd_ / scaling_dim[:,np.newaxis]
cyd = np.reshape(cyd_, (-1))
dydx = np.reshape(dydx_, (len(dp), -1))
mmin = np.min(np.abs(dy), axis=0)
mmax = np.max(np.abs(dy), axis=0)
mmed = np.median(np.abs(dydx), axis=1)
dyn_range = mmax/mmin
#print(dyn_range)
print(np.min(dyn_range), np.max(dyn_range), np.std(dyn_range))
cy = np.diag(cyd)
cyi = np.diag(1. / cyd)
caux = np.matmul(cyi, dydx.T)
cxi = np.matmul(dydx, caux)
print('condition {:e}'.format(np.linalg.cond(cxi)))
cx = np.linalg.inv(cxi)
cx = np.matmul(np.linalg.inv(np.matmul(cx, cxi)), cx) # iteration to improve inverse at large cond numbers
print('standard inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0])))
cx = stable_inverse(cxi, maxiter=30)
print('stable inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0])))
def unity_scale(dp):
""""""
dim_scale = 10**np.array([2, 3, 3, 2, 4, 3, 7, 7, 5, 7, 7, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4])
dim_scale = 10**np.array([3, 2, 3, 4, 0, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3])
#dim_scale = 10**np.array([2, 3, 3, 1, 3, 2, 5, 5, 3, 5, 5, 2, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3])
#dim_scale = 10**np.array([2, 3, 3, 1, 3, 2, 5, 5, 3, 5, 5, 2, 2, 4, 4, 3, 3, 3])
dp_unit = [(dp[x].value*dim_scale[x])**-1 for x in range(len(dp))]
return dp_unit
def test_inversion(name='gd1', Ndim=6, vary=['progenitor', 'bary', 'halo'], align=True, errmode='fiducial'):
""""""
pid, dp, vlabel = get_varied_pars(vary)
d = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel))
cxi = d['cxi']
N = np.shape(cxi)[0]
cx_ = np.linalg.inv(cxi)
cx = stable_inverse(cxi, verbose=True, maxiter=100)
#cx_ii = stable_inverse(cx, verbose=True, maxiter=50)
print('condition {:g}'.format(np.linalg.cond(cxi)))
print('linalg inverse', np.allclose(np.matmul(cx_,cxi), np.eye(N)))
print('stable inverse', np.allclose(np.matmul(cx,cxi), np.eye(N)))
#print(np.matmul(cx,cxi))
#print('inverse inverse', np.allclose(cx_ii, cxi))
def stable_inverse(a, maxiter=20, verbose=False):
"""Invert a matrix with a bad condition number"""
N = np.shape(a)[0]
# guess
q = np.linalg.inv(a)
qa = np.matmul(q,a)
# iterate
for i in range(maxiter):
if verbose: print(i, np.sqrt(np.sum((qa - np.eye(N))**2)), np.allclose(qa, np.eye(N)))
if np.allclose(qa, np.eye(N)):
return q
qai = np.linalg.inv(qa)
q = np.matmul(qai,q)
qa = np.matmul(q,a)
return q
def crb_triangle(n, vary, Ndim=6, align=True, plot='all', fast=False):
""""""
pid, dp, vlabel = get_varied_pars(vary)
plabels, units = get_parlabel(pid)
params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)]
if align:
alabel = '_align'
else:
alabel = ''
fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel))
cxi = fm['cxi']
if fast:
cx = np.linalg.inv(cxi)
else:
cx = stable_inverse(cxi)
#print(cx[0][0])
if plot=='halo':
cx = cx[:4, :4]
params = params[:4]
elif plot=='bary':
cx = cx[4:9, 4:9]
params = params[4:9]
elif plot=='progenitor':
cx = cx[9:, 9:]
params = params[9:]
Nvar = len(params)
plt.close()
dax = 2
fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row')
for i in range(0,Nvar-1):
for j in range(i+1,Nvar):
plt.sca(ax[j-1][i])
cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]])
w, v = np.linalg.eig(cx_2d)
if np.all(np.isreal(v)):
theta = np.degrees(np.arccos(v[0][0]))
width = np.sqrt(w[0])*2
height = np.sqrt(w[1])*2
e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.5), lw=2)
plt.gca().add_patch(e)
plt.gca().autoscale_view()
#plt.xlim(-ylim[i],ylim[i])
#plt.ylim(-ylim[j], ylim[j])
if j==Nvar-1:
plt.xlabel(params[i])
if i==0:
plt.ylabel(params[j])
# turn off unused axes
for i in range(0,Nvar-1):
for j in range(i+1,Nvar-1):
plt.sca(ax[i][j])
plt.axis('off')
plt.tight_layout()
plt.savefig('../plots/crb_triangle_{:s}_{:d}_{:s}_{:d}_{:s}.pdf'.format(alabel, n, vlabel, Ndim, plot))
def crb_triangle_alldim(name='gd1', vary=['progenitor', 'bary', 'halo'], align=True, plot='all', fast=False, scale=False, errmode='fiducial'):
"""Show correlations in CRB between a chosen set of parameters in a triangle plot"""
pid, dp_fid, vlabel = get_varied_pars(vary)
dp_opt = read_optimal_step(name, vary)
dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)]
plabels, units = get_parlabel(pid)
punits = [' ({})'.format(x) if len(x) else '' for x in units]
params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)]
if plot=='halo':
i0 = 11
i1 = 15
elif plot=='bary':
i0 = 6
i1 = 11
elif plot=='progenitor':
i0 = 0
i1 = 6
elif plot=='dipole':
i0 = 15
i1 = len(params)
else:
i0 = 0
i1 = len(params)
Nvar = i1 - i0
params = params[i0:i1]
if scale:
dp_unit = unity_scale(dp)
#print(dp_unit)
dp_unit = dp_unit[i0:i1]
pid = pid[i0:i1]
label = ['RA, Dec, d', 'RA, Dec, d, $V_r$', 'RA, Dec, d, $V_r$, $\mu_\\alpha$, $\mu_\delta$']
plt.close()
dax = 2
fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row')
for l, Ndim in enumerate([3, 4, 6]):
fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel))
cxi = fm['cxi']
#cxi = np.load('../data/crb/bspline_cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npy'.format(errmode, Ndim, name, align, vlabel))
if fast:
cx = np.linalg.inv(cxi)
else:
cx = stable_inverse(cxi)
cx = cx[i0:i1,i0:i1]
for i in range(0,Nvar-1):
for j in range(i+1,Nvar):
plt.sca(ax[j-1][i])
if scale:
cx_2d = np.array([[cx[i][i]/dp_unit[i]**2, cx[i][j]/(dp_unit[i]*dp_unit[j])], [cx[j][i]/(dp_unit[j]*dp_unit[i]), cx[j][j]/dp_unit[j]**2]])
else:
cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]])
w, v = np.linalg.eig(cx_2d)
if np.all(np.isreal(v)):
theta = np.degrees(np.arctan2(v[1][0], v[0][0]))
width = np.sqrt(w[0])*2
height = np.sqrt(w[1])*2
e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.1+l/4), lw=2, label=label[l])
plt.gca().add_patch(e)
if l==1:
plt.gca().autoscale_view()
if j==Nvar-1:
plt.xlabel(params[i])
if i==0:
plt.ylabel(params[j])
# turn off unused axes
for i in range(0,Nvar-1):
for j in range(i+1,Nvar-1):
plt.sca(ax[i][j])
plt.axis('off')
plt.sca(ax[int(Nvar/2-1)][int(Nvar/2-1)])
plt.legend(loc=2, bbox_to_anchor=(1,1))
plt.tight_layout()
plt.savefig('../plots/cxi_{:s}_{:s}_a{:1d}_{:s}_{:s}.pdf'.format(errmode, name, align, vlabel, plot))
def compare_optimal_steps():
""""""
vary = ['progenitor', 'bary', 'halo', 'dipole', 'quad']
vary = ['progenitor', 'bary', 'halo']
for name in ['gd1', 'tri']:
print(name)
print(read_optimal_step(name, vary))
def get_crb(name, Nstep=10, vary=['progenitor', 'bary', 'halo'], first=True):
""""""
if first:
store_progparams(name)
wrap_angles(name, save=True)
progenitor_prior(name)
find_greatcircle(name=name)
endpoints(name)
for v in vary:
step_convergence(name=name, Nstep=Nstep, vary=v)
choose_step(name=name, Nstep=Nstep, vary=v)
calculate_crb(name=name, vary=vary, verbose=True)
crb_triangle_alldim(name=name, vary=vary)
########################
# cartesian coordinates
# accelerations
def acc_kepler(x, p=1*u.Msun):
"""Keplerian acceleration"""
r = np.linalg.norm(x)*u.kpc
a = -G * p * 1e11 * r**-3 * x
return a.to(u.pc*u.Myr**-2)
def acc_bulge(x, p=[pparams_fid[j] for j in range(2)]):
""""""
r = np.linalg.norm(x)*u.kpc
a = -(G*p[0]*x/(r * (r + p[1])**2)).to(u.pc*u.Myr**-2)
return a
def acc_disk(x, p=[pparams_fid[j] for j in range(2,5)]):
""""""
R = np.linalg.norm(x[:2])*u.kpc
z = x[2]
a = -(G*p[0]*x * (R**2 + (p[1] + np.sqrt(z**2 + p[2]**2))**2)**-1.5).to(u.pc*u.Myr**-2)
a[2] *= (1 + p[2]/np.sqrt(z**2 + p[2]**2))
return a
def acc_nfw(x, p=[pparams_fid[j] for j in [5,6,8,10]]):
""""""
r = np.linalg.norm(x)*u.kpc
q = np.array([1*u.Unit(1), p[2], p[3]])
a = (p[0]**2 * p[1] * r**-3 * (1/(1+p[1]/r) - np.log(1+r/p[1])) * x * q**-2).to(u.pc*u.Myr**-2)
return a
def acc_dipole(x, p=[pparams_fid[j] for j in range(11,14)]):
"""Acceleration due to outside dipole perturbation"""
pv = [x.value for x in p]
a = np.sqrt(3/(4*np.pi)) * np.array([pv[2], pv[0], pv[1]])*u.pc*u.Myr**-2
return a
def acc_quad(x, p=[pparams_fid[j] for j in range(14,19)]):
"""Acceleration due to outside quadrupole perturbation"""
a = np.zeros(3)*u.pc*u.Myr**-2
f = 0.5*np.sqrt(15/np.pi)
a[0] = x[0]*(f*p[4] - f/np.sqrt(3)*p[2]) + x[1]*f*p[0] + x[2]*f*p[3]
a[1] = x[0]*f*p[0] - x[1]*(f*p[4] + f/np.sqrt(3)*p[2]) + x[2]*f*p[1]
a[2] = x[0]*f*p[3] + x[1]*f*p[1] + x[2]*2*f/np.sqrt(3)*p[2]
return a.to(u.pc*u.Myr**-2)
def acc_octu(x, p=[pparams_fid[j] for j in range(19,26)]):
"""Acceleration due to outside octupole perturbation"""
a = np.zeros(3)*u.pc*u.Myr**-2
f = np.array([0.25*np.sqrt(35/(2*np.pi)), 0.5*np.sqrt(105/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(7/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(105/np.pi), 0.25*np.sqrt(35/(2*np.pi))])
xu = x.unit
pu = p[0].unit
pvec = np.array([i.value for i in p]) * pu
dmat = np.ones((3,7)) * f * pvec * xu**2
x = np.array([i.value for i in x])
dmat[0] *= np.array([6*x[0]*x[1], x[1]*x[2], -2*x[0]*x[1], -6*x[0]*x[2], 4*x[2]**2-x[1]**2-3*x[0]**2, 2*x[0]*x[2], 3*x[0]**2-3*x[1]**2])
dmat[1] *= np.array([3*x[0]**2-3*x[1]**2, x[0]*x[2], 4*x[2]**2-x[0]**2-3*x[1]**2, -6*x[1]*x[2], -2*x[0]*x[1], -2*x[1]*x[2], -6*x[0]*x[1]])
dmat[2] *= np.array([0, x[0]*x[1], 8*x[1]*x[2], 6*x[2]**2-3*x[0]**2-3*x[1]**2, 8*x[0]*x[2], x[0]**2-x[1]**2, 0])
a = np.einsum('ij->i', dmat) * dmat.unit
return a.to(u.pc*u.Myr**-2)
# derivatives
def der_kepler(x, p=1*u.Msun):
"""Derivative of Kepler potential parameters wrt cartesian components of the acceleration"""
r = np.linalg.norm(x)*u.kpc
dmat = np.zeros((3,1)) * u.pc**-1 * u.Myr**2 * u.Msun
dmat[:,0] = (-r**3/(G*x)).to(u.pc**-1 * u.Myr**2 * u.Msun) * 1e-11
return dmat.value
def pder_kepler(x, p=1*u.Msun):
"""Derivative of cartesian components of the acceleration wrt to Kepler potential parameter"""
r = np.linalg.norm(x)*u.kpc
dmat = np.zeros((3,1)) * u.pc * u.Myr**-2 * u.Msun**-1
dmat[:,0] = (-G*x*r**-3).to(u.pc * u.Myr**-2 * u.Msun**-1) * 1e11
return dmat.value
def pder_nfw(x, pu=[pparams_fid[j] for j in [5,6,8,10]]):
"""Calculate derivatives of cartesian components of the acceleration wrt halo potential parameters"""
p = pu
q = np.array([1, p[2], p[3]])
# physical quantities
r = np.linalg.norm(x)*u.kpc
a = acc_nfw(x, p=pu)
# derivatives
dmat = np.zeros((3, 4))
# Vh
dmat[:,0] = 2*a/p[0]
# Rh
dmat[:,1] = a/p[1] + p[0]**2 * p[1] * r**-3 * (1/(p[1]+p[1]**2/r) - 1/(r*(1+p[1]/r)**2)) * x * q**-2
# qy, qz
for i in [1,2]:
dmat[i,i+1] = (-2*a[i]/q[i]).value
return dmat
def pder_bulge(x, pu=[pparams_fid[j] for j in range(2)]):
"""Calculate derivarives of cartesian components of the acceleration wrt Hernquist bulge potential parameters"""
# coordinates
r = np.linalg.norm(x)*u.kpc
# accelerations
ab = acc_bulge(x, p=pu[:2])
# derivatives
dmat = np.zeros((3, 2))
# Mb
dmat[:,0] = ab/pu[0]
# ab
dmat[:,1] = 2 * ab / (r + pu[1])
return dmat
def pder_disk(x, pu=[pparams_fid[j] for j in range(2,5)]):
"""Calculate derivarives of cartesian components of the acceleration wrt Miyamoto-Nagai disk potential parameters"""
# coordinates
R = np.linalg.norm(x[:2])*u.kpc
z = x[2]
aux = np.sqrt(z**2 + pu[2]**2)
# accelerations
ad = acc_disk(x, p=pu)
# derivatives
dmat = np.zeros((3, 3))
# Md
dmat[:,0] = ad / pu[0]
# ad
dmat[:,1] = 3 * ad * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2)
# bd
dmat[:2,2] = 3 * ad[:2] * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) * pu[2] / aux
dmat[2,2] = (3 * ad[2] * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) * pu[2] / aux - G * pu[0] * z * (R**2 + (pu[1] + aux)**2)**-1.5 * z**2 * (pu[2]**2 + z**2)**-1.5).value
return dmat
def der_dipole(x, pu=[pparams_fid[j] for j in range(11,14)]):
"""Calculate derivatives of dipole potential parameters wrt (Cartesian) components of the acceleration vector a"""
# shape: 3, Npar
dmat = np.zeros((3,3))
f = np.sqrt((4*np.pi)/3)
dmat[0,2] = f
dmat[1,0] = f
dmat[2,1] = f
return dmat
def pder_dipole(x, pu=[pparams_fid[j] for j in range(11,14)]):
"""Calculate derivatives of (Cartesian) components of the acceleration vector a wrt dipole potential parameters"""
# shape: 3, Npar
dmat = np.zeros((3,3))
f = np.sqrt(3/(4*np.pi))
dmat[0,2] = f
dmat[1,0] = f
dmat[2,1] = f
return dmat
def der_quad(x, p=[pparams_fid[j] for j in range(14,19)]):
"""Caculate derivatives of quadrupole potential parameters wrt (Cartesian) components of the acceleration vector a"""
f = 2/np.sqrt(15/np.pi)
s = np.sqrt(3)
x = [1e-3/i.value for i in x]
dmat = np.ones((3,5)) * f
dmat[0] = np.array([x[1], 0, -s*x[0], x[2], x[0]])
dmat[1] = np.array([x[0], x[2], -s*x[1], 0, -x[1]])
dmat[2] = np.array([0, x[1], 0.5*s*x[2], x[0], 0])
return dmat
def pder_quad(x, p=[pparams_fid[j] for j in range(14,19)]):
"""Caculate derivatives of (Cartesian) components of the acceleration vector a wrt quadrupole potential parameters"""
f = 0.5*np.sqrt(15/np.pi)
s = 1/np.sqrt(3)
x = [1e-3*i.value for i in x]
dmat = np.ones((3,5)) * f
dmat[0] *= np.array([x[1], 0, -s*x[0], x[2], x[0]])
dmat[1] *= np.array([x[0], x[2], -s*x[1], 0, -x[1]])
dmat[2] *= np.array([0, x[1], 2*s*x[2], x[0], 0])
return dmat
def pder_octu(x, p=[pparams_fid[j] for j in range(19,26)]):
"""Caculate derivatives of (Cartesian) components of the acceleration vector a wrt octupole potential parameters"""
f = np.array([0.25*np.sqrt(35/(2*np.pi)), 0.5*np.sqrt(105/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(7/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(105/np.pi), 0.25*np.sqrt(35/(2*np.pi))])
x = [1e-3*i.value for i in x]
dmat = np.ones((3,7)) * f
dmat[0] *= np.array([6*x[0]*x[1], x[1]*x[2], -2*x[0]*x[1], -6*x[0]*x[2], 4*x[2]**2-x[1]**2-3*x[0]**2, 2*x[0]*x[2], 3*x[0]**2-3*x[1]**2])
dmat[1] *= np.array([3*x[0]**2-3*x[1]**2, x[0]*x[2], 4*x[2]**2-x[0]**2-3*x[1]**2, -6*x[1]*x[2], -2*x[0]*x[1], -2*x[1]*x[2], -6*x[0]*x[1]])
dmat[2] *= np.array([0, x[0]*x[1], 8*x[1]*x[2], 6*x[2]**2-3*x[0]**2-3*x[1]**2, 8*x[0]*x[2], x[0]**2-x[1]**2, 0])
return dmat
def crb_ax(n, Ndim=6, vary=['halo', 'bary', 'progenitor'], align=True, fast=False):
"""Calculate CRB inverse matrix for 3D acceleration at position x in a halo potential"""
pid, dp, vlabel = get_varied_pars(vary)
if align:
alabel = '_align'
else:
alabel = ''
# read in full inverse CRB for stream modeling
cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim))
if fast:
cx = np.linalg.inv(cxi)
else:
cx = stable_inverse(cxi)
# subset halo parameters
Nhalo = 4
cq = cx[:Nhalo,:Nhalo]
if fast:
cqi = np.linalg.inv(cq)
else:
cqi = stable_inverse(cq)
xi = np.array([-8.3, 0.1, 0.1])*u.kpc
x0, v0 = gd1_coordinates()
#xi = np.array(x0)*u.kpc
d = 50
Nb = 20
x = np.linspace(x0[0]-d, x0[0]+d, Nb)
y = np.linspace(x0[1]-d, x0[1]+d, Nb)
x = np.linspace(-d, d, Nb)
y = np.linspace(-d, d, Nb)
xv, yv = np.meshgrid(x, y)
xf = np.ravel(xv)
yf = np.ravel(yv)
af = np.empty((Nb**2, 3))
plt.close()
fig, ax = plt.subplots(3,3,figsize=(11,10))
dimension = ['x', 'y', 'z']
xlabel = ['y', 'x', 'x']
ylabel = ['z', 'z', 'y']
for j in range(3):
if j==0:
xin = np.array([np.repeat(x0[j], Nb**2), xf, yf]).T
elif j==1:
xin = np.array([xf, np.repeat(x0[j], Nb**2), yf]).T
elif j==2:
xin = np.array([xf, yf, np.repeat(x0[j], Nb**2)]).T
for i in range(Nb**2):
#xi = np.array([xf[i], yf[i], x0[2]])*u.kpc
xi = xin[i]*u.kpc
a = acc_nfw(xi)
dqda = halo_accelerations(xi)
cai = np.matmul(dqda, np.matmul(cqi, dqda.T))
if fast:
ca = np.linalg.inv(cai)
else:
ca = stable_inverse(cai)
a_crb = (np.sqrt(np.diag(ca)) * u.km**2 * u.kpc**-1 * u.s**-2).to(u.pc*u.Myr**-2)
af[i] = np.abs(a_crb/a)
af[i] = a_crb
for i in range(3):
plt.sca(ax[j][i])
im = plt.imshow(af[:,i].reshape(Nb,Nb), extent=[-d, d, -d, d], cmap=mpl.cm.gray) #, norm=mpl.colors.LogNorm(), vmin=1e-2, vmax=0.1)
plt.xlabel(xlabel[j]+' (kpc)')
plt.ylabel(ylabel[j]+' (kpc)')
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("top", size="4%", pad=0.05)
plt.colorbar(im, cax=cax, orientation='horizontal')
plt.gca().xaxis.set_ticks_position('top')
cax.tick_params(axis='x', labelsize='xx-small')
if j==0:
plt.title('a$_{}$'.format(dimension[i]), y=4)
plt.tight_layout(rect=[0,0,1,0.95])
plt.savefig('../plots/acc_{}_{}_{}.png'.format(n, vlabel, Ndim))
def acc_cart(x, components=['bary', 'halo', 'dipole']):
""""""
acart = np.zeros(3) * u.pc*u.Myr**-2
dict_acc = {'bary': [acc_bulge, acc_disk], 'halo': [acc_nfw], 'dipole': [acc_dipole], 'quad': [acc_quad], 'octu': [acc_octu], 'point': [acc_kepler]}
accelerations = []
for c in components:
accelerations += dict_acc[c]
for acc in accelerations:
a_ = acc(x)
acart += a_
return acart
def acc_rad(x, components=['bary', 'halo', 'dipole']):
"""Return radial acceleration"""
r = np.linalg.norm(x) * x.unit
theta = np.arccos(x[2].value/r.value)
phi = np.arctan2(x[1].value, x[0].value)
trans = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)])
a_cart = acc_cart(x, components=components)
a_rad = np.dot(a_cart, trans)
return a_rad
def ader_cart(x, components=['bary', 'halo', 'dipole']):
""""""
dacart = np.empty((3,0))
dict_der = {'bary': [der_bulge, der_disk], 'halo': [der_nfw], 'dipole': [der_dipole], 'quad': [der_quad], 'point': [der_kepler]}
derivatives = []
for c in components:
derivatives += dict_der[c]
for ader in derivatives:
da_ = ader(x)
dacart = np.hstack((dacart, da_))
return dacart
def apder_cart(x, components=['bary', 'halo', 'dipole']):
""""""
dacart = np.empty((3,0))
dict_der = {'bary': [pder_bulge, pder_disk], 'halo': [pder_nfw], 'dipole': [pder_dipole], 'quad': [pder_quad], 'octu': [pder_octu], 'point': [pder_kepler]}
derivatives = []
for c in components:
derivatives += dict_der[c]
for ader in derivatives:
da_ = ader(x)
dacart = np.hstack((dacart, da_))
return dacart
def apder_rad(x, components=['bary', 'halo', 'dipole']):
"""Return dar/dx_pot (radial acceleration/potential parameters) evaluated at vector x"""
r = np.linalg.norm(x) * x.unit
theta = np.arccos(x[2].value/r.value)
phi = np.arctan2(x[1].value, x[0].value)
trans = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)])
dadq_cart = apder_cart(x, components=components)
dadq_rad = np.einsum('ij,i->j', dadq_cart, trans)
return dadq_rad
def crb_acart(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', align=True, d=20, Nb=50, fast=False, scale=False, relative=True, progenitor=False, errmode='fiducial'):
""""""
pid, dp_fid, vlabel = get_varied_pars(vary)
if align:
alabel = '_align'
else:
alabel = ''
if relative:
vmin = 1e-2
vmax = 1
rlabel = ' / a'
else:
vmin = 3e-1
vmax = 1e1
rlabel = ' (pc Myr$^{-2}$)'
# read in full inverse CRB for stream modeling
cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim))
if fast:
cx = np.linalg.inv(cxi)
else:
cx = stable_inverse(cxi)
# choose the appropriate components:
Nprog, Nbary, Nhalo, Ndipole, Npoint = [6, 5, 4, 3, 1]
if 'progenitor' not in vary:
Nprog = 0
nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'all': Nprog, 'point': 0}
nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'all': np.shape(cx)[0], 'point': 1}
if 'progenitor' not in vary:
nstart['dipole'] = Npoint
nend['dipole'] = Npoint + Ndipole
if component in ['bary', 'halo', 'dipole', 'point']:
components = [component]
else:
components = [x for x in vary if x!='progenitor']
cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]]
Npot = np.shape(cq)[0]
if fast:
cqi = np.linalg.inv(cq)
else:
cqi = stable_inverse(cq)
if scale:
dp_opt = read_optimal_step(n, vary)
dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)]
scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]])
scale_mat = np.outer(scale_vec, scale_vec)
cqi *= scale_mat
if progenitor:
x0, v0 = gd1_coordinates()
else:
x0 = np.array([4, 4, 0])
Rp = np.linalg.norm(x0[:2])
zp = x0[2]
R = np.linspace(-d, d, Nb)
k = x0[1]/x0[0]
x = R/np.sqrt(1+k**2)
y = k * x
z = np.linspace(-d, d, Nb)
xv, zv = np.meshgrid(x, z)
yv, zv = np.meshgrid(y, z)
xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T
Npix = np.size(xv)
af = np.empty((Npix, 3))
derf = np.empty((Npix, 3, Npot))
for i in range(Npix):
xi = xin[i]*u.kpc
a = acc_cart(xi, components=components)
dadq = apder_cart(xi, components=components)
derf[i] = dadq
ca = np.matmul(dadq, np.matmul(cq, dadq.T))
a_crb = np.sqrt(np.diag(ca)) * u.pc * u.Myr**-2
if relative:
af[i] = np.abs(a_crb/a)
else:
af[i] = a_crb
#print(xi, a_crb)
# save
np.savez('../data/crb_acart{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative), acc=af, x=xin, der=derf)
plt.close()
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
label = ['$\Delta$ $a_X$', '$\Delta$ $a_Y$', '$\Delta$ $a_Z$']
for i in range(3):
plt.sca(ax[i])
im = plt.imshow(af[:,i].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax, norm=mpl.colors.LogNorm())
if progenitor:
plt.plot(Rp, zp, 'r*', ms=10)
plt.xlabel('R (kpc)')
plt.ylabel('Z (kpc)')
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", size="3%", pad=0.1)
plt.colorbar(im, cax=cax)
plt.ylabel(label[i] + rlabel)
plt.tight_layout()
plt.savefig('../plots/crb_acc_cart{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative))
def crb_acart_cov(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', j=0, align=True, d=20, Nb=30, fast=False, scale=False, relative=True, progenitor=False, batch=False, errmode='fiducial'):
""""""
pid, dp_fid, vlabel = get_varied_pars(vary)
if align:
alabel = '_align'
else:
alabel = ''
if relative:
vmin = 1e-2
vmax = 1
rlabel = ' / a'
else:
vmin = -0.005
vmax = 0.005
#vmin = 1e-2
#vmax = 1e0
rlabel = ' (pc Myr$^{-2}$)'
# read in full inverse CRB for stream modeling
cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim))
if fast:
cx = np.linalg.inv(cxi)
else:
cx = stable_inverse(cxi)
# choose the appropriate components:
Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1]
if 'progenitor' not in vary:
Nprog = 0
nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0}
nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': np.shape(cx)[0], 'point': 1}
if 'progenitor' not in vary:
nstart['dipole'] = Npoint
nend['dipole'] = Npoint + Ndipole
if component in ['bary', 'halo', 'dipole', 'quad', 'point']:
components = [component]
else:
components = [x for x in vary if x!='progenitor']
cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]]
Npot = np.shape(cq)[0]
if fast:
cqi = np.linalg.inv(cq)
else:
cqi = stable_inverse(cq)
if scale:
dp_opt = read_optimal_step(n, vary)
dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)]
scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]])
scale_mat = np.outer(scale_vec, scale_vec)
cqi *= scale_mat
if progenitor:
prog_coords = {-1: gd1_coordinates(), -2: pal5_coordinates(), -3: tri_coordinates(), -4: atlas_coordinates()}
x0, v0 = prog_coords[n]
print(x0)
else:
x0 = np.array([4, 4, 0])
Rp = np.linalg.norm(x0[:2])
zp = x0[2]
R = np.linspace(-d, d, Nb)
k = x0[1]/x0[0]
x = R/np.sqrt(1+k**2)
y = k * x
z = np.linspace(-d, d, Nb)
xv, zv = np.meshgrid(x, z)
yv, zv = np.meshgrid(y, z)
xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T
Npix = np.size(xv)
af = np.empty((Npix, 3))
derf = np.empty((Npix*3, Npot))
for i in range(Npix):
xi = xin[i]*u.kpc
a = acc_cart(xi, components=components)
dadq = apder_cart(xi, components=components)
derf[i*3:(i+1)*3] = dadq
ca = np.matmul(derf, np.matmul(cq, derf.T))
Nx = Npot
Nw = Npix*3
vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1))
## check orthogonality:
#for i in range(Npot-1):
#for k in range(i+1, Npot):
#print(i, k)
#print(np.dot(vecs[:,i], vecs[:,k]))
#print(np.dot(vecs[::3,i], vecs[::3,k]), np.dot(vecs[1::3,i], vecs[1::3,k]), np.dot(vecs[1::3,i], vecs[1::3,k]))
# save
np.savez('../data/crb_acart_cov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative, progenitor), x=xin, der=derf, c=ca)
plt.close()
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
if j==0:
vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1))
label = ['($\Sigma$ Eigval $\\times$ Eigvec$^2$ $a_{}$'.format(x)+')$^{1/2}$' for x in ['X', 'Y', 'Z']]
vmin = 1e-2
vmax = 5e0
norm = mpl.colors.LogNorm()
else:
vcomb = vecs[:,j]
label = ['Eig {} $a_{}$'.format(np.abs(j), x) for x in ['X', 'Y', 'Z']]
vmin = -0.025
vmax = 0.025
norm = None
for i in range(3):
plt.sca(ax[i])
#im = plt.imshow(vecs[i::3,j].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax)
im = plt.imshow(vcomb[i::3].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax, norm=norm)
if progenitor:
plt.plot(Rp, zp, 'r*', ms=10)
plt.xlabel('R (kpc)')
plt.ylabel('Z (kpc)')
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", size="3%", pad=0.1)
plt.colorbar(im, cax=cax)
plt.ylabel(label[i])
plt.tight_layout()
if batch:
return fig
else:
plt.savefig('../plots/crb_acc_cart_cov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, np.abs(j), Ndim, d, Nb, relative, progenitor))
def a_vecfield(vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', d=20, Nb=10):
"""Plot acceleration field in R,z plane"""
if component in ['bary', 'halo', 'dipole', 'quad', 'point']:
components = [component]
else:
components = [x for x in vary if x!='progenitor']
x0 = np.array([4, 4, 0])
R = np.linspace(-d, d, Nb)
k = x0[1]/x0[0]
x = R/np.sqrt(1+k**2)
y = k * x
z = np.linspace(-d, d, Nb)
xv, zv = np.meshgrid(x, z)
yv, zv = np.meshgrid(y, z)
xin = np.array([np.ravel(xv), np.ravel(yv), | np.ravel(zv) | numpy.ravel |
# Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
from batchgenerators.augmentations.utils import resize_segmentation
from uuunet.experiment_planning.plan_and_preprocess_task import get_caseIDs_from_splitted_dataset_folder
from uuunet.inference.segmentation_export import save_segmentation_nifti_from_softmax
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing import Process, Queue
import torch
import threading
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D
import SimpleITK as sitk
import shutil
from multiprocessing import Pool
from uuunet.training.model_restore import load_model_and_checkpoint_files
from uuunet.training.network_training.nnUNetTrainer import nnUNetTrainer
from uuunet.utilities.one_hot_encoding import to_one_hot
def plot_images(img, img2=None):
"""
Plot at most 2 images.
Support passing in ndarray or image path string.
"""
fig = plt.figure(figsize=(20,10))
if isinstance(img, str): img = imread(img)
if isinstance(img2, str): img2 = imread(img2)
if img2 is None:
ax = fig.add_subplot(111)
ax.imshow(img)
else:
height, width = img.shape[0], img.shape[1]
if height < width:
ax = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
else:
ax = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax.imshow(img)
ax2.imshow(img2)
plt.show()
def view_batch(imgs, lbls, labels=['image', 'label'], stack=False):
'''
imgs: [D, H, W, C], the depth or batch dimension should be the first.
'''
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.set_title(labels[0])
ax2.set_title(labels[1])
"""
if init with zeros, the animation may not update? seems bug in animation.
"""
if stack:
lbls = np.stack((lbls, imgs, imgs), -1)
img1 = ax1.imshow(np.random.rand(*imgs.shape[1:]))
img2 = ax2.imshow(np.random.rand(*lbls.shape[1:]))
def update(i):
plt.suptitle(str(i))
img1.set_data(imgs[i])
img2.set_data(lbls[i])
return img1, img2
ani = animation.FuncAnimation(fig, update, frames=len(imgs), interval=10, blit=False, repeat_delay=0)
plt.show()
def predict_save_to_queue(preprocess_fn, q, list_of_lists, output_files, segs_from_prev_stage, classes):
errors_in = []
for i, l in enumerate(list_of_lists):
try:
output_file = output_files[i]
print("preprocessing", output_file)
d, _, dct = preprocess_fn(l)
print(output_file, dct)
if segs_from_prev_stage[i] is not None:
assert isfile(segs_from_prev_stage[i]) and segs_from_prev_stage[i].endswith(".nii.gz"), "segs_from_prev_stage" \
" must point to a " \
"segmentation file"
seg_prev = sitk.GetArrayFromImage(sitk.ReadImage(segs_from_prev_stage[i]))
# check to see if shapes match
img = sitk.GetArrayFromImage(sitk.ReadImage(l[0]))
assert all([i == j for i, j in zip(seg_prev.shape, img.shape)]), "image and segmentation from previous " \
"stage don't have the same pixel array " \
"shape! image: %s, seg_prev: %s" % \
(l[0], segs_from_prev_stage[i])
seg_reshaped = resize_segmentation(seg_prev, d.shape[1:], order=1, cval=0)
seg_reshaped = to_one_hot(seg_reshaped, classes)
d = np.vstack((d, seg_reshaped)).astype(np.float32)
"""There is a problem with python process communication that prevents us from communicating obejcts
larger than 2 GB between processes (basically when the length of the pickle string that will be sent is
communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long
enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually
patching system python code. We circumvent that problem here by saving softmax_pred to a npy file that will
then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either
filename or np.ndarray and will handle this automatically"""
print(d.shape)
if np.prod(d.shape) > (2e9 / 4 * 0.9): # *0.9 just to be save, 4 because float32 is 4 bytes
print(
"This output is too large for python process-process communication. "
"Saving output temporarily to disk")
np.save(output_file[:-7] + ".npy", d)
d = output_file[:-7] + ".npy"
q.put((output_file, (d, dct)))
except KeyboardInterrupt:
raise KeyboardInterrupt
except Exception as e:
print("error in", l)
print(e)
q.put("end")
if len(errors_in) > 0:
print("There were some errors in the following cases:", errors_in)
print("These cases were ignored.")
else:
print("This worker has ended successfully, no errors to report")
def preprocess_multithreaded(trainer, list_of_lists, output_files, num_processes=2, segs_from_prev_stage=None):
if segs_from_prev_stage is None:
segs_from_prev_stage = [None] * len(list_of_lists)
classes = list(range(1, trainer.num_classes))
assert isinstance(trainer, nnUNetTrainer)
q = Queue(1)
processes = []
for i in range(num_processes):
pr = Process(target=predict_save_to_queue, args=(trainer.preprocess_patient, q,
list_of_lists[i::num_processes],
output_files[i::num_processes],
segs_from_prev_stage[i::num_processes],
classes))
pr.start()
processes.append(pr)
try:
end_ctr = 0
while end_ctr != num_processes:
item = q.get()
if item == "end":
end_ctr += 1
continue
else:
yield item
finally:
for p in processes:
if p.is_alive():
p.terminate() # this should not happen but better safe than sorry right
p.join()
q.close()
def predict_cases(model, list_of_lists, output_filenames, folds, save_npz, num_threads_preprocessing,
num_threads_nifti_save, segs_from_prev_stage=None, do_tta=True,
overwrite_existing=False, data_type='2d', modality=0):
assert len(list_of_lists) == len(output_filenames)
if segs_from_prev_stage is not None: assert len(segs_from_prev_stage) == len(output_filenames)
prman = Pool(num_threads_nifti_save)
results = []
cleaned_output_files = []
for o in output_filenames:
dr, f = os.path.split(o)
if len(dr) > 0:
maybe_mkdir_p(dr)
if not f.endswith(".nii.gz"):
f, _ = os.path.splitext(f)
f = f + ".nii.gz"
cleaned_output_files.append(join(dr, f))
if not overwrite_existing:
print("number of cases:", len(list_of_lists))
not_done_idx = [i for i, j in enumerate(cleaned_output_files) if not isfile(j)]
cleaned_output_files = [cleaned_output_files[i] for i in not_done_idx]
list_of_lists = [list_of_lists[i] for i in not_done_idx]
if segs_from_prev_stage is not None:
segs_from_prev_stage = [segs_from_prev_stage[i] for i in not_done_idx]
print("number of cases that still need to be predicted:", len(cleaned_output_files))
print("emptying cuda cache")
torch.cuda.empty_cache()
##################################
# Damn, finally find the model.
print("loading parameters for folds,", folds)
trainer, params = load_model_and_checkpoint_files(model, folds)
trainer.modality = modality
print("starting preprocessing generator")
preprocessing = preprocess_multithreaded(trainer, list_of_lists, cleaned_output_files, num_threads_preprocessing, segs_from_prev_stage)
print("starting prediction...")
for preprocessed in preprocessing:
output_filename, (d, dct) = preprocessed
if isinstance(d, str):
data = np.load(d)
os.remove(d)
d = data
print("predicting", output_filename)
softmax = []
for p in params:
trainer.load_checkpoint_ram(p, False)
softmax.append(trainer.predict_preprocessed_data_return_softmax(d, do_tta, 1, False, 1,
trainer.data_aug_params['mirror_axes'],
True, True, 2, trainer.patch_size, True, data_type=data_type)[None])
softmax = | np.vstack(softmax) | numpy.vstack |
import numpy as np
import matplotlib.pyplot as plt
from os import makedirs
from os.path import isfile, exists
from scipy.constants import mu_0
# from numba import njit
def calcDipolMomentAnalytical(remanence, volume):
""" Calculating the magnetic moment from the remanence in T and the volume in m^3"""
m = remanence * volume / mu_0 # [A * m^2]
return m
def plotSimple(data, FOV, fig, ax, cbar=True, **args):
""" Generate simple colorcoded plot of 2D grid data with contour. Returns axes object."""
im = ax.imshow(data, extent=FOV, origin="lower", **args)
cs = ax.contour(data, colors="k", extent=FOV, origin="lower", linestyles="dotted")
class nf(float):
def __repr__(self):
s = f"{self:.1f}"
return f"{self:.0f}" if s[-1] == "0" else s
cs.levels = [nf(val) for val in cs.levels]
if plt.rcParams["text.usetex"]:
fmt = r"%r"
else:
fmt = "%r"
ax.clabel(cs, cs.levels, inline=True, fmt=fmt, fontsize=10)
if cbar == True:
fig.colorbar(im, ax=ax)
return im
def centerCut(field, axis):
"""return a slice of the data at the center for the specified axis"""
dims = np.shape(field)
return np.take(field, indices=int(dims[axis] / 2), axis=axis)
def isHarmonic(field, sphericalMask, shellMask):
"""Checks if the extrema of the field are in the shell."""
fullField = np.multiply(field, sphericalMask) # [T]
reducedField = np.multiply(field, shellMask)
if int(ptpPPM(fullField)) > int(ptpPPM(reducedField)):
print(
"ptpPPM of field:",
ptpPPM(fullField),
"ptpPPM on surface",
ptpPPM(reducedField),
)
print("Masked field is NOT a harmonic function...")
return False
else:
print(
"ptpPPM of field:",
ptpPPM(fullField),
"ptpPPM on surface",
ptpPPM(reducedField),
)
print("Masked field is harmonic.")
sizeSpherical = int(np.nansum(sphericalMask))
sizeShell = int(np.nansum(shellMask))
print(
"Reduced size of field from {} to {} ({}%)".format(
sizeSpherical, sizeShell, int(100 * sizeShell / sizeSpherical)
)
)
return True
def genQmesh(field, resolution):
"""Generate a mesh of quadratic coordinates"""
mask = np.zeros(np.shape(field))
xAxis = np.linspace(
-(np.size(field, 0) - 1) * resolution / 2,
(np.size(field, 0) - 1) * resolution / 2,
np.size(field, 0),
)
yAxis = np.linspace(
-(np.size(field, 1) - 1) * resolution / 2,
(np.size(field, 1) - 1) * resolution / 2,
np.size(field, 1),
)
zAxis = np.linspace(
-(np.size(field, 2) - 1) * resolution / 2,
(np.size(field, 2) - 1) * resolution / 2,
np.size(field, 2),
)
xAxis, yAxis, zAxis = np.meshgrid(xAxis, yAxis, zAxis)
xAxisSquare = np.square(xAxis)
yAxisSquare = np.square(yAxis)
zAxisSquare = np.square(zAxis)
return mask, xAxisSquare, yAxisSquare, zAxisSquare
def genMask(
field, resolution, diameter=False, shellThickness=False, axis=False, debug=False
):
"""Generate a mask for a spherical shell"""
mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution)
if (shellThickness != False) and (diameter != False):
if debug == True:
print(
"Creating shell mask. (resolution = {}, diameter = {}, shellThickness = {})".format(
resolution, diameter, shellThickness
)
)
print("The shell is added inside the sphere surface!")
rAxisSquare = xAxisSquare + yAxisSquare + zAxisSquare
innerRadiusSquare = (diameter / 2 - shellThickness) ** 2
outerRadiusSquare = (diameter / 2) ** 2
mask[
(rAxisSquare <= outerRadiusSquare) & (rAxisSquare >= innerRadiusSquare)
] = 1
mask[mask == 0] = "NaN"
return mask
def genSphericalMask(field, diameter, resolution):
"""generate spherical mask
with >>diameter<<
for a >>field<< and a given >>resolution<<
"""
mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution)
mask[xAxisSquare + yAxisSquare + zAxisSquare <= (diameter / 2) ** 2] = 1
mask[mask == 0] = "NaN"
return mask
def genSliceMask(field, diameter, resolution, axis="x"):
"""generate mask for a circular slice
with >>diameter<<
for a >>field<< and a given >>resolution<<
Every input variable has to have the same unit (mm or m or ...)
"""
mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution)
if axis == "z":
mask[
(xAxisSquare + yAxisSquare <= (diameter / 2) ** 2) & (zAxisSquare == 0)
] = 1
if axis == "y":
mask[
(xAxisSquare + zAxisSquare <= (diameter / 2) ** 2) & (yAxisSquare == 0)
] = 1
if axis == "x":
mask[
(yAxisSquare + zAxisSquare <= (diameter / 2) ** 2) & (xAxisSquare == 0)
] = 1
mask[mask == 0] = "NaN"
return mask
def genEllipseSliceMask(field, a, b, resolution, axis="x"):
"""generate mask for a circulat slice
with >>diameter<<
for a >>field<< and a given >>resolution<<
Every input variable has to have the same unit (mm or m or ...)
"""
# generate spherical mask
mask, xAxisSquare, yAxisSquare, zAxisSquare = genQmesh(field, resolution)
if axis == "z":
mask[
(xAxisSquare / (a / 2) ** 2 + yAxisSquare / (b / 2) ** 2 <= 1)
& (zAxisSquare == 0)
] = 1
elif axis == "y":
mask[
(xAxisSquare / (a / 2) ** 2 + zAxisSquare / (b / 2) ** 2 <= 1)
& (yAxisSquare == 0)
] = 1
elif axis == "x":
mask[
(yAxisSquare / (a / 2) ** 2 + zAxisSquare / (b / 2) ** 2 <= 1)
& (xAxisSquare == 0)
] = 1
mask[mask == 0] = "NaN"
return mask
def ptpPPM(field):
"""Calculate the peak-to-peak homogeneity in ppm."""
return 1e6 * (np.nanmax(field) - np.nanmin(field)) / np.nanmean(field)
def saveParameters(parameters, folder):
"""Saving a dict to the file parameters.npy .
If the file exist it is beeing updated, if the parameters are not stored already.
__future__: Fix usecase: Some parameters are in dict which are identical to the
stored ones and some are new!
"""
try:
print("Saving parameters to file...", end=" ")
print("\x1b[6;30;42m", *parameters.keys(), "\x1b[0m", end=" ")
oldParameters = loadParameters(folder)
if parameters.items() <= oldParameters.items():
print(" ... the parameters are already saved and identical.")
elif set(parameters).issubset(
set(oldParameters)
): # here just keys are compared!
print(
" ...\x1b[6;37;41m"
+ " parameters are NOT saved. Other parameters are stored. Please cleanup! "
+ "\x1b[0m"
)
else:
oldParameters.update(parameters)
np.save(folder + "/parameters", oldParameters)
print(" ... added.")
except FileNotFoundError or AttributeError:
np.save(folder + "/parameters", parameters)
oldParameters = parameters
# print('The following parameters are currently stored:\n', *oldParameters.keys())
def loadParameters(folder):
return np.load(folder + "/parameters.npy", allow_pickle=True).item()
def loadParameter(key, folder):
return loadParameters(folder)[key]
def displayParameters(folder):
print(loadParameters(folder))
def createShimfieldsShimRingV2(
numMagnets=(32, 44),
rings=4,
radii=(0.074, 0.097),
zRange=(-0.08, -0.039, 0.039, 0.08),
resolution=1000,
kValue=2,
simDimensions=(0.04, 0.04, 0.04),
numRotations=2,
):
""" Calculating the magnetic field distributions for a single or multiple Halbach Rings.
This has to be multiplied with the magnetic moment amplitude of a magnet to get the real distribution
For every magnet position we set 4 different rotations: 0°, 45°, 90°, 135°. This has to be considered in the cost function
otherwise two magnets are placed in one position
resolution is the amount of sample points times data points in one dimension
"""
mu = mu_0
# positioning of the magnets in a circle
if len(zRange) == 2:
rings = np.linspace(zRange[0], zRange[1], rings)
elif rings == len(zRange):
rings = np.array(zRange)
else:
print("No clear definition how to place shims...")
rotation_elements = np.linspace(0, np.pi, numRotations, endpoint=False)
# create array to store field data
count = 0
if type(numMagnets) in (list, tuple):
totalNumMagnets = np.sum(numMagnets) * np.size(rings) * numRotations
else:
totalNumMagnets = numMagnets * np.size(rings) * numRotations * len(radii)
print(totalNumMagnets, numMagnets, np.size(rings), np.size(numRotations))
shimFields = np.zeros(
(
int(simDimensions[0] * resolution) + 1,
int(simDimensions[1] * resolution) + 1,
int(simDimensions[2] * resolution) + 1,
3,
totalNumMagnets,
),
dtype=np.float32,
)
for rotation in rotation_elements:
# create halbach array
for row in rings:
for i, radius in enumerate(radii):
angle_elements = np.linspace(
-np.pi, np.pi, numMagnets[i], endpoint=False
)
for angle in angle_elements:
print(
"Simulating magnet "
+ str(count + 1)
+ " of "
+ str(totalNumMagnets),
end="\t",
)
position = (row, radius * np.cos(angle), radius * np.sin(angle))
print(
"@ position {:2.2},\t {:2.2},\t {:2.2}".format(*position),
end="\r",
)
angle = kValue * angle + rotation
dip_vec = [0, np.sin(angle), -np.cos(angle)]
dip_vec = np.multiply(dip_vec, mu)
dip_vec = np.divide(dip_vec, 4 * np.pi)
# create mesh coordinates
x = np.linspace(
-simDimensions[0] / 2 + position[0],
simDimensions[0] / 2 + position[0],
int(simDimensions[0] * resolution) + 1,
dtype=np.float32,
)
y = np.linspace(
-simDimensions[1] / 2 + position[1],
simDimensions[1] / 2 + position[1],
int(simDimensions[1] * resolution) + 1,
dtype=np.float32,
)
z = np.linspace(
-simDimensions[2] / 2 + position[2],
simDimensions[2] / 2 + position[2],
int(simDimensions[2] * resolution) + 1,
dtype=np.float32,
)
x, y, z = np.meshgrid(x, y, z)
vec_dot_dip = 3 * (y * dip_vec[1] + z * dip_vec[2])
# calculate the distance of each mesh point to magnet, optimised for speed
# for improved memory performance move in to b0 calculations
vec_mag = np.square(x) + np.square(y) + np.square(z)
# if the magnet is in the origin, we divide by 0, therefore we set it to nan to
# avoid getting and error. if this has any effect on speed just leave it out
# as we do not care about the values outside of the FOV and even less inside the magnets
vec_mag[(vec_mag <= 1e-15) & (vec_mag >= -1e-15)] = "NaN"
vec_mag_3 = np.power(vec_mag, 1.5)
vec_mag_5 = np.power(vec_mag, 2.5)
del vec_mag
# calculate contributions of magnet to total field, dipole always points in yz plane
# so second term is zero for the x component
shimFields[:, :, :, 0, count] = np.divide(
np.multiply(x, vec_dot_dip), vec_mag_5
)
shimFields[:, :, :, 1, count] = np.divide(
np.multiply(y, vec_dot_dip), vec_mag_5
) - np.divide(dip_vec[1], vec_mag_3)
shimFields[:, :, :, 2, count] = np.divide(
| np.multiply(z, vec_dot_dip) | numpy.multiply |
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import toolsClass
import multiprocessing
import time
from scipy.interpolate import interp1d
import scipy.integrate as integrate
#from tqdm.contrib.concurrent import process_map #for process bar. very slow...
tools = toolsClass.tools()
import logging
log = logging.getLogger(__name__)
class GYRO:
def __init__(self, rootDir, dataPath):
"""
rootDir is root location of python modules (where dashGUI.py lives)
dataPath is the location where we write all output to
"""
self.rootDir = rootDir
tools.rootDir = self.rootDir
self.dataPath = dataPath
tools.dataPath = self.dataPath
return
def allowed_class_vars(self):
"""
Writes a list of recognized class variables to HEAT object
Used for error checking input files and for initialization
Here is a list of variables with description:
testvar dummy for testing
"""
self.allowed_vars = [
'N_gyroSteps',
'gyroDeg',
'gyroT_eV',
'N_vSlice',
'N_vPhase',
'N_gyroPhase',
'ionMassAMU',
'vMode',
'ionFrac'
]
return
def setTypes(self):
"""
Set variable types for the stuff that isnt a string from the input file
"""
integers = [
'N_gyroSteps',
'gyroDeg',
'N_vSlice',
'N_vPhase',
'N_gyroPhase',
]
floats = [
'ionFrac',
'gyroT_eV',
'ionMassAMU',
]
for var in integers:
if (getattr(self, var) is not None) and (~np.isnan(float(getattr(self, var)))):
try:
setattr(self, var, int(getattr(self, var)))
except:
print("Error with input file var "+var+". Perhaps you have invalid input values?")
log.info("Error with input file var "+var+". Perhaps you have invalid input values?")
for var in floats:
if var is not None:
if (getattr(self, var) is not None) and (~np.isnan(float(getattr(self, var)))):
try:
setattr(self, var, float(getattr(self, var)))
except:
print("Error with input file var "+var+". Perhaps you have invalid input values?")
log.info("Error with input file var "+var+". Perhaps you have invalid input values?")
return
def setupConstants(self, ionMassAMU=2.014):
"""
Sets up constants
default mass is deuterium 2.014 MeV/c^2
"""
#unit conversions
self.kg2eV = 5.609e35 #1kg = 5.609e35 eV/c^2
self.eV2K = 1.160e4 #1ev=1.160e4 K
#constants
self.AMU = 931.494e6 #ev/c^2
self.kB = 8.617e-5 #ev/K
self.e = 1.602e-19 # C
self.c = 299792458 #m/s
self.diamag = -1 #diamagnetism = -1 for ions, 1 for electrons
self.mass_eV = ionMassAMU * self.AMU
self.Z=1 #assuming isotopes of hydrogen here
return
def temp2thermalVelocity(self, T_eV):
"""
Calculates thermal velocity from a temperature, where thermal velocity
is defined as the most probable speed
T_eV is temperature in eV
can also be found with: d/dv( v*f(v) ) = 0
note that this is for v, not vPerp or v||
"""
return np.sqrt(2.0*T_eV/(self.mass_eV/self.c**2))
def setupFreqs(self, B):
"""
Calculates frequencies, periods, that are dependent upon B
These definitions follow Freidberg Section 7.7.
B is magnetic field magnitude
"""
self.omegaGyro = self.Z * self.e * B / (self.mass_eV / self.kg2eV)
if np.isscalar(self.omegaGyro):
self.omegaGyro = np.array([self.omegaGyro])
self.fGyro = np.abs(self.omegaGyro)/(2*np.pi)
self.TGyro = 1.0/self.fGyro
return
def setupRadius(self, vPerp):
"""
calculates gyro radius.
rGyro has a column for each MC run (N_MC columns), and a
row for each point on the PFC (N_pts), so it is a matrix
of shape: N_pts X N_MC
"""
N_pts = len(self.omegaGyro)
#get number of vPerps
if np.isscalar(vPerp):
vPerp = np.array([vPerp])
N_MC = 1
else:
N_MC = len(vPerp)
self.rGyro = np.zeros((N_pts,N_MC))
for i in range(N_MC):
self.rGyro[:,i] = vPerp[i] / np.abs(self.omegaGyro)
return
def setupVelocities(self, N):
"""
sets up velocities based upon vMode input from GUI
N is the number of source mesh elements (ie len(PFC.centers) )
len(self.t1) is number of points in divertor we are calculating HF on
"""
#get velocity space phase angles
self.uniformVelPhaseAngle()
if self.vMode == 'single':
print("Gyro orbit calculation from single plasma temperature")
log.info("Gyro orbit calculation from single plasma temperature")
self.T0 = np.ones((N))*self.gyroT_eV
#get average velocity for each temperature point
self.vThermal = self.temp2thermalVelocity(self.T0)
#set upper bound of v*f(v) (note that this cuts off high energy particles)
self.vMax = 5 * self.vThermal
#get 100 points to initialize functional form of f(v) (note this is a 2D matrix cause vMax is 2D)
self.vScan = np.linspace(0,self.vMax,10000).T
#get velocity slices for each T0
self.pullEqualProbabilityVelocities()
else:
#TO ADD THIS YOU WILL NEED TO PASS IN XYZ COORDINATES OF CTRS AND INTERPOLATE
print("3D plasma temperature interpolation from file not yet supported. Run gyro orbits in single mode")
log.info("3D plasma temperature interpolation from file not yet supported. Run gyro orbits in single mode")
return
def pullEqualProbabilityVelocities(self):
"""
creates vSlices: array of velocities indexed to match T0 array (or PFC.centers)
each vSlice is positioned at a place in the PDF so it has an equal probability
of occuring. ie the area under the PDF curve between each vSlice is equal.
in loop, i is mesh element index
"""
self.vSlices = np.ones((len(self.T0),self.N_vSlice))*np.nan
self.energySlices = np.zeros((len(self.T0),self.N_vSlice))
self.energyIntegrals = np.zeros((len(self.T0),self.N_vSlice))
self.energyFracs = np.zeros((len(self.T0),self.N_vSlice))
self.vBounds = np.zeros((len(self.T0),self.N_vSlice+1))
for i in range(len(self.T0)):
#get speed range for this T0
v = self.vScan[i,:]
#generate the (here maxwellian) velocity vector PDF
#pdf = lambda x: (self.mass_eV/self.c**2) / (self.T0[i]) * np.exp(-(self.mass_eV/self.c**2 * x**2) / (2*self.T0[i]) )
pdf = lambda x: ( (self.mass_eV/self.c**2) / (2 * np.pi * self.T0[i]) )**(3.0/2.0) * np.exp(-(self.mass_eV/self.c**2 * x**2) / (2*self.T0[i]) )
#speed pdf (integrate over solid angle)
v_pdf = 4*np.pi * v**2 * pdf(v)
#generate the CDF
v_cdf = np.cumsum(v_pdf[1:])*np.diff(v)
v_cdf = np.insert(v_cdf, 0, 0)
#create bspline interpolators for the cdf and cdf inverse
inverseCDF = interp1d(v_cdf, v, kind='linear')
forwardCDF = interp1d(v, v_cdf, kind='linear')
#CDF location of vSlices and bin boundaries
cdfBounds = np.linspace(0,v_cdf[-1],self.N_vSlice+1)
#CDF location of velocity bin bounds omitting 0 and 1
#old method does not make vSlices truly bin centers
#cdfBounds = np.linspace(0,1,self.N_vSlice+1)[1:-1]
#old method 2 spaces centers uniformly
# #calculate N_vSlice velocities for each pdf each with equal area (probability)
# cdfMax = v_cdf[-1]
# cdfMin = v_cdf[0]
# sliceWidth = cdfMax / (self.N_vSlice+1)
# #CDF location of vSlices omitting 0 and 1
# cdfSlices = np.linspace(0,1,self.N_vSlice+2)[1:-1]
# #CDF location of velocity bin bounds omitting 0 and 1
# #old method does not make vSlices truly bin centers
# #cdfBounds = np.linspace(0,1,self.N_vSlice+1)[1:-1]
# #new method makes vSlices bin centers, except for the end bins
# cdfBounds = np.diff(cdfSlices)/2.0 + cdfSlices[:-1]
# #vSlices are Maxwellian distribution sample locations (@ bin centers)
# self.vSlices[i,:] = inverseCDF(cdfSlices)
# vBounds = inverseCDF(cdfBounds)
# vBounds = np.insert(vBounds,0,0)
# vBounds = np.append(vBounds,self.vMax[i])
#new method spaces bins uniformly, then makes vSlices center of these bins in CDF space
cdfSlices = np.diff(cdfBounds)/2.0 + cdfBounds[:-1]
#vSlices are Maxwellian distribution sample locations (@ bin centers)
self.vSlices[i,:] = inverseCDF(cdfSlices)
vBounds = inverseCDF(cdfBounds)
self.vBounds[i,:] = vBounds
#print(cdfBounds)
#print(cdfSlices)
#print(self.vBounds)
#print(self.vSlices)
#Now find energies that correspond to these vSlices
#we integrate: v**2 * f(v)
#energy pdf (missing 1/2*mass but that gets divided out later anyways )
#EofV = lambda x: x**2 * pdf(x)
#EofV = lambda x: 4*np.pi * x**4 * pdf(x)
f_E = lambda x: 2 * np.sqrt(x / np.pi) * (self.T0[i])**(-3.0/2.0) * np.exp(-x / self.T0[i])
#energy slices that correspond to velocity slices
self.energySlices[i,:] = f_E(0.5 * (self.mass_eV/self.c**2) * self.vSlices[i,:]**2)
#energy integrals
for j in range(self.N_vSlice):
Elo = 0.5 * (self.mass_eV/self.c**2) * vBounds[j]**2
Ehi = 0.5 * (self.mass_eV/self.c**2) * vBounds[j+1]**2
self.energyIntegrals[i,j] = integrate.quad(f_E, Elo, Ehi)[0]
energyTotal = self.energyIntegrals[i,:].sum()
#for testing
#if i==0:
# print("Integral Test===")
# print(energyTotal)
# print(integrate.quad(f_E, 0.0, self.vMax[i])[0])
#energy fractions
for j in range(self.N_vSlice):
self.energyFracs[i,j] = self.energyIntegrals[i,j] / energyTotal
print("Found N_vPhase velocities of equal probability")
log.info("Found N_vPhase velocities of equal probability")
return
def uniformGyroPhaseAngle(self):
"""
Uniform sampling of a uniform distribution between 0 and 2pi
returns angles in radians
"""
self.gyroPhases = np.linspace(0,2*np.pi,self.N_gyroPhase+1)[:-1]
return
def uniformVelPhaseAngle(self):
"""
Sampling of a uniform distribution between 0 and pi/2 (only forward velocities)
vPerp is x-axis of velocity space
vParallel is y-axis of velocity space
returns angles in radians
"""
self.vPhases = np.linspace(0.0,np.pi/2,self.N_vPhase+2)[1:-1]
return
def singleGyroTrace(self,vPerp,vParallel,gyroPhase,N_gyroSteps,
BtraceXYZ,controlfilePath,TGyro,rGyro,omegaGyro,
verbose=True):
"""
Calculates the gyro-Orbit path and saves to .csv and .vtk
vPerp and vParallel [m/s] are in velocities
gyroPhase [degrees] is initial orbit phase angle
N_gyroSteps is number of discrete line segments per gyro period
BtraceXYZ is the points of the Bfield trace that we will gyrate about
"""
print("Calculating gyro trace...")
#Loop thru B field trace while tracing gyro orbit
helixTrace = None
for i in range(len(BtraceXYZ)-1):
#points in this iteration
p0 = BtraceXYZ[i,:]
p1 = BtraceXYZ[i+1,:]
#vector
delP = p1 - p0
#magnitude or length of line segment
magP = np.sqrt(delP[0]**2 + delP[1]**2 + delP[2]**2)
#time it takes to transit line segment
delta_t = magP / (vParallel)
#Number of steps in line segment
Tsample = self.TGyro / N_gyroSteps
Nsteps = int(delta_t / Tsample)
#length (in time) along guiding center
t = np.linspace(0,delta_t,Nsteps+1)
#guiding center location
xGC = np.linspace(p0[0],p1[0],Nsteps+1)
yGC = np.linspace(p0[1],p1[1],Nsteps+1)
zGC = np.linspace(p0[2],p1[2],Nsteps+1)
# construct orthogonal system for coordinate transformation
w = delP
if np.all(w==[0,0,1]):
u = np.cross(w,[0,1,0]) #prevent failure if bhat = [0,0,1]
else:
u = np.cross(w,[0,0,1]) #this would fail if bhat = [0,0,1] (rare)
v = np.cross(w,u)
#normalize
u = u / np.sqrt(u.dot(u))
v = v / np.sqrt(v.dot(v))
w = w / np.sqrt(w.dot(w))
xfm = np.vstack([u,v,w]).T
#get helix path along (proxy) z axis reference frame
x_helix = self.rGyro*np.cos(self.omegaGyro*t + gyroPhase)
y_helix = self.diamag*self.rGyro*np.sin(self.omegaGyro*t + gyroPhase)
z_helix = np.zeros((len(t)))
#perform rotation to field line reference frame
helix = np.vstack([x_helix,y_helix,z_helix]).T
helix_rot = np.zeros((len(helix),3))
for j,coord in enumerate(helix):
helix_rot[j,:] = helix[j,0]*u + helix[j,1]*v + helix[j,2]*w
#perform translation to field line reference frame
helix_rot[:,0] += xGC
helix_rot[:,1] += yGC
helix_rot[:,2] += zGC
#update gyroPhase variable so next iteration starts here
gyroPhase = self.omegaGyro*t[-1] + gyroPhase
#append to helix trace
if helixTrace is None:
helixTrace = helix_rot
else:
helixTrace = np.vstack([helixTrace,helix_rot])
helixTrace*=1000.0 #scale for ParaView
print("Saving data to CSV and VTK formats")
#save data to csv format
head = 'X[mm],Y[mm],Z[mm]'
np.savetxt(controlfilePath+'helix.csv', helixTrace, delimiter=',', header=head)
#save data to vtk format
tools.createVTKOutput(controlfilePath+'helix.csv', 'trace', 'Gyro_trace')
if verbose==True:
print("V_perp = {:f} [m/s]".format(vPerp))
print("V_parallel = {:f} [m/s]".format(vParallel))
print("Cyclotron Freq = {:f} [rad/s]".format(self.omegaGyro[0]))
print("Cyclotron Freq = {:f} [Hz]".format(self.fGyro[0]))
print("Gyro Radius = {:f} [m]".format(self.rGyro[0][0]))
print("Number of gyro points = {:f}".format(len(helixTrace)))
print("Longitudinal dist between gyro points = {:f} [m]".format(magP/float(Nsteps)))
print("Each line segment length ~ {:f} [m]".format(magP))
return
def gyroTraceParallel(self, i, mode='MT'):
"""
parallelized gyro trace. called by multiprocessing.pool.map()
i is index of parallel run from multiprocessing, corresponds to a mesh face
we are tracing in the ROI
writes helical trace to self.helixTrace[i] in 2D matrix format:
columns = X,Y,Z
rows = steps up helical trace
also updates self.lastPhase for use in next iteration step
mode options are:
-Signed Volume Loop: 'SigVolLoop'
-Signed Volume Matrix: 'SigVolMat'
-Moller-Trumbore Algorithm: 'MT'
"""
#vector
delP = self.p1[i] - self.p0[i]
#magnitude
magP = np.sqrt(delP[0]**2 + delP[1]**2 + delP[2]**2)
#time it takes to transit line segment
delta_t = magP / (self.vParallelMC[self.GYRO_HLXmap][i])
#Number of steps in line segment
Tsample = self.TGyro[self.GYRO_HLXmap][i] / self.N_gyroSteps
Nsteps = int(delta_t / Tsample)
#length (in time) along guiding center
t = np.linspace(0,delta_t,Nsteps+1)
#guiding center location
xGC = np.linspace(self.p0[i,0],self.p1[i,0],Nsteps+1)
yGC = np.linspace(self.p0[i,1],self.p1[i,1],Nsteps+1)
zGC = np.linspace(self.p0[i,2],self.p1[i,2],Nsteps+1)
arrGC = np.vstack([xGC,yGC,zGC]).T
# construct orthogonal system for coordinate transformation
w = delP
if np.all(w==[0,0,1]):
u = np.cross(w,[0,1,0]) #prevent failure if bhat = [0,0,1]
else:
u = np.cross(w,[0,0,1]) #this would fail if bhat = [0,0,1] (rare)
v = np.cross(w,u)
#normalize
u = u / np.sqrt(u.dot(u))
v = v / np.sqrt(v.dot(v))
w = w / np.sqrt(w.dot(w))
xfm = np.vstack([u,v,w]).T
#get helix path along (proxy) z axis reference frame
rGyro = self.rGyroMC[self.GYRO_HLXmap][i]
omega = self.omegaGyro[self.GYRO_HLXmap][i]
theta = self.lastPhase[self.GYRO_HLXmap][i]
x_helix = rGyro*np.cos(omega*t + theta)
y_helix = self.diamag*rGyro* | np.sin(omega*t + theta) | numpy.sin |
"""
This module contains the BinMapper class.
BinMapper is used for mapping a real-valued dataset into integer-valued bins.
Bin thresholds are computed with the quantiles so that each bin contains
approximately the same number of samples.
"""
# Author: <NAME>
import numpy as np
from ...utils import check_random_state, check_array
from ...base import BaseEstimator, TransformerMixin
from ...utils.validation import check_is_fitted
from ._binning import _map_to_bins
from .types import X_DTYPE, X_BINNED_DTYPE
def _find_binning_thresholds(data, max_bins, subsample, random_state):
"""Extract feature-wise quantiles from numerical data.
Parameters
----------
data : array-like, shape (n_samples, n_features)
The data to bin.
max_bins : int
The maximum number of bins to use. If for a given feature the number of
unique values is less than ``max_bins``, then those unique values
will be used to compute the bin thresholds, instead of the quantiles.
subsample : int or None
If ``n_samples > subsample``, then ``sub_samples`` samples will be
randomly choosen to compute the quantiles. If ``None``, the whole data
is used.
random_state: int or numpy.random.RandomState or None
Pseudo-random number generator to control the random sub-sampling.
See :term:`random_state`.
Return
------
binning_thresholds: list of arrays
For each feature, stores the increasing numeric values that can
be used to separate the bins. Thus ``len(binning_thresholds) ==
n_features``.
"""
if not (2 <= max_bins <= 256):
raise ValueError('max_bins={} should be no smaller than 2 '
'and no larger than 256.'.format(max_bins))
rng = check_random_state(random_state)
if subsample is not None and data.shape[0] > subsample:
subset = rng.choice( | np.arange(data.shape[0]) | numpy.arange |
import os
import tempfile
import numpy as np
import scipy.ndimage.measurements as meas
from functools import reduce
import warnings
import sys
sys.path.append(os.path.abspath(r'../lib'))
import NumCppPy as NumCpp # noqa E402
####################################################################################
def factors(n):
return set(reduce(list.__add__,
([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)))
####################################################################################
def test_seed():
| np.random.seed(1) | numpy.random.seed |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(221, 'P m -3 m', transformations)
space_groups[221] = sg
space_groups['P m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(222, 'P n -3 n :2', transformations)
space_groups[222] = sg
space_groups['P n -3 n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(223, 'P m -3 n', transformations)
space_groups[223] = sg
space_groups['P m -3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(224, 'P n -3 m :2', transformations)
space_groups[224] = sg
space_groups['P n -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(225, 'F m -3 m', transformations)
space_groups[225] = sg
space_groups['F m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(226, 'F m -3 c', transformations)
space_groups[226] = sg
space_groups['F m -3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(227, 'F d -3 m :2', transformations)
space_groups[227] = sg
space_groups['F d -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,5,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,5,1])
trans_den = | N.array([4,4,2]) | numpy.array |
import numpy as np
import pytest
from plaguepy import bereken
def test_perc_overlap():
"""Test de functie perc_overlap in bereken.py."""
assert bereken.perc_overlap(0, 0, 1) == 1.0
assert bereken.perc_overlap(0, 1, 1) == 1.0
assert bereken.perc_overlap(1, 0, 1) == pytest.approx(0.3173105)
assert bereken.perc_overlap(1, 1, 1) == pytest.approx(0.3173105)
with pytest.raises(ValueError):
assert bereken.perc_overlap(0, 1, 0) == ValueError
assert bereken.perc_overlap(1, 0, 0) == ValueError
assert bereken.perc_overlap(0, 0, 0) == ValueError
assert bereken.perc_overlap(1, 1, 0) == ValueError
def test_grens():
"""Test de functie grens in bereken.py."""
assert bereken.grens(0.025, 0, 1) == pytest.approx(-1.95996398) # -2 SD
assert bereken.grens(0.16, 0, 1) == pytest.approx(-0.99445788) # -1 SD
assert bereken.grens(0.5, 0, 1) == 0.0 # 50% dus nog op gemiddelde
assert bereken.grens(0.84, 0, 1) == pytest.approx(0.99445788) # 1 SD
assert bereken.grens(0.975, 0, 1) == pytest.approx(1.95996398) # 2 SD
with pytest.raises(ValueError):
assert bereken.grens(-0.5, 0, 1) == ValueError
assert bereken.grens(0, 0, 1) == ValueError
assert bereken.grens(1, 0, 1) == ValueError
assert bereken.grens(1.5, 0, 1) == ValueError
def test_helling():
"""Test de functie helling in bereken.py."""
assert bereken.helling(np.array([0, 0]), np.array([1, 0])) == 0.0
assert bereken.helling(np.array([0, 0]), np.array([1, 1])) == 45.0
assert bereken.helling(np.array([0, 0]), np.array([-1, -1])) == 45.0
assert bereken.helling(np.array([0, 0]), np.array([-1, 1])) == -45.0
assert bereken.helling(np.array([0, 0]), np.array([1, -1])) == -45.0
assert bereken.helling(np.array([0, 0]), | np.array([0, 0]) | numpy.array |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = | np.linspace(maxima_y[-1], minima_y[-1], 101) | numpy.linspace |
import os
import json
import numpy as np
import torch
from gym import spaces
from omegaconf import OmegaConf
def available_device() -> torch.device:
if torch.cuda.is_available():
return torch.device('cuda')
return torch.device('cpu')
def format_number(num):
return '{:,}'.format(num)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def soft_update(target, source, polyak):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_((1 - polyak) * param.data + polyak * target_param.data)
def hard_update(target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
class NumpyArrayEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, object):
# NOTE: Ignore classes for now
return None
else:
return super(NumpyArrayEncoder, self).default(obj)
def init_storage(cfg):
logdir = os.getcwd()
model_path = os.path.join(logdir, 'models')
if not os.path.exists(model_path):
os.mkdir(model_path)
video_path = os.path.join(logdir, 'videos')
if cfg.log_video and not os.path.exists(video_path):
os.mkdir(video_path)
with open(os.path.join(logdir, 'omega_config.yaml'), 'w') as file:
OmegaConf.save(config=cfg, f=file)
return logdir, model_path
def is_image_observation(observation_space):
if isinstance(observation_space, spaces.Box) and len(observation_space.shape) == 3:
# Check the type
if observation_space.dtype == np.uint8:
return True
# Check the value range
elif np.any(observation_space.low == 0) or | np.any(observation_space.high == 255) | numpy.any |
import numpy as np
from joblib import Memory
from scipy.optimize import fmin_l_bfgs_b
location = './cachedir'
memory = Memory(location, verbose=0)
def x_to_params(x, p, q, n):
A = x[:p * q].reshape(p, q)
P = x[p * q: p * q + q * n].reshape(n, q)
return A, P
def params_to_x(A, P):
p, q = A.shape
n, _ = P.shape
x = np.zeros(p * q + n * q)
x[:p * q] = A.ravel()
x[p * q: p * q + q * n] = P.ravel()
return x
def kl(A, B):
p, _ = A.shape
C = np.dot(A, | np.linalg.inv(B) | numpy.linalg.inv |
import numpy
from radiomics import base, cMatrices
class RadiomicsGLRLM(base.RadiomicsFeaturesBase):
r"""
A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number of
pixels, of consecutive pixels that have the same gray level value. In a gray level run length matrix
:math:`\textbf{P}(i,j|\theta)`, the :math:`(i,j)^{\text{th}}` element describes the number of runs with gray level
:math:`i` and length :math:`j` occur in the image (ROI) along angle :math:`\theta`.
As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:
.. math::
\textbf{I} = \begin{bmatrix}
5 & 2 & 5 & 4 & 4\\
3 & 3 & 3 & 1 & 3\\
2 & 1 & 1 & 1 & 3\\
4 & 2 & 2 & 2 & 3\\
3 & 5 & 3 & 3 & 2 \end{bmatrix}
The GLRLM for :math:`\theta = 0`, where 0 degrees is the horizontal direction, then becomes:
.. math::
\textbf{P} = \begin{bmatrix}
1 & 0 & 1 & 0 & 0\\
3 & 0 & 1 & 0 & 0\\
4 & 1 & 1 & 0 & 0\\
1 & 1 & 0 & 0 & 0\\
3 & 0 & 0 & 0 & 0 \end{bmatrix}
Let:
- :math:`N_g` be the number of discreet intensity values in the image
- :math:`N_r` be the number of discreet run lengths in the image
- :math:`N_p` be the number of voxels in the image
- :math:`N_r(\theta)` be the number of runs in the image along angle :math:`\theta`, which is equal to
:math:`\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}` and :math:`1 \leq N_r(\theta) \leq N_p`
- :math:`\textbf{P}(i,j|\theta)` be the run length matrix for an arbitrary direction :math:`\theta`
- :math:`p(i,j|\theta)` be the normalized run length matrix, defined as :math:`p(i,j|\theta) =
\frac{\textbf{P}(i,j|\theta)}{N_r(\theta)}`
By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the mean of these
values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance between neighbouring voxels
and then summed and normalised. Features are then calculated on the resultant matrix. The distance between
neighbouring voxels is calculated for each angle using the norm specified in 'weightingNorm'.
The following class specific settings are possible:
- weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:
- 'manhattan': first order norm
- 'euclidean': second order norm
- 'infinity': infinity norm.
- 'no_weighting': GLCMs are weighted by factor 1 and summed
- None: Applies no weighting, mean of values calculated on separate matrices is returned.
In case of other values, an warning is logged and option 'no_weighting' is used.
References
- <NAME>. 1975. Texture analysis using gray level run lengths. Computer Graphics and Image Processing,
4(2):172-179.
- <NAME>., <NAME>., <NAME>. 1990. Use of gray value distribution of run length for texture analysis.
Pattern Recognition Letters, 11(6):415-419
- <NAME>., <NAME>., <NAME>., <NAME>. 2004. Run-Length Encoding For Volumetric Texture. International Conference on
Visualization, Imaging and Image Processing (VIIP), p. 452-458
- <NAME>. 1998. Texture information in run-length matrices. IEEE Transactions on Image Processing 7(11):1602-1609.
- `<NAME>., <NAME>. Run-Length Matrices For Texture Analysis. Insight Journal 2008 January - June.
<http://www.insight-journal.org/browse/publication/231>`_
"""
def __init__(self, inputImage, inputMask, **kwargs):
super(RadiomicsGLRLM, self).__init__(inputImage, inputMask, **kwargs)
self.weightingNorm = kwargs.get('weightingNorm', None) # manhattan, euclidean, infinity
self.P_glrlm = None
self.imageArray = self._applyBinning(self.imageArray)
def _initCalculation(self, voxelCoordinates=None):
self.P_glrlm = self._calculateMatrix(voxelCoordinates)
self._calculateCoefficients()
self.logger.debug('GLRLM feature class initialized, calculated GLRLM with shape %s', self.P_glrlm.shape)
def _calculateMatrix(self, voxelCoordinates=None):
self.logger.debug('Calculating GLRLM matrix in C')
Ng = self.coefficients['Ng']
Nr = numpy.max(self.imageArray.shape)
matrix_args = [
self.imageArray,
self.maskArray,
Ng,
Nr,
self.settings.get('force2D', False),
self.settings.get('force2Ddimension', 0)
]
if self.voxelBased:
matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]
P_glrlm, angles = cMatrices.calculate_glrlm(*matrix_args) # shape (Nvox, Ng, Nr, Na)
self.logger.debug('Process calculated matrix')
# Delete rows that specify gray levels not present in the ROI
NgVector = range(1, Ng + 1) # All possible gray values
GrayLevels = self.coefficients['grayLevels'] # Gray values present in ROI
emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels)), dtype=int) # Gray values NOT present in ROI
P_glrlm = numpy.delete(P_glrlm, emptyGrayLevels - 1, 1)
# Optionally apply a weighting factor
if self.weightingNorm is not None:
self.logger.debug('Applying weighting (%s)', self.weightingNorm)
pixelSpacing = self.inputImage.GetSpacing()[::-1]
weights = numpy.empty(len(angles))
for a_idx, a in enumerate(angles):
if self.weightingNorm == 'infinity':
weights[a_idx] = max(numpy.abs(a) * pixelSpacing)
elif self.weightingNorm == 'euclidean':
weights[a_idx] = numpy.sqrt(numpy.sum((numpy.abs(a) * pixelSpacing) ** 2))
elif self.weightingNorm == 'manhattan':
weights[a_idx] = numpy.sum(numpy.abs(a) * pixelSpacing)
elif self.weightingNorm == 'no_weighting':
weights[a_idx] = 1
else:
self.logger.warning('weigthing norm "%s" is unknown, weighting factor is set to 1', self.weightingNorm)
weights[a_idx] = 1
P_glrlm = numpy.sum(P_glrlm * weights[None, None, None, :], 3, keepdims=True)
Nr = numpy.sum(P_glrlm, (1, 2))
# Delete empty angles if no weighting is applied
if P_glrlm.shape[3] > 1:
emptyAngles = numpy.where(numpy.sum(Nr, 0) == 0)
if len(emptyAngles[0]) > 0: # One or more angles are 'empty'
self.logger.debug('Deleting %d empty angles:\n%s', len(emptyAngles[0]), angles[emptyAngles])
P_glrlm = numpy.delete(P_glrlm, emptyAngles, 3)
Nr = numpy.delete(Nr, emptyAngles, 1)
else:
self.logger.debug('No empty angles')
Nr[Nr == 0] = numpy.nan # set sum to numpy.spacing(1) if sum is 0?
self.coefficients['Nr'] = Nr
return P_glrlm
def _calculateCoefficients(self):
self.logger.debug('Calculating GLRLM coefficients')
pr = numpy.sum(self.P_glrlm, 1) # shape (Nvox, Nr, Na)
pg = numpy.sum(self.P_glrlm, 2) # shape (Nvox, Ng, Na)
ivector = self.coefficients['grayLevels'].astype(float) # shape (Ng,)
jvector = numpy.arange(1, self.P_glrlm.shape[2] + 1, dtype=numpy.float64) # shape (Nr,)
# Delete columns that run lengths not present in the ROI
emptyRunLenghts = numpy.where(numpy.sum(pr, (0, 2)) == 0)
self.P_glrlm = numpy.delete(self.P_glrlm, emptyRunLenghts, 2)
jvector = numpy.delete(jvector, emptyRunLenghts)
pr = numpy.delete(pr, emptyRunLenghts, 1)
self.coefficients['pr'] = pr
self.coefficients['pg'] = pg
self.coefficients['ivector'] = ivector
self.coefficients['jvector'] = jvector
def getShortRunEmphasisFeatureValue(self):
r"""
**1. Short Run Emphasis (SRE)**
.. math::
\textit{SRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{j^2}}}{N_r(\theta)}
SRE is a measure of the distribution of short run lengths, with a greater value indicative of shorter run lengths
and more fine textural textures.
"""
pr = self.coefficients['pr']
jvector = self.coefficients['jvector']
Nr = self.coefficients['Nr']
sre = numpy.sum((pr / (jvector[None, :, None] ** 2)), 1) / Nr
return numpy.nanmean(sre, 1)
def getLongRunEmphasisFeatureValue(self):
r"""
**2. Long Run Emphasis (LRE)**
.. math::
\textit{LRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)j^2}}{N_r(\theta)}
LRE is a measure of the distribution of long run lengths, with a greater value indicative of longer run lengths and
more coarse structural textures.
"""
pr = self.coefficients['pr']
jvector = self.coefficients['jvector']
Nr = self.coefficients['Nr']
lre = numpy.sum((pr * (jvector[None, :, None] ** 2)), 1) / Nr
return numpy.nanmean(lre, 1)
def getGrayLevelNonUniformityFeatureValue(self):
r"""
**3. Gray Level Non-Uniformity (GLN)**
.. math::
\textit{GLN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)}
GLN measures the similarity of gray-level intensity values in the image, where a lower GLN value correlates with a
greater similarity in intensity values.
"""
pg = self.coefficients['pg']
Nr = self.coefficients['Nr']
gln = numpy.sum((pg ** 2), 1) / Nr
return numpy.nanmean(gln, 1)
def getGrayLevelNonUniformityNormalizedFeatureValue(self):
r"""
**4. Gray Level Non-Uniformity Normalized (GLNN)**
.. math::
\textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)^2}
GLNN measures the similarity of gray-level intensity values in the image, where a lower GLNN value correlates with a
greater similarity in intensity values. This is the normalized version of the GLN formula.
"""
pg = self.coefficients['pg']
Nr = self.coefficients['Nr']
glnn = numpy.sum(pg ** 2, 1) / (Nr ** 2)
return numpy.nanmean(glnn, 1)
def getRunLengthNonUniformityFeatureValue(self):
r"""
**5. Run Length Non-Uniformity (RLN)**
.. math::
\textit{RLN} = \frac{\sum^{N_r}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)}
RLN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity
among run lengths in the image.
"""
pr = self.coefficients['pr']
Nr = self.coefficients['Nr']
rln = numpy.sum((pr ** 2), 1) / Nr
return numpy.nanmean(rln, 1)
def getRunLengthNonUniformityNormalizedFeatureValue(self):
r"""
**6. Run Length Non-Uniformity Normalized (RLNN)**
.. math::
\textit{RLNN} = \frac{\sum^{N_r}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)^2}
RLNN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity
among run lengths in the image. This is the normalized version of the RLN formula.
"""
pr = self.coefficients['pr']
Nr = self.coefficients['Nr']
rlnn = numpy.sum((pr ** 2), 1) / Nr ** 2
return numpy.nanmean(rlnn, 1)
def getRunPercentageFeatureValue(self):
r"""
**7. Run Percentage (RP)**
.. math::
\textit{RP} = {\frac{N_r(\theta)}{N_p}}
RP measures the coarseness of the texture by taking the ratio of number of runs and number of voxels in the ROI.
Values are in range :math:`\frac{1}{N_p} \leq RP \leq 1`, with higher values indicating a larger portion of the ROI
consists of short runs (indicates a more fine texture).
.. note::
Note that when weighting is applied and matrices are merged before calculation, :math:`N_p` is multiplied by
:math:`n` number of matrices merged to ensure correct normalization (as each voxel is considered :math:`n` times)
"""
pr = self.coefficients['pr']
jvector = self.coefficients['jvector']
Nr = self.coefficients['Nr']
Np = numpy.sum(pr * jvector[None, :, None], 1) # shape (Nvox, Na)
rp = Nr / Np
return numpy.nanmean(rp, 1)
def getGrayLevelVarianceFeatureValue(self):
r"""
**8. Gray Level Variance (GLV)**
.. math::
\textit{GLV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)(i - \mu)^2}
Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)i}`
GLV measures the variance in gray level intensity for the runs.
"""
ivector = self.coefficients['ivector']
Nr = self.coefficients['Nr']
pg = self.coefficients['pg'] / Nr[:, None, :] # divide by Nr to get the normalized matrix
u_i = numpy.sum(pg * ivector[None, :, None], 1, keepdims=True)
glv = numpy.sum(pg * (ivector[None, :, None] - u_i) ** 2, 1)
return numpy.nanmean(glv, 1)
def getRunVarianceFeatureValue(self):
r"""
**9. Run Variance (RV)**
.. math::
\textit{RV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)(j - \mu)^2}
Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)j}`
RV is a measure of the variance in runs for the run lengths.
"""
jvector = self.coefficients['jvector']
Nr = self.coefficients['Nr']
pr = self.coefficients['pr'] / Nr[:, None, :] # divide by Nr to get the normalized matrix
u_j = numpy.sum(pr * jvector[None, :, None], 1, keepdims=True)
rv = numpy.sum(pr * (jvector[None, :, None] - u_j) ** 2, 1)
return numpy.nanmean(rv, 1)
def getRunEntropyFeatureValue(self):
r"""
**10. Run Entropy (RE)**
.. math::
\textit{RE} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}
{p(i,j|\theta)\log_{2}(p(i,j|\theta)+\epsilon)}
Here, :math:`\epsilon` is an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`).
RE measures the uncertainty/randomness in the distribution of run lengths and gray levels. A higher value indicates
more heterogeneity in the texture patterns.
"""
eps = numpy.spacing(1)
Nr = self.coefficients['Nr']
p_glrlm = self.P_glrlm / Nr[:, None, None, :] # divide by Nr to get the normalized matrix
re = -numpy.sum(p_glrlm * numpy.log2(p_glrlm + eps), (1, 2))
return numpy.nanmean(re, 1)
def getLowGrayLevelRunEmphasisFeatureValue(self):
r"""
**11. Low Gray Level Run Emphasis (LGLRE)**
.. math::
\textit{LGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{i^2}}}{N_r(\theta)}
LGLRE measures the distribution of low gray-level values, with a higher value indicating a greater concentration of
low gray-level values in the image.
"""
pg = self.coefficients['pg']
ivector = self.coefficients['ivector']
Nr = self.coefficients['Nr']
lglre = numpy.sum((pg / (ivector[None, :, None] ** 2)), 1) / Nr
return | numpy.nanmean(lglre, 1) | numpy.nanmean |
# -*- coding: utf-8 -*-
import unittest
import os
import numpy as np
try:
from karta import Point
from karta.crs import LonLatWGS84
except ImportError:
from narwhal.geo import Point, LonLatWGS84
import narwhal
from narwhal import gsw
from narwhal.cast import Cast, CTDCast, XBTCast, LADCP
from narwhal.cast import CastCollection
from narwhal.bathymetry import Bathymetry
from narwhal.util import force_monotonic, diff2, uintegrate, diff2_inner
from narwhal import util
directory = os.path.dirname(__file__)
DATADIR = os.path.join(directory, "data")
if not os.path.exists(DATADIR):
os.mkdir(DATADIR)
class CastTests(unittest.TestCase):
def setUp(self):
p = np.arange(1, 1001, 2)
temp = 10. * np.exp(-.008*p) - 15. * np.exp(-0.005*(p+100)) + 2.
sal = -14. * np.exp(-.01*p) + 34.
self.p = p
self.temp = temp
self.sal = sal
self.cast = CTDCast(p, sal, temp)
return
def test_numerical_indexing(self):
r = self.cast[40]
self.assertTrue(r["pressure"] == 81)
self.assertTrue(r["salinity"] == 27.771987072878822)
self.assertTrue(r["temperature"] == 1.1627808544797258)
r = self.cast[100]
self.assertTrue(r["pressure"] == 201)
self.assertTrue(r["salinity"] == 32.124158554636729)
self.assertTrue(r["temperature"] == 0.67261848597249019)
r = self.cast[400]
self.assertTrue(r["pressure"] == 801)
self.assertTrue(r["salinity"] == 33.995350253934227)
self.assertTrue(r["temperature"] == 1.8506793256302907)
return
def test_kw_indexing(self):
self.assertTrue(np.all(self.cast["pressure"] == self.p))
self.assertTrue(np.all(self.cast["salinity"] == self.sal))
self.assertTrue(np.all(self.cast["temperature"] == self.temp))
return
def test_kw_property_indexing(self):
cast = Cast(pressure=self.p, temp=self.temp, sal=self.sal,
name="Cruise station 7")
self.assertEqual(cast.p["name"], "Cruise station 7")
return
def test_concatenation(self):
p = np.arange(1, 1001, 2)
temp = 12. * np.exp(-.007*p) - 14. * np.exp(-0.005*(p+100)) + 1.8
sal = -13. * np.exp(-.01*p) + 34.5
cast2 = Cast(pres=p, temp=temp, sal=sal)
cc = self.cast + cast2
self.assertTrue(isinstance(cc, CastCollection))
self.assertEqual(len(cc), 2)
return
def test_interpolate(self):
self.assertEqual(np.round(self.cast.interpolate("temperature", "pressure", 4.0), 8),
2.76745605)
self.assertEqual(np.round(self.cast.interpolate("temperature", "salinity", 33.0), 8),
0.77935861)
# temp not monotonic, which screws up the simple interpolation scheme
#self.assertEqual(np.round(self.cast.interpolate("pres", "temp", 1.5), 8),
# 2.7674560521632685)
return
def test_add_property_using_alias(self):
cast = Cast(pres=self.p, temp=self.temp, sal=self.sal)
cast.p["comment"] = "performed bottle cast #23"
self.assertEqual(cast.properties["comment"][-2:], "23")
return
def test_read_property_using_alias(self):
cast = Cast(pressure=self.p, temp=self.temp, sal=self.sal, time="late")
self.assertEqual(cast.p["time"], "late")
return
def test_add_density(self):
p = np.arange(10)
t = 20.0 * 0.2 * p
s = 30.0 * 0.25 * p
x = [-20.0 for _ in p]
y = [50.0 for _ in p]
sa = gsw.sa_from_sp(s, p, x, y)
ct = gsw.ct_from_t(sa, t, p)
rho = gsw.rho(sa, ct, p)
cast = CTDCast(p, s, t, coordinates=(-20, 50))
cast.add_density()
self.assertTrue(np.allclose(rho, cast["density"]))
return
def test_add_buoyancy_freq_squared(self):
# This is a fairly lousy test, merely ensuring that an N^2 field was
# calculated, and that it's not wildly different than the direct
# calculation.
p = np.arange(10)
t = 20.0 * 0.2 * p
s = 30.0 * 0.25 * p
x = [-20.0 for _ in p]
y = [50.0 for _ in p]
sa = gsw.sa_from_sp(s, p, x, y)
ct = gsw.ct_from_t(sa, t, p)
rho = np.asarray(gsw.rho(sa, ct, p))
cast = CTDCast(p, s, t, coordinates=(-20, 50), density=rho)
cast.add_depth()
cast.add_Nsquared(depthkey="depth")
# Calculate the buoyancy frequency directly
z = cast["depth"].values
drhodz = -np.r_[rho[1]-rho[0], rho[2:]-rho[:-2], rho[-1]-rho[-2]] / \
np.r_[z[1]-z[0], z[2:]-z[:-2], z[-1]-z[-2]]
N2_direct = -9.81 / rho * drhodz
self.assertTrue(np.mean(np.abs(cast["N2"][1:] - N2_direct[1:])) < 0.0004)
return
def test_LADCP_shear(self):
z = np.arange(0, 300)
u = z**1.01 - z
v = z**1.005 - z
u_ans = 1.01 * z**0.01 - 1
v_ans = 1.005 * z**0.005 - 1
lad = narwhal.LADCP(z, u, v)
lad.add_shear()
self.assertTrue(np.max(abs(lad["dudz"][1:-1] - u_ans[1:-1])) < 0.005)
self.assertTrue(np.max(abs(lad["dvdz"][1:-1] - v_ans[1:-1])) < 0.005)
return
#def test_projectother(self):
# pass
#def test_calculate_sigma(self):
# pass
#def test_calculate_theta(self):
# pass
class CastCollectionTests(unittest.TestCase):
def setUp(self):
p = np.linspace(1, 999, 500)
casts = []
for i in range(10):
cast = Cast(pres=p, temp=2*np.ones_like(p), sal=30*np.ones_like(p),
station=i, val=abs(i-5), uniq_val=-i**2)
casts.append(cast)
self.cc = CastCollection(casts)
return
def test_iteration1(self):
for cast in self.cc:
self.assertTrue(isinstance(cast, Cast))
return
def test_iteration2(self):
for i, cast in enumerate(self.cc):
pass
self.assertEqual(i, 9)
return
def test_len(self):
self.assertEqual(len(self.cc), 10)
return
def test_slicing(self):
subcc = self.cc[2:7]
self.assertTrue(isinstance(subcc, CastCollection))
return
def test_get_properties(self):
self.assertEqual(self.cc["station"],
[c.properties["station"] for c in self.cc])
return
def test_castwhere(self):
cc = self.cc
self.assertEqual(cc.castwhere("station", 5), cc[5])
return
def test_castswhere(self):
cc = self.cc
self.assertEqual(cc.castswhere("station", (3,5,6,7)), cc[3]+cc[5:8])
return
def test_castswhere_onearg(self):
cc = self.cc
self.assertEqual(cc.castswhere("station", 5), CastCollection(cc[5]))
return
def test_castswhere_multiple_results(self):
cc = self.cc
self.assertEqual(cc.castswhere("val", (1, 2)), cc[3:5] + cc[6:8])
return
def test_castswhere_function(self):
cc = self.cc
casts = cc.castswhere("val", lambda x: x <=3)
self.assertEqual(casts, cc[2:-1])
return
def test_select(self):
cc = self.cc
casts = cc.select("uniq_val", (-36, -49, -16))
self.assertEqual(casts, cc[6:8] + cc[4])
return
def test_nearest_to(self):
casts = []
for i in range(10):
casts.append(Cast(pressure=[1, 2, 3], temperature=[5, 6, 7],
coordinates=(-30.0 + i, 10.0 - 2*i)))
cc = CastCollection(casts)
pt = Point((-26.2, 2.1), crs=LonLatWGS84)
nearest, dist = cc.nearest_to_point(pt)
self.assertEqual(nearest.coordinates.vertex, (-26.0, 2.0))
self.assertAlmostEqual(dist, 24845.9422, places=4)
return
def test_defray(self):
lengths = np.arange(50, 71)
casts = []
for n in lengths:
p = np.r_[np.arange(0, 250, 5), np.arange(250, 250 + 5*(n-50), 5)]
t = np.ones(n) * 10.0
s = np.ones(n) * 34.0
cast = Cast(pres=p, temp=t, sal=s)
casts.append(cast)
defrayed_casts = CastCollection(casts).defray()
for cast in defrayed_casts:
self.assertEqual(len(cast), 70)
return
class MiscTests(unittest.TestCase):
def test_force_monotonic(self):
s = np.array([1, 3, 5, 6, 7, 9, 13, 14, 15])
sm = force_monotonic(s)
self.assertTrue(np.all(sm == s))
s = np.array([1, 3, 5, 4, 7, 9, 13, 11, 15])
sm = force_monotonic(s)
self.assertTrue(np.all(sm == np.array([1, 3, 5, 5+1e-16, 7,
9, 13, 13+1e-16, 15])))
return
def test_diff2(self):
x = np.atleast_2d(np.linspace(-1, 1, 100))
A = x**2 - (x + x.T)**3
ans = 2*x - 3*(x + x.T)**2 # true answer
# add holes
A[30:40,1] = np.nan
A[15,35] = np.nan
A[30:50,50:55] = np.nan
A[60:65,60] = np.nan
A[60:70,-2] = np.nan
D = diff2(A, x.ravel())
self.assertTrue(np.max(abs(ans[~np.isnan(D)] - D[~np.isnan(D)])) < 0.15)
return
def test_diff2_inner(self):
x = np.atleast_2d(np.linspace(-1, 1, 100))
A = x**2 - (x + x.T)**3
xinner = np.atleast_2d(0.5 * (x[0,1:] + x[0,:-1]))
ans = 2*xinner - 3*(xinner + x.T)**2 # true answer
# add holes
A[30:40,1] = np.nan
A[15,35] = np.nan
A[30:50,50:55] = np.nan
A[60:65,60] = np.nan
A[60:70,-2] = np.nan
D = diff2_inner(A, x.ravel())
self.assertTrue(np.max(abs(ans[~np.isnan(D)] - D[~np.isnan(D)])) < 0.0002)
return
def test_diff2_dinterp(self):
x = np.atleast_2d( | np.linspace(-1, 1, 100) | numpy.linspace |
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 5 10:40:35 2018
@author: hamed
"""
try:
import torch
from torch.utils import data
except:
pass
import numpy as np
from sklearn import datasets
#%%
class kk_mimic_dataset(data.Dataset):
def __init__(self, phase="train", seq_len=10, data_norm=True, test=False):
percent = 20
n_valid = percent/20 * 328
ind_valid = np.ones(n_valid)
ind_valid = np.concatenate((ind_valid, np.zeros(6564-n_valid)))
ind_valid = np.random.permutation(ind_valid)
ind_test = 1 - ind_valid
self.ind_valid = np.greater(ind_valid, 0)
self.ind_test = np.greater(ind_test, 0)
super(kk_mimic_dataset, self).__init__()
if phase == "train":
if test:
data_path = "../../mimic-libsvm/" + "PATIENTS_SPLIT_XGB_TRAIN"
else:
data_path = "../mimic-libsvm/" + "PATIENTS_SPLIT_XGB_TRAIN"
data = datasets.load_svmlight_file(data_path)
else:
if test:
data_path = "../../mimic-libsvm/" + "PATIENTS_SPLIT_XGB_VALID"
else:
data_path = "../mimic-libsvm/" + "PATIENTS_SPLIT_XGB_VALID"
data = np.array(datasets.load_svmlight_file(data_path))
if phase == "valid":#
# data = [ data[0][:data[1].shape[0]//percent], data[1][:data[1].shape[0]//percent] ]
data = [ data[0][self.ind_valid], data[1][self.ind_valid] ]
else:
# data = [ data[0][data[1].shape[0]//percent:], data[1][data[1].shape[0]//percent:] ]
data = [ data[0][self.ind_test], data[1][self.ind_test] ]
# # TODO: ONLY for fast debugging
## factor = 10
# data = [ data[0][:data[1].shape[0]//factor], data[1][:data[1].shape[0]//factor] ]
#Random selection
factor = 20
n_data = data[1].shape[0]
ind_ = | np.ones(n_data//factor) | numpy.ones |
import isopy
import numpy as np
import pytest
# calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation
def test_mass_fractionation1():
# Testing with input as isotope array
# Using default reference values
mass_ref = isopy.refval.isotope.mass_W17
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed = 46)
unfractionated = unfractionated * fraction_ref
unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd']
mf_factor = isopy.random(100, (0, 2), seed=47)
c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd')
c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor)
assert c_fractionated1.keys == unfractionated.keys
assert c_fractionated1.size == unfractionated.size
assert c_fractionated2.keys == unfractionated.keys
assert c_fractionated2.size == unfractionated.size
c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd')
c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor)
assert c_unfractionated1.keys == unfractionated.keys
assert c_unfractionated1.size == unfractionated.size
assert c_unfractionated2.keys == unfractionated.keys
assert c_unfractionated2.size == unfractionated.size
c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd')
np.testing.assert_allclose(c_mf_factor2, mf_factor)
for key in unfractionated.keys:
mass_diff = mass_ref.get(key/'105pd')
fractionated = unfractionated[key] * (mass_diff ** mf_factor)
np.testing.assert_allclose(c_fractionated1[key], fractionated)
np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key])
np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key])
#Changing reference values
mass_ref = isopy.refval.isotope.mass_number
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'],
seed=46)
unfractionated = unfractionated * fraction_ref
unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd']
unfractionated2 = unfractionated.ratio('105pd')
mf_factor = isopy.random(100, (0, 2), seed=47)
c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd', isotope_masses=mass_ref)
c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref)
assert c_fractionated1.keys == unfractionated.keys
assert c_fractionated1.size == unfractionated.size
assert c_fractionated2.keys == unfractionated.keys
assert c_fractionated2.size == unfractionated.size
c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd', isotope_masses=mass_ref)
c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref)
assert c_unfractionated1.keys == unfractionated.keys
assert c_unfractionated1.size == unfractionated.size
assert c_unfractionated2.keys == unfractionated.keys
assert c_unfractionated2.size == unfractionated.size
c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd',
isotope_masses=mass_ref, isotope_fractions=fraction_ref)
np.testing.assert_allclose(c_mf_factor2, mf_factor)
for key in unfractionated.keys:
mass_diff = mass_ref.get(key / '105pd')
fractionated = unfractionated[key] * (mass_diff ** mf_factor)
np.testing.assert_allclose(c_fractionated1[key], fractionated)
np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key])
np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key])
# calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation
def test_mass_fractionation2():
# Testing with input as ratio array
# Using default reference values
mass_ref = isopy.refval.isotope.mass_W17
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'],
seed=46)
unfractionated = unfractionated * fraction_ref
unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd']
unfractionated = unfractionated.ratio('105pd')
mf_factor = isopy.random(100, (0, 2), seed=47)
c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor)
assert c_fractionated2.keys == unfractionated.keys
assert c_fractionated2.size == unfractionated.size
c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor)
assert c_unfractionated2.keys == unfractionated.keys
assert c_unfractionated2.size == unfractionated.size
c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd')
np.testing.assert_allclose(c_mf_factor2, mf_factor)
for key in unfractionated.keys:
mass_diff = mass_ref.get(key)
fractionated = unfractionated[key] * (mass_diff ** mf_factor)
np.testing.assert_allclose(c_fractionated2[key], fractionated)
np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key])
# Changing reference values
mass_ref = isopy.refval.isotope.mass_number
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'],
seed=46)
unfractionated = unfractionated * fraction_ref
unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd']
unfractionated = unfractionated.ratio('105pd')
mf_factor = isopy.random(100, (0, 2), seed=47)
c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref)
assert c_fractionated2.keys == unfractionated.keys
assert c_fractionated2.size == unfractionated.size
c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref)
assert c_unfractionated2.keys == unfractionated.keys
assert c_unfractionated2.size == unfractionated.size
c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd',
isotope_masses=mass_ref, isotope_fractions=fraction_ref)
np.testing.assert_allclose(c_mf_factor2, mf_factor)
for key in unfractionated.keys:
mass_diff = mass_ref.get(key)
fractionated = unfractionated[key] * (mass_diff ** mf_factor)
np.testing.assert_allclose(c_fractionated2[key], fractionated)
np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key])
class Test_MassIndependentCorrection:
def test_one(self):
# Default reference values
mass_ref = isopy.refval.isotope.mass_W17
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'],
seed=46)
unfractionated1 = unfractionated1 * fraction_ref
unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd']
unfractionated2 = unfractionated1.ratio('105pd')
n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000
mf_factor = isopy.random(100, (0, 2), seed=47)
fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor)
fractionated2 = fractionated1.deratio(unfractionated1['105pd'])
self.run(fractionated1, unfractionated2, '108pd/105pd')
self.run(fractionated2, unfractionated2, '108pd/105pd')
self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000)
self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000)
self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon')
self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon')
# Different reference values
mass_ref = isopy.refval.isotope.mass_number
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'],
seed=46)
unfractionated1 = unfractionated1 * fraction_ref
unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd']
unfractionated2 = unfractionated1.ratio('105pd')
n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000
mf_factor = isopy.random(100, (0, 2), seed=47)
fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor,
isotope_masses=mass_ref)
fractionated2 = fractionated1.deratio(unfractionated1['105pd'])
self.run(fractionated1, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated2, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref)
def test_two(self):
# With interference correctionn
# We wont get an exact match here so we have to lower the tolerance.
# Default reference values
mass_ref = isopy.refval.isotope.mass_W17
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
mf_factor = isopy.random(100, (0, 2), seed=47)
data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46)
data = data * fraction_ref
data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd']
fractionated = data.copy()
fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor)
for key in fractionated.keys.filter(element_symbol='pd'):
if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0:
ru *= fractionated['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor)
fractionated[key] += ru
if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0:
cd *= fractionated['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor)
fractionated[key] += cd
correct1 = data.copy(element_symbol = 'pd').ratio('105pd')
correct2 = (correct1 / fraction_ref - 1)
correct3 = (correct1 / fraction_ref - 1) * 10_000
self.run(fractionated, correct1, '108pd/105pd')
self.run(fractionated, correct2, '108pd/105pd', factor=1)
self.run(fractionated, correct3, '108pd/105pd', factor=10_000)
self.run(fractionated, correct3, '108pd/105pd', factor='epsilon')
# Different reference values
mass_ref = isopy.refval.isotope.mass_number
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
mf_factor = isopy.random(100, (0, 2), seed=47)
data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46)
data = data * fraction_ref
data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd']
fractionated = data.copy()
fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref)
for key in fractionated.keys.filter(element_symbol='pd'):
if (ru := fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0:
ru *= fractionated['101ru'] * (
mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor)
fractionated[key] += ru
if (cd := fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0:
cd *= fractionated['111cd'] * (
mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor)
fractionated[key] += cd
correct1 = data.copy(element_symbol='pd').ratio('105pd')
correct2 = (correct1 / fraction_ref - 1)
correct3 = (correct1 / fraction_ref - 1) * 10_000
self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct3, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct3, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref)
def test_three(self):
# Normalisations
# Default reference values
mass_ref = isopy.refval.isotope.mass_W17
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
mf_factor = isopy.random(100, (0, 2), seed=47)
data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46)
data = data * fraction_ref
data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd']
fractionated = data.copy()
fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor)
correct1 = data.copy(element_symbol='pd').ratio('105pd')
correct2 = (correct1 / fraction_ref - 1)
correct3 = correct2 * 1000
correct4 = correct2 * 10_000
correct5 = correct2 * 1_000_000
self.run(fractionated, correct1, '108pd/105pd')
self.run(fractionated, correct2, '108pd/105pd', factor=1)
self.run(fractionated, correct3, '108pd/105pd', factor=1000)
self.run(fractionated, correct3, '108pd/105pd', factor='ppt')
self.run(fractionated, correct3, '108pd/105pd', factor='permil')
self.run(fractionated, correct4, '108pd/105pd', factor=10_000)
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon')
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000)
self.run(fractionated, correct5, '108pd/105pd', factor='mu')
self.run(fractionated, correct5, '108pd/105pd', factor='ppm')
# Single value
std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48)
std1 = std1 * fraction_ref
rstd1 = std1.ratio('pd105')
correct1 = data.copy(element_symbol='pd').ratio('105pd')
correct2 = (correct1 / np.mean(rstd1) - 1)
correct3 = correct2 * 1000
correct4 = correct2 * 10_000
correct5 = correct2 * 1_000_000
self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1)
self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1)
self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1)
self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1)
self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1)
self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1)
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1)
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1)
self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1)
self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1)
std1 = np.mean(std1)
rstd1 = np.mean(rstd1)
self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1)
self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1)
self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1)
self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1)
self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1)
self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1)
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1)
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1)
self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1)
self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1)
# Multiple
std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(),
seed=48)
std1 = std1 * fraction_ref
rstd1 = std1.ratio('pd105')
std2 = isopy.random(50, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(),
seed=49)
std2 = std2 * fraction_ref
rstd2 = std2.ratio('pd105')
correct1 = data.copy(element_symbol='pd').ratio('105pd')
correct2 = (correct1 / (np.mean(rstd1)/2 + np.mean(rstd2)/2) - 1)
correct3 = correct2 * 1000
correct4 = correct2 * 10_000
correct5 = correct2 * 1_000_000
self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2))
self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2))
self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2))
std1 = np.mean(std1)
rstd1 = np.mean(rstd1)
self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2))
self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2))
self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2))
std2 = np.mean(std2)
rstd2 = np.mean(rstd2)
self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2))
self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2))
self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2))
self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2))
self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2))
# Different reference values
mass_ref = isopy.refval.isotope.mass_number
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
mf_factor = isopy.random(100, (0, 2), seed=47)
data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(),
seed=46)
data = data * fraction_ref
data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd']
fractionated = data.copy()
fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref)
correct1 = data.copy(element_symbol='pd').ratio('105pd')
correct2 = (correct1 / fraction_ref - 1)
correct3 = correct2 * 1000
correct4 = correct2 * 10_000
correct5 = correct2 * 1_000_000
self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct3, '108pd/105pd', factor=1000, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct3, '108pd/105pd', factor='ppt', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct3, '108pd/105pd', factor='permil', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct4, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct5, '108pd/105pd', factor='mu', mass_ref=mass_ref, fraction_ref=fraction_ref)
self.run(fractionated, correct5, '108pd/105pd', factor='ppm', mass_ref=mass_ref, fraction_ref=fraction_ref)
def run(self, data, correct, mb_ratio, factor = None, mass_ref = None, fraction_ref=None, norm_val = None):
if type(factor) is str:
func = getattr(isopy.tb.internal_normalisation, factor)
factor2 = None
else:
factor2 = factor
func = isopy.tb.internal_normalisation
kwargs = {}
if factor2 is not None: kwargs['extnorm_factor'] = factor2
if mass_ref is not None: kwargs['isotope_masses'] = mass_ref
if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref
if norm_val is not None: kwargs['extnorm_value'] = norm_val
corrected = func(data, mb_ratio, **kwargs)
assert corrected.keys == correct.keys - mb_ratio
assert corrected.size == correct.size
assert corrected.ndim == correct.ndim
for key in corrected.keys:
np.testing.assert_allclose(corrected[key], correct[key])
# mass independent correction
if type(factor) is str:
func = getattr(isopy.tb.mass_independent_correction, factor)
factor2 = None
else:
factor2 = factor
func = isopy.tb.mass_independent_correction
kwargs = {}
if factor2 is not None: kwargs['normalisation_factor'] = factor2
if mass_ref is not None: kwargs['isotope_masses'] = mass_ref
if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref
if norm_val is not None: kwargs['normalisation_value'] = norm_val
corrected = func(data, mb_ratio, **kwargs)
assert corrected.keys == correct.keys - mb_ratio
assert corrected.size == correct.size
assert corrected.ndim == correct.ndim
for key in corrected.keys:
np.testing.assert_allclose(corrected[key], correct[key])
class Test_IsobaricInterferences:
def test_one(self):
# No mass fractionation factor
# Single interference isotope
# Default reference values
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split())
base_data = base_data * fraction_ref
data = base_data.copy()
for key in data.keys.filter(element_symbol='pd'):
data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru']
data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd']
interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')}
correct1 = base_data.copy()
correct1['101ru', '111cd'] = 0
interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')}
correct2 = base_data.copy()
correct2['101ru', '111cd'] = 0
correct2['102pd'] = data['102pd']
correct2['110pd'] = data['110pd']
self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd')
# Different reference values
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split())
base_data = base_data * fraction_ref
data = base_data.copy()
for key in data.keys.filter(element_symbol='pd'):
data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru']
data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd']
interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')}
correct1 = base_data.copy()
correct1['101ru', '111cd'] = 0
interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')}
correct2 = base_data.copy()
correct2['101ru', '111cd'] = 0
correct2['102pd'] = data['102pd']
correct2['110pd'] = data['110pd']
self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd',
fraction_ref=fraction_ref)
def test_two(self):
# No mass fractionation factor
# Multiple interference isotopes
# Default reference values
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split())
# 112cd > 111cd, 101ru > 99ru
base_data = base_data * fraction_ref
data1 = base_data.copy()
data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope
for key in data1.keys.filter(key_neq = '<KEY>'.split()):
data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru']
data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd']
interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')}
correct1 = base_data.copy()
correct1['101ru', '112cd'] = 0
correct1['99ru', '111cd'] = -1
interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')}
data2 = base_data.copy()
data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope
for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()):
data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru']
data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd']
correct2 = base_data.copy()
correct2['99ru', '111cd'] = 0
correct2['101ru', '112cd'] = -1
self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd')
# Different reference values
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
base_data = isopy.random(100, (1, 0.01),
keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split())
# 112cd > 111cd, 101ru > 99ru
base_data = base_data * fraction_ref
data1 = base_data.copy()
data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope
for key in data1.keys.filter(key_neq='<KEY>'.split()):
data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru']
data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd']
interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')}
correct1 = base_data.copy()
correct1['101ru', '112cd'] = 0
correct1['99ru', '111cd'] = -1
interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')}
data2 = base_data.copy()
data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope
for key in data2.keys.filter(key_neq='<KEY>'.split()):
data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru']
data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd']
correct2 = base_data.copy()
correct2['99ru', '111cd'] = 0
correct2['101ru', '112cd'] = -1
self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd',
fraction_ref=fraction_ref)
def test_three(self):
#Mass fractionation
#Single interference isotope
mass_ref = isopy.refval.isotope.mass_W17
fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16
base_data = isopy.random(100, (1, 0.01),
keys='<KEY>'.split())
mf_factor = isopy.random(100, (0,2))
base_data = base_data * fraction_ref
data = base_data.copy()
for key in data.keys.filter(element_symbol='pd'):
if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0:
ru *= data['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor)
data[key] += ru
if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0:
cd *= data['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor)
data[key] += cd
interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')}
correct1 = base_data.copy()
correct1['101ru', '111cd'] = 0
interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')}
correct2 = base_data.copy()
correct2['101ru', '111cd'] = 0
correct2['102pd'] = data['102pd']
correct2['110pd'] = data['110pd']
self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd',
mf_factor=mf_factor)
#M Multiple interference isotopes
# Different reference values
mass_ref = isopy.refval.isotope.mass_number
fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09
base_data = isopy.random(100, (1, 0.01),
keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split())
# 112cd > 111cd, 101ru > 99ru
base_data = base_data * fraction_ref
data1 = base_data.copy()
data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope
for key in data1.keys.filter(key_neq='<KEY>'.split()):
if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0:
ru *= data1['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor)
data1[key] += ru
if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd112', 0)) > 0:
cd *= data1['cd112'] * (mass_ref.get(f'cd{key.mass_number}/cd112', 0) ** mf_factor)
data1[key] += cd
interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')}
correct1 = base_data.copy()
correct1['101ru', '112cd'] = 0
correct1['99ru', '111cd'] = -1
interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')}
data2 = base_data.copy()
data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope
for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()):
if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru99', 0)) > 0:
ru *= data2['ru99'] * (mass_ref.get(f'ru{key.mass_number}/ru99', 0) ** mf_factor)
data2[key] += ru
if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0:
cd *= data2['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor)
data2[key] += cd
correct2 = base_data.copy()
correct2['99ru', '111cd'] = 0
correct2['101ru', '112cd'] = -1
self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd',
fraction_ref=fraction_ref, mass_ref=mass_ref, mf_factor=mf_factor)
def run(self, data1, data2, correct1, correct2, interferences1, interferences2, denom=None,
mf_factor=None, fraction_ref=None, mass_ref=None):
interferences = isopy.tb.find_isobaric_interferences('pd', data1)
assert len(interferences) == len(interferences)
for key in interferences1:
assert key in interferences
assert interferences[key] == interferences1[key]
corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences,
mf_factor=mf_factor,
isotope_fractions=fraction_ref,
isotope_masses=mass_ref)
assert corrected1.keys == correct1.keys
assert corrected1.size == correct1.size
for key in corrected1.keys:
np.testing.assert_allclose(corrected1[key], correct1[key])
corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2,
mf_factor=mf_factor,
isotope_fractions=fraction_ref,
isotope_masses=mass_ref)
assert corrected2.keys == correct2.keys
assert corrected2.size == correct2.size
for key in corrected2.keys:
np.testing.assert_allclose(corrected2[key], correct2[key])
#Ratio test data
if denom is not None:
data1 = data1.ratio(denom)
data2 = data2.ratio(denom)
correct1 = correct1.ratio(denom)
correct2 = correct2.ratio(denom)
interferences = isopy.tb.find_isobaric_interferences('pd', data1)
assert len(interferences) == len(interferences)
for key in interferences1:
assert key in interferences
assert interferences[key] == interferences1[key]
corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences,
mf_factor=mf_factor,
isotope_fractions=fraction_ref,
isotope_masses=mass_ref)
assert corrected1.keys == correct1.keys
assert corrected1.size == correct1.size
for key in corrected1.keys:
np.testing.assert_allclose(corrected1[key], correct1[key])
corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2,
mf_factor=mf_factor,
isotope_fractions=fraction_ref,
isotope_masses=mass_ref)
assert corrected2.keys == correct2.keys
assert corrected2.size == correct2.size
for key in corrected2.keys:
np.testing.assert_allclose(corrected2[key], correct2[key])
def test_find(self):
interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'cd'))
assert len(interferences) == 2
assert 'ru' in interferences
assert interferences['ru'] == ('102Pd', '104Pd')
assert 'cd' in interferences
assert interferences['cd'] == ('106Pd', '108Pd', '110Pd')
interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'rh', 'ag', 'cd'))
assert len(interferences) == 2
assert 'ru' in interferences
assert interferences['ru'] == ('102Pd', '104Pd')
assert 'cd' in interferences
assert interferences['cd'] == ('106Pd', '108Pd', '110Pd')
interferences = isopy.tb.find_isobaric_interferences('ce')
assert len(interferences) == 4
assert 'xe' in interferences
assert interferences['xe'] == ('136Ce',)
assert 'ba' in interferences
assert interferences['ba'] == ('136Ce', '138Ce')
assert 'la' in interferences
assert interferences['la'] == ('138Ce', )
assert 'nd' in interferences
assert interferences['nd'] == ('142Ce',)
interferences = isopy.tb.find_isobaric_interferences('138ce')
assert len(interferences) == 2
assert 'ba' in interferences
assert interferences['ba'] == ('138Ce',)
assert 'la' in interferences
assert interferences['la'] == ('138Ce',)
interferences = isopy.tb.find_isobaric_interferences('zn', ('ni', 'ge', 'ba++'))
assert len(interferences) == 3
assert 'ni' in interferences
assert interferences['ni'] == ('64Zn',)
assert 'ge' in interferences
assert interferences['ge'] == ('70Zn',)
assert 'ba++' in interferences
assert interferences['ba++'] == ('66Zn', '67Zn', '68Zn')
class Test_rDelta():
def test_rDelta1(self):
# Data is a single value
data = isopy.refval.isotope.fraction.to_array(element_symbol='pd')
# Dict
reference = isopy.refval.isotope.fraction
correct1 = isopy.zeros(None, data.keys)
correct2 = isopy.ones(None, data.keys)
self.run(data, data, reference, correct1, correct2)
# Single array
reference = isopy.random(100, keys=data.keys)
correct1 = data / np.mean(reference) - 1
correct2 = data / np.mean(reference)
self.run(data, data, reference, correct1, correct2)
self.run(data, data, np.mean(reference), correct1, correct2)
correct1 = correct1 * 10_000
correct2 = correct2 * 10_000
self.run(data, data, reference, correct1, correct2, 10_000)
self.run(data, data, np.mean(reference), correct1, correct2, 10_000)
# Multiple values
reference1 = isopy.random(100, keys=data.keys)
reference2 = isopy.random(100, keys=data.keys)
meanmean = np.mean(reference1)/2 + np.mean(reference2)/2
correct1 = data / meanmean - 1
correct2 = data / meanmean
self.run(data, data, (reference1, reference2), correct1, correct2)
self.run(data, data, (np.mean(reference1), reference2), correct1, correct2)
self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2)
correct1 = correct1 * 10_000
correct2 = correct2 * 10_000
self.run(data, data, (reference1, reference2), correct1, correct2, 10_000)
self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000)
self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000)
# Keys that do not match
data2 = data.copy()
data2['105pd', '106pd'] = np.nan
reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split())
reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split())
meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2
correct1 = data / meanmean - 1
correct2 = data / meanmean
self.run(data, data2, (reference1, reference2), correct1, correct2)
self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2)
self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2)
correct1 = correct1 * 10_000
correct2 = correct2 * 10_000
self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000)
self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000)
self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000)
def test_rDelta2(self):
data = isopy.random(100, keys=isopy.refval.element.isotopes['pd'])
data = data * isopy.refval.isotope.fraction
# Dict
reference = isopy.refval.isotope.fraction
correct1 = data / reference - 1
correct2 = data / reference
self.run(data, data, reference, correct1, correct2)
# Single array
reference = isopy.random(100, keys=data.keys)
correct1 = data / np.mean(reference) - 1
correct2 = data / np.mean(reference)
self.run(data, data, reference, correct1, correct2)
self.run(data, data, np.mean(reference), correct1, correct2)
correct1 = correct1 * 10_000
correct2 = correct2 * 10_000
self.run(data, data, reference, correct1, correct2, 10_000)
self.run(data, data, np.mean(reference), correct1, correct2, 10_000)
# Multiple values
reference1 = isopy.random(100, keys=data.keys)
reference2 = isopy.random(100, keys=data.keys)
meanmean = np.mean(reference1)/2 + np.mean(reference2)/2
correct1 = data / meanmean - 1
correct2 = data / meanmean
self.run(data, data, (reference1, reference2), correct1, correct2)
self.run(data, data, (np.mean(reference1), reference2), correct1, correct2)
self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2)
correct1 = correct1 * 10_000
correct2 = correct2 * 10_000
self.run(data, data, (reference1, reference2), correct1, correct2, 10_000)
self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000)
self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000)
# Keys that do not match
data2 = data.copy()
data2['105pd', '106pd'] = np.nan
reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split())
reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split())
meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2
correct1 = data / meanmean - 1
correct2 = data / meanmean
self.run(data, data2, (reference1, reference2), correct1, correct2)
self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2)
self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2)
correct1 = correct1 * 10_000
correct2 = correct2 * 10_000
self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000)
self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000)
self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000)
def test_presets(self):
data = isopy.random(100, keys=isopy.refval.element.isotopes['pd'])
data = data * isopy.refval.isotope.fraction
reference = isopy.refval.isotope.fraction
correct = (data / reference - 1) * 1000
normalised = isopy.tb.rDelta.ppt(data, reference)
denormalised = isopy.tb.inverse_rDelta.ppt(normalised, reference)
self.compare(correct, normalised)
self.compare(data, denormalised)
correct = (data / reference - 1) * 1000
normalised = isopy.tb.rDelta.permil(data, reference)
denormalised = isopy.tb.inverse_rDelta.permil(normalised, reference)
self.compare(correct, normalised)
self.compare(data, denormalised)
correct = (data / reference - 1) * 10_000
normalised = isopy.tb.rDelta.epsilon(data, reference)
denormalised = isopy.tb.inverse_rDelta.epsilon(normalised, reference)
self.compare(correct, normalised)
self.compare(data, denormalised)
correct = (data / reference - 1) * 1_000_000
normalised = isopy.tb.rDelta.mu(data, reference)
denormalised = isopy.tb.inverse_rDelta.mu(normalised, reference)
self.compare(correct, normalised)
self.compare(data, denormalised)
correct = (data / reference - 1) * 1_000_000
normalised = isopy.tb.rDelta.ppm(data, reference)
denormalised = isopy.tb.inverse_rDelta.ppm(normalised, reference)
self.compare(correct, normalised)
self.compare(data, denormalised)
def run(self, data1, data2, reference_value, correct1, correct2, factor=1):
normalised = isopy.tb.rDelta(data1, reference_value, factor=factor)
assert normalised.keys == data1.keys
assert normalised.size == data1.size
assert normalised.ndim == data1.ndim
for key in normalised.keys:
np.testing.assert_allclose(normalised[key], correct1[key])
denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor)
assert denormalised.keys == data1.keys
assert denormalised.size == data1.size
assert denormalised.ndim == data1.ndim
for key in denormalised.keys:
np.testing.assert_allclose(denormalised[key], data2[key])
normalised = isopy.tb.rDelta(data1, reference_value, factor=factor, deviations=0)
assert normalised.keys == data1.keys
assert normalised.size == data1.size
assert normalised.ndim == data1.ndim
for key in normalised.keys:
np.testing.assert_allclose(normalised[key], correct2[key])
denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor, deviations=0)
assert denormalised.keys == data1.keys
assert denormalised.size == data1.size
assert denormalised.ndim == data1.ndim
for key in denormalised.keys:
np.testing.assert_allclose(denormalised[key], data2[key])
def compare(self, correct, calculated):
assert calculated.keys == correct.keys
assert calculated.size == correct.size
assert calculated.ndim == correct.ndim
for key in calculated.keys:
np.testing.assert_allclose(calculated[key], correct[key])
class Test_OutliersLimits:
def test_limits(self):
data = isopy.random(100, (1,1), keys=isopy.refval.element.isotopes['pd'])
median = np.median(data)
mean = np.mean(data)
mad3 = isopy.mad3(data)
sd2 = isopy.sd2(data)
upper = isopy.tb.upper_limit(data)
assert upper == median + mad3
upper = isopy.tb.upper_limit(data, np.mean, isopy.sd2)
assert upper == mean + sd2
upper = isopy.tb.upper_limit.sd2(data)
assert upper == mean + sd2
upper = isopy.tb.upper_limit(data, 1, isopy.sd2)
assert upper == 1 + sd2
upper = isopy.tb.upper_limit(data, np.mean, 1)
assert upper == mean + 1
upper = isopy.tb.upper_limit(data, 1, 1)
assert upper == 2
lower = isopy.tb.lower_limit(data)
assert lower == median - mad3
lower = isopy.tb.lower_limit.sd2(data)
assert lower == mean - sd2
lower = isopy.tb.lower_limit(data, np.mean, isopy.sd2)
assert lower == mean - sd2
lower = isopy.tb.lower_limit(data, 1, isopy.sd2)
assert lower == 1 - sd2
lower = isopy.tb.lower_limit(data, np.mean, 1)
assert lower == mean - 1
lower = isopy.tb.lower_limit(data, 1, 1)
assert lower == 0
def test_find_outliers1(self):
#axis = 0
data = isopy.random(100, (1, 1), keys=isopy.refval.element.isotopes['pd'])
median = np.median(data)
mean = np.mean(data)
mad3 = isopy.mad3(data)
sd = isopy.sd(data)
median_outliers = (data > (median + mad3)) + (data < (median - mad3))
mean_outliers = (data > (mean + sd)) + (data < (mean - sd))
mean_outliers1 = (data > (1 + sd)) + (data < (1 - sd))
mean_outliers2 = (data > (mean + 1)) + (data < (mean - 1))
mean_outliers3 = (data > (1 + 1)) + (data < (1 - 1))
outliers = isopy.tb.find_outliers(data)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
np.testing.assert_allclose(outliers[key], median_outliers[key])
outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
np.testing.assert_allclose(outliers[key], mean_outliers[key])
outliers = isopy.tb.find_outliers.sd(data)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
np.testing.assert_allclose(outliers[key], mean_outliers[key])
outliers = isopy.tb.find_outliers(data, 1, isopy.sd)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
np.testing.assert_allclose(outliers[key], mean_outliers1[key])
outliers = isopy.tb.find_outliers(data, np.mean, 1)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
np.testing.assert_allclose(outliers[key], mean_outliers2[key])
outliers = isopy.tb.find_outliers(data, 1, 1)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
np.testing.assert_allclose(outliers[key], mean_outliers3[key])
# invert
median_outliers = np.invert(median_outliers)
mean_outliers = np.invert(mean_outliers)
mean_outliers1 = np.invert(mean_outliers1)
mean_outliers2 = np.invert(mean_outliers2)
mean_outliers3 = np.invert(mean_outliers3)
outliers = isopy.tb.find_outliers(data, invert=True)
assert outliers.keys == data.keys
assert outliers.size == data.size
for key in outliers.keys:
| np.testing.assert_allclose(outliers[key], median_outliers[key]) | numpy.testing.assert_allclose |
import numpy as np
from pype3 import pypeify,pypeify_namespace,p,_,_0,_1,_2,ep,tup,db,a,iff,d
from pype3.helpers import *
from pype3 import ep
# from numba import njit,jit
from functools import reduce
'''
This is a series of operations for numpy. Will document later.
'''
def agg_sum(m):
indices=m[:,0].argsort()
m[:,0]=m[indices,0]
m[:,1:]=m[indices,1:]
uniqueKeys=np.unique(m[:,0],return_counts=True)
cumSum=np.cumsum(uniqueKeys[1])[:-1]
splitValues=np.split(m[:,1:],cumSum)
sm=np.array([np.sum(l,axis=0) for l in splitValues])
return sm,uniqueKeys[0],uniqueKeys[1]
def build_mat(y,X):
m=np.zeros([y.shape[0],X.shape[1]+1])
m[:,0]=y
m[:,1:]=X
return m
# @njit
def shuffle(m):
np.random.shuffle(m)
return m
def aggregate_by_first_column(m):
indices=m[:,0].argsort()
m[:,0]=m[indices,0]
m[:,1:]=m[indices,1:]
uniqueKeys=np.unique(m[:,0],return_counts=True)
cumSum=np.cumsum(uniqueKeys[1])[:-1]
splitValues=np.split(m[:,1:],cumSum)
return splitValues,uniqueKeys[0],uniqueKeys[1]
# @njit
def vectors_to_column_matrix(vecs,m):
for (i,vec) in enumerate(vecs):
m[:vec.shape[0],i]=vec
return m
# @njit
def sizes(vecs,s):
for (i,vec) in enumerate(vecs):
s[i]=vec.shape[0]
return s
def np_tile_cols(vec,numCols):
return np.tile(vec,(numCols,1)).T
def np_tile_rows(vec,numCols):
return np.tile(vec,(numCols,1))
def np_zero_array(rows):
return np.zeros([rows])
def np_zeros(rows,cols):
return np.zeros([rows,cols])
def square_zeros(ln):
return np.zeros([ln,ln])
def aggregate_by_key(m,padVal=0,pad=True):
'''
This is a helper which takes an array with two columns. It is the numpy
equivalent of grouping represented by tup_ls_dct in pype.
The first column is the key, and the second column is the value. We
perform the following operations on this:
1) Sort the keys of m, getting their indices.
2) Reorder the keys and values of m accordingly.
3) Find the unique keys and their counts, stored in uniqueKeys[1].
4) The np.split function takes an array, and splits it according to
the counts of the unique elements. So, take the first x elements,
put it in one part of the list, then take the next y elements, append
it to the list, etc.
5) In the resulting list of arrays, we find the maximum length.
6) We pad these arrays with zeros if they're shorter than the maximum
length.
7) Then, we convert this into a matrix, whose i-th row represents the
i-th key, and whose j-th column represents the j-th value with that
key.
8) We return the matrix and the unique keys.
We do this rather than json-style grouping for performance reasons, as
many people have complained about using pure json-style aggregation.
Thanks to: https://stackoverflow.com/questions/38013778/is-there-any-numpy-group-by-function
'''
indices=m[:,0].argsort()
m[:,0]=m[indices,0]
m[:,1]=m[indices,1]
uniqueKeys=np.unique(m[:,0],return_counts=True)
splitValues=np.split(m[:, 1],
np.cumsum(uniqueKeys[1])[:-1])
if pad:
maxLen=np.max([a.shape[0] for a in splitValues])
aggregatedValues=[np.lib.pad(a,
(0,maxLen-a.shape[0]),
'constant',
constant_values=(padVal,padVal))\
for a in splitValues]
aggregatedValues=np.array(aggregatedValues)
else:
aggregatedValues=splitValues
return aggregatedValues,uniqueKeys[0],uniqueKeys[1]
def sorted_aggregate_by_key(m,padVal=0,pad=True):
aggregatedValues,uniqueKeys,uniqueCounts=aggregate_by_key(m,padVal,pad)
aggregatedValues.sort(axis=1)
return aggregatedValues,uniqueKeys,uniqueCounts
def aggregate_jsons_by_key(ls,key):
uniqueVals=np.unique([js[key] for js in ls])
indexToKeyMap={k:i for (i,k) in enumerate(uniqueVals)}
m=np.array([(indexToKeyMap(js[key]),i) for (i,js) in enumerate(ls)])
aggregatedValues,keys,uniqueKeys=aggregate_by_key(m,False)
return {k:[ls[index] for index in l] \
for (k,l) in zip(uniqueVals,aggregatedValues)}
def np_int_array(x):
return np.array(x,dtype=np.int32)
def sum_by_row(x):
return np.sum(x,axis=1)
def sum_by_column(x):
return np.sum(x,axis=0)
def vector_copy_matrix(shape,vector):
z= | np.zeros(shape) | numpy.zeros |
#################################################################################
### ###
### Date created - Monday, Nov 11, 2019 ###
### Author - <NAME> <<EMAIL>, <EMAIL> > ###
### ###
#################################################################################
"""
* This library is only made to work for binary images. The goal was to detect outer
boundary and loops in handwritten word images. Using this library, all edges, outer
boundary and loops can be quickly detected in a binary image.
* The input is binary image.
* The output is a list of loops, edges, outer boundary in the same order as mentioned.
Each of the return value is an image with the same size as input image with relevant
points marked as foreground.
"""
import cv2, sys
import numpy as np
from scipy.ndimage import convolve
# Find 8 connected neighbors of a point
def GetNeighbors(row, col, x, y) :
""" This function gives 8 connected neighbors of a pixel."""
neighbors = [ [x-1,y-1], [x-1,y], [x-1, y+1], [x, y-1], [x, y+1], [x+1, y-1], [x+1, y], [x+1, y+1] ]
neighbors = [[p,q] for p,q in neighbors if p>=0 and p<row and q >=0 and q<col ]
return neighbors
# Find 8 connected neighbors of a point which are foreground pixels
def GetForegroundNeighbors(Im, x, y) :
""" This function gives 8 connected neighbors of a pixel which are foreground pixels."""
row, col = Im.shape
neighbors = GetNeighbors(row, col, x, y)
FG = [[p,q] for p,q in neighbors if Im[p][q] == 0 ]
return FG
# Check if image is valid
def CheckImage(Im) :
""" This function asserts if the image is valid or not."""
if type(Im) is not np.ndarray :
if not Im :
print("Error! NoneType object")
sys.exit(1)
print("Error! Input is not ndarray")
sys.exit(1)
shape = Im.shape
if len(shape) <=1 :
print("Error! Input is a 1D array, expected 2D or 3D np.ndarray")
sys.exit(1)
elif len(shape) == 3 :
if shape[0] == 0 :
print("Error! Image width is zero")
sys.exit(1)
if shape[1] == 0 :
print("Error! Image height is zero")
sys.exit(1)
gray = cv2.cvtColor(Im, cv2.COLOR_BGR2GRAY)
# Convert Image to Binary
(thresh, Im) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
elif len(shape) == 2 :
if shape[0] == 0 :
print("Error! Image width is zero")
sys.exit(1)
if shape[1] == 0 :
print("Error! Image height is zero")
sys.exit(1)
# If image is not binary
if len(np.unique(Im)) > 2 :
# Convert Image to Binary
(thresh, Im) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
return Im
# Detect edges in binary images
def DetectLoopsEdges(Im) :
""" This function detects loops, edges and outer boundary in binary image in order [loops, edges, outer_boundary]."""
Im = CheckImage(Im)
# Pad image with background pixels from all sides(top, bottom, left and right)
Im = 1 - Im/255
Im = | np.pad(Im, ((1, 1), (1, 1)), 'constant') | numpy.pad |
# execfile("read.py")
import numpy as np
import pandas as pd
def get_data(limit=None):
print("Reading data...")
df = pd.read_csv('train.csv')
data = df.as_matrix()
np.random.shuffle(data)
X = data[:, 1:] / 255.0 # data is from 0..255
Y = data[:, 0]
if limit is not None:
X, Y = X[:limit], Y[:limit]
return X, Y
def get_xor():
X = np.zeros((200, 2))
X[:50] = np.random.random((50, 2)) / 2 + 0.5 # (0.5-1, 0.5-1)
X[50:100] = np.random.random((50, 2)) / 2 # (0-0.5, 0-0.5)
X[100:150] = np.random.random((50, 2)) / 2 + np.array([[0, 0.5]]) # (0-0.5, 0.5-1)
X[150:] = np.random.random((50, 2)) / 2 + np.array([[0.5, 0]]) # (0.5-1, 0-0.5)
Y = | np.array([0]*100 + [1]*100) | numpy.array |
"""
A pytest module to test Galois field polynomial alternate constructors.
"""
import numpy as np
import pytest
import galois
FIELDS = [
galois.GF2, # GF(2)
galois.GF(31), # GF(p) with np.int dtypes
galois.GF(36893488147419103183), # GF(p) with object dtype
galois.GF(2**8), # GF(2^m) with np.int dtypes
galois.GF(2**100), # GF(2^m) with object dtype
galois.GF(7**3), # GF(p^m) with np.int dtypes
galois.GF(109987**4), # GF(p^m) with object dtypes
]
@pytest.mark.parametrize("field", FIELDS)
def test_zero(field):
p = galois.Poly.Zero(field)
assert isinstance(p, galois.Poly)
assert p.field is field
assert p.degree == 0
assert np.array_equal(p.nonzero_degrees, [])
assert np.array_equal(p.nonzero_coeffs, [])
assert np.array_equal(p.degrees, [0])
assert np.array_equal(p.coeffs, [0])
assert p.integer == 0
@pytest.mark.parametrize("field", FIELDS)
def test_one(field):
p = galois.Poly.One(field)
assert isinstance(p, galois.Poly)
assert p.field is field
assert p.degree == 0
assert np.array_equal(p.nonzero_degrees, [0])
assert np.array_equal(p.nonzero_coeffs, [1])
assert | np.array_equal(p.degrees, [0]) | numpy.array_equal |
# stdlib imports
import re
# third party imports
import numpy as np
import logging
from strec.subtype import SubductionSelector
def get_weights(origin, config):
"""Get list of GMPEs and their weights for a given earthquake.
Args:
origin (Origin object): ShakeMap Origin object, containing earthquake
info.
config (dict-like): Configuration information regarding earthquake
type.
Returns:
tuple: Tuple with elements that are:
- list of strings indicating the GMPEs selected for this
earthquake.
- ndarray (float) of GMPE weights.
- Pandas series containing STREC output.
"""
tprobs, strec_results = get_probs(origin, config)
gmpelist = []
weightlist = []
# remove all probabilities that are == 0
probs = {}
for key, value in tprobs.items():
if value > 0.0:
probs[key] = value
all_keylist = list(probs.keys())
# let's have the code default to use the slab data
if config["tectonic_regions"]["subduction"]:
use_slab = config["tectonic_regions"]["subduction"]["use_slab"]
else:
use_slab = True
for region, rdict in config["tectonic_regions"].items():
if (region == "subduction") and use_slab:
if "crustal" in probs or "subduction_0" in probs:
if "crustal" in probs:
topkey = "crustal"
else:
topkey = "subduction_0"
gmpelist += rdict["crustal"]["gmpe"]
weightlist.append(probs[topkey])
if "interface" in probs or "subduction_1" in probs:
if "interface" in probs:
midkey = "interface"
else:
midkey = "subduction_1"
gmpelist += rdict["interface"]["gmpe"]
weightlist.append(probs[midkey])
if "intraslab" in probs or "subduction_2" in probs:
if "intraslab" in probs:
botkey = "intraslab"
else:
botkey = "subduction_2"
gmpelist += rdict["intraslab"]["gmpe"]
weightlist.append(probs[botkey])
else:
pat = re.compile(region + "_")
keylist = sorted(list(filter(pat.search, all_keylist)))
if len(keylist):
for key in keylist:
weightlist.append(probs[key])
idx = int(key.split("_")[1])
gmpelist.append(rdict["gmpe"][idx])
weightlist = np.array(weightlist)
logging.debug(f"gmpelist: {gmpelist}")
logging.debug(f"weightlist: {weightlist}")
gmmdict = {"gmpelist": gmpelist, "weightlist": weightlist}
#
# Here we get the region-specific ipe, gmice, and ccf. If they are
# not specified in the config, we use None, and let the value
# fall back to whatever is specified in the system config.
#
if strec_results["TectonicRegion"] == "Active":
gmmdict["ipe"] = config["tectonic_regions"]["acr"].get("ipe", None)
gmmdict["gmice"] = config["tectonic_regions"]["acr"].get("gmice", None)
gmmdict["ccf"] = config["tectonic_regions"]["acr"].get("ccf", None)
elif strec_results["TectonicRegion"] == "Stable":
gmmdict["ipe"] = config["tectonic_regions"]["scr"].get("ipe", None)
gmmdict["gmice"] = config["tectonic_regions"]["scr"].get("gmice", None)
gmmdict["ccf"] = config["tectonic_regions"]["scr"].get("ccf", None)
elif strec_results["TectonicRegion"] == "Subduction":
gmmdict["ipe"] = config["tectonic_regions"]["subduction"].get("ipe", None)
gmmdict["gmice"] = config["tectonic_regions"]["subduction"].get("gmice", None)
gmmdict["ccf"] = config["tectonic_regions"]["subduction"].get("ccf", None)
elif strec_results["TectonicRegion"] == "Volcanic":
gmmdict["ipe"] = config["tectonic_regions"]["volcanic"].get("ipe", None)
gmmdict["gmice"] = config["tectonic_regions"]["volcanic"].get("gmice", None)
gmmdict["ccf"] = config["tectonic_regions"]["volcanic"].get("ccf", None)
return gmmdict, strec_results
def get_probs(origin, config):
"""Calculate probabilities for each earthquake type.
The results here contain probabilities that can be rolled up in many ways:
- The probabilities of acr, scr, volcanic, and subduction should sum to
one.
- The probabilities of acr_X,scr_X,volcanic_X, crustal, interface and
intraslab
should sum to 1.
- The probabilities of acr_X should sum to acr, and so on.
Args:
origin (Origin object): ShakeMap Origin object, containing earthquake
info.
config (dict-like): Configuration information regarding earthquake
type.
Returns:
(dict, dict):
Probabilities for each earthquake type, with fields:
- acr Probability that the earthquake is in an active region.
- acr_X Probability that the earthquake is in a depth layer of
ACR, starting from the top.
- scr Probability that the earthquake is in a stable region.
- scr_X Probability that the earthquake is in a depth layer of
SCR, starting from the top.
- volcanic Probability that the earthquake is in a volcanic
region.
- volcanic_X Probability that the earthquake is in a depth layer
of Volcanic, starting from the top.
- subduction Probability that the earthquake is in a subduction
zone.
- crustal Probability that the earthquake is in the crust above
an interface.
- interface Probability that the earthquake is on the interface.
- intraslab Probability that the earthquake is in the slab below
interface.
STREC results
"""
selector = SubductionSelector()
lat, lon, depth, mag = origin.lat, origin.lon, origin.depth, origin.mag
if origin.id is not None and not origin.id.startswith(origin.netid):
eid = origin.netid + origin.id
else:
eid = origin.id
tensor_params = None
if hasattr(origin, "moment"):
tensor_params = origin.moment
strec_results = selector.getSubductionType(
lat, lon, depth, eid, tensor_params=tensor_params
)
region_probs = get_region_probs(eid, depth, strec_results, config)
in_subduction = strec_results["TectonicRegion"] == "Subduction"
above_slab = not | np.isnan(strec_results["SlabModelDepth"]) | numpy.isnan |
# -*- coding: utf-8 -*-
# @Author: <NAME>
# @Email: <EMAIL>
# @Date: 2016-09-19 22:30:46
# @Last Modified by: <NAME>
# @Last Modified time: 2021-05-15 11:04:35
''' Definition of generic utility functions used in other modules '''
import sys
import itertools
import csv
from functools import wraps
import operator
import time
from inspect import signature
import os
from shutil import get_terminal_size
import lockfile
import math
import pickle
import json
from tqdm import tqdm
import logging
import tkinter as tk
from tkinter import filedialog
import base64
import datetime
import numpy as np
from scipy.optimize import brentq
from scipy import linalg
import colorlog
from pushbullet import Pushbullet
# Package logger
my_log_formatter = colorlog.ColoredFormatter(
'%(log_color)s %(asctime)s %(message)s',
datefmt='%d/%m/%Y %H:%M:%S:',
reset=True,
log_colors={
'DEBUG': 'green',
'INFO': 'white',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white',
},
style='%')
def setHandler(logger, handler):
for h in logger.handlers:
logger.removeHandler(h)
logger.addHandler(handler)
return logger
def setLogger(name, formatter):
handler = colorlog.StreamHandler()
handler.setFormatter(formatter)
handler.stream = sys.stdout
logger = colorlog.getLogger(name)
logger.addHandler(handler)
return logger
class TqdmHandler(logging.StreamHandler):
def __init__(self, formatter):
logging.StreamHandler.__init__(self)
self.setFormatter(formatter)
def emit(self, record):
msg = self.format(record)
tqdm.write(msg)
logger = setLogger('PySONIC', my_log_formatter)
LOOKUP_DIR = os.path.abspath(os.path.split(__file__)[0] + "/lookups/")
def fillLine(text, char='-', totlength=None):
''' Surround a text with repetitions of a specific character in order to
fill a line to a given total length.
:param text: text to be surrounded
:param char: surrounding character
:param totlength: target number of characters in filled text line
:return: filled text line
'''
if totlength is None:
totlength = get_terminal_size().columns - 1
ndashes = totlength - len(text) - 2
if ndashes < 2:
return text
else:
nside = ndashes // 2
nleft, nright = nside, nside
if ndashes % 2 == 1:
nright += 1
return f'{char * nleft} {text} {char * nright}'
# SI units prefixes
si_prefixes = {
'y': 1e-24, # yocto
'z': 1e-21, # zepto
'a': 1e-18, # atto
'f': 1e-15, # femto
'p': 1e-12, # pico
'n': 1e-9, # nano
'u': 1e-6, # micro
'm': 1e-3, # mili
'': 1e0, # None
'k': 1e3, # kilo
'M': 1e6, # mega
'G': 1e9, # giga
'T': 1e12, # tera
'P': 1e15, # peta
'E': 1e18, # exa
'Z': 1e21, # zetta
'Y': 1e24, # yotta
}
sorted_si_prefixes = sorted(si_prefixes.items(), key=operator.itemgetter(1))
def getSIpair(x, scale='lin'):
''' Get the correct SI factor and prefix for a floating point number. '''
if isIterable(x):
# If iterable, get a representative number of the distribution
x = np.asarray(x)
x = x.prod()**(1.0 / x.size) if scale == 'log' else np.mean(x)
if x == 0:
return 1e0, ''
else:
vals = [tmp[1] for tmp in sorted_si_prefixes]
ix = np.searchsorted(vals, np.abs(x)) - 1
if | np.abs(x) | numpy.abs |
#!/usr/bin/env python
"""SPECFIT.PY - Generic stellar abundance determination software
"""
from __future__ import print_function
__authors__ = '<NAME> <<EMAIL>>'
__version__ = '20200711' # yyyymmdd
import os
import shutil
import contextlib, io, sys
import numpy as np
import warnings
from astropy.io import fits
from astropy.table import Table
from dlnpyutils.minpack import curve_fit
from dlnpyutils.least_squares import least_squares
from scipy.interpolate import interp1d
from dlnpyutils import utils as dln, bindata, astro
import doppler
from doppler.spec1d import Spec1D
from doppler import (cannon,utils,reader)
import copy
import logging
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.legend import Legend
import tempfile
from . import models
from synple import synple
# Ignore these warnings, it's a bug
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
cspeed = 2.99792458e5 # speed of light in km/s
def synmodel(spec,params,alinefile=None,mlinefile=None,verbose=False,normalize=True):
"""
Synthetic spectrum model.
Parameters
----------
spec : Spec1D object or str
The observed Spec1D spectrum to match or the name of a spectrum file.
params : dict
Dictionary of initial values to use or parameters/elements to hold fixed.
normalize : bool, optional
Renormalize the model spectrum using the observed spectrum's continuum function. The
synthetic spectrum will already have been normalized using the "true" continuum. This
step is to simulate any systematic effects of the spectrum normalization algorithm that
the observed spectrum undergoes. Default is True.
verbose : int, optional
Verbosity level (0, 1, or 2). The default is 0 and verbose=2 is for debugging.
alinefile : str, optional
The atomic linelist to use. Default is None which means the default synple linelist is used.
mlinefile : str, optional
The molecular linelist to use. Default is None which means the default synple linelist is used.
Returns
-------
model : Spec1D object
The synthetic spectrum. The "true" continuum is in model.cont.
Example
-------
.. code-block:: python
model = synmodel(spec,params)
"""
# Read in the spectrum
if type(spec) is str:
filename = spec
spec = doppler.read(filename)
if spec is None:
print('Problem loading '+filename)
return
params = dict((key.upper(), value) for (key, value) in params.items()) # all CAPS
# Initialize the fitter
fitparams = ['TEFF'] # "dummy" fitting variable
spfitter = SpecFitter(spec,params,fitparams=fitparams,verbose=(verbose>=2),
alinefile=alinefile,mlinefile=mlinefile)
spfitter.norm = normalize # normalize the synthetic spectrum
model = spfitter.model(spec.wave.flatten(),params['TEFF'],retobj=True)
model.instrument = 'Model'
return model
class SpecFitter:
def __init__ (self,spec,params,fitparams=None,norm=True,verbose=False,
alinefile=None,mlinefile=None):
# Parameters
self.params = params
if fitparams is not None:
self.fitparams = fitparams
else:
self.fitparams = list(params.keys()) # by default fit all parameters
self.nsynfev = 0 # number of synthetic spectra made
self.njac = 0 # number of times jacobian called
# Save spectrum information
self.spec = spec.copy()
self.flux = spec.flux.flatten()
self.err = spec.err.flatten()
self.wave = spec.wave.flatten()
self.lsf = spec.lsf.copy()
self.lsf.wavevac = spec.wavevac # need this later for synspec prep
self.wavevac = spec.wavevac
self.verbose = verbose
self.norm = norm # normalize
self.continuum_func = spec.continuum_func
self.alinefile = alinefile
self.mlinefile = mlinefile
# Convert vacuum to air wavelengths
# synspec uses air wavelengths
if spec.wavevac is True:
wave = astro.vactoair(spec.wave.copy().flatten()).reshape(spec.wave.shape)
else:
wave = spec.wave.copy()
if wave.ndim==1:
wave = np.atleast_2d(wave).T
# Figure out the wavelength parameters
npix = spec.npix
norder = spec.norder
xp = np.arange(npix//20)*20
wr = np.zeros((spec.lsf.norder,2),np.float64)
dw = np.zeros(spec.lsf.norder,np.float64)
mindw = np.zeros(norder,np.float64)
for o in range(spec.norder):
dw[o] = np.median(dln.slope(wave[:,o]))
wr[o,0] = np.min(wave[:,o])
wr[o,1] = np.max(wave[:,o])
fwhm = spec.lsf.fwhm(wave[xp,o],xtype='Wave',order=o)
# FWHM is in units of lsf.xtype, convert to wavelength/angstroms, if necessary
if spec.lsf.xtype.lower().find('pix')>-1:
fwhm *= np.abs(dw[o])
# need at least ~4 pixels per LSF FWHM across the spectrum
# using 3 affects the final profile shape
mindw[o] = np.min(fwhm/4)
self._dwair = np.min(mindw) # IN AIR WAVELENGTHS!!
self._w0air = np.min(wave)
self._w1air = np.max(wave)
# parameters to save
self._all_pars = []
self._all_model = []
self._all_chisq = []
self._jac_array = None
@property
def params(self):
return self._params
@params.setter
def params(self,params):
""" Dictionary, keys must be all CAPS."""
self._params = dict((key.upper(), value) for (key, value) in params.items()) # all CAPS
@property
def fitparams(self):
return self._fitparams
@fitparams.setter
def fitparams(self,fitparams):
""" list, keys must be all CAPS."""
self._fitparams = [v.upper() for v in fitparams] # all CAPS
def mkinputs(self,args):
""" Make INPUTS dictionary."""
# Create INPUTS with all arguments needed to make the spectrum
inputs = self.params.copy() # initialize with initial/fixed values
for k in range(len(self.fitparams)): # this overwrites the values for the fitted values
inputs[self.fitparams[k]] = args[k]
inputs['DW'] = self._dwair # add in wavelength parameters
inputs['W0'] = self._w0air
inputs['W1'] = self._w1air
return inputs
def chisq(self,model):
return np.sqrt( np.sum( (self.flux-model)**2/self.err**2 )/len(self.flux) )
def model(self, xx, *args, retobj=False):
""" Return a model spectrum flux with the given input arguments."""
# The input arguments correspond to FITPARAMS
# This corrects for air/vacuum wavelength differences
if self.verbose:
print(args)
# The arguments correspond to the fitting parameters
inputs = self.mkinputs(args)
if self.verbose:
print(inputs)
# Create the synthetic spectrum
synspec = model_spectrum(inputs,verbose=self.verbose, # always returns air wavelengths
alinefile=self.alinefile,mlinefile=self.mlinefile)
self.nsynfev += 1
# Convolve with the LSF and do air/vacuum wave conversion
pspec = prepare_synthspec(synspec,self.lsf,norm=self.norm,
continuum_func=self.continuum_func)
# Save models/pars/chisq
self._all_pars.append(list(args).copy())
self._all_model.append(pspec.flux.flatten().copy())
self._all_chisq.append(self.chisq(pspec.flux.flatten()))
# Return flattened spectrum
if retobj:
return pspec
else:
return pspec.flux.flatten()
def getstep(self,name,val,relstep=0.02):
""" Calculate step for a parameter."""
# It mainly deals with edge cases
#if val != 0.0:
# step = relstep*val
#else:
# if name=='RV':
# step = 1.0
# elif name=='VROT':
# step = 0.5
# elif name=='VMICRO':
# step = 0.5
# elif name.endswith('_H'):
# step = 0.02
# else:
# step = 0.02
if name=='TEFF':
step = 5.0
elif name=='RV':
step = 0.1
elif name=='VROT':
step = 0.5
elif name=='VMICRO':
step = 0.5
elif name.endswith('_H'):
step = 0.01
else:
step = 0.01
return step
return step
def jac(self,x,*args):
""" Compute the Jacobian matrix (an m-by-n matrix, where element (i, j)
is the partial derivative of f[i] with respect to x[j]). """
if hasattr(self,'logger') is False:
logger = dln.basiclogger()
else:
logger = self.logger
logger.info(args)
if self.verbose:
logger.info(' ')
logger.info('##### Calculating Jacobian Matrix #####')
logger.info(' ')
# A new synthetic spectrum does not need to be generated RV, vmicro or vsini.
# Some time can be saved by not remaking those.
# Use a one-sided derivative.
# Boundaries
lbounds,ubounds = mkbounds(self.fitparams)
relstep = 0.02
npix = len(x)
npar = len(args)
# Get INPUTS dictionary and make keys all CAPS
inputs = self.mkinputs(args)
inputs = dict((key.upper(), value) for (key, value) in inputs.items())
# Some important parameters
w0 = inputs['W0']
w1 = inputs['W1']
dw = inputs['DW']
rv = inputs.get('RV')
vrot = inputs.get('VROT')
vmicro = inputs.get('VMICRO')
# Create synthetic spectrum at current values
# set vrot=vmicro=rv=0, will modify later if necessary
if self.verbose:
logger.info('--- Current values ---')
logger.info(args)
tinputs = inputs.copy()
tinputs['VMICRO'] = 0
tinputs['VROT'] = 0
tinputs['RV'] = 0
origspec = model_spectrum(tinputs,keepextend=True, # always are wavelengths
alinefile=self.alinefile,mlinefile=self.mlinefile)
self.nsynfev += 1
# Smooth and shift
smorigspec = smoothshift_spectrum(origspec,vrot=vrot,vmicro=vmicro,rv=rv)
# Trim to final wavelengths
smorigspec = trim_spectrum(smorigspec,w0,w1)
# Convolve with the LSF and do air/vacuum wave conversion
pspec = prepare_synthspec(smorigspec,self.lsf,norm=self.norm,
continuum_func=self.continuum_func)
# Flatten the spectrum
f0 = pspec.flux.flatten()
# Save models/pars/chisq
self._all_pars.append(list(args).copy())
self._all_model.append(f0.copy())
self._all_chisq.append(self.chisq(f0))
chisq = np.sqrt( np.sum( (self.flux-f0)**2/self.err**2 )/len(self.flux) )
self
if self.verbose:
logger.info('chisq = '+str(chisq))
# MASK PIXELS!?
# Initialize jacobian matrix
jac = np.zeros((npix,npar),np.float64)
# Loop over parameters
for i in range(npar):
pars = np.array(copy.deepcopy(args))
step = self.getstep(self.fitparams[i],pars[i],relstep)
# Check boundaries, if above upper boundary
# go the opposite way
if pars[i]>ubounds[i]:
step *= -1
pars[i] += step
tinputs = self.mkinputs(pars)
if self.verbose:
logger.info(' ')
logger.info('--- '+str(i+1)+' '+self.fitparams[i]+' '+str(pars[i])+' ---')
logger.info(pars)
# VROT/VMICRO/RV, just shift/smooth original spectrum
if self.fitparams[i]=='VROT' or self.fitparams[i]=='VMICRO' or self.fitparams[i]=='RV':
tvrot = tinputs.get('VROT')
tvmicro = tinputs.get('VMICRO')
trv = tinputs.get('RV')
#import pdb; pdb.set_trace()
# Smooth and shift
synspec = smoothshift_spectrum(origspec,vrot=tvrot,vmicro=tvmicro,rv=trv)
# Trim to final wavelengths
synspec = trim_spectrum(synspec,w0,w1)
else:
synspec = model_spectrum(tinputs,alinefile=self.alinefile,
mlinefile=self.mlinefile) # always returns air wavelengths
self.nsynfev += 1
# Convert to vacuum wavelengths if necessary
if self.wavevac:
synspec.wave = astro.airtovac(synspec.wave)
synspec.wavevac = True
# Convolve with the LSF and do air/vacuum wave conversion
pspec = prepare_synthspec(synspec,self.lsf,norm=self.norm,
continuum_func=self.continuum_func)
# Flatten the spectrum
f1 = pspec.flux.flatten()
# Save models/pars/chisq
self._all_pars.append(list(pars).copy())
self._all_model.append(f1.copy())
self._all_chisq.append(self.chisq(f1))
if np.sum(~np.isfinite(f1))>0:
print('some nans/infs')
import pdb; pdb.set_trace()
jac[:,i] = (f1-f0)/step
if np.sum(~np.isfinite(jac))>0:
print('some nans/infs')
import pdb; pdb.set_trace()
self._jac_array = jac.copy() # keep a copy
self.njac += 1
return jac
def trim_spectrum(spec,w0,w1):
""" Trim a synthetic spectrum to [w0,w1]."""
# This assumes that the spectrum has a single order
wv1, ind1 = dln.closest(spec.wave,w0)
wv2, ind2 = dln.closest(spec.wave,w1)
# Nothing to do
if ind1==0 and ind2==(spec.npix-1):
return spec
outspec = spec.copy()
outspec.flux = outspec.flux[ind1:ind2+1]
outspec.wave = outspec.wave[ind1:ind2+1]
if outspec.err is not None:
outspec.err = outspec.err[ind1:ind2+1]
if outspec.mask is not None:
outspec.mask = outspec.mask[ind1:ind2+1]
if hasattr(outspec,'cont'):
if outspec.cont is not None:
outspec.cont = outspec.cont[ind1:ind2+1]
outspec.npix = len(outspec.flux)
return outspec
def getabund(inputs,verbose=False):
""" Grab the abundances out of the input file and return array of abundances."""
# Create the input 99-element abundance array
codedir = os.path.dirname(os.path.abspath(__file__))
pertab = Table.read(codedir+'/data/periodic_table.txt',format='ascii')
feh = inputs.get('FEH')
if feh is None:
feh = inputs.get('FE_H')
if feh is None:
raise ValueError('FE_H missing from inputs')
# Read model atmosphere
modelfile = inputs.get('modelfile')
if modelfile is None:
raise ValueError('modelfile missing from inputs')
atmostype, teff, logg, vmicro2, mabu, nd, atmos = synple.read_model(modelfile,verbose=verbose)
mlines = dln.readlines(modelfile)
# solar abundances
# first two are Teff and logg
# last two are Hydrogen and Helium
solar_abund = np.array([ 4750., 2.5,
-10.99, -10.66, -9.34, -3.61, -4.21,
-3.35, -7.48, -4.11, -5.80, -4.44,
-5.59, -4.53, -6.63, -4.92, -6.54,
-5.64, -7.01, -5.70, -8.89, -7.09,
-8.11, -6.40, -6.61, -4.54, -7.05,
-5.82, -7.85, -7.48, -9.00, -8.39,
-9.74, -8.70, -9.50, -8.79, -9.52,
-9.17, -9.83, -9.46, -10.58, -10.16,
-20.00, -10.29, -11.13, -10.47, -11.10,
-10.33, -11.24, -10.00, -11.03, -9.86,
-10.49, -9.80, -10.96, -9.86, -10.94,
-10.46, -11.32, -10.62, -20.00, -11.08,
-11.52, -10.97, -11.74, -10.94, -11.56,
-11.12, -11.94, -11.20, -11.94, -11.19,
-12.16, -11.19, -11.78, -10.64, -10.66,
-10.42, -11.12, -10.87, -11.14, -10.29,
-11.39, -20.00, -20.00, -20.00, -20.00,
-20.00, -20.00, -12.02, -20.00, -12.58,
-20.00, -20.00, -20.00, -20.00, -20.00,
-20.00, -20.00])
# Deal with alpha abundances
# only add the individual alpha abundance if it's not already there
# sometimes we might fit a single alpha element but want to use
# ALPHA_H to set the rest of them
if inputs.get('ALPHA_H') is not None:
alpha = inputs['ALPHA_H']
elem = ['O','MG','SI','S','CA','TI']
for k in range(len(elem)):
if inputs.get(elem[k]+'_H') is None:
inputs[elem[k]+'_H'] = alpha
# Scale global metallicity
abu = solar_abund.copy()
abu[2:] += feh
# Now offset the elements with [X/Fe], [X/Fe]=[X/H]-[Fe/H]
g, = np.where( (np.char.array(list(inputs.keys())).find('_H') != -1) &
(np.char.array(list(inputs.keys())) != 'FE_H') )
if len(g)>0:
ind1,ind2 = dln.match(np.char.array(list(inputs.keys()))[g],np.char.array(pertab['symbol']).upper()+'_H')
for k in range(len(ind1)):
key1 = np.char.array(list(inputs.keys()))[g[ind1[k]]]
abu[ind2[k]] += float(inputs[key1]) - feh
if verbose:
print('%s %f' % (key1,float(inputs[key1])))
# convert to linear
abu[2:] = 10**abu[2:]
# Divide by N(H)
g, = np.where(np.char.array(mlines).find('ABUNDANCE SCALE') != -1)
nhtot = np.float64(mlines[g[0]].split()[6])
abu[2:] /= nhtot
# use model values for H and He
abu[0:2] = mabu[0:2]
return abu
def synple_wrapper(inputs,verbose=False,tmpbase='/tmp',alinefile=None,mlinefile=None):
""" This is a wrapper around synple to generate a new synthetic spectrum."""
# Wavelengths are all AIR!!
# inputs is a dictionary with all of the inputs
# Teff, logg, [Fe/H], some [X/Fe], and the wavelength parameters (w0, w1, dw).
# Make temporary directory for synple to work in
curdir = os.path.abspath(os.curdir)
tdir = os.path.abspath(tempfile.mkdtemp(prefix="syn",dir=tmpbase))
os.chdir(tdir)
# Linelists to use
linelist = ['gfallx3_bpo.19','kmol3_0.01_30.20'] # default values
if alinefile is not None: # atomic linelist input
linelist[0] = alinefile
if mlinefile is not None: # molecular linelist input
linelist[1] = mlinefile
if verbose:
print('Using linelist: ',linelist)
# Make key names all CAPS
inputs = dict((key.upper(), value) for (key, value) in inputs.items())
# Make the model atmosphere file
teff = inputs['TEFF']
logg = inputs['LOGG']
metal = inputs['FE_H']
tid,modelfile = tempfile.mkstemp(prefix="mod",dir=".")
os.close(tid) # close the open file
# Limit values
# of course the logg/feh ranges vary with Teff
mteff = dln.limit(teff,3500.0,60000.0)
mlogg = dln.limit(logg,0.0,5.0)
mmetal = dln.limit(metal,-2.5,0.5)
model, header, tail = models.mkmodel(mteff,mlogg,mmetal,modelfile)
inputs['modelfile'] = modelfile
if os.path.exists(modelfile) is False or os.stat(modelfile).st_size==0:
print('model atmosphere file does NOT exist')
import pdb; pdb.set_trace()
# Create the synspec synthetic spectrum
w0 = inputs['W0']
w1 = inputs['W1']
dw = inputs['DW']
vmicro = inputs.get('VMICRO')
vrot = inputs.get('VROT')
if vrot is None:
vrot = 0.0
# Get the abundances
abu = getabund(inputs,verbose=verbose)
wave,flux,cont = synple.syn(modelfile,(w0,w1),dw,vmicro=vmicro,vrot=vrot,
abu=list(abu),verbose=verbose,linelist=linelist)
# Delete temporary files
shutil.rmtree(tdir)
os.chdir(curdir)
return (wave,flux,cont)
def smoothshift_spectrum(inpspec,vmicro=None,vrot=None,rv=None):
""" This smoothes the spectrum by Vrot+Vmicro and
shifts it by RV."""
#vmicro = inputs.get('VMICRO')
#vrot = inputs.get('VROT')
#rv = inputs.get('RV')
# Nothing to do
if vmicro is None and vrot is None and rv is None:
return inpspec.copy()
# Initialize output spectrum
spec = inpspec.copy()
# Some broadening
if vmicro is not None or vrot is not None:
flux = utils.broaden(spec.wave,spec.flux,vgauss=vmicro,vsini=vrot)
spec.flux = flux
## Vrot/Vsini (km/s) and Vmicro (in km/s)
#if vrot is not None or vmicro is not None:
# wave, flux = synple.call_rotin(wave, flux, vrot, fwhm, space, steprot, stepfwhm, clean=False, reuseinputfiles=True)
# Doppler shift only (in km/s)
if rv is not None:
if rv != 0.0:
shiftwave = spec.wave*(1+rv/cspeed)
gd,ngd,bd,nbd = dln.where( (spec.wave >= np.min(shiftwave)) & (spec.wave <= np.max(shiftwave)), comp=True)
# Doppler shift and interpolate onto wavelength array
if hasattr(spec,'cont'):
cont = synple.interp_spl(spec.wave[gd], shiftwave, spec.cont)
spec.cont *= 0
spec.cont[gd] = cont
# interpolate the continuing to the missing pixels
if nbd>0:
contmissing = dln.interp(spec.wave[gd],spec.cont[gd],spec.wave[bd],kind='linear',assume_sorted=False)
spec.cont[bd] = contmissing
flux = synple.interp_spl(spec.wave[gd], shiftwave, spec.flux)
spec.flux *= 0
spec.flux[gd] = flux
if nbd>0:
# Fill in missing values with interpolated values
if np.sum(np.isfinite(spec.flux[gd]))>0:
coef = dln.poly_fit(spec.wave[gd],spec.flux[gd],2)
fluxmissing = dln.poly(spec.wave[bd],coef)
spec.flux[bd] = fluxmissing
# Mask these pixels
if spec.mask is None:
spec.mask = np.zeros(len(spec.flux),bool)
spec.mask[bd] = True
return spec
def model_spectrum(inputs,verbose=False,keepextend=False,alinefile=None,mlinefile=None):
"""
This creates a model spectrum given the inputs:
RV, Teff, logg, vmicro, vsini, [Fe/H], [X/Fe], w0, w1, dw.
This creates the new synthetic spectrum and then convolves with vmicro, vsini and
shifts to velocity RV.
The returned spectrum always uses AIR wavelengths!!!
Parameters
----------
inputs : dictionary
Input parameters, stellar parameters, abundances.
keepextend : bool, optional
Keep the extensions on the ends. Default is False.
alinefile : str, optional
Atomic linelist filename. Default is None (use synple's default one).
mlinefile : str, optional
Molecular linelist filename. Default is None (use synple's default one).
verbose : bool, optional
Verbose output. Default is False.
Returns
-------
synspec : Spec1D
The synthetic spectrum as Spec1D object.
"""
# Make key names all CAPS
inputs = dict((key.upper(), value) for (key, value) in inputs.items())
# Extend on the ends for RV/convolution purposes
w0 = inputs['W0']
w1 = inputs['W1']
dw = inputs['DW']
rv = inputs.get('RV')
vrot = inputs.get('VROT')
vmicro = inputs.get('VMICRO')
inputsext = inputs.copy()
if rv is not None or vrot is not None or vmicro is not None:
numext = int(np.ceil(w1*(1.0+1500/cspeed)-w1))
inputsext['W0'] = w0-numext*dw
inputsext['W1'] = w1+numext*dw
if verbose:
print('Extending wavelength by '+str(numext)+' pixels on each end')
# Create the synthetic spectrum
# set vrot=vmicro=0, will convolve later if necessary
inputsext['VMICRO'] = 0
inputsext['VROT'] = 0
wave1,flux1,cont1 = synple_wrapper(inputsext,verbose=verbose,alinefile=alinefile,
mlinefile=mlinefile)
# Get final wavelength array
wv1, ind1 = dln.closest(wave1,w0)
wv2, ind2 = dln.closest(wave1,w1)
synspec = Spec1D(flux1/cont1,err=flux1*0,wave=wave1,lsfpars=np.array(0.0))
synspec.cont = cont1
synspec.wavevac = False
# Smooth and shift
if rv is not None or vrot is not None or vmicro is not None:
synspec = smoothshift_spectrum(synspec,vrot=vrot,vmicro=vmicro,rv=rv)
# Trim to final wavelengths
if keepextend is False:
synspec = trim_spectrum(synspec,w0,w1)
return synspec
def prepare_synthspec(synspec,lsf,norm=True,continuum_func=None):
""" Prepare a synthetic spectrum to be compared to an observed spectrum."""
# Convolve with LSF and do air<->vacuum wavelength conversion
# Convert wavelength from air->vacuum or vice versa
if synspec.wavevac != lsf.wavevac:
# Air -> Vacuum
if synspec.wavevac is False:
synspec.wave = astro.airtovac(synspec.wave)
synspec.wavevac = True
# Vacuum -> Air
else:
synspec.dispersion = astro.vactoair(synspec.wave)
synspec.wavevac = False
# Initialize the output spectrum
if lsf.wave.ndim==2:
npix,norder = lsf.wave.shape
else:
npix = len(lsf.wave)
norder = 1
pspec = Spec1D(np.zeros((npix,norder),np.float32),err=np.zeros((npix,norder),np.float32),
wave=lsf.wave,lsfpars=lsf.pars,lsftype=lsf.lsftype,lsfxtype=lsf.xtype)
pspec.cont = np.zeros((npix,norder),np.float32)
if continuum_func is not None:
pspec.continuum_func = continuum_func
# Loop over orders
if lsf.wave.ndim==1:
wave = np.atleast_2d(lsf.wave.copy()).T
else:
wave = lsf.wave.copy()
for o in range(lsf.norder):
wobs = wave[:,o]
dw = np.median(dln.slope(wobs))
wv1,ind1 = dln.closest(synspec.wave,np.min(wobs)-2*np.abs(dw))
wv2,ind2 = dln.closest(synspec.wave,np.max(wobs)+2*np.abs(dw))
modelflux = synspec.flux[ind1:ind2+1]
modelwave = synspec.wave[ind1:ind2+1]
modelcont = synspec.cont[ind1:ind2+1]
# Rebin, if necessary
# get LSF FWHM (A) for a handful of positions across the spectrum
xp = np.arange(npix//20)*20
fwhm = lsf.fwhm(wobs[xp],xtype='Wave',order=o)
# FWHM is in units of lsf.xtype, convert to wavelength/angstroms, if necessary
if lsf.xtype.lower().find('pix')>-1:
fwhm *= np.abs(dw)
# convert FWHM (A) in number of model pixels at those positions
dwmod = dln.slope(modelwave)
dwmod = np.hstack((dwmod,dwmod[-1]))
xpmod = dln.interp(modelwave,np.arange(len(modelwave)),wobs[xp],kind='cubic',assume_sorted=False,extrapolate=True)
xpmod = np.round(xpmod).astype(int)
fwhmpix = np.abs(fwhm/dwmod[xpmod])
# need at least ~4 pixels per LSF FWHM across the spectrum
# using 3 affects the final profile shape
nbin = np.round(np.min(fwhmpix)//4).astype(int)
if np.min(fwhmpix) < 3.7:
warnings.warn('Model has lower resolution than the observed spectrum. Only '+str(np.min(fwhmpix))+' model pixels per resolution element')
if np.min(fwhmpix) < 2.8:
raise Exception('Model has lower resolution than the observed spectrum. Only '+str(np.min(fwhmpix))+' model pixels per resolution element')
if nbin>1:
npix2 = np.round(len(synspec.flux) // nbin).astype(int)
modelflux = dln.rebin(modelflux[0:npix2*nbin],npix2)
modelwave = dln.rebin(modelwave[0:npix2*nbin],npix2)
modelcont = dln.rebin(modelcont[0:npix2*nbin],npix2)
# Convolve
lsf2d = lsf.anyarray(modelwave,xtype='Wave',order=o,original=False)
cflux = utils.convolve_sparse(modelflux,lsf2d)
# Interpolate onto final wavelength array
flux = synple.interp_spl(wobs, modelwave, cflux)
cont = synple.interp_spl(wobs, modelwave, modelcont)
pspec.flux[:,o] = flux
pspec.cont[:,o] = cont
pspec.normalized = True
# Normalize
if norm is True:
newcont = pspec.continuum_func(pspec)
pspec.flux /= newcont
pspec.cont *= newcont
return pspec
def mkbounds(params,paramlims=None):
""" Make lower and upper boundaries for parameters """
params = np.char.array(params).upper()
if paramlims is not None:
limkeys = np.char.array(list(paramlims.keys())).upper()
n = len(params)
lbounds = np.zeros(n,np.float64)
ubounds = np.zeros(n,np.float64)
# Teff
g, = np.where(params=='TEFF')
if len(g)>0:
lbounds[g[0]] = 3500
ubounds[g[0]] = 60000
# logg
g, = np.where(params=='LOGG')
if len(g)>0:
lbounds[g[0]] = 0
ubounds[g[0]] = 5
# fe_h
g, = np.where(params=='FE_H')
if len(g)>0:
lbounds[g[0]] = -3
ubounds[g[0]] = 1
# Vmicro
g, = np.where(params=='VMICRO')
if len(g)>0:
lbounds[g[0]] = 0
ubounds[g[0]] = 5
# Vsini/vrot
g, = np.where(params=='VROT')
if len(g)>0:
lbounds[g[0]] = 0
ubounds[g[0]] = 500
# RV
g, = np.where(params=='RV')
if len(g)>0:
lbounds[g[0]] = -1500
ubounds[g[0]] = 1500
# abundances
g, = np.where( (params.find('_H') != -1) & (params != 'FE_H') )
if len(g)>0:
lbounds[g] = -3
ubounds[g] = 10
# Use input parameter limits
if paramlims is not None:
for i,f in enumerate(params):
g, = np.where(limkeys==f)
if len(g)>0:
lbounds[i] = paramlims[limkeys[g[0]]][0]
ubounds[i] = paramlims[limkeys[g[0]]][1]
bounds = (lbounds,ubounds)
return bounds
def mkdxlim(fitparams):
""" Make array of parameter changes at which curve_fit should finish."""
npar = len(fitparams)
dx_lim = np.zeros(npar,float)
for k in range(npar):
if fitparams[k]=='TEFF':
dx_lim[k] = 1.0
elif fitparams[k]=='LOGG':
dx_lim[k] = 0.005
elif fitparams[k]=='VMICRO':
dx_lim[k] = 0.1
elif fitparams[k]=='VROT':
dx_lim[k] = 0.1
elif fitparams[k]=='RV':
dx_lim[k] = 0.01
elif fitparams[k].endswith('_H'):
dx_lim[k] = 0.005
else:
dx_lim[k] = 0.01
return dx_lim
def initpars(params,fitparams,bounds=None):
""" Make initial set of parameters given PARAMS and
FITPARAMS."""
params = dict((key.upper(), value) for (key, value) in params.items()) # all CAPS
fitparams = [v.upper() for v in fitparams] # all CAPS
npars = len(fitparams)
pinit = np.zeros(npars,np.float64)
# Loop over parameters
for k in range(npars):
ind, = np.where(np.char.array(list(params.keys()))==fitparams[k])
# This parameter is in PARAMS
if len(ind)>0:
pinit[k] = params[fitparams[k]]
# Not in PARAMS
else:
if fitparams[k]=='RV':
pinit[k] = 0.0
elif fitparams[k]=='VMICRO':
pinit[k] = 2.0
elif fitparams[k]=='VROT':
pinit[k] = 0.0
elif fitparams[k]=='TEFF':
pinit[k] = 5000.0
elif fitparams[k]=='LOGG':
pinit[k] = 3.0
elif fitparams[k].endswith('_H'):
# Abundances, use FE_H if possible
if 'FE_H' in params.keys():
pinit[k] = params['FE_H']
else:
pinit[k] = 0.0
else:
pinit[k] = 0.0
# Make sure inital parameters are within the boundary limits
if bounds is not None:
for k in range(npars):
pinit[k] = dln.limit(pinit[k],bounds[0][k],bounds[1][k])
return pinit
def specfigure(figfile,spec,fmodel,out,original=None,verbose=True,figsize=10):
""" Make diagnostic figure."""
#import matplotlib
matplotlib.use('Agg')
#import matplotlib.pyplot as plt
if os.path.exists(figfile): os.remove(figfile)
norder = spec.norder
nlegcol = 2
if original is not None: nlegcol=3
# Single-order plot
if norder==1:
fig,ax = plt.subplots()
fig.set_figheight(figsize*0.5)
fig.set_figwidth(figsize)
if original is not None:
plt.plot(original.wave,original.flux,color='green',label='Original',linewidth=1)
plt.plot(spec.wave,spec.flux,'b',label='Masked Data',linewidth=0.5)
plt.plot(fmodel.wave,fmodel.flux,'r',label='Model',linewidth=0.5,alpha=0.8)
leg = ax.legend(loc='upper left', frameon=True, framealpha=0.8, ncol=nlegcol)
plt.xlabel('Wavelength (Angstroms)')
plt.ylabel('Normalized Flux')
xr = dln.minmax(spec.wave)
yr = [np.min([spec.flux,fmodel.flux]), np.max([spec.flux,fmodel.flux])]
if original is not None:
yr = [np.min([original.flux,spec.flux,fmodel.flux]), np.max([spec.flux,fmodel.flux])]
yr = [yr[0]-dln.valrange(yr)*0.15,yr[1]+dln.valrange(yr)*0.005]
yr = [np.max([yr[0],-0.2]), np.min([yr[1],2.0])]
plt.xlim(xr)
plt.ylim(yr)
snr = np.nanmedian(spec.flux/spec.err)
plt.title(spec.filename)
#ax.annotate(r'S/N=%5.1f Teff=%5.1f$\pm$%5.1f logg=%5.2f$\pm$%5.2f [Fe/H]=%5.2f$\pm$%5.2f Vrel=%5.2f$\pm$%5.2f chisq=%5.2f' %
# (snr, out['TEFF'], out['tefferr'], out['LOGG'], out['loggerr'], out['FE_H'], out['feherr'], out['RV'], out['vrelerr'], out['chisq']),
# xy=(np.mean(xr), yr[0]+dln.valrange(yr)*0.05),ha='center')
# Multi-order plot
else:
fig,ax = plt.subplots(norder)
fig.set_figheight(figsize)
fig.set_figwidth(figsize)
for i in range(norder):
if original is not None:
ax[i].plot(original.wave[:,i],original.flux[:,i],color='green',label='Original',linewidth=1)
ax[i].plot(spec.wave[:,i],spec.flux[:,i],'b',label='Masked Data',linewidth=0.5)
ax[i].plot(fmodel.wave[:,i],fmodel.flux[:,i],'r',label='Model',linewidth=0.5,alpha=0.8)
if i==0:
leg = ax[i].legend(loc='upper left', frameon=True, framealpha=0.8, ncol=nlegcol)
ax[i].set_xlabel('Wavelength (Angstroms)')
ax[i].set_ylabel('Normalized Flux')
xr = dln.minmax(spec.wave[:,i])
yr = [np.min([spec.flux[:,i],fmodel.flux[:,i]]), np.max([spec.flux[:,i],fmodel.flux[:,i]])]
if original is not None:
yr = [np.min([original.flux[:,i],spec.flux[:,i],fmodel.flux[:,i]]), np.max([spec.flux[:,i],fmodel.flux[:,i]])]
yr = [yr[0]-dln.valrange(yr)*0.05,yr[1]+dln.valrange(yr)*0.05]
if i==0:
yr = [yr[0]-dln.valrange(yr)*0.15,yr[1]+dln.valrange(yr)*0.05]
yr = [np.max([yr[0],-0.2]), np.min([yr[1],2.0])]
ax[i].set_xlim(xr)
ax[i].set_ylim(yr)
# legend
if i==0:
snr = np.nanmedian(spec.flux/spec.err)
ax[i].set_title(spec.filename)
#ax[i].annotate(r'S/N=%5.1f Teff=%5.1f$\pm$%5.1f logg=%5.2f$\pm$%5.2f [Fe/H]=%5.2f$\pm$%5.2f Vrel=%5.2f$\pm$%5.2f chisq=%5.2f' %
# (snr,out['teff'],out['tefferr'],out['logg'],out['loggerr'],out['feh'],out['feherr'],out['vrel'],out['vrelerr'],out['chisq']),
# xy=(np.mean(xr), yr[0]+dln.valrange(yr)*0.05),ha='center')
plt.savefig(figfile,bbox_inches='tight')
plt.close(fig)
if verbose is True: print('Figure saved to '+figfile)
def dopvrot_lsq(spec,models=None,initpar=None,verbose=False,logger=None):
"""
Least Squares fitting with forward modeling of the spectrum.
Parameters
----------
spec : Spec1D object
The observed spectrum to match.
models : list of Cannon models, optional
A list of Cannon models to use. The default is to load all of the Cannon
models in the data/ directory and use those.
initpar : numpy array, optional
Initial estimate for [teff, logg, feh, RV, vsini], optional.
verbose : bool, optional
Verbose output of the various steps. This is False by default.
Returns
-------
out : numpy structured array
The output structured array of the final derived RVs, stellar parameters and errors.
bmodel : Spec1D object
The best-fitting Cannon model spectrum (as Spec1D object).
Example
-------
.. code-block:: python
out, bmodel = fit_lsq(spec)
"""
if logger is None:
logger = dln.basiclogger()
# Load and prepare the Cannon models
#-------------------------------------------
if models is None:
models = cannon.models.copy()
models.prepare(spec)
# Get initial estimates
if initpar is None:
initpar = np.array([6000.0, 2.5, -0.5, 0.0, 0.0])
initpar = | np.array(initpar) | numpy.array |
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Utilities to generate toymodel (fake) reconstruction inputs for testing
purposes.
Examples:
.. code-block:: python
>>> from ctapipe.instrument import CameraGeometry
>>> geom = CameraGeometry.make_rectangular(20, 20)
>>> showermodel = Gaussian(x=0.25 * u.m, y=0.0 * u.m,
length=0.1 * u.m, width=0.02 * u.m, psi='40d')
>>> image, signal, noise = showermodel.generate_image(geom, intensity=1000)
>>> print(image.shape)
(400,)
"""
import numpy as np
from ctapipe.utils import linalg
from ctapipe.image.hillas import camera_to_shower_coordinates
import astropy.units as u
from astropy.coordinates import Angle
from scipy.stats import multivariate_normal, skewnorm, norm
from scipy.ndimage import convolve1d
from abc import ABCMeta, abstractmethod
__all__ = [
"WaveformModel",
"Gaussian",
"SkewedGaussian",
"ImageModel",
"obtain_time_image",
]
@u.quantity_input(
x=u.m,
y=u.m,
centroid_x=u.m,
centroid_y=u.m,
psi=u.deg,
time_gradient=u.ns / u.m,
time_intercept=u.ns,
)
def obtain_time_image(x, y, centroid_x, centroid_y, psi, time_gradient, time_intercept):
"""Create a pulse time image for a toymodel shower. Assumes the time development
occurs only along the longitudinal (major) axis of the shower, and scales
linearly with distance along the axis.
Parameters
----------
x : u.Quantity[length]
X camera coordinate to evaluate the time at.
Usually the array of pixel X positions
y : u.Quantity[length]
Y camera coordinate to evaluate the time at.
Usually the array of pixel Y positions
centroid_x : u.Quantity[length]
X camera coordinate for the centroid of the shower
centroid_y : u.Quantity[length]
Y camera coordinate for the centroid of the shower
psi : convertible to `astropy.coordinates.Angle`
rotation angle about the centroid (0=x-axis)
time_gradient : u.Quantity[time/length]
Rate at which the time changes with distance along the shower axis
time_intercept : u.Quantity[time]
Pulse time at the shower centroid
Returns
-------
float or ndarray
Pulse time in nanoseconds at (x, y)
"""
longitudinal, _ = camera_to_shower_coordinates(x, y, centroid_x, centroid_y, psi)
longitudinal_m = longitudinal.to_value(u.m)
time_gradient_ns_m = time_gradient.to_value(u.ns / u.m)
time_intercept_ns = time_intercept.to_value(u.ns)
return longitudinal_m * time_gradient_ns_m + time_intercept_ns
class WaveformModel:
@u.quantity_input(reference_pulse_sample_width=u.ns, sample_width=u.ns)
def __init__(self, reference_pulse, reference_pulse_sample_width, sample_width):
"""Generate a toy model waveform using the reference pulse shape of a
camera. Useful for testing image extraction algorithms.
Does not include the electronic noise and the Excess Noise Factor of
the photosensor, and therefore should not be used to make charge
resolution conclusions about a camera.
Parameters
----------
reference_pulse_sample_width : u.Quantity[time]
Sample width of the reference pulse shape
reference_pulse : ndarray
Reference pulse shape
sample_width : u.Quantity[time]
Sample width of the waveform
"""
self.upsampling = 10
reference_pulse_sample_width = reference_pulse_sample_width.to_value(u.ns)
sample_width_ns = sample_width.to_value(u.ns)
ref_max_sample = reference_pulse.size * reference_pulse_sample_width
reference_pulse_x = np.arange(0, ref_max_sample, reference_pulse_sample_width)
self.ref_width_ns = sample_width_ns / self.upsampling
self.ref_interp_x = np.arange(0, reference_pulse_x.max(), self.ref_width_ns)
self.ref_interp_y = np.interp(
self.ref_interp_x, reference_pulse_x, reference_pulse
)
self.ref_interp_y /= self.ref_interp_y.sum() * self.ref_width_ns
self.origin = self.ref_interp_y.argmax() - self.ref_interp_y.size // 2
def get_waveform(self, charge, time, n_samples):
"""Obtain the waveform toy model.
Parameters
----------
charge : ndarray
Amount of charge in each pixel
Shape: (n_pixels)
time : ndarray
The signal time in the waveform in nanoseconds
Shape: (n_pixels)
n_samples : int
Number of samples in the waveform
Returns
-------
waveform : ndarray
Toy model waveform
Shape (n_pixels, n_samples)
"""
n_pixels = charge.size
n_upsampled_samples = n_samples * self.upsampling
readout = np.zeros((n_pixels, n_upsampled_samples))
sample = (time / self.ref_width_ns).astype(np.int)
outofrange = (sample < 0) | (sample >= n_upsampled_samples)
sample[outofrange] = 0
charge[outofrange] = 0
readout[np.arange(n_pixels), sample] = charge
convolved = convolve1d(
readout, self.ref_interp_y, mode="constant", origin=self.origin
)
sampled = (
convolved.reshape(
(n_pixels, convolved.shape[-1] // self.upsampling, self.upsampling)
).sum(-1)
* self.ref_width_ns # Waveform units: p.e.
)
return sampled
@classmethod
def from_camera_readout(cls, readout, gain_channel=0):
"""Create class from a `ctapipe.instrument.CameraReadout`.
Parameters
----------
readout : `ctapipe.instrument.CameraReadout`
gain_channel : int
The reference pulse gain channel to use
Returns
-------
WaveformModel
"""
return cls(
readout.reference_pulse_shape[gain_channel],
readout.reference_pulse_sample_width,
(1 / readout.sampling_rate).to(u.ns),
)
class ImageModel(metaclass=ABCMeta):
@u.quantity_input(x=u.m, y=u.m)
@abstractmethod
def pdf(self, x, y):
"""Probability density function.
"""
def generate_image(self, camera, intensity=50, nsb_level_pe=20):
"""Generate a randomized DL1 shower image.
For the signal, poisson random numbers are drawn from
the expected signal distribution for each pixel.
For the background, for each pixel a poisson random number
if drawn with mean `nsb_level_pe`.
Parameters
----------
camera : `ctapipe.instrument.CameraGeometry`
camera geometry object
intensity : int
Total number of photo electrons to generate
nsb_level_pe : type
level of NSB/pedestal in photo-electrons
Returns
-------
image: array with length n_pixels containing the image
signal: only the signal part of image
noise: only the noise part of image
"""
expected_signal = self.expected_signal(camera, intensity)
signal = np.random.poisson(expected_signal)
noise = np.random.poisson(nsb_level_pe, size=signal.shape)
image = (signal + noise) - np.mean(noise)
return image, signal, noise
def expected_signal(self, camera, intensity):
"""Expected signal in each pixel for the given camera
and total intensity.
Parameters
----------
camera: `ctapipe.instrument.CameraGeometry`
camera geometry object
intensity: int
Total number of expected photo electrons
Returns
-------
image: array with length n_pixels containing the image
"""
pdf = self.pdf(camera.pix_x, camera.pix_y)
return pdf * intensity * camera.pix_area.value
class Gaussian(ImageModel):
@u.quantity_input(x=u.m, y=u.m, length=u.m, width=u.m)
def __init__(self, x, y, length, width, psi):
"""Create 2D Gaussian model for a shower image in a camera.
Parameters
----------
centroid : u.Quantity[length, shape=(2, )]
position of the centroid of the shower in camera coordinates
width: u.Quantity[length]
width of shower (minor axis)
length: u.Quantity[length]
length of shower (major axis)
psi : convertable to `astropy.coordinates.Angle`
rotation angle about the centroid (0=x-axis)
Returns
-------
a `scipy.stats` object
"""
self.x = x
self.y = y
self.width = width
self.length = length
self.psi = psi
@u.quantity_input(x=u.m, y=u.m)
def pdf(self, x, y):
"""2d probability for photon electrons in the camera plane"""
aligned_covariance = np.array(
[[self.length.to_value(u.m) ** 2, 0], [0, self.width.to_value(u.m) ** 2]]
)
# rotate by psi angle: C' = R C R+
rotation = linalg.rotation_matrix_2d(self.psi)
rotated_covariance = rotation @ aligned_covariance @ rotation.T
return multivariate_normal(
mean=[self.x.to_value(u.m), self.y.to_value(u.m)], cov=rotated_covariance,
).pdf(np.column_stack([x.to_value(u.m), y.to_value(u.m)]))
class SkewedGaussian(ImageModel):
"""A shower image that has a skewness along the major axis.
"""
@u.quantity_input(x=u.m, y=u.m, length=u.m, width=u.m)
def __init__(self, x, y, length, width, psi, skewness):
"""Create 2D skewed Gaussian model for a shower image in a camera.
Skewness is only applied along the main shower axis.
See https://en.wikipedia.org/wiki/Skew_normal_distribution and
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html
for details.
Parameters
----------
centroid : u.Quantity[length, shape=(2, )]
position of the centroid of the shower in camera coordinates
width: u.Quantity[length]
width of shower (minor axis)
length: u.Quantity[length]
length of shower (major axis)
psi : convertable to `astropy.coordinates.Angle`
rotation angle about the centroid (0=x-axis)
Returns
-------
a `scipy.stats` object
"""
self.x = x
self.y = y
self.width = width
self.length = length
self.psi = psi
self.skewness = skewness
def _moments_to_parameters(self):
"""Returns loc and scale from mean, std and skewnewss."""
# see https://en.wikipedia.org/wiki/Skew_normal_distribution#Estimation
skew23 = | np.abs(self.skewness) | numpy.abs |
# Note that we test the main astropy.wcs.WCS class directly rather than testing
# the mix-in class on its own (since it's not functional without being used as
# a mix-in)
import warnings
from packaging.version import Version
import numpy as np
import pytest
from numpy.testing import assert_equal, assert_allclose
from itertools import product
from astropy import units as u
from astropy.time import Time
from astropy.tests.helper import assert_quantity_allclose
from astropy.units import Quantity
from astropy.coordinates import ICRS, FK5, Galactic, SkyCoord, SpectralCoord, ITRS, EarthLocation
from astropy.io.fits import Header
from astropy.io.fits.verify import VerifyWarning
from astropy.units.core import UnitsWarning
from astropy.utils.data import get_pkg_data_filename
from astropy.wcs.wcs import WCS, FITSFixedWarning, Sip, NoConvergence
from astropy.wcs.wcsapi.fitswcs import custom_ctype_to_ucd_mapping, VELOCITY_FRAMES
from astropy.wcs._wcs import __version__ as wcsver
from astropy.utils import iers
from astropy.utils.exceptions import AstropyUserWarning
###############################################################################
# The following example is the simplest WCS with default values
###############################################################################
WCS_EMPTY = WCS(naxis=1)
WCS_EMPTY.wcs.crpix = [1]
def test_empty():
wcs = WCS_EMPTY
# Low-level API
assert wcs.pixel_n_dim == 1
assert wcs.world_n_dim == 1
assert wcs.array_shape is None
assert wcs.pixel_shape is None
assert wcs.world_axis_physical_types == [None]
assert wcs.world_axis_units == ['']
assert wcs.pixel_axis_names == ['']
assert wcs.world_axis_names == ['']
assert_equal(wcs.axis_correlation_matrix, True)
assert wcs.world_axis_object_components == [('world', 0, 'value')]
assert wcs.world_axis_object_classes['world'][0] is Quantity
assert wcs.world_axis_object_classes['world'][1] == ()
assert wcs.world_axis_object_classes['world'][2]['unit'] is u.one
assert_allclose(wcs.pixel_to_world_values(29), 29)
assert_allclose(wcs.array_index_to_world_values(29), 29)
assert np.ndim(wcs.pixel_to_world_values(29)) == 0
assert np.ndim(wcs.array_index_to_world_values(29)) == 0
assert_allclose(wcs.world_to_pixel_values(29), 29)
assert_equal(wcs.world_to_array_index_values(29), (29,))
assert np.ndim(wcs.world_to_pixel_values(29)) == 0
assert np.ndim(wcs.world_to_array_index_values(29)) == 0
# High-level API
coord = wcs.pixel_to_world(29)
assert_quantity_allclose(coord, 29 * u.one)
assert np.ndim(coord) == 0
coord = wcs.array_index_to_world(29)
assert_quantity_allclose(coord, 29 * u.one)
assert np.ndim(coord) == 0
coord = 15 * u.one
x = wcs.world_to_pixel(coord)
assert_allclose(x, 15.)
assert np.ndim(x) == 0
i = wcs.world_to_array_index(coord)
assert_equal(i, 15)
assert np.ndim(i) == 0
###############################################################################
# The following example is a simple 2D image with celestial coordinates
###############################################################################
HEADER_SIMPLE_CELESTIAL = """
WCSAXES = 2
CTYPE1 = RA---TAN
CTYPE2 = DEC--TAN
CRVAL1 = 10
CRVAL2 = 20
CRPIX1 = 30
CRPIX2 = 40
CDELT1 = -0.1
CDELT2 = 0.1
CROTA2 = 0.
CUNIT1 = deg
CUNIT2 = deg
"""
with warnings.catch_warnings():
warnings.simplefilter('ignore', VerifyWarning)
WCS_SIMPLE_CELESTIAL = WCS(Header.fromstring(
HEADER_SIMPLE_CELESTIAL, sep='\n'))
def test_simple_celestial():
wcs = WCS_SIMPLE_CELESTIAL
# Low-level API
assert wcs.pixel_n_dim == 2
assert wcs.world_n_dim == 2
assert wcs.array_shape is None
assert wcs.pixel_shape is None
assert wcs.world_axis_physical_types == ['pos.eq.ra', 'pos.eq.dec']
assert wcs.world_axis_units == ['deg', 'deg']
assert wcs.pixel_axis_names == ['', '']
assert wcs.world_axis_names == ['', '']
assert_equal(wcs.axis_correlation_matrix, True)
assert wcs.world_axis_object_components == [('celestial', 0, 'spherical.lon.degree'),
('celestial', 1, 'spherical.lat.degree')]
assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord
assert wcs.world_axis_object_classes['celestial'][1] == ()
assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], ICRS)
assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg
assert_allclose(wcs.pixel_to_world_values(29, 39), (10, 20))
assert_allclose(wcs.array_index_to_world_values(39, 29), (10, 20))
assert_allclose(wcs.world_to_pixel_values(10, 20), (29., 39.))
assert_equal(wcs.world_to_array_index_values(10, 20), (39, 29))
# High-level API
coord = wcs.pixel_to_world(29, 39)
assert isinstance(coord, SkyCoord)
assert isinstance(coord.frame, ICRS)
assert_allclose(coord.ra.deg, 10)
assert_allclose(coord.dec.deg, 20)
coord = wcs.array_index_to_world(39, 29)
assert isinstance(coord, SkyCoord)
assert isinstance(coord.frame, ICRS)
assert_allclose(coord.ra.deg, 10)
assert_allclose(coord.dec.deg, 20)
coord = SkyCoord(10, 20, unit='deg', frame='icrs')
x, y = wcs.world_to_pixel(coord)
assert_allclose(x, 29.)
assert_allclose(y, 39.)
i, j = wcs.world_to_array_index(coord)
assert_equal(i, 39)
assert_equal(j, 29)
# Check that if the coordinates are passed in a different frame things still
# work properly
coord_galactic = coord.galactic
x, y = wcs.world_to_pixel(coord_galactic)
assert_allclose(x, 29.)
assert_allclose(y, 39.)
i, j = wcs.world_to_array_index(coord_galactic)
assert_equal(i, 39)
assert_equal(j, 29)
# Check that we can actually index the array
data = np.arange(3600).reshape((60, 60))
coord = SkyCoord(10, 20, unit='deg', frame='icrs')
index = wcs.world_to_array_index(coord)
assert_equal(data[index], 2369)
coord = SkyCoord([10, 12], [20, 22], unit='deg', frame='icrs')
index = wcs.world_to_array_index(coord)
assert_equal(data[index], [2369, 3550])
###############################################################################
# The following example is a spectral cube with axes in an unusual order
###############################################################################
HEADER_SPECTRAL_CUBE = """
WCSAXES = 3
CTYPE1 = GLAT-CAR
CTYPE2 = FREQ
CTYPE3 = GLON-CAR
CNAME1 = Latitude
CNAME2 = Frequency
CNAME3 = Longitude
CRVAL1 = 10
CRVAL2 = 20
CRVAL3 = 25
CRPIX1 = 30
CRPIX2 = 40
CRPIX3 = 45
CDELT1 = -0.1
CDELT2 = 0.5
CDELT3 = 0.1
CUNIT1 = deg
CUNIT2 = Hz
CUNIT3 = deg
"""
with warnings.catch_warnings():
warnings.simplefilter('ignore', VerifyWarning)
WCS_SPECTRAL_CUBE = WCS(Header.fromstring(HEADER_SPECTRAL_CUBE, sep='\n'))
def test_spectral_cube():
# Spectral cube with a weird axis ordering
wcs = WCS_SPECTRAL_CUBE
# Low-level API
assert wcs.pixel_n_dim == 3
assert wcs.world_n_dim == 3
assert wcs.array_shape is None
assert wcs.pixel_shape is None
assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon']
assert wcs.world_axis_units == ['deg', 'Hz', 'deg']
assert wcs.pixel_axis_names == ['', '', '']
assert wcs.world_axis_names == ['Latitude', 'Frequency', 'Longitude']
assert_equal(wcs.axis_correlation_matrix, [[True, False, True],
[False, True, False],
[True, False, True]])
assert len(wcs.world_axis_object_components) == 3
assert wcs.world_axis_object_components[0] == ('celestial', 1, 'spherical.lat.degree')
assert wcs.world_axis_object_components[1][:2] == ('spectral', 0)
assert wcs.world_axis_object_components[2] == ('celestial', 0, 'spherical.lon.degree')
assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord
assert wcs.world_axis_object_classes['celestial'][1] == ()
assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic)
assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg
assert wcs.world_axis_object_classes['spectral'][0] is Quantity
assert wcs.world_axis_object_classes['spectral'][1] == ()
assert wcs.world_axis_object_classes['spectral'][2] == {}
assert_allclose(wcs.pixel_to_world_values(29, 39, 44), (10, 20, 25))
assert_allclose(wcs.array_index_to_world_values(44, 39, 29), (10, 20, 25))
assert_allclose(wcs.world_to_pixel_values(10, 20, 25), (29., 39., 44.))
assert_equal(wcs.world_to_array_index_values(10, 20, 25), (44, 39, 29))
# High-level API
coord, spec = wcs.pixel_to_world(29, 39, 44)
assert isinstance(coord, SkyCoord)
assert isinstance(coord.frame, Galactic)
assert_allclose(coord.l.deg, 25)
assert_allclose(coord.b.deg, 10)
assert isinstance(spec, SpectralCoord)
assert_allclose(spec.to_value(u.Hz), 20)
coord, spec = wcs.array_index_to_world(44, 39, 29)
assert isinstance(coord, SkyCoord)
assert isinstance(coord.frame, Galactic)
assert_allclose(coord.l.deg, 25)
assert_allclose(coord.b.deg, 10)
assert isinstance(spec, SpectralCoord)
assert_allclose(spec.to_value(u.Hz), 20)
coord = SkyCoord(25, 10, unit='deg', frame='galactic')
spec = 20 * u.Hz
with pytest.warns(AstropyUserWarning, match='No observer defined on WCS'):
x, y, z = wcs.world_to_pixel(coord, spec)
assert_allclose(x, 29.)
assert_allclose(y, 39.)
assert_allclose(z, 44.)
# Order of world coordinates shouldn't matter
with pytest.warns(AstropyUserWarning, match='No observer defined on WCS'):
x, y, z = wcs.world_to_pixel(spec, coord)
assert_allclose(x, 29.)
assert_allclose(y, 39.)
assert_allclose(z, 44.)
with pytest.warns(AstropyUserWarning, match='No observer defined on WCS'):
i, j, k = wcs.world_to_array_index(coord, spec)
assert_equal(i, 44)
assert_equal(j, 39)
assert_equal(k, 29)
# Order of world coordinates shouldn't matter
with pytest.warns(AstropyUserWarning, match='No observer defined on WCS'):
i, j, k = wcs.world_to_array_index(spec, coord)
assert_equal(i, 44)
assert_equal(j, 39)
assert_equal(k, 29)
HEADER_SPECTRAL_CUBE_NONALIGNED = HEADER_SPECTRAL_CUBE.strip() + '\n' + """
PC2_3 = -0.5
PC3_2 = +0.5
"""
with warnings.catch_warnings():
warnings.simplefilter('ignore', VerifyWarning)
WCS_SPECTRAL_CUBE_NONALIGNED = WCS(Header.fromstring(
HEADER_SPECTRAL_CUBE_NONALIGNED, sep='\n'))
def test_spectral_cube_nonaligned():
# Make sure that correlation matrix gets adjusted if there are non-identity
# CD matrix terms.
wcs = WCS_SPECTRAL_CUBE_NONALIGNED
assert wcs.world_axis_physical_types == ['pos.galactic.lat', 'em.freq', 'pos.galactic.lon']
assert wcs.world_axis_units == ['deg', 'Hz', 'deg']
assert wcs.pixel_axis_names == ['', '', '']
assert wcs.world_axis_names == ['Latitude', 'Frequency', 'Longitude']
assert_equal(wcs.axis_correlation_matrix, [[True, True, True],
[False, True, True],
[True, True, True]])
# NOTE: we check world_axis_object_components and world_axis_object_classes
# again here because in the past this failed when non-aligned axes were
# present, so this serves as a regression test.
assert len(wcs.world_axis_object_components) == 3
assert wcs.world_axis_object_components[0] == ('celestial', 1, 'spherical.lat.degree')
assert wcs.world_axis_object_components[1][:2] == ('spectral', 0)
assert wcs.world_axis_object_components[2] == ('celestial', 0, 'spherical.lon.degree')
assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord
assert wcs.world_axis_object_classes['celestial'][1] == ()
assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], Galactic)
assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg
assert wcs.world_axis_object_classes['spectral'][0] is Quantity
assert wcs.world_axis_object_classes['spectral'][1] == ()
assert wcs.world_axis_object_classes['spectral'][2] == {}
###############################################################################
# The following example is from Rots et al (2015), Table 5. It represents a
# cube with two spatial dimensions and one time dimension
###############################################################################
HEADER_TIME_CUBE = """
SIMPLE = T / Fits standard
BITPIX = -32 / Bits per pixel
NAXIS = 3 / Number of axes
NAXIS1 = 2048 / Axis length
NAXIS2 = 2048 / Axis length
NAXIS3 = 11 / Axis length
DATE = '2008-10-28T14:39:06' / Date FITS file was generated
OBJECT = '2008 TC3' / Name of the object observed
EXPTIME = 1.0011 / Integration time
MJD-OBS = 54746.02749237 / Obs start
DATE-OBS= '2008-10-07T00:39:35.3342' / Observing date
TELESCOP= 'VISTA' / ESO Telescope Name
INSTRUME= 'VIRCAM' / Instrument used.
TIMESYS = 'UTC' / From Observatory Time System
TREFPOS = 'TOPOCENT' / Topocentric
MJDREF = 54746.0 / Time reference point in MJD
RADESYS = 'ICRS' / Not equinoctal
CTYPE2 = 'RA---ZPN' / Zenithal Polynomial Projection
CRVAL2 = 2.01824372640628 / RA at ref pixel
CUNIT2 = 'deg' / Angles are degrees always
CRPIX2 = 2956.6 / Pixel coordinate at ref point
CTYPE1 = 'DEC--ZPN' / Zenithal Polynomial Projection
CRVAL1 = 14.8289418840003 / Dec at ref pixel
CUNIT1 = 'deg' / Angles are degrees always
CRPIX1 = -448.2 / Pixel coordinate at ref point
CTYPE3 = 'UTC' / linear time (UTC)
CRVAL3 = 2375.341 / Relative time of first frame
CUNIT3 = 's' / Time unit
CRPIX3 = 1.0 / Pixel coordinate at ref point
CTYPE3A = 'TT' / alternative linear time (TT)
CRVAL3A = 2440.525 / Relative time of first frame
CUNIT3A = 's' / Time unit
CRPIX3A = 1.0 / Pixel coordinate at ref point
OBSGEO-B= -24.6157 / [deg] Tel geodetic latitute (=North)+
OBSGEO-L= -70.3976 / [deg] Tel geodetic longitude (=East)+
OBSGEO-H= 2530.0000 / [m] Tel height above reference ellipsoid
CRDER3 = 0.0819 / random error in timings from fit
CSYER3 = 0.0100 / absolute time error
PC1_1 = 0.999999971570892 / WCS transform matrix element
PC1_2 = 0.000238449608932 / WCS transform matrix element
PC2_1 = -0.000621542859395 / WCS transform matrix element
PC2_2 = 0.999999806842218 / WCS transform matrix element
CDELT1 = -9.48575432499806E-5 / Axis scale at reference point
CDELT2 = 9.48683176211164E-5 / Axis scale at reference point
CDELT3 = 13.3629 / Axis scale at reference point
PV1_1 = 1. / ZPN linear term
PV1_3 = 42. / ZPN cubic term
"""
with warnings.catch_warnings():
warnings.simplefilter('ignore', (VerifyWarning, FITSFixedWarning))
WCS_TIME_CUBE = WCS(Header.fromstring(HEADER_TIME_CUBE, sep='\n'))
def test_time_cube():
# Spectral cube with a weird axis ordering
wcs = WCS_TIME_CUBE
assert wcs.pixel_n_dim == 3
assert wcs.world_n_dim == 3
assert wcs.array_shape == (11, 2048, 2048)
assert wcs.pixel_shape == (2048, 2048, 11)
assert wcs.world_axis_physical_types == ['pos.eq.dec', 'pos.eq.ra', 'time']
assert wcs.world_axis_units == ['deg', 'deg', 's']
assert wcs.pixel_axis_names == ['', '', '']
assert wcs.world_axis_names == ['', '', '']
assert_equal(wcs.axis_correlation_matrix, [[True, True, False],
[True, True, False],
[False, False, True]])
components = wcs.world_axis_object_components
assert components[0] == ('celestial', 1, 'spherical.lat.degree')
assert components[1] == ('celestial', 0, 'spherical.lon.degree')
assert components[2][:2] == ('time', 0)
assert callable(components[2][2])
assert wcs.world_axis_object_classes['celestial'][0] is SkyCoord
assert wcs.world_axis_object_classes['celestial'][1] == ()
assert isinstance(wcs.world_axis_object_classes['celestial'][2]['frame'], ICRS)
assert wcs.world_axis_object_classes['celestial'][2]['unit'] is u.deg
assert wcs.world_axis_object_classes['time'][0] is Time
assert wcs.world_axis_object_classes['time'][1] == ()
assert wcs.world_axis_object_classes['time'][2] == {}
assert callable(wcs.world_axis_object_classes['time'][3])
assert_allclose(wcs.pixel_to_world_values(-449.2, 2955.6, 0),
(14.8289418840003, 2.01824372640628, 2375.341))
assert_allclose(wcs.array_index_to_world_values(0, 2955.6, -449.2),
(14.8289418840003, 2.01824372640628, 2375.341))
assert_allclose(wcs.world_to_pixel_values(14.8289418840003, 2.01824372640628, 2375.341),
(-449.2, 2955.6, 0))
assert_equal(wcs.world_to_array_index_values(14.8289418840003, 2.01824372640628, 2375.341),
(0, 2956, -449))
# High-level API
coord, time = wcs.pixel_to_world(29, 39, 44)
assert isinstance(coord, SkyCoord)
assert isinstance(coord.frame, ICRS)
assert_allclose(coord.ra.deg, 1.7323356692202325)
assert_allclose(coord.dec.deg, 14.783516054817797)
assert isinstance(time, Time)
assert_allclose(time.mjd, 54746.03429755324)
coord, time = wcs.array_index_to_world(44, 39, 29)
assert isinstance(coord, SkyCoord)
assert isinstance(coord.frame, ICRS)
assert_allclose(coord.ra.deg, 1.7323356692202325)
| assert_allclose(coord.dec.deg, 14.783516054817797) | numpy.testing.assert_allclose |
"""
Data preparation file
"""
import numpy as np
import pandas as pd
def clean_string(string):
return ''.join(e for e in string if e.isalnum())
def reverse_dict(d):
new_d = {}
for k,i in d.items():
new_d[i] = k
return new_d
def mapping(files):
"""
Creates a unique index for ever entity and relation.
"""
E = set()
R = set()
for filename in files:
with open(filename,'r') as f:
for line in f:
s,p,o = line.split()
E.add(s)
E.add(o)
R.add(p)
E_mapping = {e:i for i,e in enumerate(E)}
R_mapping = {e:i for i,e in enumerate(R)}
return E_mapping, R_mapping
def prep_data(filename):
"""
Prep data without labels
"""
sub = []
obj = []
pred = []
with open(filename, 'r') as f:
for l in f:
s,p,o = l.split()
sub.append(s.strip())
obj.append(o.strip())
pred.append(p.strip())
return sub, obj, pred
def class_distribution(filename, R_mapping):
"""
Return the a priori probability for each class.
"""
_, _, pred = prep_data(filename)
labels = np.asarray([R_mapping[i] for i in pred])
unique, counts = | np.unique(labels, return_counts=True) | numpy.unique |
#!/opt/anaconda/bin/python
# -*- coding: utf-8 -*-
# Unfortunately the `which` way of calling python can't accept command-line arguments.
"""
Created on Mon Nov 03 16:13:48 2014
@author: <NAME>
@email: <EMAIL> OR <EMAIL>
A selection of alignment routines designed for registering and summing stacks
of images or diffraction patterns in the field of electron microscopy.
"""
from __future__ import division, print_function, absolute_import, unicode_literals
import numpy as np
if np.version.version.split('.')[1] == 7:
print( "WARNING: NUMPY VERSION 1.7 DETECTED, ZORRO IS DESIGNED FOR >1.10" )
print( "CHECK YOUR ENVIRONMENT VARIABLES TO SEE IF EMAN2 HAS HIJACKED YOUR PYTHON DISTRIBUTION" )
import numexprz as nz
# Now see which numexpr we have, by the dtype of float (whether it casts or not)
try:
# Now see which numexpr we have, by the dtype of float (whether it casts or not)
tdata = np.complex64( 1.0 + 2.0j )
fftw_dtype = nz.evaluate( 'tdata + tdata' ).dtype
float_dtype = nz.evaluate( 'real(tdata+tdata)' ).dtype
except:
fftw_dtype = 'complex128'
float_dtype = 'float64'
import scipy.optimize
import scipy.ndimage
import scipy.stats
import time
try:
import ConfigParser as configparser
except:
import configparser # Python 3
# Here we have to play some games depending on where the file was called from
# with the use of absolute_import
# print( "__name__ of zorro: " + str(__name__) )
try:
import zorro_util as util
import zorro_plotting as plot
except ImportError:
from . import zorro_util as util
from . import zorro_plotting as plot
import mrcz
import os, os.path, tempfile, sys
import subprocess
# Should we disable Multiprocessing on Windows due to general bugginess in the module?
import multiprocessing as mp
try:
import pyfftw
except:
print( "Zorro did not find pyFFTW package: get it at https://pypi.python.org/pypi/pyFFTW" )
try:
import tables
except:
print( "Zorro did not find pyTables installation for HDF5 file support" )
import matplotlib.pyplot as plt
# Numpy.pad is bad at dealing with interpreted strings
if sys.version_info >= (3,0):
symmetricPad = u'symmetric'
constantPad = u'constant'
else:
symmetricPad = b'symmetric'
constantPad = b'constant'
#### OBJECT-ORIENTED INTERFACE ####
class ImageRegistrator(object):
# Should be able to handle differences in translation, rotation, and scaling
# between images
def __init__( self ):
# Declare class members
self.verbose = 0
self.umask = 2
# Meta-information for processing, not saved in configuration files.
self.METApriority = 0.0
self.METAstatus = u'new'
self.METAmtime = 0.0
self.METAsize = 0
self.xcorrMode = 'zorro' # 'zorro', 'unblur v1.02', 'motioncorr v2.1'
# FFTW_PATIENT is bugged for powers of 2, so use FFTW_MEASURE as default
self.fftw_effort = u"FFTW_MEASURE"
# TODO: change this to drop into cachePath
self.n_threads = nz.nthreads # Number of cores to limit FFTW to, if None uses all cores
self.cachePath = tempfile.gettempdir()
# CALIBRATIONS
self.pixelsize = None # Typically we use nanometers, the same units as Digital Micrograph
self.voltage = 300.0 # Accelerating voltage, kV
self.C3 = 2.7 # Spherical aberration of objective, mm
self.gain = None
self.detectorPixelSize = None # Physical dimensions of detector pixel (5 um for K2)
# Timings
self.bench = {} # Dict holds various benchmark times for the code
self.saveC = False # Save the cross-correlation within +/- maxShift
# INFORMATION REDUCTION
# The SNR at high spatial frequencies tends to be lower due to how information transfer works, so
# removing/filtering those frequencies can improve stability of the registration. YMMV, IMHO, etc.
self.Brad = 512 # Gaussian low-pass applied to data before registration, units are radius in Fourier space, or equivalent point-spread function in real-space
self.Bmode = u'opti' # can be a real-space Gaussian convolution, 'conv' or Fourier filter, 'fourier', or 'opti' for automatic Brad
# For Bmode = 'fourier', a range of available filters can be used: gaussian, gauss_trunc, butterworth.order (order is an int), hann, hamming
self.BfiltType = u'gaussian'
self.fouCrop = [3072,3072] # Size of FFT in frequency-space to crop to (e.g. [2048,2048])
self.reloadData = True
# Data
self.images = None
self.imageSum = None
self.filtSum = None # Dose-filtered, Wiener-filtered, etc. representations go here
self.gainRef = None # For application of gain reference in Zorro rather than Digital Micrograph/TIA/etc.
self.gainInfo = {
"Horizontal": True, "Vertical": True, "Diagonal":False,
"GammaParams": [ 0.12035633, -1.04171635, -0.03363192, 1.03902726],
}
# One of None, 'dose', 'dose,background', 'dosenorm', 'gaussLP', 'gaussLP,background'
# also 'hot' can be in the comma-seperated list for pre-filtering of hot pixels
self.filterMode = None
# Dose filt param = [dosePerFrame, critDoseA, critDoseB, critDoseC, cutoffOrder, missingStartFrame]
self.doseFiltParam = [None, 0.24499, -1.6649, 2.8141, 32, 0]
# for 'hot' in filterMode
self.hotpixInfo = { u"logisticK":6.0, u"relax":0.925, u"maxSigma":8.0, u"psf": u"K2",
u"guessHotpix":0, u"guessDeadpix":0, u"decorrOutliers":False,
u"cutoffLower":-4.0, u"cutoffUpper":3.25, u"neighborPix":0 }
self.FFTSum = None
# If you want to use one mask, it should have dims [1,N_Y,N_X]. This is
# to ensure Cythonized code can interact safely with Numpy
self.incohFouMag = None # Incoherent Fourier magnitude, for CTF determination, resolution checks
self.masks = None
self.maskSum = None
self.C = None
# Results
self.translations = None
self.transEven = None # For even-odd tiled FRC, the half-stack translations
self.transOdd = None # For even-odd tiled FRC, the half-stack translations
self.velocities = None # pixel velocity, in pix/frame, to find frames that suffer from excessive drift
self.rotations = None # rotations, for polar-transformed data
self.scales = None # scaling, for polar-transformed data
self.errorDictList = [] # A list of dictionaries of errors and such from different runs on the same data.
self.trackCorrStats = False
self.corrStats = None
self.doLazyFRC = True
self.doEvenOddFRC = False
self.FRC = None # A Fourier ring correlation
# Filtering
# TODO: add more fine control over filtering options
# CTF currently supports CTFFIND4.1 or GCTF
self.CTFProgram = None # None, "ctffind4.1", or "gctf", 'ctffind4.1,sum' works on (aligned) sum, same for 'gctf,sum'
self.CTFInfo = { u'DefocusU':None, u'DefocusV': None, u'DefocusAngle':None, u'CtfFigureOfMerit':None,
u'FinalResolution': None, u'AmplitudeContrast':0.07, u'AdditionalPhaseShift':None,
}
self.CTFDiag = None # Diagnostic image from CTFFIND4.1 or GCTF
# DEPRICATED ctf stuff
#self.doCTF = False
#self.CTF4Results = None # Micrograph number, DF1, DF2, Azimuth, Additional Phase shift, CC, and max spacing fit-to
#self.CTF4Diag = None
# Registration parameters
self.shapePadded = [4096,4096]
self.shapeOriginal = None
self.shapeBinned = None
self.subPixReg = 16 # fraction of a pixel to REGISTER image shift to
# Subpixel alignment method: None (shifts still registered subpixally), lanczos, or fourier
# lanczos is cheaper computationally and has fewer edge artifacts
self.shiftMethod = u'lanczos'
self.maxShift = 100 # Generally should be 1/2 distance to next lattice spacing
# Pre-shift every image by that of the previous frame, useful for high-resolution where one can jump a lattice
# i.e. should be used with small values for maxShift
self.preShift = False
# Solver weighting can be raw max correlation coeffs (None), normalized to [0,1] by the
# min and max correlations ('norm'), or 'logistic' function weighted which
# requires corrThres to be set.
self.peakLocMode = u'interpolated' # interpolated (oversampled), or a RMS-best fit like fitlaplacian
self.weightMode = u'autologistic' # autologistic, normalized, unweighted, logistic, or corr
self.peaksigThres = 6.0
self.logisticK = 5.0
self.logisticNu = 0.15
self.originMode = u'centroid' # 'centroid' or None
self.suppressOrigin = True # Delete the XC pixel at (0,0). Only necessary if gain reference is bad, but defaults to on.
# Triangle-matrix indexing parameters
self.triMode = u'diag' # Can be: tri, diag, auto, first
self.startFrame = 0
self.endFrame = 0
self.diagStart = 0 # XC to neighbour frame on 0, next-nearest neighbour on +1, etc.
self.diagWidth = 5
self.autoMax = 10
self.corrThres = None # Use with 'auto' mode to stop doing cross-correlations if the values drop below the threshold
self.velocityThres = None # Pixel velocity threshold (pix/frame), above which to throw-out frames with too much motion blur.
#### INPUT/OUTPUT ####
self.files = { u"config":None, u"stack":None, u"mask":None, u"sum":None,
u"align":None, u"figurePath":None, u"xc":None,
u"moveRawPath":None, u"original":None, u"gainRef":None,
u"stdout": None, u"automatch":None, u"rejected":None,
u"compressor": None, u"clevel": 1 }
#self.savePDF = False
self.savePNG = True
self.saveMovie = True
self.doCompression = False
self.compress_ext = ".bz2"
#### PLOTTING ####
self.plotDict = { u"imageSum":True, u"imageFirst":False, u"FFTSum":True, u"polarFFTSum":True,
u"filtSum":True, u'stats': False,
u"corrTriMat":False, u"peaksigTriMat": True,
u"translations":True, u"pixRegError":True,
u"CTFDiag":True, u"logisticWeights": True, u"FRC": True,
u'Transparent': True, u'plot_dpi':144, u'image_dpi':250,
u'image_cmap':u'gray', u'graph_cmap':u'gnuplot',
u'fontsize':12, u'fontstyle': u'serif', u'colorbar': True,
u'backend': u'Qt4Agg', u'multiprocess':True,
u'show':False }
pass
def initDefaultFiles( self, stackName ):
self.files[u'stack'] = stackName
self.files[u'config'] = stackName + u".zor"
stackPath, stackFront = os.path.split( stackName )
stackFront = os.path.splitext( stackFront )[0]
if not 'compressor' in self.files or not bool(self.files['compressor']):
mrcExt = ".mrc"
mrcsExt = ".mrcs"
else:
mrcExt = ".mrcz"
mrcsExt = ".mrcsz"
self.files[u'align'] = os.path.relpath(
os.path.join( u"./align", "%s_zorro_movie%s" %(stackFront, mrcsExt) ),
start=stackPath )
self.files[u'sum'] = os.path.relpath( stackPath,
os.path.join( u"./sum", "%s_zorro%s" %(stackFront, mrcExt) ),
start=stackPath )
self.files[u'figurePath'] = os.path.relpath(
os.path.join(stackPath, u"./figs"), start=stackPath )
def xcorr2_mc2_1( self, gpu_id = 0, loadResult=True, clean=True ):
"""
This makes an external operating system call to the Cheng's lab GPU-based
B-factor multireference executable. It and CUDA libraries must be on the system
path and libary path respectively.
NOTE: Spyder looks loads PATH and LD_LIBRARY_PATH from .profile, not .bashrc
"""
dosef_cmd = util.which("dosefgpu_driftcorr")
if dosef_cmd is None:
print( "Error: dosefgpu_driftcorr not found in system path." )
return
#tempFileHash = str(uuid.uuid4() ) # Key let's us multiprocess safely
stackBase = os.path.basename( os.path.splitext( self.files['stack'] )[0] )
if self.cachePath is None:
self.cachePath = "."
InName = os.path.join( self.cachePath, stackBase + u"_mcIn.mrc" )
# Unfortunately these files may as well be in the working directory.
OutAvName = os.path.join( self.cachePath, stackBase + u"_mcOutAv.mrc" )
OutStackName = os.path.join( self.cachePath, stackBase + u"_mcOut.mrc" )
logName = os.path.join( self.cachePath, stackBase + u"_mc.zor" )
mrcz.writeMRC( self.images, InName )
# Force binning to 1, as performance with binning is poor
binning = 1
if self.Brad is not None:
# Li masking is in MkPosList() in cufunc.cu (line 413)
# Their r2 is normalized and mine isn't
# Li has mask = exp( -0.5 * bfactor * r_norm**2 )
# r_norm**2 = x*x/Nx*Nx + y*y/Ny*Ny = r**2 / (Nx**2 + Ny**2)
# For non-square arrays they have a non-square (but constant frequency) filter
# RAM has mask = exp( -(r/brad)**2 )
# We can only get Bfactor approximately then but it's close enough for 3710x3838
bfac = 2.0 * (self.images.shape[1]**2 + self.images.shape[2]**2) / (self.Brad**2)
print( "Using B-factor of " + str(bfac) + " for dosefgpu_driftcorr" )
else:
bfac = 1000 # dosef default 'safe' bfactor for mediocre gain reference
# Consider: Dosef suffers at the ends of the sequence, so make the middle frame zero drift?
# align_to = np.floor( self.images.shape[0]/2 )
# This seems to cause more problems then it's worth.
align_to = 0
if self.diagWidth != None:
fod = self.diagWidth
else:
fod = 0
# Dosef can limit search to a certain box size
if self.maxShift == None:
maxshift = 96
else:
maxshift = self.maxShift * 2
if self.startFrame == None:
self.startFrame = 0
if self.endFrame == None:
self.endFrame = 0
motion_flags = ( " " + InName
+ " -gpu " + str(gpu_id)
+ " -nss " + str(self.startFrame)
+ " -nes " + str(self.endFrame)
+ " -fod " + str(fod)
+ " -bin " + str(binning)
+ " -bft " + str(bfac)
+ " -atm -" + str(align_to)
+ " -pbx " + str(maxshift)
+ " -ssc 1 -fct " + OutStackName
+ " -fcs " + OutAvName
+ " -flg " + logName )
sub = subprocess.Popen( dosef_cmd + motion_flags, shell=True )
sub.wait()
self.loadMCLog( logName )
time.sleep(0.5)
if bool(clean):
try: os.remove(InName)
except: pass
try: os.remove(OutStackName)
except: pass
try: os.remove(OutAvName)
except: pass
try: os.remove(logName)
except: pass
def loadMCLog( self, logName ):
"""
Load and part a MotionCorr log from disk using regular expressions.
"""
import re
# Parse to get the translations
fhMC = open( logName )
MClog = fhMC.readlines()
fhMC.close()
# Number of footer lines changes with the options you use.
# I would rather find Sum Frame #000
for linenumber, line in enumerate(MClog):
try:
test = re.findall( "Sum Frame #000", line)
if bool(test):
frameCount = np.int( re.findall( "\d\d\d", line )[1] ) + 1
break
except: pass
MClog_crop = MClog[linenumber+1:linenumber+frameCount+1]
MCdrifts = np.zeros( [frameCount,2] )
for J in np.arange(0,frameCount):
MCdrifts[J,:] = re.findall( r"([+-]?\d+.\d+)", MClog_crop[J] )[1:]
# Zorro saves translations, motioncorr saves shifts.
self.translations = -np.fliplr( MCdrifts )
if self.originMode == u'centroid':
centroid = np.mean( self.translations, axis=0 )
self.translations -= centroid
def xcorr2_unblur1_02( self, dosePerFrame = None, minShift = 2.0, terminationThres = 0.1,
maxIteration=10, verbose=False, loadResult=True, clean=True ):
"""
Calls UnBlur by <NAME> Rohou using the Zorro interface.
"""
self.bench['unblur0'] = time.time()
unblur_exename = "unblur_openmp_7_17_15.exe"
if util.which( unblur_exename ) is None:
print( "UnBlur not found in system path" )
return
print( "Calling UnBlur for " + self.files['stack'] )
print( " written by <NAME> and <NAME>: http://grigoriefflab.janelia.org/unblur" )
print( " http://grigoriefflab.janelia.org/node/4900" )
import os
try: os.umask( self.umask ) # Why is Python not using default umask from OS?
except: pass
if self.cachePath is None:
self.cachePath = "."
# Force trailing slashes onto cachePatch
stackBase = os.path.basename( os.path.splitext( self.files[u'stack'] )[0] )
frcOutName = os.path.join( self.cachePath, stackBase + u"_unblur_frc.txt" )
shiftsOutName = os.path.join( self.cachePath, stackBase + u"_unblur_shifts.txt" )
outputAvName = os.path.join( self.cachePath, stackBase + u"_unblur.mrc" )
outputStackName = os.path.join( self.cachePath, stackBase + u"_unblur_movie.mrc" )
ps = self.pixelsize * 10.0
if 'dose' in self.filterMode:
doDoseFilter = True
if dosePerFrame == None:
# We have to guesstimate the dose per frame in e/A^2 if it's not provided
dosePerFrame = np.mean( self.images ) / (ps*ps)
preExposure = 0.0
if 'dosenorm' in self.filterMode:
restoreNoise=True
else:
restoreNoise=False
else:
doDoseFilter = False
if self.Brad is not None:
# Li masking is in MkPosList() in cufunc.cu (line 413)
# Their r2 is normalized and mine isn't
# Li has mask = exp( -0.5 * bfactor * r_norm**2 )
# r_norm**2 = x*x/Nx*Nx + y*y/Ny*Ny = r**2 / (Nx**2 + Ny**2)
# For non-square arrays they have a non-square (but constant frequency) filter
# RAM has mask = exp( -(r/brad)**2 )
# We can only get Bfactor approximately then but it's close enough for 3710x3838
bfac = 2.0 * (self.images.shape[1]**2 + self.images.shape[2]**2) / (self.Brad**2)
print( "Using B-factor of " + str(bfac) + " for UnBlur" )
else:
bfac = 1500 # dosef default 'safe' bfactor for mediocre gain reference
outerShift = self.maxShift * ps
# RAM: I see no reason to let people change the Fourier cross masking
vertFouMaskHW = 1
horzFouMaskHW = 1
try:
mrcName = os.path.join( self.cachePath, stackBase + "_unblurIN.mrc" )
mrcz.writeMRC( self.images, mrcName )
except:
print( "Error in exporting MRC file to UnBlur" )
return
# Are there flags for unblur? Check the source code.
flags = "" # Not using any flags
unblurexec = ( unblur_exename + " " + flags + " << STOP_PARSING \n" + mrcName )
unblurexec = (unblurexec + "\n" + str(self.images.shape[0]) + "\n" +
outputAvName + "\n" + shiftsOutName + "\n" + str(ps) + "\n" +
str(doDoseFilter) )
if bool(doDoseFilter):
unblurexec += "\n" + str(dosePerFrame) + "\n" + str(self.voltage) + "\n" + str(preExposure)
unblurexec += ("\n yes \n" + outputStackName + "\n yes \n" +
frcOutName + "\n" + str(minShift) + "\n" + str(outerShift) + "\n" +
str(bfac) + "\n" + str( np.int(vertFouMaskHW) ) + "\n" + str( np.int(horzFouMaskHW) ) + "\n" +
str(terminationThres) + "\n" + str(maxIteration) )
if bool(doDoseFilter):
unblurexec += "\n" + str(restoreNoise)
unblurexec += "\n" + str(verbose)
unblurexec = unblurexec + "\nSTOP_PARSING"
print( unblurexec )
sub = subprocess.Popen( unblurexec, shell=True )
sub.wait()
try:
# Their FRC is significantly different from mine.
self.FRC = np.loadtxt(frcOutName, comments='#', skiprows=0 )
self.translations = np.loadtxt( shiftsOutName, comments='#', skiprows=0 ).transpose()
# UnBlur uses Fortran ordering, so we need to swap y and x for Zorro C-ordering
self.translations = np.fliplr( self.translations )
# UnBlur returns drift in Angstroms
self.translations /= ps
# UnBlur registers to middle frame
self.translations -= self.translations[0,:]
if bool( loadResult ):
print( "Loading UnBlur aligned frames into ImageRegistrator.images" )
if 'dose' in self.filterMode:
# TODO: WHow to get both filtered images and unfiltered?
self.imageSum = mrcz.readMRC( outputAvName )[0]
else:
self.imageSum = mrcz.readMRC( outputAvName )[0]
# TODO: We have a bit of an issue, this UnBlur movie is dose filtered...
self.images = mrcz.readMRC( outputStackName )[0]
except IOError:
print( "UnBlur likely core-dumped, try different input parameters?" )
finally:
time.sleep(0.5) # DEBUG: try and see if temporary files are deleteable now.
frcOutName = os.path.join( self.cachePath, stackBase + "_unblur_frc.txt" )
shiftsOutName = os.path.join( self.cachePath, stackBase + "_unblur_shifts.txt" )
outputAvName = os.path.join( self.cachePath, stackBase + "_unblur.mrc" )
outputStackName = os.path.join( self.cachePath, stackBase + "_unblur_movie.mrc" )
pass
if self.originMode == 'centroid':
centroid = np.mean( self.translations, axis=0 )
self.translations -= centroid
time.sleep(0.5)
if bool(clean):
try: os.remove( mrcName )
except: print( "Could not remove Unblur MRC input file" )
try: os.remove( frcOutName )
except: print( "Could not remove Unblur FRC file" )
try: os.remove( shiftsOutName )
except: print( "Could not remove Unblur Shifts file" )
try: os.remove( outputAvName )
except: print( "Could not remove Unblur MRC average" )
try: os.remove( outputStackName )
except: print( "Could not remove Unblur MRC stack" )
self.bench['unblur1'] = time.time()
def __init_xcorrnm2( self, triIndices=None ):
"""
"""
self.bench['xcorr0'] = time.time()
shapeImage = np.array( [self.images.shape[1], self.images.shape[2]] )
self.__N = np.asarray( self.images.shape )[0]
if self.preShift:
print( "Warning: Preshift will break if there are skipped frames in a triIndices row." )
# Test to see if triIndices is a np.array or use self.triMode
if hasattr( triIndices, "__array__" ): # np.array
# Ensure triIndices is a square array of the right size
if triIndices.shape[0] != self.__N or triIndices.shape[1] != self.__N:
raise IndexError("triIndices is wrong size, should be of length: " + str(self.__N) )
elif triIndices is None:
[xmesh, ymesh] = np.meshgrid( np.arange(0,self.__N), np.arange(0,self.__N) )
trimesh = xmesh - ymesh
# Build the triMat if it wasn't passed in as an array
if( self.triMode == 'first' ):
print( "Correlating in template mode to first image" )
triIndices = np.ones( [1,self.__N], dtype='bool' )
triIndices[0,0] = False # Don't autocorrelate the first frame.
elif( self.triMode == u'diag' ):
if (self.diagWidth is None) or (self.diagWidth < 0):
# For negative numbers, align the entire triangular matrix
self.diagWidth = self.__N
triIndices = (trimesh <= self.diagWidth + self.diagStart ) * (trimesh > self.diagStart )
print( "Correlating in diagonal mode with width " + str(self.diagWidth) )
elif( self.triMode == u'autocorr' ):
triIndices = (trimesh == 0)
elif( self.triMode == u'refine' ):
triIndices = trimesh == 0
else: # 'tri' or 'auto' ; default is an upper triangular matrix
triIndices = trimesh >= 1
pass
else:
raise TypeError( "Error: triIndices not recognized as valid: " + str(triIndices) )
if self.masks is None or self.masks == []:
print( "Warning: No mask not recommened with MNXC-style correlation" )
self.masks = np.ones( [1,shapeImage[0],shapeImage[1]], dtype = self.images.dtype )
if( self.masks.ndim == 2 ):
self.masks = np.reshape( self.masks.astype(self.images.dtype), [1,shapeImage[0],shapeImage[1]] )
# Pre-loop allocation
self.__shiftsTriMat = np.zeros( [self.__N,self.__N,2], dtype=float_dtype ) # Triagonal matrix of shifts in [I,J,(y,x)]
self.__corrTriMat = np.zeros( [self.__N,self.__N], dtype=float_dtype ) # Triagonal matrix of maximum correlation coefficient in [I,J]
self.__peaksigTriMat = np.zeros( [self.__N,self.__N], dtype=float_dtype ) # Triagonal matrix of correlation peak contrast level
self.__originTriMat= np.zeros( [self.__N,self.__N], dtype=float_dtype ) # Triagonal matrix of origin correlation coefficient in [I,J]
# Make pyFFTW objects
if not bool( np.any( self.fouCrop ) ):
self.__tempFullframe = np.empty( shapeImage, dtype=fftw_dtype )
self.__FFT2, self.__IFFT2 = util.pyFFTWPlanner( self.__tempFullframe, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ), effort = self.fftw_effort, n_threads=self.n_threads )
self.__shapeCropped = shapeImage
self.__tempComplex = np.empty( self.__shapeCropped, dtype=fftw_dtype )
else:
self.__tempFullframe = np.empty( shapeImage, dtype=fftw_dtype )
self.__FFT2, _ = util.pyFFTWPlanner( self.__tempFullframe, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doReverse=False )
# Force fouCrop to multiple of 2
self.__shapeCropped = 2 * np.floor( np.array( self.fouCrop ) / 2.0 ).astype('int')
self.__tempComplex = np.empty( self.__shapeCropped, dtype=fftw_dtype )
_, self.__IFFT2 = util.pyFFTWPlanner( self.__tempComplex, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doForward=False )
self.__shapeCropped2 = (np.array( self.__shapeCropped) / 2.0).astype('int')
self.__templateImageFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype )
self.__templateSquaredFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype )
self.__templateMaskFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype )
self.__tempComplex2 = np.empty( self.__shapeCropped, dtype=fftw_dtype )
# Subpixel initialization
# Ideally subPix should be a power of 2 (i.e. 2,4,8,16,32)
self.__subR = 8 # Sampling range around peak of +/- subR
if self.subPixReg is None: self.subPixReg = 1;
if self.subPixReg > 1.0:
# hannfilt = np.fft.fftshift( ram.apodization( name='hann', size=[subR*2,subR*2], radius=[subR,subR] ) ).astype( fftw_dtype )
# Need a forward transform that is [subR*2,subR*2]
self.__Csub = np.empty( [self.__subR*2,self.__subR*2], dtype=fftw_dtype )
self.__CsubFFT = np.empty( [self.__subR*2,self.__subR*2], dtype=fftw_dtype )
self.__subFFT2, _ = util.pyFFTWPlanner( self.__Csub, fouMage=self.__CsubFFT, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doReverse = False )
# and reverse transform that is [subR*2*subPix, subR*2*subPix]
self.__CpadFFT = np.empty( [self.__subR*2*self.subPixReg,self.__subR*2*self.subPixReg], dtype=fftw_dtype )
self.__Csub_over = np.empty( [self.__subR*2*self.subPixReg,self.__subR*2*self.subPixReg], dtype=fftw_dtype )
_, self.__subIFFT2 = util.pyFFTWPlanner( self.__CpadFFT, fouMage=self.__Csub_over, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doForward = False )
self.__maskProduct = np.zeros( self.__shapeCropped, dtype=float_dtype )
self.__normConst2 = np.float32( 1.0 / ( np.float64(self.__shapeCropped[0])*np.float64(self.__shapeCropped[1]))**2.0 )
self.bench['xcorr1'] = time.time()
return triIndices
def xcorrnm2_speckle( self, triIndices=None ):
"""
<NAME>
<EMAIL>
October 1, 2016
With data recorded automatically from SerialEM, we no long have access to the gain reference
normalization step provided by Gatan. With the K2 detector, gain normalization is no
longer a simple multiplication. Therefore we see additional, multiplicative (or speckle)
noise in the images compared to those recorded by Gatan Microscopy Suite. Here we want
to use a different approach from the Padfield algorithm, which is useful for suppressing
additive noise, and
In general Poisson noise should be speckle noise, especially at the dose rates commonly
seen in cryo-EM.
"""
triIndices = self.__init_xcorrnm2( triIndices = triIndices)
# Pre-compute forward FFTs (template will just be copied conjugate Fourier spectra)
self.__imageFFT = np.empty( [self.__N, self.shapePadded[0], self.shapePadded[1]], dtype=fftw_dtype )
self.__autocorrHalfs = np.empty( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=float_dtype )
currIndex = 0
self.__originC = []; self.C = []
print( "Pre-computing forward Fourier transforms and autocorrelations" )
# For even-odd and noise estimates, we often skip many rows
# precompIndices = np.unique( np.vstack( [np.argwhere( np.sum( triIndices, axis=1 ) > 0 ), np.argwhere( np.sum( triIndices, axis=0 ) > 0 ) ] ) )
precompIndices = np.unique( np.vstack( [np.argwhere( np.sum( triIndices, axis=1 ) >= 0 ),
np.argwhere( np.sum( triIndices, axis=0 ) >= 0 ) ] ) )
for I in precompIndices:
if self.verbose >= 2:
print( "Precomputing forward FFT frame: " + str(I) )
# Apply masks to images
if self.masks.shape[0] == 1:
masks_block = self.masks[0,:,:]
images_block = self.images[I,:,:]
else:
masks_block = self.masks[I,:,:]
images_block = self.images[I,:,:]
self.__tempComplex = nz.evaluate( "masks_block * images_block" ).astype( fftw_dtype )
self.__FFT2.update_arrays( self.__tempComplex, self.__imageFFT[I,:,:]); self.__FFT2.execute()
print( "TODO: FOURIER CROPPING" )
# Compute autocorrelation
imageFFT = self.__imageFFT[I,:,:]
# Not sure if numexpr is useful for such a simple operation?
self.__tempComplex = nz.evaluate( "imageFFT * conj(imageFFT)" )
self.__IFFT2.update_arrays( self.__tempComplex, self.__tempComplex2 )
tempComplex2 = self.__tempComplex2
nz.evaluate( "0.5*abs(tempComplex2)", out=self.__autocorrHalfs[I,:,:] )
self.bench['xcorr2'] = time.time()
########### COMPUTE PHASE CORRELATIONS #############
print( "Starting correlation calculations, mode: " + self.triMode )
if self.triMode == u'refine':
# Find FFT sum (it must be reduced by the current frame later)
# FIXME: Is there some reason this might not be linear after FFT?
# FIXME: is it the complex conjugate operation below???
self.__sumFFT = np.sum( self.__baseImageFFT, axis = 0 )
self.__sumSquaredFFT = np.sum( self.__baseSquaredFFT, axis = 0 )
print( "In refine" )
for I in np.arange(self.images.shape[0] - 1):
# In refine mode we have to build the template on the fly from imageSum - currentImage
self.__templateImageFFT = np.conj( self.__sumFFT - self.__baseImageFFT[I,:,:] ) / self.images.shape[0]
self.__templateSquaredFFT = np.conj( self.__sumSquaredFFT - self.__baseSquaredFFT[I,:,:] ) / self.images.shape[0]
tempComplex2 = None
self.mnxc2_SPECKLE( I, I, self.__shapeCropped, refine=True )
#### Find maximum positions ####
self.locatePeak( I, I )
if self.verbose:
print( "Refine # " + str(I) + " shift: [%.2f"%self.__shiftsTriMat[I,I,0]
+ ", %.2f"%self.__shiftsTriMat[I,I,1]
+ "], cc: %.6f"%self.__corrTriMat[I,I]
+ ", peak sig: %.3f"%self.__peaksigTriMat[I,I] )
else:
# For even-odd and noise estimates, we often skip many rows
rowIndices = np.unique( np.argwhere( np.sum( triIndices, axis=1 ) > 0 ) )
#print( "rowIndices: " + str(rowIndices) )
for I in rowIndices:
# I is the index of the template image
tempComplex = self.__baseImageFFT[I,:,:]
self.__templateImageFFT = nz.evaluate( "conj(tempComplex)")
# Now we can start looping through base images
columnIndices = np.unique( np.argwhere( triIndices[I,:] ) )
#print( "columnIndices: " + str(columnIndices) )
for J in columnIndices:
####### MNXC2 revisement with private variable to make the code more manageable.
self.mnxc2_speckle( I, J, self.__shapeCropped )
#### Find maximum positions ####
self.locatePeak( I, J )
if self.verbose:
print( "# " + str(I) + "->" + str(J) + " shift: [%.2f"%self.__shiftsTriMat[I,J,0]
+ ", %.2f"%self.__shiftsTriMat[I,J,1]
+ "], cc: %.6f"%self.__corrTriMat[I,J]
+ ", peak sig: %.3f"%self.__peaksigTriMat[I,J] )
# Correlation stats is for establishing correlation scores for fixed-pattern noise.
if bool( self.trackCorrStats ):
self.calcCorrStats( currIndex, triIndices )
# triMode 'auto' diagonal mode
if self.triMode == u'auto' and (self.__peaksigTriMat[I,J] <= self.peaksigThres or J-I >= self.autoMax):
if self.verbose: print( "triMode 'auto' stopping at frame: " + str(J) )
break
currIndex += 1
pass # C max position location
if bool( np.any( self.fouCrop ) ):
self.__shiftsTriMat[:,:,0] *= self.shapePadded[0] / self.__shapeCropped[0]
self.__shiftsTriMat[:,:,1] *= self.shapePadded[1] / self.__shapeCropped[1]
self.bench['xcorr3'] = time.time()
# Pointer reference house-keeping
del images_block, masks_block, imageFFT, tempComplex2
def xcorrnm2_tri( self, triIndices=None ):
"""
<NAME>
<EMAIL>
April 16, 2015
triIndices is the index locations to correlate to. If None, self.triMode
is used to build one. Normally you should use self.triMode for the first iteration,
and pass in a triIndice from the errorDict if you want to repeat.
returns : [shiftsTriMat, corrTriMat, peaksTriMat]
This is an evolution of the Padfield cross-correlation algorithm to take
advantage of the Cheng multi-reference approach for cross-correlation
alignment of movies.
Padfield, "Masked object registration in the Fourier domain," IEEE
Transactions on Image Processing 21(5) (2012): 3706-2718.
<NAME> al. Nature Methods, 10 (2013): 584-590.
It cross-correlates every frame to every other frame to build a triangular
matrix of shifts and then does a functional minimization over the set of
equations. This means the computational cost grows with a power law with
the number of frames but it is more noise resistant.
triIndices can be an arbitrary boolean N x N matrix of frames to correlate
Alternatively it can be a string which will generate an appropriate matrix:
'tri' (default) correlates all frames to eachother
'first' is correlate to the first frame as a template
'diag' correlates to the next frame (i.e. a diagonal )
'auto' is like diag but automatically determines when to stop based on corrcoeffThes
diagWidth is for 'diag' and the number of frames to correlate each frame to,
default is None, which does the entire triangular matrix
diagWidth = 1 correlates to each preceding frame
NOTE: only calculates FFTs up to Nyquist/2.
"""
triIndices = self.__init_xcorrnm2( triIndices = triIndices)
if self.masks.shape[0] == 1 :
# tempComplex = self.masks[0,:,:].astype( fftw_dtype )
self.__baseMaskFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype )
self.__FFT2.update_arrays( self.masks[0,:,:].squeeze().astype( fftw_dtype ), self.__tempFullframe ); self.__FFT2.execute()
# FFTCrop
sC2 = self.__shapeCropped2
self.__baseMaskFFT[0:sC2[0],0:sC2[1]] = self.__tempFullframe[0:sC2[0],0:sC2[1]]
self.__baseMaskFFT[0:sC2[0],-sC2[1]:] = self.__tempFullframe[0:sC2[0],-sC2[1]:]
self.__baseMaskFFT[-sC2[0]:,0:sC2[1]] = self.__tempFullframe[-sC2[0]:,0:sC2[1]]
self.__baseMaskFFT[-sC2[0]:,-sC2[1]:] = self.__tempFullframe[-sC2[0]:,-sC2[1]:]
self.__templateMaskFFT = np.conj( self.__baseMaskFFT )
# maskProduct term is M1^* .* M2
templateMaskFFT = self.__templateMaskFFT;
baseMaskFFT = self.__baseMaskFFT # Pointer assignment
self.__tempComplex2 = nz.evaluate( "templateMaskFFT * baseMaskFFT" )
self.__IFFT2.update_arrays( self.__tempComplex2, self.__tempComplex ); self.__IFFT2.execute()
tempComplex = self.__tempComplex
normConst2 = self.__normConst2
self.__maskProduct = nz.evaluate( "normConst2*real(tempComplex)" )
else:
# Pre-allocate only
self.__baseMaskFFT = np.zeros( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=fftw_dtype )
if bool( self.maxShift ) or self.Bmode is u'fourier':
if self.maxShift is None or self.preShift is True:
[xmesh,ymesh] = np.meshgrid( np.arange(-self.__shapeCropped2[0], self.__shapeCropped2[0]),
np.arange(-self.__shapeCropped2[1], self.__shapeCropped2[1]) )
else:
[xmesh,ymesh] = np.meshgrid( np.arange(-self.maxShift, self.maxShift), np.arange(-self.maxShift, self.maxShift) )
rmesh2 = nz.evaluate( "xmesh*xmesh + ymesh*ymesh" )
# rmesh2 = xmesh*xmesh + ymesh*ymesh
if bool( self.maxShift ):
self.__mask_maxShift = ( rmesh2 < self.maxShift**2.0 )
if self.Bmode is u'fourier':
self.__Bfilter = np.fft.fftshift( util.apodization( name=self.BfiltType,
size=self.__shapeCropped,
radius=[self.Brad,self.Brad] ) )
self.bench['xcorr1'] = time.time()
# Pre-compute forward FFTs (template will just be copied conjugate Fourier spectra)
self.__imageFFT = np.empty( [self.__N, self.shapePadded[0], self.shapePadded[1]], dtype=fftw_dtype )
self.__baseImageFFT = np.empty( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=fftw_dtype )
self.__baseSquaredFFT = | np.empty( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=fftw_dtype ) | numpy.empty |
import xarray as xr
import numpy as np
import dask.bag as db
import dask.array as da
from time import time
from scipy.interpolate import LinearNDInterpolator
from ..core import Instrument, Model
from .attenuation import calc_radar_atm_attenuation
from .psd import calc_mu_lambda
from ..core.instrument import ureg, quantity
def calc_total_reflectivity(model, detect_mask=False):
"""
This method calculates the total (convective + stratiform) reflectivity (Ze).
Parameters
----------
model: :func:`emc2.core.Model` class
The model to calculate the parameters for.
detect_mask: bool
True - generating a mask determining signal below noise floor.
Returns
-------
model: :func:`emc2.core.Model`
The xarray Dataset containing the calculated radar moments.
"""
Ze_tot = np.where(np.isfinite(model.ds["sub_col_Ze_tot_strat"].values),
10 ** (model.ds["sub_col_Ze_tot_strat"].values / 10.), 0)
if model.process_conv:
Ze_tot = np.where(np.isfinite(model.ds["sub_col_Ze_tot_conv"].values), Ze_tot +
10 ** (model.ds["sub_col_Ze_tot_conv"].values / 10.), Ze_tot)
model.ds['sub_col_Ze_tot'] = xr.DataArray(10 * np.log10(Ze_tot), dims=model.ds["sub_col_Ze_tot_strat"].dims)
model.ds['sub_col_Ze_tot'].values = np.where(np.isinf(model.ds['sub_col_Ze_tot'].values), np.nan,
model.ds['sub_col_Ze_tot'].values)
model.ds['sub_col_Ze_tot'].attrs["long_name"] = \
"Total (convective + stratiform) equivalent radar reflectivity factor"
model.ds['sub_col_Ze_tot'].attrs["units"] = "dBZ"
if model.process_conv:
model.ds['sub_col_Ze_att_tot'] = 10 * np.log10(Ze_tot *
model.ds['hyd_ext_conv'].fillna(1) * model.ds[
'hyd_ext_strat'].fillna(1) *
model.ds['atm_ext'].fillna(1))
else:
model.ds['sub_col_Ze_att_tot'] = 10 * np.log10(Ze_tot *
model.ds['hyd_ext_strat'].fillna(1) *
model.ds['atm_ext'].fillna(1))
model.ds['sub_col_Ze_att_tot'].values = np.where(np.isinf(model.ds['sub_col_Ze_att_tot'].values), np.nan,
model.ds['sub_col_Ze_att_tot'].values)
model.ds['sub_col_Ze_att_tot'].attrs["long_name"] = \
"Total (convective + stratiform) attenuated (hydrometeor + gaseous) equivalent radar reflectivity factor"
model.ds['sub_col_Ze_att_tot'].attrs["units"] = "dBZ"
model.ds["sub_col_Ze_tot"] = model.ds["sub_col_Ze_tot"].where(np.isfinite(model.ds["sub_col_Ze_tot"]))
model.ds["sub_col_Ze_att_tot"] = model.ds["sub_col_Ze_att_tot"].where(
np.isfinite(model.ds["sub_col_Ze_att_tot"]))
model.ds["detect_mask"] = model.ds["Ze_min"] >= model.ds["sub_col_Ze_att_tot"]
model.ds["detect_mask"].attrs["long_name"] = "Radar detectability mask"
model.ds["detect_mask"].attrs["units"] = ("1 = radar signal below noise floor, 0 = signal detected")
return model
def accumulate_attenuation(model, is_conv, z_values, hyd_ext, atm_ext, OD_from_sfc=True,
use_empiric_calc=False, **kwargs):
"""
Accumulates atmospheric and condensate radar attenuation (linear units) from TOA or the surface.
Output fields are condensate and atmospheric transmittance.
Parameters
----------
model: Model
The model to generate the parameters for.
is_conv: bool
True if the cell is convective
z_values: ndarray
model output height array in m.
hyd_ext: ndarray
fwd calculated extinction due to condensate per layer (empirical - dB km^-1, m^-1 otherwise).
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
use_empirical_calc: bool
When True using empirical relations from literature for the fwd calculations
(the cloud fraction still follows the scheme logic set by use_rad_logic).
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
if is_conv:
cloud_str = "conv"
else:
cloud_str = "strat"
if not use_empiric_calc:
hyd_ext = hyd_ext * 1e3
if OD_from_sfc:
OD_str = "model layer base"
else:
OD_str = "model layer top"
n_subcolumns = model.num_subcolumns
Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape
if OD_from_sfc:
dz = np.diff(z_values / 1e3, axis=1, prepend=0.)
hyd_ext = np.cumsum(
np.tile(dz, (n_subcolumns, 1, 1)) *
np.concatenate((np.zeros(Dims[:2] + (1,)), hyd_ext[:, :, :-1]), axis=2), axis=2)
atm_ext = np.cumsum(dz * np.concatenate((np.zeros((Dims[1],) + (1,)),
atm_ext[:, :-1]), axis=1), axis=1)
else:
dz = np.diff(z_values / 1e3, axis=1, append=0.)
hyd_ext = np.flip(
np.cumsum(np.flip(np.tile(dz, (n_subcolumns, 1, 1)) *
np.concatenate((hyd_ext[:, :, 1:],
np.zeros(Dims[:2] + (1,))), axis=2),
axis=2), axis=2), axis=2)
atm_ext = np.flip(
np.cumsum(np.flip(dz * np.concatenate((atm_ext[:, 1:],
np.zeros((Dims[1],) + (1,))), axis=1), axis=1), axis=1), axis=1)
if use_empiric_calc:
model.ds['hyd_ext_%s' % cloud_str] = xr.DataArray(10 ** (-2 * hyd_ext / 10.),
dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
else:
model.ds['hyd_ext_%s' % cloud_str] = \
xr.DataArray(np.exp(-2 * hyd_ext), dims=model.ds["sub_col_Ze_tot_%s" % cloud_str].dims)
model.ds['atm_ext'] = xr.DataArray(10 ** (-2 * atm_ext / 10), dims=model.ds[model.T_field].dims)
model.ds['hyd_ext_%s' % cloud_str].attrs["long_name"] = \
"Two-way %s hydrometeor transmittance at %s" % (cloud_str, OD_str)
model.ds['hyd_ext_%s' % cloud_str].attrs["units"] = "1"
model.ds['atm_ext'].attrs["long_name"] = \
"Two-way atmospheric transmittance due to H2O and O2 at %s" % OD_str
model.ds['atm_ext'].attrs["units"] = "1"
return model
def calc_radar_empirical(instrument, model, is_conv, p_values, t_values, z_values, atm_ext,
OD_from_sfc=True, use_empiric_calc=False, hyd_types=None, **kwargs):
"""
Calculates the radar stratiform or convective reflectivity and attenuation
in a sub-columns using empirical formulation from literature.
Parameters
----------
instrument: :func:`emc2.core.Instrument` class
The instrument to calculate the reflectivity parameters for.
model: :func:`emc2.core.Model` class
The model to calculate the parameters for.
is_conv: bool
True if the cell is convective
p_values: ndarray
model output pressure array in Pa.
t_values: ndarray
model output temperature array in C.
z_values: ndarray
model output height array in m.
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
hyd_types: list or None
list of hydrometeor names to include in calcuation. using default Model subclass types if None.
Additonal keyword arguments are passed into
:py:func:`emc2.simulator.lidar_moments.accumulate_attenuation`.
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
hyd_types = model.set_hyd_types(hyd_types)
if is_conv:
cloud_str = "conv"
else:
cloud_str = "strat"
if not instrument.instrument_class.lower() == "radar":
raise ValueError("Reflectivity can only be derived from a radar!")
Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape
model.ds["sub_col_Ze_tot_%s" % cloud_str] = xr.DataArray(
np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
for hyd_type in hyd_types:
q_field = "%s_q_subcolumns_%s" % (cloud_str, hyd_type)
WC_tot = np.zeros(Dims)
WC = model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] * p_values / \
(instrument.R_d * (t_values + 273.15)) * 1e3
# Fox and Illingworth (1997)
if hyd_type.lower() == "cl":
Ze_emp = 0.031 * WC ** 1.56
WC_tot += WC
# Hagen and Yuter (2003)
elif hyd_type.lower() == "pl":
Ze_emp = ((WC * 1e3) / 3.4) ** 1.75
WC_tot += WC
else:
# Hogan et al. (2006)
if 2e9 <= instrument.freq < 4e9:
Ze_emp = 10 ** (((np.log10(WC) + 0.0197 * t_values + 1.7) / 0.060) / 10.)
elif 27e9 <= instrument.freq < 40e9:
Ze_emp = 10 ** (((np.log10(WC) + 0.0186 * t_values + 1.63) /
(0.000242 * t_values + 0.0699)) / 10.)
elif 75e9 <= instrument.freq < 110e9:
Ze_emp = 10 ** (((np.log10(WC) + 0.00706 * t_values + 0.992) /
(0.000580 * t_values + 0.0923)) / 10.)
else:
Ze_emp = 10 ** (((np.log10(WC) + 0.0186 * t_values + 1.63) /
(0.000242 * t_values + 0.0699)) / 10.)
var_name = "sub_col_Ze_%s_%s" % (hyd_type, cloud_str)
model.ds[var_name] = xr.DataArray(
Ze_emp.values, dims=model.ds[q_field].dims)
model.ds["sub_col_Ze_tot_%s" % cloud_str] += Ze_emp.fillna(0)
kappa_f = 6 * np.pi / (instrument.wavelength * model.Rho_hyd["cl"].magnitude) * \
((instrument.eps_liq - 1) / (instrument.eps_liq + 2)).imag * 4.34e6 # dB m^3 g^-1 km^-1
model = accumulate_attenuation(model, is_conv, z_values, WC_tot * kappa_f, atm_ext,
OD_from_sfc=OD_from_sfc, use_empiric_calc=True, **kwargs)
return model
def calc_radar_bulk(instrument, model, is_conv, p_values, z_values, atm_ext, OD_from_sfc=True,
hyd_types=None, mie_for_ice=False, **kwargs):
"""
Calculates the radar stratiform or convective reflectivity and attenuation
in a sub-columns using bulk scattering LUTs assuming geometric scatterers
(radiation scheme logic).
Effective radii for each hydrometeor class must be provided (in model.ds).
Parameters
----------
instrument: Instrument
The instrument to simulate. The instrument must be a lidar.
model: Model
The model to generate the parameters for.
is_conv: bool
True if the cell is convective
p_values: ndarray
model output pressure array in Pa.
z_values: ndarray
model output height array in m.
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
hyd_types: list or None
list of hydrometeor names to include in calcuation. using default Model subclass types if None.
mie_for_ice: bool
If True, using bulk mie caculation LUTs. Otherwise, currently using the bulk C6
scattering LUTs for 8-column severly roughned aggregate.
Additonal keyword arguments are passed into
:py:func:`emc2.simulator.lidar_moments.accumulate_attenuation`.
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
hyd_types = model.set_hyd_types(hyd_types)
n_subcolumns = model.num_subcolumns
if is_conv:
cloud_str = "conv"
re_fields = model.conv_re_fields
else:
cloud_str = "strat"
re_fields = model.strat_re_fields
if model.model_name in ["E3SM", "CESM2"]:
bulk_ice_lut = "CESM_ice"
bulk_mie_ice_lut = "mie_ice_CESM_PSD"
bulk_liq_lut = "CESM_liq"
else:
bulk_ice_lut = "E3_ice"
bulk_mie_ice_lut = "mie_ice_E3_PSD"
bulk_liq_lut = "E3_liq"
Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape
model.ds["sub_col_Ze_tot_%s" % cloud_str] = xr.DataArray(
np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
hyd_ext = np.zeros(Dims)
rhoa_dz = np.tile(
np.abs(np.diff(p_values, axis=1, append=0.)) / instrument.g,
(n_subcolumns, 1, 1))
dz = np.tile(
np.diff(z_values, axis=1, append=0.), (n_subcolumns, 1, 1))
for hyd_type in hyd_types:
if hyd_type[-1] == 'l':
rho_b = model.Rho_hyd[hyd_type] # bulk water
re_array = np.tile(model.ds[re_fields[hyd_type]].values, (n_subcolumns, 1, 1))
if model.lambda_field is not None: # assuming my and lambda can be provided only for liq hydrometeors
if not model.lambda_field[hyd_type] is None:
lambda_array = model.ds[model.lambda_field[hyd_type]].values
mu_array = model.ds[model.mu_field[hyd_type]].values
else:
rho_b = instrument.rho_i # bulk ice
fi_factor = model.fluffy[hyd_type].magnitude * model.Rho_hyd[hyd_type] / rho_b + \
(1 - model.fluffy[hyd_type].magnitude) * (model.Rho_hyd[hyd_type] / rho_b) ** (1 / 3)
re_array = np.tile(model.ds[re_fields[hyd_type]].values * fi_factor,
(n_subcolumns, 1, 1))
tau_hyd = np.where(model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] > 0,
3 * model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] * rhoa_dz /
(2 * rho_b * re_array * 1e-6), 0)
A_hyd = tau_hyd / (2 * dz) # model assumes geometric scatterers
if np.isin(hyd_type, ["ci", "pi"]):
if mie_for_ice:
r_eff_bulk = instrument.bulk_table[bulk_mie_ice_lut]["r_e"].values.copy()
Qback_bulk = instrument.bulk_table[bulk_mie_ice_lut]["Q_back"].values
Qext_bulk = instrument.bulk_table[bulk_mie_ice_lut]["Q_ext"].values
else:
r_eff_bulk = instrument.bulk_table[bulk_ice_lut]["r_e"].values.copy()
Qback_bulk = instrument.bulk_table[bulk_ice_lut]["Q_back"].values
Qext_bulk = instrument.bulk_table[bulk_ice_lut]["Q_ext"].values
else:
if model.model_name in ["E3SM", "CESM2"]:
mu_b = np.tile(instrument.bulk_table[bulk_liq_lut]["mu"].values,
(instrument.bulk_table[bulk_liq_lut]["lambdas"].size)).flatten()
lambda_b = instrument.bulk_table[bulk_liq_lut]["lambda"].values.flatten()
else:
r_eff_bulk = instrument.bulk_table[bulk_liq_lut]["r_e"].values
Qback_bulk = instrument.bulk_table[bulk_liq_lut]["Q_back"].values
Qext_bulk = instrument.bulk_table[bulk_liq_lut]["Q_ext"].values
if np.logical_and(np.isin(hyd_type, ["cl", "pl"]), model.model_name in ["E3SM", "CESM2"]):
print("2-D interpolation of bulk liq radar backscattering using mu-lambda values")
rel_locs = model.ds[model.q_names_stratiform[hyd_type]].values > 0.
interpolator = LinearNDInterpolator( | np.stack((mu_b, lambda_b), axis=1) | numpy.stack |
#!/usr/bin/env python
# coding: utf-8
import h5py
import numpy as np
from functools import reduce
from tqdm import tqdm
import disk.funcs as dfn
class binary_mbh(object):
def __init__(self, filename):
self.filename = filename
with h5py.File(self.filename, 'r') as f:
self.SubhaloMassInHalfRadType = np.array(f['meta/SubhaloMassInHalfRadType'])
self.SubhaloSFRinHalfRad = np.array(f['meta/SubhaloSFRinHalfRad'])
self.snapshot = np.array(f['meta/snapshot'])
self.subhalo_id = np.array(f['meta/subhalo_id'])
self.masses = np.array(f['evolution/masses']) #g
self.mdot = np.array(f['evolution/mdot_eff']) #g/s
self.sep = np.array(f['evolution/sep']) #cm
self.dadt = np.array(f['evolution/dadt']) #cm/s
self.dadt_df = np.array(f['evolution/dadt_df']) #cm/s
self.dadt_gw = np.array(f['evolution/dadt_gw']) #cm/s
self.dadt_lc = np.array(f['evolution/dadt_lc']) #cm/s
self.dadt_vd = np.array(f['evolution/dadt_vd']) #cm/s
self.scales = np.array(f['evolution/scales']) #NA
self.times = np.array(f['evolution/times']) #s
self.eccen = np.array(f['evolution/eccen']) #NA
self.z = (1./self.scales)-1 #NA
self.m1 = self.masses[:,0]
self.m2 = self.masses[:,1]
self.mtot = self.m1+self.m2
self.q = self.m2/self.m1
def find_Rlc(self):
R_lc = np.zeros((self.sep.shape[0],3))
for i in range(len(self.sep)):
try:
idx = reduce(np.intersect1d,(np.where(np.abs(self.dadt_lc[i])>np.abs(self.dadt_df[i]))[0],
np.where(np.abs(self.dadt_lc[i])>np.abs(self.dadt_vd[i]))[0],
np.where(np.abs(self.dadt_lc[i])>np.abs(self.dadt_gw[i]))[0]))[0]
R_lc[i]=[i,idx,self.sep[i][idx]]
except:
R_lc[i]=[i,np.nan,np.nan]
return R_lc
def find_Rvd(self):
R_vd = np.zeros((self.sep.shape[0],3))
for i in range(len(self.sep)):
try:
idx = reduce(np.intersect1d,(np.where(np.abs(self.dadt_vd[i])>np.abs(self.dadt_df[i]))[0],
np.where(np.abs(self.dadt_vd[i])>np.abs(self.dadt_lc[i]))[0],
np.where( | np.abs(self.dadt_vd[i]) | numpy.abs |
import argparse
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import imread
from scipy.misc import imsave
def blend(x, y, overlay):
blended = x * (1 - overlay) + y * overlay
blended = np.clip(blended, 0.0, 1.0)
blended = np.where(y != 0, blended, x)
return blended
def is_mask(img):
i = 0
for row in img:
for col in row:
for px in col:
if px != 0.0 and px != 1.0:
i = i + 1
f = np.vectorize(lambda x: x == 0.0 or x == 1.0)
non_zero = np.count_nonzero(f(img)) / 3
total = np.shape(img)[0] * | np.shape(img) | numpy.shape |
import os
import pickle
import warnings
import platform
import tempfile
import numpy as np
from pytransform3d.rotations import (
q_id, active_matrix_from_intrinsic_euler_xyz, random_quaternion)
from pytransform3d.transformations import (
random_transform, invert_transform, concat, transform_from_pq,
transform_from)
from pytransform3d.transform_manager import TransformManager
from pytransform3d import transform_manager
from numpy.testing import assert_array_almost_equal
from nose.tools import (assert_raises_regexp, assert_equal, assert_true,
assert_false)
from nose import SkipTest
def test_request_added_transform():
"""Request an added transform from the transform manager."""
random_state = np.random.RandomState(0)
A2B = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B)
A2B_2 = tm.get_transform("A", "B")
assert_array_almost_equal(A2B, A2B_2)
def test_request_inverse_transform():
"""Request an inverse transform from the transform manager."""
random_state = np.random.RandomState(0)
A2B = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B)
A2B_2 = tm.get_transform("A", "B")
assert_array_almost_equal(A2B, A2B_2)
B2A = tm.get_transform("B", "A")
B2A_2 = invert_transform(A2B)
assert_array_almost_equal(B2A, B2A_2)
def test_has_frame():
"""Check if frames have been registered with transform."""
tm = TransformManager()
tm.add_transform("A", "B", np.eye(4))
assert_true(tm.has_frame("A"))
assert_true(tm.has_frame("B"))
assert_false(tm.has_frame("C"))
def test_transform_not_added():
"""Test request for transforms that have not been added."""
random_state = np.random.RandomState(0)
A2B = random_transform(random_state)
C2D = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B)
tm.add_transform("C", "D", C2D)
assert_raises_regexp(KeyError, "Unknown frame", tm.get_transform, "A", "G")
assert_raises_regexp(KeyError, "Unknown frame", tm.get_transform, "G", "D")
assert_raises_regexp(KeyError, "Cannot compute path", tm.get_transform,
"A", "D")
def test_request_concatenated_transform():
"""Request a concatenated transform from the transform manager."""
random_state = np.random.RandomState(0)
A2B = random_transform(random_state)
B2C = random_transform(random_state)
F2A = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B)
tm.add_transform("B", "C", B2C)
tm.add_transform("D", "E", np.eye(4))
tm.add_transform("F", "A", F2A)
A2C = tm.get_transform("A", "C")
assert_array_almost_equal(A2C, concat(A2B, B2C))
C2A = tm.get_transform("C", "A")
assert_array_almost_equal(C2A, concat(invert_transform(B2C),
invert_transform(A2B)))
F2B = tm.get_transform("F", "B")
assert_array_almost_equal(F2B, concat(F2A, A2B))
def test_update_transform():
"""Update an existing transform."""
random_state = np.random.RandomState(0)
A2B1 = random_transform(random_state)
A2B2 = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B1)
tm.add_transform("A", "B", A2B2)
A2B = tm.get_transform("A", "B")
# Hack: test depends on internal member
assert_array_almost_equal(A2B, A2B2)
assert_equal(len(tm.i), 1)
assert_equal(len(tm.j), 1)
def test_pickle():
"""Test if a transform manager can be pickled."""
random_state = np.random.RandomState(1)
A2B = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B)
_, filename = tempfile.mkstemp(".pickle")
try:
pickle.dump(tm, open(filename, "wb"))
tm2 = pickle.load(open(filename, "rb"))
finally:
if os.path.exists(filename):
try:
os.remove(filename)
except WindowsError:
pass # workaround for permission problem on Windows
A2B2 = tm2.get_transform("A", "B")
assert_array_almost_equal(A2B, A2B2)
def test_whitelist():
"""Test correct handling of whitelists for plotting."""
random_state = np.random.RandomState(2)
A2B = random_transform(random_state)
tm = TransformManager()
tm.add_transform("A", "B", A2B)
nodes = tm._whitelisted_nodes(None)
assert_equal({"A", "B"}, nodes)
nodes = tm._whitelisted_nodes(["A"])
assert_equal({"A"}, nodes)
assert_raises_regexp(KeyError, "unknown nodes", tm._whitelisted_nodes, "C")
def test_check_consistency():
"""Test correct detection of inconsistent graphs."""
random_state = np.random.RandomState(2)
tm = TransformManager()
A2B = random_transform(random_state)
tm.add_transform("A", "B", A2B)
B2A = random_transform(random_state)
tm.add_transform("B", "A", B2A)
assert_false(tm.check_consistency())
tm = TransformManager()
A2B = random_transform(random_state)
tm.add_transform("A", "B", A2B)
assert_true(tm.check_consistency())
C2D = random_transform(random_state)
tm.add_transform("C", "D", C2D)
assert_true(tm.check_consistency())
B2C = random_transform(random_state)
tm.add_transform("B", "C", B2C)
assert_true(tm.check_consistency())
A2D_over_path = tm.get_transform("A", "D")
A2D = random_transform(random_state)
tm.add_transform("A", "D", A2D)
assert_false(tm.check_consistency())
tm.add_transform("A", "D", A2D_over_path)
assert_true(tm.check_consistency())
def test_connected_components():
"""Test computation of connected components in the graph."""
tm = TransformManager()
tm.add_transform("A", "B", np.eye(4))
assert_equal(tm.connected_components(), 1)
tm.add_transform("D", "E", np.eye(4))
assert_equal(tm.connected_components(), 2)
tm.add_transform("B", "C", | np.eye(4) | numpy.eye |
import random
from typing import List, Dict, Tuple
import math
import numpy as np
from synthetic_data.observation import Observation
import os
import pickle
import time
from llr.llr import *
# Created by <NAME> 29 November 2017
class Simulator:
def __init__(self, n_users: int, user_features: List[int],
n_items: int, item_features: int,
bias: int,
users_distribution: str = "zipf",
items_distribution: str = "zipf",
read_cache_dir: str = None,
save_cache_dir: str = None,
timestamp: bool=True,
tout: bool=True) -> None:
"""Produce a list of observations --users who "buy" items.
e.g.
```
s = Simulator(n_users=101, user_features=0, n_items=1500, item_features=10, bias=1.0)
s.run()
```
:param int n_users: Number of users
:param List[int] user_features: [feature1_n_values, feature2... ]
:param int n_items: Number of items
:param List[int] item_features: as for users
:param int bias: how similarity influences. If 0, at all. If 1, p(item after an item sim=-1)=0
:param int timestamp: unix-like timestamp (in seconds)
:return List[Tuple3]: list of observations (user_id, item_id, timestamp)
"""
self.user_buying_dict = {} # {user: [(item, timestamp), (), ...], ...}
self.observations_list = []
self._user_features = user_features
self._item_features = item_features
self.n_users = n_users
self.n_items = n_items
self._reset_cooccurrences_matrices()
self._reset_sequentials_matrices()
self.tout = tout
assert read_cache_dir is None or save_cache_dir is None, \
"saving and reading the cache at the same time does not make sense"
self.read_cache_dir = read_cache_dir
self.save_cache_dir = save_cache_dir
if bias >= 0:
self.bias = | np.float32(bias) | numpy.float32 |
import argparse
import dill
import jax
import numpy as np
import pomdp
pomdp.horizon = 25
parser = argparse.ArgumentParser()
parser.add_argument('--silent', action='store_true')
parser.add_argument('--bias', action='store_true')
args = parser.parse_args()
with open('data/data{}-meta.obj'.format('-bias' if args.bias else ''), 'rb') as f:
data_meta = dill.load(f)
S = data_meta['S']
A = data_meta['A']
Z = data_meta['Z']
envr_b0 = data_meta['envr_b0']
envr_O = data_meta['envr_O']
plcy_b0 = data_meta['plcy_b0']
plcy_T = data_meta['plcy_T']
plcy_O = data_meta['plcy_O']
plcy_mu = data_meta['plcy_mu']
def log_pi_il(mu, eta, b):
res = -eta * np.sum((mu - b[None,...])**2, axis=-1)
return res - np.log(np.sum(np.exp(res)))
def log_pi_irl(alp, bet, b):
res = np.zeros(A)
for a in range(A):
if alp[a].size == 0:
res[a] = -1e6
else:
res[a] = bet * np.amax(alp[a] @ b)
return res - np.log(np.sum(np.exp(res)))
algs = list()
with open('res/res{}-interpole.obj'.format('-bias' if args.bias else ''), 'rb') as f:
res = dill.load(f)
algs.append(dict())
algs[-1]['name'] = 'interpole'
algs[-1]['log_pi'] = log_pi_il
algs[-1]['b0'] = res['b0']
algs[-1]['O'] = res['O']
algs[-1]['tht'] = res['mu']
with open('res/res{}-offpoirl.obj'.format('-bias' if args.bias else ''), 'rb') as f:
res = dill.load(f)
res = res['out'][500::10]
algs.append(dict())
algs[-1]['name'] = 'offpoirl'
algs[-1]['log_pi'] = log_pi_irl
algs[-1]['b0'] = np.zeros(S)
algs[-1]['O'] = np.zeros((A,S,Z))
algs[-1]['R'] = np.zeros((S,A))
for b0, _, O, R in res:
algs[-1]['b0'] += b0
algs[-1]['O'] += O
algs[-1]['R'] += R
algs[-1]['b0'] /= len(res)
algs[-1]['O'] /= len(res)
algs[-1]['R'] /= len(res)
algs[-1]['tht'] = pomdp.solve(S, A, Z, algs[-1]['b0'], plcy_T, algs[-1]['O'], algs[-1]['R'])
with open('res/res{}-poirl.obj'.format('-bias' if args.bias else ''), 'rb') as f:
res = dill.load(f)
res = res['out'][500::10]
algs.append(dict())
algs[-1]['name'] = 'poirl'
algs[-1]['log_pi'] = log_pi_irl
algs[-1]['b0'] = np.zeros(S)
algs[-1]['O'] = np.zeros((A,S,Z))
algs[-1]['R'] = np.zeros((S,A))
for b0, _, O, R in res:
algs[-1]['b0'] += b0
algs[-1]['O'] += O
algs[-1]['R'] += R
algs[-1]['b0'] /= len(res)
algs[-1]['O'] /= len(res)
algs[-1]['R'] /= len(res)
algs[-1]['tht'] = pomdp.solve(S, A, Z, algs[-1]['b0'], plcy_T, algs[-1]['O'], algs[-1]['R'])
with open('res/res{}-pombil.obj'.format('-bias' if args.bias else ''), 'rb') as f:
res = dill.load(f)
algs.append(dict())
algs[-1]['name'] = 'pombil'
algs[-1]['log_pi'] = log_pi_il
algs[-1]['b0'] = res['b0']
algs[-1]['O'] = res['O']
algs[-1]['tht'] = res['mu']
with open('res/res{}-rbc.obj'.format('-bias' if args.bias else ''), 'rb') as f:
alg_rbc = dill.load(f)
for alg in algs:
alg['e1'] = list()
alg['e2'] = list()
alg['e3'] = list()
e1_rbc = list()
e2_rbc = list()
for i in range(500):
if not args.silent:
if i % 100 == 0:
print('i = {}'.format(i))
s = np.random.choice(range(S), p=envr_b0)
b = plcy_b0
tau = None
for alg in algs:
alg['b'] = alg['b0']
alg['tau'] = None
h_rbc = np.zeros(alg_rbc['H'])
c_rbc = np.zeros(alg_rbc['H'])
tau_rbc = None
t = 0
while True:
t += 1
pi = np.exp(log_pi_il(plcy_mu, 10, b))
for alg in algs:
alg['pi'] = np.exp(alg['log_pi'](alg['tht'], 10, alg['b']))
if t > 1:
pi_rbc = np.array(jax.nn.softmax(alg_rbc['W_y'] @ l_rbc + alg_rbc['b_y']))
if tau is None:
for alg in algs:
alg['e2'].append(np.sum(pi * np.log(pi / alg['pi'])))
alg['e3'].append(np.sum(b * np.log(b / alg['b'])))
if t > 1:
e2_rbc.append(np.sum(pi * np.log(pi / pi_rbc)))
a = np.random.choice(range(A), p=pi)
for alg in algs:
alg['a'] = np.random.choice(range(A), p=alg['pi'])
if t > 1:
a_rbc = np.random.choice(range(A), p=pi_rbc)
z = np.random.choice(range(Z), p=envr_O[2,s,:])
b = plcy_O[2,:,z] * b
b /= b.sum()
for alg in algs:
alg['b'] = alg['O'][2,:,z] * alg['b']
alg['b'] /= alg['b'].sum()
x = np.concatenate((np.array([0, 0, 1]), jax.nn.one_hot(z, Z)))
f = jax.nn.sigmoid(alg_rbc['W_f'] @ x + alg_rbc['U_f'] @ h_rbc + alg_rbc['b_f'])
i = jax.nn.sigmoid(alg_rbc['W_i'] @ x + alg_rbc['U_i'] @ h_rbc + alg_rbc['b_i'])
o = jax.nn.sigmoid(alg_rbc['W_o'] @ x + alg_rbc['U_o'] @ h_rbc + alg_rbc['b_o'])
c_rbc = f * c_rbc + i * np.tanh(alg_rbc['W_c'] @ x + alg_rbc['U_c'] @ h_rbc + alg_rbc['b_c'])
h_rbc = o * np.tanh(c_rbc)
l_rbc = np.tanh(alg_rbc['W_l'] @ h_rbc + alg_rbc['b_l'])
if tau is None and a != 2:
tau = t
for alg in algs:
if alg['tau'] is None and alg['a'] != 2:
alg['tau'] = t
if t > 1:
if tau_rbc is None and a_rbc != 2:
tau_rbc = t
brk = tau is not None
for alg in algs:
brk = brk and alg['tau'] is not None
brk = brk and tau_rbc is not None
if brk:
break
for alg in algs:
alg['e1'].append(np.abs(alg['tau'] - tau))
e1_rbc.append( | np.abs(tau_rbc - tau) | numpy.abs |
import pytest
import numpy as np
import sys
if (sys.version_info > (3, 0)):
from io import StringIO
else:
from StringIO import StringIO
from keras_contrib import callbacks
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Conv2D, Flatten, Activation
from keras import backend as K
n_out = 11 # with 1 neuron dead, 1/11 is just below the threshold of 10% with verbose = False
def check_print(do_train, expected_warnings, nr_dead=None, perc_dead=None):
"""
Receive stdout to check if correct warning message is delivered
:param nr_dead: int
:param perc_dead: float, 10% should be written as 0.1
"""
saved_stdout = sys.stdout
out = StringIO()
out.flush()
sys.stdout = out # overwrite current stdout
do_train()
stdoutput = out.getvalue().strip() # get prints, can be something like: "Layer dense (#0) has 2 dead neurons (20.00%)!"
str_to_count = "dead neurons"
count = stdoutput.count(str_to_count)
sys.stdout = saved_stdout # restore stdout
out.close()
assert expected_warnings == count
if expected_warnings and (nr_dead is not None):
str_to_check = 'has {} dead'.format(nr_dead)
assert str_to_check in stdoutput, '"{}" not in "{}"'.format(str_to_check, stdoutput)
if expected_warnings and (perc_dead is not None):
str_to_check = 'neurons ({:.2%})!'.format(perc_dead)
assert str_to_check in stdoutput, '"{}" not in "{}"'.format(str_to_check, stdoutput)
def test_DeadDeadReluDetector():
n_samples = 9
input_shape = (n_samples, 3, 4) # 4 input features
shape_out = (n_samples, 3, n_out) # 11 output features
shape_weights = (4, n_out)
# ignore batch size
input_shape_dense = tuple(input_shape[1:])
def do_test(weights, expected_warnings, verbose, nr_dead=None, perc_dead=None):
def do_train():
dataset = np.ones(input_shape) # data to be fed as training
model = Sequential()
model.add(Dense(n_out, activation='relu', input_shape=input_shape_dense,
use_bias=False, weights=[weights], name='dense'))
model.compile(optimizer='sgd', loss='categorical_crossentropy')
model.fit(
dataset,
np.ones(shape_out),
batch_size=1,
epochs=1,
callbacks=[callbacks.DeadReluDetector(dataset, verbose=verbose)],
verbose=False
)
check_print(do_train, expected_warnings, nr_dead, perc_dead)
weights_1_dead = np.ones(shape_weights) # weights that correspond to NN with 1/11 neurons dead
weights_2_dead = np.ones(shape_weights) # weights that correspond to NN with 2/11 neurons dead
weights_all_dead = np.zeros(shape_weights) # weights that correspond to all neurons dead
weights_1_dead[:, 0] = 0
weights_2_dead[:, 0:2] = 0
do_test(weights_1_dead, verbose=True, expected_warnings=1, nr_dead=1, perc_dead=1. / n_out)
do_test(weights_1_dead, verbose=False, expected_warnings=0)
do_test(weights_2_dead, verbose=True, expected_warnings=1, nr_dead=2, perc_dead=2. / n_out)
# do_test(weights_all_dead, verbose=True, expected_warnings=1, nr_dead=n_out, perc_dead=1.)
def test_DeadDeadReluDetector_bias():
n_samples = 9
input_shape = (n_samples, 4) # 4 input features
shape_weights = (4, n_out)
shape_bias = (n_out, )
shape_out = (n_samples, n_out) # 11 output features
# ignore batch size
input_shape_dense = tuple(input_shape[1:])
def do_test(weights, bias, expected_warnings, verbose, nr_dead=None, perc_dead=None):
def do_train():
dataset = np.ones(input_shape) # data to be fed as training
model = Sequential()
model.add(Dense(n_out, activation='relu', input_shape=input_shape_dense,
use_bias=True, weights=[weights, bias], name='dense'))
model.compile(optimizer='sgd', loss='categorical_crossentropy')
model.fit(
dataset,
np.ones(shape_out),
batch_size=1,
epochs=1,
callbacks=[callbacks.DeadReluDetector(dataset, verbose=verbose)],
verbose=False
)
check_print(do_train, expected_warnings, nr_dead, perc_dead)
weights_1_dead = np.ones(shape_weights) # weights that correspond to NN with 1/11 neurons dead
weights_2_dead = np.ones(shape_weights) # weights that correspond to NN with 2/11 neurons dead
weights_all_dead = np.zeros(shape_weights) # weights that correspond to all neurons dead
weights_1_dead[:, 0] = 0
weights_2_dead[:, 0:2] = 0
bias = | np.zeros(shape_bias) | numpy.zeros |
from __future__ import absolute_import, division, print_function
import six
import logging
import os
import json
import numpy as np
import torch
from madminer.utils.ml import ratio_losses, flow_losses
from madminer.utils.ml.models.maf import ConditionalMaskedAutoregressiveFlow
from madminer.utils.ml.models.maf_mog import ConditionalMixtureMaskedAutoregressiveFlow
from madminer.utils.ml.models.ratio import ParameterizedRatioEstimator, DoublyParameterizedRatioEstimator
from madminer.utils.ml.models.score import LocalScoreEstimator
from madminer.utils.ml.flow_trainer import train_flow_model, evaluate_flow_model
from madminer.utils.ml.ratio_trainer import train_ratio_model, evaluate_ratio_model
from madminer.utils.ml.score_trainer import train_local_score_model, evaluate_local_score_model
from madminer.utils.various import create_missing_folders, load_and_check, shuffle
logger = logging.getLogger(__name__)
class MLForge:
"""
Estimating likelihood ratios and scores with machine learning.
Each instance of this class represents one neural estimator. The most important functions are:
* `MLForge.train()` to train an estimator. The keyword `method` determines the inference technique
and whether a class instance represents a single-parameterized likelihood ratio estimator, a doubly-parameterized
likelihood ratio estimator, or a local score estimator.
* `MLForge.evaluate()` to evaluate the estimator.
* `MLForge.save()` to save the trained model to files.
* `MLForge.load()` to load the trained model from files.
Please see the tutorial for a detailed walk-through.
"""
def __init__(self):
self.method_type = None
self.model = None
self.method = None
self.nde_type = None
self.n_observables = None
self.n_parameters = None
self.n_hidden = None
self.activation = None
self.maf_n_mades = None
self.maf_batch_norm = None
self.maf_batch_norm_alpha = None
self.features = None
self.x_scaling_means = None
self.x_scaling_stds = None
def train(
self,
method,
x_filename,
y_filename=None,
theta0_filename=None,
theta1_filename=None,
r_xz_filename=None,
t_xz0_filename=None,
t_xz1_filename=None,
features=None,
nde_type="mafmog",
n_hidden=(100, 100),
activation="tanh",
maf_n_mades=3,
maf_batch_norm=False,
maf_batch_norm_alpha=0.1,
maf_mog_n_components=10,
alpha=1.0,
trainer="amsgrad",
n_epochs=50,
batch_size=128,
initial_lr=0.001,
final_lr=0.0001,
nesterov_momentum=None,
validation_split=None,
early_stopping=True,
scale_inputs=True,
shuffle_labels=False,
grad_x_regularization=None,
limit_samplesize=None,
return_first_loss=False,
verbose=False,
):
"""
Trains a neural network to estimate either the likelihood ratio or, if method is 'sally' or 'sallino', the
score.
The keyword method determines the structure of the estimator that an instance of this class represents:
* For 'alice', 'alices', 'carl', 'nde', 'rascal', 'rolr', and 'scandal', the neural network models
the likelihood ratio as a function of the observables `x` and the numerator hypothesis `theta0`, while
the denominator hypothesis is kept at a fixed reference value ("single-parameterized likelihood ratio
estimator"). In addition to the likelihood ratio, the estimator allows to estimate the score at `theta0`.
* For 'alice2', 'alices2', 'carl2', 'rascal2', and 'rolr2', the neural network models
the likelihood ratio as a function of the observables `x`, the numerator hypothesis `theta0`, and the
denominator hypothesis `theta1` ("doubly parameterized likelihood ratio estimator"). The score at `theta0`
and `theta1` can also be evaluated.
* For 'sally' and 'sallino', the neural networks models the score evaluated at some reference hypothesis
("local score regression"). The likelihood ratio cannot be estimated directly from the neural network, but
can be estimated in a second step through density estimation in the estimated score space.
Parameters
----------
method : str
The inference method used. Allows values are 'alice', 'alices', 'carl', 'nde', 'rascal', 'rolr', and
'scandal' for a single-parameterized likelihood ratio estimator; 'alice2', 'alices2', 'carl2', 'rascal2',
and 'rolr2' for a doubly-parameterized likelihood ratio estimator; and 'sally' and 'sallino' for local
score regression.
x_filename : str
Path to an unweighted sample of observations, as saved by the `madminer.sampling.SampleAugmenter` functions.
Required for all inference methods.
y_filename : str or None, optional
Path to an unweighted sample of class labels, as saved by the `madminer.sampling.SampleAugmenter` functions.
Required for the 'alice', 'alice2', 'alices', 'alices2', 'carl', 'carl2', 'rascal', 'rascal2', 'rolr',
and 'rolr2' methods. Default value: None.
theta0_filename : str or None, optional
Path to an unweighted sample of numerator parameters, as saved by the `madminer.sampling.SampleAugmenter`
functions. Required for the 'alice', 'alice2', 'alices', 'alices2', 'carl', 'carl2', 'nde', 'rascal',
'rascal2', 'rolr', 'rolr2', and 'scandal' methods. Default value: None.
theta1_filename : str or None, optional
Path to an unweighted sample of denominator parameters, as saved by the `madminer.sampling.SampleAugmenter`
functions. Required for the 'alice2', 'alices2', 'carl2', 'rascal2', and 'rolr2' methods. Default value:
None.
r_xz_filename : str or None, optional
Path to an unweighted sample of joint likelihood ratios, as saved by the `madminer.sampling.SampleAugmenter`
functions. Required for the 'alice', 'alice2', 'alices', 'alices2', 'rascal', 'rascal2', 'rolr', and 'rolr2'
methods. Default value: None.
t_xz0_filename : str or None, optional
Path to an unweighted sample of joint scores at theta0, as saved by the `madminer.sampling.SampleAugmenter`
functions. Required for the 'alices', 'alices2', 'rascal', 'rascal2', 'sallino', 'sally', and 'scandal'
methods. Default value: None.
t_xz1_filename : str or None, optional
Path to an unweighted sample of joint scores at theta1, as saved by the `madminer.sampling.SampleAugmenter`
functions. Required for the 'rascal2' and 'alices2' methods. Default value: None.
features : list of int or None, optional
Indices of observables (features) that are used as input to the neural networks. If None, all observables
are used. Default value: None.
nde_type : {'maf', 'mafmog'}, optional
If the method is 'nde' or 'scandal', nde_type determines the architecture used in the neural density
estimator. Currently supported are 'maf' for a Masked Autoregressive Flow with a Gaussian base density, or
'mafmog' for a Masked Autoregressive Flow with a mixture of Gaussian base densities. Default value:
'mafmog'.
n_hidden : tuple of int, optional
Units in each hidden layer in the neural networks. If method is 'nde' or 'scandal', this refers to the
setup of each individual MADE layer. Default value: (100, 100).
activation : {'tanh', 'sigmoid', 'relu'}, optional
Activation function. Default value: 'tanh'.
maf_n_mades : int, optional
If method is 'nde' or 'scandal', this sets the number of MADE layers. Default value: 3.
maf_batch_norm : bool, optional
If method is 'nde' or 'scandal', switches batch normalization layers after each MADE layer on or off.
Default: False.
maf_batch_norm_alpha : float, optional
If method is 'nde' or 'scandal' and maf_batch_norm is True, this sets the alpha parameter in the calculation
of the running average of the mean and variance. Default value: 0.1.
maf_mog_n_components : int, optional
If method is 'nde' or 'scandal' and nde_type is 'mafmog', this sets the number of Gaussian base components.
Default value: 10.
alpha : float, optional
Hyperparameter weighting the score error in the loss function of the 'alices', 'alices2', 'rascal',
'rascal2', and 'scandal' methods. Default value: 1.
trainer : {"adam", "amsgrad", "sgd"}, optional
Optimization algorithm. Default value: "amsgrad".
n_epochs : int, optional
Number of epochs. Default value: 50.
batch_size : int, optional
Batch size. Default value: 128.
initial_lr : float, optional
Learning rate during the first epoch, after which it exponentially decays to final_lr. Default value:
0.001.
final_lr : float, optional
Learning rate during the last epoch. Default value: 0.0001.
nesterov_momentum : float or None, optional
If trainer is "sgd", sets the Nesterov momentum. Default value: None.
validation_split : float or None, optional
Fraction of samples used for validation and early stopping (if early_stopping is True). If None, the entire
sample is used for training and early stopping is deactivated. Default value: None.
early_stopping : bool, optional
Activates early stopping based on the validation loss (only if validation_split is not None). Default value:
True.
scale_inputs : bool, optional
Scale the observables to zero mean and unit variance. Default value: True.
shuffle_labels : bool, optional
If True, the labels (`y`, `r_xz`, `t_xz`) are shuffled, while the observations (`x`) remain in their
normal order. This serves as a closure test, in particular as cross-check against overfitting: an estimator
trained with shuffle_labels=True should predict to likelihood ratios around 1 and scores around 0.
grad_x_regularization : float or None, optional
If not None, a term of the form `grad_x_regularization * |grad_x f(x)|^2` is added to the loss, where `f(x)`
is the neural network output (the estimated log likelihood ratio or score). Default value: None.
limit_samplesize : int or None, optional
If not None, only this number of samples (events) is used to train the estimator. Default value: None.
return_first_loss : bool, optional
If True, the training routine only proceeds until the loss is calculated for the first time, at which point
the loss tensor is returned. This can be useful for debugging or visualization purposes (but of course not
for training a model).
verbose : bool, optional
If True, prints loss updates after every epoch.
Returns
-------
None
"""
logger.info("Starting training")
logger.info(" Method: %s", method)
logger.info(" Training data: x at %s", x_filename)
if theta0_filename is not None:
logger.info(" theta0 at %s", theta0_filename)
if theta1_filename is not None:
logger.info(" theta1 at %s", theta1_filename)
if y_filename is not None:
logger.info(" y at %s", y_filename)
if r_xz_filename is not None:
logger.info(" r_xz at %s", r_xz_filename)
if t_xz0_filename is not None:
logger.info(" t_xz (theta0) at %s", t_xz0_filename)
if t_xz1_filename is not None:
logger.info(" t_xz (theta1) at %s", t_xz1_filename)
if features is None:
logger.info(" Features: all")
else:
logger.info(" Features: %s", features)
logger.info(" Method: %s", method)
if method in ["nde", "scandal"]:
logger.info(" Neural density est.: %s", nde_type)
if method not in ["nde", "scandal"]:
logger.info(" Hidden layers: %s", n_hidden)
if method in ["nde", "scandal"]:
logger.info(" MAF, number MADEs: %s", maf_n_mades)
logger.info(" MAF, batch norm: %s", maf_batch_norm)
logger.info(" MAF, BN alpha: %s", maf_batch_norm_alpha)
logger.info(" MAF MoG, components: %s", maf_mog_n_components)
logger.info(" Activation function: %s", activation)
if method in ["cascal", "cascal2", "rascal", "rascal2", "scandal", "alices"]:
logger.info(" alpha: %s", alpha)
logger.info(" Batch size: %s", batch_size)
logger.info(" Trainer: %s", trainer)
logger.info(" Epochs: %s", n_epochs)
logger.info(" Learning rate: %s initially, decaying to %s", initial_lr, final_lr)
if trainer == "sgd":
logger.info(" Nesterov momentum: %s", nesterov_momentum)
logger.info(" Validation split: %s", validation_split)
logger.info(" Early stopping: %s", early_stopping)
logger.info(" Scale inputs: %s", scale_inputs)
logger.info(" Shuffle labels %s", shuffle_labels)
if grad_x_regularization is None:
logger.info(" Regularization: None")
else:
logger.info(" Regularization: %s * |grad_x f(x)|^2", grad_x_regularization)
if limit_samplesize is None:
logger.info(" Samples: all")
else:
logger.info(" Samples: %s", limit_samplesize)
# Load training data
logger.info("Loading training data")
theta0 = load_and_check(theta0_filename)
theta1 = load_and_check(theta1_filename)
x = load_and_check(x_filename)
y = load_and_check(y_filename)
r_xz = load_and_check(r_xz_filename)
t_xz0 = load_and_check(t_xz0_filename)
t_xz1 = load_and_check(t_xz1_filename)
if y is not None:
y = y.reshape((-1, 1))
# Check necessary information is theere
assert x is not None
if method in [
"carl",
"carl2",
"nde",
"scandal",
"rolr",
"alice",
"rascal",
"alices",
"rolr2",
"alice2",
"rascal2",
"alices2",
]:
assert theta0 is not None
if method in ["rolr", "alice", "rascal", "alices", "rolr2", "alice2", "rascal2", "alices2"]:
assert r_xz is not None
if method in ["carl", "carl2", "rolr", "alice", "rascal", "alices", "rolr2", "alice2", "rascal2", "alices2"]:
assert y is not None
if method in ["scandal", "rascal", "alices", "rascal2", "alices2", "sally", "sallino"]:
assert t_xz0 is not None
if method in ["carl2", "rolr2", "alice2", "rascal2", "alices2"]:
assert theta1 is not None
if method in ["rascal2", "alices2"]:
assert t_xz1 is not None
if method in ["nde", "scandal"]:
assert nde_type in ["maf", "mafmog"]
calculate_model_score = method in ["rascal", "cascal", "alices", "scandal", "rascal2", "cascal2", "alices2"]
# Infer dimensions of problem
n_samples = x.shape[0]
n_observables = x.shape[1]
if theta0 is not None:
n_parameters = theta0.shape[1]
else:
n_parameters = t_xz0.shape[1]
logger.info("Found %s samples with %s parameters and %s observables", n_samples, n_parameters, n_observables)
# Limit sample size
if limit_samplesize is not None and limit_samplesize < n_samples:
logger.info("Only using %s of %s training samples", limit_samplesize, n_samples)
x = x[:limit_samplesize]
if theta0 is not None:
theta0 = theta0[:limit_samplesize]
if theta1 is not None:
theta1 = theta1[:limit_samplesize]
if y is not None:
y = y[:limit_samplesize]
if r_xz is not None:
r_xz = r_xz[:limit_samplesize]
if t_xz0 is not None:
t_xz0 = t_xz0[:limit_samplesize]
if t_xz1 is not None:
t_xz1 = t_xz1[:limit_samplesize]
# Scale features
if scale_inputs:
logger.info("Rescaling inputs")
self.x_scaling_means = np.mean(x, axis=0)
self.x_scaling_stds = np.maximum(np.std(x, axis=0), 1.0e-6)
x[:] -= self.x_scaling_means
x[:] /= self.x_scaling_stds
else:
self.x_scaling_means = np.zeros(n_parameters)
self.x_scaling_stds = np.ones(n_parameters)
logger.debug("Observable ranges:")
for i in range(n_observables):
logger.debug(
" x_%s: mean %s, std %s, range %s ... %s",
i + 1,
np.mean(x[:, i]),
np.std(x[:, i]),
np.min(x[:, i]),
| np.max(x[:, i]) | numpy.max |
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import astropy.units as u
from astropy.cosmology import z_at_value
from astropy.cosmology import WMAP9 as cosmo
def Plot_SNR(
var_x,
sample_x,
var_y,
sample_y,
SNRMatrix,
fig=None,
ax=None,
display=True,
return_plt=False,
dl_axis=False,
lb_axis=False,
smooth_contours=True,
cfill=True,
display_cbar=True,
x_axis_label=True,
y_axis_label=True,
x_axis_line=None,
y_axis_line=None,
logLevels_min=-1.0,
logLevels_max=0.0,
hspace=0.15,
wspace=0.1,
contour_kwargs={},
contourf_kwargs={},
xticklabels_kwargs={},
xlabels_kwargs={},
xline_kwargs={},
yticklabels_kwargs={},
ylabels_kwargs={},
yline_kwargs={},
):
"""Plots the SNR contours from calcSNR
Parameters
----------
var_x: str
x-axis variable
sample_x: array
samples at which ``SNRMatrix`` was calculated corresponding to the x-axis variable
var_y: str
y-axis variable
sample_y: array
samples at which ``SNRMatrix`` was calculated corresponding to the y-axis variable
SNRMatrix: array-like
the matrix at which the SNR was calculated corresponding to the particular x and y-axis variable choices
fig: object, optional
matplotlib figure object on which to collate the individual plots
ax: object, optional
matplotlib axes object on which to plot the individual plot
display: bool, optional
Option to turn off display if saving multiple plots to a file
return_plt: bool, optional
Option to return ``fig`` and ``ax``
dl_axis: bool, optional
Option to turn on the right hand side labels of luminosity distance
lb_axis: bool, optional
Option to turn on the right hand side labels of lookback time
smooth_contours: bool, optional
Option to have contours appear smooth instead of tiered (depending on sample size the edges appear boxey).
cfill: bool, optional
Option to use filled contours or not, default is ``True``
display_cbar: bool, optional
Option to display the colorbar on the axes object
x_axis_label: bool, optional
Option to display the x axis label
y_axis_label: bool, optional
Option to display the y axis label
x_axis_line: int,float, optional
Option to display a line on the x axis if not None
y_axis_line: int,float, optional
Option to display a line on the y axis if not None
logLevels_min: float, optional
Sets the minimum log level of the colorbar, default is -1.0 which set the minimum to the log minimum of the given ``SNRMatrix``
logLevels_max: float, optional
Sets the maximum log level of the colorbar, default is 0.0, which sets the maximum to the log maximum value of the given ``SNRMatrix``
hspace: float, optional
Sets the vertical space between axes objects, default is 0.15
wspace: float, optional
Sets the horizontal space between axes objects, default is 0.1
contour_kwargs: dict, optional
Sets additional kwargs taken by contour in matplotlib
contourf_kwargs: dict, optional
Sets additional kwargs taken by contourf in matplotlib
xticklabels_kwargs: dict, optional
Sets additional kwargs taken by xticklabel in matplotlib
xlabels_kwargs=: dict, optional
Sets additional kwargs taken by xlabel in matplotlib
xline_kwargs: dict, optional
Sets additional kwargs taken by ax.axvline in matplotlib
yticklabels_kwargs: dict, optional
Sets additional kwargs taken by yticklabel in matplotlib
ylabels_kwargs: dict, optional
Sets additional kwargs taken by ylabel in matplotlib
yline_kwargs: dict, optional
Sets additional kwargs taken by ax.axhline in matplotlib
"""
if fig is not None:
if ax is not None:
pass
else:
fig, ax = plt.subplots()
else:
fig, ax = plt.subplots()
if "colors" not in contour_kwargs.keys() and "cmap" not in contour_kwargs.keys():
contour_kwargs["colors"] = "k"
if "linewidths" not in contour_kwargs.keys():
contour_kwargs["linewidths"] = 2.0
if "cmap" not in contourf_kwargs.keys():
contourf_kwargs["cmap"] = "viridis"
logSNR = np.log10(SNRMatrix)
if logLevels_min == -1.0:
logLevels_min = np.log10(np.array([1.0]))
if logLevels_max == 0.0:
logLevels_max = np.ceil(np.amax(logSNR))
if logLevels_max < logLevels_min:
raise ValueError("All SNRs are lower than 5.")
logLevels_add = np.log10(np.array([3.0, 10.0, 31.0]))
print_logLevels = np.concatenate(
(logLevels_min, logLevels_add, np.arange(2.0, logLevels_max + 1.0))
)
logLevels = print_logLevels
ylabel_min = min(sample_y)
ylabel_max = max(sample_y)
xlabel_min = min(sample_x)
xlabel_max = max(sample_x)
# Set whether log or linearly spaced axes
if xlabel_max < 0.0 or xlabel_min < 0.0 or var_x in ["n_p", "T_obs"]:
xaxis_type = "lin"
step_size = int(xlabel_max - xlabel_min + 1)
x_labels = np.linspace(xlabel_min, xlabel_max, step_size)
else:
x_log_range = np.log10(xlabel_max) - np.log10(xlabel_min)
if x_log_range >= 2.0:
xaxis_type = "log"
step_size = int(np.log10(xlabel_max) - np.log10(xlabel_min) + 1)
x_labels = np.logspace(
np.log10(xlabel_min), np.log10(xlabel_max), step_size
)
else:
xaxis_type = "lin"
x_scale = 10 ** round(np.log10(xlabel_min))
x_labels = (
np.arange(
round(xlabel_min / x_scale), round(xlabel_max / x_scale) + 1, 1
)
* x_scale
)
if x_labels[0] < xlabel_min:
x_labels[0] = xlabel_min
if x_labels[-1] > xlabel_max:
x_labels[-1] = xlabel_max
if ylabel_max < 0.0 or ylabel_min < 0.0 or var_y in ["n_p", "T_obs"]:
yaxis_type = "lin"
step_size = int(ylabel_max - ylabel_min + 1)
y_labels = np.linspace(ylabel_min, ylabel_max, step_size)
else:
y_log_range = np.log10(ylabel_max) - np.log10(ylabel_min)
if y_log_range >= 2.0:
yaxis_type = "log"
step_size = int(np.log10(ylabel_max) - np.log10(ylabel_min) + 1)
y_labels = np.logspace(
np.log10(ylabel_min), np.log10(ylabel_max), step_size
)
else:
yaxis_type = "lin"
y_scale = 10 ** round(np.log10(ylabel_min))
y_labels = (
np.arange(
round(ylabel_min / y_scale), round(ylabel_max / y_scale) + 1, 1
)
* y_scale
)
if y_labels[0] < ylabel_min:
y_labels[0] = ylabel_min
if y_labels[-1] > ylabel_max:
y_labels[-1] = ylabel_max
# Set axis scales based on what data sampling we used
if yaxis_type == "lin" and xaxis_type == "log":
if not cfill:
CS1 = ax.contour(
np.log10(sample_x), sample_y, logSNR, print_logLevels, **contour_kwargs
)
else:
if smooth_contours:
cmap = mpl.cm.get_cmap(name=contourf_kwargs["cmap"])
cmap.set_under(color="white")
CS1 = ax.imshow(
logSNR,
extent=[
np.log10(xlabel_min),
np.log10(xlabel_max),
ylabel_min,
ylabel_max,
],
vmin=logLevels_min,
vmax=logLevels_max,
origin="lower",
aspect="auto",
cmap=cmap,
)
else:
CS1 = ax.contourf(
np.log10(sample_x), sample_y, logSNR, logLevels, **contourf_kwargs
)
ax.contour(
np.log10(sample_x), sample_y, logSNR, print_logLevels, **contour_kwargs
)
ax.set_xlim(np.log10(xlabel_min), np.log10(xlabel_max))
ax.set_ylim(ylabel_min, ylabel_max)
elif yaxis_type == "log" and xaxis_type == "lin":
if not cfill:
CS1 = ax.contour(
sample_x, np.log10(sample_y), logSNR, print_logLevels, **contour_kwargs
)
else:
if smooth_contours:
cmap = mpl.cm.get_cmap(name=contourf_kwargs["cmap"])
cmap.set_under(color="white")
CS1 = ax.imshow(
logSNR,
extent=[
xlabel_min,
xlabel_max,
np.log10(ylabel_min),
np.log10(ylabel_max),
],
vmin=logLevels_min,
vmax=logLevels_max,
origin="lower",
aspect="auto",
cmap=cmap,
)
else:
CS1 = ax.contourf(
sample_x, np.log10(sample_y), logSNR, logLevels, **contourf_kwargs
)
ax.contour(
sample_x, np.log10(sample_y), logSNR, print_logLevels, **contour_kwargs
)
ax.set_xlim(xlabel_min, xlabel_max)
ax.set_ylim(np.log10(ylabel_min), np.log10(ylabel_max))
elif yaxis_type == "lin" and xaxis_type == "lin":
if not cfill:
CS1 = ax.contour(
sample_x, sample_y, logSNR, print_logLevels, **contour_kwargs
)
else:
if smooth_contours:
cmap = mpl.cm.get_cmap(name=contourf_kwargs["cmap"])
cmap.set_under(color="white")
CS1 = ax.imshow(
logSNR,
extent=[xlabel_min, xlabel_max, ylabel_min, ylabel_max],
vmin=logLevels_min,
vmax=logLevels_max,
origin="lower",
aspect="auto",
cmap=cmap,
)
else:
CS1 = ax.contourf(
sample_x, sample_y, logSNR, logLevels, **contourf_kwargs
)
ax.contour(sample_x, sample_y, logSNR, print_logLevels, **contour_kwargs)
ax.set_xlim(xlabel_min, xlabel_max)
ax.set_ylim(ylabel_min, ylabel_max)
else:
if not cfill:
CS1 = ax.contour(
np.log10(sample_x),
np.log10(sample_y),
logSNR,
print_logLevels,
**contour_kwargs
)
else:
if smooth_contours:
cmap = mpl.cm.get_cmap(name=contourf_kwargs["cmap"])
cmap.set_under(color="white")
CS1 = ax.imshow(
logSNR,
extent=[
| np.log10(xlabel_min) | numpy.log10 |
# This file is part of QuTiP: Quantum Toolbox in Python.
#
# Copyright (c) 2011 and later, <NAME> and <NAME>.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
# of its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
import numpy as np
from numpy.testing import run_module_suite, assert_equal, assert_almost_equal
import scipy.sparse as sp
from qutip.random_objects import (rand_dm, rand_herm,
rand_ket)
from qutip.states import coherent
from qutip.sparse import (sp_bandwidth, sp_permute, sp_reverse_permute,
sp_profile, sp_one_norm, sp_inf_norm)
from qutip.cy.spmath import zcsr_kron
def _permutateIndexes(array, row_perm, col_perm):
return array[np.ix_(row_perm, col_perm)]
def _dense_profile(B):
row_pro = 0
for i in range(B.shape[0]):
j = np.where(B[i, :] != 0)[0]
if np.any(j):
if j[-1] > i:
row_pro += (j[-1]-i)
col_pro = 0
for j in range(B.shape[0]):
i = np.where(B[:, j] != 0)[0]
if np.any(i):
if i[-1] > j:
col_pro += i[-1]-j
ans = (row_pro+col_pro, col_pro, row_pro)
return ans
def test_sparse_symmetric_permute():
"Sparse: Symmetric Permute"
# CSR version
A = rand_dm(25, 0.5)
perm = np.random.permutation(25)
x = sp_permute(A.data, perm, perm).toarray()
z = _permutateIndexes(A.full(), perm, perm)
assert_equal((x - z).all(), 0)
# CSC version
B = A.data.tocsc()
y = sp_permute(B, perm, perm).toarray()
assert_equal((y - z).all(), 0)
def test_sparse_nonsymmetric_permute():
"Sparse: Nonsymmetric Permute"
# CSR version
A = rand_dm(25, 0.5)
rperm = np.random.permutation(25)
cperm = np.random.permutation(25)
x = sp_permute(A.data, rperm, cperm).toarray()
z = _permutateIndexes(A.full(), rperm, cperm)
assert_equal((x - z).all(), 0)
# CSC version
B = A.data.tocsc()
y = sp_permute(B, rperm, cperm).toarray()
assert_equal((y - z).all(), 0)
def test_sparse_symmetric_reverse_permute():
"Sparse: Symmetric Reverse Permute"
# CSR version
A = rand_dm(25, 0.5)
perm = np.random.permutation(25)
x = sp_permute(A.data, perm, perm)
B = sp_reverse_permute(x, perm, perm)
assert_equal((A.full() - B.toarray()).all(), 0)
# CSC version
B = A.data.tocsc()
perm = np.random.permutation(25)
x = sp_permute(B, perm, perm)
B = sp_reverse_permute(x, perm, perm)
assert_equal((A.full() - B.toarray()).all(), 0)
def test_sparse_nonsymmetric_reverse_permute():
"Sparse: Nonsymmetric Reverse Permute"
# CSR square array check
A = rand_dm(25, 0.5)
rperm = np.random.permutation(25)
cperm = np.random.permutation(25)
x = sp_permute(A.data, rperm, cperm)
B = sp_reverse_permute(x, rperm, cperm)
assert_equal((A.full() - B.toarray()).all(), 0)
# CSC square array check
A = rand_dm(25, 0.5)
rperm = np.random.permutation(25)
cperm = np.random.permutation(25)
B = A.data.tocsc()
x = sp_permute(B, rperm, cperm)
B = sp_reverse_permute(x, rperm, cperm)
assert_equal((A.full() - B.toarray()).all(), 0)
# CSR column vector check
A = coherent(25, 1)
rperm = np.random.permutation(25)
x = sp_permute(A.data, rperm, [])
B = sp_reverse_permute(x, rperm, [])
assert_equal((A.full() - B.toarray()).all(), 0)
# CSC column vector check
A = coherent(25, 1)
rperm = np.random.permutation(25)
B = A.data.tocsc()
x = sp_permute(B, rperm, [])
B = sp_reverse_permute(x, rperm, [])
assert_equal((A.full() - B.toarray()).all(), 0)
# CSR row vector check
A = coherent(25, 1).dag()
cperm = | np.random.permutation(25) | numpy.random.permutation |
#!/usr/bin/env python
"""
A TensorFlow-based 2D Cardiac Electrophysiology Modeler
Copyright 2017-2018 <NAME> (<EMAIL>)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
"""
import tensorflow as tf
import numpy as np
from screen import Screen
from ionic import IonicModel
from functools import partial
class Courtemanche(IonicModel):
"""
The modified Courtemanche atrial model
"""
def __init__(self, props):
super().__init__(props)
self.min_v = -100.0 # mV
self.max_v = 50.0 # mV
self.depol = -81.0 # mV
self.chronic = True
self.fast_states = ['V', '_Na_i_', '_m_', '_h_']
def init_state_variable(self, state, name, value):
if name in state:
print('Warning! The state variable arlready exists')
state[name] = np.full([self.height, self.width], value, dtype=np.float32)
def define(self, s1=True, state=None):
"""
Defines the tensorflow model
It sets ode_op, s2_op and V used by other methods
"""
super().define()
if state is None:
state = {}
self.init_state_variable(state, 'V', -81.18)
self.init_state_variable(state, '_Na_i_', 1.117e+01)
# self.init_state_variable(state, '_Na_i_', 1.3e+01)
self.init_state_variable(state, '_m_', 2.98e-3)
self.init_state_variable(state, '_h_', 9.649e-1)
self.init_state_variable(state, '_j_', 9.775e-1)
self.init_state_variable(state, '_K_i_', 1.39e+02)
self.init_state_variable(state, '_oa_', 3.043e-2)
self.init_state_variable(state, '_oi_', 9.992e-1)
self.init_state_variable(state, '_ua_', 4.966e-3)
self.init_state_variable(state, '_ui_', 9.986e-1)
self.init_state_variable(state, '_xr_', 3.296e-5)
self.init_state_variable(state, '_xs_', 1.869e-2)
self.init_state_variable(state, '_Ca_i_', 1.013e-4)
self.init_state_variable(state, '_d_', 1.367e-4)
self.init_state_variable(state, '_f_', 9.996e-1)
self.init_state_variable(state, '_f_Ca_', 7.755e-1)
self.init_state_variable(state, '_Ca_rel_', 1.488)
self.init_state_variable(state, '_u_', 0.0)
self.init_state_variable(state, '_v_', 1.0)
self.init_state_variable(state, '_w_', 0.9992)
self.init_state_variable(state, '_Ca_up_', 1.488)
if self.ultra_slow:
self.init_state_variable(state, '_us_', 0.72) # steady-state at 500 ms
# S1 stimulation: vertical along the left side
if s1:
state['V'][:,:25] = 20.0
# define the graph...
with tf.device('/device:GPU:0'):
# Create variables for simulation state
State = {}
for s in state:
State[s] = tf.Variable(state[s])
State1, inter = self.solve(State)
self.dt_per_step = 1
fasts = []
slows = []
# for s in State:
# if s in self.fast_states:
# fasts.append(tf.assign(State[s], State1[s]))
# else:
# slows.append(tf.assign(State[s], State1[s]))
for s in State:
fasts.append(tf.assign(State[s], State1[s]))
self._ode_op = tf.group(*fasts)
self._ops['slow'] = tf.group(*slows)
self._V = State['V'] # V is needed by self.image()
self._State = State
self._Inter = inter
Trend = tf.Variable(np.zeros([2], dtype=np.float32))
self._ops['trend'] = tf.group(
tf.assign(Trend[0], self._V[self.width//2,self.height//8])
# tf.assign(Trend[1], State['_us_'][self.width//2,self.height//8])
)
self._Trend = Trend
def euler(self, g, Rate, dt):
return g + Rate * dt
def δt(self, name):
return self.dt
# if name in self.fast_states:
# return self.dt
# else:
# return self.dt * 10
def solve(self, State):
""" Explicit Euler ODE solver """
V0 = State['V']
V = self.enforce_boundary(V0)
R = 8.3143 # (joule/mole_kelvin).
T = 310; # (kelvin).
F = 96.4867 # (coulomb/millimole).
Cm = 100 # Cm is Cm in membrane (picoF).
g_Na = 7.8 # fast_sodium_current (nanoS/picoF).
Na_o = 140 # (millimolar).
K_o = 5.4 # (millimolar).
g_to = 0.1652 # transient_outward_K_current (nanoS/picoF).
g_Ks = 0.12941176 # slow_delayed_rectifier_K_current (nanoS/picoF).
g_Ca_L = 0.12375 # L_type_Ca_channel (nanoS/picoF).
Km_Na_i = 10 # sodium_potassium_pump (millimolar).
Km_K_o = 1.5 # sodium_potassium_pump (millimolar).
i_NaK_max = 0.59933874 # sodium_potassium_pump (picoA/picoF).
i_CaP_max = 0.275 # sarcolemmal_calcium_pump_current (picoA/picoF).
g_B_Na = 0.0006744375 # background_currents (nanoS/picoF).
g_B_Ca = 0.001131 # background_currents (nanoS/picoF).
g_B_K = 0 # background_currents (nanoS/picoF).
Ca_o = 1.8 # (millimolar).
K_rel = 30 # Ca_release_current_from_JSR (per_millisecond).
tau_tr = 180 # transfer_current_from_NSR_to_JSR (millisecond).
I_up_max = 0.005 # Ca_uptake_current_by_the_NSR (millimolar/millisecond).
K_up = 0.00092 # Ca_uptake_current_by_the_NSR (millimolar).
Ca_up_max = 15 # Ca_leak_current_by_the_NSR (millimolar).
CMDN_max = 0.05 # CMDN_max is CMDN_max in Ca_buffers (millimolar).
TRPN_max = 0.07 # TRPN_max is TRPN_max in Ca_buffers (millimolar).
CSQN_max = 10 # CSQN_max is CSQN_max in Ca_buffers (millimolar).
Km_CMDN = 0.00238 # Km_CMDN is Km_CMDN in Ca_buffers (millimolar).
Km_TRPN = 0.0005 # Km_TRPN is Km_TRPN in Ca_buffers (millimolar).
Km_CSQN = 0.8 # Km_CSQN is Km_CSQN in Ca_buffers (millimolar).
V_cell = 20100 # intracellular_ion_concentrations (micrometre_3).
V_i = V_cell * 0.68 # intracellular_ion_concentrations (micrometre_3).
tau_f_Ca = 2.0 # L_type_Ca_channel_f_Ca_gate (millisecond).
tau_u = 8.0 # Ca_release_current_from_JSR_u_gate (millisecond).
V_rel = 0.0048 * V_cell # intracellular_ion_concentrations (micrometre_3).
V_up = 0.0552 * V_cell # intracellular_ion_concentrations (micrometre_3).
State1 = {}
if self.chronic:
chronic = 1.0
else:
chronic = 0.0
with self.jit_scope():
inter = self.calc_inter(V, tf)
State1['_d_'] = self.rush_larsen(State['_d_'], inter['d_infinity'], inter['tau_d'], self.δt('_d_'))
State1['_f_'] = self.rush_larsen(State['_f_'], inter['f_infinity'], inter['tau_f'], self.δt('_f_'))
State1['_w_'] = self.rush_larsen(State['_w_'], inter['w_infinity'], inter['tau_w'], self.δt('_d_'))
State1['_m_'] = self.rush_larsen(State['_m_'], inter['m_inf'], inter['tau_m'], self.δt('_m_'))
State1['_h_'] = self.rush_larsen(State['_h_'], inter['h_inf'], inter['tau_h'], self.δt('_h_'))
State1['_j_'] = self.rush_larsen(State['_j_'], inter['j_inf'], inter['tau_j'], self.δt('_j_'))
State1['_oa_'] = self.rush_larsen(State['_oa_'], inter['oa_infinity'], inter['tau_oa'], self.δt('_oa_'))
State1['_oi_'] = self.rush_larsen(State['_oi_'], inter['oi_infinity'], inter['tau_oi'], self.δt('_oi_'))
State1['_ua_'] = self.rush_larsen(State['_ua_'], inter['ua_infinity'], inter['tau_ua'], self.δt('_ua_'))
State1['_ui_'] = self.rush_larsen(State['_ui_'], inter['ui_infinity'], inter['tau_ui'], self.δt('_ui_'))
State1['_xr_'] = self.rush_larsen(State['_xr_'], inter['xr_infinity'], inter['tau_xr'], self.δt('_xr_'))
State1['_xs_'] = self.rush_larsen(State['_xs_'], inter['xs_infinity'], inter['tau_xs'], self.δt('_xs_'))
if self.ultra_slow:
State1['_us_'] = self.rush_larsen(State['_us_'], inter['us_infinity'], inter['tau_us'], self.δt('_us_'))
f_Ca_infinity = tf.reciprocal(1.0 + State['_Ca_i_'] / 0.00035)
State1['_f_Ca_'] = self.rush_larsen(State['_f_Ca_'], f_Ca_infinity, tau_f_Ca, self.δt('_f_Ca_'))
E_K = ((R * T) / F) * tf.log(K_o / State['_K_i_'])
i_K1 = inter['i_K1a'] * (V - E_K)
i_to = (1.0-0.5*chronic) * Cm * g_to * tf.pow(State['_oa_'], 3) * State['_oi_'] * (V - E_K)
i_Kur = (1.0-0.5*chronic) * Cm * inter['g_Kur'] * tf.pow(State['_ua_'], 3) * State['_ui_'] * (V - E_K)
i_Kr = inter['i_Kra'] * State['_xr_'] * (V - E_K)
i_Ks = Cm * g_Ks * tf.square(State['_xs_']) * (V - E_K)
i_NaK = ((Cm * i_NaK_max * inter['f_NaK']) / (1.0 + tf.sqrt(tf.pow(Km_Na_i / State['_Na_i_'], 3.0)))) * (K_o / (K_o + Km_K_o))
i_B_K = Cm * g_B_K * (V - E_K)
State1['_K_i_'] = self.euler(
State['_K_i_'],
(2.0 * i_NaK - (i_K1 + i_to + i_Kur + i_Kr + i_Ks + i_B_K)) / (V_i * F),
self.δt('_K_i_')
)
E_Na = ((R * T) / F) * tf.log(Na_o / State['_Na_i_'])
i_Na = Cm * g_Na * tf.pow(State['_m_'], 3) * State['_h_'] * State['_j_'] * (V - E_Na)
if self.ultra_slow:
i_Na *= State['_us_']
i_NaCa = inter['i_NaCaa'] * tf.pow(State['_Na_i_'], 3) - inter['i_NaCab'] * State['_Ca_i_']
i_B_Na = Cm * g_B_Na * (V - E_Na)
State1['_Na_i_'] = self.euler(
State['_Na_i_'],
(-3.0 * i_NaK - (3.0 * i_NaCa + i_B_Na + i_Na)) / (V_i * F),
self.δt('_Na_i_')
)
i_st = 0.0
i_Ca_L = (1.0-0.7*chronic) * Cm * g_Ca_L * State['_d_'] * State['_f_'] * State['_f_Ca_'] * (V - 65.0)
i_CaP = (Cm * i_CaP_max * State['_Ca_i_']) / (0.0005 + State['_Ca_i_'])
E_Ca = ((R * T) / (2.0 * F)) * tf.log(Ca_o / State['_Ca_i_'])
i_B_Ca = Cm * g_B_Ca * (V - E_Ca)
DV = self.euler(
V,
-(i_Na + i_K1 + i_to + i_Kur + i_Kr + i_Ks + i_B_Na + i_B_Ca + i_NaK + i_CaP + i_NaCa + i_Ca_L + i_st) / Cm,
self.δt('V')
)
State1['V'] = DV + self.diff * self.δt('V') * self.laplace(V)
i_rel = K_rel * tf.square(State['_u_']) * State['_v_'] * State['_w_'] * (State['_Ca_rel_'] - State['_Ca_i_'])
i_tr = (State['_Ca_up_'] - State['_Ca_rel_']) / tau_tr
State1['_Ca_rel_'] = self.euler(
State['_Ca_rel_'],
(i_tr - i_rel) * tf.reciprocal(1.0 + (CSQN_max * Km_CSQN) / tf.square(State['_Ca_rel_'] + Km_CSQN)),
self.δt('_Ca_rel_')
)
Fn = 1000.0 * (1.0e-15 * V_rel * i_rel - (1.0e-15 / (2.0 * F)) * (0.5 * i_Ca_L - 0.2 * i_NaCa))
u_infinity = tf.reciprocal(1.0 + tf.exp(-(Fn - 3.4175e-13) / 1.367e-15))
State1['_u_'] = self.rush_larsen(State['_u_'], u_infinity, tau_u, self.δt('_u_'))
tau_v = 1.91 + 2.09 * u_infinity
v_infinity = 1.0 - tf.reciprocal(1.0 + tf.exp(-(Fn - 6.835e-14) / 1.367e-15))
State1['_v_'] = self.rush_larsen(State['_v_'], v_infinity, tau_v, self.δt('_v_'))
i_up = I_up_max / (1.0 + K_up / State['_Ca_i_'])
i_up_leak = (I_up_max * State['_Ca_up_']) / Ca_up_max
State1['_Ca_up_'] = self.euler(
State['_Ca_up_'],
i_up - (i_up_leak + (i_tr * V_rel) / V_up),
self.δt('_Ca_up_')
)
B1 = (2.0 * i_NaCa - (i_CaP + i_Ca_L + i_B_Ca)) / (2.0 * V_i * F) + (V_up * (i_up_leak - i_up) + i_rel * V_rel) / V_i
B2 = 1.0 + (TRPN_max * Km_TRPN) / tf.square(State['_Ca_i_'] + Km_TRPN) + (CMDN_max * Km_CMDN) / tf.square(State['_Ca_i_'] + Km_CMDN)
State1['_Ca_i_'] = self.euler(
State['_Ca_i_'],
B1 / B2,
self.δt('_Ca_i_')
)
for s in State:
if not s in State1:
print('Warning! Missing New State: %s' % s)
return State1, inter
def calc_inter(self, V, mod=np):
R = 8.3143 # R in membrane (joule/mole_kelvin).
T = 310 # T in (kelvin).
F = 96.4867 # F in membrane (coulomb/millimole).
Cm = 100 # Cm in membrane (picoF).
Na_o = 140 # Na_o (millimolar).
g_K1 = 0.09 # g_K1 (nanoS/picoF).
K_Q10 = 3 # transient_outward_K_current (dimensionless).
g_Kr = 0.029411765 # rapid_delayed_rectifier_K_current (nanoS/picoF).
Ca_o = 1.8 # (millimolar).
I_NaCa_max = 1600 # Na_Ca_exchanger_current(picoA/picoF).
K_mNa = 87.5 # Na_Ca_exchanger_current (millimolar).
K_mCa = 1.38 # Na_Ca_exchanger_current (millimolar).
K_sat = 0.1 # Na_Ca_exchanger_current (dimensionless).
gamma_ = 0.35 # Na_Ca_exchanger_current (dimensionless).
sigma = 1.0 # sodium_potassium_pump (dimensionless).
def where(cond, x, y):
ret = mod.where(cond, x, y)
if type(ret) is np.ndarray and ret.shape == ():
ret = float(ret)
return ret
inter = {}
ϵ = V * 1e-20
inter['d_infinity'] = mod.reciprocal(1.0 + mod.exp((V + 10.0) / -8.0))
# note: V + 10 is changed to V + 10.0001 to suppress a warning passing V = -10
inter['tau_d'] = where(
mod.abs(V + 10.0001) < 1.0e-10,
4.579 / (1.0 + mod.exp((V + 10.0) / -6.24)),
(1.0 - mod.exp((V + 10.0001) / -6.24)) / (0.0350000 * (V + 10.0001) * (1.0 + mod.exp((V + 10.0001) / -6.24)))
)
inter['f_infinity'] = mod.exp(-(V + 28.0) / 6.9) / (1.0 + mod.exp(-(V + 28.0) / 6.9))
inter['tau_f'] = 9.0 * mod.reciprocal(0.0197000 * mod.exp(-mod.square(0.0337) * mod.square(V + 10.0)) + 0.02)
inter['tau_w'] = where(
mod.abs(V - 7.9) < 1.0e-10,
ϵ + ((6.0 * 0.2) / 1.3),
(6.0 * (1.0 - mod.exp(-(V - 7.9) / 5.0))) / ((1.0 + 0.3 * mod.exp(-(V - 7.9) / 5.0)) * 1.0 * (V - 7.9))
)
inter['w_infinity'] = 1.0 - mod.reciprocal(1.0 + mod.exp(-(V - 40.0) / 17.0))
alpha_m = where(
mod.abs(V - -47.13) < 0.001,
ϵ + 3.2,
(0.32 * (V + 47.13)) / (1.0 - mod.exp(-0.1 * (V + 47.13)))
)
beta_m = 0.08 * mod.exp(-V / 11.0)
inter['m_inf'] = alpha_m / (alpha_m + beta_m)
inter['tau_m'] = mod.reciprocal(alpha_m + beta_m)
alpha_h = where(
V < -40.0,
0.135 * mod.exp((V + 80.0) / -6.8),
ϵ
)
beta_h = where(
V < -40.0,
3.56 * mod.exp(0.079 * V) + 310000. * mod.exp(0.35 * V),
mod.reciprocal(0.13 * (1.0 + mod.exp((V + 10.66) / -11.1)))
)
inter['h_inf'] = alpha_h / (alpha_h + beta_h)
inter['tau_h'] = mod.reciprocal(alpha_h + beta_h)
alpha_j = where(
V < -40.0,
((-127140. * mod.exp(0.2444 * V) - 3.474e-05 * mod.exp(-0.04391 * V)) * (V + 37.78)) / (1.0 + mod.exp(0.311 * (V + 79.23))),
ϵ
)
beta_j = where(
V < -40.0,
(0.1212 * mod.exp(-0.01052 * V)) / (1.0 + mod.exp(-0.1378 * (V + 40.14))),
(0.3 * mod.exp(-2.535e-07 * V)) / (1.0 + mod.exp(-0.1 * (V + 32.0)))
)
inter['j_inf'] = alpha_j / (alpha_j + beta_j)
inter['tau_j'] = mod.reciprocal(alpha_j + beta_j)
alpha_oa = 0.65 * mod.reciprocal(mod.exp((V - -10.0) / -8.5) + mod.exp(((V - -10.0) - 40.0) / -59.0))
beta_oa = 0.65 * mod.reciprocal(2.5 + mod.exp(((V - -10.0) + 72.0) / 17.0))
inter['tau_oa'] = mod.reciprocal(alpha_oa + beta_oa) / K_Q10
inter['oa_infinity'] = mod.reciprocal(1.0 + mod.exp(((V - -10.0) + 10.47) / -17.54))
alpha_oi = mod.reciprocal(18.53 + 1.0 * mod.exp(((V - -10.0) + 103.7) / 10.95))
beta_oi = mod.reciprocal(35.56 + 1.0 * mod.exp(((V - -10.0) - 8.74) / -7.44))
inter['tau_oi'] = mod.reciprocal(alpha_oi + beta_oi) / K_Q10
inter['oi_infinity'] = mod.reciprocal(1.0 + mod.exp(((V - -10.0) + 33.1) / 5.3))
alpha_ua = 0.65 * mod.reciprocal(mod.exp((V - -10.0) / -8.5) + mod.exp(((V - -10.0) - 40.0) / -59.0))
beta_ua = 0.65 * mod.reciprocal(2.5 + mod.exp(((V - -10.0) + 72.0) / 17.0))
inter['tau_ua'] = mod.reciprocal(alpha_ua + beta_ua) / K_Q10
inter['ua_infinity'] = mod.reciprocal(1.0 + mod.exp(((V - -10.0) + 20.3) / -9.6))
alpha_ui = mod.reciprocal(21.0 + 1.0 * mod.exp(((V - -10.0) - 195.000) / -28.0))
beta_ui = mod.reciprocal(mod.exp(((V - -10.0) - 168.0) / -16.0))
inter['tau_ui'] = mod.reciprocal(alpha_ui + beta_ui) / K_Q10
inter['ui_infinity'] = mod.reciprocal(1.0 + mod.exp(((V - -10.0) - 109.45) / 27.48))
alpha_xr = where(
mod.abs(V + 14.1) < 1.0e-10,
ϵ + 0.0015,
(0.0003 * (V + 14.1)) / (1.0 - mod.exp((V + 14.1) / -5.0))
)
beta_xr = where(
mod.abs(V - 3.3328) < 1.0e-10,
ϵ + 0.000378361,
(7.3898e-05 * (V - 3.3328)) / (mod.exp((V - 3.3328) / 5.1237) - 1.0)
)
inter['tau_xr'] = mod.reciprocal(alpha_xr + beta_xr);
inter['xr_infinity'] = mod.reciprocal(1.0 + mod.exp((V + 14.1) / -6.5))
alpha_xs = where(
mod.abs(V - 19.9) < 1.0e-10,
ϵ + 0.00068,
(4.0e-05 * (V - 19.9)) / (1.0 - mod.exp((V - 19.9) / -17.0))
)
beta_xs = where(
mod.abs(V - 19.9) < 1.0e-10,
ϵ + 0.000315,
(3.5e-05 * (V - 19.9)) / (mod.exp((V - 19.9) / 9.0) - 1.0)
)
inter['tau_xs'] = 0.5 * mod.reciprocal(alpha_xs + beta_xs)
inter['xs_infinity'] = mod.sqrt(mod.reciprocal(1.0 + mod.exp((V - 19.9) / -12.7)))
inter['g_Kur'] = 0.005 + 0.05 / (1.0 + mod.exp((V - 15.0) / -13.0))
inter['f_NaK'] = mod.reciprocal(1.0 + 0.1245 * mod.exp((-0.1 * F * V) / (R * T)) + 0.0365 * sigma * mod.exp((-F * V) / (R * T)))
i_NaCad = (K_mNa*K_mNa*K_mNa + Na_o*Na_o*Na_o) * (K_mCa + Ca_o) * (1.0 + K_sat * mod.exp(((gamma_ - 1.0) * V * F) / (R * T)))
inter['i_NaCaa'] = (Cm * I_NaCa_max * (mod.exp((gamma_ * F * V) / (R * T)) * Ca_o)) / i_NaCad
inter['i_NaCab'] = (Cm * I_NaCa_max * (mod.exp(((gamma_ - 1.0) * F * V) / (R * T)) * (Na_o*Na_o*Na_o))) / i_NaCad
inter['i_K1a'] = (Cm * g_K1) / (1.0 + mod.exp(0.07 * (V + 80.0))) # * (V - E_K)
inter['i_Kra'] = (Cm * g_Kr) / (1.0 + mod.exp((V + 15.0) / 22.4)) # * state[_xr_] * (V - E_K)
V_us = -83.0
K_us = 23.0
alpha_us = 3e-5 * (0.5 * (1 - mod.tanh((V - V_us) / K_us)))
beta_us = 1e-5 * (0.5 * (1 + mod.tanh((V - (V_us + 30)) / K_us)))
inter['us_infinity'] = alpha_us / (alpha_us + beta_us)
inter['tau_us'] = mod.reciprocal(alpha_us + beta_us)
return inter
def pot(self):
return self._V
def image(self):
"""
Returns a [height x width] float ndarray in the range 0 to 1
that encodes V in grayscale
"""
v = self._V.eval()
return (v - self.min_v) / (self.max_v - self.min_v)
def cl_observer(m, cyclelengths, i0, i, cl):
na = m._State['_Na_i_'].eval()
mean_na = | np.average(na, weights=m.phase) | numpy.average |
from datetime import datetime
from dateutil.tz import tzlocal, tzutc
import pandas as pd
import numpy as np
from hdmf.backends.hdf5 import HDF5IO
from hdmf.common import DynamicTable
from pynwb import NWBFile, TimeSeries, NWBHDF5IO, get_manager
from pynwb.file import Subject
from pynwb.epoch import TimeIntervals
from pynwb.ecephys import ElectricalSeries
from pynwb.testing import NWBH5IOMixin, TestCase, remove_test_file
class TestNWBFileHDF5IO(TestCase):
""" Test reading/writing an NWBFile using HDF5IO """
def setUp(self):
""" Set up an NWBFile object with an acquisition TimeSeries, analysis TimeSeries, and a processing module """
self.start_time = datetime(1970, 1, 1, 12, tzinfo=tzutc())
self.ref_time = datetime(1979, 1, 1, 0, tzinfo=tzutc())
self.create_date = datetime(2017, 4, 15, 12, tzinfo=tzlocal())
self.manager = get_manager()
self.filename = 'test_nwbfileio.h5'
self.nwbfile = NWBFile(session_description='a test NWB File',
identifier='TEST123',
session_start_time=self.start_time,
timestamps_reference_time=self.ref_time,
file_create_date=self.create_date,
experimenter='test experimenter',
stimulus_notes='test stimulus notes',
data_collection='test data collection notes',
experiment_description='test experiment description',
institution='nomad',
lab='nolab',
notes='nonotes',
pharmacology='nopharmacology',
protocol='noprotocol',
related_publications='nopubs',
session_id='007',
slices='noslices',
source_script='nosources',
surgery='nosurgery',
virus='novirus',
source_script_file_name='nofilename')
self.ts = TimeSeries(name='test_timeseries', data=list(range(100, 200, 10)),
unit='SIunit', timestamps=np.arange(10.), resolution=0.1)
self.nwbfile.add_acquisition(self.ts)
self.ts2 = TimeSeries(name='test_timeseries2', data=list(range(200, 300, 10)),
unit='SIunit', timestamps=np.arange(10.), resolution=0.1)
self.nwbfile.add_analysis(self.ts2)
self.mod = self.nwbfile.create_processing_module('test_module', 'a test module')
self.ts3 = TimeSeries(name='test_timeseries2', data=list(range(100, 200, 10)),
unit='SIunit', timestamps=np.arange(10.), resolution=0.1)
self.mod.add(self.ts3)
def tearDown(self):
""" Delete the created test file """
remove_test_file(self.filename)
def test_children(self):
""" Test that the TimeSeries and processing module are children of their respective parents """
self.assertIn(self.ts, self.nwbfile.children)
self.assertIn(self.ts2, self.nwbfile.children)
self.assertIn(self.mod, self.nwbfile.children)
self.assertIn(self.ts3, self.mod.children)
def test_write(self):
""" Test writing the NWBFile using HDF5IO """
hdf5io = HDF5IO(self.filename, manager=self.manager, mode='a')
hdf5io.write(self.nwbfile)
hdf5io.close()
# TODO add some asserts
def test_read(self):
""" Test reading the NWBFile using HDF5IO """
hdf5io = HDF5IO(self.filename, manager=self.manager, mode='w')
hdf5io.write(self.nwbfile)
hdf5io.close()
hdf5io = HDF5IO(self.filename, manager=self.manager, mode='r')
container = hdf5io.read()
self.assertIsInstance(container, NWBFile)
self.assertEqual(len(container.acquisition), 1)
self.assertEqual(len(container.analysis), 1)
for v in container.acquisition.values():
self.assertIsInstance(v, TimeSeries)
self.assertContainerEqual(container, self.nwbfile)
hdf5io.close()
class TestNWBFileIO(NWBH5IOMixin, TestCase):
""" Test writing an NWBFile to disk and reading back the file """
# this uses methods tearDown, test_roundtrip, and validate from NWBH5IOMixin. the rest are overridden
def setUp(self):
super().setUp()
self.start_time = datetime(1970, 1, 1, 12, tzinfo=tzutc())
self.ref_time = datetime(1979, 1, 1, 0, tzinfo=tzutc())
self.create_dates = [datetime(2017, 5, 1, 12, tzinfo=tzlocal()),
datetime(2017, 5, 2, 13, 0, 0, 1, tzinfo=tzutc()),
datetime(2017, 5, 2, 14, tzinfo=tzutc())]
def setUpContainer(self):
""" Return a placeholder NWBFile """
return NWBFile('placeholder', 'placeholder', datetime(1970, 1, 1, 12, tzinfo=tzutc()))
def build_nwbfile(self):
""" Create an NWB file """
self.container = NWBFile(session_description='a test session description for a test NWBFile',
identifier='FILE123',
session_start_time=self.start_time,
file_create_date=self.create_dates,
timestamps_reference_time=self.ref_time,
experimenter='A test experimenter',
lab='a test lab',
institution='a test institution',
experiment_description='a test experiment description',
session_id='test1',
notes='my notes',
pharmacology='drugs',
protocol='protocol',
related_publications='my pubs',
slices='my slices',
surgery='surgery',
virus='a virus',
source_script='noscript',
source_script_file_name='nofilename',
stimulus_notes='test stimulus notes',
data_collection='test data collection notes',
keywords=('these', 'are', 'keywords'))
def roundtripContainer(self, cache_spec=False):
""" Build and write an NWBFile to disk, read the file, and return the NWBFile """
self.build_nwbfile()
self.writer = NWBHDF5IO(self.filename, mode='w')
self.writer.write(self.container, cache_spec=cache_spec)
self.writer.close()
self.reader = NWBHDF5IO(self.filename, mode='r')
self.read_nwbfile = self.reader.read()
return self.read_nwbfile
def addContainer(self, nwbfile):
""" No-op. roundtripContainer is overridden and no longer uses addContainer """
pass
def getContainer(self, nwbfile):
""" Get the NWBFile object from the given NWBFile """
return nwbfile
class TestExperimentersConstructorRoundtrip(TestNWBFileIO):
""" Test that a list of multiple experimenters in a constructor is written to and read from file """
def build_nwbfile(self):
description = 'test nwbfile experimenter'
identifier = 'TEST_experimenter'
self.nwbfile = NWBFile(session_description=description,
identifier=identifier,
session_start_time=self.start_time,
experimenter=('experimenter1', 'experimenter2'))
class TestExperimentersSetterRoundtrip(TestNWBFileIO):
""" Test that a list of multiple experimenters in a setter is written to and read from file """
def build_nwbfile(self):
description = 'test nwbfile experimenter'
identifier = 'TEST_experimenter'
self.nwbfile = NWBFile(session_description=description,
identifier=identifier,
session_start_time=self.start_time)
self.nwbfile.experimenter = ('experimenter1', 'experimenter2')
class TestPublicationsConstructorRoundtrip(TestNWBFileIO):
""" Test that a list of multiple publications in a constructor is written to and read from file """
def build_nwbfile(self):
description = 'test nwbfile publications'
identifier = 'TEST_publications'
self.nwbfile = NWBFile(session_description=description,
identifier=identifier,
session_start_time=self.start_time,
related_publications=('pub1', 'pub2'))
class TestPublicationsSetterRoundtrip(TestNWBFileIO):
""" Test that a list of multiple publications in a setter is written to and read from file """
def build_nwbfile(self):
description = 'test nwbfile publications'
identifier = 'TEST_publications'
self.nwbfile = NWBFile(session_description=description,
identifier=identifier,
session_start_time=self.start_time)
self.nwbfile.related_publications = ('pub1', 'pub2')
class TestSubjectIO(NWBH5IOMixin, TestCase):
def setUpContainer(self):
""" Return the test Subject """
return Subject(age='P90D',
description='An unfortunate rat',
genotype='WT',
sex='M',
species='Rattus norvegicus',
subject_id='RAT123',
weight='2 kg',
date_of_birth=datetime(1970, 1, 1, 12, tzinfo=tzutc()),
strain='my_strain')
def addContainer(self, nwbfile):
""" Add the test Subject to the given NWBFile """
nwbfile.subject = self.container
def getContainer(self, nwbfile):
""" Return the test Subject from the given NWBFile """
return nwbfile.subject
class TestEmptySubjectIO(TestSubjectIO):
def setUpContainer(self):
return Subject()
class TestEpochsIO(NWBH5IOMixin, TestCase):
def setUpContainer(self):
""" Return placeholder epochs object. Tested epochs are added directly to the NWBFile in addContainer """
return TimeIntervals('epochs')
def addContainer(self, nwbfile):
""" Add the test epochs to the given NWBFile """
nwbfile.add_epoch_column(
name='temperature',
description='average temperture (c) during epoch'
)
nwbfile.add_epoch(
start_time=5.3,
stop_time=6.1,
timeseries=[],
tags='ambient',
temperature=26.4,
)
# reset the thing
self.container = nwbfile.epochs
def getContainer(self, nwbfile):
""" Return the test epochs from the given NWBFile """
return nwbfile.epochs
class TestEpochsIODf(TestEpochsIO):
def addContainer(self, nwbfile):
""" Add the test epochs with TimeSeries objects to the given NWBFile """
tsa, tsb = [
TimeSeries(name='a', data=np.arange(11), unit='flubs', timestamps=np.linspace(0, 1, 11)),
TimeSeries(name='b', data=np.arange(13), unit='flubs', timestamps= | np.linspace(0.1, 5, 13) | numpy.linspace |
from Bio import pairwise2
from Bio.SubsMat.MatrixInfo import blosum62
import numpy as np
import scipy
import pandas as pd
import regex as re
import pickle
def sub_pivot_df(pps, sdf, group=True):
"""function takes a long form datatable of extracts and peaks (input sdf), filters
for peptide plasmids of interest (input pps) and outputs a datatable with
one row per extract, with columns for 'unmod' and 'mod' (or any other peak type)
with the respective peak area. group option specifies if replicates should be grouped
(by peptide sequence), with"""
#filter for a sub-dataframe that includes just the peptide plasmids of interest
sub_df = sdf[sdf['pep_plasmid'].isin(pps)]
#Grab the set of sequences of interest (set to make non-redundant)
sequences = set(sub_df['sequence'])
#grab just the modification information (%mod fractions) for each extract
stats_df = sub_df.pivot_table(index='extract', columns='peak_type',
values='mod_area', fill_value=0).reset_index()
#metadata for all of the extracts
meta_df = sub_df.groupby('extract', group_keys=False).first().reset_index().sort_values('extract')
#merge metadata with stats data based on extract
extract_df = meta_df.merge(stats_df, on='extract', how='inner')
#if include_other:
# sub_data['mod'] = sub_data['mod'] + sub_data['other']
if group:
extract_df['replicate'] = 1
return extract_df.groupby(
['sequence', 'mod_plasmid', 'modification description'], group_keys=False).agg(
{'media':'first','ms':'first', 'pep_plasmid':'first', 'replicate':'sum', 'total_area':'mean',
'mod':'mean','unmod':'mean', 'extract':'first'}).reset_index().sort_values('mod', ascending=False)
else:
return extract_df
def seq_alignment(wt_sequence, sdf, score='ddg', penalties=(-15, -2)):
"""Function takes a wild-type sequence and a dataframe of extracts of sequence variants to align to.
Returns four lists, each list having one element per row of the input dataframe:
seq_alignments - a list of tuples. Each tuple is the variant sequence, it's alignment to the
wild-type sequence, and it's modification score (the type of score specified in 'score' input).
labels_sparse - the variant sequence aligned to the wild-type sequence, positions that match
wild-type are blank (space), positions that are mutated are the mutant amino acid (or '-' for
gap). Note that for the wild-type sequence, the full sequence is here, no spaces, as a reference.
labels - the variant sequence, unchanged/unaligned.
labels_aligned - the variant sequence, aligned (with gaps)
"""
seq_alignments = []
labels = [wt_sequence]
labels_sparse = [wt_sequence]
labels_aligned = [wt_sequence]
for ind, row in enumerate(sdf.iterrows()):
#get rid of the index
row = row[1]
seq = row['sequence']
mod_efficiency = row[score]
#align the sequences, this will be a list of alignments, we just take the first one, since they are all
# functionally equivalent for our purposes
alignments = pairwise2.align.globalds(wt_sequence, seq.split("*")[0], blosum62, penalties[0], penalties[1])[0]
#skip the wt sequence for the labels/order, so we added it at the beginning
if alignments[1] == wt_sequence:
seq_alignments.append((seq, alignments[1], mod_efficiency))
else:
seq_alignments.append((seq, alignments[1], mod_efficiency))
labels_sparse.append("".join([i if i != w else " " for i, w in zip(alignments[1], wt_sequence)]))
labels.append(seq)
labels_aligned.append(alignments[1])
return seq_alignments, labels_sparse, labels, labels_aligned
def aln2binary_df(wt_sequence, seq_alignments, invert=False):
"""function takes a wild-type sequence, and a list of sequence alignments from the seq_alignment function
(list should be a list of tuples, one tuple per variant: (variant sequence, it's alignment to the
wild-type sequence, and it's modification score)
Returns a new dataframe that is one row per variant, and one column per amino acid position. At each
position, the number 1 means that the variant sequence matches wild-type, 0 means the variant sequence
does not match wild-type
If invert, then the 1/0 assignment is switched.
DOES NOT WORK IF THERE ARE GAPS (or rather, it just assumes that a gap is not a match, it is not recorded
specially)
"""
#Making a new dataframe (seq_df) that has a column for each amino acid
indexes = [i for i in range(len(wt_sequence))]
#temporary list, 1 element for each variant
new_form = []
mod_scores = []
for variant_seq, aligned_seq, mod_eff in seq_alignments:
binary_seq = []
for s,w in zip(aligned_seq, wt_sequence):
if s == w:
binary_seq.append(0 if invert else 1)
else:
binary_seq.append(1 if invert else 0)
new_form.append(binary_seq)
mod_scores.append(mod_eff)
binary_df = pd.DataFrame(new_form, columns = indexes)
#convert modification scores into a numpy array and then into delta delta G for each variant
mod_scores = | np.array(mod_scores) | numpy.array |
"""
qgs tensor module
=================
This module computes and holds the tensor representing the tendencies of the model's equations.
Notes
-----
These are computed using the analytical expressions from:
* <NAME>., <NAME>. and <NAME>.: *The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0*,
Geosci. Model Dev., **9**, 2793-2808, `doi:10.5194/gmd-9-2793-2016 <http://dx.doi.org/10.5194/gmd-9-2793-2016>`_, 2016.
* <NAME>., & <NAME>. (1987). *Theories of multiple equilibria and weather regimes—A critical reexamination.
Part II: Baroclinic two-layer models*. Journal of the atmospheric sciences, **44** (21), 3282-3303.
`link <https://journals.ametsoc.org/doi/abs/10.1175/1520-0469(1987)044%3C3282%3ATOMEAW%3E2.0.CO%3B2>`_
"""
import numpy as np
import sparse as sp
class QgsTensor(object):
"""qgs tendencies tensor class.
Parameters
----------
atmospheric_innner_product: AtmosphericInnerProducts or None
The inner products of the atmospheric basis functions on which the model's PDE atmospheric equations are projected.
If None, disable the atmospheric tendencies.
oceanic_innner_product: OceanicInnerProducts or None
The inner products of the atmospheric basis functions on which the model's PDE oceanic equations are projected.
If None, disable the oceanic tendencies.
Attributes
----------
atmospheric_innner_product: AtmosphericInnerProducts or None
The inner products of the atmospheric basis functions on which the model's PDE equations are projected.
If None, the atmospheric tendencies are disabled.
oceanic_innner_product: OceanicInnerProducts or None
The inner products of the atmospheric basis functions on which the model's PDE equations are projected.
If None, the oceanic tendencies are disabled.
params: QgParams
The models parameters.
tensor: sparse.COO(float)
The tensor :math:`\mathcal{T}_{i,j,k}` :math:`i`-th components.
jacobian_tensor: sparse.COO(float)
The jacobian tensor :math:`\mathcal{T}_{i,j,k} + \mathcal{T}_{i,k,j}` :math:`i`-th components.
"""
def __init__(self, atmospheric_inner_products=None, oceanic_inner_products=None):
self.atmospheric_inner_products = atmospheric_inner_products
self.oceanic_inner_products = oceanic_inner_products
if self.atmospheric_inner_products is not None:
self.params = self.atmospheric_inner_products.params
if self.oceanic_inner_products is not None:
self.params = self.oceanic_inner_products.params
self.tensor = None
self.jacobian_tensor = None
self.compute_tensor()
def _psi_a(self, i):
"""Transform the :math:`\psi_{\mathrm a}` :math:`i`-th coefficient into the effective model's variable.
Parameters
----------
i: int
The :math:`i`-th coefficients of :math:`\psi_{\mathrm a}`
Returns
-------
int
The effective model's variable.
"""
return i
def _theta_a(self, i):
"""Transform the :math:`\\theta_{\mathrm a}` :math:`i`-th coefficient into the effective model's variable.
Parameters
----------
i: int
The :math:`i`-th coefficients of :math:`\\theta_{\mathrm a}`
Returns
-------
int
The effective model's variable.
"""
return i + self.params.nmod[0]
def _psi_o(self, i):
"""Transform the :math:`\psi_{\mathrm o}` :math:`i`-th coefficient into the effective model's variable.
Parameters
----------
i: int
The :math:`i`-th coefficients of :math:`\psi_{\mathrm o}`
Returns
-------
int
The effective model's variable.
"""
return i + 2 * self.params.nmod[0]
def _deltaT_o(self, i):
"""Transform the :math:`\delta T_{\mathrm o}` :math:`i`-th coefficient into the effective model's variable.
Parameters
----------
i: int
The :math:`i`-th coefficients of :math:`\delta T_{\mathrm o}`
Returns
-------
int
The effective model's variable.
"""
return i + 2 * self.params.nmod[0] + self.params.nmod[1]
def _deltaT_g(self, i):
"""Transform the :math:`\delta T_{\mathrm o}` :math:`i`-th coefficient into the effective model's variable.
Parameters
----------
i: int
The :math:`i`-th coefficients of :math:`\delta T_{\mathrm o}`
Returns
-------
int
The effective model's variable.
"""
return i + 2 * self.params.nmod[0]
def compute_tensor(self):
"""Routine to compute the tensor."""
aips = self.atmospheric_inner_products
oips = self.oceanic_inner_products
par = self.params
atp = par.atemperature_params
ap = par.atmospheric_params
op = par.oceanic_params
scp = par.scale_params
gp = par.ground_params
namod = par.nmod[0]
ngomod = par.nmod[1]
ndim = par.ndim
if par.gotemperature_params is not None:
ocean = par.gotemperature_params._name == "Oceanic Temperature"
ground_temp = par.gotemperature_params._name == "Ground Temperature"
else:
ocean = False
ground_temp = False
# 0-th tensor component is an empty matrix
tensor = sp.zeros((ndim+1, ndim + 1, ndim + 1), dtype=np.float64, format='dok')
jacobian_tensor = sp.zeros((ndim+1, ndim + 1, ndim + 1), dtype=np.float64, format='dok')
## Problem with matmul with object and DOK archi : Temporary fix until a better solution is found
hk = np.array(gp.hk, dtype=np.float)
g = aips.g.to_coo()
#################
# psi_a part
for i in range(1, namod + 1):
t = np.zeros((ndim + 1, ndim + 1), dtype=np.float64)
for j in range(1, namod + 1):
t[self._psi_a(j), 0] = -((aips.c[(i - 1), (j - 1)] * scp.beta) / aips.a[(i - 1), (i - 1)]) \
- (ap.kd * _kronecker_delta((i - 1), (j - 1))) / 2
t[self._theta_a(j), 0] = (ap.kd * _kronecker_delta((i - 1), (j - 1))) / 2
if gp.hk is not None:
oro = (g[(i - 1), (j - 1), :] @ hk) / (2 * aips.a[(i - 1), (i - 1)])
t[self._psi_a(j), 0] -= oro
t[self._theta_a(j), 0] += oro
for k in range(1, namod + 1):
t[self._psi_a(j), self._psi_a(k)] = - aips.b[(i - 1), (j - 1), (k - 1)] \
/ aips.a[(i - 1), (i - 1)]
t[self._theta_a(j), self._theta_a(k)] = - aips.b[(i - 1), (j - 1), (k - 1)] \
/ aips.a[(i - 1), (i - 1)]
if ocean:
for j in range(1, ngomod + 1):
t[self._psi_o(j), 0] = ap.kd * aips.d[(i - 1), (j - 1)] / \
(2 * aips.a[(i - 1), (i - 1)])
t = self.simplify_matrix(t)
tensor[self._psi_a(i)] = t
jacobian_tensor[self._psi_a(i)] = t + t.T
# theta_a part
for i in range(1, namod + 1):
t = np.zeros((ndim + 1, ndim + 1), dtype=np.float64)
if par.Cpa is not None:
t[0, 0] = par.Cpa[i - 1] / (1 - aips.a[0, 0] * ap.sig0)
if atp.hd is not None and atp.thetas is not None:
t[0, 0] += atp.hd * atp.thetas[(i - 1)] / (1. - ap.sig0 * aips.a[(i - 1), (i - 1)])
for j in range(1, namod + 1):
t[self._psi_a(j), 0] = (aips.a[(i - 1), (j - 1)] * ap.kd * ap.sig0) \
/ (-2 + 2 * aips.a[(i - 1), (i - 1)] * ap.sig0)
if par.LSBpa is not None and par.Lpa is not None:
heat = 2. * (par.LSBpa + atp.sc * par.Lpa) * _kronecker_delta((i - 1), (j - 1))
else:
heat = 0
t[self._theta_a(j), 0] = (-((ap.sig0 * (2. * aips.c[(i - 1), (j - 1)]
* scp.beta + aips.a[(i - 1), (j - 1)] * (ap.kd + 4. * ap.kdp))))
+ heat) / (-2. + 2. * aips.a[(i - 1), (i - 1)] * ap.sig0)
if atp.hd is not None:
t[self._theta_a(j), 0] += (atp.hd * _kronecker_delta((i - 1), (j - 1))) / (ap.sig0 * aips.a[(i - 1), (i - 1)] - 1.)
if gp.hk is not None:
oro = (ap.sig0 * g[(i - 1), (j - 1), :] @ hk) / (2 * aips.a[(i - 1), (i - 1)] * ap.sig0 - 2.)
t[self._theta_a(j), 0] -= oro
t[self._psi_a(j), 0] += oro
for k in range(1, namod + 1):
t[self._psi_a(j), self._theta_a(k)] = (aips.g[(i - 1), (j - 1), (k - 1)]
- aips.b[(i - 1), (j - 1), (k - 1)] * ap.sig0) / \
(-1 + aips.a[(i - 1), (i - 1)] * ap.sig0)
t[self._theta_a(j), self._psi_a(k)] = (aips.b[(i - 1), (j - 1), (k - 1)] * ap.sig0) \
/ (1 - aips.a[(i - 1), (i - 1)] * ap.sig0)
if ocean:
for j in range(1, ngomod + 1):
t[self._psi_o(j), 0] = ap.kd * (aips.d[(i - 1), (j - 1)] * ap.sig0) \
/ (2 - 2 * aips.a[(i - 1), (i - 1)] * ap.sig0)
if par.LSBpgo is not None and par.Lpa is not None:
t[self._deltaT_o(j), 0] = aips.s[(i - 1), (j - 1)] * (2 * par.LSBpgo + par.Lpa) \
/ (2 - 2 * aips.a[(i - 1), (i - 1)] * ap.sig0)
if ground_temp and i <= ngomod:
t[self._deltaT_g(i), 0] = (2 * par.LSBpgo + par.Lpa) / (2 - 2 * aips.a[(i - 1), (i - 1)] * ap.sig0)
t = self.simplify_matrix(t)
tensor[self._theta_a(i)] = t
jacobian_tensor[self._theta_a(i)] = t + t.T
if ocean:
# psi_o part
for i in range(1, ngomod + 1):
t = | np.zeros((ndim + 1, ndim + 1), dtype=np.float64) | numpy.zeros |
'''
Author: <NAME>, <NAME>
Acknowledgment: Derived some functions from <NAME>'s work
Description: This script is used to train the dual neural network for tool substitution with material properties.
'''
import os, sys
import numpy as np
import cPickle as pickle
import csv
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Input, Lambda, Dropout, merge, MaxPooling1D, Flatten, Conv1D
import keras.backend as K
from keras import optimizers
from keras import regularizers
from keras.utils import plot_model
from keras.utils.np_utils import to_categorical
from sklearn.preprocessing import Normalizer, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.utils import shuffle
from sklearn.externals import joblib
from sklearn.metrics import accuracy_score
import random
def sigmoid(z):
return 1/(1+np.exp(-z))
def features_scio(csv_file):
# Take csv file and retrieve scio_processed_data corresponding to input
features = {}
obj_materials = {}
wavelengthCount = 331
with open(csv_file) as f:
reader = csv.reader(f)
for idx, row in enumerate(reader):
if idx == 10:
wavelengths = [float(r.strip().split('_')[-1].split()[0]) + 740.0 for r in row[10:wavelengthCount+10]]
try:
int(row[0]) # To skip first few rows until first integer encountered
if '.ply' not in row[3]:
obj_name = row[3] + '.ply'
else:
obj_name = row[3]
features_list = [float(elt) for elt in row[10:wavelengthCount+10]]
features_list = firstDeriv(features_list, wavelengths)
features[obj_name] = features_list
material_name = row[4]
obj_materials[obj_name] = row[4]
except:
pass
return features, obj_materials
def loadScioDataset(pklFile, csvFile, materialNames=[], objectNames=[]):
saveFilename = pklFile + '.pkl'
if os.path.isfile(saveFilename):
with open(saveFilename, 'rb') as f:
X, y_materials, y_objects, wavelengths = pickle.load(f)
else:
X = []
y_materials = []
y_objects = []
filename = csvFile + '.csv'
print(filename)
wavelengthCount = 331
with open(filename, 'rb') as f:
reader = csv.reader(f)
for i, row in enumerate(reader):
if i < 10 or i == 11:
continue
if i == 10:
# Header row
wavelengths = [float(r.strip().split('_')[-1].split()[0]) + 740.0 for r in row[10:wavelengthCount+10]]
continue
obj = row[3].strip()
material = row[4].strip()
if material not in materialNames:
continue
index = materialNames.index(material)
if objectNames is not None and obj not in objectNames[index]:
continue
values = [float(v) for v in row[10:wavelengthCount+10]]
X.append(values)
y_materials.append(index)
y_objects.append(obj)
with open(saveFilename, 'wb') as f:
pickle.dump([X, y_materials, y_objects, wavelengths], f, protocol=pickle.HIGHEST_PROTOCOL)
return X, y_materials, y_objects, wavelengths
def firstDeriv(x, wavelengths):
# First derivative of measurements with respect to wavelength
x = np.copy(x)
for i, xx in enumerate(x):
dx = np.zeros(xx.shape, np.float)
dx[0:-1] = | np.diff(xx) | numpy.diff |
# from __future__ import print_function, absolute_import, division
import multiprocessing
import re
import shutil
import types
from pathlib import Path
import allesfitter
import numpy as np
import yaml
from argparse import ArgumentParser
from sherlockpipe.star.HabitabilityCalculator import HabitabilityCalculator
import pandas as pd
import os
from os import path
resources_dir = path.join(path.dirname(__file__))
class Fitter:
def __init__(self, object_dir, only_initial, mcmc = False, detrend = False):
self.args = types.SimpleNamespace()
self.args.noshow = True
self.args.north = False
self.args.o = True
self.args.auto = True
self.args.save = True
self.args.nickname = "" # TODO do we set the sherlock id?
self.args.FFI = False # TODO get this from input
self.args.targetlist = "best_signal_latte_input.csv"
self.args.new_path = "" # TODO check what to do with this
self.object_dir = os.getcwd() if object_dir is None else object_dir
self.latte_dir = str(Path.home()) + "/.sherlockpipe/latte/"
if not os.path.exists(self.latte_dir):
os.mkdir(self.latte_dir)
self.data_dir = self.object_dir
self.only_initial = only_initial
self.mcmc = mcmc
self.detrend = detrend
def fit(self, candidate_df, star_df, cpus, allesfit_dir):
candidate_row = candidate_df.iloc[0]
sherlock_star_file = self.object_dir + "/params_star.csv"
star_file = allesfit_dir + "/params_star.csv"
params_file = allesfit_dir + "/params.csv"
settings_file = allesfit_dir + "/settings.csv"
if candidate_row["number"] is None or | np.isnan(candidate_row["number"]) | numpy.isnan |
import sys
import numpy as np
import pandas as pd
import openmdao.api as om
from wisdem.commonse import gravity
eps = 1e-3
# Convenience functions for computing McDonald's C and F parameters
def chsMshc(x):
return np.cosh(x) * np.sin(x) - np.sinh(x) * np.cos(x)
def chsPshc(x):
return np.cosh(x) * np.sin(x) + np.sinh(x) * np.cos(x)
def carterFactor(airGap, slotOpening, slotPitch):
"""Return Carter factor
(based on Langsdorff's empirical expression)
See page 3-13 Boldea Induction machines Chapter 3
"""
gma = (2 * slotOpening / airGap) ** 2 / (5 + 2 * slotOpening / airGap)
return slotPitch / (slotPitch - airGap * gma * 0.5)
# ---------------
def carterFactorMcDonald(airGap, h_m, slotOpening, slotPitch):
"""Return Carter factor using Carter's equation
(based on Schwartz-Christoffel's conformal mapping on simplified slot geometry)
This code is based on Eq. B.3-5 in Appendix B of McDonald's thesis.
It is used by PMSG_arms and PMSG_disc.
h_m : magnet height (m)
b_so : stator slot opening (m)
tau_s : Stator slot pitch (m)
"""
mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS)
g_1 = airGap + h_m / mu_r # g
b_over_a = slotOpening / (2 * g_1)
gamma = 4 / np.pi * (b_over_a * np.arctan(b_over_a) - np.log(np.sqrt(1 + b_over_a ** 2)))
return slotPitch / (slotPitch - gamma * g_1)
# ---------------
def carterFactorEmpirical(airGap, slotOpening, slotPitch):
"""Return Carter factor using Langsdorff's empirical expression"""
sigma = (slotOpening / airGap) / (5 + slotOpening / airGap)
return slotPitch / (slotPitch - sigma * slotOpening)
# ---------------
def carterFactorSalientPole(airGap, slotWidth, slotPitch):
"""Return Carter factor for salient pole rotor
Where does this equation come from? It's different from other approximations above.
Original code:
tau_s = np.pi * dia / S # slot pitch
b_s = tau_s * b_s_tau_s # slot width
b_t = tau_s - b_s # tooth width
K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor
slotPitch - slotWidth == toothWidth
"""
return (slotPitch + 10 * airGap) / (slotPitch - slotWidth + 10 * airGap) # salient pole rotor
# ---------------------------------
def array_seq(q1, b, c, Total_number):
Seq = np.array([1, 0, 0, 1, 0])
diff = Total_number * 5 / 6
G = np.prod(Seq.shape)
return Seq, diff, G
# ---------------------------------
def winding_factor(Sin, b, c, p, m):
S = int(Sin)
# Step 1 Writing q1 as a fraction
q1 = b / c
# Step 2: Writing a binary sequence of b-c zeros and b ones
Total_number = int(S / b)
L = array_seq(q1, b, c, Total_number)
# STep 3 : Repeat binary sequence Q_s/b times
New_seq = np.tile(L[0], Total_number)
Actual_seq1 = pd.DataFrame(New_seq[:, None].T)
Winding_sequence = ["A", "C1", "B", "A1", "C", "B1"]
New_seq2 = np.tile(Winding_sequence, int(L[1]))
Actual_seq2 = pd.DataFrame(New_seq2[:, None].T)
Seq_f = pd.concat([Actual_seq1, Actual_seq2], ignore_index=True)
Seq_f.reset_index(drop=True)
Slots = S
R = S if S % 2 == 0 else S + 1
Windings_arrange = (pd.DataFrame(index=Seq_f.index, columns=Seq_f.columns[1:R])).fillna(0)
counter = 1
# Step #4 Arranging winding in Slots
for i in range(0, len(New_seq)):
if Seq_f.loc[0, i] == 1:
Windings_arrange.loc[0, counter] = Seq_f.loc[1, i]
counter = counter + 1
Windings_arrange.loc[1, 1] = "C1"
for k in range(1, R):
if Windings_arrange.loc[0, k] == "A":
Windings_arrange.loc[1, k + 1] = "A1"
elif Windings_arrange.loc[0, k] == "B":
Windings_arrange.loc[1, k + 1] = "B1"
elif Windings_arrange.loc[0, k] == "C":
Windings_arrange.loc[1, k + 1] = "C1"
elif Windings_arrange.loc[0, k] == "A1":
Windings_arrange.loc[1, k + 1] = "A"
elif Windings_arrange.loc[0, k] == "B1":
Windings_arrange.loc[1, k + 1] = "B"
elif Windings_arrange.loc[0, k] == "C1":
Windings_arrange.loc[1, k + 1] = "C"
Phase_A = np.zeros((1000, 1), dtype=float)
counter_A = 0
# Windings_arrange.to_excel('test.xlsx')
# Winding vector, W_A for Phase A
for l in range(1, R):
if Windings_arrange.loc[0, l] == "A" and Windings_arrange.loc[1, l] == "A":
Phase_A[counter_A, 0] = l
Phase_A[counter_A + 1, 0] = l
counter_A = counter_A + 2
elif Windings_arrange.loc[0, l] == "A1" and Windings_arrange.loc[1, l] == "A1":
Phase_A[counter_A, 0] = -1 * l
Phase_A[counter_A + 1, 0] = -1 * l
counter_A = counter_A + 2
elif Windings_arrange.loc[0, l] == "A" or Windings_arrange.loc[1, l] == "A":
Phase_A[counter_A, 0] = l
counter_A = counter_A + 1
elif Windings_arrange.loc[0, l] == "A1" or Windings_arrange.loc[1, l] == "A1":
Phase_A[counter_A, 0] = -1 * l
counter_A = counter_A + 1
W_A = (np.trim_zeros(Phase_A)).T
# Calculate winding factor
K_w = 0
for r in range(0, int(2 * (S) / 3)):
Gamma = 2 * np.pi * p * np.abs(W_A[0, r]) / S
K_w += np.sign(W_A[0, r]) * (np.exp(Gamma * 1j))
K_w = np.abs(K_w) / (2 * S / 3)
CPMR = np.lcm(S, int(2 * p))
N_cog_s = CPMR / S
N_cog_p = CPMR / p
N_cog_t = CPMR * 0.5 / p
A = np.lcm(S, int(2 * p))
b_p_tau_p = 2 * 1 * p / S - 0
b_t_tau_s = (2) * S * 0.5 / p - 2
return K_w
# ---------------------------------
def shell_constant(R, t, l, x, E, v):
Lambda = (3 * (1 - v ** 2) / (R ** 2 * t ** 2)) ** 0.25
D = E * t ** 3 / (12 * (1 - v ** 2))
C_14 = (np.sinh(Lambda * l)) ** 2 + (np.sin(Lambda * l)) ** 2
C_11 = (np.sinh(Lambda * l)) ** 2 - (np.sin(Lambda * l)) ** 2
F_2 = np.cosh(Lambda * x) * np.sin(Lambda * x) + np.sinh(Lambda * x) * np.cos(Lambda * x)
C_13 = np.cosh(Lambda * l) * np.sinh(Lambda * l) - np.cos(Lambda * l) * np.sin(Lambda * l)
F_1 = np.cosh(Lambda * x) * np.cos(Lambda * x)
F_4 = np.cosh(Lambda * x) * np.sin(Lambda * x) - np.sinh(Lambda * x) * np.cos(Lambda * x)
return D, Lambda, C_14, C_11, F_2, C_13, F_1, F_4
# ---------------------------------
def plate_constant(a, b, E, v, r_o, t):
D = E * t ** 3 / (12 * (1 - v ** 2))
C_2 = 0.25 * (1 - (b / a) ** 2 * (1 + 2 * np.log(a / b)))
C_3 = 0.25 * (b / a) * (((b / a) ** 2 + 1) * np.log(a / b) + (b / a) ** 2 - 1)
C_5 = 0.5 * (1 - (b / a) ** 2)
C_6 = 0.25 * (b / a) * ((b / a) ** 2 - 1 + 2 * np.log(a / b))
C_8 = 0.5 * (1 + v + (1 - v) * (b / a) ** 2)
C_9 = (b / a) * (0.5 * (1 + v) * np.log(a / b) + 0.25 * (1 - v) * (1 - (b / a) ** 2))
L_11 = (1 / 64) * (
1 + 4 * (r_o / a) ** 2 - 5 * (r_o / a) ** 4 - 4 * (r_o / a) ** 2 * (2 + (r_o / a) ** 2) * np.log(a / r_o)
)
L_17 = 0.25 * (1 - 0.25 * (1 - v) * ((1 - (r_o / a) ** 4) - (r_o / a) ** 2 * (1 + (1 + v) * np.log(a / r_o))))
return D, C_2, C_3, C_5, C_6, C_8, C_9, L_11, L_17
# ---------------------------------
debug = False
# ---------------------------------
class GeneratorBase(om.ExplicitComponent):
"""
Base class for generators
Parameters
----------
B_r : float, [T]
Remnant flux density
E : float, [Pa]
youngs modulus
G : float, [Pa]
Shear modulus
P_Fe0e : float, [W/kg]
specific eddy losses @ 1.5T, 50Hz
P_Fe0h : float, [W/kg]
specific hysteresis losses W / kg @ 1.5 T @50 Hz
S_N : float
Slip
alpha_p : float
b_r_tau_r : float
Rotor Slot width / Slot pitch ratio
b_ro : float, [m]
Rotor slot opening width
b_s_tau_s : float
Stator Slot width/Slot pitch ratio
b_so : float, [m]
Stator slot opening width
cofi : float
power factor
freq : float, [Hz]
grid frequency
h_i : float, [m]
coil insulation thickness
h_sy0 : float
h_w : float, [m]
Slot wedge height
k_fes : float
Stator iron fill factor per Grauers
k_fillr : float
Rotor slot fill factor
k_fills : float
Stator Slot fill factor
k_s : float
magnetic saturation factor for iron
m : int
Number of phases
mu_0 : float, [m*kg/s**2/A**2]
permeability of free space
mu_r : float, [m*kg/s**2/A**2]
relative permeability (neodymium)
p : float
number of pole pairs (taken as int within code)
phi : numpy array[90], [rad]
tilt angle (during transportation)
q1 : int
Stator slots per pole per phase
q2 : int
Rotor slots per pole per phase
ratio_mw2pp : float
ratio of magnet width to pole pitch(bm / self.tau_p)
resist_Cu : float, [ohm/m]
Copper resistivity
sigma : float, [Pa]
assumed max shear stress
v : float
poisson ratio
y_tau_p : float
Stator coil span to pole pitch
y_tau_pr : float
Rotor coil span to pole pitch
I_0 : float, [A]
no-load excitation current
T_rated : float, [N*m]
Rated torque
d_r : float, [m]
arm depth d_r
h_m : float, [m]
magnet height
h_0 : float, [m]
Slot height
h_s : float, [m]
Yoke height h_s
len_s : float, [m]
Stator core length
machine_rating : float, [W]
Machine rating
shaft_rpm : numpy array[n_pc], [rpm]
rated speed of input shaft (lss for direct, hss for geared)
n_r : float
number of arms n
rad_ag : float, [m]
airgap radius
t_wr : float, [m]
arm depth thickness
n_s : float
number of stator arms n_s
b_st : float, [m]
arm width b_st
d_s : float, [m]
arm depth d_s
t_ws : float, [m]
arm depth thickness
D_shaft : float, [m]
Shaft diameter
rho_Copper : float, [kg*m**-3]
Copper density
rho_Fe : float, [kg*m**-3]
Magnetic Steel density
rho_Fes : float, [kg*m**-3]
Structural Steel density
rho_PM : float, [kg*m**-3]
Magnet density
Returns
-------
B_rymax : float, [T]
Peak Rotor yoke flux density
B_trmax : float, [T]
maximum tooth flux density in rotor
B_tsmax : float, [T]
maximum tooth flux density in stator
B_g : float, [T]
Peak air gap flux density B_g
B_g1 : float, [T]
air gap flux density fundamental
B_pm1 : float
Fundamental component of peak air gap flux density
N_s : float
Number of turns in the stator winding
b_s : float, [m]
slot width
b_t : float, [m]
tooth width
A_Curcalc : float, [mm**2]
Conductor cross-section mm^2
A_Cuscalc : float, [mm**2]
Stator Conductor cross-section mm^2
b_m : float
magnet width
mass_PM : float, [kg]
Magnet mass
Copper : float, [kg]
Copper Mass
Iron : float, [kg]
Electrical Steel Mass
Structural_mass : float, [kg]
Structural Mass
generator_mass : float, [kg]
Actual mass
f : float
Generator output frequency
I_s : float, [A]
Generator output phase current
R_s : float, [ohm]
Stator resistance
L_s : float
Stator synchronising inductance
J_s : float, [A*m**-2]
Stator winding current density
A_1 : float
Specific current loading
K_rad : float
Stack length ratio
Losses : numpy array[n_pc], [W]
Total loss
generator_efficiency : numpy array[n_pc]
Generator electromagnetic efficiency values (<1)
u_ar : float, [m]
Rotor radial deflection
u_as : float, [m]
Stator radial deflection
u_allow_r : float, [m]
Allowable radial rotor
u_allow_s : float, [m]
Allowable radial stator
y_ar : float, [m]
Rotor axial deflection
y_as : float, [m]
Stator axial deflection
y_allow_r : float, [m]
Allowable axial
y_allow_s : float, [m]
Allowable axial
z_ar : float, [m]
Rotor circumferential deflection
z_as : float, [m]
Stator circumferential deflection
z_allow_r : float, [m]
Allowable circum rotor
z_allow_s : float, [m]
Allowable circum stator
b_allow_r : float, [m]
Allowable arm dimensions
b_allow_s : float, [m]
Allowable arm
TC1 : float, [m**3]
Torque constraint
TC2r : float, [m**3]
Torque constraint-rotor
TC2s : float, [m**3]
Torque constraint-stator
R_out : float, [m]
Outer radius
S : float
Stator slots
Slot_aspect_ratio : float
Slot aspect ratio
Slot_aspect_ratio1 : float
Stator slot aspect ratio
Slot_aspect_ratio2 : float
Rotor slot aspect ratio
D_ratio : float
Stator diameter ratio
J_r : float
Rotor winding Current density
L_sm : float
mutual inductance
Q_r : float
Rotor slots
R_R : float
Rotor resistance
b_r : float
rotor slot width
b_tr : float
rotor tooth width
b_trmin : float
minimum tooth width
"""
def initialize(self):
self.options.declare("n_pc", default=20)
def setup(self):
n_pc = self.options["n_pc"]
# Constants and parameters
self.add_input("B_r", val=1.2, units="T")
self.add_input("E", val=0.0, units="Pa")
self.add_input("G", val=0.0, units="Pa")
self.add_input("P_Fe0e", val=1.0, units="W/kg")
self.add_input("P_Fe0h", val=4.0, units="W/kg")
self.add_input("S_N", val=-0.002)
self.add_input("alpha_p", val=0.5 * np.pi * 0.7)
self.add_input("b_r_tau_r", val=0.45)
self.add_input("b_ro", val=0.004, units="m")
self.add_input("b_s_tau_s", val=0.45)
self.add_input("b_so", val=0.004, units="m")
self.add_input("cofi", val=0.85)
self.add_input("freq", val=60, units="Hz")
self.add_input("h_i", val=0.001, units="m")
self.add_input("h_sy0", val=0.0)
self.add_input("h_w", val=0.005, units="m")
self.add_input("k_fes", val=0.9)
self.add_input("k_fillr", val=0.7)
self.add_input("k_fills", val=0.65)
self.add_input("k_s", val=0.2)
self.add_discrete_input("m", val=3)
self.add_input("mu_0", val=np.pi * 4e-7, units="m*kg/s**2/A**2")
self.add_input("mu_r", val=1.06, units="m*kg/s**2/A**2")
self.add_input("p", val=3.0)
self.add_input("phi", val=np.deg2rad(90), units="rad")
self.add_discrete_input("q1", val=6)
self.add_discrete_input("q2", val=4)
self.add_input("ratio_mw2pp", val=0.7)
self.add_input("resist_Cu", val=1.8e-8 * 1.4, units="ohm/m")
self.add_input("sigma", val=40e3, units="Pa")
self.add_input("v", val=0.3)
self.add_input("y_tau_p", val=1.0)
self.add_input("y_tau_pr", val=10.0 / 12)
# General inputs
# self.add_input('r_s', val=0.0, units='m', desc='airgap radius r_s')
self.add_input("I_0", val=0.0, units="A")
self.add_input("rated_torque", val=0.0, units="N*m")
self.add_input("d_r", val=0.0, units="m")
self.add_input("h_m", val=0.0, units="m")
self.add_input("h_0", val=0.0, units="m")
self.add_input("h_s", val=0.0, units="m")
self.add_input("len_s", val=0.0, units="m")
self.add_input("machine_rating", val=0.0, units="W")
self.add_input("shaft_rpm", val=np.zeros(n_pc), units="rpm")
self.add_input("n_r", val=0.0)
self.add_input("rad_ag", val=0.0, units="m")
self.add_input("t_wr", val=0.0, units="m")
# Structural design variables
self.add_input("n_s", val=0.0)
self.add_input("b_st", val=0.0, units="m")
self.add_input("d_s", val=0.0, units="m")
self.add_input("t_ws", val=0.0, units="m")
self.add_input("D_shaft", val=0.0, units="m")
# Material properties
self.add_input("rho_Copper", val=8900.0, units="kg*m**-3")
self.add_input("rho_Fe", val=7700.0, units="kg*m**-3")
self.add_input("rho_Fes", val=7850.0, units="kg*m**-3")
self.add_input("rho_PM", val=7450.0, units="kg*m**-3")
# Magnetic loading
self.add_output("B_rymax", val=0.0, units="T")
self.add_output("B_trmax", val=0.0, units="T")
self.add_output("B_tsmax", val=0.0, units="T")
self.add_output("B_g", val=0.0, units="T")
self.add_output("B_g1", val=0.0, units="T")
self.add_output("B_pm1", val=0.0)
# Stator design
self.add_output("N_s", val=0.0)
self.add_output("b_s", val=0.0, units="m")
self.add_output("b_t", val=0.0, units="m")
self.add_output("A_Curcalc", val=0.0, units="mm**2")
self.add_output("A_Cuscalc", val=0.0, units="mm**2")
# Rotor magnet dimension
self.add_output("b_m", val=0.0)
# Mass Outputs
self.add_output("mass_PM", val=0.0, units="kg")
self.add_output("Copper", val=0.0, units="kg")
self.add_output("Iron", val=0.0, units="kg")
self.add_output("Structural_mass", val=0.0, units="kg")
self.add_output("generator_mass", val=0.0, units="kg")
# Electrical performance
self.add_output("f", val=np.zeros(n_pc))
self.add_output("I_s", val=np.zeros(n_pc), units="A")
self.add_output("R_s", val=np.zeros(n_pc), units="ohm")
self.add_output("L_s", val=0.0)
self.add_output("J_s", val=np.zeros(n_pc), units="A*m**-2")
self.add_output("A_1", val=np.zeros(n_pc))
# Objective functions
self.add_output("K_rad", val=0.0)
self.add_output("Losses", val=np.zeros(n_pc), units="W")
self.add_output("eandm_efficiency", val=np.zeros(n_pc))
# Structural performance
self.add_output("u_ar", val=0.0, units="m")
self.add_output("u_as", val=0.0, units="m")
self.add_output("u_allow_r", val=0.0, units="m")
self.add_output("u_allow_s", val=0.0, units="m")
self.add_output("y_ar", val=0.0, units="m")
self.add_output("y_as", val=0.0, units="m")
self.add_output("y_allow_r", val=0.0, units="m")
self.add_output("y_allow_s", val=0.0, units="m")
self.add_output("z_ar", val=0.0, units="m")
self.add_output("z_as", val=0.0, units="m")
self.add_output("z_allow_r", val=0.0, units="m")
self.add_output("z_allow_s", val=0.0, units="m")
self.add_output("b_allow_r", val=0.0, units="m")
self.add_output("b_allow_s", val=0.0, units="m")
self.add_output("TC1", val=0.0, units="m**3")
self.add_output("TC2r", val=0.0, units="m**3")
self.add_output("TC2s", val=0.0, units="m**3")
# Other parameters
self.add_output("R_out", val=0.0, units="m")
self.add_output("S", val=0.0)
self.add_output("Slot_aspect_ratio", val=0.0)
self.add_output("Slot_aspect_ratio1", val=0.0)
self.add_output("Slot_aspect_ratio2", val=0.0)
self.add_output("D_ratio", val=0.0)
self.add_output("J_r", val=np.zeros(n_pc))
self.add_output("L_sm", val=0.0)
self.add_output("Q_r", val=0.0)
self.add_output("R_R", val=0.0)
self.add_output("b_r", val=0.0)
self.add_output("b_tr", val=0.0)
self.add_output("b_trmin", val=0.0)
# ----------------------------------------------------------------------------------------
class PMSG_Outer(GeneratorBase):
"""
Estimates overall electromagnetic dimensions and Efficiency of PMSG -arms generator.
Parameters
----------
P_mech : float, [W]
Shaft mechanical power
N_c : float
Number of turns per coil
b : float
Slot pole combination
c : float
Slot pole combination
E_p : float, [V]
Stator phase voltage
h_yr : float, [m]
rotor yoke height
h_ys : float, [m]
Yoke height
h_sr : float, [m]
Structural Mass
h_ss : float, [m]
Stator yoke height
t_r : float, [m]
Rotor disc thickness
t_s : float, [m]
Stator disc thickness
y_sh : float, [m]
Shaft deflection
theta_sh : float, [rad]
slope of shaft
D_nose : float, [m]
Nose outer diameter
y_bd : float, [m]
Deflection of the bedplate
theta_bd : float, [rad]
Slope at the bedplate
u_allow_pcent : float
Radial deflection as a percentage of air gap diameter
y_allow_pcent : float
Radial deflection as a percentage of air gap diameter
z_allow_deg : float, [deg]
Allowable torsional twist
B_tmax : float, [T]
Peak Teeth flux density
Returns
-------
B_smax : float, [T]
Peak Stator flux density
B_symax : float, [T]
Peak Stator flux density
tau_p : float, [m]
Pole pitch
q : float, [N/m**2]
Normal stress
len_ag : float, [m]
Air gap length
h_t : float, [m]
tooth height
tau_s : float, [m]
Slot pitch
J_actual : float, [A/m**2]
Current density
T_e : float, [N*m]
Electromagnetic torque
twist_r : float, [deg]
torsional twist
twist_s : float, [deg]
Stator torsional twist
Structural_mass_rotor : float, [kg]
Rotor mass (kg)
Structural_mass_stator : float, [kg]
Stator mass (kg)
Mass_tooth_stator : float, [kg]
Teeth and copper mass
Mass_yoke_rotor : float, [kg]
Rotor yoke mass
Mass_yoke_stator : float, [kg]
Stator yoke mass
rotor_mass : float, [kg]
Total rotor mass
stator_mass : float, [kg]
Total stator mass
"""
def initialize(self):
super(PMSG_Outer, self).initialize()
def setup(self):
super(PMSG_Outer, self).setup()
n_pc = self.options["n_pc"]
# PMSG_structrual inputs
self.add_input("P_mech", units="W")
self.add_input("N_c", 0.0)
self.add_input("b", 0.0)
self.add_input("c", 0.0)
self.add_input("E_p", 0.0, units="V")
self.add_input("h_yr", val=0.0, units="m")
self.add_input("h_ys", val=0.0, units="m")
self.add_input("h_sr", 0.0, units="m")
self.add_input("h_ss", 0.0, units="m")
self.add_input("t_r", 0.0, units="m")
self.add_input("t_s", 0.0, units="m")
self.add_input("y_sh", units="m")
self.add_input("theta_sh", 0.0, units="rad")
self.add_input("D_nose", 0.0, units="m")
self.add_input("y_bd", units="m")
self.add_input("theta_bd", 0.0, units="rad")
self.add_input("u_allow_pcent", 0.0)
self.add_input("y_allow_pcent", 0.0)
self.add_input("z_allow_deg", 0.0, units="deg")
# Magnetic loading
self.add_input("B_tmax", 0.0, units="T")
self.add_output("B_smax", val=0.0, units="T")
self.add_output("B_symax", val=0.0, units="T")
self.add_output("tau_p", 0.0, units="m")
self.add_output("q", 0.0, units="N/m**2")
self.add_output("len_ag", 0.0, units="m")
# Stator design
self.add_output("h_t", 0.0, units="m")
self.add_output("tau_s", 0.0, units="m")
# Electrical performance
self.add_output("J_actual", val=np.zeros(n_pc), units="A/m**2")
self.add_output("T_e", 0.0, units="N*m")
# Material properties
self.add_output("twist_r", 0.0, units="deg")
self.add_output("twist_s", 0.0, units="deg")
# Mass Outputs
self.add_output("Structural_mass_rotor", 0.0, units="kg")
self.add_output("Structural_mass_stator", 0.0, units="kg")
self.add_output("Mass_tooth_stator", 0.0, units="kg")
self.add_output("Mass_yoke_rotor", 0.0, units="kg")
self.add_output("Mass_yoke_stator", 0.0, units="kg")
self.add_output("rotor_mass", 0.0, units="kg")
self.add_output("stator_mass", 0.0, units="kg")
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
# Unpack inputs
rad_ag = float(inputs["rad_ag"])
len_s = float(inputs["len_s"])
p = float(inputs["p"])
b = float(inputs["b"])
c = float(inputs["c"])
h_m = float(inputs["h_m"])
h_ys = float(inputs["h_ys"])
h_yr = float(inputs["h_yr"])
h_s = float(inputs["h_s"])
h_ss = float(inputs["h_ss"])
h_0 = float(inputs["h_0"])
B_tmax = float(inputs["B_tmax"])
E_p = float(inputs["E_p"])
P_mech = float(inputs["P_mech"])
P_av_v = float(inputs["machine_rating"])
h_sr = float(inputs["h_sr"])
t_r = float(inputs["t_r"])
t_s = float(inputs["t_s"])
R_sh = 0.5 * float(inputs["D_shaft"])
R_no = 0.5 * float(inputs["D_nose"])
y_sh = float(inputs["y_sh"])
y_bd = float(inputs["y_bd"])
rho_Fes = float(inputs["rho_Fes"])
rho_Fe = float(inputs["rho_Fe"])
sigma = float(inputs["sigma"])
shaft_rpm = inputs["shaft_rpm"]
# Grab constant values
B_r = float(inputs["B_r"])
E = float(inputs["E"])
G = float(inputs["G"])
P_Fe0e = float(inputs["P_Fe0e"])
P_Fe0h = float(inputs["P_Fe0h"])
cofi = float(inputs["cofi"])
h_w = float(inputs["h_w"])
k_fes = float(inputs["k_fes"])
k_fills = float(inputs["k_fills"])
m = int(discrete_inputs["m"])
mu_0 = float(inputs["mu_0"])
mu_r = float(inputs["mu_r"])
p = float(inputs["p"])
phi = float(inputs["phi"])
ratio_mw2pp = float(inputs["ratio_mw2pp"])
resist_Cu = float(inputs["resist_Cu"])
v = float(inputs["v"])
"""
#Assign values to universal constants
B_r = 1.279 # Tesla remnant flux density
E = 2e11 # N/m^2 young's modulus
ratio = 0.8 # ratio of magnet width to pole pitch(bm/self.tau_p)
mu_0 = np.pi*4e-7 # permeability of free space
mu_r = 1.06 # relative permeability
cofi = 0.85 # power factor
#Assign values to design constants
h_0 = 0.005 # Slot opening height
h_w = 0.004 # Slot wedge height
m = 3 # no of phases
#b_s_tau_s = 0.45 # slot width to slot pitch ratio
k_fills = 0.65 # Slot fill factor
P_Fe0h = 4 # specific hysteresis losses W/kg @ 1.5 T
P_Fe0e = 1 # specific hysteresis losses W/kg @ 1.5 T
k_fes = 0.8 # Iron fill factor
#Assign values to universal constants
phi = 90*2*np.pi/360 # tilt angle (rotor tilt -90 degrees during transportation)
v = 0.3 # Poisson's ratio
G = 79.3e9
"""
######################## Electromagnetic design ###################################
K_rad = len_s / (2 * rad_ag) # Aspect ratio
# Calculating air gap length
dia = 2 * rad_ag # air gap diameter
len_ag = 0.001 * dia # air gap length
r_s = rad_ag - len_ag # Stator outer radius
b_so = 2 * len_ag # Slot opening
tau_p = np.pi * dia / (2 * p) # pole pitch
# Calculating winding factor
Slot_pole = b / c
S = Slot_pole * 2 * p * m
testval = S / (m * np.gcd(int(S), int(p)))
if float(np.round(testval, 3)).is_integer():
k_w = winding_factor(int(S), b, c, int(p), m)
b_m = ratio_mw2pp * tau_p # magnet width
alpha_p = np.pi / 2 * ratio_mw2pp
tau_s = np.pi * (dia - 2 * len_ag) / S
# Calculating Carter factor for statorand effective air gap length
gamma = (
4
/ np.pi
* (
b_so / 2 / (len_ag + h_m / mu_r) * np.arctan(b_so / 2 / (len_ag + h_m / mu_r))
- np.log(np.sqrt(1 + (b_so / 2 / (len_ag + h_m / mu_r)) ** 2))
)
)
k_C = tau_s / (tau_s - gamma * (len_ag + h_m / mu_r)) # carter coefficient
g_eff = k_C * (len_ag + h_m / mu_r)
# angular frequency in radians
om_m = 2 * np.pi * shaft_rpm / 60
om_e = p * om_m
freq = om_e / 2 / np.pi # outout frequency
# Calculating magnetic loading
B_pm1 = B_r * h_m / mu_r / (g_eff)
B_g = B_r * h_m / (mu_r * g_eff) * (4 / np.pi) * np.sin(alpha_p)
B_symax = B_pm1 * b_m / (2 * h_ys) * k_fes
B_rymax = B_pm1 * b_m * k_fes / (2 * h_yr)
b_t = B_pm1 * tau_s / B_tmax
N_c = 2 # Number of turns per coil
q = (B_g) ** 2 / 2 / mu_0
# Stator winding length ,cross-section and resistance
l_Cus = 2 * (len_s + np.pi / 4 * (tau_s + b_t)) # length of a turn
# Calculating no-load voltage induced in the stator
N_s = np.rint(E_p / (np.sqrt(2) * len_s * r_s * k_w * om_m * B_g))
# Z = P_av_v / (m*E_p)
# Calculating leakage inductance in stator
V_1 = E_p / 1.1
I_n = P_av_v / 3 / cofi / V_1
J_s = 6.0
A_Cuscalc = I_n / J_s
A_slot = 2 * N_c * A_Cuscalc * (10 ** -6) / k_fills
tau_s_new = np.pi * (dia - 2 * len_ag - 2 * h_w - 2 * h_0) / S
b_s2 = tau_s_new - b_t # Slot top width
b_s1 = np.sqrt(b_s2 ** 2 - 4 * np.pi * A_slot / S)
b_s = (b_s1 + b_s2) * 0.5
N_coil = 2 * S
P_s = mu_0 * (h_s / 3 / b_s + h_w * 2 / (b_s2 + b_so) + h_0 / b_so) # Slot permeance function
L_ssigmas = S / 3 * 4 * N_c ** 2 * len_s * P_s # slot leakage inductance
L_ssigmaew = (
N_coil * N_c ** 2 * mu_0 * tau_s * np.log((0.25 * np.pi * tau_s ** 2) / (0.5 * h_s * b_s))
) # end winding leakage inductance
L_aa = 2 * np.pi / 3 * (N_c ** 2 * mu_0 * len_s * r_s / g_eff)
L_m = L_aa
L_ssigma = L_ssigmas + L_ssigmaew
L_s = L_m + L_ssigma
G_leak = np.abs((1.1 * E_p) ** 4 - (1 / 9) * (P_av_v * om_e * L_s) ** 2)
# Calculating stator current and electrical loading
I_s = np.sqrt(2 * (np.abs((E_p * 1.1) ** 2 - G_leak ** 0.5)) / (om_e * L_s) ** 2)
A_1 = 6 * I_s * N_s / np.pi / dia
J_actual = I_s / (A_Cuscalc * 2 ** 0.5)
L_Cus = N_s * l_Cus
R_s = inputs["resist_Cu"] * (N_s) * l_Cus / (A_Cuscalc * (10 ** -6))
B_smax = np.sqrt(2) * I_s * mu_0 / g_eff
# Calculating Electromagnetically active mass
wedge_area = (b_s * 0.5 - b_so * 0.5) * (2 * h_0 + h_w)
V_Cus = m * L_Cus * (A_Cuscalc * (10 ** -6)) # copper volume
h_t = h_s + h_w + h_0
V_Fest = len_s * S * (b_t * (h_s + h_w + h_0) + wedge_area) # volume of iron in stator tooth
V_Fesy = (
len_s
* np.pi
* ((rad_ag - len_ag - h_s - h_w - h_0) ** 2 - (rad_ag - len_ag - h_s - h_w - h_0 - h_ys) ** 2)
) # volume of iron in stator yoke
V_Fery = len_s * np.pi * ((rad_ag + h_m + h_yr) ** 2 - (rad_ag + h_m) ** 2)
Copper = V_Cus[-1] * inputs["rho_Copper"]
M_Fest = V_Fest * rho_Fe # Mass of stator tooth
M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke
M_Fery = V_Fery * rho_Fe # Mass of rotor yoke
Iron = M_Fest + M_Fesy + M_Fery
mass_PM = 2 * np.pi * (rad_ag + h_m) * len_s * h_m * ratio_mw2pp * inputs["rho_PM"]
# Calculating Losses
##1. Copper Losses
K_R = 1.0 # Skin effect correction co-efficient
P_Cu = m * (I_s / 2 ** 0.5) ** 2 * R_s * K_R
# Iron Losses ( from Hysteresis and eddy currents)
P_Hyys = (
M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60))
) # Hysteresis losses in stator yoke
P_Ftys = (
M_Fesy * ((B_symax / 1.5) ** 2) * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator yoke
P_Fesynom = P_Hyys + P_Ftys
P_Hyd = (
M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60))
) # Hysteresis losses in stator teeth
P_Ftd = (
M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator teeth
P_Festnom = P_Hyd + P_Ftd
# Iron Losses ( from Hysteresis and eddy currents)
P_Hyyr = (
M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60))
) # Hysteresis losses in stator yoke
P_Ftyr = (
M_Fery * ((B_rymax / 1.5) ** 2) * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator yoke
P_Ferynom = P_Hyyr + P_Ftyr
# additional stray losses due to leakage flux
P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr)
pFtm = 300 # specific magnet loss
P_Ftm = pFtm * 2 * p * b_m * len_s
Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm + P_Ferynom
gen_eff = (P_mech - Losses) / (P_mech)
I_snom = gen_eff * (P_mech / m / E_p / cofi) # rated current
I_qnom = gen_eff * P_mech / (m * E_p)
X_snom = om_e * (L_m + L_ssigma)
T_e = np.pi * rad_ag ** 2 * len_s * 2 * sigma
Stator = M_Fesy + M_Fest + Copper # modified mass_stru_steel
Rotor = M_Fery + mass_PM # modified (N_r*(R_1-self.R_sh)*a_r*self.rho_Fes))
Mass_tooth_stator = M_Fest + Copper
Mass_yoke_rotor = M_Fery
Mass_yoke_stator = M_Fesy
R_out = (dia + 2 * h_m + 2 * h_yr + 2 * inputs["h_sr"]) * 0.5
Losses = Losses
generator_efficiency = gen_eff
else:
# Bad design
for k in outputs.keys():
outputs[k] = 1e30
return
######################## Rotor inactive (structural) design ###################################
# Radial deformation of rotor
R = rad_ag + h_m
L_r = len_s + t_r + 0.125
constants_x_0 = shell_constant(R, t_r, L_r, 0, E, v)
constants_x_L = shell_constant(R, t_r, L_r, L_r, E, v)
f_d_denom1 = R / (E * ((R) ** 2 - (R_sh) ** 2)) * ((1 - v) * R ** 2 + (1 + v) * (R_sh) ** 2)
f_d_denom2 = (
t_r
/ (2 * constants_x_0[0] * (constants_x_0[1]) ** 3)
* (
constants_x_0[2] / (2 * constants_x_0[3]) * constants_x_0[4]
- constants_x_0[5] / constants_x_0[3] * constants_x_0[6]
- 0.5 * constants_x_0[7]
)
)
f = q * (R) ** 2 * t_r / (E * (h_yr + h_sr) * (f_d_denom1 + f_d_denom2))
u_d = (
f
/ (constants_x_L[0] * (constants_x_L[1]) ** 3)
* (
(
constants_x_L[2] / (2 * constants_x_L[3]) * constants_x_L[4]
- constants_x_L[5] / constants_x_L[3] * constants_x_L[6]
- 0.5 * constants_x_L[7]
)
)
+ y_sh
)
u_ar = (q * (R) ** 2) / (E * (h_yr + h_sr)) - u_d
u_ar = np.abs(u_ar + y_sh)
u_allow_r = 2 * rad_ag / 1000 * inputs["u_allow_pcent"] / 100
# axial deformation of rotor
W_back_iron = plate_constant(R + h_sr + h_yr, R_sh, E, v, 0.5 * h_yr + R, t_r)
W_ssteel = plate_constant(R + h_sr + h_yr, R_sh, E, v, h_yr + R + h_sr * 0.5, t_r)
W_mag = plate_constant(R + h_sr + h_yr, R_sh, E, v, h_yr + R - 0.5 * h_m, t_r)
W_ir = rho_Fe * gravity * np.sin(phi) * (L_r - t_r) * h_yr
y_ai1r = (
-W_ir
* (0.5 * h_yr + R) ** 4
/ (R_sh * W_back_iron[0])
* (W_back_iron[1] * W_back_iron[4] / W_back_iron[3] - W_back_iron[2])
)
W_sr = rho_Fes * gravity * np.sin(phi) * (L_r - t_r) * h_sr
y_ai2r = (
-W_sr
* (h_sr * 0.5 + h_yr + R) ** 4
/ (R_sh * W_ssteel[0])
* (W_ssteel[1] * W_ssteel[4] / W_ssteel[3] - W_ssteel[2])
)
W_m = np.sin(phi) * mass_PM / (2 * np.pi * (R - h_m * 0.5))
y_ai3r = -W_m * (R - h_m) ** 4 / (R_sh * W_mag[0]) * (W_mag[1] * W_mag[4] / W_mag[3] - W_mag[2])
w_disc_r = rho_Fes * gravity * np.sin(phi) * t_r
a_ii = R + h_sr + h_yr
r_oii = R_sh
M_rb = (
-w_disc_r
* a_ii ** 2
/ W_ssteel[5]
* (W_ssteel[6] * 0.5 / (a_ii * R_sh) * (a_ii ** 2 - r_oii ** 2) - W_ssteel[8])
)
Q_b = w_disc_r * 0.5 / R_sh * (a_ii ** 2 - r_oii ** 2)
y_aiir = (
M_rb * a_ii ** 2 / W_ssteel[0] * W_ssteel[1]
+ Q_b * a_ii ** 3 / W_ssteel[0] * W_ssteel[2]
- w_disc_r * a_ii ** 4 / W_ssteel[0] * W_ssteel[7]
)
I = np.pi * 0.25 * (R ** 4 - (R_sh) ** 4)
F_ecc = q * 2 * np.pi * K_rad * rad_ag ** 3
M_ar = F_ecc * L_r * 0.5
y_ar = (
np.abs(y_ai1r + y_ai2r + y_ai3r)
+ y_aiir
+ (R + h_yr + h_sr) * inputs["theta_sh"]
+ M_ar * L_r ** 2 * 0 / (2 * E * I)
)
y_allow_r = L_r / 100 * inputs["y_allow_pcent"]
# Torsional deformation of rotor
J_dr = 0.5 * np.pi * ((R + h_yr + h_sr) ** 4 - R_sh ** 4)
J_cylr = 0.5 * np.pi * ((R + h_yr + h_sr) ** 4 - R ** 4)
twist_r = 180 / np.pi * inputs["rated_torque"] / G * (t_r / J_dr + (L_r - t_r) / J_cylr)
Structural_mass_rotor = (
rho_Fes
* np.pi
* (((R + h_yr + h_sr) ** 2 - (R_sh) ** 2) * t_r + ((R + h_yr + h_sr) ** 2 - (R + h_yr) ** 2) * len_s)
)
TC1 = inputs["rated_torque"] / (2 * np.pi * sigma)
TC2r = (R + (h_yr + h_sr)) ** 2 * L_r
######################## Stator inactive (structural) design ###################################
# Radial deformation of Stator
L_stator = len_s + t_s + 0.1
R_stator = rad_ag - len_ag - h_t - h_ys - h_ss
constants_x_0 = shell_constant(R_stator, t_s, L_stator, 0, E, v)
constants_x_L = shell_constant(R_stator, t_s, L_stator, L_stator, E, v)
f_d_denom1 = (
R_stator / (E * ((R_stator) ** 2 - (R_no) ** 2)) * ((1 - v) * R_stator ** 2 + (1 + v) * (R_no) ** 2)
)
f_d_denom2 = (
t_s
/ (2 * constants_x_0[0] * (constants_x_0[1]) ** 3)
* (
constants_x_0[2] / (2 * constants_x_0[3]) * constants_x_0[4]
- constants_x_0[5] / constants_x_0[3] * constants_x_0[6]
- 0.5 * constants_x_0[7]
)
)
f = q * (R_stator) ** 2 * t_s / (E * (h_ys + h_ss) * (f_d_denom1 + f_d_denom2))
# TODO: Adds y_bd twice?
u_as = (
(q * (R_stator) ** 2) / (E * (h_ys + h_ss))
- f
* 0
/ (constants_x_L[0] * (constants_x_L[1]) ** 3)
* (
(
constants_x_L[2] / (2 * constants_x_L[3]) * constants_x_L[4]
- constants_x_L[5] / constants_x_L[3] * constants_x_L[6]
- 1 / 2 * constants_x_L[7]
)
)
+ y_bd
)
u_as = np.abs(u_as + y_bd)
u_allow_s = 2 * rad_ag / 1000 * inputs["u_allow_pcent"] / 100
# axial deformation of stator
W_back_iron = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, 0.5 * h_ys + h_ss + R_stator, t_s)
W_ssteel = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, R_stator + h_ss * 0.5, t_s)
W_active = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, R_stator + h_ss + h_ys + h_t * 0.5, t_s)
W_is = rho_Fe * gravity * np.sin(phi) * (L_stator - t_s) * h_ys
y_ai1s = (
-W_is
* (0.5 * h_ys + R_stator) ** 4
/ (R_no * W_back_iron[0])
* (W_back_iron[1] * W_back_iron[4] / W_back_iron[3] - W_back_iron[2])
)
W_ss = rho_Fes * gravity * np.sin(phi) * (L_stator - t_s) * h_ss
y_ai2s = (
-W_ss
* (h_ss * 0.5 + h_ys + R_stator) ** 4
/ (R_no * W_ssteel[0])
* (W_ssteel[1] * W_ssteel[4] / W_ssteel[3] - W_ssteel[2])
)
W_cu = np.sin(phi) * Mass_tooth_stator / (2 * np.pi * (R_stator + h_ss + h_ys + h_t * 0.5))
y_ai3s = (
-W_cu
* (R_stator + h_ss + h_ys + h_t * 0.5) ** 4
/ (R_no * W_active[0])
* (W_active[1] * W_active[4] / W_active[3] - W_active[2])
)
w_disc_s = rho_Fes * gravity * np.sin(phi) * t_s
a_ii = R_stator + h_ss + h_ys + h_t
r_oii = R_no
M_rb = (
-w_disc_s
* a_ii ** 2
/ W_ssteel[5]
* (W_ssteel[6] * 0.5 / (a_ii * R_no) * (a_ii ** 2 - r_oii ** 2) - W_ssteel[8])
)
Q_b = w_disc_s * 0.5 / R_no * (a_ii ** 2 - r_oii ** 2)
y_aiis = (
M_rb * a_ii ** 2 / W_ssteel[0] * W_ssteel[1]
+ Q_b * a_ii ** 3 / W_ssteel[0] * W_ssteel[2]
- w_disc_s * a_ii ** 4 / W_ssteel[0] * W_ssteel[7]
)
I = np.pi * 0.25 * (R_stator ** 4 - (R_no) ** 4)
F_ecc = q * 2 * np.pi * K_rad * rad_ag ** 2
M_as = F_ecc * L_stator * 0.5
y_as = np.abs(
y_ai1s + y_ai2s + y_ai3s + y_aiis + (R_stator + h_ys + h_ss + h_t) * inputs["theta_bd"]
) + M_as * L_stator ** 2 * 0 / (2 * E * I)
y_allow_s = L_stator * inputs["y_allow_pcent"] / 100
# Torsional deformation of stator
J_ds = 0.5 * np.pi * ((R_stator + h_ys + h_ss + h_t) ** 4 - R_no ** 4)
J_cyls = 0.5 * np.pi * ((R_stator + h_ys + h_ss + h_t) ** 4 - R_stator ** 4)
twist_s = 180.0 / np.pi * inputs["rated_torque"] / G * (t_s / J_ds + (L_stator - t_s) / J_cyls)
Structural_mass_stator = rho_Fes * (
np.pi * ((R_stator + h_ys + h_ss + h_t) ** 2 - (R_no) ** 2) * t_s
+ np.pi * ((R_stator + h_ss) ** 2 - R_stator ** 2) * len_s
)
TC2s = (R_stator + h_ys + h_ss + h_t) ** 2 * L_stator
######################## Outputs ###################################
outputs["K_rad"] = K_rad
outputs["len_ag"] = len_ag
outputs["tau_p"] = tau_p
outputs["S"] = S
outputs["tau_s"] = tau_s
outputs["b_m"] = b_m
outputs["f"] = freq
outputs["B_pm1"] = B_pm1
outputs["B_g"] = B_g
outputs["B_symax"] = B_symax
outputs["B_rymax"] = B_rymax
outputs["b_t"] = b_t
outputs["q"] = q
outputs["N_s"] = N_s[-1]
outputs["A_Cuscalc"] = A_Cuscalc
outputs["b_s"] = b_s
outputs["L_s"] = L_s
outputs["J_s"] = J_s
outputs["Slot_aspect_ratio"] = h_s / b_s
outputs["I_s"] = I_s
outputs["A_1"] = A_1
outputs["J_actual"] = J_actual
outputs["R_s"] = R_s
outputs["B_smax"] = B_smax[-1]
outputs["h_t"] = h_t
outputs["Copper"] = Copper
outputs["Iron"] = Iron
outputs["mass_PM"] = mass_PM
outputs["T_e"] = T_e
outputs["Mass_tooth_stator"] = Mass_tooth_stator
outputs["Mass_yoke_rotor"] = Mass_yoke_rotor
outputs["Mass_yoke_stator"] = Mass_yoke_stator
outputs["R_out"] = R_out
outputs["Losses"] = Losses
outputs["eandm_efficiency"] = np.maximum(eps, gen_eff)
outputs["u_ar"] = u_ar
outputs["u_allow_r"] = u_allow_r
outputs["y_ar"] = y_ar
outputs["y_allow_r"] = y_allow_r
outputs["twist_r"] = twist_r
outputs["Structural_mass_rotor"] = Structural_mass_rotor
outputs["TC1"] = TC1
outputs["TC2r"] = TC2r
outputs["u_as"] = u_as
outputs["u_allow_s"] = u_allow_s
outputs["y_as"] = y_as
outputs["y_allow_s"] = y_allow_s
outputs["twist_s"] = twist_s
outputs["Structural_mass_stator"] = Structural_mass_stator
outputs["TC2s"] = TC2s
outputs["Structural_mass"] = outputs["Structural_mass_rotor"] + outputs["Structural_mass_stator"]
outputs["stator_mass"] = Stator + outputs["Structural_mass_stator"]
outputs["rotor_mass"] = Rotor + outputs["Structural_mass_rotor"]
outputs["generator_mass"] = Stator + Rotor + outputs["Structural_mass"]
# ----------------------------------------------------------------------------------------
class PMSG_Disc(GeneratorBase):
"""
Estimates overall mass dimensions and Efficiency of PMSG-disc rotor generator.
Parameters
----------
tau_p : float, [m]
Pole pitch self.tau_p
t_d : float, [m]
disc thickness
h_yr : float, [m]
rotor yoke height
h_ys : float, [m]
Yoke height
Returns
-------
B_tmax : float, [T]
Peak Teeth flux density
B_smax : float, [T]
Peak Stator Yoke flux density B_ymax
B_symax : float, [T]
Peak Stator Yoke flux density B_ymax
E_p : float
Stator phase voltage
"""
def initialize(self):
super(PMSG_Disc, self).initialize()
def setup(self):
super(PMSG_Disc, self).setup()
self.add_input("tau_p", val=0.0, units="m")
self.add_input("t_d", val=0.0, units="m")
self.add_input("h_yr", val=0.0, units="m")
self.add_input("h_ys", val=0.0, units="m")
self.add_output("B_tmax", val=0.0, units="T")
self.add_output("B_smax", val=0.0, units="T")
self.add_output("B_symax", val=0.0, units="T")
self.add_output("E_p", val=np.zeros(self.options["n_pc"]))
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
# Unpack inputs
rad_ag = inputs["rad_ag"]
len_s = inputs["len_s"]
h_s = inputs["h_s"]
tau_p = inputs["tau_p"]
h_m = inputs["h_m"]
h_ys = inputs["h_ys"]
h_yr = inputs["h_yr"]
machine_rating = inputs["machine_rating"]
shaft_rpm = inputs["shaft_rpm"]
Torque = inputs["rated_torque"]
b_st = inputs["b_st"]
d_s = inputs["d_s"]
t_ws = inputs["t_ws"]
n_s = inputs["n_s"]
t_d = inputs["t_d"]
R_sh = 0.5 * inputs["D_shaft"]
rho_Fe = inputs["rho_Fe"]
rho_Copper = inputs["rho_Copper"]
rho_Fes = inputs["rho_Fes"]
rho_PM = inputs["rho_PM"]
# Grab constant values
B_r = inputs["B_r"]
E = inputs["E"]
P_Fe0e = inputs["P_Fe0e"]
P_Fe0h = inputs["P_Fe0h"]
S_N = inputs["S_N"]
alpha_p = inputs["alpha_p"]
b_r_tau_r = inputs["b_r_tau_r"]
b_ro = inputs["b_ro"]
b_s_tau_s = inputs["b_s_tau_s"]
b_so = inputs["b_so"]
cofi = inputs["cofi"]
freq = inputs["freq"]
h_i = inputs["h_i"]
h_sy0 = inputs["h_sy0"]
h_w = inputs["h_w"]
k_fes = inputs["k_fes"]
k_fillr = inputs["k_fillr"]
k_fills = inputs["k_fills"]
k_s = inputs["k_s"]
m = discrete_inputs["m"]
mu_0 = inputs["mu_0"]
mu_r = inputs["mu_r"]
p = inputs["p"]
phi = inputs["phi"]
q1 = discrete_inputs["q1"]
ratio_mw2pp = inputs["ratio_mw2pp"]
resist_Cu = inputs["resist_Cu"]
sigma = inputs["sigma"]
v = inputs["v"]
y_tau_p = inputs["y_tau_p"]
y_tau_pr = inputs["y_tau_pr"]
"""
# Assign values to universal constants
B_r = 1.2 # remnant flux density (Tesla = kg / (s^2 A))
E = 2e11 # N / m^2 young's modulus
sigma = 40000.0 # shear stress assumed
ratio_mw2pp = 0.7 # ratio of magnet width to pole pitch(bm / self.tau_p)
mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2)
mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS)
phi = np.deg2rad(90) # tilt angle (rotor tilt -90 degrees during transportation)
cofi = 0.85 # power factor
# Assign values to design constants
h_w = 0.005 # wedge height
y_tau_p = 1.0 # coil span to pole pitch
m = 3 # no of phases
q1 = 1 # no of slots per pole per phase
b_s_tau_s = 0.45 # slot width / slot pitch ratio
k_fills = 0.65 # Slot fill factor
P_Fe0h = 4.0 # specific hysteresis losses W / kg @ 1.5 T
P_Fe0e = 1.0 # specific hysteresis losses W / kg @ 1.5 T
resist_Cu = 1.8e-8 * 1.4 # resistivity of copper
b_so = 0.004 # stator slot opening
k_fes = 0.9 # useful iron stack length
#T = Torque
v = 0.3 # poisson's ratio
"""
# back iron thickness for rotor and stator
t_s = h_ys
t = h_yr
# Aspect ratio
K_rad = len_s / (2 * rad_ag) # aspect ratio
###################################################### Electromagnetic design#############################################
dia_ag = 2 * rad_ag # air gap diameter
len_ag = 0.001 * dia_ag # air gap length
b_m = ratio_mw2pp * tau_p # magnet width
l_u = k_fes * len_s # useful iron stack length
l_e = len_s + 2 * 0.001 * rad_ag # equivalent core length
r_r = rad_ag - len_ag # rotor radius
p = np.round(np.pi * rad_ag / tau_p) # pole pairs Eq.(11)
f = p * shaft_rpm / 60.0 # rpm to frequency (Hz)
S = 2 * p * q1 * m # Stator slots Eq.(12)
N_conductors = S * 2
N_s = N_conductors / 2 / m # Stator turns per phase
tau_s = np.pi * dia_ag / S # slot pitch Eq.(13)
b_s = b_s_tau_s * tau_s # slot width
b_t = tau_s - b_s # tooth width Eq.(14)
Slot_aspect_ratio = h_s / b_s
alpha_p = np.pi / 2 * 0.7
# Calculating Carter factor for stator and effective air gap length
gamma = (
4
/ np.pi
* (
b_so / 2 / (len_ag + h_m / mu_r) * np.arctan(b_so / 2 / (len_ag + h_m / mu_r))
- np.log(np.sqrt(1 + (b_so / 2 / (len_ag + h_m / mu_r)) ** 2))
)
)
k_C = tau_s / (tau_s - gamma * (len_ag + h_m / mu_r)) # carter coefficient
g_eff = k_C * (len_ag + h_m / mu_r)
# angular frequency in radians / sec
om_m = 2 * np.pi * (shaft_rpm / 60.0) # rpm to rad/s
om_e = p * om_m / 2
# Calculating magnetic loading
B_pm1 = B_r * h_m / mu_r / g_eff
B_g = B_r * h_m / mu_r / g_eff * (4.0 / np.pi) * np.sin(alpha_p)
B_symax = B_g * b_m * l_e / (2 * h_ys * l_u)
B_rymax = B_g * b_m * l_e / (2 * h_yr * len_s)
B_tmax = B_g * tau_s / b_t
k_wd = np.sin(np.pi / 6) / q1 / np.sin(np.pi / 6 / q1) # winding factor
L_t = len_s + 2 * tau_p
# Stator winding length, cross-section and resistance
l_Cus = 2 * N_s * (2 * tau_p + L_t)
A_s = b_s * (h_s - h_w) * q1 * p # m^2
A_scalc = b_s * 1e3 * (h_s - h_w) * 1e3 * q1 * p # mm^2
A_Cus = A_s * k_fills / N_s
A_Cuscalc = A_scalc * k_fills / N_s
R_s = l_Cus * resist_Cu / A_Cus
# Calculating leakage inductance in stator
L_m = 2 * mu_0 * N_s ** 2 / p * m * k_wd ** 2 * tau_p * L_t / np.pi ** 2 / g_eff
L_ssigmas = (
2 * mu_0 * N_s ** 2 / p / q1 * len_s * ((h_s - h_w) / (3 * b_s) + h_w / b_so)
) # slot leakage inductance
L_ssigmaew = (
2 * mu_0 * N_s ** 2 / p / q1 * len_s * 0.34 * len_ag * (l_e - 0.64 * tau_p * y_tau_p) / len_s
) # end winding leakage inductance
L_ssigmag = (
2 * mu_0 * N_s ** 2 / p / q1 * len_s * (5 * (len_ag * k_C / b_so) / (5 + 4 * (len_ag * k_C / b_so)))
) # tooth tip leakage inductance
L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag
L_s = L_m + L_ssigma
# Calculating no-load voltage induced in the stator and stator current
E_p = np.sqrt(2) * N_s * L_t * rad_ag * k_wd * om_m * B_g
Z = machine_rating / (m * E_p)
G = np.maximum(0.0, E_p ** 2 - (om_e * L_s * Z) ** 2)
# Calculating stator current and electrical loading
I_s = np.sqrt(Z ** 2 + (((E_p - G ** 0.5) / (om_e * L_s) ** 2) ** 2))
B_smax = np.sqrt(2) * I_s * mu_0 / g_eff
J_s = I_s / A_Cuscalc
A_1 = 6 * N_s * I_s / (np.pi * dia_ag)
I_snom = machine_rating / (m * E_p * cofi) # rated current
I_qnom = machine_rating / (m * E_p)
X_snom = om_e * (L_m + L_ssigma)
# Calculating electromagnetically active mass
V_Cus = m * l_Cus * A_Cus # copper volume
V_Fest = L_t * 2 * p * q1 * m * b_t * h_s # volume of iron in stator tooth
V_Fesy = L_t * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # volume of iron in stator yoke
V_Fery = L_t * np.pi * ((r_r - h_m) ** 2 - (r_r - h_m - h_yr) ** 2) # volume of iron in rotor yoke
Copper = V_Cus * rho_Copper
M_Fest = V_Fest * rho_Fe # mass of stator tooth
M_Fesy = V_Fesy * rho_Fe # mass of stator yoke
M_Fery = V_Fery * rho_Fe # mass of rotor yoke
Iron = M_Fest + M_Fesy + M_Fery
# Calculating losses
# 1.Copper losses
K_R = 1.2 # Skin effect correction co - efficient
P_Cu = m * I_snom ** 2 * R_s * K_R
# Iron Losses ( from Hysteresis and eddy currents)
P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke
P_Ftys = (
M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator yoke
P_Fesynom = P_Hyys + P_Ftys
P_Hyd = M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth
P_Ftd = (
M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator teeth
P_Festnom = P_Hyd + P_Ftd
P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd) # additional stray losses due to leakage flux
pFtm = 300 # specific magnet loss
P_Ftm = pFtm * 2 * p * b_m * len_s # magnet losses
Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm
gen_eff = machine_rating / (machine_rating + Losses)
################################################## Structural Design ############################################################
## Structural deflection calculations
# rotor structure
R = rad_ag - len_ag - h_m - 0.5 * t # mean radius of the rotor rim
# l = L_t using L_t everywhere now
b = R_sh # Shaft radius (not used)
R_b = R - 0.5 * t # Inner radius of the rotor
R_a = R + 0.5 * h_yr # Outer radius of rotor yoke
a = R - 0.5 * t # same as R_b
a_1 = R_b # same as R_b, a
c = R / 500
u_allow_r = c / 20 # allowable radial deflection
y_allow = 2 * L_t / 100 # allowable axial deflection
R_1 = R - 0.5 * t # inner radius of rotor cylinder # same as R_b, a, a_1 (not used)
K = 4 * (np.sin(ratio_mw2pp * np.pi / 2)) / np.pi # (not used)
q3 = B_g ** 2 / (2 * mu_0) # normal component of Maxwell's stress
mass_PM = 2 * np.pi * (R + 0.5 * t) * L_t * h_m * ratio_mw2pp * rho_PM # magnet mass
mass_st_lam = rho_Fe * 2 * np.pi * R * L_t * h_yr # mass of rotor yoke steel
# Calculation of radial deflection of rotor
# cylindrical shell function and circular plate parameters for disc rotor based on Table 11.2 Roark's formulas
# lamb, C* and F* parameters are from Appendix A of McDonald
lamb = (3 * (1 - v ** 2) / R_a ** 2 / h_yr ** 2) ** 0.25 # m^-1
x1 = lamb * L_t # no units
# ----------------
C_2 = chsPshc(x1)
C_4 = chsMshc(x1)
C_13 = chsMshc(x1) # (not used)
C_a2 = chsPshc(x1 * 0.5)
F_2_x0 = chsPshc(lamb * 0)
F_2_ls2 = chsPshc(x1 / 2)
F_a4_x0 = chsMshc(lamb * (0))
Fa4arg = np.pi / 180 * lamb * (0.5 * len_s - a)
F_a4_ls2 = chsMshc(Fa4arg)
# print('pmsg_disc: F_a4_ls2, Fa4arg, lamb, len_s, a ', F_a4_ls2, Fa4arg, lamb, len_s, a)
# if np.isnan(F_a4_ls2):
# sys.stderr.write('*** pmsg_discSE error: F_a4_ls2 is nan\n')
# C_2 = np.cosh(x1) * np.sin(x1) + np.sinh(x1) * np.cos(x1)
C_3 = np.sinh(x1) * np.sin(x1)
# C_4 = np.cosh(x1) * np.sin(x1) - np.sinh(x1) * np.cos(x1)
C_11 = (np.sinh(x1)) ** 2 - (np.sin(x1)) ** 2
# C_13 = np.cosh(x1) * np.sinh(x1) - np.cos(x1) * np.sin(x1) # (not used)
C_14 = np.sinh(x1) ** 2 + np.sin(x1) ** 2 # (not used)
C_a1 = np.cosh(x1 * 0.5) * np.cos(x1 * 0.5)
# C_a2 = np.cosh(x1 * 0.5) * np.sin(x1 * 0.5) + np.sinh(x1 * 0.5) * np.cos(x1 * 0.5)
F_1_x0 = np.cosh(lamb * 0) * np.cos(lamb * 0)
F_1_ls2 = np.cosh(lamb * 0.5 * len_s) * np.cos(lamb * 0.5 * len_s)
# F_2_x0 = np.cosh(lamb * 0) * np.sin(lamb * 0) + np.sinh(lamb * 0) * np.cos(lamb * 0)
# F_2_ls2 = np.cosh(x1 / 2) * np.sin(x1 / 2) + np.sinh(x1 / 2) * np.cos(x1 / 2)
if len_s < 2 * a:
a = len_s / 2
else:
a = len_s * 0.5 - 1
# F_a4_x0 = np.cosh(lamb * (0)) * np.sin(lamb * (0)) \
# - np.sinh(lamb * (0)) * np.cos(lamb * (0))
# F_a4_ls2 = np.cosh(np.pi / 180 * lamb * (0.5 * len_s - a)) * np.sin(np.pi / 180 * lamb * (0.5 * len_s - a)) \
# - np.sinh(np.pi / 180 * lamb * (0.5 * len_s - a)) * np.cos(np.pi / 180 * lamb * (0.5 * len_s - a))
"""
Where did the np.pi/180 factor (conversion to radians) come from?
lamb is m^-1
0.5*len_s - a is m
"""
# ----------------
D_r = E * h_yr ** 3 / (12 * (1 - v ** 2))
D_ax = E * t_d ** 3 / (12 * (1 - v ** 2))
# Radial deflection analytical model from McDonald's thesis defined in parts
Part_1 = R_b * ((1 - v) * R_b ** 2 + (1 + v) * R_sh ** 2) / (R_b ** 2 - R_sh ** 2) / E
Part_2 = (C_2 * C_a2 - 2 * C_3 * C_a1) / 2 / C_11
Part_3 = (C_3 * C_a2 - C_4 * C_a1) / C_11
Part_4 = 0.25 / D_r / lamb ** 3
Part_5 = q3 * R_b ** 2 / (E * (R_a - R_b))
f_d = Part_5 / (Part_1 - t_d * (Part_4 * Part_2 * F_2_ls2 - Part_3 * 2 * Part_4 * F_1_ls2 - Part_4 * F_a4_ls2))
fr = f_d * t_d
u_ar = abs(
Part_5
+ fr
/ (2 * D_r * lamb ** 3)
* (
(-F_1_x0 / C_11) * (C_3 * C_a2 - C_4 * C_a1)
+ (F_2_x0 / 2 / C_11) * (C_2 * C_a2 - 2 * C_3 * C_a1)
- F_a4_x0 / 2
)
)
# Calculation of Axial deflection of rotor
W = (
0.5 * gravity * np.sin(phi) * ((L_t - t_d) * h_yr * rho_Fes)
) # uniform annular line load acting on rotor cylinder assumed as an annular plate
w = rho_Fes * gravity * np.sin(phi) * t_d # disc assumed as plate with a uniformly distributed pressure between
a_i = R_sh
# Flat circular plate constants according to Roark's table 11.2
C_2p = 0.25 * (1 - (((R_sh / R) ** 2) * (1 + (2 * np.log(R / R_sh)))))
C_3p = (R_sh / 4 / R) * ((1 + (R_sh / R) ** 2) * np.log(R / R_sh) + (R_sh / R) ** 2 - 1)
C_6 = (R_sh / 4 / R_a) * ((R_sh / R_a) ** 2 - 1 + 2 * np.log(R_a / R_sh))
C_5 = 0.5 * (1 - (R_sh / R) ** 2)
C_8 = 0.5 * (1 + v + (1 - v) * ((R_sh / R) ** 2))
C_9 = (R_sh / R) * (0.5 * (1 + v) * np.log(R / R_sh) + (1 - v) / 4 * (1 - (R_sh / R) ** 2))
# Flat circular plate loading constants
L_11 = (
1
+ 4 * (R_sh / a_1) ** 2
- 5 * (R_sh / a_1) ** 4
- 4 * ((R_sh / a_1) ** 2) * np.log(a_1 / R_sh) * (2 + (R_sh / a_1) ** 2)
) / 64
L_14 = (1 - (R_sh / R_b) ** 4 - 4 * (R_sh / R_b) ** 2 * np.log(R_b / R_sh)) / 16
y_ai = (
-W * (a_1 ** 3) * (C_2p * (C_6 * a_1 / R_sh - C_6) / C_5 - a_1 * C_3p / R_sh + C_3p) / D_ax
) # Axial deflection of plate due to deflection of an annular plate with a uniform annular line load
# Axial Deflection due to uniformaly distributed pressure load
M_rb = -w * R ** 2 * (C_6 * (R ** 2 - R_sh ** 2) * 0.5 / R / R_sh - L_14) / C_5
Q_b = w * 0.5 * (R ** 2 - R_sh ** 2) / R_sh
y_aii = M_rb * R_a ** 2 * C_2p / D_ax + Q_b * R_a ** 3 * C_3p / D_ax - w * R_a ** 4 * L_11 / D_ax
y_ar = abs(y_ai + y_aii)
z_allow_r = np.deg2rad(0.05 * R) # allowable torsional deflection of rotor
# stator structure deflection calculation
R_out = R / 0.995 + h_s + h_ys
a_s = (b_st * d_s) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)) # cross-sectional area of stator armms
A_st = L_t * t_s # cross-sectional area of rotor cylinder
N_st = np.round(n_s)
theta_s = np.pi * 1 / N_st # half angle between spokes
I_st = L_t * t_s ** 3 / 12 # second moment of area of stator cylinder
I_arm_axi_s = (
(b_st * d_s ** 3) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws) ** 3)
) / 12 # second moment of area of stator arm
I_arm_tor_s = (
(d_s * b_st ** 3) - ((d_s - 2 * t_ws) * (b_st - 2 * t_ws) ** 3)
) / 12 # second moment of area of rotot arm w.r.t torsion
R_st = rad_ag + h_s + h_ys * 0.5
k_2 = np.sqrt(I_st / A_st) # radius of gyration
b_allow_s = 2 * np.pi * R_sh / N_st
m2 = (k_2 / R_st) ** 2
c1 = R_st / 500
R_1s = R_st - t_s * 0.5
d_se = dia_ag + 2 * (h_ys + h_s + h_w) # stator outer diameter
# Calculation of radial deflection of stator
Numers = R_st ** 3 * (
(0.25 * (np.sin(theta_s) - (theta_s * np.cos(theta_s))) / (np.sin(theta_s)) ** 2)
- (0.5 / np.sin(theta_s))
+ (0.5 / theta_s)
)
Povs = ((theta_s / (np.sin(theta_s)) ** 2) + 1 / np.tan(theta_s)) * (
(0.25 * R_st / A_st) + (0.25 * R_st ** 3 / I_st)
)
Qovs = R_st ** 3 / (2 * I_st * theta_s * (m2 + 1))
Lovs = (R_1s - R_sh) * 0.5 / a_s
Denoms = I_st * (Povs - Qovs + Lovs)
u_as = (q3 * R_st ** 2 / E / t_s) * (1 + Numers / Denoms)
# Calculation of axial deflection of stator
mass_st_lam_s = M_Fest + np.pi * L_t * rho_Fe * ((R_st + 0.5 * h_ys) ** 2 - (R_st - 0.5 * h_ys) ** 2)
W_is = (
0.5 * gravity * np.sin(phi) * (rho_Fes * L_t * d_s ** 2)
) # length of stator arm beam at which self-weight acts
W_iis = (
gravity * np.sin(phi) * (mass_st_lam_s + V_Cus * rho_Copper) / 2 / N_st
) # weight of stator cylinder and teeth
w_s = rho_Fes * gravity * np.sin(phi) * a_s * N_st # uniformly distributed load of the arms
l_is = R_st - R_sh # distance at which the weight of the stator cylinder acts
l_iis = l_is # distance at which the weight of the stator cylinder acts
l_iiis = l_is # distance at which the weight of the stator cylinder acts
u_allow_s = c1 / 20
X_comp1 = (
W_is * l_is ** 3 / 12 / E / I_arm_axi_s
) # deflection component due to stator arm beam at which self-weight acts
X_comp2 = W_iis * l_iis ** 4 / 24 / E / I_arm_axi_s # deflection component due to 1/nth of stator cylinder
X_comp3 = w_s * l_iiis ** 4 / 24 / E / I_arm_axi_s # deflection component due to weight of arms
y_as = X_comp1 + X_comp2 + X_comp3 # axial deflection
# Stator circumferential deflection
z_allow_s = np.deg2rad(0.05 * R_st) # allowable torsional deflection
z_as = (
2 * np.pi * (R_st + 0.5 * t_s) * L_t / (2 * N_st) * sigma * (l_is + 0.5 * t_s) ** 3 / (3 * E * I_arm_tor_s)
)
mass_stru_steel = 2 * (N_st * (R_1s - R_sh) * a_s * rho_Fes)
TC1 = Torque * 1.0 / (2 * np.pi * sigma) # Torque / shear stress
TC2r = R ** 2 * L_t # Evaluating Torque constraint for rotor
TC2s = R_st ** 2 * L_t # Evaluating Torque constraint for stator
Structural_mass = mass_stru_steel + (np.pi * (R ** 2 - R_sh ** 2) * t_d * rho_Fes)
Mass = Structural_mass + Iron + Copper + mass_PM
outputs["B_tmax"] = B_tmax
outputs["B_rymax"] = B_rymax
outputs["B_symax"] = B_symax
outputs["B_smax"] = B_smax[-1]
outputs["B_pm1"] = B_pm1
outputs["B_g"] = B_g
outputs["N_s"] = N_s
outputs["b_s"] = b_s
outputs["b_t"] = b_t
outputs["A_Cuscalc"] = A_Cuscalc
outputs["b_m"] = b_m
outputs["E_p"] = E_p
outputs["f"] = f
outputs["I_s"] = I_s
outputs["R_s"] = R_s
outputs["L_s"] = L_s
outputs["A_1"] = A_1
outputs["J_s"] = J_s
outputs["Losses"] = Losses
outputs["K_rad"] = K_rad
outputs["eandm_efficiency"] = np.maximum(eps, gen_eff)
outputs["S"] = S
outputs["Slot_aspect_ratio"] = Slot_aspect_ratio
outputs["Copper"] = Copper
outputs["Iron"] = Iron
outputs["u_ar"] = u_ar
outputs["y_ar"] = y_ar
outputs["u_as"] = u_as
outputs["y_as"] = y_as
outputs["z_as"] = z_as
outputs["u_allow_r"] = u_allow_r
outputs["u_allow_s"] = u_allow_s
outputs["y_allow_r"] = outputs["y_allow_s"] = y_allow
outputs["z_allow_s"] = z_allow_s
outputs["z_allow_r"] = z_allow_r
outputs["b_allow_s"] = b_allow_s
outputs["TC1"] = TC1
outputs["TC2r"] = TC2r
outputs["TC2s"] = TC2s
outputs["R_out"] = R_out
outputs["Structural_mass"] = Structural_mass
outputs["generator_mass"] = Mass
outputs["mass_PM"] = mass_PM
# ----------------------------------------------------------------------------------------
class PMSG_Arms(GeneratorBase):
"""
Estimates overall mass dimensions and Efficiency of PMSG-disc rotor generator.
Parameters
----------
b_arm : float, [m]
arm width
tau_p : float, [m]
Pole pitch self.tau_p
h_yr : float, [m]
rotor yoke height
h_ys : float, [m]
Yoke height
Returns
-------
B_tmax : float, [T]
Peak Teeth flux density
B_smax : float, [T]
Peak Stator Yoke flux density B_ymax
B_symax : float, [T]
Peak Stator Yoke flux density B_ymax
E_p : float
Stator phase voltage
"""
def initialize(self):
super(PMSG_Arms, self).initialize()
def setup(self):
super(PMSG_Arms, self).setup()
self.add_input("b_arm", val=0.0, units="m")
self.add_input("tau_p", val=0.0, units="m")
self.add_input("h_yr", val=0.0, units="m")
self.add_input("h_ys", val=0.0, units="m")
self.add_output("B_tmax", val=0.0, units="T")
self.add_output("B_smax", val=0.0, units="T")
self.add_output("B_symax", val=0.0, units="T")
self.add_output("E_p", val=np.zeros(self.options["n_pc"]))
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
# Unpack inputs
# r_s = inputs['r_s']
rad_ag = inputs["rad_ag"]
len_s = inputs["len_s"]
h_s = inputs["h_s"]
tau_p = inputs["tau_p"]
h_m = inputs["h_m"]
h_ys = inputs["h_ys"]
h_yr = inputs["h_yr"]
machine_rating = inputs["machine_rating"]
shaft_rpm = inputs["shaft_rpm"]
Torque = inputs["rated_torque"]
b_st = inputs["b_st"]
d_s = inputs["d_s"]
t_ws = inputs["t_ws"]
n_r = inputs["n_r"]
n_s = inputs["n_s"]
b_r = inputs["b_arm"]
d_r = inputs["d_r"]
t_wr = inputs["t_wr"]
R_sh = 0.5 * inputs["D_shaft"]
rho_Fe = inputs["rho_Fe"]
rho_Copper = inputs["rho_Copper"]
rho_Fes = inputs["rho_Fes"]
rho_PM = inputs["rho_PM"]
# Grab constant values
B_r = inputs["B_r"]
E = inputs["E"]
P_Fe0e = inputs["P_Fe0e"]
P_Fe0h = inputs["P_Fe0h"]
S_N = inputs["S_N"]
alpha_p = inputs["alpha_p"]
b_r_tau_r = inputs["b_r_tau_r"]
b_ro = inputs["b_ro"]
b_s_tau_s = inputs["b_s_tau_s"]
b_so = inputs["b_so"]
cofi = inputs["cofi"]
freq = inputs["freq"]
h_i = inputs["h_i"]
h_sy0 = inputs["h_sy0"]
h_w = inputs["h_w"]
k_fes = inputs["k_fes"]
k_fillr = inputs["k_fillr"]
k_fills = inputs["k_fills"]
k_s = inputs["k_s"]
m = discrete_inputs["m"]
mu_0 = inputs["mu_0"]
mu_r = inputs["mu_r"]
p = inputs["p"]
phi = inputs["phi"]
q1 = discrete_inputs["q1"]
ratio_mw2pp = inputs["ratio_mw2pp"]
resist_Cu = inputs["resist_Cu"]
sigma = inputs["sigma"]
v = inputs["v"]
y_tau_p = inputs["y_tau_p"]
y_tau_pr = inputs["y_tau_pr"]
"""
# Assign values to universal constants
B_r = 1.2 # Tesla remnant flux density
E = 2e11 # N / m^2 young's modulus
sigma = 40e3 # shear stress assumed (yield strength of ?? steel, in psi - GNS)
ratio_mw2pp = 0.7 # ratio of magnet width to pole pitch(bm / tau_p)
mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2)
mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS)
phi = np.deg2rad(90) # tilt angle (rotor tilt -90 degrees during transportation)
cofi = 0.85 # power factor
# Assign values to design constants
h_w = 0.005 # Slot wedge height
h_i = 0.001 # coil insulation thickness
y_tau_p = 1 # Coil span to pole pitch
m = 3 # no of phases
q1 = 1 # no of slots per pole per phase
b_s_tau_s = 0.45 # slot width to slot pitch ratio
k_fills = 0.65 # Slot fill factor
P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T
P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T
resist_Cu = 1.8e-8 * 1.4 # Copper resisitivty
k_fes = 0.9 # Stator iron fill factor per Grauers
b_so = 0.004 # Slot opening
alpha_p = np.pi / 2 * 0.7
"""
# back iron thickness for rotor and stator
t_s = h_ys
t = h_yr
###################################################### Electromagnetic design#############################################
K_rad = len_s / (2 * rad_ag) # Aspect ratio
# T = Torque # rated torque
l_u = k_fes * len_s # useful iron stack length
We = tau_p
l_b = 2 * tau_p # end winding length
l_e = len_s + 2 * 0.001 * rad_ag # equivalent core length
b_m = 0.7 * tau_p # magnet width
# Calculating air gap length
dia_ag = 2 * rad_ag # air gap diameter
len_ag = 0.001 * dia_ag # air gap length
r_m = rad_ag + h_ys + h_s # magnet radius
r_r = rad_ag - len_ag # rotor radius
p = np.round(np.pi * dia_ag / (2 * tau_p)) # pole pairs
f = shaft_rpm * p / 60.0 # outout frequency rpm to Hz
S = 2 * p * q1 * m # Stator slots
N_conductors = S * 2
N_s = N_conductors / (2 * m) # Stator turns per phase
tau_s = np.pi * dia_ag / S # Stator slot pitch
b_s = b_s_tau_s * tau_s # slot width
b_t = tau_s - b_s # tooth width
Slot_aspect_ratio = h_s / b_s
# Calculating Carter factor for stator and effective air gap length
ahm = len_ag + h_m / mu_r
ba = b_so / (2 * ahm)
gamma = 4 / np.pi * (ba * np.arctan(ba) - np.log(np.sqrt(1 + ba ** 2)))
k_C = tau_s / (tau_s - gamma * ahm) # carter coefficient
g_eff = k_C * ahm
# angular frequency in radians
om_m = 2 * np.pi * shaft_rpm / 60.0 # rpm to radians per second
om_e = p * om_m / 2 # electrical output frequency (Hz)
# Calculating magnetic loading
B_pm1 = B_r * h_m / mu_r / g_eff
B_g = B_r * h_m / mu_r / g_eff * (4 / np.pi) * np.sin(alpha_p)
B_symax = B_g * b_m * l_e / (2 * h_ys * l_u)
B_rymax = B_g * b_m * l_e / (2 * h_yr * len_s)
B_tmax = B_g * tau_s / b_t
# Calculating winding factor
k_wd = np.sin(np.pi / 6) / q1 / np.sin(np.pi / 6 / q1)
L_t = len_s + 2 * tau_p # overall stator len w/end windings - should be tau_s???
# l = L_t # length - now using L_t everywhere
# Stator winding length, cross-section and resistance
l_Cus = 2 * N_s * (2 * tau_p + L_t)
A_s = b_s * (h_s - h_w) * q1 * p
A_scalc = b_s * 1000 * (h_s - h_w) * 1000 * q1 * p
A_Cus = A_s * k_fills / N_s
A_Cuscalc = A_scalc * k_fills / N_s
R_s = l_Cus * resist_Cu / A_Cus
# Calculating leakage inductance in stator
L_m = 2 * mu_0 * N_s ** 2 / p * m * k_wd ** 2 * tau_p * L_t / np.pi ** 2 / g_eff
L_ssigmas = (
2 * mu_0 * N_s ** 2 / p / q1 * len_s * ((h_s - h_w) / (3 * b_s) + h_w / b_so)
) # slot leakage inductance
L_ssigmaew = (
2 * mu_0 * N_s ** 2 / p / q1 * len_s * 0.34 * len_ag * (l_e - 0.64 * tau_p * y_tau_p) / len_s
) # end winding leakage inductance
L_ssigmag = (
2 * mu_0 * N_s ** 2 / p / q1 * len_s * (5 * (len_ag * k_C / b_so) / (5 + 4 * (len_ag * k_C / b_so)))
) # tooth tip leakage inductance
L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag
L_s = L_m + L_ssigma
# Calculating no-load voltage induced in the stator
E_p = 2 * N_s * L_t * rad_ag * k_wd * om_m * B_g / np.sqrt(2)
Z = machine_rating / (m * E_p)
G = np.maximum(0.0, E_p ** 2 - (om_e * L_s * Z) ** 2)
# Calculating stator current and electrical loading
is2 = Z ** 2 + (((E_p - G ** 0.5) / (om_e * L_s) ** 2) ** 2)
I_s = np.sqrt(Z ** 2 + (((E_p - G ** 0.5) / (om_e * L_s) ** 2) ** 2))
J_s = I_s / A_Cuscalc
A_1 = 6 * N_s * I_s / (np.pi * dia_ag)
I_snom = machine_rating / (m * E_p * cofi) # rated current
I_qnom = machine_rating / (m * E_p)
X_snom = om_e * (L_m + L_ssigma)
B_smax = np.sqrt(2) * I_s * mu_0 / g_eff
# Calculating Electromagnetically active mass
V_Cus = m * l_Cus * A_Cus # copper volume
V_Fest = L_t * 2 * p * q1 * m * b_t * h_s # volume of iron in stator tooth
V_Fesy = L_t * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # volume of iron in stator yoke
V_Fery = L_t * np.pi * ((r_r - h_m) ** 2 - (r_r - h_m - h_yr) ** 2)
Copper = V_Cus * rho_Copper
M_Fest = V_Fest * rho_Fe # Mass of stator tooth
M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke
M_Fery = V_Fery * rho_Fe # Mass of rotor yoke
Iron = M_Fest + M_Fesy + M_Fery
# Calculating Losses
##1. Copper Losses
K_R = 1.2 # Skin effect correction co-efficient
P_Cu = m * I_snom ** 2 * R_s * K_R
# Iron Losses ( from Hysteresis and eddy currents)
P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke
P_Ftys = (
M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator yoke
P_Fesynom = P_Hyys + P_Ftys
P_Hyd = M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth
P_Ftd = (
M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator teeth
P_Festnom = P_Hyd + P_Ftd
# additional stray losses due to leakage flux
P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd)
pFtm = 300 # specific magnet loss
P_Ftm = pFtm * 2 * p * b_m * len_s
Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm
gen_eff = machine_rating / (machine_rating + Losses)
#################################################### Structural Design ############################################################
## Deflection Calculations ##
# rotor structure calculations
a_r = (b_r * d_r) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr)) # cross-sectional area of rotor arms
A_r = L_t * t # cross-sectional area of rotor cylinder
N_r = np.round(n_r) # rotor arms
theta_r = np.pi * 1 / N_r # half angle between spokes
I_r = L_t * t ** 3 / 12 # second moment of area of rotor cylinder
I_arm_axi_r = (
(b_r * d_r ** 3) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr) ** 3)
) / 12 # second moment of area of rotor arm
I_arm_tor_r = (
(d_r * b_r ** 3) - ((d_r - 2 * t_wr) * (b_r - 2 * t_wr) ** 3)
) / 12 # second moment of area of rotot arm w.r.t torsion
R = rad_ag - len_ag - h_m - 0.5 * t # Rotor mean radius
c = R / 500
u_allow_r = c / 20 # allowable radial deflection
R_1 = R - t * 0.5 # inner radius of rotor cylinder
k_1 = np.sqrt(I_r / A_r) # radius of gyration
m1 = (k_1 / R) ** 2
l_ir = R # length of rotor arm beam at which rotor cylinder acts
l_iir = R_1
b_allow_r = 2 * np.pi * R_sh / N_r # allowable circumferential arm dimension for rotor
q3 = B_g ** 2 / 2 / mu_0 # normal component of Maxwell stress
mass_PM = 2 * np.pi * (R + 0.5 * t) * L_t * h_m * ratio_mw2pp * rho_PM # magnet mass
# Calculating radial deflection of the rotor
Numer = R ** 3 * (
(0.25 * (np.sin(theta_r) - (theta_r * np.cos(theta_r))) / (np.sin(theta_r)) ** 2)
- (0.5 / np.sin(theta_r))
+ (0.5 / theta_r)
)
Pov = ((theta_r / (np.sin(theta_r)) ** 2) + 1 / np.tan(theta_r)) * ((0.25 * R / A_r) + (0.25 * R ** 3 / I_r))
Qov = R ** 3 / (2 * I_r * theta_r * (m1 + 1))
Lov = (R_1 - R_sh) / a_r
Denom = I_r * (Pov - Qov + Lov) # radial deflection % rotor
u_ar = (q3 * R ** 2 / E / t) * (1 + Numer / Denom)
# Calculating axial deflection of the rotor under its own weight
w_r = rho_Fes * gravity * np.sin(phi) * a_r * N_r # uniformly distributed load of the weight of the rotor arm
mass_st_lam = rho_Fe * 2 * np.pi * R * L_t * h_yr # mass of rotor yoke steel
W = gravity * np.sin(phi) * (mass_st_lam / N_r + mass_PM / N_r) # weight of 1/nth of rotor cylinder
y_a1 = W * l_ir ** 3 / 12 / E / I_arm_axi_r # deflection from weight component of back iron
y_a2 = w_r * l_iir ** 4 / 24 / E / I_arm_axi_r # deflection from weight component of the arms
y_ar = y_a1 + y_a2 # axial deflection
y_allow = 2 * L_t / 100 # allowable axial deflection
# Calculating # circumferential deflection of the rotor
z_allow_r = np.deg2rad(0.05 * R) # allowable torsional deflection
z_ar = (
(2 * np.pi * (R - 0.5 * t) * L_t / N_r) * sigma * (l_ir - 0.5 * t) ** 3 / 3 / E / I_arm_tor_r
) # circumferential deflection
val_str_rotor = mass_PM + (mass_st_lam + (N_r * (R_1 - R_sh) * a_r * rho_Fes)) # rotor mass
# stator structure deflection calculation
a_s = (b_st * d_s) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)) # cross-sectional area of stator armms
A_st = L_t * t_s # cross-sectional area of stator cylinder
N_st = np.round(n_s) # stator arms
theta_s = np.pi * 1 / N_st # half angle between spokes
I_st = L_t * t_s ** 3 / 12 # second moment of area of stator cylinder
k_2 = np.sqrt(I_st / A_st) # radius of gyration
I_arm_axi_s = (
(b_st * d_s ** 3) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws) ** 3)
) / 12 # second moment of area of stator arm
I_arm_tor_s = (
(d_s * b_st ** 3) - ((d_s - 2 * t_ws) * (b_st - 2 * t_ws) ** 3)
) / 12 # second moment of area of rotot arm w.r.t torsion
R_st = rad_ag + h_s + h_ys * 0.5 # stator cylinder mean radius
R_1s = R_st - t_s * 0.5 # inner radius of stator cylinder, m
m2 = (k_2 / R_st) ** 2
d_se = dia_ag + 2 * (h_ys + h_s + h_w) # stator outer diameter
# allowable radial deflection of stator
c1 = R_st / 500
u_allow_s = c1 / 20
R_out = R / 0.995 + h_s + h_ys
l_is = R_st - R_sh # distance at which the weight of the stator cylinder acts
l_iis = l_is # distance at which the weight of the stator cylinder acts
l_iiis = l_is # distance at which the weight of the stator cylinder acts
mass_st_lam_s = M_Fest + np.pi * L_t * rho_Fe * ((R_st + 0.5 * h_ys) ** 2 - (R_st - 0.5 * h_ys) ** 2)
W_is = (
0.5 * gravity * np.sin(phi) * (rho_Fes * L_t * d_s ** 2)
) # length of stator arm beam at which self-weight acts
W_iis = (
gravity * np.sin(phi) * (mass_st_lam_s + V_Cus * rho_Copper) / 2 / N_st
) # weight of stator cylinder and teeth
w_s = rho_Fes * gravity * np.sin(phi) * a_s * N_st # uniformly distributed load of the arms
mass_stru_steel = 2 * (N_st * (R_1s - R_sh) * a_s * rho_Fes) # Structural mass of stator arms
# Calculating radial deflection of the stator
Numers = R_st ** 3 * (
(0.25 * (np.sin(theta_s) - (theta_s * np.cos(theta_s))) / (np.sin(theta_s)) ** 2)
- (0.5 / np.sin(theta_s))
+ (0.5 / theta_s)
)
Povs = ((theta_s / (np.sin(theta_s)) ** 2) + 1 / np.tan(theta_s)) * (
(0.25 * R_st / A_st) + (0.25 * R_st ** 3 / I_st)
)
Qovs = R_st ** 3 / (2 * I_st * theta_s * (m2 + 1))
Lovs = (R_1s - R_sh) * 0.5 / a_s
Denoms = I_st * (Povs - Qovs + Lovs)
u_as = (q3 * R_st ** 2 / E / t_s) * (1 + Numers / Denoms)
# Calculating axial deflection of the stator
X_comp1 = (
W_is * l_is ** 3 / 12 / E / I_arm_axi_s
) # deflection component due to stator arm beam at which self-weight acts
X_comp2 = W_iis * l_iis ** 4 / 24 / E / I_arm_axi_s # deflection component due to 1 / nth of stator cylinder
X_comp3 = w_s * l_iiis ** 4 / 24 / E / I_arm_axi_s # deflection component due to weight of arms
y_as = X_comp1 + X_comp2 + X_comp3 # axial deflection
# Calculating circumferential deflection of the stator
z_as = 2 * np.pi * (R_st + 0.5 * t_s) * L_t / (2 * N_st) * sigma * (l_is + 0.5 * t_s) ** 3 / 3 / E / I_arm_tor_s
z_allow_s = np.deg2rad(0.05 * R_st) # allowable torsional deflection
b_allow_s = 2 * np.pi * R_sh / N_st # allowable circumferential arm dimension
val_str_stator = mass_stru_steel + mass_st_lam_s
val_str_mass = val_str_rotor + val_str_stator
TC1 = Torque / (2 * np.pi * sigma) # Desired shear stress
TC2r = R ** 2 * L_t # Evaluating Torque constraint for rotor
TC2s = R_st ** 2 * L_t # Evaluating Torque constraint for stator
Structural_mass = mass_stru_steel + (N_r * (R_1 - R_sh) * a_r * rho_Fes)
Stator = mass_st_lam_s + mass_stru_steel + Copper
Rotor = ((2 * np.pi * t * L_t * R * rho_Fe) + (N_r * (R_1 - R_sh) * a_r * rho_Fes)) + mass_PM
Mass = Stator + Rotor
outputs["B_tmax"] = B_tmax
outputs["B_rymax"] = B_rymax
outputs["B_symax"] = B_symax
outputs["B_smax"] = B_smax[-1]
outputs["B_pm1"] = B_pm1
outputs["B_g"] = B_g
outputs["N_s"] = N_s
outputs["b_s"] = b_s
outputs["b_t"] = b_t
outputs["A_Cuscalc"] = A_Cuscalc
outputs["b_m"] = b_m
outputs["E_p"] = E_p
outputs["f"] = f
outputs["I_s"] = I_s
outputs["R_s"] = R_s
outputs["L_s"] = L_s
outputs["A_1"] = A_1
outputs["J_s"] = J_s
outputs["Losses"] = Losses
outputs["K_rad"] = K_rad
outputs["eandm_efficiency"] = np.maximum(eps, gen_eff)
outputs["S"] = S
outputs["Slot_aspect_ratio"] = Slot_aspect_ratio
outputs["Copper"] = Copper
outputs["Iron"] = Iron
outputs["u_ar"] = u_ar
outputs["y_ar"] = y_ar
outputs["z_ar"] = z_ar
outputs["u_as"] = u_as
outputs["y_as"] = y_as
outputs["z_as"] = z_as
outputs["u_allow_r"] = u_allow_r
outputs["u_allow_s"] = u_allow_s
outputs["y_allow_r"] = outputs["y_allow_s"] = y_allow
outputs["z_allow_s"] = z_allow_s
outputs["z_allow_r"] = z_allow_r
outputs["b_allow_s"] = b_allow_s
outputs["b_allow_r"] = b_allow_r
outputs["TC1"] = TC1
outputs["TC2r"] = TC2r
outputs["TC2s"] = TC2s
outputs["R_out"] = R_out
outputs["Structural_mass"] = Structural_mass
outputs["generator_mass"] = Mass
outputs["mass_PM"] = mass_PM
# ----------------------------------------------------------------------------------------
class DFIG(GeneratorBase):
"""
Estimates overall mass, dimensions and Efficiency of DFIG generator.
Parameters
----------
S_Nmax : float
Max rated Slip
B_symax : float, [T]
Peak Stator Yoke flux density B_ymax
Returns
-------
N_r : float
Rotor turns
L_r : float
Rotor inductance
h_yr : float
rotor yoke height
h_ys : float
Stator Yoke height
tau_p : float
Pole pitch
Current_ratio : float
Rotor current ratio
E_p : float
Stator phase voltage
"""
def initialize(self):
super(DFIG, self).initialize()
def setup(self):
super(DFIG, self).setup()
n_pc = self.options["n_pc"]
self.add_input("S_Nmax", val=0.0)
self.add_input("B_symax", val=0.0, units="T")
self.add_output("N_r", val=0.0)
self.add_output("L_r", val=0.0)
self.add_output("h_yr", val=0.0)
self.add_output("h_ys", val=0.0)
self.add_output("tau_p", val=0.0)
self.add_output("Current_ratio", val=np.zeros(n_pc))
self.add_output("E_p", val=np.zeros(n_pc))
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
# Unpack inputs
rad_ag = inputs["rad_ag"]
len_s = inputs["len_s"]
h_s = inputs["h_s"]
h_0 = inputs["h_0"]
I_0 = inputs["I_0"]
machine_rating = inputs["machine_rating"]
shaft_rpm = inputs["shaft_rpm"]
rho_Fe = inputs["rho_Fe"]
rho_Copper = inputs["rho_Copper"]
B_symax = inputs["B_symax"]
S_Nmax = inputs["S_Nmax"]
# Grab constant values
B_r = inputs["B_r"]
E = inputs["E"]
P_Fe0e = inputs["P_Fe0e"]
P_Fe0h = inputs["P_Fe0h"]
S_N = inputs["S_N"]
alpha_p = inputs["alpha_p"]
b_r_tau_r = inputs["b_r_tau_r"]
b_ro = inputs["b_ro"]
b_s_tau_s = inputs["b_s_tau_s"]
b_so = inputs["b_so"]
cofi = inputs["cofi"]
freq = inputs["freq"]
h_i = inputs["h_i"]
h_sy0 = inputs["h_sy0"]
h_w = inputs["h_w"]
k_fes = inputs["k_fes"]
k_fillr = inputs["k_fillr"]
k_s = inputs["k_s"]
m = discrete_inputs["m"]
mu_0 = inputs["mu_0"]
mu_r = inputs["mu_r"]
p = inputs["p"]
phi = inputs["phi"]
q1 = discrete_inputs["q1"]
q2 = q1 - 1 # Rotor slots per pole per phase
ratio_mw2pp = inputs["ratio_mw2pp"]
resist_Cu = inputs["resist_Cu"]
sigma = inputs["sigma"]
v = inputs["v"]
y_tau_p = inputs["y_tau_p"]
y_tau_pr = inputs["y_tau_pr"]
"""
#Assign values to universal constants
sigma = 21.5e3 # shear stress in psi (what material? Al, brass, Cu?) ~148e6 Pa
mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2)
cofi = 0.9 # power factor
h_w = 0.005 # wedge height
m = 3 # Number of phases
resist_Cu = 1.8e-8 * 1.4 # copper resisitivity
h_sy0 = 0
#Assign values to design constants
b_so = 0.004 # Stator slot opening width
b_ro = 0.004 # Rotor slot opening width
q1 = 5 # Stator slots per pole per phase
b_s_tau_s = 0.45 # Stator slot-width / slot-pitch ratio
b_r_tau_r = 0.45 # Rotor slot-width / slot-pitch ratio
y_tau_p = 12. / 15 # Stator coil span to pole pitch
y_tau_pr = 10. / 12 # Rotor coil span to pole pitch
p = 3 # pole pairs
freq = 60 # grid frequency in Hz
k_fillr = 0.55 # Rotor Slot fill factor
P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T
P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T
"""
K_rs = 1 / (-1 * S_Nmax) # Winding turns ratio between rotor and Stator
I_SN = machine_rating / (np.sqrt(3) * 3000) # Rated current
I_SN_r = I_SN / K_rs # Stator rated current reduced to rotor
# Calculating winding factor for stator and rotor
k_y1 = np.sin(np.pi / 2 * y_tau_p) # winding chording factor
k_q1 = np.sin(np.pi / 6) / (q1 * np.sin(np.pi / (6 * q1))) # winding zone factor
k_y2 = np.sin(np.pi / 2 * y_tau_pr) # winding chording factor
k_q2 = np.sin(np.pi / 6) / (q2 * np.sin(np.pi / (6 * q2))) # winding zone factor
k_wd1 = k_y1 * k_q1 # Stator winding factor
k_wd2 = k_q2 * k_y2 # Rotor winding factor
ag_dia = 2 * rad_ag # air gap diameter
ag_len = (0.1 + 0.012 * machine_rating ** (1.0 / 3)) * 0.001 # air gap length in m
K_rad = len_s / ag_dia # Aspect ratio
rad_r = rad_ag - ag_len # rotor radius (was r_r)
tau_p = np.pi * ag_dia / (2 * p) # pole pitch
S = 2 * p * q1 * m # Stator slots
N_slots_pp = S / (m * p * 2) # Number of stator slots per pole per phase
n = S / 2 * p / q1 # no of slots per pole per phase
tau_s = tau_p / (m * q1) # Stator slot pitch
b_s = b_s_tau_s * tau_s # Stator slot width
b_t = tau_s - b_s # Stator tooth width
Q_r = 2 * p * m * q2 # Rotor slots
tau_r = np.pi * (ag_dia - 2 * ag_len) / Q_r # Rotor slot pitch
b_r = b_r_tau_r * tau_r # Rotor slot width
b_tr = tau_r - b_r # Rotor tooth width
# Calculating equivalent slot openings
mu_rs = 0.005
mu_rr = 0.005
W_s = (b_s / mu_rs) * 1e-3 # Stator, in m
W_r = (b_r / mu_rr) * 1e-3 # Rotor, in m
Slot_aspect_ratio1 = h_s / b_s
Slot_aspect_ratio2 = h_0 / b_r
# Calculating Carter factor for stator,rotor and effective air gap length
gamma_s = (2 * W_s / ag_len) ** 2 / (5 + 2 * W_s / ag_len)
K_Cs = tau_s / (tau_s - ag_len * gamma_s * 0.5) # page 3 - 13
gamma_r = (2 * W_r / ag_len) ** 2 / (5 + 2 * W_r / ag_len)
K_Cr = tau_r / (tau_r - ag_len * gamma_r * 0.5) # page 3 - 13
K_C = K_Cs * K_Cr
g_eff = K_C * ag_len
om_m = 2 * np.pi * shaft_rpm / 60 # mechanical frequency
om_e = p * om_m # electrical frequency
f = shaft_rpm * p / 60 # generator output freq
K_s = 0.3 # saturation factor for Iron
n_c1 = 2 # number of conductors per coil
a1 = 2 # number of parallel paths
N_s = np.round(2 * p * N_slots_pp * n_c1 / a1) # Stator winding turns per phase
N_r = np.round(N_s * k_wd1 * K_rs / k_wd2) # Rotor winding turns per phase
n_c2 = N_r / (Q_r / m) # rotor turns per coil
# Calculating peak flux densities and back iron thickness
B_g1 = mu_0 * 3 * N_r * I_0 * np.sqrt(2) * k_y2 * k_q2 / (np.pi * p * g_eff * (1 + K_s))
B_g = B_g1 * K_C
h_ys = B_g * tau_p / (B_symax * np.pi)
B_rymax = B_symax
h_yr = h_ys
B_tsmax = B_g * tau_s / b_t
d_se = ag_dia + 2 * (h_ys + h_s + h_w) # stator outer diameter
D_ratio = d_se / ag_dia # Diameter ratio
# Stator slot fill factor
if ag_dia > 2:
k_fills = 0.65
else:
k_fills = 0.4
# Stator winding calculation
# End connection length for stator winding coils
l_fs = 2 * (0.015 + y_tau_p * tau_p / (2 * np.cos(np.deg2rad(40)))) + np.pi * h_s # added radians() 2019 09 11
l_Cus = 2 * N_s * (l_fs + len_s) / a1 # Length of Stator winding
# Conductor cross-section
A_s = b_s * (h_s - h_w)
A_scalc = b_s * 1000 * (h_s - h_w) * 1000
A_Cus = A_s * q1 * p * k_fills / N_s
A_Cuscalc = A_scalc * q1 * p * k_fills / N_s
# Stator winding resistance
R_s = l_Cus * resist_Cu / A_Cus
tau_r_min = np.pi * (ag_dia - 2 * (ag_len + h_0)) / Q_r
# Peak magnetic loading on the rotor tooth
b_trmin = tau_r_min - b_r_tau_r * tau_r_min
B_trmax = B_g * tau_r / b_trmin
# Calculating leakage inductance in stator
K_01 = 1 - 0.033 * (W_s ** 2 / ag_len / tau_s)
sigma_ds = 0.0042
L_ssigmas = (2 * mu_0 * len_s * n_c1 ** 2 * S / m / a1 ** 2) * (
(h_s - h_w) / (3 * b_s) + h_w / b_so
) # slot leakage inductance
L_ssigmaew = (
(2 * mu_0 * len_s * n_c1 ** 2 * S / m / a1 ** 2) * 0.34 * q1 * (l_fs - 0.64 * tau_p * y_tau_p) / len_s
) # end winding leakage inductance
L_ssigmag = (2 * mu_0 * len_s * n_c1 ** 2 * S / m / a1 ** 2) * (
0.9 * tau_s * q1 * k_wd1 * K_01 * sigma_ds / g_eff
) # tooth tip leakage inductance
L_ssigma = L_ssigmas + L_ssigmaew + L_ssigmag # stator leakage inductance
L_sm = 6 * mu_0 * len_s * tau_p * (k_wd1 * N_s) ** 2 / (np.pi ** 2 * (p) * g_eff * (1 + K_s))
L_s = L_ssigmas + L_ssigmaew + L_ssigmag # stator inductance
# Calculating leakage inductance in rotor
K_02 = 1 - 0.033 * (W_r ** 2 / ag_len / tau_r)
sigma_dr = 0.0062
l_fr = (0.015 + y_tau_pr * tau_r / 2 / np.cos(np.deg2rad(40))) + np.pi * h_0 # Rotor end connection length
L_rsl = (mu_0 * len_s * (2 * n_c2) ** 2 * Q_r / m) * (
(h_0 - h_w) / (3 * b_r) + h_w / b_ro
) # slot leakage inductance
L_rel = (
(mu_0 * len_s * (2 * n_c2) ** 2 * Q_r / m) * 0.34 * q2 * (l_fr - 0.64 * tau_r * y_tau_pr) / len_s
) # end winding leakage inductance
L_rtl = (mu_0 * len_s * (2 * n_c2) ** 2 * Q_r / m) * (
0.9 * tau_s * q2 * k_wd2 * K_02 * sigma_dr / g_eff
) # tooth tip leakage inductance
L_r = (L_rsl + L_rtl + L_rel) / K_rs ** 2 # rotor leakage inductance
sigma1 = 1 - (L_sm ** 2 / L_s / L_r)
# Rotor Field winding
# conductor cross-section
diff = h_0 - h_w
A_Cur = k_fillr * p * q2 * b_r * diff / N_r
A_Curcalc = A_Cur * 1e6
L_cur = 2 * N_r * (l_fr + len_s) # rotor winding length
Resist_r = resist_Cu * L_cur / A_Cur # Rotor resistance
R_R = Resist_r / K_rs ** 2 # Equivalent rotor resistance reduced to stator
om_s = shaft_rpm * 2 * np.pi / 60 # synchronous speed in rad / s
P_e = machine_rating / (1 - S_Nmax) # Air gap power
# Calculating No-load voltage
E_p = om_s * N_s * k_wd1 * rad_ag * len_s * B_g1 * np.sqrt(2)
I_r = P_e / m / E_p # rotor active current
I_sm = E_p / (2 * np.pi * freq * (L_s + L_sm)) # stator reactive current
I_s = np.sqrt(I_r ** 2 + I_sm ** 2) # Stator current
I_srated = machine_rating / 3 / K_rs / E_p # Rated current
# Calculating winding current densities and specific current loading
J_s = I_s / A_Cuscalc
J_r = I_r / A_Curcalc
A_1 = 2 * m * N_s * I_s / (np.pi * 2 * rad_ag)
Current_ratio = I_0 / I_srated # Ratio of magnetization current to rated current
# Calculating masses of the electromagnetically active materials
V_Cuss = m * l_Cus * A_Cus
V_Cusr = m * L_cur * A_Cur
V_Fest = len_s * np.pi * ((rad_ag + h_s) ** 2 - rad_ag ** 2) - (2 * m * q1 * p * b_s * h_s * len_s)
V_Fesy = len_s * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2)
V_Fert = len_s * np.pi * (rad_r ** 2 - (rad_r - h_0) ** 2) - 2 * m * q2 * p * b_r * h_0 * len_s
V_Fery = len_s * np.pi * ((rad_r - h_0) ** 2 - (rad_r - h_0 - h_yr) ** 2)
Copper = (V_Cuss + V_Cusr) * rho_Copper
M_Fest = V_Fest * rho_Fe
M_Fesy = V_Fesy * rho_Fe
M_Fert = V_Fert * rho_Fe
M_Fery = V_Fery * rho_Fe
Iron = M_Fest + M_Fesy + M_Fert + M_Fery
M_gen = (Copper) + (Iron)
# K_gen = Cu * C_Cu + (Iron) * C_Fe #%M_pm * K_pm
L_tot = len_s
Structural_mass = 0.0002 * M_gen ** 2 + 0.6457 * M_gen + 645.24
Mass = M_gen + Structural_mass
# Calculating Losses and efficiency
# 1. Copper losses
K_R = 1.2 # skin effect correction coefficient
P_Cuss = m * I_s ** 2 * R_s * K_R # Copper loss - stator
P_Cusr = m * I_r ** 2 * R_R # Copper loss - rotor
P_Cusnom = P_Cuss + P_Cusr # Copper loss - total
# Iron Losses ( from Hysteresis and eddy currents)
P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke
P_Ftys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) # Eddy losses in stator yoke
P_Hyd = M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator teeth
P_Ftd = M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) # Eddy losses in stator teeth
P_Hyyr = (
M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * abs(S_Nmax) * om_e / (2 * np.pi * 60))
) # Hysteresis losses in rotor yoke
P_Ftyr = (
M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0e * (abs(S_Nmax) * om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in rotor yoke
P_Hydr = (
M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0h * abs(S_Nmax) * om_e / (2 * np.pi * 60))
) # Hysteresis losses in rotor teeth
P_Ftdr = (
M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0e * (abs(S_Nmax) * om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in rotor teeth
P_add = 0.5 * machine_rating / 100 # additional losses
P_Fesnom = P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr + P_Hydr + P_Ftdr # Total iron loss
delta_v = 1 # allowable brush voltage drop
p_b = 3 * delta_v * I_r # Brush loss
Losses = P_Cusnom + P_Fesnom + p_b + P_add
gen_eff = (P_e - Losses) / P_e
# Calculating stator winding current density
J_s = I_s / A_Cuscalc
# Calculating electromagnetic torque
T_e = p * (machine_rating * 1.01) / (2 * np.pi * freq * (1 - S_Nmax))
# Calculating for tangential stress constraints
TC1 = T_e / (2 * np.pi * sigma)
TC2r = rad_ag ** 2 * len_s
r_out = d_se * 0.5
outputs["R_out"] = r_out
outputs["B_g"] = B_g
outputs["B_g1"] = B_g1
outputs["B_rymax"] = B_rymax
outputs["B_tsmax"] = B_tsmax
outputs["B_trmax"] = B_trmax
outputs["N_s"] = N_s
outputs["S"] = S
outputs["h_ys"] = h_ys
outputs["b_s"] = b_s
outputs["b_t"] = b_t
outputs["D_ratio"] = D_ratio
outputs["A_Cuscalc"] = A_Cuscalc
outputs["Slot_aspect_ratio1"] = Slot_aspect_ratio1
outputs["h_yr"] = h_yr
outputs["tau_p"] = tau_p
outputs["Q_r"] = Q_r
outputs["N_r"] = N_r
outputs["b_r"] = b_r
outputs["b_trmin"] = b_trmin
outputs["b_tr"] = b_tr
outputs["A_Curcalc"] = A_Curcalc
outputs["Slot_aspect_ratio2"] = Slot_aspect_ratio2
outputs["E_p"] = E_p
outputs["f"] = f
outputs["I_s"] = I_s
outputs["A_1"] = A_1
outputs["J_s"] = J_s
outputs["J_r"] = J_r
outputs["R_s"] = R_s
outputs["R_R"] = R_R
outputs["L_r"] = L_r
outputs["L_s"] = L_s
outputs["L_sm"] = L_sm
outputs["generator_mass"] = Mass
outputs["K_rad"] = K_rad
outputs["Losses"] = Losses
outputs["eandm_efficiency"] = np.maximum(eps, gen_eff)
outputs["Copper"] = Copper
outputs["Iron"] = Iron
outputs["Structural_mass"] = Structural_mass
outputs["TC1"] = TC1
outputs["TC2r"] = TC2r
outputs["Current_ratio"] = Current_ratio
# ----------------------------------------------------------------------------------------
class SCIG(GeneratorBase):
"""
Estimates overall mass dimensions and Efficiency of Squirrel cage Induction generator.
Parameters
----------
B_symax : float, [T]
Peak Stator Yoke flux density B_ymax
Returns
-------
h_yr : float
rotor yoke height
h_ys : float
Stator Yoke height
tau_p : float
Pole pitch
D_ratio_UL : float
Dia ratio upper limit
D_ratio_LL : float
Dia ratio Lower limit
K_rad_UL : float
Aspect ratio upper limit
K_rad_LL : float
Aspect ratio Lower limit
rad_r : float
rotor radius
A_bar : float
Rotor Conductor cross-section mm^2
E_p : float
Stator phase voltage
"""
def initialize(self):
super(SCIG, self).initialize()
def setup(self):
super(SCIG, self).setup()
self.add_input("B_symax", val=0.0, units="T")
self.add_output("h_yr", val=0.0)
self.add_output("h_ys", val=0.0)
self.add_output("tau_p", val=0.0)
self.add_output("D_ratio_UL", val=0.0)
self.add_output("D_ratio_LL", val=0.0)
self.add_output("K_rad_UL", val=0.0)
self.add_output("K_rad_LL", val=0.0)
self.add_output("rad_r", val=0.0)
self.add_output("A_bar", val=0.0)
self.add_output("E_p", val=np.zeros(self.options["n_pc"]))
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
# Unpack inputs
rad_ag = inputs["rad_ag"]
len_s = inputs["len_s"]
h_s = inputs["h_s"]
h_0 = inputs["h_0"]
machine_rating = inputs["machine_rating"]
shaft_rpm = inputs["shaft_rpm"]
I_0 = inputs["I_0"]
rho_Fe = inputs["rho_Fe"]
rho_Copper = inputs["rho_Copper"]
B_symax = inputs["B_symax"]
# Grab constant values
B_r = inputs["B_r"]
E = inputs["E"]
P_Fe0e = inputs["P_Fe0e"]
P_Fe0h = inputs["P_Fe0h"]
S_N = inputs["S_N"]
alpha_p = inputs["alpha_p"]
b_r_tau_r = inputs["b_r_tau_r"]
b_ro = inputs["b_ro"]
b_s_tau_s = inputs["b_s_tau_s"]
b_so = inputs["b_so"]
cofi = inputs["cofi"]
freq = inputs["freq"]
h_i = inputs["h_i"]
h_sy0 = inputs["h_sy0"]
h_w = inputs["h_w"]
k_fes = inputs["k_fes"]
k_fillr = inputs["k_fillr"]
k_s = inputs["k_s"]
m = discrete_inputs["m"]
mu_0 = inputs["mu_0"]
mu_r = inputs["mu_r"]
p = inputs["p"]
phi = inputs["phi"]
q1 = discrete_inputs["q1"]
q2 = discrete_inputs["q2"]
ratio_mw2pp = inputs["ratio_mw2pp"]
resist_Cu = inputs["resist_Cu"]
sigma = inputs["sigma"]
v = inputs["v"]
y_tau_p = inputs["y_tau_p"]
y_tau_pr = inputs["y_tau_pr"]
"""
# Assign values to universal constants
sigma = 21.5e3 # shear stress (psi) what material?
mu_0 = np.pi*4e-7 # permeability of free space in m * kg / (s**2 * A**2)
cofi = 0.9 # power factor
h_w = 0.005 # wedge height
m = 3 # Number of phases
resist_Cu = 1.8e-8 * 1.4 # Copper resistivity
#Assign values to design constants
b_so = 0.004 # Stator slot opening width
b_ro = 0.004 # Rotor slot opening width
q1 = 6 # Stator slots per pole per phase
q2 = 4 # Rotor slots per pole per phase
b_s_tau_s = 0.45 # Stator Slot width/Slot pitch ratio
b_r_tau_r = 0.45 # Rotor Slot width/Slot pitch ratio
y_tau_p = 12./15 # Coil span/pole pitch
p = 3 # number of pole pairs
freq = 60 # frequency in Hz
k_fillr = 0.7 # Rotor slot fill factor
P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T @50 Hz
P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T @50 Hz
S_N = -0.002 # Slip
"""
n_1 = shaft_rpm / (1 - S_N) # actual rotor speed (rpm)
# Calculating winding factor
k_y1 = np.sin(np.pi / 2 * y_tau_p) # winding chording factor
k_q1 = np.sin(np.pi / 6) / (q1 * np.sin(np.pi / (6 * q1))) # zone factor
k_wd = k_y1 * k_q1 # winding factor
# Calculating air gap length
ag_dia = 2 * rad_ag # air gap diameter
ag_len = (0.1 + 0.012 * machine_rating ** (1.0 / 3)) * 0.001 # air gap length in m
K_rad = len_s / ag_dia # Aspect ratio
K_rad_LL = 0.5 # lower limit on aspect ratio
K_rad_UL = 1.5 # upper limit on aspect ratio
rad_r = rad_ag - ag_len # rotor radius
tau_p = np.pi * ag_dia / (2 * p) # pole pitch
S = 2 * p * q1 * m # Stator slots
N_slots_pp = S / (m * p * 2) # Number of stator slots per pole per phase
tau_s = tau_p / (m * q1) # Stator slot pitch
b_s = b_s_tau_s * tau_s # Stator slot width
b_t = tau_s - b_s # Stator tooth width
Q_r = 2 * p * m * q2 # Rotor slots
tau_r = np.pi * (ag_dia - 2 * ag_len) / Q_r # Rotor slot pitch
b_r = b_r_tau_r * tau_r # Rotor slot width
b_tr = tau_r - b_r # Rotor tooth width
tau_r_min = np.pi * (ag_dia - 2 * (ag_len + h_0)) / Q_r
b_trmin = tau_r_min - b_r_tau_r * tau_r_min # minumum rotor tooth width
# Calculating equivalent slot openings
mu_rs = 0.005
mu_rr = 0.005
W_s = (b_s / mu_rs) * 1e-3 # Stator, in m
W_r = (b_r / mu_rr) * 1e-3 # Rotor, in m
Slot_aspect_ratio1 = h_s / b_s # Stator slot aspect ratio
Slot_aspect_ratio2 = h_0 / b_r # Rotor slot aspect ratio
# Calculating Carter factor for stator,rotor and effective air gap length
"""
gamma_s = (2 * W_s / ag_len)**2 / (5 + 2 * W_s / ag_len)
K_Cs = tau_s / (tau_s - ag_len * gamma_s * 0.5) # page 3-13 Boldea Induction machines Chapter 3
gamma_r = (2 * W_r / ag_len)**2 / (5 + 2 * W_r / ag_len)
K_Cr = tau_r / (tau_r - ag_len * gamma_r * 0.5) # page 3-13 Boldea Induction machines Chapter 3
"""
K_Cs = carterFactor(ag_len, W_s, tau_s)
K_Cr = carterFactor(ag_len, W_r, tau_r)
K_C = K_Cs * K_Cr
g_eff = K_C * ag_len
om_m = 2 * np.pi * shaft_rpm / 60 # mechanical frequency
om_e = p * om_m # electrical frequency
f = shaft_rpm * p / 60 # generator output freq
K_s = 0.3 # saturation factor for Iron
n_c = 2 # number of conductors per coil
a1 = 2 # number of parallel paths
# Calculating stator winding turns
N_s = np.round(2 * p * N_slots_pp * n_c / a1)
# Calculating Peak flux densities
B_g1 = mu_0 * 3 * N_s * I_0 * np.sqrt(2) * k_y1 * k_q1 / (np.pi * p * g_eff * (1 + K_s))
B_g = B_g1 * K_C
B_rymax = B_symax
# calculating back iron thickness
h_ys = B_g * tau_p / (B_symax * np.pi)
h_yr = h_ys
d_se = ag_dia + 2 * (h_ys + h_s + h_w) # stator outer diameter
D_ratio = d_se / ag_dia # Diameter ratio
# limits for Diameter ratio depending on pole pair
if 2 * p == 2:
D_ratio_LL = 1.65
D_ratio_UL = 1.69
elif 2 * p == 4:
D_ratio_LL = 1.46
D_ratio_UL = 1.49
elif 2 * p == 6:
D_ratio_LL = 1.37
D_ratio_UL = 1.4
elif 2 * p == 8:
D_ratio_LL = 1.27
D_ratio_UL = 1.3
else:
D_ratio_LL = 1.2
D_ratio_UL = 1.24
# Stator slot fill factor
if ag_dia > 2:
k_fills = 0.65
else:
k_fills = 0.4
# Stator winding length and cross-section
l_fs = 2 * (0.015 + y_tau_p * tau_p / 2 / np.cos(np.deg2rad(40))) + np.pi * h_s # end connection
l_Cus = 2 * N_s * (l_fs + len_s) / a1 # shortpitch
A_s = b_s * (h_s - h_w) # Slot area
A_scalc = b_s * 1000 * (h_s - h_w) * 1000 # Conductor cross-section (mm^2)
A_Cus = A_s * q1 * p * k_fills / N_s # Conductor cross-section (m^2)
A_Cuscalc = A_scalc * q1 * p * k_fills / N_s
# Stator winding resistance
R_s = l_Cus * resist_Cu / A_Cus
# Calculating no-load voltage
om_s = shaft_rpm * 2 * np.pi / 60 # rated angular frequency
P_e = machine_rating / (1 - S_N) # Electrical power
E_p = om_s * N_s * k_wd * rad_ag * len_s * B_g1 * np.sqrt(2)
S_GN = (1.0 - S_N) * machine_rating # same as P_e?
T_e = p * S_GN / (2 * np.pi * freq * (1 - S_N))
I_srated = machine_rating / (3 * E_p * cofi)
# Rotor design
diff = h_0 - h_w
A_bar = b_r * diff # bar cross section
Beta_skin = np.sqrt(np.pi * mu_0 * freq / 2 / resist_Cu) # coefficient for skin effect correction
k_rm = Beta_skin * h_0 # coefficient for skin effect correction
J_b = 6e06 # Bar current density
K_i = 0.864
I_b = 2 * m * N_s * k_wd * I_srated / Q_r # bar current
# Calculating bar resistance
R_rb = resist_Cu * k_rm * len_s / A_bar
I_er = I_b / (2 * np.sin(np.pi * p / Q_r)) # End ring current
J_er = 0.8 * J_b # End ring current density
A_er = I_er / J_er # End ring cross-section
b = h_0 # End ring dimension
a = A_er / b # End ring dimension
D_er = (rad_ag * 2 - 2 * ag_len) - 0.003 # End ring diameter
l_er = np.pi * (D_er - b) / Q_r # End ring segment length
if debug:
sys.stderr.write("l_er {:.4f} A_er {:.4f} D_er {:.4f}\n".format(l_er[0], A_er[0], D_er[0]))
# Calculating end ring resistance
R_re = resist_Cu * l_er / (2 * A_er * (np.sin(np.pi * p / Q_r)) ** 2)
# Calculating equivalent rotor resistance
if debug:
sys.stderr.write("R_rb {:.3e} R_re {:.3e} k_wd {:.4f} N_s {} Q_r {}\n".format(R_rb, R_re, k_wd, N_s, Q_r))
R_R = (R_rb + R_re) * 4 * m * (k_wd * N_s) ** 2 / Q_r
# Calculating Rotor and Stator teeth flux density
B_trmax = B_g * tau_r / b_trmin
B_tsmax = B_g * tau_s / b_t
# Calculating Equivalent core lengths
l_r = len_s + 4 * ag_len # for axial cooling
l_se = len_s + (2 / 3) * ag_len
K_fe = 0.95 # Iron factor
L_e = l_se * K_fe # radial cooling
# Calculating leakage inductance in stator
if debug:
sys.stderr.write("b_s {:.3e} b_so {:.3e}\n".format(b_s[0], b_so[0]))
L_ssigmas = (
2 * mu_0 * len_s * N_s ** 2 / p / q1 * ((h_s - h_w) / (3 * b_s) + h_w / b_so)
) # slot leakage inductance
L_ssigmaew = (
2 * mu_0 * len_s * N_s ** 2 / p / q1 * 0.34 * q1 * (l_fs - 0.64 * tau_p * y_tau_p) / len_s
) # end winding leakage inductance
L_ssigmag = (
2 * mu_0 * len_s * N_s ** 2 / p / q1 * (5 * (ag_len * K_C / b_so) / (5 + 4 * (ag_len * K_C / b_so)))
) # tooth tip leakage inductance
L_s = L_ssigmas + L_ssigmaew + L_ssigmag # stator leakage inductance
L_sm = 6 * mu_0 * len_s * tau_p * (k_wd * N_s) ** 2 / (np.pi ** 2 * p * g_eff * (1 + K_s))
# Calculating leakage inductance in rotor
lambda_ei = 2.3 * D_er / (4 * Q_r * len_s * (np.sin(np.pi * p / Q_r) ** 2)) * np.log(4.7 * ag_dia / (a + 2 * b))
lambda_b = h_0 / (3 * b_r) + h_w / b_ro
L_i = np.pi * ag_dia / Q_r
L_rsl = mu_0 * len_s * ((h_0 - h_w) / (3 * b_r) + h_w / b_ro) # slot leakage inductance
L_rel = mu_0 * (len_s * lambda_b + 2 * lambda_ei * L_i) # end winding leakage inductance
L_rtl = mu_0 * len_s * (0.9 * tau_r * 0.09 / g_eff) # tooth tip leakage inductance
L_rsigma = (L_rsl + L_rtl + L_rel) * 4 * m * (k_wd * N_s) ** 2 / Q_r # rotor leakage inductance
# Calculating rotor current
if debug:
sys.stderr.write(
"S_N {} P_e {:.1f} m {} R_R {:.4f} = {:.1f}\n".format(S_N, P_e, m, R_R, -S_N * P_e / m / R_R)
)
I_r = np.sqrt(-S_N * P_e / m / R_R)
I_sm = E_p / (2 * np.pi * freq * L_sm)
# Calculating stator currents and specific current loading
I_s = np.sqrt((I_r ** 2 + I_sm ** 2))
A_1 = 2 * m * N_s * I_s / (np.pi * 2 * rad_ag)
# Calculating masses of the electromagnetically active materials
V_Cuss = m * l_Cus * A_Cus # Volume of copper in stator
V_Cusr = Q_r * len_s * A_bar + np.pi * (D_er * A_er - A_er * b) # Volume of copper in rotor
V_Fest = (
len_s * np.pi * ((rad_ag + h_s) ** 2 - rad_ag ** 2) - 2 * m * q1 * p * b_s * h_s * len_s
) # Volume of iron in stator teeth
V_Fesy = len_s * np.pi * ((rad_ag + h_s + h_ys) ** 2 - (rad_ag + h_s) ** 2) # Volume of iron in stator yoke
rad_r = rad_ag - ag_len # rotor radius
V_Fert = (
np.pi * len_s * (rad_r ** 2 - (rad_r - h_0) ** 2) - 2 * m * q2 * p * b_r * h_0 * len_s
) # Volume of iron in rotor teeth
V_Fery = np.pi * len_s * ((rad_r - h_0) ** 2 - (rad_r - h_0 - h_yr) ** 2) # Volume of iron in rotor yoke
Copper = (V_Cuss + V_Cusr)[-1] * rho_Copper # Mass of Copper
M_Fest = V_Fest * rho_Fe # Mass of stator teeth
M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke
M_Fert = V_Fert * rho_Fe # Mass of rotor tooth
M_Fery = V_Fery * rho_Fe # Mass of rotor yoke
Iron = M_Fest + M_Fesy + M_Fert + M_Fery
Active_mass = Copper + Iron
L_tot = len_s
Structural_mass = 0.0001 * Active_mass ** 2 + 0.8841 * Active_mass - 132.5
Mass = Active_mass + Structural_mass
# Calculating Losses and efficiency
# 1. Copper losses
K_R = 1.2 # skin effect correction coefficient
P_Cuss = m * I_s ** 2 * R_s * K_R # Copper loss - stator
P_Cusr = m * I_r ** 2 * R_R # Copper loss - rotor
P_Cusnom = P_Cuss + P_Cusr # Copper loss - total
# Iron Losses ( from Hysteresis and eddy currents)
P_Hyys = M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator yoke
P_Ftys = (
M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator yoke
P_Hyd = M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) # Hysteresis losses in stator tooth
P_Ftd = (
M_Fest * (B_tsmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in stator tooth
P_Hyyr = (
M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * abs(S_N) * om_e / (2 * np.pi * 60))
) # Hysteresis losses in rotor yoke
P_Ftyr = (
M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0e * (abs(S_N) * om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in rotor yoke
P_Hydr = (
M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0h * abs(S_N) * om_e / (2 * np.pi * 60))
) # Hysteresis losses in rotor tooth
P_Ftdr = (
M_Fert * (B_trmax / 1.5) ** 2 * (P_Fe0e * (abs(S_N) * om_e / (2 * np.pi * 60)) ** 2)
) # Eddy losses in rotor tooth
# Calculating Additional losses
P_add = 0.5 * machine_rating / 100
P_Fesnom = P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr + P_Hydr + P_Ftdr
Losses = P_Cusnom + P_Fesnom + P_add
gen_eff = (P_e - Losses) / P_e
# Calculating current densities in the stator and rotor
J_s = I_s / A_Cuscalc
J_r = I_r / A_bar / 1e6
# Calculating Tangential stress constraints
TC1 = T_e / (2 * np.pi * sigma)
TC2r = rad_ag ** 2 * len_s
# Calculating mass moments of inertia and center of mass
r_out = d_se * 0.5
outputs["R_out"] = r_out
outputs["B_tsmax"] = B_tsmax
outputs["B_trmax"] = B_trmax
outputs["B_rymax"] = B_rymax
outputs["B_g"] = B_g
outputs["B_g1"] = B_g1
outputs["N_s"] = N_s
outputs["S"] = S
outputs["h_ys"] = h_ys
outputs["b_s"] = b_s
outputs["b_t"] = b_t
outputs["D_ratio"] = D_ratio
outputs["D_ratio_UL"] = D_ratio_UL
outputs["D_ratio_LL"] = D_ratio_LL
outputs["A_Cuscalc"] = A_Cuscalc
outputs["Slot_aspect_ratio1"] = Slot_aspect_ratio1
outputs["h_yr"] = h_yr
outputs["tau_p"] = tau_p
outputs["Q_r"] = Q_r
outputs["b_r"] = b_r
outputs["b_trmin"] = b_trmin
outputs["b_tr"] = b_tr
outputs["rad_r"] = rad_r
outputs["A_bar"] = A_bar
outputs["Slot_aspect_ratio2"] = Slot_aspect_ratio2
outputs["E_p"] = E_p
outputs["f"] = f
outputs["I_s"] = I_s
outputs["A_1"] = A_1
outputs["J_s"] = J_s
outputs["J_r"] = J_r
outputs["R_s"] = R_s
outputs["R_R"] = R_R[-1]
outputs["L_s"] = L_s
outputs["L_sm"] = L_sm
outputs["generator_mass"] = Mass
outputs["K_rad"] = K_rad
outputs["K_rad_UL"] = K_rad_UL
outputs["K_rad_LL"] = K_rad_LL
outputs["Losses"] = Losses
outputs["eandm_efficiency"] = np.maximum(eps, gen_eff)
outputs["Copper"] = Copper
outputs["Iron"] = Iron
outputs["Structural_mass"] = Structural_mass
outputs["TC1"] = TC1
outputs["TC2r"] = TC2r
# ----------------------------------------------------------------------------------------
class EESG(GeneratorBase):
"""
Estimates overall mass dimensions and Efficiency of Electrically Excited Synchronous generator.
Parameters
----------
I_f : float, [A]
Excitation current
N_f : float
field turns
b_arm : float, [m]
arm width
h_yr : float, [m]
rotor yoke height
h_ys : float, [m]
Yoke height
tau_p : float, [m]
Pole pitch self.tau_p
Returns
-------
n_brushes : float
number of brushes
h_p : float, [m]
Pole height
b_p : float, [m]
Pole width
L_m : float, [H]
Stator synchronising inductance
R_r : float, [ohm]
Rotor resistance
B_tmax : float, [T]
Peak Teeth flux density
B_gfm : float, [T]
Average air gap flux density B_g
B_pc : float, [T]
Pole core flux density
B_symax : float, [T]
Peak Stator Yoke flux density B_ymax
E_s : float, [V]
Stator phase voltage
J_f : float, [A*m**-2]
rotor Current density
Power_ratio : float
Power_ratio
Load_mmf_ratio : float
mmf_ratio
"""
def initialize(self):
super(EESG, self).initialize()
def setup(self):
super(EESG, self).setup()
self.add_input("I_f", val=0.0, units="A")
self.add_input("N_f", val=0.0)
self.add_input("b_arm", val=0.0, units="m")
self.add_input("h_yr", val=0.0, units="m")
self.add_input("h_ys", val=0.0, units="m")
self.add_input("tau_p", val=0.0, units="m")
self.add_output("n_brushes", val=0.0)
self.add_output("h_p", val=0.0, units="m")
self.add_output("b_p", val=0.0, units="m")
self.add_output("L_m", val=0.0, units="H")
self.add_output("R_r", val=0.0, units="ohm")
self.add_output("B_tmax", val=0.0, units="T")
self.add_output("B_gfm", val=0.0, units="T")
self.add_output("B_pc", val=0.0, units="T")
self.add_output("B_symax", val=0.0, units="T")
self.add_output("E_s", val=np.zeros(self.options["n_pc"]), units="V")
self.add_output("J_f", val=0.0, units="A*m**-2")
self.add_output("Power_ratio", val=0.0)
self.add_output("Load_mmf_ratio", val=0.0)
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
# Unpack inputs
rad_ag = inputs["rad_ag"]
len_s = inputs["len_s"]
h_s = inputs["h_s"]
tau_p = inputs["tau_p"]
N_f = inputs["N_f"]
I_f = inputs["I_f"]
h_ys = inputs["h_ys"]
h_yr = inputs["h_yr"]
machine_rating = inputs["machine_rating"]
shaft_rpm = inputs["shaft_rpm"]
Torque = inputs["rated_torque"]
b_st = inputs["b_st"]
d_s = inputs["d_s"]
t_ws = inputs["t_ws"]
n_r = inputs["n_r"]
n_s = inputs["n_s"]
b_r = inputs["b_arm"]
d_r = inputs["d_r"]
t_wr = inputs["t_wr"]
R_sh = 0.5 * inputs["D_shaft"]
rho_Fe = inputs["rho_Fe"]
rho_Copper = inputs["rho_Copper"]
rho_Fes = inputs["rho_Fes"]
# Grab constant values
B_r = inputs["B_r"]
E = inputs["E"]
P_Fe0e = inputs["P_Fe0e"]
P_Fe0h = inputs["P_Fe0h"]
S_N = inputs["S_N"]
alpha_p = inputs["alpha_p"]
b_r_tau_r = inputs["b_r_tau_r"]
b_ro = inputs["b_ro"]
b_s_tau_s = inputs["b_s_tau_s"]
b_so = inputs["b_so"]
cofi = inputs["cofi"]
freq = inputs["freq"]
h_i = inputs["h_i"]
h_sy0 = inputs["h_sy0"]
h_w = inputs["h_w"]
k_fes = inputs["k_fes"]
k_fillr = inputs["k_fillr"]
k_fills = inputs["k_fills"]
k_s = inputs["k_s"]
m = discrete_inputs["m"]
mu_0 = inputs["mu_0"]
mu_r = inputs["mu_r"]
p = inputs["p"]
phi = inputs["phi"]
q1 = discrete_inputs["q1"]
q2 = discrete_inputs["q2"]
ratio_mw2pp = inputs["ratio_mw2pp"]
resist_Cu = inputs["resist_Cu"]
sigma = inputs["sigma"]
v = inputs["v"]
y_tau_p = inputs["y_tau_p"]
y_tau_pr = inputs["y_tau_pr"]
"""
# Assign values to universal constants
E = 2e11 # N / m^2 young's modulus
sigma = 48.373e3 # shear stress of steel in psi (~333 MPa)
mu_0 = np.pi * 4e-7 # permeability of free space in m * kg / (s**2 * A**2)
phi = np.deg2rad(90)
# Assign values to design constants
h_w = 0.005
b_so = 0.004 # Stator slot opening
m = 3 # number of phases
q1 = 2 # no of stator slots per pole per phase
b_s_tau_s = 0.45 # ratio of slot width to slot pitch
P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T @50 Hz
P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T @50 Hz
resist_Cu = 1.8e-8 * 1.4 # resisitivity of copper # ohm-meter (Why the 1.4 factor?)
k_fes = 0.9 # iron fill factor (not used)
y_tau_p = 1 # coil span / pole pitch fullpitch
k_fillr = 0.7 # rotor slot fill factor
k_s = 0.2 # magnetic saturation factor for iron
cofi = 0.85 # power factor
"""
T = Torque
# back iron thickness for rotor and stator
t_s = h_ys
t = h_yr
# Aspect ratio
K_rad = len_s / (2 * rad_ag)
###################################################### Electromagnetic design#############################################
alpha_p = np.pi / 2 * 0.7 # (not used)
dia = 2 * rad_ag # air gap diameter
# air gap length and minimum values
g = 0.001 * dia
if g < 0.005:
g = 0.005
r_r = rad_ag - g # rotor radius
d_se = dia + 2 * h_s + 2 * h_ys # stator outer diameter (not used)
p = np.round(np.pi * dia / (2 * tau_p)) # number of pole pairs
S = 2 * p * q1 * m # number of slots of stator phase winding
N_conductors = S * 2
N_s = N_conductors / 2 / m # Stator turns per phase
alpha = 180 / S / p # electrical angle (not used)
tau_s = np.pi * dia / S # slot pitch
h_ps = 0.1 * tau_p # height of pole shoe
b_pc = 0.4 * tau_p # width of pole core
h_pc = 0.6 * tau_p # height of pole core
h_p = 0.7 * tau_p # pole height
b_p = h_p
b_s = tau_s * b_s_tau_s # slot width
Slot_aspect_ratio = h_s / b_s
b_t = tau_s - b_s # tooth width
# Calculating Carter factor and effective air gap
g_a = g
K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor
g_1 = K_C1 * g
# calculating angular frequency
om_m = 2 * np.pi * shaft_rpm / 60
om_e = 60
f = shaft_rpm * p / 60
# Slot fill factor according to air gap radius
if 2 * rad_ag > 2:
K_fills = 0.65
else:
K_fills = 0.4
# Calculating Stator winding factor
k_y1 = | np.sin(y_tau_p * np.pi / 2) | numpy.sin |
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import random
import os
import time
import sys
import pybullet as p
import numpy as np
import IPython
from env.tm5_gripper_hand_camera import Panda
from transforms3d.quaternions import *
import scipy.io as sio
from core.utils import *
import json
from itertools import product
import OMG.ycb_render.robotPose.robot_pykdl as robot_pykdl
from OMG.omg.config import cfg as planner_cfg
from OMG.omg.core import PlanningScene
BASE_LINK = -1
MAX_DISTANCE = 0.000
def get_num_joints(body, CLIENT=None):
return p.getNumJoints(body, physicsClientId=CLIENT)
def get_links(body, CLIENT=None):
return list(range(get_num_joints(body, CLIENT)))
def get_all_links(body, CLIENT=None):
return [BASE_LINK] + list(get_links(body, CLIENT))
def pairwise_link_collision(body1, link1, body2, link2=BASE_LINK, max_distance=MAX_DISTANCE, CLIENT=None): # 10000
return len(p.getClosestPoints(bodyA=body1, bodyB=body2, distance=max_distance,
linkIndexA=link1, linkIndexB=link2,
physicsClientId=CLIENT)) != 0
def any_link_pair_collision(body1, body2, links1=None, links2=None, CLIENT=None, **kwargs):
if links1 is None:
links1 = get_all_links(body1, CLIENT)
if links2 is None:
links2 = get_all_links(body2, CLIENT)
for link1, link2 in product(links1, links2):
if (body1 == body2) and (link1 == link2):
continue
if pairwise_link_collision(body1, link1, body2, link2, CLIENT=CLIENT, **kwargs):
return True
return False
def body_collision(body1, body2, max_distance=MAX_DISTANCE, CLIENT=None): # 10000
return len(p.getClosestPoints(bodyA=body1, bodyB=body2, distance=max_distance,
physicsClientId=CLIENT)) != 0
def pairwise_collision(body1, body2, **kwargs):
if isinstance(body1, tuple) or isinstance(body2, tuple):
body1, links1 = expand_links(body1)
body2, links2 = expand_links(body2)
return any_link_pair_collision(body1, body2, links1, links2, **kwargs)
return body_collision(body1, body2, **kwargs)
class PandaJointSpace():
def __init__(self):
self.high = np.ones(7) * 0.25
self.low = np.ones(7) * -0.25
self.shape = [7]
self.bounds = np.vstack([self.low, self.high])
class PandaTaskSpace6D():
def __init__(self):
self.high = np.array([0.06, 0.06, 0.06, np.pi/6, np.pi/6, np.pi/6]) # , np.pi/10
self.low = np.array([-0.06, -0.06, -0.06, -np.pi/6, -np.pi/6, -np.pi/6]) # , -np.pi/3
self.shape = [6]
self.bounds = np.vstack([self.low, self.high])
class PandaYCBEnv():
"""
Class for franka panda environment with YCB objects.
"""
def __init__(self,
renders=False,
maxSteps=100,
random_target=False,
blockRandom=0.5,
cameraRandom=0,
action_space='configuration',
use_expert_plan=False,
accumulate_points=False,
use_hand_finger_point=False,
expert_step=20,
expert_dynamic_timestep=False,
data_type='RGB',
filter_objects=[],
img_resize=(224, 224),
regularize_pc_point_count=False,
egl_render=False,
width=224,
height=224,
uniform_num_pts=1024,
numObjects=7,
termination_heuristics=True,
domain_randomization=False,
change_dynamics=False,
pt_accumulate_ratio=0.95,
initial_near=0.2,
initial_far=0.5,
disable_unnece_collision=True,
omg_config=None):
self._timeStep = 1. / 1000.
self._observation = []
self._renders = renders
self._maxSteps = maxSteps
self._env_step = 0
self._resize_img_size = img_resize
self._p = p
self._window_width = width
self._window_height = height
self._blockRandom = blockRandom
self._cameraRandom = cameraRandom
self._numObjects = numObjects
self._random_target = random_target
self._accumulate_points = accumulate_points
self._use_expert_plan = use_expert_plan
self._expert_step = expert_step
self._use_hand_finger_point = use_hand_finger_point
self._data_type = data_type
self._egl_render = egl_render
self._action_space = action_space
self._disable_unnece_collision = disable_unnece_collision
self._pt_accumulate_ratio = pt_accumulate_ratio
self._change_dynamics = change_dynamics
self._domain_randomization = domain_randomization
self._initial_near = initial_near
self._initial_far = initial_far
self._expert_dynamic_timestep = expert_dynamic_timestep
self._termination_heuristics = termination_heuristics
self._filter_objects = filter_objects
self._omg_config = omg_config
self._regularize_pc_point_count = regularize_pc_point_count
self._uniform_num_pts = uniform_num_pts
self.observation_dim = (self._window_width, self._window_height, 3)
self.init_constant()
self.connect()
def init_constant(self):
self._shift = [0.8, 0.8, 0.8] # to work without axis in DIRECT mode
self._max_episode_steps = 50
self.root_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')
self.data_root_dir = os.path.join(self.root_dir, 'data/scenes')
self._planner_setup = False
self.retracted = False
self._standoff_dist = 0.08
self.cam_offset = np.eye(4)
self.cam_offset[:3, 3] = (np.array([0.1186, 0., 0.0191344123493])) # camera offset
self.cam_offset[:3, :3] = euler2mat(0, 0, -np.pi/2)
self.cur_goal = np.eye(4)
self.target_idx = 0
self.objects_loaded = False
self.parallel = False
self.curr_acc_points = np.zeros([3, 0])
self.connected = False
self.action_dim = 6
self.hand_finger_points = hand_finger_point
self.action_space = PandaTaskSpace6D()
def connect(self):
"""
Connect pybullet.
"""
if self._renders:
self.cid = p.connect(p.SHARED_MEMORY)
if (self.cid < 0):
self.cid = p.connect(p.GUI)
p.resetDebugVisualizerCamera(1.3, 180.0, -41.0, [-0.35, -0.58, -0.88])
else:
self.cid = p.connect(p.DIRECT)
if self._egl_render:
import pkgutil
egl = pkgutil.get_loader("eglRenderer")
if egl:
p.loadPlugin(egl.get_filename(), "_eglRendererPlugin")
self.connected = True
def disconnect(self):
"""
Disconnect pybullet.
"""
p.disconnect()
self.connected = False
def reset(self, save=False, init_joints=None, scene_file=None,
data_root_dir=None, cam_random=0,
reset_free=False, enforce_face_target=False):
"""
Environment reset called at the beginning of an episode.
"""
self.retracted = False
if data_root_dir is not None:
self.data_root_dir = data_root_dir
self._cur_scene_file = scene_file
if reset_free:
return self.cache_reset(scene_file, init_joints, enforce_face_target)
self.disconnect()
self.connect()
# Set the camera .
look = [0.1 - self._shift[0], 0.2 - self._shift[1], 0 - self._shift[2]]
distance = 2.5
pitch = -56
yaw = 245
roll = 0.
fov = 20.
aspect = float(self._window_width) / self._window_height
self.near = 0.1
self.far = 10
self._view_matrix = p.computeViewMatrixFromYawPitchRoll(look, distance, yaw, pitch, roll, 2)
self._proj_matrix = p.computeProjectionMatrixFOV(fov, aspect, self.near, self.far)
self._light_position = np.array([-1.0, 0, 2.5])
p.resetSimulation()
p.setTimeStep(self._timeStep)
p.setPhysicsEngineParameter(enableConeFriction=0)
p.setGravity(0, 0, -9.81)
p.stepSimulation()
# Set table and plane
plane_file = os.path.join(self.root_dir, 'data/objects/floor/model_normalized.urdf') # _white
table_file = os.path.join(self.root_dir, 'data/objects/table/models/model_normalized.urdf')
self.obj_path = [plane_file, table_file]
self.plane_id = p.loadURDF(plane_file, [0 - self._shift[0], 0 - self._shift[1], -.82 - self._shift[2]])
self.table_pos = np.array([0.5 - self._shift[0], 0.0 - self._shift[1], -.82 - self._shift[2]])
self.table_id = p.loadURDF(table_file, self.table_pos[0], self.table_pos[1], self.table_pos[2],
0.707, 0., 0., 0.707)
# Intialize robot and objects
if init_joints is None:
self._panda = Panda(stepsize=self._timeStep, base_shift=self._shift)
else:
self._panda = Panda(stepsize=self._timeStep, init_joints=init_joints, base_shift=self._shift)
for _ in range(1000):
p.stepSimulation()
if not self.objects_loaded:
self._objectUids = self.cache_objects()
if self._use_expert_plan:
self.setup_expert_scene()
if scene_file is None or not os.path.exists(os.path.join(self.data_root_dir, scene_file + '.mat')):
self._randomly_place_objects(self._get_random_object(self._numObjects), scale=1)
else:
self.place_objects_from_scene(scene_file)
self._objectUids += [self.plane_id, self.table_id]
self._env_step = 0
self.collided = False
self.collided_before = False
self.obj_names, self.obj_poses = self.get_env_info()
self.init_target_height = self._get_target_relative_pose()[2, 3]
self.curr_acc_points = np.zeros([3, 0])
return None # observation
def step(self, action, delta=False, obs=True, repeat=150, config=False, vis=False):
"""
Environment step.
"""
action = self.process_action(action, delta, config)
self._panda.setTargetPositions(action)
for _ in range(int(repeat)):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
observation = self._get_observation(vis=vis)
test_termination_obs = observation[0][1]
depth = test_termination_obs[[3]].T
mask = test_termination_obs[[4]].T
observation = self.input_selection(observation)
done = self._termination(depth.copy(), mask, use_depth_heuristics=self._termination_heuristics)
self.collision_check()
reward = self._reward()
info = {'grasp_success': reward,
'goal_dist': self._get_goal_dist(),
'point_num': self.curr_acc_points.shape[1],
'collided': self.collided,
'cur_ef_pose': self._get_ef_pose(mat=True)}
self._env_step += 1
return observation, reward, done, info
def _get_observation(self, pose=None, vis=False, acc=True):
"""
Get observation
"""
object_pose = self._get_target_relative_pose('ef') # self._get_relative_ef_pose()
ef_pose = self._get_ef_pose('mat')
joint_pos, joint_vel = self._panda.getJointStates()
near, far = self.near, self.far
view_matrix, proj_matrix = self._view_matrix, self._proj_matrix
extra_overhead_camera = False
camera_info = tuple(view_matrix) + tuple(proj_matrix)
hand_cam_view_matrix, hand_proj_matrix, lightDistance, lightColor, lightDirection, near, far = self._get_hand_camera_view(pose)
camera_info += tuple(hand_cam_view_matrix.flatten()) + tuple(hand_proj_matrix)
_, _, rgba, depth, mask = p.getCameraImage(width=self._window_width,
height=self._window_height,
viewMatrix=tuple(hand_cam_view_matrix.flatten()),
projectionMatrix=hand_proj_matrix,
physicsClientId=self.cid,
renderer=p.ER_BULLET_HARDWARE_OPENGL)
depth = (far * near / (far - (far - near) * depth) * 5000).astype(np.uint16) # transform depth from NDC to actual depth
mask[mask >= 0] += 1 # transform mask to have target id 0
target_idx = self.target_idx + 4
mask[mask == target_idx] = 0
mask[mask == -1] = 50
mask[mask != 0] = 1
obs = np.concatenate([rgba[..., :3], depth[..., None], mask[..., None]], axis=-1)
obs = self.process_image(obs[..., :3], obs[..., [3]], obs[..., [4]], tuple(self._resize_img_size))
intrinsic_matrix = projection_to_intrinsics(hand_proj_matrix, self._window_width, self._window_height)
point_state = backproject_camera_target(obs[3].T, intrinsic_matrix, obs[4].T) # obs[4].T
point_state = self.cam_offset[:3, :3].dot(point_state) + self.cam_offset[:3, [3]]
point_state[1] *= -1
point_state = self.process_pointcloud(point_state, vis, acc)
obs = (point_state, obs)
pose_info = (object_pose, ef_pose)
return [obs, joint_pos, camera_info, pose_info]
def retract(self, record=False):
"""
Move the arm to lift the object.
"""
cur_joint = np.array(self._panda.getJointStates()[0])
cur_joint[-1] = 0.8 # close finger
observations = [self.step(cur_joint, repeat=300, config=True, vis=False)[0]]
pos, orn = p.getLinkState(self._panda.pandaUid, self._panda.pandaEndEffectorIndex)[4:6]
for i in range(10):
pos = (pos[0], pos[1], pos[2] + 0.03)
jointPoses = np.array(p.calculateInverseKinematics(self._panda.pandaUid,
self._panda.pandaEndEffectorIndex, pos,
maxNumIterations=500,
residualThreshold=1e-8))
jointPoses[6] = 0.8
jointPoses = jointPoses[:7].copy()
obs = self.step(jointPoses, config=True)[0]
if record:
observations.append(obs)
self.retracted = True
rew = self._reward()
if record:
return (rew, observations)
return rew
def _reward(self):
"""
Calculates the reward for the episode.
"""
reward = 0
if self.retracted and self.target_lifted():
print('target {} lifted !'.format(self.target_name))
reward = 1
return reward
def _termination(self, depth_img, mask_img, use_depth_heuristics=False):
"""
Target depth heuristics for determining if grasp can be executed.
The threshold is based on depth in the middle of the camera and the finger is near the bottom two sides
"""
depth_heuristics = False
nontarget_mask = mask_img[..., 0] != 0
if use_depth_heuristics:
depth_img = depth_img[..., 0]
depth_img[nontarget_mask] = 10
# hard coded region
depth_img_roi = depth_img[int(58. * self._window_height / 64):,
int(21. * self._window_width / 64):int(42 * self._window_width / 64)]
depth_img_roi_ = depth_img_roi[depth_img_roi < 0.21]
if depth_img_roi_.shape[0] > 1:
depth_heuristics = (depth_img_roi_ < 0.115).sum() > 10
return self._env_step >= self._maxSteps or depth_heuristics or self.target_fall_down()
def cache_objects(self):
"""
Load all YCB objects and set up
"""
obj_path = os.path.join(self.root_dir, 'data/objects/')
objects = self.obj_indexes
obj_path = [obj_path + objects[i] for i in self._all_obj]
self.target_obj_indexes = [self._all_obj.index(idx) for idx in self._target_objs]
pose = np.zeros([len(obj_path), 3])
pose[:, 0] = -0.5 - np.linspace(0, 4, len(obj_path))
pos, orn = p.getBasePositionAndOrientation(self._panda.pandaUid)
objects_paths = [p_.strip() + '/' for p_ in obj_path]
objectUids = []
self.object_heights = []
self.obj_path = objects_paths + self.obj_path
self.placed_object_poses = []
for i, name in enumerate(objects_paths):
trans = pose[i] + np.array(pos) # fixed position
self.placed_object_poses.append((trans.copy(), np.array(orn).copy()))
uid = self._add_mesh(os.path.join(self.root_dir, name, 'model_normalized.urdf'), trans, orn) # xyzw
if self._change_dynamics:
p.changeDynamics(uid, -1, lateralFriction=0.15, spinningFriction=0.1, rollingFriction=0.1)
point_z = np.loadtxt(os.path.join(self.root_dir, name, 'model_normalized.extent.txt'))
half_height = float(point_z.max()) / 2 if len(point_z) > 0 else 0.01
self.object_heights.append(half_height)
objectUids.append(uid)
p.setCollisionFilterPair(uid, self.plane_id, -1, -1, 0)
if self._disable_unnece_collision:
for other_uid in objectUids:
p.setCollisionFilterPair(uid, other_uid, -1, -1, 0)
self.objects_loaded = True
self.placed_objects = [False] * len(self.obj_path)
return objectUids
def cache_reset(self, scene_file, init_joints, enforce_face_target):
"""
Hack to move the loaded objects around to avoid loading multiple times
"""
self._panda.reset(init_joints)
self.place_back_objects()
if scene_file is None or not os.path.exists(os.path.join(self.data_root_dir, scene_file + '.mat')):
self._randomly_place_objects(self._get_random_object(self._numObjects), scale=1)
else:
self.place_objects_from_scene(scene_file, self._objectUids)
self._env_step = 0
self.retracted = False
self.collided = False
self.collided_before = False
self.obj_names, self.obj_poses = self.get_env_info()
self.init_target_height = self._get_target_relative_pose()[2, 3]
self.curr_acc_points = np.zeros([3, 0])
if self._domain_randomization:
self.load_textures()
rand_tex_id = np.random.choice(len(self.table_textures))
p.changeVisualShape(self._objectUids[self.target_idx], -1,
textureUniqueId=self.table_textures[rand_tex_id])
rand_tex_id = np.random.choice(len(self.table_textures))
p.changeVisualShape(self._objectUids[-2], -1,
textureUniqueId=self.table_textures[rand_tex_id])
rand_tex_id = np.random.choice(len(self.table_textures))
p.changeVisualShape(self._objectUids[-1], -1,
textureUniqueId=self.table_textures[rand_tex_id])
observation = self.enforce_face_target() if enforce_face_target else self._get_observation()
observation = self.input_selection(observation)
return observation
def place_objects_from_scene(self, scene_file, objectUids=None):
"""
Place objects with poses based on the scene file
"""
if self.objects_loaded:
objectUids = self._objectUids
scene = sio.loadmat(os.path.join(self.data_root_dir, scene_file + '.mat'))
poses = scene['pose']
path = scene['path']
pos, orn = p.getBasePositionAndOrientation(self._panda.pandaUid)
new_objs = objectUids is None
objects_paths = [p_.strip() + '/' for p_ in path]
for i, name in enumerate(objects_paths[:-2]):
pose = poses[i]
trans = pose[:3, 3] + np.array(pos) # fixed position
orn = ros_quat(mat2quat(pose[:3, :3]))
full_name = os.path.join(self.root_dir, name)
if full_name not in self.obj_path:
continue
k = self.obj_path.index(full_name) if self.objects_loaded else i
self.placed_objects[k] = True
p.resetBasePositionAndOrientation(objectUids[k], trans, orn)
p.resetBaseVelocity(
objectUids[k], (0.0, 0.0, 0.0), (0.0, 0.0, 0.0)
)
rand_name = objects_paths[0]
self.target_idx = self.obj_path.index(os.path.join(self.root_dir, rand_name))
self.target_name = rand_name.split('/')[-2]
print('==== loaded scene: {} target: {} idx: {} init joint'.format(scene_file.split('/')[-1],
self.target_name, self.target_idx))
if 'init_joints' in scene:
self.reset_joint(scene['init_joints'])
return objectUids
def place_back_objects(self):
for idx, obj in enumerate(self._objectUids):
if self.placed_objects[idx]:
p.resetBasePositionAndOrientation(obj, self.placed_object_poses[idx][0], self.placed_object_poses[idx][1])
self.placed_objects[idx] = False
def load_textures(self):
if hasattr(self, 'table_textures'):
return
texture_dir = os.path.join(self.root_dir, 'data/random_textures/textures')
files = os.listdir(texture_dir)
random_files = random.sample(files, 200)
table_textures = [p.loadTexture(os.path.join(texture_dir, f)) for f in random_files]
print('number of textures:', len(table_textures))
self.table_textures = table_textures
def input_selection(self, observation):
"""
Select input channels based on data type
"""
return observation
def update_curr_acc_points(self, new_points):
"""
Update accumulated points in world coordinate
"""
pos, rot = self._get_ef_pose()
ef_pose = unpack_pose(np.hstack((pos, tf_quat(rot))))
new_points = ef_pose[:3, :3].dot(new_points) + ef_pose[:3, [3]]
# accumulate points
index = np.random.choice(range(new_points.shape[1]),
size=int(self._pt_accumulate_ratio**self._env_step * new_points.shape[1]), replace=False).astype(np.int)
self.curr_acc_points = np.concatenate((new_points[:, index], self.curr_acc_points), axis=1)
def _get_init_info(self):
return [self.obj_names, self.obj_poses, np.array(self._panda.getJointStates()[0])]
def _add_mesh(self, obj_file, trans, quat, scale=1):
"""
Add a mesh with URDF file.
"""
bid = p.loadURDF(obj_file, trans, quat, globalScaling=scale, flags=p.URDF_ENABLE_CACHED_GRAPHICS_SHAPES)
return bid
def reset_joint(self, init_joints):
if init_joints is not None:
self._panda.reset(np.array(init_joints).flatten())
def process_action(self, action, delta=False, config=False):
"""
Process different action types
"""
if config:
if delta:
cur_joint = np.array(self._panda.getJointStates()[0])
action = cur_joint + action
elif self._action_space == 'task6d':
# transform to local coordinate
cur_ef = np.array(self._panda.getJointStates()[0])[-3]
pos, orn = p.getLinkState(self._panda.pandaUid, self._panda.pandaEndEffectorIndex)[4:6]
pose = np.eye(4)
pose[:3, :3] = quat2mat(tf_quat(orn))
pose[:3, 3] = pos
pose_delta = np.eye(4)
pose_delta[:3, :3] = euler2mat(action[3], action[4], action[5])
pose_delta[:3, 3] = action[:3]
new_pose = pose.dot(pose_delta)
orn = ros_quat(mat2quat(new_pose[:3, :3]))
pos = new_pose[:3, 3]
jointPoses = np.array(p.calculateInverseKinematics(self._panda.pandaUid,
self._panda.pandaEndEffectorIndex, pos, orn,
maxNumIterations=500,
residualThreshold=1e-8))
jointPoses[6] = 0.0
action = jointPoses[:7]
return action
def _sample_ef(self, target, near=0.35, far=0.50):
# sample a camera extrinsics
count = 0
ik = None
outer_loop_num = 20
inner_loop_num = 5
if not self._planner_setup:
try:
self.setup_expert_scene()
except:
print(f"{bcolors.FAIL}Expert Scene Setup Error.{bcolors.RESET}")
pass
for _ in range(outer_loop_num):
theta = np.random.uniform(low=0, high=2*np.pi/3)
phi = np.random.uniform(low=np.pi/2, high=3*np.pi/2) # top sphere
r = np.random.uniform(low=self._initial_near, high=self._initial_far) # sphere radius
pos = np.array([r*np.sin(theta)*np.cos(phi), r*np.sin(theta)*np.sin(phi), r*np.cos(theta)])
trans = pos + target + np.random.uniform(-0.03, 0.03, 3)
trans[2] = np.clip(trans[2], 0.2, 0.6)
trans[1] = np.clip(trans[1], -0.3, 0.3)
trans[0] = | np.clip(trans[0], 0.0, 0.5) | numpy.clip |
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # noqa: F401
from .. import style
def make_axes(fig_width, wpad_edge=0, wpad_mid=0.05, hpad_top=0.05, hpad_bottom=0.05,
small_sq_width=0.07):
sq_width = (1. - 2 * wpad_edge - small_sq_width - 4 * wpad_mid) / 4.
sq_height = 1. - hpad_top - hpad_bottom
fig_height = sq_width * fig_width / sq_height
small_sq_height = small_sq_width * fig_width / fig_height
fig = plt.figure(figsize=(fig_width, fig_height))
# 2 small squares
ax2 = fig.add_axes((wpad_edge, hpad_bottom, small_sq_width, small_sq_height))
ax1 = fig.add_axes((wpad_edge, 1. - hpad_top - small_sq_height,
small_sq_width, small_sq_height))
# 3 big squares
ax3 = fig.add_axes((wpad_edge + small_sq_width + wpad_mid, hpad_bottom, sq_width, sq_height))
ax4 = fig.add_axes((wpad_edge + small_sq_width + 2 * wpad_mid + sq_width, hpad_bottom,
sq_width, sq_height))
ax5 = fig.add_axes((wpad_edge + small_sq_width + 3 * wpad_mid + 2 * sq_width, hpad_bottom,
sq_width, sq_height))
ax6 = fig.add_axes((wpad_edge + small_sq_width + 4 * wpad_mid + 3 * sq_width, hpad_bottom,
sq_width, sq_height))
axes = [ax1, ax2, ax3, ax4, ax5, ax6]
for ax in axes:
ax.set_xticks([])
ax.set_yticks([])
label_dx = -0.02
label_dy = 0.05
label_y = hpad_bottom + sq_height + label_dy
fig.text(wpad_edge + label_dx, label_y,
"A", va="bottom", ha="right", color="black",
**style.panel_letter_fontstyle)
fig.text(wpad_edge + small_sq_width + wpad_mid, label_y,
"B", va="bottom", ha="center", color="black",
**style.panel_letter_fontstyle)
fig.text(wpad_edge + small_sq_width + 2 * wpad_mid + sq_width, label_y,
"C", va="bottom", ha="center", color="black",
**style.panel_letter_fontstyle)
fig.text(wpad_edge + small_sq_width + 3 * wpad_mid + 2 * sq_width, label_y,
"D", va="bottom", ha="center", color="black",
**style.panel_letter_fontstyle)
fig.text(wpad_edge + small_sq_width + 4 * wpad_mid + 3 * sq_width, label_y,
"E", va="bottom", ha="center", color="black",
**style.panel_letter_fontstyle)
return axes
def disp_heatmap(ax, heatmap, show_xlabels=True, show_ylabels=True, title=None):
N_theta, N_phi = heatmap.shape
ax.imshow(heatmap, origin="lower left", cmap="gray", aspect="equal")
if show_xlabels:
ax.set_xlabel("$\phi$", fontsize=style.axis_label_fontsize, labelpad=-8.5)
ax.set_xticks([0, N_phi - 1])
ax.set_xticklabels(["0", "$\pi$"], fontsize=style.ticklabel_fontsize)
else:
ax.set_xticks([])
if show_ylabels:
ax.set_ylabel("$\\theta$", fontsize=style.axis_label_fontsize, labelpad=-8.5)
ax.set_yticks([0, N_theta - 1])
ax.set_yticklabels(["0", "$\pi$"], fontsize=style.ticklabel_fontsize)
else:
ax.set_yticks([])
ax.set_xlim([0, heatmap.shape[1] - 1])
ax.set_ylim([0, heatmap.shape[0] - 1])
if title is not None:
ax.set_title(title, fontsize=style.axis_label_fontsize * 0.8, pad=1)
def disp_scatter(ax, pi_gp, pi_knn, trajectories=None, diag_text=False,
arrow=True, xlabel="full PI", ylabel="Gaussian PI"):
# Note that gp=y and knn=x, but 0 index is gp and 1 is knn in data arrays!
traj_color = "#C63F3A"
all_gp_vals = [pi_gp]
all_knn_vals = [pi_knn]
if trajectories is not None:
all_gp_vals += [traj[:, 0] for traj in trajectories]
all_knn_vals += [traj[:, 1] for traj in trajectories]
all_gp_vals = | np.concatenate(all_gp_vals) | numpy.concatenate |
# this tells python to act as if though We are one folder up
import sys
sys.path.insert(0,'..')
import pandas as pd
import FixedEffectModelPyHDFE.api as FEM
from FixedEffectModelPyHDFE.DemeanDataframe import get_np_columns
#import FixedEffectModel.api as FEM
import numpy as np
from patsy import dmatrices
import statsmodels.formula.api as smf
import statsmodels.api as sm
from fastreg import linear
from datetime import datetime
import unittest
from math import isclose
NLS_WORK = "./../data/test_dropped_na.dta"
CEREAL = "./../data/cereal.dta"
AUTO = "./../data/auto_drop_na.dta"
TOLERANCE = 0.01
class FixedEffectsModelTestsVSfastreg(unittest.TestCase):
def setup(self, data_directory, target, regressors, absorb, cluster):
print(self._testMethodName)
print("target: ", target)
print("regressors: ", regressors)
print("absorb: ", absorb)
print("cluster: ", cluster)
df = pd.read_stata(data_directory)
df.reset_index(drop=True, inplace=True)
fem_start = datetime.now()
self.result = FEM.ols_high_d_category(df,
regressors,
target,
absorb,
cluster,
formula=None,
robust=False,
epsilon = 1e-8,
max_iter = 1e6)
fem_end = datetime.now()
print("FEM time taken: " + str(fem_end-fem_start))
self.result.summary()
print()
if absorb[0] == '0':
absorb=None
fastreg_start = datetime.now()
fastreg = linear.ols(y=target[0],
x=regressors,
absorb=absorb,
cluster=cluster,
data=df)
fastreg_end = datetime.now()
print(fastreg)
print("fastreg time taken: " + str(fastreg_end - fastreg_start))
print("\n\n\n\n\n")
#########################################################################
#########################################################################
def test_just_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'],
cluster=[])
def test_no_absorb_cluster_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'])
# comparing fvalue
def test_clustering_single_variable_no_absorb2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['race'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 127593.72, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([.148934, .0065111, .0113615]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([27.75, 2.32, 66.61]), atol=TOLERANCE)))
def test_clustering_single_variable_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts'])
assert(np.isclose(self.result.fvalue, 10230.63, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.048274, .0044294, .0052923]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([85.60, 3.42, 143.00]), atol=TOLERANCE)))
def test_clustering_two_variables_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts', 'sixty_clusts'])
assert(np.isclose(self.result.fvalue, 12347.24, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0518019, .0048228, .00492]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([79.77, 3.14, 153.82]), atol=TOLERANCE)))
def test_clustering_many_variables_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'])
assert(np.isclose(self.result.fvalue, 4664.62, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0551555, .0080815, .007881]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([74.92, 1.87, 96.03]), atol=TOLERANCE)))
def test_just_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'],
cluster=[])
assert(np.isclose(self.result.fvalue, 3891.51, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0047052, .0096448]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([6.48, 88.22]), atol=TOLERANCE)))
def test_cluster_1_absorb_1_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['sixty_clusts'])
assert(np.isclose(self.result.fvalue, 9884.24, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.004654, .0055812]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.18, 135.54]), atol=TOLERANCE)))
def test_cluster_1_absorb_1_2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['fifty_clusts'])
assert(np.isclose(self.result.fvalue, 10100.50, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0044538, .005324]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.33, 142.09]), atol=TOLERANCE)))
def test_cluster_many_absorb_1_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['fifty_clusts', 'sixty_clusts', 'idcode', 'year'])
assert(np.isclose(self.result.fvalue, 86.89, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0189465, .0574001]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([0.78, 13.18]), atol=TOLERANCE)))
def test_cluster_3_absorb_3_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code'],
cluster=['idcode', 'year', 'grade'])
assert(np.isclose(self.result.fvalue, 113.61, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0168144, .0501467]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([0.93, 15.03]), atol=TOLERANCE)))
def test_cluster_3_absorb_3_2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code'],
cluster=['fifty_clusts', 'sixty_clusts', 'ind_code'])
assert(np.isclose(self.result.fvalue, 2525.34, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.004604, .0106474]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.41, 70.78]), atol=TOLERANCE)))
def test_cluster_4_absorb_4_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code', 'idcode'],
cluster=['fifty_clusts', 'sixty_clusts', 'ind_code', 'idcode'])
assert(np.isclose(self.result.fvalue, 3191.76, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.00498, .010914]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([6.17, 77.85]), atol=TOLERANCE)))
#########################################################################
#########################################################################
# Boston auto dataset
def test_pure_regression_boston_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=[])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 14.78, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([4667.441, 1.143408, 40.13139, 128.8455]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.19, 4.67, -1.75, -2.28]), atol=TOLERANCE)))
def test_clustering_one_variable_no_absorb_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=['rep78'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 17.17, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([6132.17, .8258151, 24.15393, 191.4521]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([2.42, 6.46, -2.91, -1.53]), atol=TOLERANCE)))
def test_clustering_two_variables_no_absorb_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=['rep78', 'headroom'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 27.03, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, | np.asarray([6037.897, 1.210828, 44.88812, 183.8683]) | numpy.asarray |
#!/bin/python
import re
import os
import logging
import yaml
import pandas as pd
import numpy as np
import soundfile as sf
from math import floor, ceil
from pathlib import Path
from dotenv import find_dotenv, load_dotenv
def lengthAdjust():
logger = logging.getLogger(__name__)
logger.info('adjusting length for label congruity')
data_dir = 'data/raw/nips4b/wav/train/'
out_dir = 'data/interim/nips4b/wav/train/'
for filename in os.listdir(data_dir):
[data, samplerate] = sf.read(data_dir + filename)
desired_length = int(samplerate * N)
logger.info('Processing ' + filename)
logger.info("Number of Samples: " + str(desired_length))
logger.info("File length: " + str(desired_length/samplerate) + "s")
data = np.asarray(data)
zero_pad_length = desired_length - data.size
zero_pad = np.zeros(zero_pad_length)
data = | np.append(data, zero_pad) | numpy.append |
"""test_rules - test the CPA rules parser
"""
import unittest
from io import StringIO
import numpy as np
import cellprofiler_core.measurement
import cellprofiler.utilities.rules as R
OBJECT_NAME = "MyObject"
M_FEATURES = ["Measurement%d" % i for i in range(1, 11)]
class TestRules(unittest.TestCase):
def test_01_01_load_rules(self):
data = """IF (Nuclei_Intensity_UpperQuartileIntensity_CorrDend > 0.12762499999999999, [0.79607587785712131, -0.79607587785712131], [-0.94024303819690347, 0.94024303819690347])
IF (Nuclei_Intensity_MinIntensity_CorrAxon > 0.026831299999999999, [0.68998040630066426, -0.68998040630066426], [-0.80302016375137986, 0.80302016375137986])
IF (Nuclei_Intensity_UpperQuartileIntensity_CorrDend > 0.19306000000000001, [0.71934712791500899, -0.71934712791500899], [-0.47379648809429048, 0.47379648809429048])
IF (Nuclei_Intensity_UpperQuartileIntensity_CorrDend > 0.100841, [0.24553066971563919, -0.24553066971563919], [-1.0, 1.0])
IF (Nuclei_Location_Center_Y > 299.32499999999999, [-0.61833689824912363, 0.61833689824912363], [0.33384091087462237, -0.33384091087462237])
IF (Nuclei_Intensity_MaxIntensity_CorrNuclei > 0.76509499999999997, [-0.95683305069726121, 0.95683305069726121], [0.22816438860290775, -0.22816438860290775])
IF (Nuclei_Neighbors_NumberOfNeighbors_5 > 2.0, [-0.92848043428127192, 0.92848043428127192], [0.20751332434602923, -0.20751332434602923])
IF (Nuclei_Intensity_MedianIntensity_CorrDend > 0.15327499999999999, [0.79784566567342285, -0.79784566567342285], [-0.35665314560825129, 0.35665314560825129])
IF (Nuclei_Neighbors_SecondClosestXVector_5 > -11.5113, [-0.21859862538067179, 0.21859862538067179], [0.71270785008847592, -0.71270785008847592])
IF (Nuclei_Intensity_StdIntensity_CorrDend > 0.035382299999999998, [0.28838229530755011, -0.28838229530755011], [-0.75312050069265968, 0.75312050069265968])
IF (Nuclei_Intensity_MaxIntensityEdge_CorrNuclei > 0.63182899999999997, [-0.93629855522957672, 0.93629855522957672], [0.1710257492070047, -0.1710257492070047])
IF (Nuclei_Intensity_StdIntensityEdge_CorrNuclei > 0.037909400000000003, [0.28514731668218346, -0.28514731668218346], [-0.60783543053602795, 0.60783543053602795])
IF (Nuclei_Intensity_MedianIntensity_CorrAxon > 0.042631500000000003, [0.20227787378316109, -0.20227787378316109], [-0.78282539096589077, 0.78282539096589077])
IF (Nuclei_Intensity_MinIntensity_CorrDend > 0.042065400000000003, [0.52616744135942872, -0.52616744135942872], [-0.32613209033812068, 0.32613209033812068])
IF (Nuclei_Neighbors_FirstClosestYVector_5 > 3.8226100000000001, [0.69128399165300047, -0.69128399165300047], [-0.34874605597401531, 0.34874605597401531])
IF (Nuclei_Intensity_MeanIntensity_CorrNuclei > 0.283188, [-0.79881507037552979, 0.79881507037552979], [0.24825909570051025, -0.24825909570051025])
IF (Nuclei_Location_Center_Y > 280.154, [-0.50545174099468504, 0.50545174099468504], [0.3297202808867149, -0.3297202808867149])
IF (Nuclei_Intensity_UpperQuartileIntensity_CorrDend > 0.132241, [0.35771841831789791, -0.35771841831789791], [-0.63545019489162846, 0.63545019489162846])
IF (Nuclei_AreaShape_MinorAxisLength > 6.4944899999999999, [0.5755128363506562, -0.5755128363506562], [-0.41737581982462335, 0.41737581982462335])
IF (Nuclei_Intensity_LowerQuartileIntensity_CorrDend > 0.075424000000000005, [0.50557978238660795, -0.50557978238660795], [-0.35606081901385256, 0.35606081901385256])
"""
fd = StringIO(data)
rules = R.Rules()
rules.parse(fd)
self.assertEqual(len(rules.rules), 20)
for rule in rules.rules:
self.assertEqual(rule.object_name, "Nuclei")
self.assertEqual(rule.comparitor, ">")
rule = rules.rules[0]
self.assertEqual(rule.feature, "Intensity_UpperQuartileIntensity_CorrDend")
self.assertAlmostEqual(rule.threshold, 0.127625)
self.assertAlmostEqual(rule.weights[0, 0], 0.79607587785712131)
self.assertAlmostEqual(rule.weights[0, 1], -0.79607587785712131)
self.assertAlmostEqual(rule.weights[1, 0], -0.94024303819690347)
self.assertAlmostEqual(rule.weights[1, 1], 0.94024303819690347)
def test_02_00_no_measurements(self):
m = cellprofiler_core.measurement.Measurements()
m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([], float))
rules = R.Rules()
rules.rules += [
R.Rules.Rule(
OBJECT_NAME, M_FEATURES[0], ">", 0, np.array([[1.0, -1.0], [-1.0, 1.0]])
)
]
score = rules.score(m)
self.assertEqual(score.shape[0], 0)
self.assertEqual(score.shape[1], 2)
def test_02_01_score_one_positive(self):
m = cellprofiler_core.measurement.Measurements()
m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([1.5], float))
rules = R.Rules()
rules.rules += [
R.Rules.Rule(
OBJECT_NAME, M_FEATURES[0], ">", 0, np.array([[1.0, -0.5], [-2.0, 0.6]])
)
]
score = rules.score(m)
self.assertEqual(score.shape[0], 1)
self.assertEqual(score.shape[1], 2)
self.assertAlmostEqual(score[0, 0], 1.0)
self.assertAlmostEqual(score[0, 1], -0.5)
def test_02_02_score_one_negative(self):
m = cellprofiler_core.measurement.Measurements()
m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([1.5], float))
rules = R.Rules()
rules.rules += [
R.Rules.Rule(
OBJECT_NAME,
M_FEATURES[0],
">",
2.0,
np.array([[1.0, -0.5], [-2.0, 0.6]]),
)
]
score = rules.score(m)
self.assertEqual(score.shape[0], 1)
self.assertEqual(score.shape[1], 2)
self.assertAlmostEqual(score[0, 0], -2.0)
self.assertAlmostEqual(score[0, 1], 0.6)
def test_02_03_score_one_nan(self):
m = cellprofiler_core.measurement.Measurements()
m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([np.NaN], float))
rules = R.Rules()
rules.rules += [
R.Rules.Rule(
OBJECT_NAME,
M_FEATURES[0],
">",
2.0,
| np.array([[1.0, -0.5], [-2.0, 0.6]]) | numpy.array |
from autoarray import exc
from autoarray import util
import numpy as np
import pytest
class TestMask1D:
def test__total_image_pixels_1d_from(self):
mask_1d = np.array([False, True, False, False, False, True])
assert util.mask_1d.total_pixels_1d_from(mask_1d=mask_1d) == 4
def test__total_sub_pixels_1d_from(self):
mask_1d = np.array([False, True, False, False, False, True])
assert util.mask_1d.total_sub_pixels_1d_from(mask_1d=mask_1d, sub_size=2) == 8
def test__sub_native_index_for_sub_slim_index_1d_from(self):
mask_1d = np.array([False, False, False, False])
sub_native_index_for_sub_slim_index_1d = util.mask_1d.native_index_for_slim_index_1d_from(
mask_1d=mask_1d, sub_size=1
)
assert (sub_native_index_for_sub_slim_index_1d == | np.array([0, 1, 2, 3]) | numpy.array |
"""
Crystal class
Class to store definition of a crystal, along with some analysis
1. geometric analysis (nearest neighbor displacements)
2. space group operations
3. point group operations for each basis position
4. Wyckoff position generation (for interstitials)
"""
__author__ = '<NAME>'
import numpy as np
import collections, copy, itertools
from numbers import Number
from math import gcd
import yaml # use crystal.yaml to call--may need to change in the future
from functools import reduce
# YAML tags:
# interfaces are either at the bottom, or staticmethods in the corresponding object
NDARRAY_YAMLTAG = '!numpy.ndarray'
GROUPOP_YAMLTAG = '!GroupOp'
def gcdlist(lis):
"""Returns the GCD of a list of integers"""
return reduce(gcd, lis)
def incell(vec):
"""
Returns the vector inside the unit cell (in [0,1)**3)
:param vec: 3-vector (unit coord)
:return: 3-vector
"""
return vec - np.floor(vec + 1.0e-8)
def inhalf(vec):
"""
Returns the vector inside the centered cell (in [-0.5,0.5)**3)
:param vec: 3-vector (unit coord)
:return: 3-vector
"""
return vec - np.floor(vec + 0.5)
def maptranslation(oldpos, newpos, oldspins=None, newspins=None, threshold=1e-8):
"""
Given a list of transformed positions, identify if there's a translation vector
that maps from the current positions to the new position.
The mapping specifies the index that the *translated* atom corresponds to in the
original position set. If unable to construct a mapping, the mapping return is
None; the translation vector will be meaningless.
If old/newspins are given then ONLY mappings that maintain spin are considered.
This means that a loop is needed to consider possible spin phase factors.
:param oldpos: list of list of array[3]
:param newpos: list of list of array[3], same layout as oldpos
:param oldspins: (optional) list of list of numbers/arrays
:param newspins: (optional) list of list of numbers/arrays
:return translation: array[3]
:return mapping: list of list of indices
"""
# type-checking:
if __debug__:
if type(oldpos) is not list: raise TypeError('oldpos is not a list')
if type(newpos) is not list: raise TypeError('newpos is not a list')
if len(oldpos) != len(newpos): raise IndexError("{} and {} do not have the same length".format(oldpos, newpos))
for a, b in zip(oldpos, newpos):
if type(a) is not list: raise TypeError("element of oldpos {} is not a list".format(a))
if type(b) is not list: raise TypeError("element of newpos {} is not a list".format(b))
if len(a) != len(b): raise IndexError("{} and {} do not have the same length".format(a, b))
if (oldspins is None) != (newspins is None): raise TypeError('give both or neither spin arguments')
if oldspins is not None:
if type(oldspins) is not list: raise TypeError('oldspins is not a list')
if type(newspins) is not list: raise TypeError('newspins is not a list')
if len(oldspins) != len(newspins): raise IndexError(
"{} and {} do not have the same length".format(oldspins, newspins))
for a, b in zip(oldspins, newspins):
if type(a) is not list: raise TypeError("element of oldspins {} is not a list".format(a))
if type(b) is not list: raise TypeError("element of newspins {} is not a list".format(b))
if len(a) != len(b): raise IndexError("{} and {} do not have the same length".format(a, b))
if oldspins is None:
oldspins = [[0 for u in atomlist] for atomlist in oldpos]
if newspins is None:
newspins = oldspins
# Work with the shortest possible list for identifying translations
atomindex = 0
maxlen = len(oldpos[atomindex])
for i, ulist in enumerate(oldpos):
if len(ulist) < maxlen:
maxlen = len(ulist)
atomindex = i
ru0 = newpos[atomindex][0]
for ub in oldpos[atomindex]:
trans = inhalf(ub - ru0)
foundmap = True
# now check against all the others, and construct the mapping
indexmap = []
for atomlist0, spinlist0, atomlist1, spinlist1 in zip(oldpos, oldspins, newpos, newspins):
# work through the "new" positions
if not foundmap: break
maplist = []
for rua, sp1 in zip(atomlist1, spinlist1):
for j, uj, sp0 in zip(itertools.count(), atomlist0, spinlist0):
if not np.allclose(sp0, sp1, atol=threshold): continue # only allow maps that have same spin
if np.allclose(inhalf(uj - rua - trans), 0, atol=threshold):
maplist.append(j)
break
if len(maplist) != len(atomlist0):
foundmap = False
else:
indexmap.append(tuple(maplist))
if foundmap: break
if foundmap:
return trans, tuple(indexmap)
else:
return None, None
class GroupOp(collections.namedtuple('GroupOp', 'rot trans cartrot indexmap')):
"""
A class corresponding to a group operation. Based on namedtuple, so it is immutable.
Intended to be used in combination with Crystal, we have a few operations that
can be defined out-of-the-box.
:param rot: np.array(3,3) integer idempotent matrix
:param trans: np.array(3) real vector
:param cartrot: np.array(3,3) real unitary matrix
:param indexmap: tuples of tuples, containing the atom mapping
"""
def incell(self):
"""Return a version of groupop where the translation is in the unit cell"""
return GroupOp(self.rot, incell(self.trans), self.cartrot, self.indexmap)
def inhalf(self):
"""Return a version of groupop where the translation is in the centered unit cell"""
return GroupOp(self.rot, inhalf(self.trans), self.cartrot, self.indexmap)
@classmethod
def ident(cls, basis):
"""Return a group operation corresponding to identity for a given basis"""
return cls(rot=np.eye(3, dtype=int), trans=np.zeros(3), cartrot=np.eye(3),
indexmap=tuple(tuple(i for i in range(len(atomlist))) for atomlist in basis))
def __str__(self):
"""Human-readable version of groupop"""
str_rep = "#Rotation (lattice, cartesian):\n {}\t{}\n {}\t{}\n".format(
self.rot[0], self.cartrot[0],
self.rot[1], self.cartrot[1])
if self.rot.shape == (3,3):
str_rep += " {}\t{}\n".format(self.rot[2], self.cartrot[2])
str_rep += "#Translation: {}\n#Indexmap:".format(self.trans)
for chemind, atoms in enumerate(self.indexmap):
for origind, finalind in enumerate(atoms):
str_rep = str_rep + "\n {chem}.{o} -> {chem}.{f}".format(chem=chemind,
o=origind, f=finalind)
return str_rep
def _asdict(self):
"""Return a proper dict"""
return {'rot': self.rot,
'trans': self.trans,
'cartrot': self.cartrot,
'indexmap': self.indexmap}
def __eq__(self, other):
"""Test for equality--we use numpy.isclose for comparison, since that's what we usually care about"""
return isinstance(other, self.__class__) and \
np.all(self.rot == other.rot) and \
np.allclose(self.trans, other.trans) and \
np.allclose(self.cartrot, other.cartrot) and \
self.indexmap == other.indexmap
def __ne__(self, other):
"""Inequality == not __eq__"""
return not self.__eq__(other)
def __hash__(self):
"""Hash, so that we can make sets of group operations"""
### we are a little conservative, and only use the rotation and indexmap to define the hash. This means
### we will get collisions for the same rotation but different unit cell translations. The reason is
### that __eq__ uses "isclose" on our translations, and we don't have a good way to handle
### that in a hash function. We lose a little bit on efficiency if we construct a set that
### has a whole lot of translation operations, but that's not usually what we will do.
# return hash(self.rot.data.tobytes())
return hash(self.rot.data.tobytes()) ^ hash(self.indexmap)
def __add__(self, other):
"""Add a translation to our group operation"""
if __debug__:
if type(other) is not np.ndarray: raise TypeError('Can only add a translation to a group operation')
if other.shape != (self.rot.shape[0],):
raise IndexError('Can only add a {} dimensional vector'.format(self.rot.shape[0]))
if not np.issubdtype(other.dtype, np.integer): raise TypeError('Can only add a lattice vector translation')
return GroupOp(self.rot, self.trans + other, self.cartrot, self.indexmap)
def __sub__(self, other):
"""Add a (negative) translation to our group operation"""
return self.__add__(-other)
def __mul__(self, other):
"""Multiply two group operations to produce a new group operation"""
if __debug__:
if type(other) is not GroupOp: return NotImplemented
return GroupOp(np.dot(self.rot, other.rot),
np.dot(self.rot, other.trans) + self.trans,
np.dot(self.cartrot, other.cartrot),
tuple(tuple(atomlist0[i] for i in atomlist1)
for atomlist0, atomlist1 in zip(self.indexmap, other.indexmap)))
def __sane__(self):
"""Return true if the cartrot and rot are consistent and 'sane'"""
tr = self.rot.trace()
det = np.int(np.round(np.linalg.det(self.rot)))
# consistency:
if np.int(np.round(self.cartrot.trace())) != tr: return False
if np.int(np.round(np.linalg.det(self.cartrot))) != det: return False
# sanity:
if abs(det) != 1: return False
dimshift = 0 if self.rot.shape[0] == 3 else -1
if det * tr < (-1+dimshift) or det * tr > (3+dimshift): return False
return True
def inv(self):
"""Construct and return the inverse of the group operation"""
inverse = (np.round(np.linalg.inv(self.rot))).astype(int)
return GroupOp(inverse,
-np.dot(inverse, self.trans),
self.cartrot.T,
tuple(tuple(x for i, x in sorted([(y, j) for j, y in enumerate(atomlist)]))
for atomlist in self.indexmap))
@staticmethod
def optype(rot):
"""Returns the type of group operation (single integer):
1 = identity
2, 3, 4, 6 = n- fold rotation around an axis
negative = rotation + mirror operation, perpendicular to axis
"special cases": -1 = mirror, -2 = inversion
:param rot: rotation matrix (can be the integer rot)
:return type: integer
"""
# dim = rot.shape[0]
dimindexpos, dimindexneg = (1, 3) if rot.shape[0] == 3 else (2, 4)
tr = np.int(rot.trace())
if np.linalg.det(rot) > 0:
return (2, 3, 4, 6, 1)[tr + dimindexpos] # trace determines the rotation type [tr + 1] for 3d
else:
return (-2, -3, -4, -6, -1)[tr + dimindexneg] # trace determines the rotation type [tr + 3] fpr 3d
def eigen(self):
"""Returns the type of group operation (single integer) and eigenvectors.
1 = identity
2, 3, 4, 6 = n- fold rotation around an axis
negative = rotation + mirror operation, perpendicular to axis
"special cases": -1 = mirror, -2 = inversion
eigenvect[0] = axis of rotation / mirror
eigenvect[1], eigenvect[2] = orthonormal vectors to define the plane giving a right-handed
coordinate system and where rotation around [0] is positive, and the positive imaginary
eigenvector for the complex eigenvalue is [1] + i [2].
:return type: integer
:return eigenvectors: list of [ev0, ev1, ev2]
"""
if __debug__:
if not self.__sane__():
raise ValueError('Bad GroupOp:\n{}'.format(self))
optype = self.optype(self.rot)
det = 1 if optype > 0 else -1
tr = np.int(self.rot.trace())
# two trivial cases: identity, inversion:
if optype == 1 or optype == -2:
return optype, np.eye(self.rot.shape[0])
if self.rot.shape[0] == 2:
if optype != -1:
return optype, np.eye(self.rot.shape[0])
# only interesting case is how to deal with is the mirror plane; find the angle of the mirror
phi = 0.5*np.arctan2(self.cartrot[0,1]+self.cartrot[1,0], self.cartrot[0,0]-self.cartrot[1,1])
return optype, np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]])
# otherwise, there's an axis to find:
vmat = np.eye(3)
vsum = np.zeros((3, 3))
if det > 0:
for n in range(optype):
vsum += vmat
vmat = np.dot(self.cartrot, vmat)
else:
for n in range((0, 6, 4, 3, 2)[tr + 3]): #
vsum += vmat
vmat = -np.dot(self.cartrot, vmat)
# vmat *should* equal identity if we didn't fail...
if __debug__:
if not np.allclose(vmat, np.eye(3)): raise ArithmeticError('eigenvalue analysis fail')
vsum *= 1. / n
# now the columns of vsum should either be (a) our rotation / mirror axis, or (b) zero
eig0 = vsum[:, 0]
magn0 = np.dot(eig0, eig0)
if magn0 < 1e-2:
eig0 = vsum[:, 1]
magn0 = np.dot(eig0, eig0)
if magn0 < 1e-2:
eig0 = vsum[:, 2]
magn0 = np.dot(eig0, eig0)
eig0 /= np.sqrt(magn0)
# now, construct the other two directions:
if abs(eig0[2]) < 0.75:
eig1 = np.array([eig0[1], -eig0[0], 0])
else:
eig1 = np.array([-eig0[2], 0, eig0[0]])
eig1 /= np.sqrt(np.dot(eig1, eig1))
eig2 = np.cross(eig0, eig1)
# we have a right-handed coordinate system; test that we have a positive rotation around the axis
if abs(optype) > 2:
if np.dot(eig2, np.dot(self.cartrot, eig1)) > 0:
eig0 = -eig0
eig2 = -eig2
return optype, [eig0, eig1, eig2]
@staticmethod
def GroupOp_representer(dumper, data):
"""Output a GroupOp"""
# asdict() returns an OrderedDictionary, so pass through dict()
# had to rewrite _asdict() for some reason...?
return dumper.represent_mapping(GROUPOP_YAMLTAG, data._asdict())
@staticmethod
def GroupOp_constructor(loader, node):
"""Construct a GroupOp from YAML"""
# ** turns the dictionary into parameters for GroupOp constructor
return GroupOp(**loader.construct_mapping(node, deep=True))
def VectorBasis(rottype, eigenvect):
"""
Returns a vector basis corresponding to the optype and eigenvectors for a GroupOp
:param rottype: output from eigen()
:param eigenvect: eigenvectors
:return dim: dimensionality, 0..3
:return vect: vector defining line direction (1) or plane normal (2)
"""
# 2d first
if len(eigenvect) == 2:
if rottype == 1: return (2, np.zeros(2)) # sphere (identity)
if rottype == -1: return (1, eigenvect[0]) # plane (pure mirror)
return (0, np.zeros(2)) # all others are rotation, which leaves nothing unchanged in 2d
# edge cases first:
if rottype == 1: return (3, | np.zeros(3) | numpy.zeros |
"""
rnn_lstm_cell_test_cy.py
Test the correctness of the LSTM-cell implementation.
"""
import os
import unittest
from random import random
from numpy import asarray, ones, zeros
from torch import float64, FloatTensor, tensor
from torch.nn import LSTMCell as PytorchLSTM
from population.utils.rnn_cell_util.cy.lstm_cy import LSTMCellCy as LSTMCell
EPSILON = 1e-5
def get_lstm(input_size):
"""Get a LSTM-cell of the requested input-size, completely initialized with zeros."""
bias_h = zeros((4,))
weight_hh = zeros((4, 1))
weight_xh = zeros((4, input_size))
return LSTMCell(
input_size=input_size,
bias=bias_h,
weight_hh=weight_hh,
weight_xh=weight_xh,
)
def get_pytorch_lstm(input_size, used_lstm):
"""Load in a PyTorch LSTM that is a copy of the currently used LSTM."""
lstm = PytorchLSTM(input_size, 1)
lstm.bias_hh[:] = tensor(zeros((4,)), dtype=float64)[:]
lstm.bias_ih[:] = tensor(used_lstm.bias, dtype=float64)[:]
lstm.weight_hh[:] = tensor(used_lstm.weight_hh, dtype=float64)[:]
lstm.weight_ih[:] = tensor(used_lstm.weight_xh, dtype=float64)[:]
return lstm
# noinspection PyArgumentList
class LSTM(unittest.TestCase):
"""Test the custom numpy implementation of the LSTM-cell."""
def test_single_input_single_batch(self):
"""> Test when only one input given and batch-size is only one."""
# Folder must be root to load in make_net properly
if os.getcwd().split('\\')[-1] == 'tests': os.chdir('..')
# Get 'empty' LSTM
lstm = get_lstm(1)
# Completely zero LSTM, all inputs get ignored
self.assertEqual(lstm(asarray([[0]])), 0)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
self.assertEqual(lstm(asarray([[1]])), 0)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
# Modify the LSTM to have weight-arrays of one
lstm.weight_hh = asarray(ones((4, 1)))
lstm.weight_xh = asarray(ones((4, 1)))
# Load in PyTorch native LSTM to compare with
pytorch_lstm = get_pytorch_lstm(1, lstm)
# Test if they continue to obtain the same results
for _ in range(100):
i = random()
a = lstm(asarray([[i]]))
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
(b, _) = pytorch_lstm(FloatTensor([[i]]))
self.assertEqual(a.shape, b.shape)
self.assertTrue(float(a) - EPSILON <= float(b) <= float(a) + EPSILON)
# Set bias to minus ones
lstm.bias = ones((4,)) * -1
# Load in PyTorch native LSTM to compare with
pytorch_lstm = get_pytorch_lstm(1, lstm)
# Test if they continue to obtain the same results
for _ in range(100):
i = random()
a = lstm(asarray([[i]]))
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
(b, _) = pytorch_lstm(FloatTensor([[i]]))
self.assertEqual(a.shape, b.shape)
self.assertTrue(float(a) - EPSILON <= float(b) <= float(a) + EPSILON)
def test_single_input_multi_batch(self):
"""> Test when only one input given and batch-size is more than one."""
# Folder must be root to load in make_net properly
if os.getcwd().split('\\')[-1] == 'tests': os.chdir('..')
# Get 'empty' LSTM
lstm = get_lstm(1)
# Completely zero LSTM, all inputs get ignored
result = lstm(asarray([[0], [0]]))
for aa, bb in zip(result, asarray([[0], [0]])):
self.assertTrue(float(aa) - EPSILON <= float(bb) <= float(aa) + EPSILON)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
result = lstm(asarray([[1], [1]]))
for aa, bb in zip(result, asarray([[0], [0]])):
self.assertTrue(float(aa) - EPSILON <= float(bb) <= float(aa) + EPSILON)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
# Modify the LSTM to have weight-arrays of one
lstm.weight_hh = ones((4, 1))
lstm.weight_xh = ones((4, 1))
# Load in PyTorch native LSTM to compare with
pytorch_lstm = get_pytorch_lstm(1, lstm)
# Test if they continue to obtain the same results
for _ in range(100):
i = random()
a = lstm(asarray([[i], [i]]))
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
(b, _) = pytorch_lstm(FloatTensor([[i], [i]]))
self.assertEqual(a.shape, b.shape)
for aa, bb in zip(a, b):
self.assertTrue(float(aa) - EPSILON <= float(bb) <= float(aa) + EPSILON)
# Set bias to minus ones
lstm.bias = ones((4,)) * -1
# Load in PyTorch native LSTM to compare with
pytorch_lstm = get_pytorch_lstm(1, lstm)
# Test if they continue to obtain the same results
for _ in range(100):
i = random()
a = lstm(asarray([[i], [i]]))
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
(b, _) = pytorch_lstm(FloatTensor([[i], [i]]))
self.assertEqual(a.shape, b.shape)
for aa, bb in zip(a, b):
self.assertTrue(float(aa) - EPSILON <= float(bb) <= float(aa) + EPSILON)
def test_multi_input_single_batch(self):
"""> Test when only one input given and batch-size is more than one."""
# Folder must be root to load in make_net properly
if os.getcwd().split('\\')[-1] == 'tests': os.chdir('..')
# Get 'empty' LSTM
lstm = get_lstm(2)
# Completely zero LSTM, all inputs get ignored
self.assertEqual(lstm(asarray([[0, 0]])), 0)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
self.assertEqual(lstm(asarray([[1, 1]])), 0)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
# Modify the LSTM to have weight-arrays of one
lstm.weight_hh = ones((4, 1))
lstm.weight_xh = ones((4, 2))
# Load in PyTorch native LSTM to compare with
pytorch_lstm = get_pytorch_lstm(2, lstm)
# Test if they continue to obtain the same results
for _ in range(100):
i = random()
a = lstm(asarray([[i, i]]))
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
(b, _) = pytorch_lstm(FloatTensor([[i, i]]))
self.assertEqual(a.shape, b.shape)
for aa, bb in zip(a, b):
self.assertTrue(float(aa) - EPSILON <= float(bb) <= float(aa) + EPSILON)
# Set bias to minus ones
lstm.bias = ones((4,)) * -1
# Load in PyTorch native LSTM to compare with
pytorch_lstm = get_pytorch_lstm(2, lstm)
# Test if they continue to obtain the same results
for _ in range(100):
i = random()
a = lstm(asarray([[i, i]]))
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
(b, _) = pytorch_lstm(FloatTensor([[i, i]]))
self.assertEqual(a.shape, b.shape)
for aa, bb in zip(a, b):
self.assertTrue(float(aa) - EPSILON <= float(bb) <= float(aa) + EPSILON)
def test_multi_input_multi_batch(self):
"""> Test when only one input given and batch-size is more than one."""
# Folder must be root to load in make_net properly
if os.getcwd().split('\\')[-1] == 'tests': os.chdir('..')
# Get 'empty' LSTM
lstm = get_lstm(2)
# Completely zero LSTM, all inputs get ignored
result = lstm(asarray([[0, 0], [0, 0]]))
for aa, bb in zip(result, | asarray([[0], [0]]) | numpy.asarray |
# -*- coding: utf-8 -*-
# pylint: disable=invalid-name, too-many-arguments, too-many-instance-attributes
"""Copyright 2015 <NAME>.
FilterPy library.
http://github.com/rlabbe/filterpy
Documentation at:
https://filterpy.readthedocs.org
Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the readme.MD file
for more information.
"""
from __future__ import (absolute_import, division, unicode_literals)
from copy import deepcopy
from math import log, exp, sqrt
import sys
import warnings
import numpy as np
from numpy import dot, zeros, eye
import scipy.linalg as linalg
from filterpy.stats import logpdf
from filterpy.common import pretty_str
class FadingKalmanFilter(object):
"""
Fading memory Kalman filter. This implements a linear Kalman filter with
a fading memory effect controlled by `alpha`. This is obsolete. The
class KalmanFilter now incorporates the `alpha` attribute, and should
be used instead.
You are responsible for setting the
various state variables to reasonable values; the defaults below
will not give you a functional filter.
Parameters
----------
alpha : float, >= 1
alpha controls how much you want the filter to forget past
measurements. alpha==1 yields identical performance to the
Kalman filter. A typical application might use 1.01
dim_x : int
Number of state variables for the Kalman filter. For example, if
you are tracking the position and velocity of an object in two
dimensions, dim_x would be 4.
This is used to set the default size of P, Q, and u
dim_z : int
Number of of measurement inputs. For example, if the sensor
provides you with position in (x,y), dim_z would be 2.
dim_u : int (optional)
size of the control input, if it is being used.
Default value of 0 indicates it is not used.
Attributes
----------
You will have to assign reasonable values to all of these before
running the filter. All must have dtype of float
x : ndarray (dim_x, 1), default = [0,0,0...0]
state of the filter
P : ndarray (dim_x, dim_x), default identity matrix
covariance matrix
x_prior : numpy.array(dim_x, 1)
Prior (predicted) state estimate. The *_prior and *_post attributes
are for convienence; they store the prior and posterior of the
current epoch. Read Only.
P_prior : numpy.array(dim_x, dim_x)
Prior (predicted) state covariance matrix. Read Only.
x_post : numpy.array(dim_x, 1)
Posterior (updated) state estimate. Read Only.
P_post : numpy.array(dim_x, dim_x)
Posterior (updated) state covariance matrix. Read Only.
z : ndarray
Last measurement used in update(). Read only.
Q : ndarray (dim_x, dim_x), default identity matrix
Process uncertainty matrix
R : ndarray (dim_z, dim_z), default identity matrix
measurement uncertainty
H : ndarray (dim_z, dim_x)
measurement function
F : ndarray (dim_x, dim_x)
state transition matrix
B : ndarray (dim_x, dim_u), default 0
control transition matrix
y : numpy.array
Residual of the update step. Read only.
K : numpy.array(dim_x, dim_z)
Kalman gain of the update step. Read only.
S : numpy.array
System uncertainty (P projected to measurement space). Read only.
S : numpy.array
Inverse system uncertainty. Read only.
log_likelihood : float
log-likelihood of the last measurement. Read only.
likelihood : float
likelihood of last measurement. Read only.
Computed from the log-likelihood. The log-likelihood can be very
small, meaning a large negative value such as -28000. Taking the
exp() of that results in 0.0, which can break typical algorithms
which multiply by this value, so by default we always return a
number >= sys.float_info.min.
mahalanobis : float
mahalanobis distance of the innovation. Read only.
Examples
--------
See my book Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
"""
def __init__(self, alpha, dim_x, dim_z, dim_u=0):
warnings.warn(
"Use KalmanFilter class instead; it also provides the alpha attribute",
DeprecationWarning)
assert alpha >= 1
assert dim_x > 0
assert dim_z > 0
assert dim_u >= 0
self.alpha_sq = alpha**2
self.dim_x = dim_x
self.dim_z = dim_z
self.dim_u = dim_u
self.x = zeros((dim_x, 1)) # state
self.P = eye(dim_x) # uncertainty covariance
self.Q = eye(dim_x) # process uncertainty
self.B = 0. # control transition matrix
self.F = np.eye(dim_x) # state transition matrix
self.H = zeros((dim_z, dim_x)) # Measurement function
self.R = eye(dim_z) # state uncertainty
self.z = np.array([[None]*dim_z]).T
# gain and residual are computed during the innovation step. We
# save them so that in case you want to inspect them for various
# purposes
self.K = 0 # kalman gain
self.y = zeros((dim_z, 1))
self.S = np.zeros((dim_z, dim_z)) # system uncertainty (measurement space)
self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty
# identity matrix. Do not alter this.
self.I = np.eye(dim_x)
# Only computed only if requested via property
self._log_likelihood = log(sys.float_info.min)
self._likelihood = sys.float_info.min
self._mahalanobis = None
# these will always be a copy of x,P after predict() is called
self.x_prior = self.x.copy()
self.P_prior = self.P.copy()
# these will always be a copy of x,P after update() is called
self.x_post = self.x.copy()
self.P_post = self.P.copy()
def update(self, z, R=None):
"""
Add a new measurement (z) to the kalman filter. If z is None, nothing
is changed.
Parameters
----------
z : np.array
measurement for this update.
R : np.array, scalar, or None
Optionally provide R to override the measurement noise for this
one call, otherwise self.R will be used.
"""
if z is None:
self.z = np.array([[None]*self.dim_z]).T
self.x_post = self.x.copy()
self.P_post = self.P.copy()
return
if R is None:
R = self.R
elif | np.isscalar(R) | numpy.isscalar |
"""Define the DefaultAllocator class."""
from __future__ import division
import warnings
import numpy as np
from six.moves import range
from openmdao.proc_allocators.proc_allocator import ProcAllocator, ProcAllocationError
from openmdao.utils.mpi import MPI
class DefaultAllocator(ProcAllocator):
"""
Default processor allocator.
"""
def _divide_procs(self, req_procs, comm):
"""
Perform the parallel processor allocation.
Parameters
----------
req_procs : list of (int, int)
List of min/max usable procs for each subsystem.
comm : MPI.Comm or <FakeComm>
communicator of the owning system.
Returns
-------
isubs : [int, ...]
indices of the owned local subsystems.
sub_comm : MPI.Comm or <FakeComm>
communicator to pass to the subsystems.
sub_proc_range : (int, int)
The range of processors that the subcomm owns, among those of comm.
"""
iproc = comm.rank
nproc = comm.size
nsub = len(req_procs)
min_req_procs = [minproc for minproc, _ in req_procs]
max_req_procs = [maxproc for _, maxproc in req_procs]
assigned_procs = np.zeros(nsub, dtype=int)
assigned = 0
total_req = np.sum(min_req_procs)
if None in max_req_procs:
limit = nproc
max_requested = nproc
else:
max_requested = np.sum(max_req_procs)
limit = min(nproc, max_requested)
# first, just use simple round robin assignment of requested procs
# until everybody has what they asked for or we run out
if total_req:
if nproc >= total_req: # we have enough for all subsystems
while assigned < limit:
for i, max_req in enumerate(max_req_procs):
if max_req is None or assigned_procs[i] < max_req:
assigned_procs[i] += 1
assigned += 1
if assigned == limit:
break
# create buckets (one sub per bucket) to be consistent in how
# we split procs below
buckets = [(n, [i]) for i, n in enumerate(assigned_procs)]
else: # we don't have enough, so have to group subsystems
remaining = nproc
# sort req procs in descending order
tups = sorted([(req[0], i) for i, req in enumerate(req_procs)],
reverse=True)
buckets = []
for i, (req, sub_idx) in enumerate(tups):
if remaining >= req:
buckets.append([req, [sub_idx]])
remaining -= req
elif i == 0:
# since we sorted in descending order by number of
# requested procs, only in the first iteration is there
# a chance that we've requested more procs than we have
raise ProcAllocationError(sub_idx, req, remaining)
else:
# we already have at least one in the bucket list that's
# big enough, so go through buckets, find all that are
# big enough, and add the current sub to the one with
# the fewest number of subs already in it. In the event
# of a tie, take the bucket with the lowest number of
# requested procs.
lenlist = sorted([b for b in buckets if b[0] >= req],
key=lambda t: len(t[1]))
shortest = len(lenlist[0][1])
final = sorted(b for b in lenlist
if len(b[1]) == shortest)
final[0][1].append(sub_idx)
warnings.warn("System requested %d processes to run fully "
"in parallel, but it only got %d" %
(total_req, nproc))
# if we have any procs left over, apply them to any sub that
# can use them
while remaining > 0:
for i, max_req in enumerate(max_req_procs):
procs, subs = buckets[i]
for sub_idx in subs:
if (max_req is None or max_req > procs):
# add 1 to procs for this bucket
buckets[i][0] += 1
remaining -= 1
break
if remaining == 0:
break
assigned = nproc - remaining
# a 'color' is assigned to each bucket, with
# an entry for each processor it will be given
# e.g. [0, 1, 1, 1, 1, 2, 2, 3, 3, 3, UND, UND]
color = np.full(nproc, MPI.UNDEFINED, dtype=int)
comm_sizes = np.empty(nproc, int)
start, end = 0, 0
for i, b in enumerate(buckets):
num_procs = b[0]
end += num_procs
color[start:end] = i
comm_sizes[start:end] = num_procs
start += num_procs
# create a sub-communicator for each color and
# get the one assigned to our color/process
rank_color = color[iproc]
sub_comm = comm.Split(rank_color)
sub_proc_range = (np.sum(comm_sizes[:iproc]), | np.sum(comm_sizes[:iproc + 1]) | numpy.sum |
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 18 20:56:46 2018
@author: nooteboom
"""
import numpy as np
import matplotlib.pylab as plt
import matplotlib
from matplotlib.font_manager import FontProperties
import seaborn as sns
sns.set(style="darkgrid")
font = {'family' : 'Helvetica',
# 'weight' : 'bold',
'size' : 22}
matplotlib.rc('font', **font)
res = 10000
z = np.linspace(10,6000,res)
c3 = np.full(res, 3)
c6 = np.full(res, 6)
c11 = np.full(res, 11)
c25 = np.full(res, 25)
c50 = np.full(res, 50)
c100 = np.full(res, 100)
c200 = | np.full(res, 200) | numpy.full |
# Copyright (c) Facebook, Inc. and its affiliates
# Copyright (c) MTRF authors
import collections
import numpy as np
from typing import Any, Dict, Optional, NewType, Sequence, Union, Tuple
from r3l.r3l_envs.inhand_env.base import ObjectType
from r3l.r3l_envs.inhand_env.reposition import SawyerDhandInHandObjectRepositionFixed
from r3l.robot.object import ObjectState
from r3l.utils.quatmath import quat2euler, euler2quat
from r3l.utils.range import get_range_from_params
from r3l.utils.circle_math import circle_distance, circle_distance_mod
from r3l.robot.default_configs import REORIENT_SAWYER_ROBOT_CONFIG
class SawyerDhandInHandObjectReorientFixed(SawyerDhandInHandObjectRepositionFixed):
DEFAULT_REWARD_KEYS_AND_WEIGHTS = {
"object_to_target_circle_distance_reward": 1.0,
"object_to_target_xy_distance_reward": 1.0,
"object_to_hand_xyz_distance_reward": 1.0,
# "span_dist": 1.0,
"small_bonus": 1.0,
"big_bonus": 1.0,
}
def __init__(
self,
object_type: ObjectType = ObjectType.Rod,
random_init_angle: bool = False,
random_target_angle: bool = False,
symmetric_task: bool = True,
reorient_only: bool = False,
**kwargs
):
if random_init_angle:
init_euler_params = {
"type": "UniformRange",
"values": [np.array([0, 0, -np.pi]), np.array([0, 0, np.pi])],
}
else:
init_euler_params = {
"type": "DiscreteRange",
"values": [np.array([0, 0, 0])],
}
target_xyz_params = {
"type": "DiscreteRange",
"values": [ | np.array([0.72, 0.15, 0.76]) | numpy.array |
# ***** BEGIN GPL LICENSE BLOCK *****
#
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENCE BLOCK *****
#
# -----------------------------------------------------------------------
# Author: <NAME> (Clockmender), <NAME> (ermo) Copyright (c) 2019
# -----------------------------------------------------------------------
#
import bmesh
import numpy as np
from math import sqrt, tan, pi
from mathutils import Vector
from mathutils.geometry import intersect_point_line
from .pdt_functions import (
set_mode,
oops,
get_percent,
dis_ang,
check_selection,
arc_centre,
intersection,
view_coords_i,
view_coords,
view_dir,
set_axis,
)
from . import pdt_exception
PDT_SelectionError = pdt_exception.SelectionError
PDT_InvalidVector = pdt_exception.InvalidVector
PDT_ObjectModeError = pdt_exception.ObjectModeError
PDT_InfRadius = pdt_exception.InfRadius
PDT_NoObjectError = pdt_exception.NoObjectError
PDT_IntersectionError = pdt_exception.IntersectionError
PDT_InvalidOperation = pdt_exception.InvalidOperation
PDT_VerticesConnected = pdt_exception.VerticesConnected
PDT_InvalidAngle = pdt_exception.InvalidAngle
from .pdt_msg_strings import (
PDT_ERR_BAD3VALS,
PDT_ERR_BAD2VALS,
PDT_ERR_BAD1VALS,
PDT_ERR_CONNECTED,
PDT_ERR_SEL_2_VERTS,
PDT_ERR_EDOB_MODE,
PDT_ERR_NO_ACT_OBJ,
PDT_ERR_VERT_MODE,
PDT_ERR_SEL_3_VERTS,
PDT_ERR_SEL_3_OBJS,
PDT_ERR_EDIT_MODE,
PDT_ERR_NON_VALID,
PDT_LAB_NOR,
PDT_ERR_STRIGHT_LINE,
PDT_LAB_ARCCENTRE,
PDT_ERR_SEL_4_VERTS,
PDT_ERR_INT_NO_ALL,
PDT_LAB_INTERSECT,
PDT_ERR_SEL_4_OBJS,
PDT_INF_OBJ_MOVED,
PDT_ERR_SEL_2_VERTIO,
PDT_ERR_SEL_2_OBJS,
PDT_ERR_SEL_3_VERTIO,
PDT_ERR_TAPER_ANG,
PDT_ERR_TAPER_SEL,
PDT_ERR_INT_LINES,
PDT_LAB_PLANE,
)
def vector_build(context, pg, obj, operation, values, num_values):
"""Build Movement Vector from Input Fields.
Args:
context: Blender bpy.context instance.
pg: PDT Parameters Group - our variables
obj: The Active Object
operation: The Operation e.g. Create New Vertex
values: The paramters passed e.g. 1,4,3 for Cartesian Coordinates
num_values: The number of values passed - determines the function
Returns:
Vector to position, or offset, items.
"""
scene = context.scene
plane = pg.plane
flip_angle = pg.flip_angle
flip_percent= pg.flip_percent
# Cartesian 3D coordinates
if num_values == 3 and len(values) == 3:
output_vector = Vector((float(values[0]), float(values[1]), float(values[2])))
# Polar 2D coordinates
elif num_values == 2 and len(values) == 2:
output_vector = dis_ang(values, flip_angle, plane, scene)
# Percentage of imaginary line between two 3D coordinates
elif num_values == 1 and len(values) == 1:
output_vector = get_percent(obj, flip_percent, float(values[0]), operation, scene)
else:
if num_values == 3:
pg.error = PDT_ERR_BAD3VALS
elif num_values == 2:
pg.error = PDT_ERR_BAD2VALS
else:
pg.error = PDT_ERR_BAD1VALS
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_InvalidVector
return output_vector
def placement_normal(context, operation):
"""Manipulates Geometry, or Objects by Normal Intersection between 3 points.
Args:
context: Blender bpy.context instance.
operation: The Operation e.g. Create New Vertex
Returns:
Status Set.
"""
scene = context.scene
pg = scene.pdt_pg
extend_all = pg.extend
obj = context.view_layer.objects.active
if obj.mode == "EDIT":
if obj is None:
pg.error = PDT_ERR_NO_ACT_OBJ
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_ObjectModeError
obj_loc = obj.matrix_world.decompose()[0]
bm = bmesh.from_edit_mesh(obj.data)
if len(bm.select_history) == 3:
vector_a, vector_b, vector_c = check_selection(3, bm, obj)
if vector_a is None:
pg.error = PDT_ERR_VERT_MODE
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_FeatureError
else:
pg.error = f"{PDT_ERR_SEL_3_VERTIO} {len(bm.select_history)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
elif obj.mode == "OBJECT":
objs = context.view_layer.objects.selected
if len(objs) != 3:
pg.error = f"{PDT_ERR_SEL_3_OBJS} {len(objs)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
objs_s = [ob for ob in objs if ob.name != obj.name]
vector_a = obj.matrix_world.decompose()[0]
vector_b = objs_s[-1].matrix_world.decompose()[0]
vector_c = objs_s[-2].matrix_world.decompose()[0]
vector_delta = intersect_point_line(vector_a, vector_b, vector_c)[0]
if operation == "C":
if obj.mode == "EDIT":
scene.cursor.location = obj_loc + vector_delta
elif obj.mode == "OBJECT":
scene.cursor.location = vector_delta
elif operation == "P":
if obj.mode == "EDIT":
pg.pivot_loc = obj_loc + vector_delta
elif obj.mode == "OBJECT":
pg.pivot_loc = vector_delta
elif operation == "G":
if obj.mode == "EDIT":
if extend_all:
for v in [v for v in bm.verts if v.select]:
v.co = vector_delta
bm.select_history.clear()
bmesh.ops.remove_doubles(bm, verts=[v for v in bm.verts if v.select], dist=0.0001)
else:
bm.select_history[-1].co = vector_delta
bm.select_history.clear()
bmesh.update_edit_mesh(obj.data)
elif obj.mode == "OBJECT":
context.view_layer.objects.active.location = vector_delta
elif operation == "N":
if obj.mode == "EDIT":
vertex_new = bm.verts.new(vector_delta)
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
for v in [v for v in bm.verts if v.select]:
v.select_set(False)
vertex_new.select_set(True)
else:
pg.error = f"{PDT_ERR_EDIT_MODE} {obj.mode})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return
elif operation == "V" and obj.mode == "EDIT":
vector_new = vector_delta
vertex_new = bm.verts.new(vector_new)
if extend_all:
for v in [v for v in bm.verts if v.select]:
bm.edges.new([v, vertex_new])
else:
bm.edges.new([bm.select_history[-1], vertex_new])
for v in [v for v in bm.verts if v.select]:
v.select_set(False)
vertex_new.select_set(True)
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
else:
pg.error = f"{operation} {PDT_ERR_NON_VALID} {PDT_LAB_NOR}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
def placement_arc_centre(context, operation):
"""Manipulates Geometry, or Objects to an Arc Centre defined by 3 points on an Imaginary Arc.
Args:
context: Blender bpy.context instance.
operation: The Operation e.g. Create New Vertex
Returns:
Status Set.
"""
scene = context.scene
pg = scene.pdt_pg
extend_all = pg.extend
obj = context.view_layer.objects.active
if obj.mode == "EDIT":
if obj is None:
pg.error = PDT_ERR_NO_ACT_OBJ
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_ObjectModeError
obj = context.view_layer.objects.active
obj_loc = obj.matrix_world.decompose()[0]
bm = bmesh.from_edit_mesh(obj.data)
verts = [v for v in bm.verts if v.select]
if len(verts) != 3:
pg.error = f"{PDT_ERR_SEL_3_VERTS} {len(verts)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
vector_a = verts[0].co
vector_b = verts[1].co
vector_c = verts[2].co
vector_delta, radius = arc_centre(vector_a, vector_b, vector_c)
if str(radius) == "inf":
pg.error = PDT_ERR_STRIGHT_LINE
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_InfRadius
pg.distance = radius
if operation == "C":
scene.cursor.location = obj_loc + vector_delta
elif operation == "P":
pg.pivot_loc = obj_loc + vector_delta
elif operation == "N":
vector_new = vector_delta
vertex_new = bm.verts.new(vector_new)
for v in [v for v in bm.verts if v.select]:
v.select_set(False)
vertex_new.select_set(True)
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
vertex_new.select_set(True)
elif operation == "G":
if extend_all:
for v in [v for v in bm.verts if v.select]:
v.co = vector_delta
bm.select_history.clear()
bmesh.ops.remove_doubles(bm, verts=[v for v in bm.verts if v.select], dist=0.0001)
else:
bm.select_history[-1].co = vector_delta
bm.select_history.clear()
bmesh.update_edit_mesh(obj.data)
elif operation == "V":
vertex_new = bm.verts.new(vector_delta)
if extend_all:
for v in [v for v in bm.verts if v.select]:
bm.edges.new([v, vertex_new])
v.select_set(False)
vertex_new.select_set(True)
bm.select_history.clear()
bmesh.ops.remove_doubles(bm, verts=[v for v in bm.verts if v.select], dist=0.0001)
bmesh.update_edit_mesh(obj.data)
else:
bm.edges.new([bm.select_history[-1], vertex_new])
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
else:
pg.error = f"{operation} {PDT_ERR_NON_VALID} {PDT_LAB_ARCCENTRE}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
elif obj.mode == "OBJECT":
if len(context.view_layer.objects.selected) != 3:
pg.error = f"{PDT_ERR_SEL_3_OBJS} {len(context.view_layer.objects.selected)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
vector_a = context.view_layer.objects.selected[0].matrix_world.decompose()[0]
vector_b = context.view_layer.objects.selected[1].matrix_world.decompose()[0]
vector_c = context.view_layer.objects.selected[2].matrix_world.decompose()[0]
vector_delta, radius = arc_centre(vector_a, vector_b, vector_c)
pg.distance = radius
if operation == "C":
scene.cursor.location = vector_delta
elif operation == "P":
pg.pivot_loc = vector_delta
elif operation == "G":
context.view_layer.objects.active.location = vector_delta
else:
pg.error = f"{operation} {PDT_ERR_NON_VALID} {PDT_LAB_ARCCENTRE}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
def placement_intersect(context, operation):
"""Manipulates Geometry, or Objects by Convergance Intersection between 4 points, or 2 Edges.
Args:
context: Blender bpy.context instance.
operation: The Operation e.g. Create New Vertex
Returns:
Status Set.
"""
scene = context.scene
pg = scene.pdt_pg
plane = pg.plane
obj = context.view_layer.objects.active
if obj.mode == "EDIT":
if obj is None:
pg.error = PDT_ERR_NO_ACT_OBJ
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_NoObjectError
obj_loc = obj.matrix_world.decompose()[0]
bm = bmesh.from_edit_mesh(obj.data)
edges = [e for e in bm.edges if e.select]
extend_all = pg.extend
if len(edges) == 2:
vertex_a = edges[0].verts[0]
vertex_b = edges[0].verts[1]
vertex_c = edges[1].verts[0]
vertex_d = edges[1].verts[1]
else:
if len(bm.select_history) != 4:
pg.error = (
PDT_ERR_SEL_4_VERTS
+ str(len(bm.select_history))
+ " Vertices/"
+ str(len(edges))
+ " Edges)"
)
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
vertex_a = bm.select_history[-1]
vertex_b = bm.select_history[-2]
vertex_c = bm.select_history[-3]
vertex_d = bm.select_history[-4]
vector_delta, done = intersection(vertex_a.co, vertex_b.co, vertex_c.co, vertex_d.co, plane)
if not done:
pg.error = f"{PDT_ERR_INT_LINES} {plane} {PDT_LAB_PLANE}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_IntersectionError
if operation == "C":
scene.cursor.location = obj_loc + vector_delta
elif operation == "P":
pg.pivot_loc = obj_loc + vector_delta
elif operation == "N":
vector_new = vector_delta
vertex_new = bm.verts.new(vector_new)
for v in [v for v in bm.verts if v.select]:
v.select_set(False)
for f in bm.faces:
f.select_set(False)
for e in bm.edges:
e.select_set(False)
vertex_new.select_set(True)
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
elif operation in {"G", "V"}:
vertex_new = None
process = False
if (vertex_a.co - vector_delta).length < (vertex_b.co - vector_delta).length:
if operation == "G":
vertex_a.co = vector_delta
process = True
else:
vertex_new = bm.verts.new(vector_delta)
bm.edges.new([vertex_a, vertex_new])
process = True
else:
if operation == "G" and extend_all:
vertex_b.co = vector_delta
elif operation == "V" and extend_all:
vertex_new = bm.verts.new(vector_delta)
bm.edges.new([vertex_b, vertex_new])
else:
return
if (vertex_c.co - vector_delta).length < (vertex_d.co - vector_delta).length:
if operation == "G" and extend_all:
vertex_c.co = vector_delta
elif operation == "V" and extend_all:
bm.edges.new([vertex_c, vertex_new])
else:
return
else:
if operation == "G" and extend_all:
vertex_d.co = vector_delta
elif operation == "V" and extend_all:
bm.edges.new([vertex_d, vertex_new])
else:
return
bm.select_history.clear()
bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.0001)
if not process and not extend_all:
pg.error = PDT_ERR_INT_NO_ALL
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
bmesh.update_edit_mesh(obj.data)
return
for v in bm.verts:
v.select_set(False)
for f in bm.faces:
f.select_set(False)
for e in bm.edges:
e.select_set(False)
if vertex_new is not None:
vertex_new.select_set(True)
for v in bm.select_history:
if v is not None:
v.select_set(True)
bmesh.update_edit_mesh(obj.data)
else:
pg.error = f"{operation} {PDT_ERR_NON_VALID} {PDT_LAB_INTERSECT}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_InvalidOperation
elif obj.mode == "OBJECT":
if len(context.view_layer.objects.selected) != 4:
pg.error = f"{PDT_ERR_SEL_4_OBJS} {len(context.view_layer.objects.selected)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
order = pg.object_order.split(",")
objs = sorted(context.view_layer.objects.selected, key=lambda x: x.name)
pg.error = (
"Original Object Order (1,2,3,4) was: "
+ objs[0].name
+ ", "
+ objs[1].name
+ ", "
+ objs[2].name
+ ", "
+ objs[3].name
)
context.window_manager.popup_menu(oops, title="Info", icon="INFO")
vector_a = objs[int(order[0]) - 1].matrix_world.decompose()[0]
vector_b = objs[int(order[1]) - 1].matrix_world.decompose()[0]
vector_c = objs[int(order[2]) - 1].matrix_world.decompose()[0]
vector_d = objs[int(order[3]) - 1].matrix_world.decompose()[0]
vector_delta, done = intersection(vector_a, vector_b, vector_c, vector_d, plane)
if not done:
pg.error = f"{PDT_ERR_INT_LINES} {plane} {PDT_LAB_PLANE}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_IntersectionError
if operation == "C":
scene.cursor.location = vector_delta
elif operation == "P":
pg.pivot_loc = vector_delta
elif operation == "G":
context.view_layer.objects.active.location = vector_delta
pg.error = f"{PDT_INF_OBJ_MOVED} {context.view_layer.objects.active.name}"
context.window_manager.popup_menu(oops, title="Info", icon="INFO")
else:
pg.error = f"{operation} {PDT_ERR_NON_VALID} {PDT_LAB_INTERSECT}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return
else:
return
def join_two_vertices(context):
"""Joins 2 Free Vertices that do not form part of a Face.
Note:
Joins two vertices that do not form part of a single face
It is designed to close open Edge Loops, where a face is not required
or to join two disconnected Edges.
Args:
context: Blender bpy.context instance.
Returns:
Status Set.
"""
scene = context.scene
pg = scene.pdt_pg
obj = context.view_layer.objects.active
if all([bool(obj), obj.type == "MESH", obj.mode == "EDIT"]):
bm = bmesh.from_edit_mesh(obj.data)
verts = [v for v in bm.verts if v.select]
if len(verts) == 2:
try:
bm.edges.new([verts[-1], verts[-2]])
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
return
except ValueError:
pg.error = PDT_ERR_CONNECTED
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_VerticesConnected
else:
pg.error = f"{PDT_ERR_SEL_2_VERTS} {len(verts)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
else:
pg.error = f"{PDT_ERR_EDOB_MODE},{obj.mode})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_ObjectModeError
def set_angle_distance_two(context):
"""Measures Angle and Offsets between 2 Points in View Plane.
Note:
Uses 2 Selected Vertices to set pg.angle and pg.distance scene variables
also sets delta offset from these 2 points using standard Numpy Routines
Works in Edit and Oject Modes.
Args:
context: Blender bpy.context instance.
Returns:
Status Set.
"""
scene = context.scene
pg = scene.pdt_pg
plane = pg.plane
flip_angle = pg.flip_angle
obj = context.view_layer.objects.active
if obj is None:
pg.error = PDT_ERR_NO_ACT_OBJ
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return
if obj.mode == "EDIT":
bm = bmesh.from_edit_mesh(obj.data)
verts = [v for v in bm.verts if v.select]
if len(verts) == 2:
if len(bm.select_history) == 2:
vector_a, vector_b = check_selection(2, bm, obj)
if vector_a is None:
pg.error = PDT_ERR_VERT_MODE
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_FeatureError
else:
pg.error = f"{PDT_ERR_SEL_2_VERTIO} {len(bm.select_history)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
else:
pg.error = f"{PDT_ERR_SEL_2_VERTIO} {len(verts)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
elif obj.mode == "OBJECT":
objs = context.view_layer.objects.selected
if len(objs) < 2:
pg.error = f"{PDT_ERR_SEL_2_OBJS} {len(objs)})"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
raise PDT_SelectionError
objs_s = [ob for ob in objs if ob.name != obj.name]
vector_a = obj.matrix_world.decompose()[0]
vector_b = objs_s[-1].matrix_world.decompose()[0]
if plane == "LO":
vector_difference = vector_b - vector_a
vector_b = view_coords_i(vector_difference.x, vector_difference.y, vector_difference.z)
vector_a = Vector((0, 0, 0))
v0 = np.array([vector_a.x + 1, vector_a.y]) - np.array([vector_a.x, vector_a.y])
v1 = np.array([vector_b.x, vector_b.y]) - np.array([vector_a.x, vector_a.y])
else:
a1, a2, _ = set_mode(plane)
v0 = np.array([vector_a[a1] + 1, vector_a[a2]]) - np.array([vector_a[a1], vector_a[a2]])
v1 = np.array([vector_b[a1], vector_b[a2]]) - np.array([vector_a[a1], vector_a[a2]])
ang = np.rad2deg(np.arctan2(np.linalg.det([v0, v1]), | np.dot(v0, v1) | numpy.dot |
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
##############################################################################################
#---------------------------CALIBRATION CAMERA + DISTORSION CORRECTION------------------------
def calculation_undistort(image, objpoints, imgpoints):
# get image size
img_size = (image.shape[1], image.shape[0])
# Camera Calibration
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Distorsion Correction
undist = cv2.undistort(image,mtx,dist,None,mtx)
return undist
################################################################################################
#--------------------------------------GRADIENT------------------------------------------------
def image_computing(image_undistorted):
# Grayscale image to compute the gradient
gray = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2GRAY)
# HLS color space and separate the S channel for the color
hls = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2HLS)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
#-------------------------------------------------------------------------------------------
# Sobel x
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
abs_sobelx = np.absolute(sobelx) # x derivative accentuates lines away from horizontal
scaled_sobelx = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Sobel y
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
abs_sobely = np.absolute(sobely) # y derivative accentuates lines away from horizontal
scaled_sobely = np.uint8(255*abs_sobely/np.max(abs_sobely))
#---------------------------------------------------------------------------------------------
# x-gradient Thresholding
thresh_min = 40
thresh_max = 100
sxbinary = np.zeros_like(scaled_sobelx)
sxbinary[(scaled_sobelx >= thresh_min) & (scaled_sobelx <= thresh_max)] = 1
# y-gradient Thresholding
thresh_min = 40
thresh_max = 100
sybinary = np.zeros_like(scaled_sobely)
sybinary[(scaled_sobely >= thresh_min) & (scaled_sobely <= thresh_max)] = 1
#----------------------------------------------------------------------------------------------
# color channel Thresholding
s_thresh_min = 150
s_thresh_max = 255
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1
l_thresh_min = 150
l_thresh_max = 255
l_binary = np.zeros_like(l_channel)
l_binary[(l_channel >= l_thresh_min) & (l_channel <= l_thresh_max)] = 1
# Gradient direction thresholding
thresh=(0.7, 1.3)
direction = np.arctan2 (abs_sobely, abs_sobelx) # Calculate the direction
dir_binary = np.zeros_like (direction)
dir_binary[(direction >= thresh[0]) & (direction<=thresh[1])] =1
# Gradient magnitude thresholding
mag_thresh=(30, 100)
magnitude = np.sqrt((sobelx)**2 + (sobely)**2) # Calculate the magnitude
scaled_magnitude = np.uint8 (255* magnitude/np.max(magnitude)) # Scale to 8-bit (0 - 255) and convert to type = np.uint8
mag_binary = np.zeros_like (scaled_magnitude) # Create a binary mask where mag thresholds are met
mag_binary[(scaled_magnitude >= mag_thresh[0]) & (scaled_magnitude<=mag_thresh[1])] =1
#-----------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------
# Combine the two binary thresholds : Only color and sobel x
combined_binary = np.zeros_like(sxbinary)
combined_binary[((s_binary == 1) & (l_binary == 1)) |(sxbinary == 1)] = 1
#-----------------------------------------------------------------------------------------------
# Combine the two binary thresholds : color and sobel x + magnitude/direction gradient
combined_binary_b = np.zeros_like(dir_binary)
combined_binary_b[(sxbinary == 1 | ((mag_binary == 1) & (dir_binary == 1))) | s_binary == 1] = 1
#-----------------------------------------------------------------------------------------------
# return the combinaison color and sobelx
return sxbinary, sybinary, mag_binary, dir_binary, s_binary, l_binary, combined_binary, combined_binary_b
#########################################################################################################
# ----------------------------PERPECTIVE TRANSFORM-------------------------------------------------------
def warper(img, src, dst):
img_size = (img.shape[1], img.shape[0])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_NEAREST) # keep same size as input image
return warped,Minv
##################################################################################################
#---------------------------------FIND LANE PIXEL - Methodic : Histrogramm and Window ------------
def find_lanes_pixels(binary_warped):
# Take a histogram of the bottom half of the image
# creation de l'histogramme avec les 2 pics, image coupé en 2
# et prendre en consideration que la demie-partie d'en bas --> shape[0] = axe y
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
#plt.plot(histogram)
# Create an output image to draw on and visualize the result
# creation d'une image resultat nommé out_img
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
# analyse de d'histogramme :
# 1) graphe histogramme coupe en 2 en x (partie droite et partie gauche)
# 2) prise de la partie gauche en x et prendre le point le plus haut
# 3) prise de la partie droite en x et prendre le point le plus haut
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
#--------------------------------------------------------
# HYPERPARAMETERS
# Choose the number of sliding windows
# nombre de fenetres qui vont se succeder
nwindows = 9
# Set the width of the windows +/- margin
# tolerance en x
margin = 50
# Set minimum number of pixels found to recenter window
# nombre minimum de pixel trouve pour recentrer la fenetre
minpix = 100
#------------------------------------------------------------
# DERNIERES PARAMETRAGES
# definition de la hauteur des 9 fenetre : taille de la fenetre total / 9
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0]//nwindows)
# position x et y de tous les pixels actives dans l'image
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0]) # axe y
nonzerox = np.array(nonzero[1]) # axe x
# Current positions to be updated later for each window in nwindows
#position courante des deux fenetres (gauche et droite), ici initalisation
# donc fenetre (ligne) de base = fenetre (ligne) courante, qui va evoluer
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
# creation de liste vide pour recevoir les indices des pixels des lignes (droite et gauche)
left_lane_inds = []
right_lane_inds = []
#---------------------------------------------------------------
# Step through the windows one by one
for window in range(nwindows):
# iterer de 1 a 9 :
# limites en y pour les fenetres :
#hauteur de l'image/ ((hauteur_fenetre)*fenetre (0->9)),
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
# limite en x des fenetres : avec les tolerances margin en x a partir
# du positionnement de la courbe
### TO-DO: Find the four below boundaries of the window ###
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# ---------------------
# Draw the windows on the visualization image
# tracage de la fenetre dans l'image de sortie avec les coodonnées donnés ci-dessus
cv2.rectangle(out_img,(win_xleft_low,win_y_low),
(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),
(win_xright_high,win_y_high),(0,255,0), 2)
#------------------------
# identification des pixels activés en x et y dans la fenetre
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
# ajout des indices des pixels activés
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# si le nombre de pixel dans la fentre est >50
# on calcule la moyenne des indices pour donner leftx_current
# et recentrer la fenetre
if len(good_left_inds) > minpix:
leftx_current = np.int( | np.mean(nonzerox[good_left_inds]) | numpy.mean |
from __future__ import print_function
import threading
import multiprocessing
from collections import namedtuple
import os
try:
from queue import Queue, Full, Empty
except ImportError:
from Queue import Queue, Full, Empty
try:
import cPickle as pickle
except ImportError:
import pickle
import numpy as np
import h5py
import tensorflow as tf
from pybh import math_utils, hdf5_utils
def write_samples_to_hdf5_file(filename, samples, attr_dict=None, **dataset_kwargs):
stacked_samples = {}
for key in samples[0]:
stacked_samples[key] = np.empty((len(samples),) + samples[0][key].shape, dtype=samples[0][key].dtype)
for key in samples[0]:
for i, sample in enumerate(samples):
stacked_samples[key][i, ...] = sample[key]
hdf5_utils.write_numpy_dict_to_hdf5_file(filename, stacked_samples, attr_dict=attr_dict,
**dataset_kwargs)
def read_samples_from_hdf5_file(filename, field_dict=None, read_attributes=True):
result = hdf5_utils.read_hdf5_file_to_numpy_dict(filename, field_dict, read_attributes)
if read_attributes:
data, attr_dict = result
else:
data = result
key_list = list(data.keys())
sample_dict = {}
for key in key_list:
assert(data[key].shape[0] == data[key_list[0]].shape[0])
sample_dict[key] = []
for i in range(data[key].shape[0]):
sample_dict[key].append(data[key][i, ...])
samples = []
for i in range(data[key_list[0]].shape[0]):
samples.append({key: sample_dict[key][i] for key in sample_dict})
if read_attributes:
return samples, attr_dict
else:
return samples
Record = namedtuple("Record", ["obs_levels", "grid_3d", "rewards", "prob_rewards", "scores"])
RecordBatch = namedtuple("RecordBatch", ["obs_levels", "grid_3ds", "rewards", "prob_rewards", "scores"])
RecordV2 = namedtuple("RecordV2", ["obs_levels", "grid_3d", "rewards", "norm_rewards",
"prob_rewards", "norm_prob_rewards", "scores"])
RecordV2Batch = namedtuple("RecordV2Batch", ["obs_levels", "grid_3ds", "rewards", "norm_rewards",
"prob_rewards", "norm_prob_rewards", "scores"])
RecordV3 = namedtuple("RecordV3", ["obs_levels", "in_grid_3d", "out_grid_3d", "rewards", "scores"])
RecordV3Batch = namedtuple("RecordV3Batch", ["obs_levels", "in_grid_3ds", "out_grid_3ds", "rewards", "scores"])
RecordV4 = namedtuple("RecordV4", ["intrinsics", "map_resolution", "axis_mode", "forward_factor",
"obs_levels", "in_grid_3d", "out_grid_3d", "rewards", "scores",
"rgb_image", "depth_image", "normal_image"])
RecordV4Batch = namedtuple("RecordV4Batch", ["intrinsics", "map_resolution", "axis_mode", "forward_factor",
"obs_levels", "in_grid_3ds", "out_grid_3ds", "rewards", "scores",
"rgb_images", "depth_images", "normal_images"])
def write_hdf5_records(filename, records):
f = h5py.File(filename, "w")
(obs_levels, grid_3d, rewards, prob_rewards, scores) = records[0]
assert(grid_3d.shape[-1] == 2 * len(obs_levels))
rewards_shape = (len(records),) + rewards.shape
rewards_dset = f.create_dataset("rewards", rewards_shape, dtype='f')
prob_rewards_shape = (len(records),) + prob_rewards.shape
prob_rewards_dset = f.create_dataset("prob_rewards", prob_rewards_shape, dtype='f')
scores_shape = (len(records),) + scores.shape
scores_dset = f.create_dataset("scores", scores_shape, dtype='f')
grid_3ds_shape = (len(records),) + grid_3d.shape
grid_3ds_dset = f.create_dataset("grid_3ds", grid_3ds_shape, dtype='f')
grid_3ds_dset.attrs["obs_levels"] = obs_levels
grid_3ds_dset.attrs["obs_channels"] = grid_3ds_shape[-1] / len(obs_levels)
for i, record in enumerate(records):
(obs_levels, grid_3d, rewards, prob_rewards, scores) = record
rewards_dset[i, ...] = rewards
prob_rewards_dset[i, ...] = prob_rewards
scores_dset[i, ...] = scores
grid_3ds_dset[i, ...] = grid_3d
f.close()
def read_hdf5_records(filename):
try:
f = h5py.File(filename, "r")
obs_levels = f["grid_3ds"].attrs["obs_levels"]
obs_channels = f["grid_3ds"].attrs["obs_channels"]
rewards = np.array(f["rewards"])
prob_rewards = np.array(f["prob_rewards"])
scores = np.array(f["scores"])
grid_3ds = np.array(f["grid_3ds"])
assert(rewards.shape[0] == grid_3ds.shape[0])
assert(prob_rewards.shape[0] == grid_3ds.shape[0])
assert(scores.shape[0] == grid_3ds.shape[0])
assert(grid_3ds.shape[-1] == len(obs_levels) * obs_channels)
return RecordBatch(obs_levels, grid_3ds, rewards, prob_rewards, scores)
except Exception as err:
print("ERROR: Exception raised when reading as HDF5 v1 file \"{}\": {}".format(filename, err))
def write_hdf5_records_v2(filename, records):
f = h5py.File(filename, "w")
(obs_levels, grid_3d, rewards, norm_rewards, prob_rewards, norm_prob_rewards, scores) = records[0]
assert(grid_3d.shape[-1] == 2 * len(obs_levels))
rewards_shape = (len(records),) + rewards.shape
rewards_dset = f.create_dataset("rewards", rewards_shape, dtype='f')
norm_rewards_shape = (len(records),) + norm_rewards.shape
norm_rewards_dset = f.create_dataset("norm_rewards", norm_rewards_shape, dtype='f')
prob_rewards_shape = (len(records),) + prob_rewards.shape
prob_rewards_dset = f.create_dataset("prob_rewards", prob_rewards_shape, dtype='f')
norm_prob_rewards_shape = (len(records),) + norm_prob_rewards.shape
norm_prob_rewards_dset = f.create_dataset("norm_prob_rewards", norm_prob_rewards_shape, dtype='f')
scores_shape = (len(records),) + scores.shape
scores_dset = f.create_dataset("scores", scores_shape, dtype='f')
grid_3ds_shape = (len(records),) + grid_3d.shape
grid_3ds_dset = f.create_dataset("grid_3ds", grid_3ds_shape, dtype='f')
grid_3ds_dset.attrs["obs_levels"] = obs_levels
grid_3ds_dset.attrs["obs_channels"] = grid_3ds_shape[-1] / len(obs_levels)
for i, record in enumerate(records):
(obs_levels, grid_3d, rewards, norm_rewards, prob_rewards, norm_prob_rewards, scores) = record
rewards_dset[i, ...] = rewards
norm_rewards_dset[i, ...] = norm_rewards
prob_rewards_dset[i, ...] = prob_rewards
norm_prob_rewards_dset[i, ...] = norm_prob_rewards
scores_dset[i, ...] = scores
grid_3ds_dset[i, ...] = grid_3d
f.close()
def write_hdf5_records_v3(filename, records):
f = h5py.File(filename, "w")
(obs_levels, in_grid_3d, out_grid_3d, rewards, scores) = records[0]
assert(in_grid_3d.shape[-1] == 2 * len(obs_levels))
assert( | np.all(in_grid_3d.shape == out_grid_3d.shape) | numpy.all |
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
Class of pytorch data loader
---
<NAME>
<EMAIL>
Nanjing University of Science and Technology
Aug 10, 2019
"""
import glob
import imageio
import numpy as np
import numpy.matlib
import torch.utils.data
from torchvision import transforms
#from config import colorMap
# C_NUM = 12 # number of classes
# 'empty','ceiling','floor','wall','window','chair','bed','sofa','table','tvs','furn','objs'
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seg_class_map = [0, 1, 2, 3, 4, 11, 5, 6, 7, 8, 8, 10, 10, 10, 11, 11, 9, 8, 11, 11, 11,
11, 11, 11, 11, 11, 11, 10, 10, 11, 8, 10, 11, 9, 11, 11, 11] # 0 - 11
# 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
class NYUDataset(torch.utils.data.Dataset):
def __init__(self, root, istest=False):
self.param = {'voxel_size': (240, 144, 240),
'voxel_unit': 0.02, # 0.02m, length of each grid == 20mm
'cam_k': [[518.8579, 0, 320], # K is [fx 0 cx; 0 fy cy; 0 0 1];
[0, 518.8579, 240], # cx = K(1,3); cy = K(2,3);
[0, 0, 1]], # fx = K(1,1); fy = K(2,2);
}
#
self.subfix = 'npz'
self.istest = istest
self.downsample = 4 # int, downsample = 4, in labeled data, get 1 voxel from each 4
self.filepaths = self.get_filelist(root, self.subfix)
# Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] \
# to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
self.transforms_rgb = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
print('Dataset:{} files'.format(len(self.filepaths)))
def __getitem__(self, index):
_name = self.filepaths[index][:-4]
# print(_name)
# ---------------------------------------------------------------------------
# Processing repackaged data provided by DDRNet
# ---------------------------------------------------------------------------
if self.subfix == 'npz':
with np.load(self.filepaths[index]) as npz_file:
# print(npz_file.files)
rgb_tensor = npz_file['rgb']
depth_tensor = npz_file['depth']
tsdf_hr = npz_file['tsdf_hr'] # flipped TSDF, (240, 144, 240, 1)
# target_hr = npz_file['target_hr']
target_lr = npz_file['target_lr']
position = npz_file['position']
if self.istest:
tsdf_lr = npz_file['tsdf_lr'] # ( 60, 36, 60)
# nonempty = self.get_nonempty(tsdf, 'TSDF')
nonempty = self.get_nonempty2(tsdf_lr, target_lr, 'TSDF') # 这个更符合SUNCG的做法
return rgb_tensor, depth_tensor, tsdf_hr, target_lr.T, nonempty.T, position, _name + '.png'
return rgb_tensor, depth_tensor, tsdf_hr, target_lr.T, position, _name + '.png'
# else:
#
# ---------------------------------------------------------------------------
# Processing data provided by SSCNet
# ---------------------------------------------------------------------------
# --- read depth, shape: (h, w)
depth = self._read_depth(_name + '.png') #
depth_tensor = depth.reshape((1,) + depth.shape)
# --- read rgb image, shape: (h, w, 3)
# rgb = self._read_rgb(_name + '.jpg') #
rgb = self._read_rgb(_name[:-4] + 'rgb.png')
rgb_tensor = self.transforms_rgb(rgb) # channel first, shape: (3, h, w)
# --- read ground truth
vox_origin, cam_pose, rle = self._read_rle(_name + '.bin')
target_hr = self._rle2voxel(rle, self.param['voxel_size'], _name + '.bin')
target_lr = self._downsample_label(target_hr, self.param['voxel_size'], self.downsample)
binary_vox, _, position, position4 = self._depth2voxel(depth, cam_pose, vox_origin, self.param)
npz_file = np.load(_name + '.npz')
tsdf_hr = npz_file['tsdf'] # SUNCG (W, H, D)
if self.istest:
tsdf_lr = self._downsample_tsdf(tsdf_hr, self.downsample)
# nonempty = self.get_nonempty(tsdf, 'TSDF')
nonempty = self.get_nonempty2(tsdf_lr, target_lr, 'TSDF') # 这个更符合SUNCG的做法
return rgb_tensor, depth_tensor, tsdf_hr, target_lr.T, nonempty.T, position, _name + '.png'
return rgb_tensor, depth_tensor, tsdf_hr, target_lr.T, position, _name + '.png'
def __len__(self):
return len(self.filepaths)
def get_filelist(self, root, subfix):
if root is None:
raise Exception("Oops! 'root' is None, please set the right file path.")
_filepaths = list()
if isinstance(root, list): # 将多个root
for root_i in root:
fp = glob.glob(root_i + '/*.' + subfix)
fp.sort()
_filepaths.extend(fp)
elif isinstance(root, str):
_filepaths = glob.glob(root + '/*.' + subfix) # List all files in data folder
_filepaths.sort()
if len(_filepaths) == 0:
raise Exception("Oops! That was no valid data in '{}'.".format(root))
return _filepaths
@staticmethod
def _read_depth(depth_filename):
r"""Read a depth image with size H x W
and save the depth values (in millimeters) into a 2d numpy array.
The depth image file is assumed to be in 16-bit PNG format, depth in millimeters.
"""
# depth = misc.imread(depth_filename) / 8000.0 # numpy.float64
depth = imageio.imread(depth_filename) / 8000.0 # numpy.float64
# assert depth.shape == (img_h, img_w), 'incorrect default size'
depth = np.asarray(depth)
return depth
@staticmethod
def _read_rgb(rgb_filename): # 0.01s
r"""Read a RGB image with size H x W
"""
# rgb = misc.imread(rgb_filename) # <type 'numpy.ndarray'>, numpy.uint8, (480, 640, 3)
rgb = imageio.imread(rgb_filename) # <type 'numpy.ndarray'>, numpy.uint8, (480, 640, 3)
# rgb = np.rollaxis(rgb, 2, 0) # (H, W, 3)-->(3, H, W)
return rgb
@staticmethod
def _read_rle(rle_filename): # 0.0005s
r"""Read RLE compression data
Return:
vox_origin,
cam_pose,
vox_rle, voxel label data from file
Shape:
vox_rle, (240, 144, 240)
"""
fid = open(rle_filename, 'rb')
vox_origin = np.fromfile(fid, np.float32, 3).T # Read voxel origin in world coordinates
cam_pose = np.fromfile(fid, np.float32, 16).reshape((4, 4)) # Read camera pose
vox_rle = np.fromfile(fid, np.uint32).reshape((-1, 1)).T # Read voxel label data from file
vox_rle = np.squeeze(vox_rle) # 2d array: (1 x N), to 1d array: (N , )
fid.close()
return vox_origin, cam_pose, vox_rle
# this version takes 0.9s
@classmethod
def _rle2voxel(cls, rle, voxel_size=(240, 144, 240), rle_filename=''):
r"""Read voxel label data from file (RLE compression), and convert it to fully occupancy labeled voxels.
In the data loader of pytorch, only single thread is allowed.
For multi-threads version and more details, see 'readRLE.py'.
output: seg_label: 3D numpy array, size 240 x 144 x 240
"""
# ---- Read RLE
# vox_origin, cam_pose, rle = cls._read_rle(rle_filename)
# ---- Uncompress RLE, 0.9s
seg_label = np.zeros(voxel_size[0] * voxel_size[1] * voxel_size[2], dtype=np.uint8) # segmentation label
vox_idx = 0
for idx in range(int(rle.shape[0] / 2)):
check_val = rle[idx * 2]
check_iter = rle[idx * 2 + 1]
if check_val >= 37 and check_val != 255: # 37 classes to 12 classes
print('RLE {} check_val: {}'.format(rle_filename, check_val))
# seg_label_val = 1 if check_val < 37 else 0 # 37 classes to 2 classes: empty or occupancy
# seg_label_val = 255 if check_val == 255 else seg_class_map[check_val]
seg_label_val = seg_class_map[check_val] if check_val != 255 else 255 # 37 classes to 12 classes
seg_label[vox_idx: vox_idx + check_iter] = np.matlib.repmat(seg_label_val, 1, check_iter)
vox_idx = vox_idx + check_iter
seg_label = seg_label.reshape(voxel_size) # 3D array, size 240 x 144 x 240
return seg_label
# this version takes 3s
@classmethod # method 2, new
def _depth2voxel(cls, depth, cam_pose, vox_origin, param):
cam_k = param['cam_k']
voxel_size = param['voxel_size'] # (240, 144, 240)
unit = param['voxel_unit'] # 0.02
# ---- Get point in camera coordinate
H, W = depth.shape
gx, gy = np.meshgrid(range(W), range(H))
pt_cam = np.zeros((H, W, 3), dtype=np.float32)
pt_cam[:, :, 0] = (gx - cam_k[0][2]) * depth / cam_k[0][0] # x
pt_cam[:, :, 1] = (gy - cam_k[1][2]) * depth / cam_k[1][1] # y
pt_cam[:, :, 2] = depth # z, in meter
# ---- Get point in world coordinate
p = cam_pose
pt_world = np.zeros((H, W, 3), dtype=np.float32)
pt_world[:, :, 0] = p[0][0] * pt_cam[:, :, 0] + p[0][1] * pt_cam[:, :, 1] + p[0][2] * pt_cam[:, :, 2] + p[0][3]
pt_world[:, :, 1] = p[1][0] * pt_cam[:, :, 0] + p[1][1] * pt_cam[:, :, 1] + p[1][2] * pt_cam[:, :, 2] + p[1][3]
pt_world[:, :, 2] = p[2][0] * pt_cam[:, :, 0] + p[2][1] * pt_cam[:, :, 1] + p[2][2] * pt_cam[:, :, 2] + p[2][3]
pt_world[:, :, 0] = pt_world[:, :, 0] - vox_origin[0]
pt_world[:, :, 1] = pt_world[:, :, 1] - vox_origin[1]
pt_world[:, :, 2] = pt_world[:, :, 2] - vox_origin[2]
# ---- Aline the coordinates with labeled data (RLE .bin file)
pt_world2 = np.zeros(pt_world.shape, dtype=np.float32) # (h, w, 3)
# pt_world2 = pt_world
pt_world2[:, :, 0] = pt_world[:, :, 0] # x 水平
pt_world2[:, :, 1] = pt_world[:, :, 2] # y 高低
pt_world2[:, :, 2] = pt_world[:, :, 1] # z 深度
# pt_world2[:, :, 0] = pt_world[:, :, 1] # x 原始paper方法
# pt_world2[:, :, 1] = pt_world[:, :, 2] # y
# pt_world2[:, :, 2] = pt_world[:, :, 0] # z
# ---- World coordinate to grid/voxel coordinate
point_grid = pt_world2 / unit # Get point in grid coordinate, each grid is a voxel
point_grid = np.rint(point_grid).astype(np.int32) # .reshape((-1, 3)) # (H*W, 3) (H, W, 3)
# ---- crop depth to grid/voxel
# binary encoding '01': 0 for empty, 1 for occupancy
# voxel_binary = np.zeros(voxel_size, dtype=np.uint8) # (W, H, D)
voxel_binary = np.zeros([_ + 1 for _ in voxel_size], dtype=np.float32) # (W, H, D)
voxel_xyz = np.zeros(voxel_size + (3,), dtype=np.float32) # (W, H, D, 3)
position = np.zeros((H, W), dtype=np.int32)
position4 = np.zeros((H, W), dtype=np.int32)
# position44 = np.zeros((H/4, W/4), dtype=np.int32)
voxel_size_lr = (voxel_size[0] // 4, voxel_size[1] // 4, voxel_size[2] // 4)
for h in range(H):
for w in range(W):
i_x, i_y, i_z = point_grid[h, w, :]
if 0 <= i_x < voxel_size[0] and 0 <= i_y < voxel_size[1] and 0 <= i_z < voxel_size[2]:
voxel_binary[i_x, i_y, i_z] = 1 # the bin has at least one point (bin is not empty)
voxel_xyz[i_x, i_y, i_z, :] = point_grid[h, w, :]
# position[h, w, :] = point_grid[h, w, :] # 记录图片上的每个像素对应的voxel位置
# 记录图片上的每个像素对应的voxel位置
position[h, w] = np.ravel_multi_index(point_grid[h, w, :], voxel_size)
# TODO 这个project的方式可以改进
position4[h, ] = np.ravel_multi_index((point_grid[h, w, :] / 4).astype(np.int32), voxel_size_lr)
# position44[h / 4, w / 4] = np.ravel_multi_index(point_grid[h, w, :] / 4, voxel_size_lr)
# output --- 3D Tensor, 240 x 144 x 240
del depth, gx, gy, pt_cam, pt_world, pt_world2, point_grid # Release Memory
return voxel_binary, voxel_xyz, position, position4 # (W, H, D), (W, H, D, 3)
# this version takes about 0.6s on CPU
@staticmethod
def _downsample_label(label, voxel_size=(240, 144, 240), downscale=4):
r"""downsample the labeled data,
Shape:
label, (240, 144, 240)
label_downscale, if downsample==4, then (60, 36, 60)
"""
if downscale == 1:
return label
ds = downscale
small_size = (voxel_size[0] // ds, voxel_size[1] // ds, voxel_size[2] // ds) # small size
label_downscale = np.zeros(small_size, dtype=np.uint8)
empty_t = 0.95 * ds * ds * ds # threshold
s01 = small_size[0] * small_size[1]
label_i = np.zeros((ds, ds, ds), dtype=np.int32)
for i in range(small_size[0]*small_size[1]*small_size[2]):
z = int(i / s01)
y = int((i - z * s01) / small_size[0])
x = int(i - z * s01 - y * small_size[0])
# z, y, x = np.unravel_index(i, small_size) # 速度更慢了
# print(x, y, z)
label_i[:, :, :] = label[x * ds:(x + 1) * ds, y * ds:(y + 1) * ds, z * ds:(z + 1) * ds]
label_bin = label_i.flatten() # faltten 返回的是真实的数组,需要分配新的内存空间
# label_bin = label_i.ravel() # 将多维数组变成 1维数组,而ravel 返回的是数组的视图
# zero_count_0 = np.sum(label_bin == 0)
# zero_count_255 = np.sum(label_bin == 255)
zero_count_0 = np.array(np.where(label_bin == 0)).size # 要比sum更快
zero_count_255 = np.array(np.where(label_bin == 255)).size
zero_count = zero_count_0 + zero_count_255
if zero_count > empty_t:
label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255
else:
# label_i_s = label_bin[np.nonzero(label_bin)] # get the none empty class labels
label_i_s = label_bin[np.where(np.logical_and(label_bin > 0, label_bin < 255))]
label_downscale[x, y, z] = np.argmax(np.bincount(label_i_s))
return label_downscale
@staticmethod
def _downsample_tsdf(tsdf, downscale=4): # 仅在Get None empty 时会用到
r"""
Shape:
tsdf, (240, 144, 240)
tsdf_downscale, (60, 36, 60), (stsdf.shape[0]/4, stsdf.shape[1]/4, stsdf.shape[2]/4)
"""
if downscale == 1:
return tsdf
# TSDF_EMPTY = np.float32(0.001)
# TSDF_SURFACE: 1, sign >= 0
# TSDF_OCCLUD: sign < 0 np.float32(-0.001)
ds = downscale
small_size = (int(tsdf.shape[0] / ds), int(tsdf.shape[1] / ds), int(tsdf.shape[2] / ds))
tsdf_downscale = np.ones(small_size, dtype=np.float32) * np.float32(0.001) # init 0.001 for empty
s01 = small_size[0] * small_size[1]
tsdf_sr = np.ones((ds, ds, ds), dtype=np.float32) # search region
for i in range(small_size[0] * small_size[1] * small_size[2]):
z = int(i / s01)
y = int((i - z * s01) / small_size[0])
x = int(i - z * s01 - y * small_size[0])
tsdf_sr[:, :, :] = tsdf[x * ds:(x + 1) * ds, y * ds:(y + 1) * ds, z * ds:(z + 1) * ds]
tsdf_bin = tsdf_sr.flatten()
# none_empty_count = np.array(np.where(tsdf_bin != TSDF_EMPTY)).size
none_empty_count = np.array(np.where(np.logical_or(tsdf_bin <= 0, tsdf_bin == 1))).size
if none_empty_count > 0:
# surface_count = np.array(np.where(stsdf_bin == 1)).size
# occluded_count = np.array(np.where(stsdf_bin == -2)).size
# surface_count = np.array(np.where(tsdf_bin > 0)).size # 这个存在问题
surface_count = np.array(np.where(tsdf_bin == 1)).size
# occluded_count = np.array(np.where(tsdf_bin < 0)).size
# tsdf_downscale[x, y, z] = 0 if surface_count > occluded_count else np.float32(-0.001)
tsdf_downscale[x, y, z] = 1 if surface_count > 2 else np.float32(-0.001) # 1 or 0 ?
# else:
# tsdf_downscale[x, y, z] = empty # TODO 不应该将所有值均设为0.001
return tsdf_downscale
@staticmethod
def get_nonempty(voxels, encoding): # Get none empty from depth voxels
data = | np.zeros(voxels.shape, dtype=np.float32) | numpy.zeros |
"""
Scaling of in and output
"""
import json
import numpy as np
class EnergyStandardScaler:
def __init__(self):
self.x_mean = np.zeros((1, 1, 1))
self.x_std = np.ones((1, 1, 1))
self.energy_mean = np.zeros((1, 1))
self.energy_std = np.ones((1, 1))
self._encountered_y_shape = None
self._encountered_y_std = None
def transform(self, x=None, y=None):
x_res = x
y_res = y
if x is not None:
x_res = (x - self.x_mean) / self.x_std
if y is not None:
y_res = (y - self.energy_mean) / self.energy_std
return x_res, y_res
def inverse_transform(self, x=None, y=None):
energy = y
x_res = x
if y is not None:
energy = y * self.energy_std + self.energy_mean
if x is not None:
x_res = x * self.x_std + self.x_mean
return x_res, energy
def fit(self, x=None, y=None, auto_scale=None):
if auto_scale is None:
auto_scale = {'x_mean': True, 'x_std': True, 'energy_std': True, 'energy_mean': True}
npeps = np.finfo(float).eps
if auto_scale['x_mean']:
self.x_mean = np.mean(x)
if auto_scale['x_std']:
self.x_std = np.std(x) + npeps
if auto_scale['energy_mean']:
self.energy_mean = np.mean(y, axis=0, keepdims=True)
if auto_scale['energy_std']:
self.energy_std = np.std(y, axis=0, keepdims=True) + npeps
self._encountered_y_shape = np.array(y.shape)
self._encountered_y_std = np.std(y, axis=0)
def fit_transform(self, x=None, y=None, auto_scale=None):
self.fit(x=x,y=y,auto_scale=auto_scale)
return self.transform(x=x,y=y)
def save(self, filepath):
outdict = {'x_mean': self.x_mean.tolist(),
'x_std': self.x_std.tolist(),
'energy_mean': self.energy_mean.tolist(),
'energy_std': self.energy_std.tolist()
}
with open(filepath, 'w') as f:
json.dump(outdict, f)
def load(self, filepath):
with open(filepath, 'r') as f:
indict = json.load(f)
self.x_mean = np.array(indict['x_mean'])
self.x_std = np.array(indict['x_std'])
self.energy_mean = np.array(indict['energy_mean'])
self.energy_std = np.array(indict['energy_std'])
def get_params(self):
outdict = {'x_mean': self.x_mean.tolist(),
'x_std': self.x_std.tolist(),
'energy_mean': self.energy_mean.tolist(),
'energy_std': self.energy_std.tolist(),
}
return outdict
def set_params(self, indict):
self.x_mean = np.array(indict['x_mean'])
self.x_std = np.array(indict['x_std'])
self.energy_mean = np.array(indict['energy_mean'])
self.energy_std = np.array(indict['energy_std'])
def print_params_info(self):
print("Info: Total-Data energy std", self._encountered_y_shape, ":", self._encountered_y_std)
print("Info: Using energy-std", self.energy_std.shape, ":", self.energy_std)
print("Info: Using energy-mean", self.energy_mean.shape, ":", self.energy_mean)
print("Info: Using x-scale", self.x_std.shape, ":", self.x_std)
print("Info: Using x-offset", self.x_mean.shape, ":", self.x_mean)
class EnergyGradientStandardScaler:
def __init__(self):
self.x_mean = np.zeros((1, 1, 1))
self.x_std = np.ones((1, 1, 1))
self.energy_mean = np.zeros((1, 1))
self.energy_std = np.ones((1, 1))
self.gradient_mean = np.zeros((1, 1, 1, 1))
self.gradient_std = np.ones((1, 1, 1, 1))
self._encountered_y_shape = [None, None]
self._encountered_y_std = [None, None]
def transform(self, x=None, y=None):
x_res = x
y_res = y
if x is not None:
x_res = (x - self.x_mean) / self.x_std
if y is not None:
energy = y[0]
gradient = y[1]
out_e = (energy - self.energy_mean) / self.energy_std
out_g = gradient / self.gradient_std
y_res = [out_e, out_g]
return x_res, y_res
def inverse_transform(self, x=None, y=None):
x_res = x
y_res = y
if x is not None:
x_res = x * self.x_std + self.x_mean
if y is not None:
energy = y[0]
gradient = y[1]
out_e = energy * self.energy_std + self.energy_mean
out_g = gradient * self.gradient_std
y_res = [out_e, out_g]
return x_res, y_res
def fit(self, x=None, y=None, auto_scale=None):
if auto_scale is None:
auto_scale = {'x_mean': True, 'x_std': True, 'energy_std': True, 'energy_mean': True}
npeps = np.finfo(float).eps
if auto_scale['x_mean']:
self.x_mean = np.mean(x)
if auto_scale['x_std']:
self.x_std = np.std(x) + npeps
if auto_scale['energy_mean']:
y1 = y[0]
self.energy_mean = | np.mean(y1, axis=0, keepdims=True) | numpy.mean |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 15 22:04:25 2020
@author: lukepinkel
"""
import numpy as np
import pandas as pd
from ..utilities.linalg_operations import vec, invec, vecl, vdg
from ..utilities.special_mats import kmat, nmat, lmat
class RotationMethod(object):
def __init__(self, A, rotation_type="ortho"):
self.p, self.m = A.shape
self.A = A
self.rotation_type = rotation_type
self.Kmp = kmat(self.m, self.p)
def rotate(self, T):
if self.rotation_type == "ortho":
L = np.dot(self.A, T)
else:
L = np.dot(self.A, np.linalg.inv(T.T))
return L
def _d_rotate_oblique(self, T):
A = self.A
B = np.linalg.inv(T.T)
L = | np.dot(A, B) | numpy.dot |
import threading, queue, time, os, pickle
# from queue import Queue
import numpy as np
import tensorflow as tf
import sarnet_td3.common.tf_util as U
from tensorflow.python.keras.backend import set_session
lock = threading.Lock()
class MultiTrainTD3(threading.Thread):
def __init__(self, input_queue, output_queue, args=(), kwargs=None):
threading.Thread.__init__(self, args=(), kwargs=None)
self.input_queue = input_queue
self.output_queue = output_queue
self.daemon = True
self.trainers = args[0]
self.args = args[1]
self.buffer_op = args[2]
self.num_env = args[3]
self.sess = args[4]
self.num_agents = args[5]
self.num_adversaries = args[6]
self.ep_rewards = [[0.0] for _ in range(self.num_env)]
self.ep_end_rewards = [[0.0] for _ in range(self.num_env)]
self.ep_success = [[0.0] for _ in range(self.num_env)]
self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)]
self.agent_info = [[[[]] for i in range(self.num_agents)] for _ in range(self.num_env)]
# self.agent_info = [[[[]]] for _ in range(self.num_env)]
self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve
self.final_ep_end_rewards = []
self.final_ep_ag_rewards = [] # agent rewards for training curve
self.save_rate = self.args.max_episode_len * 100
self.save_n_ep = self.num_env * 10
self.print_step = -int(self.save_n_ep / self.num_env)
self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units))
self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units))
self.time_prev = time.time()
def run(self):
# print(threading.currentThread().getName(), self.receive_messages)
with self.sess.as_default():
# Freeze graph to avoid memory leaks
# self.sess.graph.finalize()
while True:
try:
action, p_index, data = self.input_queue.get()
if action is "None": # If you send `None`, the thread will exit.
return
elif action is "get_action":
out = self.get_action(data, p_index)
self.output_queue.put(out)
elif action is "get_qdebug":
out = self.get_qdebug(data, p_index)
self.output_queue.put(out)
elif action is "get_loss":
out = self.get_loss(data, p_index)
self.output_queue.put(out)
elif action is "write_tboard":
self.write_tboard(data)
elif action is "add_to_buffer":
self.buffer_op.collect_exp(data)
elif action is "save_rew_info":
self.save_rew_info(data)
elif action is "save_benchmark":
out = self.save_benchmark(data)
self.output_queue.put(out)
elif action is "reset_rew_info":
self.reset_rew_info()
elif action is "save_model_rew":
if not (self.args.benchmark or self.args.display):
self.save_model(data)
self.plot_rewards(data)
except queue.Empty:
continue
def get_action(self, data, p_index):
with lock:
agent = self.trainers[p_index]
obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t, is_train = data
obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim]
obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim]
p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t[p_index], is_train)
# print(np.shape(obs_n_t))
act_j_t, state_j_t1, mem_j_t1, attn_j_t = agent.action(p_input_j, is_train)
if self.args.encoder_model == "LSTM" or self.args.encoder_model != "DDPG":
c_j_t1, h_j_t1 = state_j_t1
else:
h_j_t1 = state_j_t1
c_j_t1 = state_j_t1
if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}:
mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units))
return act_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t
def get_qdebug(self, data, p_index):
with lock:
# with sess.as_default():
agent = self.trainers[p_index]
obs_n_t, action_n_t, q1_h_n_t, q2_h_n_t = data
obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim]
obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim]
q1_j_input = agent.prep_q_input(obs_n_t, action_n_t, q1_h_n_t[p_index])
_, q1_h_j_t1 = agent.q1_debug['q_values'](*(q1_j_input))
if self.args.td3:
q2_input = agent.prep_q_input(obs_n_t, action_n_t, q2_h_n_t[p_index])
_, q2_h_j_t1 = agent.q2_debug['q_values'](*(q2_input))
else:
q2_h_j_t1 = []
return q1_h_j_t1, q2_h_j_t1
def get_loss(self, data, p_index):
with lock:
# with sess.as_default():
agent = self.trainers[p_index]
train_step = data
loss = agent.update(self.trainers, self.buffer_op, train_step)
return loss
def write_tboard(self, data):
with lock:
loss, train_step, writer, summary_ops, summary_vars, num_agents = data
# Tensorboard
episode_b_rewards = []
for j in range(self.num_env):
if self.args.env_type == "mpe":
episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:]))
else:
episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:]))
episode_b_rewards = np.mean(np.array(episode_b_rewards))
num_steps = train_step * self.num_env
# Add to tensorboard only when actor agent is updated
if loss[0][1] is not None:
fd = {}
for i, key in enumerate(summary_vars):
if i == 0:
fd[key] = episode_b_rewards
else:
agnt_idx = int((i - 1) / 5)
if agnt_idx == num_agents: agnt_idx -= 1
if loss[agnt_idx] is not None:
fd[key] = loss[agnt_idx][int((i - 1) % 5)]
summary_str = U.get_session().run(summary_ops, feed_dict=fd)
writer.add_summary(summary_str, num_steps)
writer.flush()
def save_rew_info(self, data):
with lock:
rew_n, info_n, ep_step = data
# rew_n (num_env, num_agents)
if self.args.env_type == "mpe":
for j in range(self.num_env):
for i, rew in enumerate(rew_n[j]):
if ep_step >= self.args.max_episode_len - 10: # Compute only last 10 episode step rewards
self.ep_end_rewards[j][-1] += rew
self.ep_rewards[j][-1] += rew
self.agent_rewards[j][i][-1] += rew
elif self.args.env_type == "ic3net":
for j in range(self.num_env):
self.ep_success[j][-1] += info_n[j]
if self.args.benchmark and self.args.env_type == "mpe":
for j in range(self.num_env):
for i, info in enumerate(info_n[j]):
self.agent_info[j][i][-1].append(info)
def reset_rew_info(self):
with lock:
for j in range(self.num_env):
self.ep_rewards[j].append(0)
self.ep_success[j].append(0)
self.ep_end_rewards[j].append(0)
for i in range(self.num_agents):
self.agent_rewards[j][i].append(0)
if self.args.benchmark:
for j in range(self.num_env):
for i in range(self.num_agents):
self.agent_info[j][i].append([[]])
def save_benchmark(self, data):
with lock:
exp_name, exp_itr = data
benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir)
if not os.path.exists(benchmark_dir):
os.mkdir(benchmark_dir)
file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl'
print('Finished benchmarking, now saving...')
# pickle_info = [self.agent_info[j] for j in range(self.num_env)]
with open(file_name, 'wb') as fp:
# Dump files as [num_env, [# agents, [#ep, [#stps, [dim]]]]
pickle.dump(self.agent_info, fp)
return "bench_saved"
def save_model(self, data):
with lock:
# train_step = t_step * num_env
train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data
# Policy File
if num_episodes % (self.save_n_ep) == 0:
save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step)
U.save_state(save_dir, self.sess, saver=saver)
# episode_rewards, agent_rewards, final_ep_rewards, final_ep_ag_rewards = rewards
if self.args.env_type == "mpe":
# print statement depends on whether or not there are adversaries
if self.num_adversaries == 0:
episode_b_rewards = []
ep_end_b_rewards = []
ep_ag_b_rewards = []
for j in range(self.num_env):
episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:]))
ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:]))
episode_b_rewards = np.mean( | np.array(episode_b_rewards) | numpy.array |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import json
import math
import numpy
class Wavefront():
def __init__(self, path, triangulateQuads = True):
# These are the arrays we're going to produce, and which might
# make sense to manipulate from the outside:
self.vertexCoords = None # XYZ coordinated for each vertex
self.vertexNormals = None # Normal (in XYZ form) for each vertex
self.faces = None # Faces, specified by listing indexes for participating vertices
# These are internal work arrays
self._rawVertices = []
self._rawTexCo = []
self._rawVertexTexCo = [];
self._rawFaces = []
self._vertexBelongsToFaces = None
self._faceVertCache = None
self.triangulateQuads = triangulateQuads
if not os.path.exists(path):
raise IOError(path + " does not exist")
self.content = []
with open(path,'r') as file:
self.content = file.readlines()
# self._mode can be:
# ONLYTRIS: The incoming mesh only contains tris (so no need to do anything)
# TRIANGULATE: The incoming mesh contains quads (and may contain tris). Triangulate to get only tris.
# ONLYQUADS: The incoming mesh contains only quads. Keep these rather than triangulating
self._mode = None
# Check if mesh contains quads and/or tris
self._scanForMode()
# Make a sweep for vertices as faces need that information
self._extractVertices()
# Make a sweep for texture coordinates, as faces need that too
self._extractTextureCoordinates()
# Make a sweep for faces
self._extractFaces()
# TODO: Find texture coordinates for vertices
# create numpy arrays to contain vertices, faces and normals
self._createVerticesNumpyArray()
self._createFacesNumpyArray()
# These two operations need to be redone if vertex coordinates
# are changed
self.recalculateFaceNormals()
self.recalculateVertexNormals()
def _scanForMode(self):
containsTris = False
containsQuads = False
for line in self.content:
strippedLine = line.strip()
if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#":
parts = strippedLine.split(' ')
if len(parts) > 4:
containsQuads = True
if len(parts) == 4:
containsTris = True
if len(parts) > 5:
raise ValueError("Found a face with more than four vertices. N-gons are not supported.")
# TODO: Check for n-gons?
if containsQuads:
if self.triangulateQuads:
self._mode = "TRIANGULATE"
else:
if containsTris:
raise ValueError("Since the mesh contains both tris and quads, requesting the mesh to not be triangulated is illegal")
else:
self._mode = "ONLYQUADS"
else:
if containsTris:
self._mode = "ONLYTRIS"
else:
raise ValueError("The mesh didn't contain tris nor quads!?")
if self._mode == "ONLYQUADS":
raise ValueError("The ONLYQUADS mode is not implemented yet")
print("Tris " + str(containsTris))
print("Quads " + str(containsQuads))
print(self._mode)
def _extractVertices(self):
for line in self.content:
strippedLine = line.strip()
if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#":
parts = strippedLine.split(' ')
if len(parts) > 1:
command = parts[0]
if command == "v":
x = float(parts[1])
y = float(parts[2])
z = float(parts[3])
vertex = [x, y, z]
self._rawVertices.append(vertex)
self._rawVertexTexCo.append([0,0])
def _extractTextureCoordinates(self):
self.hasTexCo = False
for line in self.content:
strippedLine = line.strip()
if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#":
parts = strippedLine.split(' ')
if len(parts) > 1:
command = parts[0]
if command == "vt":
x = float(parts[1])
y = float(parts[2])
texco = [x, y]
self._rawTexCo.append(texco)
def _distanceBetweenVerticesByIdx(self, idx1, idx2):
vert1 = numpy.array(self._rawVertices[idx1])
vert2 = numpy.array(self._rawVertices[idx2])
difference = vert2 - vert1
x = difference[0]
y = difference[1]
z = difference[2]
distance = math.sqrt( x*x + y*y + z*z )
return distance
def _extractFaces(self):
# Note that wavefront lists starts at 1, not 0
for line in self.content:
strippedLine = line.strip()
if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#":
parts = strippedLine.split(' ')
if len(parts) > 1:
command = parts[0]
if command == "f":
# Face info is vertIdx / texCoIdx / faceNormalIdx OR vertIdx / texCoIdx OR vertIdx
vInfo1 = parts[1].split('/')
vInfo2 = parts[2].split('/')
vInfo3 = parts[3].split('/')
# Find indexes of vertices making up the face. Note "-1" since wavefront indexes start
# at 1 rather than 0
vidx1 = int(vInfo1[0]) - 1
vidx2 = int(vInfo2[0]) - 1
vidx3 = int(vInfo3[0]) - 1
if len(parts) == 4:
if self._mode == "ONLYQUADS":
raise ValueError("Found tri although mode was ONLYQUADS")
face = [vidx1, vidx2, vidx3]
self._rawFaces.append(face)
else:
vInfo4 = parts[4].split('/')
vidx4 = int(vInfo4[0]) - 1
if self._mode == "ONLYTRIS":
raise ValueError("Found quad although mode was ONLYTRIS")
if self._mode == "ONLYQUADS":
raise ValueError("ONLYQUADS mode not implemented yet")
# Perform triangulation by splitting quad into two tris, using the shortest diagonal
distance13 = self._distanceBetweenVerticesByIdx(vidx1, vidx3)
distance24 = self._distanceBetweenVerticesByIdx(vidx2, vidx4)
if distance13 > distance24:
face = [vidx1, vidx2, vidx4]
self._rawFaces.append(face)
face = [vidx3, vidx4, vidx2]
self._rawFaces.append(face)
else:
face = [vidx1, vidx3, vidx4]
self._rawFaces.append(face)
face = [vidx2, vidx3, vidx1]
self._rawFaces.append(face)
i = 1
while i < len(parts):
f = parts[i].split('/')
if len(f) > 1:
vidx = int(f[0]) - 1 # Vertex index
ti = f[1] # May be empty if no UV unwrap
if ti != "":
tidx = int(ti) - 1 # Texture coordinate index
texco = self._rawTexCo[tidx] # Actual texture coordinats, x/y
self._rawVertexTexCo[vidx] = texco
self.hasTexCo = True
i = i + 1
def _createFacesNumpyArray(self, assumeQuads = False):
numberOfFaces = len(self._rawFaces)
vertsPerFace = 3
if assumeQuads:
vertsPerFace = 4
# Create a two-dimensional int array with shape (numFace/vertsPerFace) and
# fill it values from the wavefront obj. This will contain vert indices.
self.faces = numpy.array( self._rawFaces, dtype=int ) # Values will be copied from self._rawFaces
# Create a two-dimensional float array with shape (numFace/ 3 ) and
# fill it with zeros. This will contain faces normals, but needs to
# be recalculated.
self.faceNormals = numpy.zeros( (numberOfFaces, 3), dtype=float )
def _createVerticesNumpyArray(self):
numberOfVertices = len(self._rawVertices)
if numberOfVertices != len(self._rawVertexTexCo):
raise ValueError("Not same number of elements in texco array")
# Convert raw coords from wavefront into a 2d numpy array
self.vertexCoords = numpy.array( self._rawVertices, dtype=float )
# Create a two-dimensional float array with shape (numVerts/3) and
# fill it with zeros. This will contain vertex normals.
self.vertexNormals = numpy.zeros( (numberOfVertices, 3), dtype=float )
# Create a two-dimensional float array with shape (numVerts/2) and
# fill it with texture coordinates.
self.vertexTexCo = numpy.array( self._rawVertexTexCo, dtype=float )
def recalculateVertexNormals(self, assumeQuads = False):
# Build a cache where we, per vertex, list which faces are relevant
# for it. We need this in order to calculate the vertex normal later,
# as an average of the face normals surrounding it
if self._vertexBelongsToFaces is None:
self._vertexBelongsToFaces = []
numberOfFaces = len(self.faces)
numberOfVertices = len(self.vertexCoords)
vertsPerFace = 3
if assumeQuads:
vertsPerFace = 4
currentVert = 0
while currentVert < numberOfVertices:
self._vertexBelongsToFaces.append([])
currentVert = currentVert + 1
currentFace = 0
while currentFace < numberOfFaces:
fv = self.faces[currentFace]
currentVert = 0
while currentVert < vertsPerFace:
vertexIndex = fv[currentVert]
self._vertexBelongsToFaces[vertexIndex].append(currentFace)
currentVert = currentVert + 1
currentFace = currentFace + 1
# Calculate vertex normals as an average of the surrounding face
# normals.
currentVert = 0
zeroNormal = numpy.array([0.0, 0.0, 0.0], dtype=float)
while currentVert < numberOfVertices:
faces = self._vertexBelongsToFaces[currentVert]
numberOfFaces = len(faces)
currentNormal = numpy.array([0,0,0], dtype=float)
currentFace = 0
firstNormal = None
while currentFace < numberOfFaces:
fidx = faces[currentFace]
fnormal = self.faceNormals[fidx]
if firstNormal is None:
firstNormal = fnormal
currentNormal = currentNormal + fnormal
currentFace = currentFace + 1
if numberOfFaces < 1:
raise ValueError("Found a vertex (" + str(currentVert) + ") which did not belong to any face")
averageNormal = currentNormal / numberOfFaces
if numpy.array_equal(averageNormal, zeroNormal):
print("WARNING: found zero vertex normal for vertex " + str(currentVert))
averageNormal = firstNormal
self.vertexNormals[currentVert] = self._unitVector(averageNormal)
currentVert = currentVert + 1
def recalculateFaceNormals(self):
self._copyVertCoordsToCache()
# Calculate the face normal from the first three vertices. This might produce
# strange results if using quads. In that case we should probably triangulate and
# and weight together the face normals of the resulting two tris.
numberOfFaces = len(self.faces)
currentFace = 0
while currentFace < numberOfFaces:
U = self._faceVertCache[currentFace][1] - self._faceVertCache[currentFace][0]
V = self._faceVertCache[currentFace][2] - self._faceVertCache[currentFace][0]
cross = | numpy.cross(U,V) | numpy.cross |
'''
本模块用于数据预处理
This module is used for data preproccessing
'''
import numpy as np
from maysics.utils import e_distances
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['FangSong']
plt.rcParams['axes.unicode_minus'] = False
from io import BytesIO
from lxml import etree
import base64
import math
def _rc(arg):
cov_mat = np.cov(arg)
var_mat = np.diagonal(cov_mat)**0.5
var_mat[var_mat == 0] = 1
for i in range(cov_mat.shape[0]):
cov_mat[i] /= var_mat[i]
cov_mat[:, i] /= var_mat[i]
return cov_mat
def _preview_process(data, value_round):
'''
预览处理
'''
data = np.array(data, dtype=float)
name_list = ['平均值', '中位数', '方差', '标准差', '最大值', '最小值', '偏度', '峰度']
value_list = []
mean_ = data.mean(axis=0)
value_list.append(np.round(mean_, value_round))
value_list.append(np.round(np.median(data, axis=0), value_round))
value_list.append(np.round(data.var(axis=0), value_round))
value_list.append(np.round(data.std(axis=0), value_round))
value_list.append(np.round(data.max(axis=0), value_round))
value_list.append(np.round(data.min(axis=0), value_round))
value_list.append(np.round(((data - mean_)**3).mean(axis=0), value_round))
value_list.append(np.round(((data - mean_)**4).mean(axis=0), value_round))
value_list = np.array(value_list).flatten()
style = '''
<style>
table{
border-collapse: collapse;
}
table, table tr td {
border:1px solid #ccc;
}
table tr td{
padding: 5px 10px;
}
</style>
'''
table = '<h2 style="padding-left:50px; border-top:1px solid #ccc">数值特征</h2>' + style + '<table align="center"><caption></caption>'
for i in range(8):
table += '<tr><td>' + name_list[i] + '</td>' + '<td>%s</td>' * data.shape[1] + '</tr>'
table = '<h1 style="padding-left:50px;">数据信息</h1>' + table % tuple(value_list) + '</table>'
data = np.ascontiguousarray(data.T)
num = data.shape[0]
plt.figure(figsize=(9, 3 * num))
for i in range(num):
q1, q2, q3 = np.percentile(data[i], [25, 50, 75])
plt.scatter(mean_[i], i+1, marker='o', color='white', s=30, zorder=3)
plt.hlines(i+1, q1, q3, color='k', linestyle='-', lw=1)
bx = plt.violinplot(data.tolist(), showextrema=False, vert=False)
plt.title('分布图')
buffer = BytesIO()
plt.savefig(buffer)
plt.close()
plot_data = buffer.getvalue()
imb = base64.b64encode(plot_data)
ims = imb.decode()
imd = 'data:image/png;base64,' + ims
im1 = '<div align="center"><img src="%s"></div>' % imd
im1 = '<br></br><h2 style="padding-left:50px; border-top:1px solid #ccc">密度分布</h2>' + im1
cov_mat = _rc(data)
matrix = '<table border="0"><caption></caption>'
for i in range(num):
matrix += '<tr>' + '<td>%s</td>' * num + '</tr>'
matrix = matrix % tuple(np.round(cov_mat.flatten(), value_round)) + '</table>'
plt.figure(figsize=(8, 8))
plt.matshow(cov_mat, fignum=0, cmap='Blues')
plt.colorbar()
plt.title('相关系数图')
buffer = BytesIO()
plt.savefig(buffer)
plt.close()
plot_data = buffer.getvalue()
imb = base64.b64encode(plot_data)
ims = imb.decode()
imd = 'data:image/png;base64,' + ims
im2 = '<div style="display:flex;flex-direction:row;vertical-align:middle;justify-content:center;width:100%;height:80vh"><div style="margin:auto 0;white-space:pre-wrap;max-width:50%">'
im2 = im2 +'相关矩阵:'+ matrix + '</div><img style="object-fit:contain;max-width:45%;max-height:80vh" src="{}"/></div>'.format(imd)
im2 = '<br></br><h2 style="padding-left:50px; border-top:1px solid #ccc">相关性</h2>' + im2
plt.figure(figsize=(2.5 * num, 2.5 * num))
for i in range(num * num):
ax = plt.subplot(num, num, i+1)
ax.plot(data[i//num], data[i%num], 'o')
buffer = BytesIO()
plt.savefig(buffer)
plt.close()
plot_data = buffer.getvalue()
imb = base64.b64encode(plot_data)
ims = imb.decode()
imd = "data:image/png;base64," + ims
im3 = '<div align="center"><img src="%s"></div>' % imd
im3 = '<br></br><h2 style="padding-left:50px; border-top:1px solid #ccc">散点关系</h2>' + im3
return '<title>数据信息预览</title>' + table + im1 + im2 + im3
def preview_file(filename, data, value_round=3):
'''
生成数据预览报告的html文件
参数
----
filename:字符串类型,文件名
data:二维数组,数据
value_round:整型,数字特征保留的小数点后的位数
Generate preview report with html file
Parameters
----------
filename: str, file name
data: 2-D array, data
value_round: int, the number of digits after the decimal point retained by numeric features
'''
root = _preview_process(data=data, value_round=value_round)
html = etree.HTML(root)
tree = etree.ElementTree(html)
tree.write(filename)
def preview(data, value_round=3):
'''
在jupyter中显示数据预览报告
参数
----
data:二维数组,数据
value_round:整型,数字特征保留的小数点后的位数
Display preview report in jupyter
Parameters
----------
data: 2-D array, data
value_round: int, the number of digits after the decimal point retained by numeric features
'''
root = _preview_process(data=data, value_round=value_round)
from IPython.core.display import display, HTML
display(HTML(root))
def length_pad(seq, maxlen=None, value=0, padding='pre', dtype=float):
'''
填充二维列表,使得每行长度都为maxlen
参数
----
seq:二维列表,需要填充的对象
maxlen:整型,可选,每行的最大长度,默认为原二维列表最大的长度
value:数类型,可选,填充值,默认为0
padding:字符串类型,可选,填充位置,'pre'代表从前面填充,'post'代表从后面填充,默认为'pre'
dtype:可选,输出的元素类型,默认为float
返回
----
二维ndarray
Pad the 2-D list so that every row is 'maxlen' in length
Parameters
----------
seq: 2-D list, objects that need to be padded
maxlen: int, callable, the maximum length of each row, default = the maximum length of the original 2-D list
value: num, callable, padding value, default=0
padding: str, callable, padding location, 'pre' means padding from the front and 'post' from the back, default='pre'
dtype: callable, the element type of the output, default=float
Return
------
2-D ndarray
'''
seq = list(seq)
if not maxlen:
maxlen = 0
for i in seq:
if len(i) > maxlen:
maxlen = len(i)
if padding == 'pre':
for i in range(len(seq)):
if maxlen > len(seq[i]):
seq[i] = [value] * (maxlen - len(seq[i])) + seq[i]
elif maxlen < len(seq[i]):
seq[i] = seq[i][-1 * maxlen:]
elif padding == 'post':
for i in range(len(seq)):
if maxlen > len(seq[i]):
seq[i] += [value] * (maxlen - len(seq[i]))
elif maxlen < len(seq[i]):
seq[i] = seq[i][:maxlen]
return np.array(seq, dtype=dtype)
def sample_pad(data, index=0, padding=None):
'''
对二维数据进行样本填充
先对data中的每个二维数据进行遍历,以各个index列的值作为全集,再对data的每个二维数据进行填充
如:data1 = [[0, 1],
[1, 2],
[2, 3]]
data2 = [[2, 3],
[3, 4],
[4, 5]]
data = (data1, data2)
则得到输出:
output = [array([[0, 1],
[1, 2],
[2, 3],
[3, nan],
[4, nan]]),
array([[0, nan],
[1,nan],
[2, 3],
[3, 4],
[4, 5]])]
data:元组或列表类型,数据
index:整型,作为扩充全集的标准列的索引
padding:填充值,可选,默认为None
Sample filling for 2D data
Values of each index column will be taken as the complete set, then each two-dimensional data of data is padded
e.g. data1 = [[0, 1],
[1, 2],
[2, 3]]
data2 = [[2, 3],
[3, 4],
[4, 5]]
data = (data1, data2)
output = [array([[0, 1],
[1, 2],
[2, 3],
[3, nan],
[4, nan]]),
array([[0, nan],
[1,nan],
[2, 3],
[3, 4],
[4, 5]])]
data: tuple or list, data
index: int, the index of a standard column as an extended complete set
padding: padding value, optional, default=None
'''
time_set = set()
result = []
if not padding:
padding = [np.nan] * (len(data[0][0]) - 1)
else:
padding = list([padding])
for i in range(len(data)):
data_part = np.array(data[i], dtype=np.object)
result.append(data_part)
time_set = time_set | set(data_part[:, index])
for i in range(len(result)):
different_set_list = np.array([list(time_set - set(result[i][:, index]))], dtype=np.object).T
num = len(different_set_list)
padding_new = np.array(padding * num, dtype=np.object).reshape(num, -1)
different_set_list = np.hstack((padding_new[:, :index], different_set_list, padding_new[:, index:]))
result[i] = np.vstack((result[i], different_set_list))
return result
def shuffle(*arg):
'''
打乱一个序列或以相同方法打乱多个序列
返回
----
一个ndarray
Shuffle a sequence or shuffle multiple sequences in the same way
Return
------
a ndarray
'''
state = np.random.get_state()
a_new_list = []
for li in arg:
np.random.set_state(state)
np.random.shuffle(li)
a_new_list.append(li)
return np.array(a_new_list)
def data_split(data, targets, train_size=None, test_size=None, shuffle=True, random_state=None):
'''
分离数据
参数
----
data:数据
targets:指标
train_size:浮点数类型,可选,训练集占总数据量的比,取值范围为(0, 1],默认为0.75
test_size:浮点数类型,可选,测试集占总数据量的比,取值范围为[0, 1),当train_size被定义时,该参数无效
shuffle:布尔类型,可选,True表示打乱数据,False表示不打乱数据,默认为True
random_state:整型,可选,随机种子
返回
----
元组,(数据测试集, 指标测试集, 数据验证集, 指标验证集)
split the data
Parameters
----------
data: data
targets: targets
train_size: float, callable, ratio of training set to total data, value range is (0, 1], default=0.75
test_size: float, callable, ratio of test set to total data, value range is [0, 1)
shuffle: bool, callable, 'True' will shuffle the data, 'False' will not, default = True
random_state: int, callable, random seed
Return
------
tuple, (train_data, train_target, validation_data, validation_target)
'''
data = np.array(data)
targets = np.array(targets)
if not (train_size or test_size):
train_size = 0.75
elif test_size:
train_size = 1 - test_size
if train_size <= 0 or train_size > 1:
raise Exception("'train_size' should be in (0, 1], 'test_size' should be in [0, 1)")
if shuffle:
np.random.seed(random_state)
state = np.random.get_state()
np.random.shuffle(data)
np.random.set_state(state)
np.random.shuffle(targets)
num_of_data = len(data)
train_data = data[:int(num_of_data * train_size)]
train_target = targets[:int(num_of_data * train_size)]
validation_data = data[int(num_of_data * train_size):]
validation_target = targets[int(num_of_data * train_size):]
return train_data, train_target, validation_data, validation_target
def kfold(data, targets, n, k=5):
'''
参数
----
data:数据
targets:指标
n:整型,表示将第n折作为验证集,从0开始
k:整型,可选,k折验证的折叠数,默认k=5
返回
----
元组,(数据测试集, 指标测试集, 数据验证集, 指标验证集)
Parameters
----------
data: data
targets: targets
n: int, take the nth part as validation set, starting from 0
k: int, callable, the number of k-fold, default = 5
Return
------
tuple, (train_data, train_target, validation_data, validation_target)
'''
data = np.array(data)
targets = np.array(targets)
num_validation_samples = len(data) // k
validation_data = data[num_validation_samples * n:
num_validation_samples * (n + 1)]
validation_targets = targets[num_validation_samples * n:
num_validation_samples * (n + 1)]
train_data = np.concatenate([data[: num_validation_samples * n],
data[num_validation_samples * (n + 1):]])
train_targets = np.concatenate([targets[: num_validation_samples * n],
targets[num_validation_samples * (n + 1):]])
return train_data, train_targets, validation_data, validation_targets
def dataloader(data, targets, choose_rate=0.3, shuffle=True, random_state=None):
'''
数据随机生成器
参数
----
data:数据
targets:指标
choose_rate:浮点数类型,可选,生成率,即一次生成数据量在原数据量的占比,范围为[0, 1],默认为0.3
shuffle:布尔类型,可选,True表示打乱数据,False表示不打乱数据,默认为True
random_state:整型,可选,随机种子
返回
----
生成器
Data Random Generator
Parameters
----------
data: data
targets: targets
choose_rate: float, callable, generation rate (the proportion of data generated at one time in the original data) whose range is [0, 1], default=0.3
shuffle: bool, callable, 'True' will shuffle the data, 'False' will not, default = True
random_state: int, callable, random seed
Return
------
generator
'''
data = np.array(data)
targets = np.array(targets)
if shuffle:
np.random.seed(random_state)
state = np.random.get_state()
np.random.shuffle(data)
np.random.set_state(state)
| np.random.shuffle(targets) | numpy.random.shuffle |
import tensorflow as tf
import numpy as np
import sys
tf.logging.set_verbosity(tf.logging.ERROR)
class Judge:
def __init__(self, N_to_mask, model_dir, binary_rewards=True):
self.N_to_mask = N_to_mask
self.binary_rewards = binary_rewards
# Create the Estimator
try:
self.estimator = tf.estimator.Estimator(
model_fn=self.model_fn,
model_dir=model_dir, # directory to restore model from and save model to
)
except AttributeError:
raise Exception("Subclass needs to define a model_fn")
# Create the predictor from the present model. Important when restoring a model.
self.update_predictor()
def update_predictor(self):
# Predictors are used to get predictions fast once the model has been trained.
# We create it from an estimator.
self.predictor = tf.contrib.predictor.from_estimator(
self.estimator,
# The serving input receiver fn is witchcraft, which I don't quite understand.
# It's supposed to set up the data in a way that tensorflow can handle.
tf.estimator.export.build_raw_serving_input_receiver_fn(
# The input is a dictionary that corresponds to the data we feed the predictor.
# Each key stores a tensor that is replaced by data when the predictor is used.
{"masked_x": tf.placeholder(shape=[None, 28, 28, 2], dtype=tf.float32)}
),
)
def mask_image_batch(self, image_batch):
"""
Takes a batch of two-dimensional images, reshapes them, runs them through
mask_batch, reshapes them back to images, and returns them.
"""
shape = tf.shape(image_batch)
batch_flat = tf.reshape(image_batch, (shape[0], shape[1] * shape[2]))
mask_flat = self.mask_batch(batch_flat)
return tf.reshape(mask_flat, (shape[0], shape[1], shape[2], 2))
def mask_batch(self, batch):
"""
Create mask for each feature-vector in a batch, that contains N_to_mask nonzero features
of the input vector. Combine this with the vector to create the input for the DNN.
"""
shape = tf.shape(batch)
n_zero = tf.random.categorical(logits=self.zero_logits,num_samples=1,dtype=tf.int32)
p = tf.random_uniform(shape, 0, 1)
p = tf.where(batch > 0, p, -p) # each number is positive if > 0, else negative
_, nonzero_indices = tf.nn.top_k(p, self.N_to_mask - n_zero[0][0]) # sample positive
_, zero_indices = tf.nn.top_k(-p, n_zero[0][0]) # sample negative
indices = tf.concat([nonzero_indices,zero_indices],1)
mask = tf.one_hot(indices, shape[1], axis=1)
mask = tf.reduce_sum(mask, axis=2)
return tf.stack((mask, mask * batch), 2)
def train(self, n_steps, n_zero=0):
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": self.train_data},
y=self.train_labels,
batch_size=self.batch_size,
num_epochs=None,
shuffle=True,
)
if type(n_zero) != list:
self.zero_logits = [[0 if i == n_zero else -np.inf for i in range(self.N_to_mask + 1)]]
else:
assert len(n_zero) == self.N_to_mask + 1
self.zero_logits = np.log(n_zero).reshape((1,-1))
self.estimator.train(input_fn=train_input_fn, steps=n_steps)
# Replace the old predictor with one created from the new estimator
self.update_predictor()
def evaluate_accuracy(self, n_zero=0):
# Evaluate the accuracy on all the eval_data
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": self.eval_data},
y=self.eval_labels,
num_epochs=1,
shuffle=False
)
if type(n_zero) != list:
self.zero_logits = [[0 if i == n_zero else -np.inf for i in range(self.N_to_mask + 1)]]
else:
assert len(n_zero) == self.N_to_mask + 1
self.zero_logits = np.log(n_zero).reshape((1,-1))
return self.estimator.evaluate(input_fn=eval_input_fn)
def evaluate_accuracy_using_predictor(self):
"""
Evaluates the test set accuracy using the tensorflow predictor instead
of the estimator. Can be useful for debugging.
"""
correct = 0
count = 0
for i in range(len(self.eval_labels)):
# print(i)
image = self.eval_data[i].flat
mask = np.zeros_like(image)
while mask.sum() < self.N_to_mask:
a = np.random.randint(mask.shape[0])
if image[a] > 0:
mask[a] = 1
input = np.stack((mask, image * mask), axis=1)
input = | np.reshape(input, self.shape) | numpy.reshape |
#!/usr/bin/env python
"""
Perform the population demonstration test in Section IIIB.
This will generate Figures 8 and 9.
For more details on the method see https://arxiv.org/abs/2106.13785.
For more details on the analysis see https://arxiv.org/abs/1712.00688.
"""
import os
import dill
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from bilby.core.utils import create_frequency_series
from bilby.gw.conversion import convert_to_lal_binary_black_hole_parameters
from bilby.gw.detector import PowerSpectralDensity
from bilby.gw.source import lal_binary_black_hole
from bilby.gw.waveform_generator import WaveformGenerator
from scipy.signal.windows import tukey
from scipy.special import logsumexp
from tqdm.auto import trange
from coarse_psd_matrix.utils import (
compute_psd_matrix,
fetch_psd_data,
regularized_inversion,
)
from matplotlib import rcParams
rcParams["font.family"] = "serif"
rcParams["font.serif"] = "Computer Modern Roman"
rcParams["font.size"] = 20
rcParams["text.usetex"] = True
rcParams["grid.alpha"] = 0
def run_tbs(signal_model, signal_parameter, outdir):
sampling_frequency = 2048
duration = 128
data_duration = 32
short_duration = 4
low_frequency = 16
minimum_frequency = 20
maximum_frequency = 800
tukey_alpha = 0.1
label = f"{signal_model}_{signal_parameter}"
data = fetch_psd_data(
interferometer_name="L1",
event="GW170814",
outdir="GW170814",
medium_duration=duration,
sampling_frequency=sampling_frequency,
tukey_alpha=tukey_alpha,
duration=short_duration,
low_frequency=low_frequency,
)
psd = data["psd"]
freqs_ = data["frequencies"]
del data
psd_ = PowerSpectralDensity.from_power_spectral_density_array(
frequency_array=freqs_, psd_array=psd
)
short_window = tukey(sampling_frequency * short_duration, tukey_alpha)
long_frequencies = np.fft.fftfreq(
sampling_frequency * data_duration, 1 / sampling_frequency
)
long_psd = psd_.power_spectral_density_interpolated(abs(long_frequencies))
print("PSD matrix")
data = dict(frequencies=freqs_, medium_psd=long_psd)
data_file = f"{outdir}/GW170814_data_coarse_{data_duration}_{sampling_frequency}_{tukey_alpha}_L1.pkl"
with open(data_file, "wb") as ff:
dill.dump(data, ff)
_svd = compute_psd_matrix(
interferometer_name="L1",
event="GW170814",
duration=short_duration,
sampling_frequency=sampling_frequency,
low_frequency=low_frequency,
tukey_alpha=tukey_alpha,
minimum_frequency=minimum_frequency,
maximum_frequency=maximum_frequency,
medium_duration=data_duration,
outdir=outdir,
)
finite_psd = abs((_svd[0] * _svd[1]) @ _svd[2]).diagonal()
regularization_method = "window"
cutoff = 0.1
regularized_inverse = regularized_inversion(_svd, (regularization_method, cutoff))
SIGNAL_MODELS = dict(cbc=generate_cbc_signal, gaussian=generate_gaussian_signal)
short_frequencies = np.fft.rfftfreq(
short_duration * sampling_frequency, 1 / sampling_frequency
)
mask = (short_frequencies >= minimum_frequency) & (
short_frequencies <= maximum_frequency
)
np.save(f"{outdir}/frequencies.npy", short_frequencies[mask])
np.save(f"{outdir}/finite_psd.npy", finite_psd)
signal = SIGNAL_MODELS[signal_model](
signal_parameter,
sampling_frequency=sampling_frequency,
duration=short_duration,
)
np.save(f"{outdir}/signal_{label}", normalize_signal(signal=signal[mask], psd=finite_psd))
signal = np.fft.rfft(np.fft.irfft(signal) * short_window)[mask]
signal = normalize_signal(signal=signal, psd=finite_psd)
data_file = f"{outdir}/ln_bfs_{label}.hdf5"
if os.path.isfile(data_file):
data = pd.read_hdf(data_file)
else:
data = run_tbs_test(
signal=signal,
psd=psd_,
sampling_frequency=sampling_frequency,
duration=duration,
short_duration=short_duration,
short_psd=finite_psd,
mask=mask,
inverse=regularized_inverse,
tukey_alpha=tukey_alpha,
n_average=5000,
)
data.to_hdf(f"{outdir}/ln_bfs_{label}.hdf5", key="bayes_factors")
data.to_hdf(f"{outdir}/ln_bfs_{label}.hdf5", key="bayes_factors")
fig = plot_tbs_bayes_factors(data)
fig.savefig(f"{outdir}/ln_bfs_{label}.png")
plt.close(fig)
fig = plot_tbs_posterior(data)
fig.savefig(f"{outdir}/xi_post_{label}.png", transparent=True)
plt.close(fig)
def generate_cbc_signal(mass, sampling_frequency, duration):
waveform_arguments = dict(
waveform_approximant="IMRPhenomXPHM",
minimum_frequency=10.0,
reference_frequency=20.0,
maximum_frequency=1024.0,
)
waveform_generator = WaveformGenerator(
duration=duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=lal_binary_black_hole,
parameter_conversion=convert_to_lal_binary_black_hole_parameters,
waveform_arguments=waveform_arguments,
)
injection_parameters = dict(
mass_1=mass,
mass_2=mass,
a_1=0.0,
a_2=0.0,
tilt_1=0.0,
tilt_2=0.0,
phi_12=0.0,
phi_jl=0.0,
luminosity_distance=2000.0,
theta_jn=0.4,
phase=0,
)
signal = waveform_generator.frequency_domain_strain(injection_parameters)["plus"]
signal *= np.exp(1j * 2 * np.pi * waveform_generator.frequency_array * 2)
return signal
def generate_gaussian_signal(peak_frequency, sampling_frequency, duration):
frequencies = create_frequency_series(
sampling_frequency=sampling_frequency, duration=duration
)
signal = np.exp(-((frequencies - peak_frequency) ** 2) / 2 / 10 ** 2) * np.exp(
1j * np.random.uniform(0, 2 * np.pi, len(frequencies))
)
return signal
def normalize_signal(signal, psd, snr=4):
signal /= np.sum(abs(signal) ** 2 / psd) ** 0.5
signal *= snr ** 0.5
return signal
def run_tbs_test(
signal,
psd,
sampling_frequency,
duration,
short_duration,
mask,
short_psd,
inverse,
tukey_alpha=0.1,
n_average=50,
):
short_window = tukey(sampling_frequency * short_duration, tukey_alpha)
normalization = 2 / short_duration
ln_bfs_1 = np.array([])
ln_bfs_2 = np.array([])
for _ in trange(n_average):
noise, _ = psd.get_noise_realisation(
sampling_frequency=sampling_frequency, duration=duration
)
fd_noise = np.fft.rfft(
| np.fft.irfft(noise) | numpy.fft.irfft |
import numpy as np
from typing import Tuple, Union, List
import matplotlib.pyplot as plt
class PPOReplayBuffer:
def __init__(self, state_size, action_size, capacity, batch_size=64):
self.state_size = state_size
self.action_size = action_size
self.capacity = capacity
self.batch_size = batch_size
self.size = 0
self.idx = 0
self._initialize_empty_buffers()
def _initialize_empty_buffers(self) -> None:
self.buffer_state = np.zeros(shape=(self.capacity, self.state_size))
self.buffer_action = np.zeros(shape=(self.capacity, self.action_size))
self.buffer_reward = np.zeros(shape=(self.capacity, 1))
self.buffer_mask = np.zeros(shape=(self.capacity, 1))
self.buffer_value = np.zeros(shape=(self.capacity, 1))
self.buffer_logp = np.zeros(shape=(self.capacity, 1))
self.buffer_adv = np.zeros(shape=(self.capacity, 1))
self.buffer_return = np.zeros(shape=(self.capacity, 1))
def store_transition(self, transition: Tuple) -> None:
state, action, reward, mask, value, logp, adv, ret = transition
# This will make sure to overwrite the oldest transition if full
current_index = self.idx % self.capacity
self.buffer_state[current_index] = state
self.buffer_action[current_index] = action
self.buffer_reward[current_index] = reward
self.buffer_mask[current_index] = mask
self.buffer_value[current_index] = value
self.buffer_logp[current_index] = logp
self.buffer_adv[current_index] = adv
self.buffer_return[current_index] = ret
# Increment counters
if self.size < self.capacity:
self.size += 1
self.idx += 1
def all(self) -> Union[None, Tuple]:
# We can't sample if we don't have enough transitions
if self.size < self.capacity:
return
return (
self.buffer_state, self.buffer_action, self.buffer_reward,
self.buffer_mask, self.buffer_value, self.buffer_logp,
self.buffer_adv, self.buffer_return
)
def sample(self) -> Union[None, Tuple]:
"""
Returns a batch_size of random transitions from the buffer. If there are less
than batch_size transitions in the buffer, this returns None. Note that sampling
does not remove the transitions from the buffer so they could be sampled again.
"""
# We can't sample if we don't have enough transitions
if self.size < self.capacity:
return
idxs = np.random.choice(self.size, self.batch_size)
batch_state = self.buffer_state[idxs]
batch_action = self.buffer_action[idxs]
batch_reward = self.buffer_reward[idxs]
batch_mask = self.buffer_mask[idxs]
batch_value = self.buffer_value[idxs]
batch_logp = self.buffer_logp[idxs]
batch_adv = self.buffer_adv[idxs]
batch_return = self.buffer_return[idxs]
return (batch_state, batch_action, batch_reward, batch_mask,
batch_value, batch_logp, batch_adv, batch_return)
def flush(self) -> None:
self.size = 0
self.idx = 0
self._initialize_empty_buffers()
def __len__(self) -> int:
return self.size
def plot_training_results(rewards_history: List,
running_rewards_history: List,
steps_history: List,
wallclock_history: List,
test_freq: int = 1,
save_dir: str = None):
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
fig.suptitle("Results", fontsize=16)
# Epochs vs rewards
num_epochs = len(rewards_history)
ax1.plot( | np.arange(num_epochs) | numpy.arange |
import pymbar
from fe import endpoint_correction
from collections import namedtuple
import pickle
import dataclasses
import time
import functools
import copy
import jax
import numpy as np
from md import minimizer
from typing import Tuple, List, Any
import os
from fe import standard_state
from fe.utils import sanitize_energies, extract_delta_Us_from_U_knk
from timemachine.lib import potentials, custom_ops
@dataclasses.dataclass
class SimulationResult:
xs: np.array
boxes: np.array
du_dps: np.array
lambda_us: np.array
def flatten(v):
return tuple(), (v.xs, v.boxes, v.du_dps, v.lambda_us)
def unflatten(aux_data, children):
xs, boxes, du_dps, lambda_us = aux_data
return SimulationResult(xs, boxes, du_dps, lambda_us)
jax.tree_util.register_pytree_node(SimulationResult, flatten, unflatten)
def run_model_simulations(model, sys_params):
assert len(sys_params) == len(model.unbound_potentials)
bound_potentials = []
for params, unbound_pot in zip(sys_params, model.unbound_potentials):
bp = unbound_pot.bind(np.asarray(params))
bound_potentials.append(bp)
all_args = []
for lamb_idx, lamb in enumerate(model.lambda_schedule):
subsample_interval = 1000
all_args.append(
(
lamb,
model.box,
model.x0,
model.v0,
bound_potentials,
model.integrator,
model.barostat,
model.equil_steps,
model.prod_steps,
subsample_interval,
subsample_interval,
model.lambda_schedule,
)
)
if model.endpoint_correct:
assert isinstance(bound_potentials[-1], potentials.HarmonicBond)
all_args.append(
(
1.0,
model.box,
model.x0,
model.v0,
bound_potentials[:-1], # strip out the restraints
model.integrator,
model.barostat,
model.equil_steps,
model.prod_steps,
subsample_interval,
subsample_interval,
[], # no need to evaluate Us for the endpoint correction
)
)
results = []
if model.client is None:
for args in all_args:
results.append(simulate(*args))
else:
futures = []
for args in all_args:
futures.append(model.client.submit(simulate, *args))
for future in futures:
results.append(future.result())
return results
def simulate(
lamb,
box,
x0,
v0,
final_potentials,
integrator,
barostat,
equil_steps,
prod_steps,
x_interval,
u_interval,
lambda_windows,
):
"""
Run a simulation and collect relevant statistics for this simulation.
Parameters
----------
lamb: float
lambda value used for the equilibrium simulation
box: np.array
3x3 numpy array of the box, dtype should be np.float64
x0: np.array
Nx3 numpy array of the coordinates
v0: np.array
Nx3 numpy array of the velocities
final_potentials: list
list of unbound potentials
integrator: timemachine.Integrator
integrator to be used for dynamics
barostat: timemachine.Barostat
barostat to be used for equilibration
equil_steps: int
number of equilibration steps
prod_steps: int
number of production steps
x_interval: int
how often we store coordinates. If x_interval == 0 then
no frames are returned.
u_interval: int
how often we store energies. If u_interval == 0 then
no energies are returned
lambda_windows: list of float
lambda windows we evaluate energies at.
Returns
-------
SimulationResult
Results of the simulation.
"""
all_impls = []
# set up observables for du_dps here as well.
du_dp_obs = []
for bp in final_potentials:
impl = bp.bound_impl(np.float32)
all_impls.append(impl)
du_dp_obs.append(custom_ops.AvgPartialUPartialParam(impl, 25))
# fire minimize once again, needed for parameter interpolation
x0 = minimizer.fire_minimize(x0, all_impls, box, np.ones(100, dtype=np.float64) * lamb)
# sanity check that forces are well behaved
for bp in all_impls:
du_dx, du_dl, u = bp.execute(x0, box, lamb)
norm_forces = np.linalg.norm(du_dx, axis=1)
assert np.all(norm_forces < 25000), "Forces much greater than expected after minimization"
if integrator.seed == 0:
# this deepcopy is needed if we're running if client == None
integrator = copy.deepcopy(integrator)
integrator.seed = np.random.randint(np.iinfo(np.int32).max)
if barostat.seed == 0:
barostat = copy.deepcopy(barostat)
barostat.seed = np.random.randint(np.iinfo(np.int32).max)
intg_impl = integrator.impl()
# technically we need to only pass in the nonbonded impl
barostat_impl = barostat.impl(all_impls)
# context components: positions, velocities, box, integrator, energy fxns
ctxt = custom_ops.Context(x0, v0, box, intg_impl, all_impls, barostat_impl)
# equilibration
equil_schedule = np.ones(equil_steps) * lamb
ctxt.multiple_steps(equil_schedule)
# (ytz): intentionally hard-coded, I'd rather the end-user *not*
# muck with this unless they have a good reason to.
barostat_impl.set_interval(25)
for obs in du_dp_obs:
ctxt.add_observable(obs)
full_us, xs, boxes = ctxt.multiple_steps_U(lamb, prod_steps, np.array(lambda_windows), u_interval, x_interval)
# keep the structure of grads the same as that of final_potentials so we can properly
# form their vjps.
grads = []
for obs in du_dp_obs:
grads.append(obs.avg_du_dp())
result = SimulationResult(
xs=xs.astype("float32"),
boxes=boxes.astype("float32"),
du_dps=grads,
lambda_us=full_us,
)
return result
FreeEnergyModel = namedtuple(
"FreeEnergyModel",
[
"unbound_potentials",
"endpoint_correct",
"client",
"box",
"x0",
"v0",
"integrator",
"barostat",
"lambda_schedule",
"equil_steps",
"prod_steps",
"beta",
"prefix",
],
)
gradient = List[Any] # TODO: make this more descriptive of dG_grad structure
def _deltaG_from_results(model, results, sys_params) -> Tuple[Tuple[float, List], np.array]:
assert len(sys_params) == len(model.unbound_potentials)
bound_potentials = []
for params, unbound_pot in zip(sys_params, model.unbound_potentials):
bp = unbound_pot.bind( | np.asarray(params) | numpy.asarray |
'''
@file end_eff_lqr_gain_computation.py
@package momentumopt
@author <NAME> (<EMAIL>)
@license License BSD-3-Clause
@copyright Copyright (c) 2019, New York University and Max Planck Gesellschaft.
@date 2019-06-05
Computes gains using lqr in the end_effector space for solo
(assumes legs are weightless) and performs a backward pass to compute gains
using a trajectory
'''
###
###
### Author: <NAME>
### Date:6/5/2019
import numpy as np
from numpy.linalg import inv
from matplotlib import pyplot as plt
from scipy.spatial.transform import Rotation as Rot
import scipy
np.set_printoptions(linewidth=13000)
class end_effector_lqr:
def __init__(self, dir):
self.dir = dir
self.com_pos = np.loadtxt(dir + "/quadruped_com.dat", dtype=float)[:, [1,2,3]]
self.com_vel = np.loadtxt(dir + "/quadruped_com_vel.dat", dtype=float)[:, [1,2,3]]
self.com_ori = np.loadtxt(dir + "/quadruped_quaternion.dat", dtype=float)[:, [1,2,3,4]]
self.com_ang_vel = np.loadtxt(dir + "/quadruped_base_ang_velocities.dat", dtype=float)[:, [1,2,3]]
self.end_eff_forces = np.loadtxt(dir + "/quadruped_forces.dat", dtype=float)[:, 1:]
self.end_eff_abs_pos = np.loadtxt(dir + "/quadruped_positions_abs_with_horizon_part.dat", dtype=float)[:, 1:]
self.delta = 0.000001
self.dt = 0.001
self.mass = 2.17
self.inertia_com_frame = [[0.00578574, 0.0, 0.0],
[0.0, 0.01938108, 0.0],
[0.0, 0.0, 0.02476124]]
def compute_r_cross(self, end_eff_abs_pos, com_pos):
r_cross_mat = [[0, -(end_eff_abs_pos[2] - com_pos[2]), (end_eff_abs_pos[1] - com_pos[1])],
[(end_eff_abs_pos[2] - com_pos[2]), 0, -(end_eff_abs_pos[0] - com_pos[0])],
[-(end_eff_abs_pos[1] - com_pos[1]), -(end_eff_abs_pos[0] - com_pos[0]), 0]]
return r_cross_mat
def compute_dyn(self,t , x_t, u_t):
### quat_d = omega * quat
omega = np.array([[0, x_t[: , 12], -1*x_t[:, 11], x_t[:, 10]],
[-1*x_t[:,12], 0, x_t[:,10], x_t[:, 11]],
[x_t[:,11], -1*x_t[:,10], 0, x_t[:,12]],
[-1*x_t[:, 10], -1*x_t[:, 11], -1*x_t[:,12], 0]])
self.A_t = np.block([[np.zeros((3,3)), np.identity(3), np.zeros((3,4)), np.zeros((3,3))],
[np.zeros((3,3)), np.zeros((3,3)), np.zeros((3,4)), np.zeros((3,3))],
[np.zeros((4,3)),np.zeros((4,3)), 0.5*omega, np.zeros((4,3))],
[np.zeros((3,3)), np.zeros((3,3)), np.zeros((3,4)), np.zeros((3,3))]])
rot_t = np.reshape(Rot.from_quat(x_t[:, [6,7,8,9]]).as_dcm(), (3,3))
inertia = np.matmul(np.matmul(np.transpose(rot_t),self.inertia_com_frame), rot_t)
inv_inertia = inv(np.matrix(inertia))
r_cross_inv_inertia_fl = np.matmul(inv_inertia, self.compute_r_cross(self.end_eff_abs_pos[t][0:3], self.com_pos[t]))
r_cross_inv_inertia_fr = np.matmul(inv_inertia, self.compute_r_cross(self.end_eff_abs_pos[t][3:6], self.com_pos[t]))
r_cross_inv_inertia_hl = np.matmul(inv_inertia, self.compute_r_cross(self.end_eff_abs_pos[t][6:9], self.com_pos[t]))
r_cross_inv_inertia_hr = np.matmul(inv_inertia, self.compute_r_cross(self.end_eff_abs_pos[t][9:12], self.com_pos[t]))
self.B_t = np.block([[np.zeros((3,3)), np.zeros((3,3)),np.zeros((3,3)), np.zeros((3,3))],
[(1/self.mass)*np.identity(3), (1/self.mass)*np.identity(3), (1/self.mass)*np.identity(3), (1/self.mass)*np.identity(3)],
[np.zeros((4,3)), np.zeros((4,3)), np.zeros((4,3)), np.zeros((4,3))],
[r_cross_inv_inertia_fl, r_cross_inv_inertia_fr, r_cross_inv_inertia_hl, r_cross_inv_inertia_hr]])
self.A_t = np.matrix(self.A_t)
self.B_t = np.matrix(self.B_t)
return np.matmul(self.A_t, np.transpose(x_t)) + np.matmul(self.B_t, np.transpose(u_t))
def compute_lin_dyn(self,t):
### computes linearized dymamics
x_t = np.matrix(np.hstack((self.com_pos[t], self.com_vel[t], self.com_ori[t], self.com_ang_vel[t])))
u_t = np.matrix(self.end_eff_forces[t])
dyn_t = self.compute_dyn(t, x_t, u_t)
# print(dyn_t)
# partial derivative of a w.r.t x
x_t1 = np.matrix(np.hstack((self.com_pos[t+1], self.com_vel[t+1], self.com_ori[t+1], self.com_ang_vel[t+1])))
u_t1 = np.matrix(self.end_eff_forces[t+1])
lin_A_t = np.zeros((13,13))
for i in range(13):
pd_x_t = x_t.copy()
delta_x = x_t1[: ,i].copy() - x_t[: ,i].copy()
pd_x_t[: ,i] = x_t1[: ,i].copy()
if delta_x == 0.0:
delta_x = self.delta
pd_x_t[:, i] += self.delta
lin_A_t[:, i] = np.reshape(((self.compute_dyn(t, pd_x_t, u_t) - dyn_t.copy())/(delta_x)), (13,))
lin_B_t = np.zeros((13,12))
if np.linalg.norm(sum(u_t1)) < 0.001:
lin_B_t = np.zeros((13,12))
else:
for i in range(12):
pd_u_t = u_t.copy()
delta_u = u_t1[: ,i].copy() - u_t[:, i].copy()
pd_u_t[: ,i] = u_t1[:, i].copy()
if delta_u == 0:
delta_u = self.delta
pd_u_t[:, i] += self.delta
lin_B_t[:, i] = np.reshape(((self.compute_dyn(t, x_t, pd_u_t) - dyn_t.copy())/(delta_u)), (13,))
return lin_A_t, lin_B_t
def descretise_dynamics(self, lin_A_t, lin_B_t):
## descritizes the dynamics adn returns descritized lin_A, lin_B_t
des_lin_A_t = lin_A_t*self.dt + np.identity(13)
des_lin_B_t = lin_B_t*self.dt
# print(des_lin_A_t)
return des_lin_A_t, des_lin_B_t
def compute_lqr_gains(self, Q, R, lin_A_t, lin_B_t, P_prev):
## input descritzed lin_A and lin_B
## solves ricati equation
# print(lin_B_t)
K = inv(R + np.matmul(np.matmul( | np.transpose(lin_B_t) | numpy.transpose |
import argparse
import pandas as pd
import os
import sys
import numpy as np
import torch
from utils import computeMetricsAlt, evalThresholdAlt
from ModelShokri import DataHandler, TrainWBAttacker
from torch.utils.data import DataLoader
parser = argparse.ArgumentParser(description='Analyse criteria obtained from different MIAs.')
parser.add_argument('--model_type', type=str, help='Model Architecture to attack.')
parser.add_argument('--num_iters', type=int, default=20, help='Number of iterations for empirical estimation.')
parser.add_argument('--working_dir', type=str, default='./', help='Where to collect and store data.')
exp_parameters = parser.parse_args()
currdir = exp_parameters.working_dir
num_runs_for_random = exp_parameters.num_iters
model_type = exp_parameters.model_type
# Extracting intermediate outputs and gradients of the model
InterOuts_Grads0 = np.load(currdir + '/RawResults/NasrTrain0_' + model_type + '.npz')
InterOuts_Grads1 = np.load(currdir + '/RawResults/NasrTrain1_' + model_type + '.npz')
AdditionalInfo = np.load(currdir + '/RawResults/NasrAddInfo_' + model_type + '.npz')
inter_outs0 = []
inter_outs1 = []
out_size_list = AdditionalInfo['arr_0']
layer_size_list = AdditionalInfo['arr_1']
kernel_size_list = AdditionalInfo['arr_2']
n_inter_outputs = len(out_size_list)
n_layer_grads = len(kernel_size_list)
for i in range(n_inter_outputs):
inter_outs0.append(InterOuts_Grads0['arr_' + str(i)])
inter_outs1.append(InterOuts_Grads1['arr_' + str(i)])
lossval0 = InterOuts_Grads0['arr_' + str(n_inter_outputs)]
lossval1 = InterOuts_Grads1['arr_' + str(n_inter_outputs)]
labels1hot0 = InterOuts_Grads0['arr_' + str(n_inter_outputs + 1)]
labels1hot1 = InterOuts_Grads1['arr_' + str(n_inter_outputs + 1)]
grad_vals0 = []
grad_vals1 = []
for i in range(n_inter_outputs + 2, n_inter_outputs + 2 + n_layer_grads, 1):
grad_vals0.append(InterOuts_Grads0['arr_' + str(i)])
grad_vals1.append(InterOuts_Grads1['arr_' + str(i)])
# Our Analysis
FPR = np.linspace(0, 1, num=1001)
try:
dfMetricsBalanced = pd.read_csv(currdir + '/CompleteResults/BalancedMetrics_' + model_type + '.csv')
dfTPRBalanced = pd.read_csv(currdir + '/CompleteResults/BalancedROC_' + model_type + '.csv')
except FileNotFoundError:
dfMetricsBalanced = pd.DataFrame(columns=['Attack Strategy',
'AUROC', 'AUROC STD',
'Best Accuracy', 'Best Accuracy STD',
'FPR at TPR80', 'FPR at TPR80 STD',
'FPR at TPR85', 'FPR at TPR85 STD',
'FPR at TPR90', 'FPR at TPR90 STD',
'FPR at TPR95', 'FPR at TPR95 STD'])
dfTPRBalanced = pd.DataFrame(FPR, columns=['FPR'])
aux_list_metrics = []
aux_list_TPR = []
for k in range(num_runs_for_random):
np.random.seed(k)
indx_train0 = np.random.choice(lossval0.shape[0], size=4000, replace=False)
indx_train1 = np.random.choice(lossval1.shape[0], size=4000, replace=False)
indx_test0 = np.setdiff1d(np.arange(lossval0.shape[0]), indx_train0)
indx_test0 = np.random.choice(indx_test0, size=6000, replace=False)
indx_test1 = np.setdiff1d(np.arange(lossval1.shape[0]), indx_train1)
indx_test1 = np.random.choice(indx_test1, size=6000, replace=False)
trainingData = DataHandler(inter_outs0, inter_outs1, lossval0, lossval1, labels1hot0, labels1hot1,
grad_vals0, grad_vals1, indx_train0, indx_train1)
Max = trainingData.Max
Min = trainingData.Min
testingData = DataHandler(inter_outs0, inter_outs1, lossval0, lossval1, labels1hot0, labels1hot1,
grad_vals0, grad_vals1, indx_test0, indx_test1, Max=Max, Min=Min)
AttackerShokri = TrainWBAttacker(trainingData, testingData, out_size_list, layer_size_list, kernel_size_list)
dataloaderEval = DataLoader(testingData, batch_size=100, shuffle=False)
scoresEval = []
EvalY = []
with torch.no_grad():
for i, batch in enumerate(dataloaderEval):
example = batch[0]
target = batch[1]
scoresEval.append(AttackerShokri(*example).detach())
EvalY.append(target.cpu().data.numpy())
scoresEval = torch.cat(scoresEval, axis=0)
scoresEval = torch.squeeze(scoresEval)
scoresEval = scoresEval.cpu().data.numpy()
EvalY = np.squeeze(np.concatenate(EvalY, axis=0))
TPR_, metrics_ = computeMetricsAlt(scoresEval, EvalY, FPR)
aux_list_metrics.append(metrics_)
aux_list_TPR.append(TPR_)
metrics = np.stack(aux_list_metrics, 1)
mean_metrics = np.mean(metrics, 1)
std_metrics = np.std(metrics, 1)
new_row = {"Attack Strategy": 'Nasr White-Box',
'AUROC': mean_metrics[0], 'AUROC STD': std_metrics[0],
'Best Accuracy': mean_metrics[1], 'Best Accuracy STD': std_metrics[1],
'FPR at TPR80': mean_metrics[2], 'FPR at TPR80 STD': std_metrics[2],
'FPR at TPR85': mean_metrics[3], 'FPR at TPR85 STD': std_metrics[3],
'FPR at TPR90': mean_metrics[4], 'FPR at TPR90 STD': std_metrics[4],
'FPR at TPR95': mean_metrics[5], 'FPR at TPR95 STD': std_metrics[5]}
dfMetricsBalanced = dfMetricsBalanced.append(new_row, ignore_index=True)
TPR = np.stack(aux_list_TPR, 1)
mean_TPR = np.mean(TPR, 1)
std_TPR = np.std(TPR, 1)
dfTPRaux = pd.DataFrame(np.stack((mean_TPR, std_TPR), axis=1), columns=['Nasr White-Box TPR',
'Nasr White-Box TPR STD'])
dfTPRBalanced = dfTPRBalanced.join(dfTPRaux)
# Rezaei Analysis
try:
dfMetricsRezaei = pd.read_csv(currdir + '/CompleteResults/RezaeiMetrics_' + model_type + '.csv')
except FileNotFoundError:
dfMetricsRezaei = pd.DataFrame(columns=['Attack Strategy',
'Best Accuracy', 'Best Accuracy STD',
'FPR', 'FPR STD'])
aux_list_metrics = []
for k in range(num_runs_for_random):
np.random.seed(k)
indx_train0 = | np.random.choice(lossval0.shape[0], size=8000, replace=False) | numpy.random.choice |
"""
Numpy是python很多科学计算与工程库的基础库,在量化数据分析中最常使用的Pandas
也是基于Numpy的封装。可以说Numpy就是量化数据分析领域中的基础数组,学会使用Numpy
是量化分析中关键的一步
Numpy底层实现中使用了C语言和Fortran语言的机制分配内存。可以理解为它的输出是一个非常大且
联系的并且由同类型数据组成的内存区域,所以可以通过Numpy来构造一个比普通列表大的多的数组,并且
灵活高效地对数组中所有的元素进行并行化操作
"""
import timeit
import time
import numpy as np
import matplotlib.pyplot as plt
"""
使用timeit模块来计算构建10000个元素的列表循环求每个元素的平方所用的时间
timeit模块使用方法 timeit(stmt,number)
stmt可以直接传简单的字符串表达式,也可以传变量,也可以传函数,接受匿名函数输入
"""
'#######################################################################################################################'
#1、使用普通方法构造列表
func1 = """
for i in range(10000):
i**2
"""
print(timeit.timeit(stmt=func1,number=1))
#结果:0.003410174186735481
"""
或者在jupyternotebook中执行
normal_list = range(10000)
%timeit [i**2 for i in normal_list]
得到的时间为:
3.67 ms ± 67.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
"""
#2、使用numpy的arange模块来构造列表
"""
在jupyternotebook中执行下面代码,
np_list = np.arange(10000)
%timeit (np_list**2)
得到的时间为:
9.22 µs ± 24 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
可以看到使用numpy数组的速度远快于使用普通列表的速度
Numpy数组和普通列表的操作方式也是不同的,Numpy通过广播机制作用于每一个内部元素,是一种
并行化执行的思想,普通list则作用于整体,示例如下:
"""
#注意:在numpy中*3的操作被作用于数组的每一个元素中
np_list = np.ones(5) * 3
print(np_list)
# [3. 3. 3. 3. 3.]
#普通列表则把*3操作认为是整体性操作
normal_list = [1,1,1,1,1] * 3
print(normal_list)
# <class 'list'>: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
print(len(normal_list))
# 15
'#######################################################################################################################'
#numpy的初始化操作
"""
一些numpy常用的初始化方式
"""
#1、100个0
np.zeros(100)
# array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#2、shape: 3行2列全是0
| np.zeros((3,2)) | numpy.zeros |
#!/usr/bin/env python
# vim: tabstop=2 shiftwidth=2 expandtab
# Copyright 2020 Maintainers of PSegs-ROS-Ext
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import random
import subprocess
import sys
import numpy as np
###############################################################################
### Utils
def nanostamp_to_rostime(nanostamp):
import rospy
# For a good time see:
# https://github.com/pgao/roscpp_core/commit/dffa31afe8d7f1268a3fa227408aeb6e04a28b87#diff-65b9485bd6b5d3fb4b7a84cd975c3967L157
return rospy.Time(
secs=int(nanostamp / 1000000000),
nsecs=int(nanostamp % 1000000000))
def to_ros_arr(arr):
return arr.flatten(order='C').tolist()
###############################################################################
### ROS Message Generators
def gen_transform(nanostamp):
import tf
from tf2_msgs.msg import TFMessage
from geometry_msgs.msg import Transform
from geometry_msgs.msg import TransformStamped
tf_msg = TFMessage()
tf_transform = TransformStamped()
tf_transform.header.stamp = nanostamp_to_rostime(nanostamp)
tf_transform.header.frame_id = 'src_frame'
tf_transform.child_frame_id = 'child_frame'
transform = Transform()
r_4x4 = np.ones((4, 4))
q = tf.transformations.quaternion_from_matrix(r_4x4)
transform.rotation.x = q[0]
transform.rotation.y = q[1]
transform.rotation.z = q[2]
transform.rotation.w = q[3]
transform.translation.x = 1
transform.translation.y = 2
transform.translation.z = 3
tf_transform.transform = transform
tf_msg.transforms.append(tf_transform)
return tf_msg
def gen_camera_info(nanostamp):
from sensor_msgs.msg import CameraInfo
info = CameraInfo()
info.header.frame_id = 'camera_frame'
info.header.stamp = nanostamp_to_rostime(nanostamp)
info.width = 100
info.height = 200
info.distortion_model = 'plumb_bob'
K = np.ones((3, 3))
info.K = to_ros_arr(K)
P = np.zeros((3, 4))
info.P = to_ros_arr(P)
return info
def gen_camera_image(nanostamp):
import cv2
from cv_bridge import CvBridge
bridge = CvBridge()
# Create a fake image
img = np.zeros((200, 100, 3), dtype=np.uint8)
from PIL import Image
p_img = Image.fromarray(img)
from io import BytesIO
with BytesIO() as output:
p_img.save(output, 'PNG')
img_bytes = bytearray(output.getvalue())
# Do a dance to get a CV Img, which has good interop with ROS
img_arr = np.asarray(img_bytes, dtype=np.uint8)
cv_img = cv2.imdecode(img_arr, cv2.IMREAD_UNCHANGED)
ros_img_msg = bridge.cv2_to_imgmsg(cv_img, encoding='bgr8')
ros_img_msg.header.frame_id = 'camera_frame'
ros_img_msg.header.stamp = nanostamp_to_rostime(nanostamp)
return ros_img_msg
def gen_pcl_cloud(nanostamp):
from sensor_msgs.msg import PointField
from std_msgs.msg import Header
import sensor_msgs.point_cloud2 as pcl2
header = Header()
header.frame_id = 'pointsensor'
header.stamp = nanostamp_to_rostime(nanostamp)
points = np.zeros((10, 3), dtype=np.float32)
fields = [PointField('x', 0, PointField.FLOAT32, 1),
PointField('y', 4, PointField.FLOAT32, 1),
PointField('z', 8, PointField.FLOAT32, 1)]
pcl_msg = pcl2.create_cloud(header, fields, points)
return pcl_msg
def gen_ros_color():
"""color in [0, 1] -> ROS color"""
from std_msgs.msg import ColorRGBA
r, g, b = (.5, .5, .5)
ros_color = ColorRGBA()
ros_color.r = r
ros_color.g = g
ros_color.b = b
ros_color.a = 1.
return ros_color
def gen_marker():
from geometry_msgs.msg import Point
from visualization_msgs.msg import Marker
m = Marker()
m.type = Marker.LINE_LIST # pairs of points create a line
m.action = Marker.MODIFY # or add
m.color = gen_ros_color()
m.scale.x = 0.1
startp = Point()
startp.x, startp.y, startp.z = (1, 2, 3)
endp = Point()
endp.x, endp.y, endp.z = (3, 4, 5)
m.points += [startp, endp]
return m
def gen_marker_array(nanostamp):
from visualization_msgs.msg import MarkerArray
marray = MarkerArray()
for obj_id in range(10):
from std_msgs.msg import Header
header = Header()
header.frame_id = 'marker'
header.stamp = nanostamp_to_rostime(nanostamp)
markers = [gen_marker() for _ in range(10)]
for mid, m in enumerate(markers):
m.id = obj_id * 10 + mid
m.ns = str(obj_id)
m.header = header
marray.markers += markers
return marray
# A container compatible with both ROSBag as well as ROS Publishers
ROSMsgEntry = collections.namedtuple(
'ROSMsgEntry', ('topic', 'timestamp', 'msg'))
def gen_msg_fixture(start_time_sec=1, end_time_sec=10):
for t in | np.arange(start_time_sec, end_time_sec + 1, 0.5) | numpy.arange |
import os
import numpy
import pytest
from chainer import serializers, Variable, cuda
from chainer_chemistry.links.scaler.standard_scaler import StandardScaler
@pytest.fixture
def data():
x = numpy.array(
[[0.1, 10., 0.3],
[0.2, 20., 0.1],
[0.3, 30., 0.],
[0.4, 40., 0.]],
dtype=numpy.float32)
expect_x_scaled = numpy.array(
[[-1.3416407, -1.3416408, 1.6329931],
[-0.44721353, -0.4472136, 0.],
[0.44721368, 0.4472136, -0.8164965],
[1.3416407, 1.3416408, -0.8164965]],
dtype=numpy.float32)
return x, expect_x_scaled
@pytest.mark.parametrize('indices', [None, [0], [1, 2]])
def test_standard_scaler_transform(data, indices):
x, expect_x_scaled = data
scaler = StandardScaler()
scaler.fit(x, indices=indices)
x_scaled = scaler.transform(x)
if indices is None:
indices = numpy.arange(x.shape[1])
for index in range(x.shape[1]):
if index in indices:
assert numpy.allclose(x_scaled[:, index],
expect_x_scaled[:, index])
else:
assert numpy.allclose(x_scaled[:, index], x[:, index])
def test_standard_scaler_transform_variable(data):
x, expect_x_scaled = data
xvar = Variable(x)
scaler = StandardScaler()
scaler.fit(xvar)
x_scaled = scaler.transform(xvar)
assert isinstance(x_scaled, Variable)
assert numpy.allclose(x_scaled.array, expect_x_scaled)
@pytest.mark.gpu
def test_standard_scaler_transform_gpu(data):
x, expect_x_scaled = data
scaler = StandardScaler()
scaler.to_gpu()
x = cuda.to_gpu(x)
scaler.fit(x)
x_scaled = scaler.transform(x)
assert isinstance(x_scaled, cuda.cupy.ndarray)
assert numpy.allclose(cuda.to_cpu(x_scaled), expect_x_scaled)
@pytest.mark.parametrize('indices', [None, [0], [1, 2]])
def test_standard_scaler_inverse_transform(data, indices):
x, expect_x_scaled = data
scaler = StandardScaler()
scaler.fit(x, indices=indices)
x_inverse = scaler.inverse_transform(expect_x_scaled)
if indices is None:
indices = numpy.arange(x.shape[1])
for index in range(x.shape[1]):
if index in indices:
assert numpy.allclose(x_inverse[:, index], x[:, index])
else:
assert numpy.allclose(x_inverse[:, index],
expect_x_scaled[:, index])
def test_standard_scaler_fit_transform(data):
x, expect_x_scaled = data
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)
assert numpy.allclose(x_scaled, expect_x_scaled)
@pytest.mark.parametrize('indices', [None, [0]])
def test_standard_scaler_serialize(tmpdir, data, indices):
x, expect_x_scaled = data
scaler = StandardScaler()
scaler.fit(x, indices=indices)
scaler_filepath = os.path.join(str(tmpdir), 'scaler.npz')
serializers.save_npz(scaler_filepath, scaler)
scaler2 = StandardScaler()
serializers.load_npz(scaler_filepath, scaler2)
# print('scaler2 attribs:', scaler2.mean, scaler2.std, scaler2.indices)
assert numpy.allclose(scaler.mean, scaler2.mean)
assert | numpy.allclose(scaler.std, scaler2.std) | numpy.allclose |
import argparse
import os
import multiprocessing
from multiprocessing import Process, Queue, Array
import pickle
import gym
from gym.spaces import Box, Discrete
from keras.models import Model
from keras.layers import Input, TimeDistributed, Convolution2D, Flatten, LSTM, Dense
from keras.objectives import categorical_crossentropy
from keras.optimizers import Adam
from keras.utils import np_utils
import keras.backend as K
import numpy as np
from atari_utils import RandomizedResetEnv, AtariRescale42x42Env
def create_env(env_id):
env = gym.make(env_id)
env = RandomizedResetEnv(env)
env = AtariRescale42x42Env(env)
return env
def create_model(env, batch_size, num_steps):
# network inputs are observations and advantages
h = x = Input(batch_shape=(batch_size, num_steps) + env.observation_space.shape, name="x")
A = Input(batch_shape=(batch_size, num_steps), name="A")
# convolutional layers
h = TimeDistributed(Convolution2D(32, 3, 3, subsample=(2, 2), border_mode="same", activation='elu', dim_ordering='tf'), name='c1')(h)
h = TimeDistributed(Convolution2D(32, 3, 3, subsample=(2, 2), border_mode="same", activation='elu', dim_ordering='tf'), name='c2')(h)
h = TimeDistributed(Convolution2D(32, 3, 3, subsample=(2, 2), border_mode="same", activation='elu', dim_ordering='tf'), name='c3')(h)
h = TimeDistributed(Convolution2D(64, 3, 3, subsample=(2, 2), border_mode="same", activation='elu', dim_ordering='tf'), name='c4')(h)
h = TimeDistributed(Flatten(), name="fl")(h)
# recurrent layer
h = LSTM(32, return_sequences=True, stateful=True, name="r1")(h)
# policy network
p = TimeDistributed(Dense(env.action_space.n, activation='softmax'), name="p")(h)
# baseline network
b = TimeDistributed(Dense(1), name="b")(h)
# inputs to the model are observation and advantages,
# outputs are action probabilities and baseline
model = Model(input=[x, A], output=[p, b])
# policy gradient loss and entropy bonus
def policy_gradient_loss(l_sampled, l_predicted):
return K.mean(A * categorical_crossentropy(l_sampled, l_predicted), axis=1) \
- 0.01 * K.mean(categorical_crossentropy(l_predicted, l_predicted), axis=1)
# baseline is optimized with MSE
model.compile(optimizer='adam', loss=[policy_gradient_loss, 'mse'])
return model
def predict(model, observation):
# create inputs for batch (and timestep) of size 1
x = np.array([[observation]])
A = np.zeros((1, 1)) # dummy advantage
# predict action probabilities (and baseline state value)
p, b = model.predict_on_batch([x, A])
# return action probabilities and baseline
return p[0, 0], b[0, 0, 0]
def discount(rewards, terminals, v, gamma):
# calculate discounted future rewards for this trajectory
returns = []
# start with the predicted value of the last state
R = v
for r, t in zip(reversed(rewards), reversed(terminals)):
# if it was terminal state then restart from 0
if t:
R = 0
R = r + R * gamma
returns.insert(0, R)
return returns
def runner(shared_buffer, fifo, num_timesteps, monitor, args):
proc_name = multiprocessing.current_process().name
print("Runner %s started" % proc_name)
# local environment for runner
env = create_env(args.env_id)
# start monitor to record statistics and videos
if monitor:
env.monitor.start(args.env_id)
# copy of model
model = create_model(env, batch_size=1, num_steps=1)
# record episode lengths and rewards for statistics
episode_rewards = []
episode_lengths = []
episode_reward = 0
episode_length = 0
observation = env.reset()
for i in range(num_timesteps // args.num_local_steps):
# copy weights from main network at the beginning of iteration
# the main network's weights are only read, never modified
# but we create our own model instance, because Keras is not thread-safe
model.set_weights(pickle.loads(shared_buffer.raw))
observations = []
actions = []
rewards = []
terminals = []
baselines = []
for t in range(args.num_local_steps):
if args.display:
env.render()
# predict action probabilities (and baseline state value)
p, b = predict(model, observation)
# sample action using those probabilities
p /= np.sum(p) # ensure p-s sum up to 1
action = | np.random.choice(env.action_space.n, p=p) | numpy.random.choice |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([0,-1,0,-1,0,0,0,0,1]) | numpy.array |
from __future__ import division, print_function
from typing import List
import numpy
import scipy
class LinearRegression:
def __init__(self, nb_features: int):
self.nb_features = nb_features
def train(self, features: List[List[float]], values: List[float]):
# creating f(x) = W0 + sum((Wd)(Xd))
# finding W's
# use LMS(least mean squared(minimizing residuals sum(mean squared error)))
# LMS = ((X^tX)^-1) (X^tY)
# make sure N > D+1
# features = X values = y
y = numpy.array([values]).transpose()
x = numpy.array(features)
# add w0
x = numpy.append([[1]]*len(features),x, axis=1)
xtx = x.transpose().dot(x)
xty = x.transpose().dot(y)
xtxInv = numpy.linalg.inv(xtx)
self.weights = xtxInv.dot(xty)
def phi(self, x: List[float]) -> List[float]:
aug = []
for i in range(1,len(x)):
for k in range(2,self.nb_features+1):
aug.append(numpy.power(x[i],k))
return aug
def predict(self, features: List[List[float]]) -> List[float]:
# f(x) = wtx
# x -> p(x) [1,x,x^2...x^d]
x = numpy.array(features)
x = numpy.append([[1]]*len(features),x, axis=1)
return numpy.inner(self.weights.transpose(),x)[0]
def get_weights(self) -> List[float]:
"""
for a model y = 1 + 3 * x_0 - 2 * x_1,
the return value should be [1, 3, -2].
"""
return self.weights
class LinearRegressionWithL2Loss:
'''Use L2 loss for weight regularization'''
def __init__(self, nb_features: int, alpha: float):
self.alpha = alpha
self.nb_features = nb_features
def train(self, features: List[List[float]], values: List[float]):
# creating f(x) = W0 + sum((Wd)(Xd))
# finding W's
# use LMS(least mean squared(minimizing residuals sum(mean squared error)))
# LMS = ((X^tX)^-1) (X^tY) Now (X^tX -> X^tX + lI)
# make sure N > D+1
# features = X values = y
y = numpy.array([values]).transpose()
x = numpy.array(features)
# add w0
x = numpy.append([[1]]*len(features),x, axis=1)
# xtx -> xtx + lI
xtx = numpy.add(x.transpose().dot(x), self.alpha * numpy.identity(x.shape[1]))
xty = x.transpose().dot(y)
xtxInv = numpy.linalg.inv(xtx)
self.weights = xtxInv.dot(xty)
def phi(self, x: List[float]) -> List[float]:
aug = []
for i in range(1,len(x)):
for k in range(2,self.nb_features+1):
aug.append(numpy.power(x[i],k))
return aug
def predict(self, features: List[List[float]]) -> List[float]:
# f(x) = wtx + l|w|^2
# x -> p(x) [1,x,x^2...x^d]
x = | numpy.array(features) | numpy.array |
"""
Input/output utilities, adapted from
https://github.com/vanderschaarlab/SyncTwin-NeurIPS-2021
"""
# Author: <NAME> (<EMAIL>)
# License: BSD 3 clause
import os
import pickle
import numpy as np
import torch
def create_paths(*args):
for base_path in args:
if not os.path.exists(base_path):
os.makedirs(base_path)
def load_config(data_path, fold="train"):
with open(data_path.format(fold, "config", "pkl"), "rb") as f:
config = pickle.load(file=f)
n_units = config["n_units"]
n_treated = config["n_treated"]
n_units_total = config["n_units_total"]
step = config["step"]
train_step = config["train_step"]
control_sample = config["control_sample"]
noise = config["noise"]
n_basis = config["n_basis"]
n_cluster = config["n_cluster"]
return (
n_units,
n_treated,
n_units_total,
step,
train_step,
control_sample,
noise,
n_basis,
n_cluster,
)
def load_tensor(data_path, fold="train", device="cpu"):
x_full = torch.load(
data_path.format(fold, "x_full", "pth"), map_location=torch.device(device)
)
t_full = torch.load(
data_path.format(fold, "t_full", "pth"), map_location=torch.device(device)
)
mask_full = torch.load(
data_path.format(fold, "mask_full", "pth"), map_location=torch.device(device)
)
batch_ind_full = torch.load(
data_path.format(fold, "batch_ind_full", "pth"),
map_location=torch.device(device),
)
y_full = torch.load(
data_path.format(fold, "y_full", "pth"), map_location=torch.device(device)
)
y_control = torch.load(
data_path.format(fold, "y_control", "pth"), map_location=torch.device(device)
)
y_mask_full = torch.load(
data_path.format(fold, "y_mask_full", "pth"), map_location=torch.device(device)
)
m = torch.load(
data_path.format(fold, "m", "pth"), map_location=torch.device(device)
)
sd = torch.load(
data_path.format(fold, "sd", "pth"), map_location=torch.device(device)
)
treatment_effect = torch.load(
data_path.format(fold, "treatment_effect", "pth"),
map_location=torch.device(device),
)
return (
x_full,
t_full,
mask_full,
batch_ind_full,
y_full,
y_control,
y_mask_full,
m,
sd,
treatment_effect,
)
def load_data_dict(version=1):
if version == 1:
version = ""
else:
version = str(version)
val_arr1 = np.load(f"real_data{version}/val_arr1.npy")
val_mask_arr1 = np.load(f"real_data{version}/val_mask_arr1.npy")
ts_arr1 = np.load(f"real_data{version}/ts_arr1.npy")
ts_mask_arr1 = np.load(f"real_data{version}/ts_mask_arr1.npy")
patid1 = np.load(f"real_data{version}/patid1.npy")
val_arr0 = np.load(f"real_data{version}/val_arr0.npy")
val_mask_arr0 = np.load(f"real_data{version}/val_mask_arr0.npy")
ts_arr0 = np.load(f"real_data{version}/ts_arr0.npy")
ts_mask_arr0 = np.load(f"real_data{version}/ts_mask_arr0.npy")
patid0 = np.load(f"real_data{version}/patid0.npy")
Y0 = np.load(f"real_data{version}/Y0.npy")
Y1 = np.load(f"real_data{version}/Y1.npy")
data1 = {
"val_arr": val_arr1,
"val_mask_arr": val_mask_arr1,
"ts_arr": ts_arr1,
"ts_mask_arr": ts_mask_arr1,
"patid": patid1,
"Y": Y1,
}
data0 = {
"val_arr": val_arr0,
"val_mask_arr": val_mask_arr0,
"ts_arr": ts_arr0,
"ts_mask_arr": ts_mask_arr0,
"patid": patid0,
"Y": Y0,
}
return data1, data0
def get_units(d1, d0):
n_units = d0[0].shape[0]
n_treated = d1[0].shape[0]
return n_units, n_treated, n_units + n_treated
def to_tensor(device, dtype, *args):
return [torch.tensor(x, device=device, dtype=dtype) for x in args]
def get_tensors(d1_train, d0_train, device):
x_full = | np.concatenate([d0_train[0], d1_train[0]], axis=0) | numpy.concatenate |
import numpy as np
import numpy.random as npr
import scipy as sc
from operator import add
from functools import reduce
from sds.utils.general import Statistics as Stats
from sds.utils.linalg import symmetrize
class LinearGaussianWithPrecision:
def __init__(self, column_dim, row_dim,
A=None, lmbda=None, affine=True):
self.column_dim = column_dim
self.row_dim = row_dim
self.A = A
self.affine = affine
self._lmbda = lmbda
self._lmbda_chol = None
self._lmbda_chol_inv = None
@property
def params(self):
return self.A, self.lmbda
@params.setter
def params(self, values):
self.A, self.lmbda = values
@property
def nb_params(self):
return self.column_dim * self.row_dim \
+ self.row_dim * (self.row_dim + 1) / 2
@property
def input_dim(self):
return self.column_dim - 1 if self.affine\
else self.column_dim
@property
def output_dim(self):
return self.row_dim
@property
def lmbda(self):
return self._lmbda
@lmbda.setter
def lmbda(self, value):
self._lmbda = value
self._lmbda_chol = None
self._lmbda_chol_inv = None
@property
def lmbda_chol(self):
if self._lmbda_chol is None:
self._lmbda_chol = sc.linalg.cholesky(self.lmbda, lower=False)
return self._lmbda_chol
@property
def lmbda_chol_inv(self):
if self._lmbda_chol_inv is None:
self._lmbda_chol_inv = sc.linalg.inv(self.lmbda_chol)
return self._lmbda_chol_inv
@property
def sigma(self):
return self.lmbda_chol_inv @ self.lmbda_chol_inv.T
def predict(self, x):
if self.affine:
A, b = self.A[:, :-1], self.A[:, -1]
y = np.einsum('dl,...l->...d', A, x, optimize=True) + b.T
else:
y = np.einsum('dl,...l->...d', self.A, x, optimize=True)
return y
def mean(self, x):
return self.predict(x)
def mode(self, x):
return self.predict(x)
def rvs(self, x):
return self.mean(x) + npr.normal(size=self.output_dim).dot(self.lmbda_chol_inv.T)
@property
def base(self):
return np.power(2. * np.pi, - self.output_dim / 2.)
def log_base(self):
return np.log(self.base)
def statistics(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y = x[idx], y[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
contract = 'nd,nl->dl'
yxT = np.einsum(contract, y, x, optimize=True)
xxT = np.einsum(contract, x, x, optimize=True)
yyT = np.einsum(contract, y, y, optimize=True)
n = y.shape[0]
return Stats([yxT, xxT, yyT, n])
else:
stats = list(map(self.statistics, x, y))
return reduce(add, stats)
def weighted_statistics(self, x, y, weights):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y, weights = x[idx], y[idx], weights[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
contract = 'nd,n,nl->dl'
yxT = np.einsum(contract, y, weights, x, optimize=True)
xxT = np.einsum(contract, x, weights, x, optimize=True)
yyT = np.einsum(contract, y, weights, y, optimize=True)
n = np.sum(weights)
return Stats([yxT, xxT, yyT, n])
else:
stats = list(map(self.weighted_statistics, x, y, weights))
return reduce(add, stats)
def log_partition(self, x):
mu = self.predict(x)
return 0.5 * np.einsum('nd,dl,nl->n', mu, self.lmbda, mu)\
- np.sum(np.log(np.diag(self.lmbda_chol)))
def log_likelihood(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
bads = np.logical_and(np.isnan(np.atleast_2d(x)).any(axis=1),
np.isnan(np.atleast_2d(y)).any(axis=1))
x = np.nan_to_num(x, copy=False).reshape((-1, self.input_dim))
y = np.nan_to_num(y, copy=False).reshape((-1, self.output_dim))
mu = self.mean(x)
log_lik = np.einsum('nd,dl,nl->n', mu, self.lmbda, y, optimize=True)\
- 0.5 * np.einsum('nd,dl,nl->n', y, self.lmbda, y, optimize=True)
log_lik[bads] = 0.
log_lik += - self.log_partition(x) + self.log_base()
return log_lik
else:
return list(map(self.log_likelihood, x, y))
# Max likelihood
def max_likelihood(self, x, y, weights=None):
yxT, xxT, yyT, n = self.statistics(x, y) if weights is None\
else self.weighted_statistics(x, y, weights)
self.A = np.linalg.solve(xxT, yxT.T).T
sigma = (yyT - self.A.dot(yxT.T)) / n
# numerical stabilization
sigma = symmetrize(sigma) + 1e-16 * np.eye(self.output_dim)
assert np.allclose(sigma, sigma.T)
assert np.all(np.linalg.eigvalsh(sigma) > 0.)
self.lmbda = np.linalg.inv(sigma)
class StackedLinearGaussiansWithPrecision:
def __init__(self, size, column_dim, row_dim,
As=None, lmbdas=None, affine=True):
self.size = size
self.column_dim = column_dim
self.row_dim = row_dim
self.affine = affine
As = [None] * self.size if As is None else As
lmbdas = [None] * self.size if lmbdas is None else lmbdas
self.dists = [LinearGaussianWithPrecision(column_dim, row_dim,
As[k], lmbdas[k], affine=affine)
for k in range(self.size)]
@property
def params(self):
return self.As, self.lmbdas
@params.setter
def params(self, values):
self.As, self.lmbdas = values
@property
def input_dim(self):
return self.column_dim - 1 if self.affine\
else self.column_dim
@property
def output_dim(self):
return self.row_dim
@property
def As(self):
return np.array([dist.A for dist in self.dists])
@As.setter
def As(self, value):
for k, dist in enumerate(self.dists):
dist.A = value[k]
@property
def lmbdas(self):
return np.array([dist.lmbda for dist in self.dists])
@lmbdas.setter
def lmbdas(self, value):
for k, dist in enumerate(self.dists):
dist.lmbda = value[k]
@property
def lmbdas_chol(self):
return np.array([dist.lmbda_chol for dist in self.dists])
@property
def lmbdas_chol_inv(self):
return np.array([dist.lmbda_chol_inv for dist in self.dists])
@property
def sigmas(self):
return np.array([dist.sigma for dist in self.dists])
def predict(self, x):
if self.affine:
As, bs = self.As[:, :, :-1], self.As[:, :, -1]
y = np.einsum('kdl,...l->...kd', As, x, optimize=True) + bs[None, ...]
else:
y = np.einsum('kdl,...l->...kd', self.As, x, optimize=True)
return y
def mean(self, x):
return self.predict(x)
def mode(self, x):
return self.predict(x)
def rvs(self, x):
return np.array([dist.rvs(x) for dist in self.dists])
@property
def base(self):
return np.array([dist.base for dist in self.dists])
def log_base(self):
return np.log(self.base)
def statistics(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y = x[idx], y[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
contract = 'nd,nl->dl'
yxT = np.einsum(contract, y, x, optimize=True)
xxT = np.einsum(contract, x, x, optimize=True)
yyT = np.einsum(contract, y, y, optimize=True)
n = y.shape[0]
yxTk = np.array([yxT for _ in range(self.size)])
xxTk = np.array([xxT for _ in range(self.size)])
yyTk = np.array([yyT for _ in range(self.size)])
nk = np.array([n for _ in range(self.size)])
return Stats([yxTk, xxTk, yyTk, nk])
else:
stats = list(map(self.statistics, x, y))
return reduce(add, stats)
def weighted_statistics(self, x, y, weights):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y, weights = x[idx], y[idx], weights[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
contract = 'nd,nk,nl->kdl'
yxTk = np.einsum(contract, y, weights, x, optimize=True)
xxTk = np.einsum(contract, x, weights, x, optimize=True)
yyTk = np.einsum(contract, y, weights, y, optimize=True)
nk = np.sum(weights, axis=0)
return Stats([yxTk, xxTk, yyTk, nk])
else:
stats = list(map(self.weighted_statistics, x, y, weights))
return reduce(add, stats)
def log_partition(self, x):
return np.array([dist.log_partition(x) for dist in self.dists]).T
def log_likelihood(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
bads = np.logical_and(np.isnan(np.atleast_2d(x)).any(axis=1),
np.isnan(np.atleast_2d(y)).any(axis=1))
x = np.nan_to_num(x, copy=False).reshape((-1, self.input_dim))
y = np.nan_to_num(y, copy=False).reshape((-1, self.output_dim))
mu = self.mean(x)
log_lik = np.einsum('nkd,kdl,nl->nk', mu, self.lmbdas, y, optimize=True)\
- 0.5 * np.einsum('nd,kdl,nl->nk', y, self.lmbdas, y, optimize=True)
log_lik[bads] = 0.
log_lik += - self.log_partition(x) + self.log_base()
return log_lik
else:
return list(map(self.log_likelihood, x, y))
# Max likelihood
def max_likelihood(self, x, y, weights):
yxTk, xxTk, yyTk, nk = self.weighted_statistics(x, y, weights)
As = np.zeros((self.size, self.column_dim, self.row_dim))
lmbdas = np.zeros((self.size, self.output_dim, self.output_dim))
for k in range(self.size):
As[k] = np.linalg.solve(xxTk[k], yxTk[k].T).T
sigma = (yyTk[k] - As[k].dot(yxTk[k].T)) / nk[k]
# numerical stabilization
sigma = symmetrize(sigma) + 1e-16 * np.eye(self.output_dim)
assert np.allclose(sigma, sigma.T)
assert np.all(np.linalg.eigvalsh(sigma) > 0.)
lmbdas[k] = np.linalg.inv(sigma)
self.As = As
self.lmbdas = lmbdas
class TiedLinearGaussiansWithPrecision(StackedLinearGaussiansWithPrecision):
def __init__(self, size, column_dim, row_dim,
As=None, lmbdas=None, affine=True):
super(TiedLinearGaussiansWithPrecision, self).__init__(size, column_dim, row_dim,
As, lmbdas, affine)
# Max likelihood
def max_likelihood(self, x, y, weights):
yxTk, xxTk, yyT, n = self.weighted_statistics(x, y, weights)
As = np.zeros((self.size, self.column_dim, self.row_dim))
sigma = np.zeros((self.output_dim, self.output_dim))
sigma = yyT
for k in range(self.size):
As[k] = np.linalg.solve(xxTk[k], yxTk[k].T).T
sigma -= As[k].dot(yxTk[k].T)
sigma /= n
# numerical stabilization
sigma = symmetrize(sigma) + 1e-16 * np.eye(self.output_dim)
assert np.allclose(sigma, sigma.T)
assert np.all(np.linalg.eigvalsh(sigma) > 0.)
self.As = As
lmbda = np.linalg.inv(sigma)
self.lmbdas = np.array(self.size * [lmbda])
class LinearGaussianWithDiagonalPrecision:
def __init__(self, column_dim, row_dim,
A=None, lmbda_diag=None, affine=True):
self.column_dim = column_dim
self.row_dim = row_dim
self.A = A
self.affine = affine
self._lmbda_diag = lmbda_diag
self._lmbda_chol = None
self._lmbda_chol_inv = None
@property
def params(self):
return self.A, self.lmbda_diag
@params.setter
def params(self, values):
self.A, self.lmbda_diag = values
@property
def nb_params(self):
return self.column_dim * self.row_dim + self.row_dim
@property
def input_dim(self):
return self.column_dim - 1 if self.affine\
else self.column_dim
@property
def output_dim(self):
return self.row_dim
@property
def lmbda_diag(self):
return self._lmbda_diag
@lmbda_diag.setter
def lmbda_diag(self, value):
self._lmbda_diag = value
self._lmbda_chol = None
self._lmbda_chol_inv = None
@property
def lmbda(self):
assert self._lmbda_diag is not None
return np.diag(self._lmbda_diag)
@property
def lmbda_chol(self):
if self._lmbda_chol is None:
self._lmbda_chol = np.diag(np.sqrt(self.lmbda_diag))
return self._lmbda_chol
@property
def lmbda_chol_inv(self):
if self._lmbda_chol_inv is None:
self._lmbda_chol_inv = np.diag(1. / np.sqrt(self.lmbda_diag))
return self._lmbda_chol_inv
@property
def sigma_diag(self):
return 1. / self.lmbda_diag
@property
def sigma(self):
return np.diag(self.sigma_diag)
def predict(self, x):
if self.affine:
A, b = self.A[:, :-1], self.A[:, -1]
y = np.einsum('dl,...l->...d', A, x, optimize=True) + b.T
else:
y = np.einsum('dl,...l->...d', self.A, x, optimize=True)
return y
def mean(self, x):
return self.predict(x)
def mode(self, x):
return self.predict(x)
def rvs(self, x):
return self.mean(x) + npr.normal(size=self.output_dim).dot(self.lmbda_chol_inv.T)
@property
def base(self):
return np.power(2. * np.pi, - self.output_dim / 2.)
def log_base(self):
return np.log(self.base)
def statistics(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y = x[idx], y[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
xxT = np.einsum('nd,nl->dl', x, x, optimize=True)
yxT = np.einsum('nd,nl->dl', y, x, optimize=True)
yy = np.einsum('nd,nd->d', y, y, optimize=True)
nd = np.broadcast_to(y.shape[0], (self.output_dim, ))
return Stats([yxT, xxT, nd, yy])
else:
stats = list(map(self.statistics, x, y))
return reduce(add, stats)
def weighted_statistics(self, x, y, weights):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y, weights = x[idx], y[idx], weights[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
xxT = np.einsum('nd,n,nl->dl', x, weights, x, optimize=True)
yxT = np.einsum('nd,n,nl->dl', y, weights, x, optimize=True)
yy = np.einsum('nd,n,nd->d', y, weights, y, optimize=True)
nd = np.broadcast_to(np.sum(weights), (self.output_dim, ))
return Stats([yxT, xxT, nd, yy])
else:
stats = list(map(self.weighted_statistics, x, y, weights))
return reduce(add, stats)
def log_partition(self, x):
mu = self.predict(x)
return 0.5 * np.einsum('nd,dl,nl->n', mu, self.lmbda, mu)\
- np.sum(np.log(np.diag(self.lmbda_chol)))
def log_likelihood(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
bads = np.logical_and(np.isnan(np.atleast_2d(x)).any(axis=1),
np.isnan(np.atleast_2d(y)).any(axis=1))
x = np.nan_to_num(x, copy=False).reshape((-1, self.input_dim))
y = np.nan_to_num(y, copy=False).reshape((-1, self.output_dim))
mu = self.mean(x)
log_lik = np.einsum('nd,dl,nl->n', mu, self.lmbda, y, optimize=True) \
- 0.5 * np.einsum('nd,dl,nl->n', y, self.lmbda, y, optimize=True)
log_lik[bads] = 0.
log_lik += - self.log_partition(x) + self.log_base()
return log_lik
else:
return list(map(self.log_likelihood, x, y))
# Max likelihood
def max_likelihood(self, x, y, weights=None):
yxT, xxT, nd, yy = self.statistics(x, y) if weights is None\
else self.weighted_statistics(x, y, weights)
self.A = np.linalg.solve(xxT, yxT.T).T
sigmas = (yy - np.einsum('dl,dl->d', self.A, yxT)) / nd
self.lmbda_diag = 1. / sigmas
class StackedLinearGaussiansWithDiagonalPrecision:
def __init__(self, size, column_dim, row_dim,
As=None, lmbdas_diags=None, affine=True):
self.size = size
self.column_dim = column_dim
self.row_dim = row_dim
self.affine = affine
As = [None] * self.size if As is None else As
lmbdas_diags = [None] * self.size if lmbdas_diags is None else lmbdas_diags
self.dists = [LinearGaussianWithDiagonalPrecision(column_dim, row_dim,
As[k], lmbdas_diags[k],
affine=affine)
for k in range(self.size)]
@property
def params(self):
return self.As, self.lmbdas_diags
@params.setter
def params(self, values):
self.As, self.lmbdas_diags = values
@property
def input_dim(self):
return self.column_dim - 1 if self.affine\
else self.column_dim
@property
def output_dim(self):
return self.row_dim
@property
def As(self):
return np.array([dist.A for dist in self.dists])
@As.setter
def As(self, value):
for k, dist in enumerate(self.dists):
dist.A = value[k]
@property
def lmbdas_diags(self):
return np.array([dist.lmbda_diag for dist in self.dists])
@lmbdas_diags.setter
def lmbdas_diags(self, value):
for k, dist in enumerate(self.dists):
dist.lmbda_diag = value[k]
@property
def lmbdas(self):
return np.array([dist.lmbda for dist in self.dists])
@property
def lmbdas_chol(self):
return np.array([dist.lmbda_chol for dist in self.dists])
@property
def lmbdas_chol_inv(self):
return np.array([dist.lmbda_chol_inv for dist in self.dists])
@property
def sigmas_diag(self):
return np.array([dist.sigma_diag for dist in self.dists])
@property
def sigmas(self):
return np.array([dist.sigma for dist in self.dists])
def predict(self, x):
if self.affine:
As, bs = self.As[:, :, :-1], self.As[:, :, -1]
y = np.einsum('kdl,...l->...kd', As, x, optimize=True) + bs[None, ...]
else:
y = np.einsum('kdl,...l->...kd', self.As, x, optimize=True)
return y
def mean(self, x):
return self.predict(x)
def mode(self, x):
return self.predict(x)
def rvs(self, x):
return np.array([dist.rvs(x) for dist in self.dists])
@property
def base(self):
return np.array([dist.base for dist in self.dists])
def log_base(self):
return np.log(self.base)
def statistics(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y = x[idx], y[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
xxT = np.einsum('nd,nl->dl', x, x, optimize=True)
yxT = np.einsum('nd,nl->dl', y, x, optimize=True)
yy = np.einsum('nd,nd->d', y, y, optimize=True)
nd = np.broadcast_to(y.shape[0], (self.output_dim, ))
xxTk = np.array([xxT for _ in range(self.size)])
yxTk = np.array([yxT for _ in range(self.size)])
yyk = np.array([yy for _ in range(self.size)])
ndk = np.array([nd for _ in range(self.size)])
return Stats([yxTk, xxTk, ndk, yyk])
else:
stats = list(map(self.statistics, x, y))
return reduce(add, stats)
def weighted_statistics(self, x, y, weights):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
idx = np.logical_and(~np.isnan(x).any(axis=1),
~np.isnan(y).any(axis=1))
x, y, weights = x[idx], y[idx], weights[idx]
if self.affine:
x = np.hstack((x, np.ones((x.shape[0], 1))))
xxTk = np.einsum('nd,nk,nl->kdl', x, weights, x, optimize=True)
yxTk = np.einsum('nd,nk,nl->kdl', y, weights, x, optimize=True)
yyk = np.einsum('nd,nk,nd->kd', y, weights, y, optimize=True)
ndk = np.broadcast_to(np.sum(weights, axis=0, keepdims=True),
(self.size, self.output_dim))
return Stats([yxTk, xxTk, ndk, yyk])
else:
stats = list(map(self.weighted_statistics, x, y, weights))
return reduce(add, stats)
def log_partition(self, x):
return np.array([dist.log_partition(x) for dist in self.dists]).T
def log_likelihood(self, x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
bads = np.logical_and(np.isnan(np.atleast_2d(x)).any(axis=1),
np.isnan(np.atleast_2d(y)).any(axis=1))
x = np.nan_to_num(x, copy=False).reshape((-1, self.input_dim))
y = np.nan_to_num(y, copy=False).reshape((-1, self.output_dim))
mu = self.mean(x)
log_lik = | np.einsum('nkd,kdl,nl->nk', mu, self.lmbdas, y, optimize=True) | numpy.einsum |
from sys import getsizeof
from typing import (
TYPE_CHECKING,
Any,
Callable,
Hashable,
Iterable,
List,
Optional,
Sequence,
Tuple,
Union,
)
import warnings
import numpy as np
from my_happy_pandas._config import get_option
from my_happy_pandas._libs import algos as libalgos, index as libindex, lib
from my_happy_pandas._libs.hashtable import duplicated_int64
from my_happy_pandas._typing import AnyArrayLike, Scalar
from my_happy_pandas.compat.numpy import function as nv
from my_happy_pandas.errors import InvalidIndexError, PerformanceWarning, UnsortedIndexError
from my_happy_pandas.util._decorators import Appender, cache_readonly, doc
from my_happy_pandas.core.dtypes.cast import coerce_indexer_dtype
from my_happy_pandas.core.dtypes.common import (
ensure_int64,
ensure_platform_int,
is_categorical_dtype,
is_hashable,
is_integer,
is_iterator,
is_list_like,
is_object_dtype,
is_scalar,
pandas_dtype,
)
from my_happy_pandas.core.dtypes.dtypes import ExtensionDtype
from my_happy_pandas.core.dtypes.generic import ABCDataFrame, ABCDatetimeIndex, ABCTimedeltaIndex
from my_happy_pandas.core.dtypes.missing import array_equivalent, isna
import my_happy_pandas.core.algorithms as algos
from my_happy_pandas.core.arrays import Categorical
from my_happy_pandas.core.arrays.categorical import factorize_from_iterables
import my_happy_pandas.core.common as com
import my_happy_pandas.core.indexes.base as ibase
from my_happy_pandas.core.indexes.base import Index, _index_shared_docs, ensure_index
from my_happy_pandas.core.indexes.frozen import FrozenList
from my_happy_pandas.core.indexes.numeric import Int64Index
import my_happy_pandas.core.missing as missing
from my_happy_pandas.core.sorting import (
get_group_index,
indexer_from_factorized,
lexsort_indexer,
)
from my_happy_pandas.io.formats.printing import (
format_object_attrs,
format_object_summary,
pprint_thing,
)
if TYPE_CHECKING:
from my_happy_pandas import Series # noqa:F401
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update(
dict(klass="MultiIndex", target_klass="MultiIndex or list of tuples")
)
class MultiIndexUIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.UInt64Engine):
"""
This class manages a MultiIndex by mapping label combinations to positive
integers.
"""
_base = libindex.UInt64Engine
def _codes_to_ints(self, codes):
"""
Transform combination(s) of uint64 in one uint64 (each), in a strictly
monotonic way (i.e. respecting the lexicographic order of integer
combinations): see BaseMultiIndexCodesEngine documentation.
Parameters
----------
codes : 1- or 2-dimensional array of dtype uint64
Combinations of integers (one per row)
Returns
-------
scalar or 1-dimensional array, of dtype uint64
Integer(s) representing one combination (each).
"""
# Shift the representation of each level by the pre-calculated number
# of bits:
codes <<= self.offsets
# Now sum and OR are in fact interchangeable. This is a simple
# composition of the (disjunct) significant bits of each level (i.e.
# each column in "codes") in a single positive integer:
if codes.ndim == 1:
# Single key
return np.bitwise_or.reduce(codes)
# Multiple keys
return np.bitwise_or.reduce(codes, axis=1)
class MultiIndexPyIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.ObjectEngine):
"""
This class manages those (extreme) cases in which the number of possible
label combinations overflows the 64 bits integers, and uses an ObjectEngine
containing Python integers.
"""
_base = libindex.ObjectEngine
def _codes_to_ints(self, codes):
"""
Transform combination(s) of uint64 in one Python integer (each), in a
strictly monotonic way (i.e. respecting the lexicographic order of
integer combinations): see BaseMultiIndexCodesEngine documentation.
Parameters
----------
codes : 1- or 2-dimensional array of dtype uint64
Combinations of integers (one per row)
Returns
-------
int, or 1-dimensional array of dtype object
Integer(s) representing one combination (each).
"""
# Shift the representation of each level by the pre-calculated number
# of bits. Since this can overflow uint64, first make sure we are
# working with Python integers:
codes = codes.astype("object") << self.offsets
# Now sum and OR are in fact interchangeable. This is a simple
# composition of the (disjunct) significant bits of each level (i.e.
# each column in "codes") in a single positive integer (per row):
if codes.ndim == 1:
# Single key
return np.bitwise_or.reduce(codes)
# Multiple keys
return np.bitwise_or.reduce(codes, axis=1)
class MultiIndex(Index):
"""
A multi-level, or hierarchical, index object for pandas objects.
Parameters
----------
levels : sequence of arrays
The unique labels for each level.
codes : sequence of arrays
Integers for each level designating which label at each location.
.. versionadded:: 0.24.0
sortorder : optional int
Level of sortedness (must be lexicographically sorted by that
level).
names : optional sequence of objects
Names for each of the index levels. (name is accepted for compat).
copy : bool, default False
Copy the meta-data.
verify_integrity : bool, default True
Check that the levels/codes are consistent and valid.
Attributes
----------
names
levels
codes
nlevels
levshape
Methods
-------
from_arrays
from_tuples
from_product
from_frame
set_levels
set_codes
to_frame
to_flat_index
is_lexsorted
sortlevel
droplevel
swaplevel
reorder_levels
remove_unused_levels
get_locs
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_product : Create a MultiIndex from the cartesian product
of iterables.
MultiIndex.from_tuples : Convert list of tuples to a MultiIndex.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Index : The base pandas Index type.
Notes
-----
See the `user guide
<https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html>`_
for more.
Examples
--------
A new ``MultiIndex`` is typically constructed using one of the helper
methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product`
and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``):
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
See further examples for how to construct a MultiIndex in the doc strings
of the mentioned helper methods.
"""
_deprecations = Index._deprecations | frozenset()
# initialize to zero-length tuples to make everything work
_typ = "multiindex"
_names = FrozenList()
_levels = FrozenList()
_codes = FrozenList()
_comparables = ["names"]
rename = Index.set_names
_tuples = None
sortorder: Optional[int]
# --------------------------------------------------------------------
# Constructors
def __new__(
cls,
levels=None,
codes=None,
sortorder=None,
names=None,
dtype=None,
copy=False,
name=None,
verify_integrity: bool = True,
_set_identity: bool = True,
):
# compat with Index
if name is not None:
names = name
if levels is None or codes is None:
raise TypeError("Must pass both levels and codes")
if len(levels) != len(codes):
raise ValueError("Length of levels and codes must be the same.")
if len(levels) == 0:
raise ValueError("Must pass non-zero number of levels/codes")
result = object.__new__(MultiIndex)
result._cache = {}
# we've already validated levels and codes, so shortcut here
result._set_levels(levels, copy=copy, validate=False)
result._set_codes(codes, copy=copy, validate=False)
result._names = [None] * len(levels)
if names is not None:
# handles name validation
result._set_names(names)
if sortorder is not None:
result.sortorder = int(sortorder)
else:
result.sortorder = sortorder
if verify_integrity:
new_codes = result._verify_integrity()
result._codes = new_codes
if _set_identity:
result._reset_identity()
return result
def _validate_codes(self, level: List, code: List):
"""
Reassign code values as -1 if their corresponding levels are NaN.
Parameters
----------
code : list
Code to reassign.
level : list
Level to check for missing values (NaN, NaT, None).
Returns
-------
new code where code value = -1 if it corresponds
to a level with missing values (NaN, NaT, None).
"""
null_mask = isna(level)
if np.any(null_mask):
code = np.where(null_mask[code], -1, code)
return code
def _verify_integrity(
self, codes: Optional[List] = None, levels: Optional[List] = None
):
"""
Parameters
----------
codes : optional list
Codes to check for validity. Defaults to current codes.
levels : optional list
Levels to check for validity. Defaults to current levels.
Raises
------
ValueError
If length of levels and codes don't match, if the codes for any
level would exceed level bounds, or there are any duplicate levels.
Returns
-------
new codes where code value = -1 if it corresponds to a
NaN level.
"""
# NOTE: Currently does not check, among other things, that cached
# nlevels matches nor that sortorder matches actually sortorder.
codes = codes or self.codes
levels = levels or self.levels
if len(levels) != len(codes):
raise ValueError(
"Length of levels and codes must match. NOTE: "
"this index is in an inconsistent state."
)
codes_length = len(codes[0])
for i, (level, level_codes) in enumerate(zip(levels, codes)):
if len(level_codes) != codes_length:
raise ValueError(
f"Unequal code lengths: {[len(code_) for code_ in codes]}"
)
if len(level_codes) and level_codes.max() >= len(level):
raise ValueError(
f"On level {i}, code max ({level_codes.max()}) >= length of "
f"level ({len(level)}). NOTE: this index is in an "
"inconsistent state"
)
if len(level_codes) and level_codes.min() < -1:
raise ValueError(f"On level {i}, code value ({level_codes.min()}) < -1")
if not level.is_unique:
raise ValueError(
f"Level values must be unique: {list(level)} on level {i}"
)
if self.sortorder is not None:
if self.sortorder > self._lexsort_depth():
raise ValueError(
"Value for sortorder must be inferior or equal to actual "
f"lexsort_depth: sortorder {self.sortorder} "
f"with lexsort_depth {self._lexsort_depth()}"
)
codes = [
self._validate_codes(level, code) for level, code in zip(levels, codes)
]
new_codes = FrozenList(codes)
return new_codes
@classmethod
def from_arrays(cls, arrays, sortorder=None, names=lib.no_default) -> "MultiIndex":
"""
Convert arrays to MultiIndex.
Parameters
----------
arrays : list / sequence of array-likes
Each array-like gives one level's value for each data point.
len(arrays) is the number of levels.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
MultiIndex
See Also
--------
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
"""
error_msg = "Input must be a list / sequence of array-likes."
if not is_list_like(arrays):
raise TypeError(error_msg)
elif is_iterator(arrays):
arrays = list(arrays)
# Check if elements of array are list-like
for array in arrays:
if not is_list_like(array):
raise TypeError(error_msg)
# Check if lengths of all arrays are equal or not,
# raise ValueError, if not
for i in range(1, len(arrays)):
if len(arrays[i]) != len(arrays[i - 1]):
raise ValueError("all arrays must be same length")
codes, levels = factorize_from_iterables(arrays)
if names is lib.no_default:
names = [getattr(arr, "name", None) for arr in arrays]
return MultiIndex(
levels=levels,
codes=codes,
sortorder=sortorder,
names=names,
verify_integrity=False,
)
@classmethod
def from_tuples(cls, tuples, sortorder=None, names=None):
"""
Convert list of tuples to MultiIndex.
Parameters
----------
tuples : list / sequence of tuple-likes
Each tuple is the index of one row/column.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
"""
if not is_list_like(tuples):
raise TypeError("Input must be a list / sequence of tuple-likes.")
elif is_iterator(tuples):
tuples = list(tuples)
if len(tuples) == 0:
if names is None:
raise TypeError("Cannot infer number of levels from empty list")
arrays = [[]] * len(names)
elif isinstance(tuples, (np.ndarray, Index)):
if isinstance(tuples, Index):
tuples = tuples._values
arrays = list(lib.tuples_to_object_array(tuples).T)
elif isinstance(tuples, list):
arrays = list(lib.to_object_array_tuples(tuples).T)
else:
arrays = zip(*tuples)
return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
@classmethod
def from_product(cls, iterables, sortorder=None, names=lib.no_default):
"""
Make a MultiIndex from the cartesian product of multiple iterables.
Parameters
----------
iterables : list / sequence of iterables
Each iterable has unique labels for each level of the index.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
.. versionchanged:: 1.0.0
If not explicitly provided, names will be inferred from the
elements of iterables if an element has a name attribute
Returns
-------
MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> numbers = [0, 1, 2]
>>> colors = ['green', 'purple']
>>> pd.MultiIndex.from_product([numbers, colors],
... names=['number', 'color'])
MultiIndex([(0, 'green'),
(0, 'purple'),
(1, 'green'),
(1, 'purple'),
(2, 'green'),
(2, 'purple')],
names=['number', 'color'])
"""
from my_happy_pandas.core.reshape.util import cartesian_product
if not is_list_like(iterables):
raise TypeError("Input must be a list / sequence of iterables.")
elif is_iterator(iterables):
iterables = list(iterables)
codes, levels = factorize_from_iterables(iterables)
if names is lib.no_default:
names = [getattr(it, "name", None) for it in iterables]
# codes are all ndarrays, so cartesian_product is lossless
codes = cartesian_product(codes)
return MultiIndex(levels, codes, sortorder=sortorder, names=names)
@classmethod
def from_frame(cls, df, sortorder=None, names=None):
"""
Make a MultiIndex from a DataFrame.
.. versionadded:: 0.24.0
Parameters
----------
df : DataFrame
DataFrame to be converted to MultiIndex.
sortorder : int, optional
Level of sortedness (must be lexicographically sorted by that
level).
names : list-like, optional
If no names are provided, use the column names, or tuple of column
names if the columns is a MultiIndex. If a sequence, overwrite
names with the given sequence.
Returns
-------
MultiIndex
The MultiIndex representation of the given DataFrame.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
Examples
--------
>>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
... ['NJ', 'Temp'], ['NJ', 'Precip']],
... columns=['a', 'b'])
>>> df
a b
0 HI Temp
1 HI Precip
2 NJ Temp
3 NJ Precip
>>> pd.MultiIndex.from_frame(df)
MultiIndex([('HI', 'Temp'),
('HI', 'Precip'),
('NJ', 'Temp'),
('NJ', 'Precip')],
names=['a', 'b'])
Using explicit names, instead of the column names
>>> pd.MultiIndex.from_frame(df, names=['state', 'observation'])
MultiIndex([('HI', 'Temp'),
('HI', 'Precip'),
('NJ', 'Temp'),
('NJ', 'Precip')],
names=['state', 'observation'])
"""
if not isinstance(df, ABCDataFrame):
raise TypeError("Input must be a DataFrame")
column_names, columns = zip(*df.items())
names = column_names if names is None else names
return cls.from_arrays(columns, sortorder=sortorder, names=names)
# --------------------------------------------------------------------
@property
def _values(self):
# We override here, since our parent uses _data, which we don't use.
return self.values
@property
def values(self):
if self._tuples is not None:
return self._tuples
values = []
for i in range(self.nlevels):
vals = self._get_level_values(i)
if is_categorical_dtype(vals.dtype):
vals = vals._internal_get_values()
if isinstance(vals.dtype, ExtensionDtype) or isinstance(
vals, (ABCDatetimeIndex, ABCTimedeltaIndex)
):
vals = vals.astype(object)
vals = np.array(vals, copy=False)
values.append(vals)
self._tuples = lib.fast_zip(values)
return self._tuples
@property
def array(self):
"""
Raises a ValueError for `MultiIndex` because there's no single
array backing a MultiIndex.
Raises
------
ValueError
"""
raise ValueError(
"MultiIndex has no single backing array. Use "
"'MultiIndex.to_numpy()' to get a NumPy array of tuples."
)
@property
def shape(self):
"""
Return a tuple of the shape of the underlying data.
"""
# overriding the base Index.shape definition to avoid materializing
# the values (GH-27384, GH-27775)
return (len(self),)
def __len__(self) -> int:
return len(self.codes[0])
# --------------------------------------------------------------------
# Levels Methods
@cache_readonly
def levels(self):
# Use cache_readonly to ensure that self.get_locs doesn't repeatedly
# create new IndexEngine
# https://github.com/pandas-dev/pandas/issues/31648
result = [
x._shallow_copy(name=name) for x, name in zip(self._levels, self._names)
]
for level in result:
# disallow midx.levels[0].name = "foo"
level._no_setting_name = True
return FrozenList(result)
def _set_levels(
self, levels, level=None, copy=False, validate=True, verify_integrity=False
):
# This is NOT part of the levels property because it should be
# externally not allowed to set levels. User beware if you change
# _levels directly
if validate:
if len(levels) == 0:
raise ValueError("Must set non-zero number of levels.")
if level is None and len(levels) != self.nlevels:
raise ValueError("Length of levels must match number of levels.")
if level is not None and len(levels) != len(level):
raise ValueError("Length of levels must match length of level.")
if level is None:
new_levels = FrozenList(
ensure_index(lev, copy=copy)._shallow_copy() for lev in levels
)
else:
level_numbers = [self._get_level_number(lev) for lev in level]
new_levels = list(self._levels)
for lev_num, lev in zip(level_numbers, levels):
new_levels[lev_num] = ensure_index(lev, copy=copy)._shallow_copy()
new_levels = FrozenList(new_levels)
if verify_integrity:
new_codes = self._verify_integrity(levels=new_levels)
self._codes = new_codes
names = self.names
self._levels = new_levels
if any(names):
self._set_names(names)
self._tuples = None
self._reset_cache()
def set_levels(self, levels, level=None, inplace=False, verify_integrity=True):
"""
Set new levels on MultiIndex. Defaults to returning new index.
Parameters
----------
levels : sequence or list of sequence
New level(s) to apply.
level : int, level name, or sequence of int/level names (default None)
Level(s) to set (None for all levels).
inplace : bool
If True, mutates in place.
verify_integrity : bool, default True
If True, checks that levels and codes are compatible.
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples(
... [
... (1, "one"),
... (1, "two"),
... (2, "one"),
... (2, "two"),
... (3, "one"),
... (3, "two")
... ],
... names=["foo", "bar"]
... )
>>> idx
MultiIndex([(1, 'one'),
(1, 'two'),
(2, 'one'),
(2, 'two'),
(3, 'one'),
(3, 'two')],
names=['foo', 'bar'])
>>> idx.set_levels([['a', 'b', 'c'], [1, 2]])
MultiIndex([('a', 1),
('a', 2),
('b', 1),
('b', 2),
('c', 1),
('c', 2)],
names=['foo', 'bar'])
>>> idx.set_levels(['a', 'b', 'c'], level=0)
MultiIndex([('a', 'one'),
('a', 'two'),
('b', 'one'),
('b', 'two'),
('c', 'one'),
('c', 'two')],
names=['foo', 'bar'])
>>> idx.set_levels(['a', 'b'], level='bar')
MultiIndex([(1, 'a'),
(1, 'b'),
(2, 'a'),
(2, 'b'),
(3, 'a'),
(3, 'b')],
names=['foo', 'bar'])
If any of the levels passed to ``set_levels()`` exceeds the
existing length, all of the values from that argument will
be stored in the MultiIndex levels, though the values will
be truncated in the MultiIndex output.
>>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1])
MultiIndex([('a', 1),
('a', 2),
('b', 1),
('b', 2),
('c', 1),
('c', 2)],
names=['foo', 'bar'])
>>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]).levels
FrozenList([['a', 'b', 'c'], [1, 2, 3, 4]])
"""
if is_list_like(levels) and not isinstance(levels, Index):
levels = list(levels)
if level is not None and not is_list_like(level):
if not is_list_like(levels):
raise TypeError("Levels must be list-like")
if is_list_like(levels[0]):
raise TypeError("Levels must be list-like")
level = [level]
levels = [levels]
elif level is None or is_list_like(level):
if not is_list_like(levels) or not is_list_like(levels[0]):
raise TypeError("Levels must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_levels(
levels, level=level, validate=True, verify_integrity=verify_integrity
)
if not inplace:
return idx
@property
def nlevels(self) -> int:
"""
Integer number of levels in this MultiIndex.
"""
return len(self._levels)
@property
def levshape(self):
"""
A tuple with the length of each level.
"""
return tuple(len(x) for x in self.levels)
# --------------------------------------------------------------------
# Codes Methods
@property
def codes(self):
return self._codes
def _set_codes(
self, codes, level=None, copy=False, validate=True, verify_integrity=False
):
if validate:
if level is None and len(codes) != self.nlevels:
raise ValueError("Length of codes must match number of levels")
if level is not None and len(codes) != len(level):
raise ValueError("Length of codes must match length of levels.")
if level is None:
new_codes = FrozenList(
_coerce_indexer_frozen(level_codes, lev, copy=copy).view()
for lev, level_codes in zip(self._levels, codes)
)
else:
level_numbers = [self._get_level_number(lev) for lev in level]
new_codes = list(self._codes)
for lev_num, level_codes in zip(level_numbers, codes):
lev = self.levels[lev_num]
new_codes[lev_num] = _coerce_indexer_frozen(level_codes, lev, copy=copy)
new_codes = FrozenList(new_codes)
if verify_integrity:
new_codes = self._verify_integrity(codes=new_codes)
self._codes = new_codes
self._tuples = None
self._reset_cache()
def set_codes(self, codes, level=None, inplace=False, verify_integrity=True):
"""
Set new codes on MultiIndex. Defaults to returning new index.
.. versionadded:: 0.24.0
New name for deprecated method `set_labels`.
Parameters
----------
codes : sequence or list of sequence
New codes to apply.
level : int, level name, or sequence of int/level names (default None)
Level(s) to set (None for all levels).
inplace : bool
If True, mutates in place.
verify_integrity : bool (default True)
If True, checks that levels and codes are compatible.
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples(
... [(1, "one"), (1, "two"), (2, "one"), (2, "two")], names=["foo", "bar"]
... )
>>> idx
MultiIndex([(1, 'one'),
(1, 'two'),
(2, 'one'),
(2, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]])
MultiIndex([(2, 'one'),
(1, 'one'),
(2, 'two'),
(1, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([1, 0, 1, 0], level=0)
MultiIndex([(2, 'one'),
(1, 'two'),
(2, 'one'),
(1, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([0, 0, 1, 1], level='bar')
MultiIndex([(1, 'one'),
(1, 'one'),
(2, 'two'),
(2, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]], level=[0, 1])
MultiIndex([(2, 'one'),
(1, 'one'),
(2, 'two'),
(1, 'two')],
names=['foo', 'bar'])
"""
if level is not None and not is_list_like(level):
if not is_list_like(codes):
raise TypeError("Codes must be list-like")
if is_list_like(codes[0]):
raise TypeError("Codes must be list-like")
level = [level]
codes = [codes]
elif level is None or is_list_like(level):
if not is_list_like(codes) or not is_list_like(codes[0]):
raise TypeError("Codes must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_codes(codes, level=level, verify_integrity=verify_integrity)
if not inplace:
return idx
# --------------------------------------------------------------------
# Index Internals
@cache_readonly
def _engine(self):
# Calculate the number of bits needed to represent labels in each
# level, as log2 of their sizes (including -1 for NaN):
sizes = np.ceil(np.log2([len(l) + 1 for l in self.levels]))
# Sum bit counts, starting from the _right_....
lev_bits = np.cumsum(sizes[::-1])[::-1]
# ... in order to obtain offsets such that sorting the combination of
# shifted codes (one for each level, resulting in a unique integer) is
# equivalent to sorting lexicographically the codes themselves. Notice
# that each level needs to be shifted by the number of bits needed to
# represent the _previous_ ones:
offsets = np.concatenate([lev_bits[1:], [0]]).astype("uint64")
# Check the total number of bits needed for our representation:
if lev_bits[0] > 64:
# The levels would overflow a 64 bit uint - use Python integers:
return MultiIndexPyIntEngine(self.levels, self.codes, offsets)
return MultiIndexUIntEngine(self.levels, self.codes, offsets)
@property
def _constructor(self):
return MultiIndex.from_tuples
@doc(Index._shallow_copy)
def _shallow_copy(
self,
values=None,
name=lib.no_default,
levels=None,
codes=None,
dtype=None,
sortorder=None,
names=lib.no_default,
_set_identity: bool = True,
):
if names is not lib.no_default and name is not lib.no_default:
raise TypeError("Can only provide one of `names` and `name`")
elif names is lib.no_default:
names = name if name is not lib.no_default else self.names
if values is not None:
assert levels is None and codes is None and dtype is None
return MultiIndex.from_tuples(values, sortorder=sortorder, names=names)
levels = levels if levels is not None else self.levels
codes = codes if codes is not None else self.codes
result = MultiIndex(
levels=levels,
codes=codes,
dtype=dtype,
sortorder=sortorder,
names=names,
verify_integrity=False,
_set_identity=_set_identity,
)
result._cache = self._cache.copy()
result._cache.pop("levels", None) # GH32669
return result
def symmetric_difference(self, other, result_name=None, sort=None):
# On equal symmetric_difference MultiIndexes the difference is empty.
# Therefore, an empty MultiIndex is returned GH13490
tups = Index.symmetric_difference(self, other, result_name, sort)
if len(tups) == 0:
return MultiIndex(
levels=[[] for _ in range(self.nlevels)],
codes=[[] for _ in range(self.nlevels)],
names=tups.name,
)
return type(self).from_tuples(tups, names=tups.name)
# --------------------------------------------------------------------
def copy(
self,
names=None,
dtype=None,
levels=None,
codes=None,
deep=False,
name=None,
_set_identity=False,
):
"""
Make a copy of this object. Names, dtype, levels and codes can be
passed and will be set on new copy.
Parameters
----------
names : sequence, optional
dtype : numpy dtype or pandas type, optional
levels : sequence, optional
codes : sequence, optional
deep : bool, default False
name : Label
Kept for compatibility with 1-dimensional Index. Should not be used.
Returns
-------
MultiIndex
Notes
-----
In most cases, there should be no functional difference from using
``deep``, but if ``deep`` is passed it will attempt to deepcopy.
This could be potentially expensive on large MultiIndex objects.
"""
names = self._validate_names(name=name, names=names, deep=deep)
if deep:
from copy import deepcopy
if levels is None:
levels = deepcopy(self.levels)
if codes is None:
codes = deepcopy(self.codes)
return self._shallow_copy(
levels=levels,
codes=codes,
names=names,
dtype=dtype,
sortorder=self.sortorder,
_set_identity=_set_identity,
)
def __array__(self, dtype=None) -> np.ndarray:
""" the array interface, return my values """
return self.values
def view(self, cls=None):
""" this is defined as a copy with the same identity """
result = self.copy()
result._id = self._id
return result
@doc(Index.__contains__)
def __contains__(self, key: Any) -> bool:
hash(key)
try:
self.get_loc(key)
return True
except (LookupError, TypeError, ValueError):
return False
@cache_readonly
def dtype(self) -> np.dtype:
return np.dtype("O")
def _is_memory_usage_qualified(self) -> bool:
""" return a boolean if we need a qualified .info display """
def f(l):
return "mixed" in l or "string" in l or "unicode" in l
return any(f(l) for l in self._inferred_type_levels)
@doc(Index.memory_usage)
def memory_usage(self, deep: bool = False) -> int:
# we are overwriting our base class to avoid
# computing .values here which could materialize
# a tuple representation unnecessarily
return self._nbytes(deep)
@cache_readonly
def nbytes(self) -> int:
""" return the number of bytes in the underlying data """
return self._nbytes(False)
def _nbytes(self, deep: bool = False) -> int:
"""
return the number of bytes in the underlying data
deeply introspect the level data if deep=True
include the engine hashtable
*this is in internal routine*
"""
# for implementations with no useful getsizeof (PyPy)
objsize = 24
level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels)
label_nbytes = sum(i.nbytes for i in self.codes)
names_nbytes = sum(getsizeof(i, objsize) for i in self.names)
result = level_nbytes + label_nbytes + names_nbytes
# include our engine hashtable
result += self._engine.sizeof(deep=deep)
return result
# --------------------------------------------------------------------
# Rendering Methods
def _formatter_func(self, tup):
"""
Formats each item in tup according to its level's formatter function.
"""
formatter_funcs = [level._formatter_func for level in self.levels]
return tuple(func(val) for func, val in zip(formatter_funcs, tup))
def _format_data(self, name=None):
"""
Return the formatted data as a unicode string
"""
return format_object_summary(
self, self._formatter_func, name=name, line_break_each_value=True
)
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value).
"""
return format_object_attrs(self, include_dtype=False)
def _format_native_types(self, na_rep="nan", **kwargs):
new_levels = []
new_codes = []
# go through the levels and format them
for level, level_codes in zip(self.levels, self.codes):
level = level._format_native_types(na_rep=na_rep, **kwargs)
# add nan values, if there are any
mask = level_codes == -1
if mask.any():
nan_index = len(level)
level = np.append(level, na_rep)
assert not level_codes.flags.writeable # i.e. copy is needed
level_codes = level_codes.copy() # make writeable
level_codes[mask] = nan_index
new_levels.append(level)
new_codes.append(level_codes)
if len(new_levels) == 1:
# a single-level multi-index
return Index(new_levels[0].take(new_codes[0]))._format_native_types()
else:
# reconstruct the multi-index
mi = MultiIndex(
levels=new_levels,
codes=new_codes,
names=self.names,
sortorder=self.sortorder,
verify_integrity=False,
)
return mi._values
def format(
self,
name: Optional[bool] = None,
formatter: Optional[Callable] = None,
na_rep: Optional[str] = None,
names: bool = False,
space: int = 2,
sparsify=None,
adjoin: bool = True,
) -> List:
if name is not None:
names = name
if len(self) == 0:
return []
stringified_levels = []
for lev, level_codes in zip(self.levels, self.codes):
na = na_rep if na_rep is not None else _get_na_rep(lev.dtype.type)
if len(lev) > 0:
formatted = lev.take(level_codes).format(formatter=formatter)
# we have some NA
mask = level_codes == -1
if mask.any():
formatted = np.array(formatted, dtype=object)
formatted[mask] = na
formatted = formatted.tolist()
else:
# weird all NA case
formatted = [
pprint_thing(na if isna(x) else x, escape_chars=("\t", "\r", "\n"))
for x in algos.take_1d(lev._values, level_codes)
]
stringified_levels.append(formatted)
result_levels = []
for lev, lev_name in zip(stringified_levels, self.names):
level = []
if names:
level.append(
pprint_thing(lev_name, escape_chars=("\t", "\r", "\n"))
if lev_name is not None
else ""
)
level.extend(np.array(lev, dtype=object))
result_levels.append(level)
if sparsify is None:
sparsify = get_option("display.multi_sparse")
if sparsify:
sentinel = ""
# GH3547 use value of sparsify as sentinel if it's "Falsey"
assert isinstance(sparsify, bool) or sparsify is lib.no_default
if sparsify in [False, lib.no_default]:
sentinel = sparsify
# little bit of a kludge job for #1217
result_levels = _sparsify(
result_levels, start=int(names), sentinel=sentinel
)
if adjoin:
from my_happy_pandas.io.formats.format import _get_adjustment
adj = _get_adjustment()
return adj.adjoin(space, *result_levels).split("\n")
else:
return result_levels
# --------------------------------------------------------------------
# Names Methods
def _get_names(self):
return FrozenList(self._names)
def _set_names(self, names, level=None, validate=True):
"""
Set new names on index. Each name has to be a hashable type.
Parameters
----------
values : str or sequence
name(s) to set
level : int, level name, or sequence of int/level names (default None)
If the index is a MultiIndex (hierarchical), level(s) to set (None
for all levels). Otherwise level must be None
validate : boolean, default True
validate that the names match level lengths
Raises
------
TypeError if each name is not hashable.
Notes
-----
sets names on levels. WARNING: mutates!
Note that you generally want to set this *after* changing levels, so
that it only acts on copies
"""
# GH 15110
# Don't allow a single string for names in a MultiIndex
if names is not None and not is_list_like(names):
raise ValueError("Names should be list-like for a MultiIndex")
names = list(names)
if validate:
if level is not None and len(names) != len(level):
raise ValueError("Length of names must match length of level.")
if level is None and len(names) != self.nlevels:
raise ValueError(
"Length of names must match number of levels in MultiIndex."
)
if level is None:
level = range(self.nlevels)
else:
level = [self._get_level_number(lev) for lev in level]
# set the name
for lev, name in zip(level, names):
if name is not None:
# GH 20527
# All items in 'names' need to be hashable:
if not is_hashable(name):
raise TypeError(
f"{type(self).__name__}.name must be a hashable type"
)
self._names[lev] = name
# If .levels has been accessed, the names in our cache will be stale.
self._reset_cache()
names = property(
fset=_set_names, fget=_get_names, doc="""\nNames of levels in MultiIndex.\n"""
)
# --------------------------------------------------------------------
@doc(Index._get_grouper_for_level)
def _get_grouper_for_level(self, mapper, level):
indexer = self.codes[level]
level_index = self.levels[level]
if mapper is not None:
# Handle group mapping function and return
level_values = self.levels[level].take(indexer)
grouper = level_values.map(mapper)
return grouper, None, None
codes, uniques = algos.factorize(indexer, sort=True)
if len(uniques) > 0 and uniques[0] == -1:
# Handle NAs
mask = indexer != -1
ok_codes, uniques = algos.factorize(indexer[mask], sort=True)
codes = np.empty(len(indexer), dtype=indexer.dtype)
codes[mask] = ok_codes
codes[~mask] = -1
if len(uniques) < len(level_index):
# Remove unobserved levels from level_index
level_index = level_index.take(uniques)
else:
# break references back to us so that setting the name
# on the output of a groupby doesn't reflect back here.
level_index = level_index.copy()
if level_index._can_hold_na:
grouper = level_index.take(codes, fill_value=True)
else:
grouper = level_index.take(codes)
return grouper, codes, level_index
@cache_readonly
def inferred_type(self) -> str:
return "mixed"
def _get_level_number(self, level) -> int:
count = self.names.count(level)
if (count > 1) and not is_integer(level):
raise ValueError(
f"The name {level} occurs multiple times, use a level number"
)
try:
level = self.names.index(level)
except ValueError as err:
if not is_integer(level):
raise KeyError(f"Level {level} not found") from err
elif level < 0:
level += self.nlevels
if level < 0:
orig_level = level - self.nlevels
raise IndexError(
f"Too many levels: Index has only {self.nlevels} levels, "
f"{orig_level} is not a valid level number"
) from err
# Note: levels are zero-based
elif level >= self.nlevels:
raise IndexError(
f"Too many levels: Index has only {self.nlevels} levels, "
f"not {level + 1}"
) from err
return level
@property
def _has_complex_internals(self) -> bool:
# used to avoid libreduction code paths, which raise or require conversion
return True
@cache_readonly
def is_monotonic_increasing(self) -> bool:
"""
return if the index is monotonic increasing (only equal or
increasing) values.
"""
if any(-1 in code for code in self.codes):
return False
if all(level.is_monotonic for level in self.levels):
# If each level is sorted, we can operate on the codes directly. GH27495
return libalgos.is_lexsorted(
[x.astype("int64", copy=False) for x in self.codes]
)
# reversed() because lexsort() wants the most significant key last.
values = [
self._get_level_values(i)._values for i in reversed(range(len(self.levels)))
]
try:
sort_order = np.lexsort(values)
return Index(sort_order).is_monotonic
except TypeError:
# we have mixed types and np.lexsort is not happy
return Index(self._values).is_monotonic
@cache_readonly
def is_monotonic_decreasing(self) -> bool:
"""
return if the index is monotonic decreasing (only equal or
decreasing) values.
"""
# monotonic decreasing if and only if reverse is monotonic increasing
return self[::-1].is_monotonic_increasing
@cache_readonly
def _inferred_type_levels(self):
""" return a list of the inferred types, one for each level """
return [i.inferred_type for i in self.levels]
@doc(Index.duplicated)
def duplicated(self, keep="first"):
shape = map(len, self.levels)
ids = get_group_index(self.codes, shape, sort=False, xnull=False)
return duplicated_int64(ids, keep)
def fillna(self, value=None, downcast=None):
"""
fillna is not implemented for MultiIndex
"""
raise NotImplementedError("isna is not defined for MultiIndex")
@doc(Index.dropna)
def dropna(self, how="any"):
nans = [level_codes == -1 for level_codes in self.codes]
if how == "any":
indexer = np.any(nans, axis=0)
elif how == "all":
indexer = np.all(nans, axis=0)
else:
raise ValueError(f"invalid how option: {how}")
new_codes = [level_codes[~indexer] for level_codes in self.codes]
return self.copy(codes=new_codes, deep=True)
def _get_level_values(self, level, unique=False):
"""
Return vector of label values for requested level,
equal to the length of the index
**this is an internal method**
Parameters
----------
level : int level
unique : bool, default False
if True, drop duplicated values
Returns
-------
values : ndarray
"""
lev = self.levels[level]
level_codes = self.codes[level]
name = self._names[level]
if unique:
level_codes = algos.unique(level_codes)
filled = algos.take_1d(lev._values, level_codes, fill_value=lev._na_value)
return lev._shallow_copy(filled, name=name)
def get_level_values(self, level):
"""
Return vector of label values for requested level.
Length of returned vector is equal to the length of the index.
Parameters
----------
level : int or str
``level`` is either the integer position of the level in the
MultiIndex, or the name of the level.
Returns
-------
values : Index
Values is a level of this MultiIndex converted to
a single :class:`Index` (or subclass thereof).
Examples
--------
Create a MultiIndex:
>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
>>> mi.names = ['level_1', 'level_2']
Get level values by supplying level as either integer or name:
>>> mi.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['d', 'e', 'f'], dtype='object', name='level_2')
"""
level = self._get_level_number(level)
values = self._get_level_values(level)
return values
@doc(Index.unique)
def unique(self, level=None):
if level is None:
return super().unique()
else:
level = self._get_level_number(level)
return self._get_level_values(level=level, unique=True)
def _to_safe_for_reshape(self):
""" convert to object if we are a categorical """
return self.set_levels([i._to_safe_for_reshape() for i in self.levels])
def to_frame(self, index=True, name=None):
"""
Create a DataFrame with the levels of the MultiIndex as columns.
Column ordering is determined by the DataFrame constructor with data as
a dict.
.. versionadded:: 0.24.0
Parameters
----------
index : bool, default True
Set the index of the returned DataFrame as the original MultiIndex.
name : list / sequence of str, optional
The passed names should substitute index level names.
Returns
-------
DataFrame : a DataFrame containing the original MultiIndex data.
See Also
--------
DataFrame : Two-dimensional, size-mutable, potentially heterogeneous
tabular data.
"""
from my_happy_pandas import DataFrame
if name is not None:
if not is_list_like(name):
raise TypeError("'name' must be a list / sequence of column names.")
if len(name) != len(self.levels):
raise ValueError(
"'name' should have same length as number of levels on index."
)
idx_names = name
else:
idx_names = self.names
# Guarantee resulting column order - PY36+ dict maintains insertion order
result = DataFrame(
{
(level if lvlname is None else lvlname): self._get_level_values(level)
for lvlname, level in zip(idx_names, range(len(self.levels)))
},
copy=False,
)
if index:
result.index = self
return result
def to_flat_index(self):
"""
Convert a MultiIndex to an Index of Tuples containing the level values.
.. versionadded:: 0.24.0
Returns
-------
pd.Index
Index with the MultiIndex data represented in Tuples.
Notes
-----
This method will simply return the caller if called by anything other
than a MultiIndex.
Examples
--------
>>> index = pd.MultiIndex.from_product(
... [['foo', 'bar'], ['baz', 'qux']],
... names=['a', 'b'])
>>> index.to_flat_index()
Index([('foo', 'baz'), ('foo', 'qux'),
('bar', 'baz'), ('bar', 'qux')],
dtype='object')
"""
return Index(self._values, tupleize_cols=False)
@property
def is_all_dates(self) -> bool:
return False
def is_lexsorted(self) -> bool:
"""
Return True if the codes are lexicographically sorted.
Returns
-------
bool
Examples
--------
In the below examples, the first level of the MultiIndex is sorted because
a<b<c, so there is no need to look at the next level.
>>> pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['d', 'e', 'f']]).is_lexsorted()
True
>>> pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['d', 'f', 'e']]).is_lexsorted()
True
In case there is a tie, the lexicographical sorting looks
at the next level of the MultiIndex.
>>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'b', 'c']]).is_lexsorted()
True
>>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'c', 'b']]).is_lexsorted()
False
>>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'],
... ['aa', 'bb', 'aa', 'bb']]).is_lexsorted()
True
>>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'],
... ['bb', 'aa', 'aa', 'bb']]).is_lexsorted()
False
"""
return self.lexsort_depth == self.nlevels
@cache_readonly
def lexsort_depth(self):
if self.sortorder is not None:
return self.sortorder
return self._lexsort_depth()
def _lexsort_depth(self) -> int:
"""
Compute and return the lexsort_depth, the number of levels of the
MultiIndex that are sorted lexically
Returns
-------
int
"""
int64_codes = [ensure_int64(level_codes) for level_codes in self.codes]
for k in range(self.nlevels, 0, -1):
if libalgos.is_lexsorted(int64_codes[:k]):
return k
return 0
def _sort_levels_monotonic(self):
"""
This is an *internal* function.
Create a new MultiIndex from the current to monotonically sorted
items IN the levels. This does not actually make the entire MultiIndex
monotonic, JUST the levels.
The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will also
be .equals() to the original.
Returns
-------
MultiIndex
Examples
--------
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi
MultiIndex([('a', 'bb'),
('a', 'aa'),
('b', 'bb'),
('b', 'aa')],
)
>>> mi.sort_values()
MultiIndex([('a', 'aa'),
('a', 'bb'),
('b', 'aa'),
('b', 'bb')],
)
"""
if self.is_lexsorted() and self.is_monotonic:
return self
new_levels = []
new_codes = []
for lev, level_codes in zip(self.levels, self.codes):
if not lev.is_monotonic:
try:
# indexer to reorder the levels
indexer = lev.argsort()
except TypeError:
pass
else:
lev = lev.take(indexer)
# indexer to reorder the level codes
indexer = ensure_int64(indexer)
ri = lib.get_reverse_indexer(indexer, len(indexer))
level_codes = algos.take_1d(ri, level_codes)
new_levels.append(lev)
new_codes.append(level_codes)
return MultiIndex(
new_levels,
new_codes,
names=self.names,
sortorder=self.sortorder,
verify_integrity=False,
)
def remove_unused_levels(self):
"""
Create new MultiIndex from current that removes unused levels.
Unused level(s) means levels that are not expressed in the
labels. The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will
also be .equals() to the original.
Returns
-------
MultiIndex
Examples
--------
>>> mi = pd.MultiIndex.from_product([range(2), list('ab')])
>>> mi
MultiIndex([(0, 'a'),
(0, 'b'),
(1, 'a'),
(1, 'b')],
)
>>> mi[2:]
MultiIndex([(1, 'a'),
(1, 'b')],
)
The 0 from the first level is not represented
and can be removed
>>> mi2 = mi[2:].remove_unused_levels()
>>> mi2.levels
FrozenList([[1], ['a', 'b']])
"""
new_levels = []
new_codes = []
changed = False
for lev, level_codes in zip(self.levels, self.codes):
# Since few levels are typically unused, bincount() is more
# efficient than unique() - however it only accepts positive values
# (and drops order):
uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1
has_na = int(len(uniques) and (uniques[0] == -1))
if len(uniques) != len(lev) + has_na:
# We have unused levels
changed = True
# Recalculate uniques, now preserving order.
# Can easily be cythonized by exploiting the already existing
# "uniques" and stop parsing "level_codes" when all items
# are found:
uniques = algos.unique(level_codes)
if has_na:
na_idx = np.where(uniques == -1)[0]
# Just ensure that -1 is in first position:
uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]]
# codes get mapped from uniques to 0:len(uniques)
# -1 (if present) is mapped to last position
code_mapping = np.zeros(len(lev) + has_na)
# ... and reassigned value -1:
code_mapping[uniques] = np.arange(len(uniques)) - has_na
level_codes = code_mapping[level_codes]
# new levels are simple
lev = lev.take(uniques[has_na:])
new_levels.append(lev)
new_codes.append(level_codes)
result = self.view()
if changed:
result._reset_identity()
result._set_levels(new_levels, validate=False)
result._set_codes(new_codes, validate=False)
return result
# --------------------------------------------------------------------
# Pickling Methods
def __reduce__(self):
"""Necessary for making this object picklable"""
d = dict(
levels=list(self.levels),
codes=list(self.codes),
sortorder=self.sortorder,
names=list(self.names),
)
return ibase._new_Index, (type(self), d), None
# --------------------------------------------------------------------
def __getitem__(self, key):
if is_scalar(key):
key = com.cast_scalar_indexer(key, warn_float=True)
retval = []
for lev, level_codes in zip(self.levels, self.codes):
if level_codes[key] == -1:
retval.append(np.nan)
else:
retval.append(lev[level_codes[key]])
return tuple(retval)
else:
if com.is_bool_indexer(key):
key = np.asarray(key, dtype=bool)
sortorder = self.sortorder
else:
# cannot be sure whether the result will be sorted
sortorder = None
if isinstance(key, Index):
key = np.asarray(key)
new_codes = [level_codes[key] for level_codes in self.codes]
return MultiIndex(
levels=self.levels,
codes=new_codes,
names=self.names,
sortorder=sortorder,
verify_integrity=False,
)
@Appender(_index_shared_docs["take"] % _index_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = ensure_platform_int(indices)
taken = self._assert_take_fillable(
self.codes,
indices,
allow_fill=allow_fill,
fill_value=fill_value,
na_value=-1,
)
return MultiIndex(
levels=self.levels, codes=taken, names=self.names, verify_integrity=False
)
def _assert_take_fillable(
self, values, indices, allow_fill=True, fill_value=None, na_value=None
):
""" Internal method to handle NA filling of take """
# only fill if we are passing a non-None fill_value
if allow_fill and fill_value is not None:
if (indices < -1).any():
msg = (
"When allow_fill=True and fill_value is not None, "
"all indices must be >= -1"
)
raise ValueError(msg)
taken = [lab.take(indices) for lab in self.codes]
mask = indices == -1
if mask.any():
masked = []
for new_label in taken:
label_values = new_label
label_values[mask] = na_value
masked.append(np.asarray(label_values))
taken = masked
else:
taken = [lab.take(indices) for lab in self.codes]
return taken
def append(self, other):
"""
Append a collection of Index options together
Parameters
----------
other : Index or list/tuple of indices
Returns
-------
appended : Index
"""
if not isinstance(other, (list, tuple)):
other = [other]
if all(
(isinstance(o, MultiIndex) and o.nlevels >= self.nlevels) for o in other
):
arrays = []
for i in range(self.nlevels):
label = self._get_level_values(i)
appended = [o._get_level_values(i) for o in other]
arrays.append(label.append(appended))
return MultiIndex.from_arrays(arrays, names=self.names)
to_concat = (self._values,) + tuple(k._values for k in other)
new_tuples = np.concatenate(to_concat)
# if all(isinstance(x, MultiIndex) for x in other):
try:
return MultiIndex.from_tuples(new_tuples, names=self.names)
except (TypeError, IndexError):
return Index(new_tuples)
def argsort(self, *args, **kwargs) -> np.ndarray:
return self._values.argsort(*args, **kwargs)
@Appender(_index_shared_docs["repeat"] % _index_doc_kwargs)
def repeat(self, repeats, axis=None):
nv.validate_repeat(tuple(), dict(axis=axis))
repeats = ensure_platform_int(repeats)
return MultiIndex(
levels=self.levels,
codes=[
level_codes.view(np.ndarray).astype(np.intp).repeat(repeats)
for level_codes in self.codes
],
names=self.names,
sortorder=self.sortorder,
verify_integrity=False,
)
def where(self, cond, other=None):
raise NotImplementedError(".where is not supported for MultiIndex operations")
def drop(self, codes, level=None, errors="raise"):
"""
Make new MultiIndex with passed list of codes deleted
Parameters
----------
codes : array-like
Must be a list of tuples
level : int or level name, default None
errors : str, default 'raise'
Returns
-------
dropped : MultiIndex
"""
if level is not None:
return self._drop_from_level(codes, level, errors)
if not isinstance(codes, (np.ndarray, Index)):
try:
codes = com.index_labels_to_array(codes, dtype=object)
except ValueError:
pass
inds = []
for level_codes in codes:
try:
loc = self.get_loc(level_codes)
# get_loc returns either an integer, a slice, or a boolean
# mask
if isinstance(loc, int):
inds.append(loc)
elif isinstance(loc, slice):
inds.extend(range(loc.start, loc.stop))
elif com.is_bool_indexer(loc):
if self.lexsort_depth == 0:
warnings.warn(
"dropping on a non-lexsorted multi-index "
"without a level parameter may impact performance.",
PerformanceWarning,
stacklevel=3,
)
loc = loc.nonzero()[0]
inds.extend(loc)
else:
msg = f"unsupported indexer of type {type(loc)}"
raise AssertionError(msg)
except KeyError:
if errors != "ignore":
raise
return self.delete(inds)
def _drop_from_level(self, codes, level, errors="raise"):
codes = com.index_labels_to_array(codes)
i = self._get_level_number(level)
index = self.levels[i]
values = index.get_indexer(codes)
mask = ~algos.isin(self.codes[i], values)
if mask.all() and errors != "ignore":
raise KeyError(f"labels {codes} not found in level")
return self[mask]
def swaplevel(self, i=-2, j=-1):
"""
Swap level i with level j.
Calling this method does not change the ordering of the values.
Parameters
----------
i : int, str, default -2
First level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
j : int, str, default -1
Second level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
Returns
-------
MultiIndex
A new MultiIndex.
See Also
--------
Series.swaplevel : Swap levels i and j in a MultiIndex.
Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a
particular axis.
Examples
--------
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi
MultiIndex([('a', 'bb'),
('a', 'aa'),
('b', 'bb'),
('b', 'aa')],
)
>>> mi.swaplevel(0, 1)
MultiIndex([('bb', 'a'),
('aa', 'a'),
('bb', 'b'),
('aa', 'b')],
)
"""
new_levels = list(self.levels)
new_codes = list(self.codes)
new_names = list(self.names)
i = self._get_level_number(i)
j = self._get_level_number(j)
new_levels[i], new_levels[j] = new_levels[j], new_levels[i]
new_codes[i], new_codes[j] = new_codes[j], new_codes[i]
new_names[i], new_names[j] = new_names[j], new_names[i]
return MultiIndex(
levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False
)
def reorder_levels(self, order):
"""
Rearrange levels using input order. May not drop or duplicate levels.
Parameters
----------
order : list of int or list of str
List representing new level order. Reference level by number
(position) or by key (label).
Returns
-------
MultiIndex
"""
order = [self._get_level_number(i) for i in order]
if len(order) != self.nlevels:
raise AssertionError(
f"Length of order must be same as number of levels ({self.nlevels}), "
f"got {len(order)}"
)
new_levels = [self.levels[i] for i in order]
new_codes = [self.codes[i] for i in order]
new_names = [self.names[i] for i in order]
return MultiIndex(
levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False
)
def _get_codes_for_sorting(self):
"""
we categorizing our codes by using the
available categories (all, not just observed)
excluding any missing ones (-1); this is in preparation
for sorting, where we need to disambiguate that -1 is not
a valid valid
"""
def cats(level_codes):
return np.arange(
| np.array(level_codes) | numpy.array |
#! /usr/bin/env python
import sys
import time
import random
import argparse
import itertools
import numpy as np
import baldor as br
import raveutils as ru
import robotsp as rtsp
import openravepy as orpy
from scipy.spatial import ConvexHull
from lenny_openrave.manager import EnvironmentManager
from lenny_openrave.scheduler import PDPScheduler
from lenny_openrave.bimanual import BimanualPlanner
def parse_args():
# Remove extra IPython notebook args
clean_argv = sys.argv
if "-f" in clean_argv:
clean_argv = clean_argv[1:]
# Parse
format_class = argparse.RawDescriptionHelpFormatter
parser = argparse.ArgumentParser(description="Lenny RoboTSP bimanual")
parser.add_argument("-r", "--reachability", action="store_true", help="If set, will only show reachability")
parser.add_argument("-s", "--seed", type=int, default=123, help="Seed for the random yaw of the cubes")
parser.add_argument("-v", "--viewer", action="store_true", help="If set, will show the qtcoin viewer")
parser.add_argument("--ik", action="store_true", help="If set, will only show the found IK solutions")
return parser.parse_args()
args = parse_args()
np.set_printoptions(precision=6, suppress=True)
# Load the environment
env = orpy.Environment()
world_xml = "worlds/bimanual_pick_and_place.env.xml"
if not env.Load(world_xml):
raise Exception("Failed to load world: {}".format(world_xml))
robot = env.GetRobot("robot")
robot.SetDOFValues(np.zeros(robot.GetDOF()))
# Environment manager
eman = EnvironmentManager(env, num_cubes=8, seed=args.seed)
cubes = eman.get_cubes()
bins = eman.get_bins()
# Initialize the bimanual planner
bimanual = BimanualPlanner(robot)
bimanual.set_left_manipulator("arm_left_tool0")
bimanual.set_right_manipulator("arm_right_tool0")
bimanual.set_torso_joint("torso_joint_b1")
if not bimanual.load_ikfast(freeinc=np.pi / 6.):
print("Failed to load IKFast. Run the generate_robot_databases.sh script.")
exit(0)
# Start and configure the viewer
if args.viewer:
viewer_name = "qtcoin"
print("Starting viewer: {0}".format(viewer_name))
eman.start_viewer(viewer_name)
if args.reachability:
# Reachability. One arm is enough due to symmetry
print ("Computing reachable workspace...")
indices = np.zeros(3)
indices[1:] = bimanual.left_indices[:2]
manip = bimanual.left_manip
Toffset = | np.eye(4) | numpy.eye |
import os, glob
import subprocess
from os import listdir
from os.path import isfile, join
import time
import traceback
import shutil
import numpy as np
import csv
import time
def checkForUpdate(count, lastUpdate):
sn = os.environ['SERVERNUM']
hdfs = os.environ['HDFS']
updateCount = -1
print("UPDATE CHECK: SERVER")
print([count, lastUpdate])
while(updateCount == -1):
time.sleep(10)
print('Checking')
for i in range(lastUpdate+1, count):
print([i,count])
print("In Check "+str(i))
out = os.popen('/opt/hadoop/bin/hadoop fs -test -e hdfs://'+hdfs+':9000/server_'+
sn+'/run_'+str(i)+'/knndata && echo $?').read()
try:
if(int(out) == 0):
updateCount = i
print("Update Ready: "+str(i))
except:
traceback.print_exc()
print("Update Not Ready")
break;
if(updateCount > -1):
try:
os.remove('knndatasetGI')
except:
pass
out = os.popen('/opt/hadoop/bin/hadoop fs -copyToLocal hdfs://'+hdfs+':9000/server_'+
sn+'/run_'+str(updateCount)+'/knndata knndatasetGI').read()
return updateCount
def updateLocal():
pwd = os.getcwd()
print(pwd)
knndata = np.genfromtxt('knndatasetGI',delimiter=',')
os.chdir(pwd+'/tmp/')
for f in glob.glob('*'):
print(f)
for f in glob.glob('*.JPG'):
fname = f.split('.')[0]
#cmd = 'bash '+pwd+'/Parser/runParser.sh '+pwd+'/tmp/'+str(i)+'/'+f
#print(cmd)
#out = os.popen(cmd).read().rstrip()[1:-1].split(',')
#line = []
#for feat in out:
# line.append(float(feat.split('=')[1]))
data = []
with open(pwd+'/tmp/'+fname+'.csv') as csvf:
reader = csv.reader(csvf)
data = list(reader)[0]
line = []
for d in data:
line.append(float(d))
#print(line)
npl = | np.asarray(line) | numpy.asarray |
"""Unit tests for probsevere_io.py."""
import copy
import unittest
import numpy
import pandas
from gewittergefahr.gg_io import probsevere_io
from gewittergefahr.gg_utils import storm_tracking_utils as tracking_utils
TOP_DIRECTORY_NAME = 'foo'
FTP_DIRECTORY_NAME = 'bar'
VALID_TIME_UNIX_SEC = 1507181187 # 052627 5 Oct 2017
PATHLESS_JSON_FILE_NAME = 'SSEC_AWIPS_PROBSEVERE_20171005_052627.json'
PATHLESS_ASCII_FILE_NAME = 'SSEC_AWIPS_PROBSEVERE_20171005_052627.ascii'
JSON_FILE_NAME = (
'foo/201710/20171005/SSEC_AWIPS_PROBSEVERE_20171005_052627.json'
)
ASCII_FILE_NAME = (
'foo/201710/20171005/SSEC_AWIPS_PROBSEVERE_20171005_052627.ascii'
)
ALTERNATIVE_JSON_FILE_NAME = (
'foo/201710/20171005/SSEC_AWIPS_CONVECTPROB_20171005_052627.json'
)
ALTERNATIVE_ASCII_FILE_NAME = (
'foo/201710/20171005/SSEC_AWIPS_CONVECTPROB_20171005_052627.ascii'
)
JSON_FILE_NAME_ON_FTP = 'bar/SSEC_AWIPS_PROBSEVERE_20171005_052627.json'
# The following constants are used to test
# _get_dates_needed_for_renaming_storms.
NUM_DATES_IN_PERIOD = 20
WORKING_DATE_INDEX_MIDDLE = 10
DATE_NEEDED_INDICES_START = numpy.array([0, 1], dtype=int)
DATE_NEEDED_INDICES_END = numpy.array([18, 19], dtype=int)
DATE_NEEDED_INDICES_MIDDLE = numpy.array([9, 10, 11], dtype=int)
# The following constants are used to test _rename_storms_one_original_id.
STORM_TIMES_UNIX_SEC = numpy.array(
[0, 1, 2, 3, 6, 7, 8, 9, 12, 15], dtype=int
)
NEXT_ID_NUMBER = 5
MAX_DROPOUT_TIME_SECONDS = 2
STORM_ID_STRINGS = [
'5probSevere', '5probSevere', '5probSevere', '5probSevere',
'6probSevere', '6probSevere', '6probSevere', '6probSevere',
'7probSevere', '8probSevere'
]
NEXT_ID_NUMBER_AFTER_ONE_ORIG_ID = 9
# The following constants are used to test _rename_storms_one_table.
WORKING_DATE_INDEX_FOR_TABLE = 1
THESE_ID_STRINGS = [
'a', 'b', 'c',
'b', 'd',
'a', 'b', 'd',
'a', 'b', 'c'
]
THESE_TIMES_UNIX_SEC = | numpy.array([0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3], dtype=int) | numpy.array |
"""
Copyright (C) 2018-2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
from mo.front.common.partial_infer.utils import int64_array
from mo.front.extractor import FrontExtractorOp
from mo.ops.pooling import Pooling
from extensions.ops.adaptive_avg_pooling import AdaptiveAvgPooling
from mo.utils.error import Error
from .common import get_pads
class MaxPool2dFrontExtractor(FrontExtractorOp):
op = 'MaxPool2d'
enabled = True
@classmethod
def extract(cls, node):
# Extract pads attribute
final_pads = get_pads(node.module)
# Extract strides attribute
strides = [node.module.stride, node.module.stride]
final_strides = np.array([1, 1, *strides], dtype=np.int64)
kernel_shape = [node.module.kernel_size, node.module.kernel_size]
final_kernel_shape = np.array([1, 1, *kernel_shape], dtype=np.int64)
attrs = {
'op': node.op,
'window': final_kernel_shape,
'stride': final_strides,
'pad': final_pads,
'pool_method': 'max',
'channel_dims': np.array([1], dtype=np.int64),
'batch_dims': np.array([0], dtype=np.int64),
'layout': 'NCHW',
}
if (node.module.ceil_mode):
attrs['rounding_type'] = 'ceil'
# update the attributes of the node
Pooling.update_node_stat(node, attrs)
return cls.enabled
class AdaptiveAvgPool2dFrontExtractor(FrontExtractorOp):
op = 'AdaptiveAvgPool2d'
enabled = True
@classmethod
def extract(cls, node):
output_size = node.module.output_size
# If a single integer but not a tuple or list
if not hasattr(output_size, '__contains__'):
output_size = [output_size, output_size]
data = {
'output_size': output_size,
}
AdaptiveAvgPooling.update_node_stat(node, data)
return cls.enabled
class AvgPool2dFrontExtractor(FrontExtractorOp):
op = 'AvgPool2d'
enabled = True
@classmethod
def extract(cls, node):
# Extract pads attribute
final_pads = get_pads(node.module)
# Extract strides attribute
strides = [node.module.stride, node.module.stride]
final_strides = np.array([1, 1, *strides], dtype=np.int64)
kernel_shape = [node.module.kernel_size, node.module.kernel_size]
final_kernel_shape = | np.array([1, 1, *kernel_shape], dtype=np.int64) | numpy.array |
# ----------------------------------------------------------------------------
# Copyright 2014-2016 Nervana Systems Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ----------------------------------------------------------------------------
"""
Our CPU based backend interface and tensor data structure. Our implementation
wraps :mod:`numpy` ndarray and related operations
"""
from __future__ import division
from builtins import object, round, str, zip
import numpy as np
import logging
import time
from neon.backends.backend import Tensor, Backend, OpTreeNode, OpCollection
from neon.backends.layer_cpu import ConvLayer, DeconvLayer, PoolLayer
from neon.util.compat import xrange
_none_slice = slice(None, None, None)
logger = logging.getLogger(__name__)
# TODO: enable this flag to find numerical problems
# np.seterr(all='raise')
class CPUTensor(Tensor):
"""
The n-dimensional array data structure that resides in host memory,
and is meant to be manipulated on the CPU. wrapped `numpy.ndarray` tensor.
Arguments:
dtype (numpy.ndtype, optional): underlying data type of the elements.
ary (data array, optional): optionally it can be instantiated with
a data array
persist_values (bool, optional): If set to True (the default), the
values assigned to this Tensor will
persist across multiple begin and end
calls. Setting to False may provide a
performance increase if values do
not need to be maintained across such
calls
See also:
:class:`NervanaCPU` class
"""
_tensor = None
def __init__(self,
backend,
shape=None,
dtype=np.float32,
ary=None,
name=None,
persist_values=True,
base=None):
super(CPUTensor, self).__init__(backend, shape, dtype, name,
persist_values)
# supported dtypes
assert dtype in (np.float16, np.float32, np.float64, np.uint8, np.int8,
np.uint16, np.int16, np.uint32, np.int32)
dtype = np.dtype(dtype)
if type(ary) != np.ndarray:
self._tensor = np.array(ary, dtype)
elif ary.dtype != dtype:
self._tensor = ary.astype(dtype)
else:
self._tensor = ary
while self._tensor.ndim < self._min_dims:
self._tensor = self._tensor.reshape(self._tensor.shape + (1, ))
if shape is not None and len(shape) < self._min_dims:
self.shape = shape + (1, )*(self._min_dims - len(shape))
else:
self.shape = self._tensor.shape
shape_ = []
size = 1
for dim in self.shape:
if int(dim) != dim:
raise TypeError('shape dims must be integer values [%s]' % str(dim))
dim = int(dim)
shape_.append(dim)
size *= dim
self.shape = tuple(shape_)
self.size = size
self.base = base
self.dtype = dtype
self.is_contiguous = self._tensor.flags.c_contiguous
def __str__(self):
"""
Returns a string representation of this Tensor.
Returns:
str: the representation.
"""
if self._tensor.base is not None:
base_id = id(self._tensor.base)
else:
base_id = id(self._tensor)
return ("CPUTensor(base 0x%x) name:%s shape:%s dtype:%s strides:%s"
" is_c_contiguous:%s" % (base_id, self.name, self.shape,
self.dtype, self._tensor.strides,
self._tensor.flags.c_contiguous))
def __repr__(self):
"""
Returns a more unambiguous string representation of the Tensor.
Returns:
str: the representation.
"""
return self.__str__()
def __len__(self):
"""
Return the size of the leading dimension of self.
"""
if len(self.shape):
return self.shape[0]
else:
return 0
def __setitem__(self, key, value):
"""
Assign the specified value to a subset of elements found via slice
style indexing along each dimension. e.g. A[5:10, :] = 4.5.
Each slice consists of start_idx:stop_idx:step_size triplets. If
step_size isn't specified it defaults to 1. If start_idx isn't
specified it defaults to 0. If stop_idx isn't specified it defaults
to the total number of elements along that dimension. As such a slice
value of ':' allows one to select all elements along that dimension.
Arguments:
key (int, slice, tuple): indices of each dimension's slice.
value (numeric array, CPUTensor): values to be assigned to the
extracted element subset. If an
array it should be the same shape
as what key indexes (or be
broadcastable as such).
"""
self.__getitem__(key)._assign(value)
return self
def __getitem__(self, key):
"""
Extract a subset view of the items via slice style indexing
along each dimension. e.g. A[5:10, :]. Each slice consists of
start_idx:stop_idx:step_size triplets. If step_size isn't specified it
defaults to 1. If start_idx isn't specified it defaults to 0. If
stop_idx isn't specified it defaults to the total number of elements
along that dimension. As such a slice value of ':' allows one to
select all elements along that dimension. To be consistent with GPU
Tensors, CPU Tensors remove the axis that has size 1 unless it needs to
maintain 2D.
Arguments:
key (int, slice, tuple): indices of each dimension's slice.
Returns:
CPUTensor: view of self corresponding to the subset items.
"""
# speed up common case of [:]
if not isinstance(key, tuple):
if key == _none_slice:
return self
key = (key,)
# ensure we return a view
# exact same behavior as cpu
# let a.shape = (3,4)
# a[1,1] = 10 # cpu, gpu and numpy
# type(a[1,1]) # for cpu and gpu type is Tensor; for numpy type is float
key_list = list(key)
for idx, k in enumerate(key):
if type(k) is int:
k = self.shape[idx] + k if k < 0 else k
key_list[idx] = slice(k, k + 1, None)
key = tuple(key_list)
new_shape = list(self._tensor[key].shape)
for idx, k in enumerate(new_shape):
if len(new_shape) > 2 and k is 1:
new_shape.remove(k)
# return a view of the tensor
return self.__class__(
backend=self.backend,
ary=self._tensor[key].reshape(new_shape),
dtype=self._tensor.dtype,
base=self)
def _assign(self, value):
"""
Assign an input value to the CPU tensor. The NervanaCPU does clipping
for int and uint types, when overflow happens
Arguments:
value (CPUTensor, OpTreeNode, numeric): the value to be assigned.
"""
if isinstance(value, (CPUTensor, OpTreeNode)):
OpTreeNode.build("assign", self, value)
elif isinstance(value, (int, float, np.ndarray)):
self.set(value)
else:
raise TypeError("Invalid type for assignment: %s" % type(value))
return self
def set(self, value):
"""
Wrap the value into NervanaCPU tensor.
Arguments:
value: Array or single input. If it is array, check and Convert
the dtype and shape. If it is single value, broadcast to
the memory
Returns:
self
"""
if isinstance(value, np.ndarray):
if value.dtype is not self.dtype:
value = value.astype(self.dtype)
assert value.size == self.size
if value.ndim < self._min_dims:
value = value.reshape(self.shape)
self._tensor[:] = value
return self
def get(self):
"""
Return the array.
"""
return self._tensor.copy()
def raw(self):
"""
Access the raw buffer.
Returns:
pointer: A device specific pointer
"""
return self._tensor.ctypes.data
def asnumpyarray(self):
"""
Deprecated.
Scheduled to be removed in 2.0.
Use get() instead.
"""
return self._tensor
def take(self, indices, axis=None):
"""
Select a subset of elements from an array across an axis.
Arguments:
indices (Tensor, numpy ndarray): indicies of elements to select
axis (int): axis across which to select the values
Returns:
Tensor: Tensor with selected values
"""
if type(indices) == self.__class__:
indices = indices._tensor
# if indices are nx1 or 1xn, much of our code assumes these dims are
# collapsed, hence the squeeze call.
if type(indices) == np.ndarray:
indices = indices.squeeze()
new_shape = list(self.shape)
new_shape[axis] = indices.size
return self.__class__(
backend=self.backend,
ary=self._tensor.take(indices, axis).reshape(new_shape),
dtype=self._tensor.dtype,
base=self)
def fill(self, value):
"""
Assign specified value to each element of this CPUTensor.
Arguments:
value (numeric): The value to be assigned to each element.
Return:
CPUTensor: updated view of the data.
"""
self._tensor.fill(value)
return self
def copy(self, a):
"""
Construct and return a deep copy of the Tensor passed.
Arguments:
a (Tensor): the object to copy
Returns:
Tensor: new array object with the same values as input tensor
"""
return self._assign(a)
def copy_from(self, a):
"""
Alias of copy.
Arguments:
a (Tensor): the object to copy
Returns:
Tensor: new array object with the same values as input tensor
"""
return self._assign(a)
def reshape(self, *shape):
"""
Return a reshaped view.
"""
if isinstance(shape[0], (tuple, list)):
shape = tuple(shape[0])
if shape == self.shape:
return self
return self.__class__(
backend=self.backend,
ary=self._tensor.reshape(shape),
dtype=self._tensor.dtype,
base=self)
@property
def T(self):
"""
Return a transposed view.
For 2D tensor, will do a normal transpose
For 3D tensor, will keep the 0 dim, swap the 1 and 2 dimensions
"""
if len(self.shape) <= 2:
ary = self._tensor.transpose()
else:
# support for batched dot.
# perserve outer dimension but reverse inner dims
# shape = np.concatenate((shape[-1:], shape[:-1])
ary = self._tensor.swapaxes(1, 2)
return self.__class__(
backend=self.backend,
ary=ary,
dtype=self._tensor.dtype,
base=self)
def transpose(self, out=None):
"""
Return a transposed view of the data. Alias of .T property
"""
if out:
return OpTreeNode.build("assign", out, self.T)
return self.T
def share(self, shape, dtype=None, name=None):
"""
Return a view: ary, where ary.size <= self.size.
Allows easy sharing of temporary memory
This is mostly provided for compatibility, -- dtype is ignored
"""
size = | np.prod(shape) | numpy.prod |
from typing import Dict, Tuple
import pandas as pd
import numpy as np
import attr
from itertools import chain
@attr.s(slots=True)
class MScanLineValidator:
sig_val = attr.ib() # SignalValidator
def __getattr__(self, item):
return getattr(self.sig_val, item)
def run(self) -> Tuple[Dict, np.uint64]:
"""
Interpolate MScan-specific line signals
:return: Dictionary containing the data and the mean difference between subsequent lines
"""
lines = self.dict_of_data["Lines"].loc[:, "abs_time"].copy()
rel_idx, delta = self.__calc_line_parameters(lines=lines)
lines, rel_idx, delta = self.__filter_extra_lines(lines=lines, delta=delta)
if len(rel_idx) > 0: # missing lines, not just extra
theo_lines = self.__gen_line_model(lines=lines, m=delta)
lines = self.__diff_vec_analysis(lines=lines, y=theo_lines, delta=delta)
lines = self.__finalize_lines(lines=lines, delta=delta)
if self.bidir:
lines = self.sig_val.add_phase_to_bidir_lines(lines=lines)
self.dict_of_data["Lines"] = pd.DataFrame(
lines, dtype=np.uint64, columns=["abs_time"]
)
return self.dict_of_data, delta
def __calc_line_parameters(self, lines: pd.Series) -> Tuple[np.ndarray, np.uint64]:
""" Generate general parameters of the given acquisition """
rel_idx = np.where(
np.abs(lines.diff().pct_change(periods=1)) > self.change_thresh
)[0]
delta = np.uint64(
lines.drop(rel_idx)
.reindex(np.arange(len(lines)))
.interpolate()
.diff()
.mean()
)
return rel_idx[::2], delta
def __filter_extra_lines(
self, lines: pd.Series, delta: np.uint64
) -> Tuple[pd.Series, pd.Series, np.uint64]:
"""
Kick out excess line signals
:param lines:
:param delta:
:return: Tuple of valid lines, missing lines and new delta of lines
"""
diffs = lines.diff()
rel_idx = np.where(np.abs(diffs.pct_change(periods=1)) > self.change_thresh)[0]
recurring = np.where(np.diff(rel_idx) == 1)[0]
idx_to_keep = np.ones_like(rel_idx, dtype=bool)
for idx, _ in enumerate(recurring[1:], 1):
try:
if recurring[idx] - recurring[idx - 1] == 1:
idx_to_keep[recurring[idx] + 1] = False
except IndexError:
pass
rel_idx_new = pd.Series(rel_idx[idx_to_keep][::2], dtype=np.uint64)
missing_lines = []
extra_lines = []
for idx in rel_idx_new:
if diffs[idx] < (delta / 2): # excess lines
extra_lines.append(idx)
else:
missing_lines.append(idx)
valid_lines = lines.drop(extra_lines).reset_index(drop=True)
delta = np.uint64(valid_lines.drop(missing_lines).diff().mean())
# Get rid of lines that came after the last frame
num_of_extra_lines = len(valid_lines) % self.num_of_lines
valid_lines = valid_lines[:-num_of_extra_lines]
return valid_lines, pd.Series(missing_lines), delta
def __gen_line_model(self, lines: pd.Series, m: np.uint64) -> np.ndarray:
""" Using linear approximation generate a model for the "correct" line signal """
const = lines.iloc[0]
x = np.arange(start=0, stop=len(lines), dtype=np.uint64)
y = m * x + const
if len(lines) > 1500: # correct simulated lines
idx_range = np.arange(1500, len(lines), step=1500, dtype=np.uint64)
for idx in idx_range:
x = np.arange(0, len(lines) - idx, dtype=np.uint64)
y[idx:] = m * x + lines.iloc[idx]
# MScan's lines are evenly separated
first_diff = np.uint64(lines.iloc[2:110].diff()[1::2].median())
delta_diff = np.int32((m - first_diff) / 2)
if first_diff < m:
y[1::2] -= delta_diff
y[::2] += delta_diff
else:
y[1::2] += delta_diff
y[::2] -= delta_diff
return y
def __diff_vec_analysis(
self, y: np.ndarray, lines: pd.Series, delta: np.uint64
) -> pd.Series:
diff_vec = np.abs(np.subtract(y, lines, dtype=np.int64))
missing_val = np.where(diff_vec > delta / 20)[0]
while missing_val.shape[0] > 0:
if np.abs(diff_vec[missing_val[0]] - delta) / delta < 0.1: # double line
lines = np.concatenate(
(lines[: missing_val[0]], lines[missing_val[0] + 1 :])
)
else:
lines = np.concatenate(
(
lines[: missing_val[0]],
np.atleast_1d(y[missing_val[0]]),
lines[missing_val[0] :],
)
)
# Restart the loop
y = self.__gen_line_model(pd.Series(lines), delta)
diff_vec = np.abs( | np.subtract(y, lines, dtype=np.int64) | numpy.subtract |
from pathlib import Path
from typing import Optional
import numpy as np
from cclib.io import ccopen
from cclib.parser.utils import convertor
import pyscf
from pyresponse import cphf, operators, solvers, utils
from pyresponse.core import AO2MOTransformationType, Hamiltonian, Spin
from pyresponse.dalton.utils import dalton_label_to_operator
from pyresponse.pyscf.ao2mo import AO2MOpyscf
try:
from daltools import mol as dalmol
from daltools import sirifc
except:
pass
def calculate_disk_rhf(
testcasedir: Path,
hamiltonian: str,
spin: str,
frequency: str,
label_1: str,
label_2: str,
) -> float:
occupations = utils.read_file_occupations(testcasedir / "occupations")
nocc_alph, nvirt_alph, nocc_beta, nvirt_beta = occupations
assert nocc_alph == nocc_beta
assert nvirt_alph == nvirt_beta
norb = nocc_alph + nvirt_alph
C = utils.read_file_3(testcasedir / "C")
assert C.shape[0] == 1
assert C.shape[2] == norb
nbasis = C.shape[1]
moene = utils.read_file_2(testcasedir / "moene")
assert moene.shape == (norb, 1)
moints_iajb_aaaa = utils.read_file_4(testcasedir / "moints_iajb_aaaa")
moints_ijab_aaaa = utils.read_file_4(testcasedir / "moints_ijab_aaaa")
assert moints_iajb_aaaa.shape == (nocc_alph, nvirt_alph, nocc_alph, nvirt_alph)
assert moints_ijab_aaaa.shape == (nocc_alph, nocc_alph, nvirt_alph, nvirt_alph)
operator_1 = dalton_label_to_operator(label_1)
operator_2 = dalton_label_to_operator(label_2)
operator_1_integrals_mn = utils.read_file_3(testcasedir / f"operator_mn_{operator_1.label}")
operator_2_integrals_mn = utils.read_file_3(testcasedir / f"operator_mn_{operator_2.label}")
# The first dimension can"t be checked since there may be multiple
# components.
assert operator_1_integrals_mn.shape[1:] == (nbasis, nbasis)
assert operator_2_integrals_mn.shape[1:] == (nbasis, nbasis)
# Only take the component/slice from the integral as determined
# from the DALTON operator label.
operator_1_integrals_mn = operator_1_integrals_mn[operator_1.slice_idx]
operator_2_integrals_mn = operator_2_integrals_mn[operator_2.slice_idx]
# However, this eliminates an axis, which needs to be added back.
operator_1_integrals_mn = operator_1_integrals_mn[np.newaxis, ...]
operator_2_integrals_mn = operator_2_integrals_mn[np.newaxis, ...]
operator_1.ao_integrals = operator_1_integrals_mn
operator_2.ao_integrals = operator_2_integrals_mn
moene = np.diag(moene[:, 0])[np.newaxis, ...]
assert moene.shape == (1, norb, norb)
solver = solvers.ExactInv(C, moene, occupations)
solver.tei_mo = (moints_iajb_aaaa, moints_ijab_aaaa)
solver.tei_mo_type = AO2MOTransformationType.partial
driver = cphf.CPHF(solver)
driver.add_operator(operator_1)
driver.add_operator(operator_2)
driver.set_frequencies([float(frequency)])
driver.run(
hamiltonian=Hamiltonian[hamiltonian.upper()],
spin=Spin[spin],
program=None,
program_obj=None,
)
assert len(driver.frequencies) == len(driver.results) == 1
res = driver.results[0]
assert res.shape == (2, 2)
bl = res[1, 0]
tr = res[0, 1]
diff = abs(abs(bl) - abs(tr))
# Results should be symmetric w.r.t. interchange between operators
# in the LR equations.
thresh = 1.0e-13
assert diff < thresh
return bl
def calculate_disk_uhf(
testcasedir: Path,
hamiltonian: str,
spin: str,
frequency: str,
label_1: str,
label_2: str,
) -> float:
occupations = utils.read_file_occupations(testcasedir / "occupations")
nocc_alph, nvirt_alph, nocc_beta, nvirt_beta = occupations
norb = nocc_alph + nvirt_alph
C = utils.read_file_3(testcasedir / "C")
assert C.shape[0] == 2
assert C.shape[2] == norb
nbasis = C.shape[1]
moene = utils.read_file_2(testcasedir / "moene")
assert moene.shape == (norb, 2)
moints_iajb_aaaa = utils.read_file_4(testcasedir / "moints_iajb_aaaa")
moints_iajb_aabb = utils.read_file_4(testcasedir / "moints_iajb_aabb")
moints_iajb_bbaa = utils.read_file_4(testcasedir / "moints_iajb_bbaa")
moints_iajb_bbbb = utils.read_file_4(testcasedir / "moints_iajb_bbbb")
moints_ijab_aaaa = utils.read_file_4(testcasedir / "moints_ijab_aaaa")
moints_ijab_bbbb = utils.read_file_4(testcasedir / "moints_ijab_bbbb")
assert moints_iajb_aaaa.shape == (nocc_alph, nvirt_alph, nocc_alph, nvirt_alph)
assert moints_iajb_aabb.shape == (nocc_alph, nvirt_alph, nocc_beta, nvirt_beta)
assert moints_iajb_bbaa.shape == (nocc_beta, nvirt_beta, nocc_alph, nvirt_alph)
assert moints_iajb_bbbb.shape == (nocc_beta, nvirt_beta, nocc_beta, nvirt_beta)
assert moints_ijab_aaaa.shape == (nocc_alph, nocc_alph, nvirt_alph, nvirt_alph)
assert moints_ijab_bbbb.shape == (nocc_beta, nocc_beta, nvirt_beta, nvirt_beta)
operator_1 = dalton_label_to_operator(label_1)
operator_2 = dalton_label_to_operator(label_2)
operator_1_integrals_mn = utils.read_file_3(testcasedir / f"operator_mn_{operator_1.label}")
operator_2_integrals_mn = utils.read_file_3(testcasedir / f"operator_mn_{operator_2.label}")
# The first dimension can"t be checked since there may be multiple
# components.
assert operator_1_integrals_mn.shape[1:] == (nbasis, nbasis)
assert operator_2_integrals_mn.shape[1:] == (nbasis, nbasis)
# Only take the component/slice from the integral as determined
# from the DALTON operator label.
operator_1_integrals_mn = operator_1_integrals_mn[operator_1.slice_idx]
operator_2_integrals_mn = operator_2_integrals_mn[operator_2.slice_idx]
# However, this eliminates an axis, which needs to be added back.
operator_1_integrals_mn = operator_1_integrals_mn[np.newaxis, ...]
operator_2_integrals_mn = operator_2_integrals_mn[np.newaxis, ...]
operator_1.ao_integrals = operator_1_integrals_mn
operator_2.ao_integrals = operator_2_integrals_mn
moene_alph = | np.diag(moene[:, 0]) | numpy.diag |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([-1,0,0,0,-1,0,0,0,-1]) | numpy.array |
import geopandas as gpd
import numpy as np
import pygeos
import pytest
from xugrid import conversion as cv
@pytest.fixture(scope="function")
def line():
x = np.array([0.0, 1.0, 2.0])
y = np.array([0.0, 0.0, 0.0])
edge_node_connectivity = np.array(
[
[0, 1],
[1, 2],
]
)
return x, y, edge_node_connectivity
@pytest.fixture(scope="function")
def line_gdf():
x = np.array([0.0, 1.0, 2.0])
y = np.array([0.0, 0.0, 0.0])
gdf = gpd.GeoDataFrame(geometry=[pygeos.creation.linestrings(x, y)])
return gdf
@pytest.fixture(scope="function")
def triangle_mesh():
x = np.array([0.0, 1.0, 1.0, 2.0])
y = | np.array([0.0, 0.0, 1.0, 0.0]) | numpy.array |
import jax.numpy as jnp
from jax import grad, vmap, hessian, jit
import jax.ops as jop
from jax.config import config;
config.update("jax_enable_x64", True)
# numpy
import numpy as onp
from numpy import random
import scipy.io
import argparse
import logging
import datetime
from time import time
import os
def get_parser():
parser = argparse.ArgumentParser(description='Allen Cahn equation GP solver')
parser.add_argument("--nu", type=float, default = 1e-4)
parser.add_argument("--kernel", type=str, default="gaussian", choices=["gaussian","inv_quadratics"])
parser.add_argument("--sigma", type = float, default = 0.02)
parser.add_argument("--dt", type = float, default = 0.04)
parser.add_argument("--T", type = float, default = 1.0)
parser.add_argument("--N_domain", type = int, default = 512)
parser.add_argument("--nugget", type = float, default = 1e-13)
parser.add_argument("--GNsteps", type = int, default = 2)
parser.add_argument("--logroot", type=str, default='./logs/')
parser.add_argument("--randomseed", type=int, default=9999)
args = parser.parse_args()
return args
def sample_points(num_pts, dt, T, option = 'grid'):
Nt = int(T/dt)+1
X_domain = onp.zeros((Nt,num_pts,2))
if option == 'grid':
for i in range(Nt):
X_domain[i,:,0] = i*dt
X_domain[i,:,1] = onp.linspace(-1.0,1.0, num_pts)
return X_domain
def assembly_Theta(X_domain, sigma):
N_domain = onp.shape(X_domain)[0]
N_boundary = 0
Theta = onp.zeros((3*N_domain+N_boundary, 3*N_domain+N_boundary))
# auxiliary vector for construncting Theta
# domain-domain
XdXd = onp.tile(X_domain, (N_domain,1))
XdXd_T = onp.transpose(XdXd)
XdXb1 = onp.transpose(onp.tile(X_domain,(N_domain+N_boundary,1)))
X_all = X_domain
XdXb2 = onp.tile(X_all,(N_domain,1))
XdbXdb = onp.tile(X_all,(N_domain+N_boundary,1))
XdbXdb_T = onp.transpose(XdbXdb)
val = vmap(lambda x1,y1: Delta_x1_Delta_y1_kappa(x1,y1, sigma))(XdXd_T.flatten(), XdXd.flatten())
Theta[:N_domain,:N_domain] = onp.reshape(val, (N_domain,N_domain))
val = vmap(lambda x1,y1: Delta_x1_D_y1_kappa(x1,y1, sigma))(XdXd_T.flatten(), XdXd.flatten())
Theta[:N_domain,N_domain:2*N_domain] = onp.reshape(val, (N_domain,N_domain))
Theta[N_domain:2*N_domain,:N_domain] = onp.transpose(onp.reshape(val, (N_domain,N_domain)))
val = vmap(lambda x1,y1: Delta_x1_kappa(x1,y1, sigma))(XdXb1.flatten(), XdXb2.flatten())
Theta[:N_domain,2*N_domain:] = onp.reshape(val,(N_domain,N_domain+N_boundary))
Theta[2*N_domain:,:N_domain] = onp.transpose(onp.reshape(val,(N_domain,N_domain+N_boundary)))
val = vmap(lambda x1,y1: D_x1_D_y1_kappa(x1,y1, sigma))(XdXd_T.flatten(), XdXd.flatten())
Theta[N_domain:2*N_domain,N_domain:2*N_domain] = onp.reshape(val, (N_domain,N_domain))
val = vmap(lambda x1,y1: D_x1_kappa(x1,y1, sigma))(XdXb1.flatten(), XdXb2.flatten())
Theta[N_domain:2*N_domain,2*N_domain:] = onp.reshape(val,(N_domain,N_domain+N_boundary))
Theta[2*N_domain:,N_domain:2*N_domain] = onp.transpose(onp.reshape(val,(N_domain,N_domain+N_boundary)))
val = vmap(lambda x1,y1: kappa(x1,y1, sigma))(XdbXdb_T.flatten(), XdbXdb.flatten())
Theta[2*N_domain:,2*N_domain:] = onp.reshape(val, (N_domain+N_boundary,N_domain+N_boundary))
return Theta
@jit
def J_loss(v, rhs_f, L,dt):
N_domain = onp.shape(rhs_f)[0]
vec_u = jnp.append(v[:N_domain-1],v[0])
vec_u_x = jnp.append(v[N_domain-1:],v[N_domain-1])
vec_u_xx = (2/dt*vec_u+5*vec_u**3-5*vec_u-rhs_f)/nu
vv = jnp.append(vec_u_xx,vec_u_x)
vv = jnp.append(vv,vec_u)
temp = jnp.linalg.solve(L,vv)
return jnp.dot(temp, temp)
grad_J = grad(J_loss)
@jit
def GN_J(v, rhs_f, L, dt, v_old):
N_domain = onp.shape(rhs_f)[0]
vec_u_old = jnp.append(v_old[:N_domain-1],v_old[0])
vec_u = jnp.append(v[:N_domain-1],v[0])
vec_u_x = jnp.append(v[N_domain-1:],v[N_domain-1])
vec_u_xx = (2/dt*vec_u+15*vec_u_old**2*vec_u-5*vec_u-rhs_f)/nu
vv = jnp.append(vec_u_xx,vec_u_x)
vv = jnp.append(vv,vec_u)
temp = jnp.linalg.solve(L,vv)
return jnp.dot(temp, temp)
Hessian_GN=jit(hessian(GN_J))
def time_steping_solve(X_domain, dt,T,num_pts, step_size = 1, nugget = 1e-10, sigma=0.2, GN_iteration = 4):
Nt = int(T/dt)+1
sol_u = onp.zeros((Nt,num_pts))
sol_u_x = onp.zeros((Nt,num_pts))
sol_u_xx = | onp.zeros((Nt,num_pts)) | numpy.zeros |
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 16 11:13:37 2021
@author: dv516
"""
import numpy as np
import pickle
import pyro
pyro.enable_validation(True) # can help with debugging
pyro.set_rng_seed(1)
from algorithms.PyBobyqa_wrapped.Wrapper_for_pybobyqa import PyBobyqaWrapper
from algorithms.Bayesian_opt_Pyro.utilities_full import BayesOpt
from algorithms.nesterov_random.nesterov_random import nesterov_random
from algorithms.simplex.simplex_method import simplex_method
from algorithms.CUATRO.CUATRO import CUATRO
from algorithms.Finite_differences.Finite_differences import finite_Diff_Newton
from algorithms.Finite_differences.Finite_differences import Adam_optimizer
from algorithms.Finite_differences.Finite_differences import BFGS_optimizer
from algorithms.SQSnobfit_wrapped.Wrapper_for_SQSnobfit import SQSnobFitWrapper
from algorithms.DIRECT_wrapped.Wrapper_for_Direct import DIRECTWrapper
from test_functions import rosenbrock_constrained, quadratic_constrained
import matplotlib.pyplot as plt
import pickle
def trust_fig(oracle, bounds):
N = 200
lim = 2
x = np.linspace(-lim, lim, N)
y = np.linspace(-lim, lim, N)
X,Y = np.meshgrid(x, y)
Z = oracle.sample_obj(X,Y)
constr = oracle.sample_constr(X,Y)
level_list = np.logspace(-0.5, 4, 10)
fig = plt.figure(figsize = (6,4))
ax = fig.add_subplot()
ax.contour(X,Y,Z*constr, levels = level_list)
ax.plot([bounds[0,0], bounds[0, 1]], [bounds[1,0], bounds[1, 0]], c = 'k')
ax.plot([bounds[0,0], bounds[0, 1]], [bounds[1,1], bounds[1, 1]], c = 'k')
ax.plot([bounds[0,0], bounds[0, 0]], [bounds[1,0], bounds[1, 1]], c = 'k')
ax.plot([bounds[0,1], bounds[0, 1]], [bounds[1,0], bounds[1, 1]], c = 'k')
return ax, fig
def average_from_list(solutions_list):
N = len(solutions_list)
f_best_all = np.zeros((N, 100))
for i in range(N):
f_best = np.array(solutions_list[i]['f_best_so_far'])
x_ind = np.array(solutions_list[i]['samples_at_iteration'])
for j in range(100):
ind = np.where(x_ind <= j+1)
if len(ind[0]) == 0:
f_best_all[i, j] = f_best[0]
else:
f_best_all[i, j] = f_best[ind][-1]
f_median = np.median(f_best_all, axis = 0)
# f_av = np.average(f_best_all, axis = 0)
# f_std = np.std(f_best_all, axis = 0)
f_min = np.min(f_best_all, axis = 0)
f_max = np.max(f_best_all, axis = 0)
return f_best_all, f_median, f_min, f_max
class RB:
def __init__(self, objective, ineq = []):
self.obj = objective ; self.ieq = ineq
def sample_obj(self, x, y):
return self.obj(x, y)
def sample_constr(self, x, y):
if self.ieq == []:
if (type(x) == float) or (type(x) == int):
return 1
else:
return np.ones(len(x))
elif (type(x) == float) or (type(x) == int):
temporary = [int(g(x, y)) for g in self.ieq]
return np.product( | np.array(temporary) | numpy.array |
import theano
import theano.tensor as T
import numpy as np
from util import *
class Autoencoder_1obj():
# each render_var gets its own l2 layer
def __init__(self, scene, n_visible,
n_hidden_l1, n_hidden_l2, n_hidden_l3):
self.scene = scene
self.n_visible = n_visible
self.n_hidden_l1 = n_hidden_l1
self.n_hidden_l2 = n_hidden_l2
self.l1_biases = theano.shared(np.zeros(n_hidden_l1), borrow=True)
self.l2_biases = theano.shared(np.zeros(n_hidden_l2), borrow=True)
self.l3_biases = theano.shared(np.zeros(n_hidden_l3), borrow=True)
numpy_rng = np.random.RandomState(1234)
self.vis_to_l1 = initialize_weight(n_visible, n_hidden_l1, "vis_to_l1", numpy_rng, 'uniform')
self.l1_to_l2 = initialize_weight(n_hidden_l1, n_hidden_l2, "vis_to_l1", numpy_rng, 'uniform')
self.l2_to_l3 = initialize_weight(n_hidden_l2, n_hidden_l3, "vis_to_l1", numpy_rng, 'uniform')
self.params0 = [self.vis_to_l1, self.l1_to_l2, self.l2_to_l3,
self.l1_biases, self.l2_biases,self.l3_biases]
#Adding Capsules
self.l3_to_rvar1 = theano.shared(self.init_capsule_param(n_hidden_l3),borrow=True)
self.rvar1_biases = theano.shared(np.asarray([0,0,2.5,1,1,1]), borrow=True)
self.params1 = [self.l3_to_rvar1, self.rvar1_biases]
#self.l3_to_rvar2, self.rvar2_biases]
self.params= self.params0+self.params1
def init_capsule_param(self, n_hidden_l3):
#return 0.07*np.asarray( np.random.uniform(\
# low=-4 * np.sqrt(6. / 6+n_hidden_l3),
# high=4 * np.sqrt(6. / 6+n_hidden_l3),
# size=(n_hidden_l3, 6)), dtype=theano.config.floatX)
l3_to_center = 0.07*np.asarray(
np.random.uniform(
low=-4 * np.sqrt(6. / 6+n_hidden_l3),
high=4 * | np.sqrt(6. / 6+n_hidden_l3) | numpy.sqrt |
import numpy as onp
import jax
import jax.numpy as np
import random
import os
import scipy.interpolate
import astropy.io.fits as pyfits
from redrock.templates import Template
from redrock.archetypes import Archetype
from chex import assert_shape
key = jax.random.PRNGKey(42)
mask_std_val = 1e2
def create_mask(x, x_var, indices, val=0.0):
mask = onp.ones(x.shape)
# mask[x == 0] = val
ind = np.where(np.logical_or(x_var <= 0, x_var == mask_std_val ** 2.0))
mask[ind] = val
fullindices = onp.asarray(indices)[:, None] + onp.arange(x.shape[1])[None, :]
mask[fullindices < 0] = val
# offs = - np.maximum(indices, np.zeros_like(indices))
# for io, off in enumerate(offs):
# mask[io, 0:off] = 0
return np.asarray(mask)
def interp(x_new, x, y):
return scipy.interpolate.interp1d(
x, y, fill_value="extrapolate", kind="linear", bounds_error=False
)(x_new)
def draw_uniform(samples, bins, desired_size):
"""
Draw uniform set of samples
"""
hist, bin_edges = np.histogram(samples, bins=bins)
avg_nb = int(desired_size / float(bins))
numbers = np.repeat(avg_nb, bins)
for j in range(4):
numbers[hist <= numbers] = hist[hist <= numbers]
nb_rest = desired_size - np.sum(numbers[hist <= numbers]) # * bins
avg_nb = round(nb_rest / np.sum(hist > numbers))
numbers[hist > numbers] = avg_nb
result = []
count = 0
for i in range(bin_edges.size - 1):
ind = samples >= bin_edges[i]
ind &= samples <= bin_edges[i + 1]
if ind.sum() > 0:
positions = np.where(ind)[0]
nb = min([numbers[i], ind.sum()])
result.append(jax.random.choice(positions, nb, replace=False))
return np.concatenate(result)
class DataPipeline:
"""
Pipeline for loading data
"""
def load_spectrophotometry(
self,
input_dir="./",
write_subset=False,
use_subset=False,
subsampling=1,
spec=True,
phot=True,
):
if use_subset:
suffix = "2.npy"
else:
suffix = ".npy"
self.input_dir = input_dir
self.lamgrid = onp.load(self.input_dir + "lamgrid.npy")
self.lam_phot_eff = onp.load(self.input_dir + "lam_phot_eff.npy")
self.lam_phot_size_eff = onp.load(self.input_dir + "lam_phot_size_eff.npy")
self.redshifts = onp.load(self.input_dir + "redshifts" + suffix)
n_obj = self.redshifts.size
self.n_obj = n_obj
assert_shape(self.redshifts, (n_obj,))
if phot:
self.transferfunctions = (
onp.load(self.input_dir + "transferfunctions.npy") * 1e-16
)
self.transferfunctions_zgrid = onp.load(
self.input_dir + "transferfunctions_zgrid.npy"
)
assert self.transferfunctions.shape[0] == self.transferfunctions_zgrid.size
assert self.transferfunctions.shape[1] == self.lamgrid.size
self.index_transfer_redshift = onp.load(
self.input_dir + "index_transfer_redshift" + suffix
)
self.interprightindices_transfer = onp.load(
self.input_dir + "interprightindices_transfer" + suffix
)
self.interpweights_transfer = onp.load(
self.input_dir + "interpweights_transfer" + suffix
)
self.phot = fluxes = onp.load(self.input_dir + "phot" + suffix)
self.phot_invvar = flux_ivars = onp.load(
self.input_dir + "phot_invvar" + suffix
)
assert_shape(self.index_transfer_redshift, (n_obj,))
assert_shape(self.interprightindices_transfer, (n_obj,))
assert_shape(self.interpweights_transfer, (n_obj,))
n_pix_phot = self.phot.shape[1]
assert_shape(self.phot, (n_obj, n_pix_phot))
assert_shape(self.phot_invvar, (n_obj, n_pix_phot))
self.n_pix_phot = self.phot.shape[1]
if spec:
self.chi2s_sdss = onp.load(self.input_dir + "chi2s_sdss" + suffix)
self.lamspec_waveoffset = int(
onp.load(self.input_dir + "lamspec_waveoffset" + suffix)
)
self.index_wave = onp.load(self.input_dir + "index_wave" + suffix)
self.interprightindices = onp.load(
self.input_dir + "interprightindices" + suffix
)
self.interpweights = onp.load(self.input_dir + "interpweights" + suffix)
self.specmod_sdss = onp.load(self.input_dir + "spec_mod" + suffix)
if True:
self.spec = onp.load(self.input_dir + "spec" + suffix)
self.spec_invvar = onp.load(self.input_dir + "spec_invvar" + suffix)
else:
self.spec = onp.load(self.input_dir + "spec_mod" + suffix)
self.spec_invvar = (
onp.load(self.input_dir + "spec_invvar" + suffix) * 0 + 1
)
self.n_pix_spec = self.spec.shape[1]
assert_shape(self.chi2s_sdss, (n_obj,))
assert_shape(self.index_wave, (n_obj,))
n_pix_spec = self.spec.shape[1]
assert_shape(self.spec, (n_obj, n_pix_spec))
assert_shape(self.specmod_sdss, (n_obj, n_pix_spec))
assert_shape(self.spec_invvar, (n_obj, n_pix_spec))
if write_subset:
M = 50000
suffix = "2.npy"
self.index_wave = self.index_wave[:M]
self.redshifts = self.redshifts[:M]
self.chi2s_sdss = self.chi2s_sdss[:M]
self.phot_invvar = self.phot_invvar[:M, :]
self.index_transfer_redshift = self.index_transfer_redshift[:M]
np.save(self.input_dir + "index_wave" + suffix, self.index_wave[:M])
np.save(
self.input_dir + "interprightindices_transfer" + suffix,
self.interprightindices_transfer[:M, :],
)
np.save(
self.input_dir + "interpweights_transfer" + suffix,
self.interpweights_transfer[:M, :],
)
np.save(
self.input_dir + "index_transfer_redshift2.npy",
self.index_transfer_redshift,
)
np.save(self.input_dir + "redshifts" + suffix, self.redshifts)
np.save(self.input_dir + "spec" + suffix, self.spec)
np.save(self.input_dir + "chi2s_sdss" + suffix, self.chi2s_sdss)
np.save(self.input_dir + "spec_invvar" + suffix, self.spec_invvar)
np.save(self.input_dir + "phot" + suffix, self.phot)
np.save(self.input_dir + "phot_invvar" + suffix, self.phot_invvar)
np.save(self.input_dir + "spec_mod" + suffix, self.specmod_sdss)
if subsampling > 1:
self.lamgrid = self.lamgrid[::subsampling]
self.transferfunctions = self.transferfunctions[:, ::subsampling, :][
::subsampling, :, :
]
self.transferfunctions_zgrid = self.transferfunctions_zgrid[::subsampling]
self.lamspec_waveoffset = self.lamspec_waveoffset // subsampling
self.spec = self.spec[:, ::subsampling]
self.specmod_sdss = self.specmod_sdss[:, ::subsampling]
self.spec_invvar = self.spec_invvar[:, ::subsampling]
self.index_wave = self.index_wave // subsampling
self.index_transfer_redshift = self.index_transfer_redshift // subsampling
self.interprightindices = (
self.interprightindices[:, ::subsampling] // subsampling
)
self.interpweights = (
self.interpweights[:, ::subsampling] / subsampling
) # dilution
self.interprightindices_transfer = (
self.interprightindices_transfer // subsampling
) # is it correct?
self.interpweights_transfer = (
self.interpweights_transfer / subsampling
) # is it correct?
@staticmethod
def save_fake_data(n_obj, n_pix_sed, n_pix_spec, n_pix_phot, n_pix_transfer):
root = "data/fake/fake_"
from jax.random import uniform, randint
np.save(root + "lamgrid.npy", 8.1e2 + np.arange(n_pix_sed))
np.save(root + "lam_phot_eff.npy", np.arange(n_pix_phot))
np.save(root + "lam_phot_size_eff.npy", np.arange(n_pix_phot))
np.save(
root + "transferfunctions.npy",
uniform(key, (n_pix_transfer, n_pix_sed, n_pix_phot)),
)
np.save(root + "transferfunctions_zgrid.npy", np.arange(n_pix_transfer))
np.save(root + "chi2s_sdss.npy", uniform(key, (n_obj,)))
np.save(
root + "lamspec_waveoffset.npy",
randint(key, (1,), 0, n_pix_sed - n_pix_spec - 1),
)
np.save(
root + "index_wave.npy",
randint(key, (n_obj,), 0, n_pix_sed - n_pix_spec - 1),
)
np.save(
root + "index_transfer_redshift.npy",
randint(key, (n_obj,), 0, n_pix_transfer),
)
np.save(
root + "interprightindices.npy",
randint(key, (n_obj, n_pix_spec), 0, n_pix_transfer),
)
np.save(
root + "interpweights.npy",
uniform(key, (n_obj, n_pix_spec)),
)
np.save(
root + "interprightindices_transfer.npy",
randint(key, (n_obj,), 0, n_pix_transfer),
)
np.save(
root + "interpweights_transfer.npy",
uniform(key, (n_obj,)),
)
np.save(root + "spec.npy", uniform(key, (n_obj, n_pix_spec)))
np.save(root + "spec_mod.npy", uniform(key, (n_obj, n_pix_spec)))
np.save(root + "spec_invvar.npy", uniform(key, (n_obj, n_pix_spec)))
np.save(root + "phot.npy", uniform(key, (n_obj, n_pix_phot)))
np.save(root + "phot_invvar.npy", uniform(key, (n_obj, n_pix_phot)))
np.save(root + "redshifts.npy", uniform(key, (n_obj,)))
def __init__(
self,
input_dir="./",
subsampling=1,
npix_min=1,
write_subset=False,
use_subset=False,
spec=True,
phot=True,
):
self.load_spectrophotometry(
input_dir=input_dir,
write_subset=write_subset,
use_subset=use_subset,
subsampling=subsampling,
spec=spec,
phot=phot,
)
self.indices = np.arange(self.n_obj)
self.batch = 0
self.subsampling = subsampling
self.npix_min = npix_min
if phot:
# Multiplying by delta lambda in preparation for integral over lambda
xbounds = onp.zeros(self.lamgrid.size + 1)
xbounds[1:-1] = (self.lamgrid[1:] + self.lamgrid[:-1]) / 2
xbounds[0] = self.lamgrid[0] - (xbounds[1] - self.lamgrid[0])
xbounds[-1] = self.lamgrid[-1] + (self.lamgrid[-1] - xbounds[-2])
xsizes = np.asarray(np.diff(xbounds))
self.transferfunctions = self.transferfunctions * xsizes[None, :, None]
print("Initial lamgrid shape:", self.lamgrid.shape)
if spec:
print("Initial spec shape:", self.spec.shape)
# spec[spec <= 0] = np.nan
self.spec_invvar[~onp.isfinite(self.spec)] = 0
self.spec_invvar[self.spec == 0] = 0
self.spec_invvar[~onp.isfinite(self.spec_invvar)] = 0
self.spec_invvar[self.spec_invvar < 0] = 0
self.spec_invvar[self.interpweights < 0] = 0
self.spec_invvar[self.interprightindices < 0] = 0
self.spec[~onp.isfinite(self.spec)] = 0
# Masking sky lines
lamsize_spec = self.spec.shape[1]
print(
"lamspec_waveoffset",
self.lamspec_waveoffset,
self.lamgrid[self.lamspec_waveoffset],
)
print("lamsize_spec", lamsize_spec)
print("lamgrid", self.lamgrid.size)
# Floor spectroscopic errors
ind = self.spec_invvar ** -0.5 < 1e-4 * np.abs(self.spec)
# ind &= self.spec_invvar != 0
# ind &= self.spec != 0
print("How many spec errors are floored?", np.sum(ind), "out of", ind.size)
# ind = np.where(ind)[0]
self.spec_invvar[ind] = (1e-4 * np.abs(self.spec)[ind]) ** -2.0
if (
np.sum(~np.isfinite(self.spec)) > 0
or np.sum(~np.isfinite(self.spec_invvar)) > 0
):
print(
"nans?",
np.sum(~np.isfinite(self.spec)),
np.sum(~np.isfinite(self.spec_invvar)),
)
stop
# Calculated after changing the data
self.chi2s_sdss = np.sum(
(self.specmod_sdss - self.spec) ** 2 * self.spec_invvar, axis=-1
)
print("Revised data shape:", self.spec.shape)
# masks = create_mask(self.spec, self.spec_invvar, self.index_wave)
masks = ~(self.spec_invvar == 0)
npix = np.sum(masks, axis=1)
print("Number of objects with 0 valid pixels:", np.sum(npix == 0))
print("Number of objects with <10 valid pixels:", np.sum(npix <= 10))
print("Number of objects with <100 valid pixels:", np.sum(npix <= 100))
self.indices = onp.where(npix > npix_min)[0]
onp.random.shuffle(self.indices)
print("Number of objects with valid pixels:", self.indices.size)
self.specphotscalings = np.ones((self.spec.shape[0],))
if phot:
ind = ~np.isfinite(self.phot_invvar)
ind |= self.phot_invvar < 0
# ind = np.where(ind)[0]
self.phot_invvar[ind] = 0
print("Initial phot shape:", self.phot.shape)
# Floor photometric errors
ind = self.phot_invvar ** -0.5 < 1e-2 * self.phot
print("How many phot errors are floored?", np.sum(ind), "out of", ind.size)
# ind = np.where(ind)[0]
self.phot_invvar[ind] = (1e-2 * self.phot[ind]) ** -2.0
print("Finished pre-processing data.")
def get_grids(self):
n_pix_sed = self.lamgrid.size
n_pix_spec = self.spec.shape[1]
n_pix_phot = self.phot.shape[1]
# lamgrid_spec = self.lamgrid[
# self.lamspec_waveoffset : self.lamspec_waveoffset + n_pix_spec
# ]
return (
self.lamgrid,
self.lam_phot_eff,
self.lam_phot_size_eff,
self.transferfunctions,
self.transferfunctions_zgrid,
n_pix_sed,
n_pix_spec,
n_pix_phot,
)
def next_batch_specandphot(self, indices, batchsize):
length = indices.size
startindex = self.batch * batchsize
batch_indices = indices[startindex : startindex + batchsize]
# print('batch_indices', batch_indices.size, batch_indices[0], batch_indices[-1])
batch_index_wave = np.take(self.index_wave, batch_indices)
batch_index_transfer_redshift = np.take(
self.index_transfer_redshift, batch_indices
)
batch_spec = np.take(self.spec, batch_indices, axis=0)
batch_spec_invvar = np.take(self.spec_invvar, batch_indices, axis=0)
# batch_sed_mask = create_mask(batch_spec, batch_spec_invvar, batch_index_wave)
batch_phot = np.take(self.phot, batch_indices, axis=0)
batch_phot_invvar = np.take(self.phot_invvar, batch_indices, axis=0)
batch_redshifts = np.take(self.redshifts, batch_indices)
batch_specphotscaling = np.take(self.specphotscalings, batch_indices)
batch_interpweights = np.take(self.interpweights, batch_indices, axis=0)
batch_interprightindices = np.take(
self.interprightindices, batch_indices, axis=0
)
self.batch += 1
nextbatch_startindex = self.batch * batchsize
if nextbatch_startindex >= length:
self.batch = 0
actualbatchsize = min([batchsize, length - startindex])
# si, _ = startindex, batchsize
# sh = (batch_spec.shape[0], wavesize)
# batch_transferfunctions = np.zeros((batch_spec.shape[0], wavesize, batch_phot.shape[1]))
batch_transferfunctions = self.transferfunctions[
batch_index_transfer_redshift, :, :
]
batch_index_wave_ext = batch_index_wave[:, None] + np.arange(
batch_spec.shape[1]
)
if np.sum(batch_index_wave_ext < 0) > 0:
print(
"Number of negative wave indices:",
np.sum(batch_index_wave < 0),
np.sum(batch_index_wave_ext < 0),
)
exit(1)
# batch_index_wave_ext[batch_index_wave_ext < 0] = 0
batch_spec_loginvvar = np.where(
batch_spec_invvar == 0, 0, np.log(batch_spec_invvar)
)
batch_phot_loginvvar = np.where(
batch_phot_invvar == 0, 0, np.log(batch_phot_invvar)
)
if (
np.sum(~np.isfinite(batch_spec)) > 0
or np.sum(~np.isfinite(batch_spec_invvar)) > 0
or np.sum(~np.isfinite(batch_spec_loginvvar)) > 0
):
print(
"nans?",
np.sum(~np.isfinite(batch_spec)),
np.sum(~np.isfinite(batch_spec_invvar)),
np.sum(~np.isfinite(batch_spec_loginvvar)),
)
exit(1)
return (
startindex,
actualbatchsize,
batch_index_wave,
batch_index_transfer_redshift,
batch_spec,
batch_spec_invvar,
batch_spec_loginvvar,
# batch_sed_mask,
batch_specphotscaling,
batch_phot,
batch_phot_invvar,
batch_phot_loginvvar,
batch_redshifts,
batch_transferfunctions,
batch_index_wave_ext,
batch_interprightindices,
batch_interpweights,
)
def next_batch_photonly(self, indices, batchsize):
length = indices.size
startindex = self.batch * batchsize
batch_indices = indices[startindex : startindex + batchsize]
batch_phot = np.take(self.phot, batch_indices, axis=0)
batch_phot_invvar = np.take(self.phot_invvar, batch_indices, axis=0)
batch_redshifts = np.take(self.redshifts, batch_indices)
batch_interpweights_transfer = np.take(
self.interpweights_transfer, batch_indices, axis=0
)
batch_interprightindices_transfer = np.take(
self.interprightindices_transfer, batch_indices, axis=0
)
self.batch += 1
nextbatch_startindex = self.batch * batchsize
if nextbatch_startindex >= length:
self.batch = 0
actualbatchsize = min([batchsize, length - startindex])
batch_phot_loginvvar = np.where(
batch_phot_invvar == 0, 0, np.log(batch_phot_invvar)
)
return (
startindex,
actualbatchsize,
batch_phot,
batch_phot_invvar,
batch_phot_loginvvar,
batch_redshifts,
self.transferfunctions,
batch_interprightindices_transfer,
batch_interpweights_transfer,
)
def get_nbatches(self, indices, batchsize):
self.batchsize = batchsize
return (indices.shape[0] // self.batchsize) + 1
def change_redshift(self, iz, zstep, data_batch):
(
si,
bs,
batch_index_wave,
batch_index_transfer_redshift,
spec,
spec_invvar,
spec_loginvvar,
# batch_spec_mask,
specphotscaling,
phot,
phot_invvar,
phot_loginvvar,
batch_redshifts,
batch_transferfunctions,
batch_index_wave_ext,
batch_interprightindices,
batch_interpweights,
) = data_batch
batch_transferfunctions = self.transferfunctions[
None, iz * zstep, :, :
] * onp.ones((bs, 1, 1))
# batch_index_wave = np.repeat(self.lamspec_waveoffset - iz * zstep, bs) # not correct with new arrays
batch_index_wave_z0 = batch_index_wave + batch_index_transfer_redshift
batch_interprightindices_z0 = (
batch_interprightindices + batch_index_transfer_redshift[:, None]
)
batch_index_wave = batch_index_wave_z0 - iz * zstep
batch_interprightindices = batch_interprightindices_z0 - iz * zstep
batch_index_wave_ext = batch_index_wave[:, None] + onp.arange(spec.shape[1])
# batch_index_wave_ext[batch_index_wave_ext < 0] = 0 # TODO: is this a problem?
# TODO: something to do about the specphotscaling?
return (
si,
bs,
batch_index_wave,
batch_index_transfer_redshift,
spec,
spec_invvar,
spec_loginvvar,
# batch_spec_mask,
specphotscaling,
phot,
phot_invvar,
phot_loginvvar,
batch_redshifts,
batch_transferfunctions,
batch_index_wave_ext,
batch_interprightindices,
batch_interpweights,
)
class ResultsPipeline:
def __init__(
self, prefix, suffix, n_archetypes, n_components, dataPipeline, indices=None
):
n_pix_sed = dataPipeline.lamgrid.size
n_pix_spec = dataPipeline.spec.shape[1]
n_pix_phot = dataPipeline.phot.shape[1]
self.dataPipeline = dataPipeline
self.prefix = prefix
self.suffix = suffix
if indices is not None:
n_obj = indices.size
self.indices = indices
self.logfml = onp.zeros((n_obj, n_archetypes))
self.specmod = onp.zeros((n_obj, n_pix_spec))
self.photmod = onp.zeros((n_obj, n_pix_phot))
self.thetamap = onp.zeros((n_obj, n_archetypes, n_components))
self.thetastd = onp.zeros((n_obj, n_archetypes, n_components))
self.ellfactors = onp.zeros((n_obj, n_archetypes))
def write_batch(
self, data_batch, logfml, thetamap, thetastd, specmod, photmod, ellfactors
):
si, bs = data_batch[0], data_batch[1]
best = np.argmax(logfml, axis=1)
fac = np.ones((bs, specmod.shape[2]), dtype=int)
i0 = np.arange(bs, dtype=int)[:, None] * fac
i1 = best[:, None] * fac
i2 = fac * np.arange(specmod.shape[2], dtype=int)[None, :]
self.specmod[si : si + bs, :] = specmod[i0, i1, i2]
fac = np.ones((bs, photmod.shape[2]), dtype=int)
i0 = np.arange(bs, dtype=int)[:, None] * fac
i1 = best[:, None] * fac
i2 = fac * np.arange(photmod.shape[2], dtype=int)[None, :]
self.photmod[si : si + bs, :] = photmod[i0, i1, i2]
self.logfml[si : si + bs, :] = logfml
self.thetamap[si : si + bs, :, :] = thetamap
self.thetastd[si : si + bs, :, :] = thetastd
self.ellfactors[si : si + bs, :] = ellfactors
def load_reconstructions(self):
self.indices = onp.load(self.prefix + "indices" + self.suffix + ".npy")
self.logfml = | onp.load(self.prefix + "logfml" + self.suffix + ".npy") | numpy.load |
#!/usr/bin/env python
#############################################################################
##
# This file is part of Taurus
##
# http://taurus-scada.org
##
# Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain
##
# Taurus is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
##
# Taurus is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
##
# You should have received a copy of the GNU Lesser General Public License
# along with Taurus. If not, see <http://www.gnu.org/licenses/>.
##
#############################################################################
"""
arrayedit.py: Widget for editing a spectrum/array via control points
"""
from __future__ import absolute_import
from builtins import range
import numpy
from taurus.external.qt import Qt, Qwt5
from taurus.qt.qtgui.util.ui import UILoadable
from .curvesAppearanceChooserDlg import CurveAppearanceProperties
@UILoadable
class ControllerBox(Qt.QWidget):
selected = Qt.pyqtSignal(int)
def __init__(self, parent=None, x=0, y=0, corr=0):
Qt.QWidget.__init__(self, parent)
self.loadUi()
self._x = x
self.setY(y)
self.box.setTitle('x=%6g' % self._x)
self.corrSB.setValue(corr)
self.ctrlObj = self.corrSB.ctrlObj = self.lCopyBT.ctrlObj = self.rCopyBT.ctrlObj = self.lScaleBT.ctrlObj = self.rScaleBT.ctrlObj = self
# reimplementing the focusInEvent method for the spinbox
self.corrSB.focusInEvent = self.corrSB_focusInEvent
self.box.mousePressEvent = self.mousePressEvent
#self.connect(self.corrSB, Qt.SIGNAL('valueChanged(double)'), self.enableScale)
def mousePressEvent(self, event):
self.selected.emit(self._x)
# print 'SELECTED', self
#Qt.QDoubleSpinBox.focusInEvent(self.corrSB, event)
def corrSB_focusInEvent(self, event):
self.selected.emit(self._x)
# print 'GOT FOCUS', self
Qt.QDoubleSpinBox.focusInEvent(self.corrSB, event)
def setY(self, y):
self._y = y
self.enableScale()
def enableScale(self, *args):
enable = (self._y + self.corrSB.value()) != 0
self.lScaleBT.setEnabled(enable)
self.rScaleBT.setEnabled(enable)
@UILoadable
class EditCPointsDialog(Qt.QDialog):
def __init__(self, parent=None, x=0):
Qt.QDialog.__init__(self, parent)
self.loadUi()
@UILoadable
class AddCPointsDialog(Qt.QDialog):
def __init__(self, parent=None, x=0):
Qt.QDialog.__init__(self, parent)
self.loadUi()
@UILoadable
class ArrayEditor(Qt.QWidget):
def __init__(self, parent=None):
Qt.QWidget.__init__(self, parent)
self.loadUi()
self._controllers = []
# construct the layout for controllers container
self.ctrlLayout = Qt.QHBoxLayout(self.controllersContainer)
self.ctrlLayout.setContentsMargins(5, 0, 5, 0)
self.ctrlLayout.setSpacing(1)
# implement scroll bars for the controllers container
self.scrollArea = Qt.QScrollArea(self)
self.scrollArea.setWidget(self.controllersContainer)
self.scrollArea.setVerticalScrollBarPolicy(Qt.Qt.ScrollBarAlwaysOff)
self.scrollArea.setWidgetResizable(True)
self.cpointsGroupBox.layout().insertWidget(0, self.scrollArea)
# initialize data
cpoints = 2
self.x = numpy.arange(256, dtype='double')
self.y = numpy.zeros(256, dtype='double')
self.xp = numpy.linspace(self.x[0], self.x[-1], cpoints)
self.corrp = numpy.zeros(cpoints)
self.yp = numpy.interp(self.xp, self.x, self.y)
self.corr = numpy.zeros(self.x.size)
# markers
self.markerPos = self.xp[0]
self.marker1 = Qwt5.QwtPlotMarker()
self.marker1.setSymbol(Qwt5.QwtSymbol(Qwt5.QwtSymbol.Rect,
Qt.QBrush(Qt.Qt.NoBrush),
Qt.QPen(Qt.Qt.green),
Qt.QSize(8, 8)))
self.marker1.attach(self.plot1)
self.marker2 = Qwt5.QwtPlotMarker()
self.marker2.setSymbol(Qwt5.QwtSymbol(Qwt5.QwtSymbol.Rect,
Qt.QBrush(Qt.Qt.NoBrush),
Qt.QPen(Qt.Qt.green),
Qt.QSize(8, 8)))
self.marker2.attach(self.plot2)
# cpointsPickers
self._cpointMovingIndex = None
self._cpointsPicker1 = Qwt5.QwtPicker(self.plot1.canvas())
self._cpointsPicker1.setSelectionFlags(Qwt5.QwtPicker.PointSelection)
self._cpointsPicker2 = Qwt5.QwtPicker(self.plot2.canvas())
self._cpointsPicker2.setSelectionFlags(Qwt5.QwtPicker.PointSelection)
self._cpointsPicker1.widgetMousePressEvent = self.plot1MousePressEvent
self._cpointsPicker1.widgetMouseReleaseEvent = self.plot1MouseReleaseEvent
self._cpointsPicker2.widgetMousePressEvent = self.plot2MousePressEvent
self._cpointsPicker2.widgetMouseReleaseEvent = self.plot2MouseReleaseEvent
self._cpointsPicker1.widgetMouseDoubleClickEvent = self.plot1MouseDoubleClickEvent
self._cpointsPicker2.widgetMouseDoubleClickEvent = self.plot2MouseDoubleClickEvent
self._populatePlots()
self.resetCorrection()
self._selectedController = self._controllers[0]
self._addCPointsDialog = AddCPointsDialog(self)
# Launch low-priority initializations (to speed up load time)
# Qt.QTimer.singleShot(0, <method>)
# connections
self.addCPointsBT.clicked.connect(self._addCPointsDialog.show)
self._addCPointsDialog.editBT.clicked.connect(self.showEditCPointsDialog)
self._addCPointsDialog.cleanBT.clicked.connect(self.resetCorrection)
self._addCPointsDialog.addSingleCPointBT.clicked.connect(self.onAddSingleCPointBT)
self._addCPointsDialog.addRegEspCPointsBT.clicked.connect(self.onAddRegEspCPointsBT)
def plot1MousePressEvent(self, event):
self.plotMousePressEvent(event, self.plot1)
def plot2MousePressEvent(self, event):
self.plotMousePressEvent(event, self.plot2)
def plotMousePressEvent(self, event, taurusplot):
picked, pickedCurveName, pickedIndex = taurusplot.pickDataPoint(
event.pos(), scope=20, showMarker=False, targetCurveNames=['Control Points'])
if picked is not None:
self.changeCPointSelection(picked.x())
self.makeControllerVisible(self._controllers[pickedIndex])
self._cpointMovingIndex = pickedIndex
self._movingStartYPos = event.y()
taurusplot.canvas().setCursor(Qt.Qt.SizeVerCursor)
def plot1MouseReleaseEvent(self, event):
self.plotMouseReleaseEvent(event, self.plot1)
def plot2MouseReleaseEvent(self, event):
self.plotMouseReleaseEvent(event, self.plot2)
def plotMouseReleaseEvent(self, event, taurusplot):
if self._cpointMovingIndex is None:
return # if no cpoint was picked, do nothing on release
# no motion s performed if the y position is unchanged or if the mouse
# release is out of the canvas
validMotion = (self._movingStartYPos != event.pos().y()
) and taurusplot.canvas().rect().contains(event.pos())
if validMotion:
# calculate the new correction
newCorr = taurusplot.invTransform(
taurusplot.getCurve('Control Points').yAxis(), event.y())
if taurusplot is self.plot1:
newCorr -= self.yp[self._cpointMovingIndex]
# apply new correction
self._controllers[self._cpointMovingIndex].corrSB.setValue(newCorr)
# reset the moving state
self._cpointMovingIndex = None
taurusplot.canvas().setCursor(Qt.Qt.CrossCursor)
def plot1MouseDoubleClickEvent(self, event):
self.plotMouseDoubleClickEvent(event, self.plot1)
def plot2MouseDoubleClickEvent(self, event):
self.plotMouseDoubleClickEvent(event, self.plot2)
def plotMouseDoubleClickEvent(self, event, taurusplot):
picked, pickedCurveName, pickedIndex = taurusplot.pickDataPoint(
event.pos(), scope=20, showMarker=False, targetCurveNames=['Control Points'])
if picked is not None:
return # we dont want to create a control point too close of an existing one
xp = taurusplot.invTransform(taurusplot.getCurve(
'Control Points').xAxis(), event.x())
if xp < self.xp[0] or xp > self.xp[-1]:
return # we dont want to create control points out of the curve range
if Qt.QMessageBox.question(self, 'Create Control Point?', 'Insert a new control point at x=%g?' % xp, 'Yes', 'No') == 0:
self.insertController(xp)
self.changeCPointSelection(xp)
# singleshot is used as a hack to get out of the eventhandler
Qt.QTimer.singleShot(1, self.makeControllerVisible)
def makeControllerVisible(self, ctrl=None):
if ctrl is None:
ctrl = self._selectedController
self.scrollArea.ensureWidgetVisible(ctrl)
def connectToController(self, ctrl):
ctrl.selected.connect(self.changeCPointSelection)
ctrl.corrSB.valueChanged.connect(self.onCorrSBChanged)
ctrl.lCopyBT.clicked.connect(self.onLCopy)
ctrl.rCopyBT.clicked.connect(self.onRCopy)
ctrl.lScaleBT.clicked.connect(self.onLScale)
ctrl.rScaleBT.clicked.connect(self.onRScale)
def onAddSingleCPointBT(self):
x = self._addCPointsDialog.singleCPointXSB.value()
self.insertController(x)
def onAddRegEspCPointsBT(self):
cpoints = self._addCPointsDialog.regEspCPointsSB.value()
positions = numpy.linspace(self.x[0], self.x[-1], cpoints + 2)[1:-1]
for xp in positions:
self.insertController(xp)
def showEditCPointsDialog(self):
dialog = EditCPointsDialog(self)
table = dialog.tableTW
table.setRowCount(self.xp.size)
for i, (xp, corrp) in enumerate(zip(self.xp, self.corrp)):
table.setItem(i, 0, Qt.QTableWidgetItem(str(xp)))
table.setItem(i, 1, Qt.QTableWidgetItem(str(corrp)))
# show dialog and update values if it is accepted
if dialog.exec_():
# delete previous controllers
for c in self._controllers:
c.setParent(None)
c.deleteLater()
self._controllers = []
# and create them anew
new_xp = numpy.zeros(table.rowCount())
new_corrp = numpy.zeros(table.rowCount())
try:
for i in range(table.rowCount()):
new_xp[i] = float(table.item(i, 0).text())
new_corrp[i] = float(table.item(i, 1).text())
self.setCorrection(new_xp, new_corrp)
except:
Qt.QMessageBox.warning(
self, 'Invalid data', 'Some values were not valid. Edition is ignored.')
def _getInsertionIndex(self, xp):
i = 0
while (self.xp[i] < xp):
i += 1
return i
def insertControllers(self, xplist):
for xp in xplist:
self.insertController(xp)
def insertController(self, xp, index=None):
if xp in self.xp:
return None
if index is None:
index = self._getInsertionIndex(xp)
# updating data (not in the most efficient way, but at least is clean)
old_xp = self.xp
self.xp = numpy.concatenate((self.xp[:index], (xp,), self.xp[index:]))
self.yp = numpy.interp(self.xp, self.x, self.y)
# the new correction is obtained by interpolation from the neighbouring
# ones
self.corrp = numpy.interp(self.xp, old_xp, self.corrp)
# creating the controller
ctrl = ControllerBox(parent=None, x=xp, y=self.yp[
index], corr=self.corrp[index])
self.ctrlLayout.insertWidget(index, ctrl)
self._controllers.insert(index, ctrl)
self.connectToController(ctrl)
self.updatePlots()
return index
def delController(self, index):
c = self._controllers.pop(index)
c.setParent(None)
c.deleteLater()
self.xp = numpy.concatenate((self.xp[:index], self.xp[index + 1:]))
self.yp = numpy.interp(self.xp, self.x, self.y)
self.corrp = numpy.concatenate(
(self.corrp[:index], self.corrp[index + 1:]))
def _populatePlots(self):
# Curves appearance
self._yAppearance = CurveAppearanceProperties(
sStyle=Qwt5.QwtSymbol.NoSymbol,
lStyle=Qt.Qt.SolidLine,
lWidth=2,
lColor='black',
cStyle=Qwt5.QwtPlotCurve.Lines,
yAxis=Qwt5.QwtPlot.yLeft)
self._correctedAppearance = CurveAppearanceProperties(
sStyle=Qwt5.QwtSymbol.NoSymbol,
lStyle=Qt.Qt.DashLine,
lWidth=1,
lColor='blue',
cStyle=Qwt5.QwtPlotCurve.Lines,
yAxis=Qwt5.QwtPlot.yLeft)
self._cpointsAppearance = CurveAppearanceProperties(
sStyle=Qwt5.QwtSymbol.Rect,
sSize=5,
sColor='blue',
sFill=True,
lStyle=Qt.Qt.NoPen,
yAxis=Qwt5.QwtPlot.yLeft)
self._corrAppearance = CurveAppearanceProperties(
sStyle=Qwt5.QwtSymbol.NoSymbol,
lStyle=Qt.Qt.SolidLine,
lWidth=1,
lColor='blue',
cStyle=Qwt5.QwtPlotCurve.Lines,
yAxis=Qwt5.QwtPlot.yLeft)
self.plot1.attachRawData({'x': self.x, 'y': self.y, 'title': 'Master'})
self.plot1.setCurveAppearanceProperties({'Master': self._yAppearance})
self.plot1.attachRawData(
{'x': self.xp, 'y': self.yp + self.corrp, 'title': 'Control Points'})
self.plot1.setCurveAppearanceProperties(
{'Control Points': self._cpointsAppearance})
self.plot1.attachRawData(
{'x': self.x, 'y': self.y + self.corr, 'title': 'Corrected'})
self.plot1.setCurveAppearanceProperties(
{'Corrected': self._correctedAppearance})
self.plot2.attachRawData(
{'x': self.x, 'y': self.corr, 'title': 'Correction'})
self.plot2.setCurveAppearanceProperties(
{'Correction': self._corrAppearance})
self.plot2.attachRawData(
{'x': self.xp, 'y': self.corrp, 'title': 'Control Points'})
self.plot2.setCurveAppearanceProperties(
{'Control Points': self._cpointsAppearance})
def updatePlots(self):
self.plot1.getCurve('Control Points').setData(
self.xp, self.yp + self.corrp)
self.plot1.getCurve('Corrected').setData(self.x, self.y + self.corr)
self.plot2.getCurve('Correction').setData(self.x, self.corr)
self.plot2.getCurve('Control Points').setData(self.xp, self.corrp)
index = self._getInsertionIndex(self.markerPos)
self.marker1.setValue(self.xp[index], self.yp[
index] + self.corrp[index])
self.marker2.setValue(self.xp[index], self.corrp[index])
self.plot1.replot()
self.plot2.replot()
def onLCopy(self, checked):
sender = self.sender().ctrlObj
index = self._getInsertionIndex(sender._x)
v = sender.corrSB.value()
for ctrl in self._controllers[:index]:
ctrl.corrSB.setValue(v)
def onRCopy(self, checked):
sender = self.sender().ctrlObj
index = self._getInsertionIndex(sender._x)
v = sender.corrSB.value()
for ctrl in self._controllers[index + 1:]:
ctrl.corrSB.setValue(v)
def onLScale(self, checked):
sender = self.sender().ctrlObj
index = self._getInsertionIndex(sender._x)
# y=numpy.interp(self.xp, self.x, self.y) #values of the master at the
# control points
if self.yp[index] == 0:
Qt.QMessageBox.warning(
self, 'Scaling Error', 'The master at this control point is zero-valued. This point cannot be used as reference for scaling')
return
v = sender.corrSB.value() / (self.yp[index])
for i in range(0, index):
self._controllers[i].corrSB.setValue(v * self.yp[i])
def onRScale(self, checked):
sender = self.sender().ctrlObj
index = self._getInsertionIndex(sender._x)
# y=numpy.interp(self.xp, self.x, self.y) #values of the master at the
# control points
if self.yp[index] == 0:
Qt.QMessageBox.warning(
self, 'Scaling Error', 'The master at this control point is zero-valued. This point cannot be used as reference for scaling')
return
v = sender.corrSB.value() / (self.yp[index])
for i in range(index + 1, self.xp.size):
self._controllers[i].corrSB.setValue(v * self.yp[i])
def changeCPointSelection(self, newpos):
index = self._getInsertionIndex(newpos)
old_index = self._getInsertionIndex(self.markerPos)
self.markerPos = self.xp[index]
self.marker1.setValue(self.xp[index], self.yp[
index] + self.corrp[index])
self.marker2.setValue(self.xp[index], self.corrp[index])
self.plot1.replot()
self.plot2.replot()
self._controllers[old_index].corrSB.setStyleSheet('')
self._controllers[index].corrSB.setStyleSheet('background:lightgreen')
self._selectedController = self._controllers[index]
def onCorrSBChanged(self, value=None):
'''recalculates the position and value of the control points (self.xp and self.corrp)
as well as the correction curve (self.corr)'''
ctrl = self.sender().ctrlObj
self.corrp[self._getInsertionIndex(ctrl._x)] = value
# recalculate the correction curve
self.corr = numpy.interp(self.x, self.xp, self.corrp)
self.updatePlots()
def setMaster(self, x, y, keepCP=False, keepCorr=False):
# make sure that x,y are numpy arrays and that the values are sorted
# for x
x, y = numpy.array(x), numpy.array(y)
if x.shape != y.shape or x.size == 0 or y.size == 0:
raise ValueError('The master curve is not valid')
sortedindexes = | numpy.argsort(x) | numpy.argsort |
import os
import pickle
import numpy as np
from tqdm import tqdm
import torch
from self_supervised.data.io import loadmat
FILENAMES = {
('mihi', 1): 'full-mihi-03032014',
('mihi', 2): 'full-mihi-03062014',
('chewie', 1): 'full-chewie-10032013',
('chewie', 2): 'full-chewie-12192013',
}
class ReachNeuralDataset:
def __init__(self, path, primate='mihi', day=1,
binning_period=0.1, binning_overlap=0.0, train_split=0.8,
scale_firing_rates=False, scale_velocity=False, sort_by_reach=True):
self.path = path
# get path to data
assert primate in ['mihi', 'chewie']
assert day in [1, 2]
self.primate = primate
self.filename = FILENAMES[(self.primate, day)]
self.raw_path = os.path.join(self.path, 'raw/%s.mat') % self.filename
self.processed_path = os.path.join(self.path, 'processed/%s.pkl') % (self.filename + '-%.2f' % binning_period)
# get binning parameters
self.binning_period = binning_period
self.binning_overlap = binning_overlap
if self.binning_overlap != 0:
raise NotImplemented
# train/val split
self.train_split = train_split
# initialize some parameters
self.dataset_ = {}
self.subset = 'train' # default selected subset
### Process data
# load data
if not os.path.exists(self.processed_path):
data_train_test = self._process_data()
else:
data_train_test = self._load_processed_data()
# split data
data_train, data_test = self._split_data(data_train_test)
self._num_trials = {'train': len(data_train['firing_rates']),
'test': len(data_test['firing_rates'])}
# compute mean and std of firing rates
self.mean, self.std = self._compute_mean_std(data_train, feature='firing_rates')
# remove neurons with no variance
data_train, data_test = self._remove_static_neurons(data_train, data_test)
# scale data
if scale_firing_rates:
data_train, data_test = self._scale_data(data_train, data_test, feature='firing_rates')
if scale_velocity:
data_train, data_test = self._scale_data(data_train, data_test, feature='velocity')
# sort by reach direction
if sort_by_reach:
data_train = self._sort_by_reach_direction(data_train)
data_test = self._sort_by_reach_direction(data_test)
# build sequences
trial_lengths_train = [seq.shape[0] for seq in data_train['firing_rates']]
# merge everything
for feature in data_train.keys():
data_train[feature] = np.concatenate(data_train[feature]).squeeze()
data_test[feature] = np.concatenate(data_test[feature]).squeeze()
data_train['trial_lengths'] = trial_lengths_train
data_train['reach_directions'] = np.unique(data_train['labels']).tolist()
data_train['reach_lengths'] = [np.sum(data_train['labels'] == reach_id)
for reach_id in data_train['reach_directions']]
# map labels to 0 .. N-1 for training
data_train['raw_labels'] = data_train['labels'].copy()
data_test['raw_labels'] = data_test['labels'].copy()
data_train['labels'] = self._map_labels(data_train)
data_test['labels'] = self._map_labels(data_test)
self.dataset_['train'] = data_train
self.dataset_['test'] = data_test
@property
def dataset(self):
return self.dataset_[self.subset]
def __getattr__(self, item):
return self.dataset[item]
def train(self):
self.subset = 'train'
def test(self):
self.subset = 'test'
@property
def num_trials(self):
return self._num_trials[self.subset]
@property
def num_neurons(self):
return self[0]['firing_rates'].shape[1]
def _process_data(self):
print('Preparing dataset: Binning data.')
# load data
mat_dict = loadmat(self.raw_path)
# bin data
data = self._bin_data(mat_dict)
self._save_processed_data(data)
return data
def _save_processed_data(self, data):
with open(self.processed_path, 'wb') as output:
pickle.dump({'data': data}, output)
def _load_processed_data(self):
with open(self.processed_path, "rb") as fp:
data = pickle.load(fp)['data']
return data
def _bin_data(self, mat_dict):
# load matrix
trialtable = mat_dict['trial_table']
neurons = mat_dict['out_struct']['units']
pos = np.array(mat_dict['out_struct']['pos'])
vel = np.array(mat_dict['out_struct']['vel'])
acc = np.array(mat_dict['out_struct']['acc'])
force = | np.array(mat_dict['out_struct']['force']) | numpy.array |
# Copyright 2018 <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typed_python import (
Bool,
Int8, Int16, Int32, Int64,
UInt8, UInt16, UInt32, UInt64,
Float32, Float64,
NoneType, TupleOf, ListOf, OneOf, Tuple, NamedTuple, Dict,
ConstDict, Alternative, serialize, deserialize, Value, Class, Member,
TypeFilter, UndefinedBehaviorException, Function
)
from typed_python.test_util import currentMemUsageMb
import typed_python._types as _types
import psutil
import unittest
import traceback
import time
import numpy
import os
import sys
def typeFor(t):
assert not isinstance(t, list), t
return type(t)
def typeForSeveral(t):
ts = set(typeFor(a) for a in t)
if len(ts) == 1:
return list(ts)[0]
return OneOf(*ts)
def makeTupleOf(*args):
if not args:
return TupleOf(int)()
return TupleOf(typeForSeveral(args))(args)
def makeNamedTuple(**kwargs):
if not kwargs:
return NamedTuple()()
return NamedTuple(**{k:typeFor(v) for k,v in kwargs.items()})(**kwargs)
def makeTuple(*args):
if not args:
return Tuple()()
return Tuple(*[typeFor(v) for v in args])(args)
def makeDict(d):
if not d:
return ConstDict(int,int)()
return ConstDict(typeForSeveral(d.keys()), typeForSeveral(d.values()))(d)
def makeAlternative(severalDicts):
types = list(
set(
tuple(
(k,typeFor(v)) for k,v in ntDict.items()
)
for ntDict in severalDicts
)
)
alt = Alternative("Alt", **{
"a_%s" % i: dict(types[i]) for i in range(len(types))
})
res = []
for thing in severalDicts:
did = False
for i in range(len(types)):
try:
res.append(getattr(alt,"a_%s" % i)(**thing))
did = True
except Exception:
pass
if did:
break
assert len(res) == len(severalDicts)
return res
def choice(x):
#numpy.random.choice([1,(1,2)]) blows up because it looks 'multidimensional'
#so we have to pick from a list of indices
if not isinstance(x,list):
x = list(x)
return x[numpy.random.choice(list(range(len(x))))]
class RandomValueProducer:
def __init__(self):
self.levels = {0: [b'1', b'', '2', '', 0, 1, 0.0, 1.0, None, False, True, "a ", "a string", "b string", "b str"]}
def addEvenly(self, levels, count):
for level in range(1, levels+1):
self.addValues(level, count)
def all(self):
res = []
for valueList in self.levels.values():
res.extend(valueList)
return res
def addValues(self, level, count, sublevels = None):
assert level > 0
if sublevels is None:
sublevels = list(range(level))
sublevels = [x for x in sublevels if x in self.levels]
assert sublevels
def picker():
whichLevel = choice(sublevels)
try:
return choice(self.levels[whichLevel])
except Exception:
print(self.levels[whichLevel])
raise
for _ in range(count):
val = self.randomValue(picker)
if not isinstance(val,list):
val = [val]
self.levels.setdefault(level, []).extend(val)
def randomValue(self, picker):
def randomTuple():
return makeTuple(*[picker() for i in range(choice([0,1,2,3,4]))])
def randomNamedTupleDict():
return {"x_%s" % i: picker() for i in range(choice([0,1,2,3,4]))}
def randomNamedTuple():
return makeNamedTuple(**randomNamedTupleDict())
def randomDict():
return makeDict({picker():picker() for i in range(choice([0,1,2,3,4]))})
def randomTupleOf():
return makeTupleOf(*[picker() for i in range(choice([0,1,2,3,4]))])
def randomAlternative():
return makeAlternative([randomNamedTupleDict() for i in range(choice([1,2,3,4]))])
return choice([randomTuple,randomNamedTuple,randomDict,randomTupleOf,randomAlternative,picker])()
def pickRandomly(self):
return choice(self.levels[choice(list(self.levels))])
class NativeTypesTests(unittest.TestCase):
def check_expected_performance(self, elapsed, expected=1.0):
if os.environ.get('TRAVIS_CI', None) is not None:
expected = 2 * expected
self.assertTrue(
elapsed < expected,
"Slow Performance: expected to take {expected} sec, but took {elapsed}"
.format(expected=expected, elapsed=elapsed)
)
def test_objects_are_singletons(self):
self.assertTrue(Int8 is Int8)
self.assertTrue(NoneType is NoneType)
def test_object_binary_compatibility(self):
ibc = _types.isBinaryCompatible
self.assertTrue(ibc(NoneType, NoneType))
self.assertTrue(ibc(Int8, Int8))
NT = NamedTuple(a=int,b=int)
class X(NamedTuple(a=int,b=int)):
pass
class Y(NamedTuple(a=int,b=int)):
pass
self.assertTrue(ibc(X, X))
self.assertTrue(ibc(X, Y))
self.assertTrue(ibc(X, NT))
self.assertTrue(ibc(Y, NT))
self.assertTrue(ibc(NT, Y))
self.assertFalse(ibc(OneOf(int, float), OneOf(float, int)))
self.assertTrue(ibc(OneOf(int, X), OneOf(int, Y)))
self.assertIsInstance(OneOf(None, X)(Y()), X)
self.assertIsInstance(NamedTuple(x=OneOf(None, X))(x=Y()).x, X)
def test_binary_compatibility_incompatible_alternatives(self):
ibc = _types.isBinaryCompatible
A1 = Alternative("A1", X={'a': int}, Y={'b': float})
A2 = Alternative("A2", X={'a': int}, Y={'b': str})
self.assertTrue(ibc(A1, A1.X))
self.assertTrue(ibc(A1, A1.Y))
self.assertTrue(ibc(A1.Y, A1.Y))
self.assertTrue(ibc(A1.Y, A1))
self.assertTrue(ibc(A1.X, A1))
self.assertFalse(ibc(A1.X, A1.Y))
self.assertFalse(ibc(A1, A2))
self.assertFalse(ibc(A1.X, A2.X))
self.assertFalse(ibc(A1.Y, A2.Y))
def test_binary_compatibility_compatible_alternatives(self):
ibc = _types.isBinaryCompatible
A1 = Alternative("A1", X={'a': int}, Y={'b': float})
A2 = Alternative("A2", X={'a': int}, Y={'b': float})
self.assertTrue(ibc(A1.X, A2.X))
self.assertTrue(ibc(A1.Y, A2.Y))
self.assertFalse(ibc(A1.X, A2.Y))
self.assertFalse(ibc(A1.Y, A2.X))
def test_object_bytecounts(self):
self.assertEqual(_types.bytecount(NoneType), 0)
self.assertEqual(_types.bytecount(Int8), 1)
self.assertEqual(_types.bytecount(Int64), 8)
def test_type_stringification(self):
for t in ['Int8', 'NoneType']:
self.assertEqual(str(getattr(_types,t)()), "<class '%s'>" % t)
def test_tuple_of(self):
tupleOfInt = TupleOf(int)
i = tupleOfInt(())
i = tupleOfInt((1,2,3))
self.assertEqual(len(i), 3)
self.assertEqual(tuple(i), (1,2,3))
for x in range(10):
self.assertEqual(
tuple(tupleOfInt(tuple(range(x)))),
tuple(range(x))
)
with self.assertRaisesRegex(AttributeError, "do not accept attributes"):
tupleOfInt((1,2,3)).x = 2
def test_one_of_alternative(self):
X = Alternative("X", V={'a': int})
O = OneOf(None, X)
self.assertEqual(O(X.V(a=10)), X.V(a=10))
def test_one_of_py_subclass(self):
class X(NamedTuple(x=int)):
def f(self):
return self.x
O = OneOf(None, X)
self.assertEqual(NamedTuple(x=int)(x=10).x, 10)
self.assertEqual(X(x=10).f(), 10)
self.assertEqual(O(X(x=10)).f(), 10)
def test_tuple_of_tuple_of(self):
tupleOfInt = TupleOf(int)
tupleOfTupleOfInt = TupleOf(tupleOfInt)
pyVersion = (1,2,3),(1,2,3,4)
nativeVersion = tupleOfTupleOfInt(pyVersion)
self.assertEqual(len(nativeVersion), 2)
self.assertEqual(len(nativeVersion[0]), 3)
self.assertEqual(tuple(tuple(x) for x in nativeVersion), pyVersion)
bigTup = tupleOfInt(list(range(1000)))
t0 = time.time()
t = (bigTup,bigTup,bigTup,bigTup,bigTup)
for i in range(1000000):
tupleOfTupleOfInt(t)
elapsed = time.time() - t0
print("Took ", elapsed, " to do 1mm")
self.check_expected_performance(elapsed)
def test_default_initializer_oneof(self):
x = OneOf(None, int)
self.assertTrue(x() is None, repr(x()))
def test_tuple_of_various_things(self):
for thing, typeOfThing in [("hi", str), (b"somebytes", bytes),
(1.0, float), (2, int),
(None, type(None))
]:
tupleType = TupleOf(typeOfThing)
t = tupleType((thing,))
self.assertTrue(type(t[0]) is typeOfThing)
self.assertEqual(t[0], thing)
def test_tuple_assign_fails(self):
with self.assertRaisesRegex(TypeError, "does not support item assignment"):
(1,2,3)[10] = 20
with self.assertRaisesRegex(TypeError, "does not support item assignment"):
TupleOf(int)((1,2,3))[10] = 20
def test_list_of(self):
L = ListOf(int)
self.assertEqual(L.__qualname__, "ListOf(Int64)")
l = L([1,2,3,4])
self.assertEqual(l[0], 1)
self.assertEqual(l[-1], 4)
l[0] = 10
self.assertEqual(l[0], 10)
l[-1] = 11
self.assertEqual(l[3], 11)
with self.assertRaisesRegex(IndexError, "index out of range"):
l[100] = 20
l2 = L((10,2,3,11))
self.assertEqual(l,l2)
self.assertNotEqual(l,(10,2,3,11))
self.assertEqual(l,[10,2,3,11])
self.assertEqual(str(l),str([10,2,3,11]))
l3 = l + l2
self.assertEqual(l3, [10,2,3,11,10,2,3,11])
l3.append(23)
self.assertEqual(l3, [10,2,3,11,10,2,3,11, 23])
def test_list_resize(self):
l = ListOf(TupleOf(int))()
l.resize(10)
self.assertEqual(l.reserved(), 10)
self.assertEqual(len(l), 10)
emptyTup = TupleOf(int)()
aTup = TupleOf(int)((1,2,3))
self.assertEqual(list(l), [emptyTup] * 10)
l.resize(20, aTup)
self.assertEqual(list(l), [emptyTup] * 10 + [aTup] * 10)
self.assertEqual(_types.refcount(aTup), 11)
self.assertEqual(l.pop(15), aTup)
self.assertEqual(l.pop(5), emptyTup)
self.assertEqual(_types.refcount(aTup), 10)
l.resize(15)
with self.assertRaises(IndexError):
l.pop(100)
self.assertEqual(_types.refcount(aTup), 7) #6 in the list because we popped at '5'
l.pop()
self.assertEqual(_types.refcount(aTup), 6)
#this pops one of the empty tuples
l.pop(-10)
self.assertEqual(_types.refcount(aTup), 6)
l.clear()
self.assertEqual(len(l), 0)
def test_one_of(self):
o = OneOf(None, str)
self.assertEqual(o("hi"), "hi")
self.assertTrue(o(None) is None)
o = OneOf(None, "hi", 1.5, 1, True, b"hi2")
self.assertTrue(o(None) is None)
self.assertTrue(o("hi") == "hi")
self.assertTrue(o(b"hi2") == b"hi2")
self.assertTrue(o(1.5) == 1.5)
self.assertTrue(o(1) is 1)
self.assertIs(o(True), True)
with self.assertRaises(TypeError):
o("hi2")
with self.assertRaises(TypeError):
o(b"hi")
with self.assertRaises(TypeError):
o(3)
with self.assertRaises(TypeError):
o(False)
def test_ordering(self):
o = OneOf(None, "hi", 1.5, 1, True, b"hi2")
self.assertIs(o(True), True)
def test_one_of_flattening(self):
self.assertEqual(OneOf(OneOf(None, 1.0), OneOf(2.0, 3.0)), OneOf(None, 1.0, 2.0, 3.0))
def test_one_of_order_matters(self):
self.assertNotEqual(OneOf(1.0, 2.0), OneOf(2.0, 1.0))
def test_type_filter(self):
EvenInt = TypeFilter(int, lambda i: i % 2 == 0)
self.assertTrue(isinstance(2, EvenInt))
self.assertFalse(isinstance(1, EvenInt))
self.assertFalse(isinstance(2.0, EvenInt))
EvenIntegers = TupleOf(EvenInt)
e = EvenIntegers(())
e2 = e + (2,4,0)
with self.assertRaises(TypeError):
EvenIntegers((1,))
with self.assertRaises(TypeError):
e2 + (1,)
def test_tuple_of_one_of_fixed_size(self):
t = TupleOf(OneOf(0,1,2,3,4))
ints = tuple([x % 5 for x in range(1000000)])
typedInts = t(ints)
self.assertEqual(len(serialize(t, typedInts)), len(ints) + 8) #4 bytes for size of list, 4 bytes for frame size
self.assertEqual(tuple(typedInts), ints)
def test_tuple_of_one_of_multi(self):
t = TupleOf(OneOf(int, bool))
someThings = tuple([100 + x % 5 if x % 17 != 0 else bool(x%19) for x in range(1000000)])
typedThings = t(someThings)
self.assertEqual(
len(serialize(t, typedThings)),
sum(2 if isinstance(t,bool) else 9 for t in someThings) + 8
)
self.assertEqual(tuple(typedThings), someThings)
def test_compound_oneof(self):
producer = RandomValueProducer()
producer.addEvenly(1000, 2)
for _ in range(1000):
vals = (producer.pickRandomly(), producer.pickRandomly(), producer.pickRandomly())
a = OneOf(vals[0], vals[1], type(vals[2]))
for v in vals:
self.assertEqual(a(v), v, (a(v),v))
tup = TupleOf(a)
tupInst = tup(vals)
for i in range(len(vals)):
self.assertEqual(tupInst[i], vals[i], vals)
def test_one_of_conversion_failure(self):
o = OneOf(None, str)
with self.assertRaises(TypeError):
o(b"bytes")
def test_one_of_in_tuple(self):
t = Tuple(OneOf(None, str), str)
self.assertEqual(t(("hi","hi2"))[0], "hi")
self.assertEqual(t(("hi","hi2"))[1], "hi2")
self.assertEqual(t((None,"hi2"))[1], "hi2")
self.assertEqual(t((None,"hi2"))[0], None)
with self.assertRaises(TypeError):
t((None,None))
with self.assertRaises(IndexError):
t((None,"hi2"))[2]
def test_one_of_composite(self):
t = OneOf(TupleOf(str), TupleOf(float))
self.assertIsInstance(t((1.0,2.0)), TupleOf(float))
self.assertIsInstance(t(("1.0","2.0")), TupleOf(str))
with self.assertRaises(TypeError):
t((1.0,"2.0"))
def test_named_tuple(self):
t = NamedTuple(a=int, b=int)
with self.assertRaisesRegex(AttributeError, "object has no attribute"):
t().asdf
with self.assertRaisesRegex(AttributeError, "immutable"):
t().a = 1
self.assertEqual(t()[0], 0)
self.assertEqual(t().a, 0)
self.assertEqual(t()[1], 0)
self.assertEqual(t(a=1,b=2).a, 1)
self.assertEqual(t(a=1,b=2).b, 2)
def test_named_tuple_construction(self):
t = NamedTuple(a=int, b=int)
self.assertEqual(t(a=10).a, 10)
self.assertEqual(t(a=10).b, 0)
self.assertEqual(t(a=10,b=2).a, 10)
self.assertEqual(t(a=10,b=2).b, 2)
self.assertEqual(t({'a': 10,'b':2}).a, 10)
self.assertEqual(t({'a': 10,'b':2}).b, 2)
self.assertEqual(t({'b':2}).a, 0)
self.assertEqual(t({'b':2}).b, 2)
with self.assertRaises(TypeError):
t({'c':10})
with self.assertRaises(TypeError):
t(c=10)
def test_named_tuple_str(self):
t = NamedTuple(a=str, b=str)
self.assertEqual(t(a='1',b='2').a, '1')
self.assertEqual(t(a='1',b='2').b, '2')
self.assertEqual(t(b='2').a, '')
self.assertEqual(t(b='2').b, '2')
self.assertEqual(t().a, '')
self.assertEqual(t().b, '')
def test_tuple_of_string_perf(self):
t = NamedTuple(a=str, b=str)
t0 = time.time()
for i in range(1000000):
t(a="a", b="b").a
elapsed = time.time() - t0
print("Took ", elapsed, " to do 1mm")
self.check_expected_performance(elapsed)
def test_comparisons_in_one_of(self):
t = OneOf(None, float)
def map(x):
if x is None:
return -1000000.0
else:
return x
lt = lambda a,b: map(a) < map(b)
le = lambda a,b: map(a) <= map(b)
eq = lambda a,b: map(a) == map(b)
ne = lambda a,b: map(a) != map(b)
gt = lambda a,b: map(a) > map(b)
ge = lambda a,b: map(a) >= map(b)
funcs = [lt,le,eq,ne,gt,ge]
ts = [None,1.0,2.0,3.0]
for f in funcs:
for t1 in ts:
for t2 in ts:
self.assertTrue(f(t1,t2) is f(t(t1),t(t2)))
def test_comparisons_equivalence(self):
t = TupleOf(OneOf(None, str, bytes, float, int, bool, TupleOf(int)),)
def lt(a,b): return a < b
def le(a,b): return a <= b
def eq(a,b): return a == b
def ne(a,b): return a != b
def gt(a,b): return a > b
def ge(a,b): return a >= b
funcs = [lt,le,eq,ne,gt,ge]
tgroups = [
[1.0,2.0,3.0],
[1,2,3],
[True,False],
["a","b","ab","bb","ba","aaaaaaa","","asdf"],
["1","2","3","12","13","23","24","123123", "0", ""],
[b"a",b"b",b"ab",b"bb",b"ba",b"aaaaaaa",b"",b"asdf"],
[(1,2),(1,2,3),(),(1,1),(1,)]
]
for ts in tgroups:
for f in funcs:
for t1 in ts:
for t2 in ts:
self.assertTrue(f(t1,t2) is f(t((t1,)),t((t2,))),
(f, t1,t2, f(t1,t2), f(t((t1,)),t((t2,))))
)
def test_const_dict(self):
t = ConstDict(str,str)
self.assertEqual(len(t()), 0)
self.assertEqual(len(t({})), 0)
self.assertEqual(len(t({'a':'b'})), 1)
self.assertEqual(t({'a':'b'})['a'], 'b')
self.assertEqual(t({'a':'b','b':'c'})['b'], 'c')
self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b'}))))
self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b','b':'c'}))))
self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d'}))))
self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d','d':'e'}))))
self.assertTrue("c" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d','def':'e'}))))
self.assertTrue("def" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d','def':'e'}))))
def test_const_dict_get(self):
a = ConstDict(str,str)({'a':'b','c':'d'})
self.assertEqual(a.get('a'),'b')
self.assertEqual(a.get('asdf'),None)
self.assertEqual(a.get('asdf',20),20)
def test_const_dict_items_keys_and_values(self):
a = ConstDict(str,str)({'a':'b','c':'d'})
self.assertEqual(sorted(a.items()), [('a','b'),('c','d')])
self.assertEqual(sorted(a.keys()), ['a','c'])
self.assertEqual(sorted(a.values()), ['b','d'])
def test_empty_string(self):
a = ConstDict(str,str)({'a':''})
print(a['a'])
def test_dict_to_oneof(self):
t = ConstDict(str,OneOf("A","B","ABCDEF"))
a = t({'a':'A','b':'ABCDEF'})
self.assertEqual(a['a'], "A")
self.assertEqual(a['b'], "ABCDEF")
self.assertEqual(a, deserialize(t,serialize(t,a)))
def test_deserialize_primitive(self):
x = deserialize(str, serialize(str, "a"))
self.assertTrue(isinstance(x,str))
def test_dict_containment(self):
for _ in range(100):
producer = RandomValueProducer()
producer.addEvenly(20, 2)
values = producer.all()
for v in values:
if str(type(v))[:17] == "<class 'ConstDict":
v = deserialize(type(v), serialize(type(v), v))
for k in v:
self.assertTrue(k in v)
def test_named_tuple_from_dict(self):
N = NamedTuple(x=int, y=str,z=OneOf(None,"hihi"))
self.assertEqual(N().x, 0)
self.assertEqual(N().y, "")
self.assertEqual(N().z, None)
self.assertEqual(N({}).x, 0)
self.assertEqual(N({}).y, "")
self.assertEqual(N({}).z, None)
self.assertEqual(N({'x': 20}).x, 20)
self.assertEqual(N({'x': 20, 'y': "30"}).y, "30")
self.assertEqual(N({'y': "30", 'x': 20}).y, "30")
self.assertEqual(N({'z': "hihi"}).z, "hihi")
with self.assertRaises(Exception):
N({'r': 'hi'})
N({'y': 'hi', 'z': "not hihi"})
N({'a': 0, 'b': 0, 'c': 0, 'd': 0})
def test_const_dict_mixed(self):
t = ConstDict(str,int)
self.assertTrue(t({"a":10})["a"] == 10)
t = ConstDict(int, str)
self.assertTrue(t({10:"a"})[10] == "a")
def test_const_dict_comparison(self):
t = ConstDict(str,str)
self.assertEqual(t({'a':'b'}), t({'a':'b'}))
self.assertLess(t({}), t({'a':'b'}))
def test_const_dict_lookup(self):
for type_to_use, vals in [
(int, list(range(20))),
(bytes, [b'1', b'2', b'3', b'4', b'5'])
]:
t = ConstDict(type_to_use, type_to_use)
for _ in range(10):
ks = list(vals)
vs = list(vals)
numpy.random.shuffle(ks)
numpy.random.shuffle(vs)
py_d = {}
for i in range(len(ks)):
py_d[ks[i]] = vs[i]
typed_d = t(py_d)
for k in py_d:
self.assertEqual(py_d[k], typed_d[k])
last_k = None
for k in typed_d:
assert last_k is None or k > last_k, (k,last_k)
last_k = k
def test_const_dict_lookup_time(self):
int_dict = ConstDict(int, int)
d = int_dict({k:k for k in range(1000000)})
for k in range(1000000):
self.assertTrue(k in d)
self.assertTrue(d[k] == k)
def test_const_dict_of_dict(self):
int_dict = ConstDict(int, int)
int_dict_2 = ConstDict(int_dict,int_dict)
d = int_dict({1:2})
d2 = int_dict({1:2,3:4})
big = int_dict_2({d:d2})
self.assertTrue(d in big)
self.assertTrue(d2 not in big)
self.assertTrue(big[d] == d2)
def test_dict_hash_perf(self):
str_dict = ConstDict(str, str)
s = str_dict({'a' * 1000000: 'b' * 1000000})
t0 = time.time()
for k in range(1000000):
hash(s)
elapsed = time.time() - t0
print(elapsed, " to do 1mm")
self.check_expected_performance(elapsed)
def test_const_dict_str_perf(self):
t = ConstDict(str,str)
t0 = time.time()
for i in range(100000):
t({str(k): str(k+1) for k in range(10)})
elapsed = time.time() - t0
print("Took ", elapsed, " to do 1mm")
self.check_expected_performance(elapsed)
def test_const_dict_int_perf(self):
t = ConstDict(int,int)
t0 = time.time()
for i in range(100000):
t({k:k+1 for k in range(10)})
elapsed = time.time() - t0
print("Took ", elapsed, " to do 1mm")
self.check_expected_performance(elapsed)
def test_const_dict_iter_int(self):
t = ConstDict(int,int)
aDict = t({k:k+1 for k in range(100)})
for k in aDict:
self.assertEqual(aDict[k], k+1)
def test_const_dict_iter_str(self):
t = ConstDict(str,str)
aDict = t({str(k):str(k+1) for k in range(100)})
for k in aDict:
self.assertEqual(aDict[str(k)], str(int(k)+1))
def test_alternatives_with_Bytes(self):
alt = Alternative(
"Alt",
x_0={'a':bytes}
)
self.assertEqual(alt.x_0(a=b''), alt.x_0(a=b''))
def test_alternatives_with_str_func(self):
alt = Alternative(
"Alt",
x_0={'a':bytes},
f=lambda self: 1,
__str__=lambda self: "not_your_usual_str"
)
self.assertEqual(alt.x_0().f(), 1)
self.assertEqual(str(alt.x_0()), "not_your_usual_str")
def test_named_tuple_subclass_magic_methods(self):
class X(NamedTuple(x=int,y=int)):
def __str__(self):
return "str override"
def __repr__(self):
return "repr override"
self.assertEqual(repr(X()), "repr override")
self.assertEqual(str(X()), "str override")
def test_empty_alternatives(self):
a = Alternative(
"Alt",
A={},
B={}
)
self.assertEqual(a.A(), a.A())
self.assertIsInstance(deserialize(a, serialize(a, a.A())), a.A)
self.assertEqual(a.A(), deserialize(a, serialize(a, a.A())))
self.assertEqual(a.B(), a.B())
self.assertNotEqual(a.A(), a.B())
self.assertNotEqual(a.B(), a.A())
def test_extracted_alternatives_have_correct_type(self):
Alt = Alternative(
"Alt",
A={},
B={}
)
tOfAlt = TupleOf(Alt)
a = Alt.A()
aTup = tOfAlt((a,))
self.assertEqual(a, aTup[0])
self.assertTrue(type(a) is type(aTup[0]))
def test_alternatives(self):
alt = Alternative(
"Alt",
child_ints={'x': int, 'y': int},
child_strings={'x': str, 'y': str}
)
self.assertTrue(issubclass(alt.child_ints, alt))
self.assertTrue(issubclass(alt.child_strings, alt))
a = alt.child_ints(x=10,y=20)
a2 = alt.child_ints(x=10,y=20)
self.assertEqual(a,a2)
self.assertTrue(isinstance(a, alt))
self.assertTrue(isinstance(a, alt.child_ints))
self.assertEqual(a.x, 10)
self.assertEqual(a.y, 20)
self.assertTrue(a.matches.child_ints)
self.assertFalse(a.matches.child_strings)
with self.assertRaisesRegex(AttributeError, "immutable"):
a.x = 20
def test_alternatives_comparison(self):
empty = Alternative("X", A={}, B={})
self.assertEqual(empty.A(), empty.A())
self.assertEqual(empty.B(), empty.B())
self.assertNotEqual(empty.A(), empty.B())
a = Alternative("X",
A={'a': int},
B={'b': int},
C={'c': str},
D={'d': bytes},
)
self.assertEqual(a.A(a=10), a.A(a=10))
self.assertNotEqual(a.A(a=10), a.A(a=11))
self.assertNotEqual(a.C(c=""), a.C(c="hi"))
self.assertFalse(a.C(c="") == a.C(c="hi"))
self.assertNotEqual(a.D(d=b""), a.D(d=b"hi"))
def test_alternatives_add_operator(self):
alt = Alternative(
"Alt",
child_ints={'x': int, 'y': int},
__add__=lambda l,r: (l,r)
)
a = alt.child_ints(x=0,y=2)
self.assertEqual(a+a,(a,a))
def test_alternatives_perf(self):
alt = Alternative(
"Alt",
child_ints={'x': int, 'y': int},
child_strings={'x': str, 'y': str}
)
t0 = time.time()
for i in range(1000000):
a = alt.child_ints(x=10,y=20)
a.matches.child_ints
a.x
elapsed = time.time() - t0
print("Took ", elapsed, " to do 1mm")
self.check_expected_performance(elapsed, expected=2.0)
def test_object_hashing_and_equality(self):
for _ in range(100):
producer = RandomValueProducer()
producer.addEvenly(20, 2)
values = producer.all()
for v1 in values:
for v2 in values:
if hash(v1) != hash(v2) and v1 == v2:
print(v1,v2, type(v1), type(v2))
for v1 in values:
for v2 in values:
if type(v1) == type(v2) and v1 == v2:
self.assertEqual(hash(v1), hash(v2), (v1, v2))
if type(v1) is type(v2):
self.assertEqual(repr(v1), repr(v2), (v1, v2, type(v1),type(v2)))
values = sorted([makeTuple(v) for v in values])
for i in range(len(values)-1):
self.assertTrue(values[i] <= values[i+1])
self.assertTrue(values[i+1] >= values[i])
def test_bytes_repr(self):
for _ in range(100000):
#always start with a '"' because otherwise python keeps chosing different
#initial characters.
someBytes = b'"' + numpy.random.uniform(size=2).tostring()
self.assertEqual(repr(makeTuple(someBytes)), repr((someBytes,)))
def test_equality_with_native_python_objects(self):
tups = [(1,2,3), (), ("2",), (b"2",), (1,2,3, "b"), (2,), (None,)]
for tup1 in tups:
self.assertEqual( makeTuple(*tup1), tup1 )
for tup2 in tups:
if tup1 != tup2:
self.assertNotEqual( makeTuple(*tup1), tup2 )
for tup1 in tups:
self.assertEqual( makeTupleOf(*tup1), tup1 )
for tup2 in tups:
if tup1 != tup2:
self.assertNotEqual( makeTupleOf(*tup1), tup2 )
def test_add_tuple_of(self):
tupleOfInt = TupleOf(int)
tups = [(),(1,2),(1,),(1,2,3,4)]
for tup1 in tups:
for tup2 in tups:
self.assertEqual(tupleOfInt(tup1) + tupleOfInt(tup2), tupleOfInt(tup1+tup2))
self.assertEqual(tupleOfInt(tup1) + tup2, tupleOfInt(tup1+tup2))
def test_slice_tuple_of(self):
tupleOfInt = TupleOf(int)
ints = tuple(range(20))
aTuple = tupleOfInt(ints);
for i in range(-21,21):
for i2 in range(-21, 21):
for step in range(-3, 3):
if step != 0:
self.assertEqual(aTuple[i:i2:step], ints[i:i2:step])
try:
ints[i]
self.assertEqual(aTuple[i], ints[i])
except IndexError:
with self.assertRaises(IndexError):
aTuple[i]
def test_dictionary_subtraction_basic(self):
intDict = ConstDict(int,int)
self.assertEqual(intDict({1:2}) - (1,), intDict({}))
self.assertEqual(intDict({1:2, 3:4}) - (1,), intDict({3:4}))
self.assertEqual(intDict({1:2, 3:4}) - (3,), intDict({1:2}))
def test_dictionary_addition_and_subtraction(self):
someDicts = [{i:choice([1,2,3,4,5]) for i in range(choice([4,6,10,20]))} for _ in range(20)]
intDict = ConstDict(int,int)
for d1 in someDicts:
for d2 in someDicts:
addResult = dict(d1)
addResult.update(d2)
self.assertEqual(intDict(d1) + intDict(d2), intDict(addResult))
res = intDict(addResult)
while len(res):
toRemove = []
for i in range(choice(list(range(len(res))))+1):
key = choice(list(addResult))
del addResult[key]
toRemove.append(key)
res = res - toRemove
self.assertEqual(res, intDict(addResult))
def test_subclassing(self):
BaseTuple = NamedTuple(x=int,y=float)
class NTSubclass(BaseTuple):
def f(self):
return self.x + self.y
def __repr__(self):
return "ASDF"
inst = NTSubclass(x=10,y=20)
self.assertTrue(isinstance(inst, BaseTuple))
self.assertTrue(isinstance(inst, NTSubclass))
self.assertTrue(type(inst) is NTSubclass)
self.assertEqual(repr(inst), "ASDF")
self.assertNotEqual(BaseTuple.__repr__(inst), "ASDF")
self.assertEqual(inst.x, 10)
self.assertEqual(inst.f(), 30)
TupleOfSubclass = TupleOf(NTSubclass)
instTup = TupleOfSubclass((inst,BaseTuple(x=20,y=20.0)))
self.assertTrue(isinstance(instTup[0], NTSubclass))
self.assertTrue(isinstance(instTup[1], NTSubclass))
self.assertEqual(instTup[0].f(), 30)
self.assertEqual(instTup[1].f(), 40)
self.assertEqual(BaseTuple(inst).x, 10)
self.assertTrue(OneOf(None, NTSubclass)(None) is None)
self.assertTrue(OneOf(None, NTSubclass)(inst) == inst)
def test_serialization(self):
ints = TupleOf(int)((1,2,3,4))
self.assertEqual(
len(serialize(TupleOf(int), ints)),
40
)
while len(ints) < 1000000:
ints = ints + ints
t0 = time.time()
self.assertEqual(len(serialize(TupleOf(int), ints)), len(ints) * 8 + 8)
print(time.time() - t0, " for ", len(ints))
def test_serialization_roundtrip(self):
badlen = None
for _ in range(100):
producer = RandomValueProducer()
producer.addEvenly(30, 3)
values = producer.all()
for v in values:
ser = serialize(type(v), v)
v2 = deserialize(type(v), ser)
ser2 = serialize(type(v), v2)
self.assertTrue(type(v2) is type(v))
self.assertEqual(ser,ser2)
self.assertEqual(str(v), str(v2))
self.assertEqual(v, v2)
def test_serialize_doesnt_leak(self):
T = TupleOf(int)
def getMem():
return psutil.Process().memory_info().rss / 1024 ** 2
m0 = getMem()
for passIx in range(100):
for i in range(1000):
t = T(list(range(i)))
deserialize(T, serialize(T,t))
self.assertTrue(getMem() < m0 + 100)
def test_const_dict_of_tuple(self):
K = NamedTuple(a=OneOf(float, int), b=OneOf(float, int))
someKs = [K(a=0,b=0), K(a=1), K(a=10), K(b=10), K()]
T = ConstDict(K, K)
indexDict = {}
x = T()
numpy.random.seed(42)
for _ in range(100):
i1 = numpy.random.choice(len(someKs))
i2 = numpy.random.choice(len(someKs))
add = numpy.random.choice([False, True])
if add:
indexDict[i1] = i2
x = x + {someKs[i1]: someKs[i2]}
else:
if i1 in indexDict:
del indexDict[i1]
x = x - (someKs[i1],)
self.assertEqual(x, T({someKs[i]:someKs[v] for i,v in indexDict.items()}))
for k in x:
self.assertTrue(k in x)
x[k]
def test_conversion_of_binary_compatible(self):
class T1(NamedTuple(a=int)):
pass
class T2(NamedTuple(a=int)):
pass
class T1Comp(NamedTuple(d=ConstDict(str, T1))):
pass
class T2Comp(NamedTuple(d=ConstDict(str, T1))):
pass
aT1C = T1Comp(d={'a': T1(a=10)})
self.assertEqual(T2Comp(aT1C).d['a'].a, 10)
self.assertEqual(aT1C, deserialize(T1Comp, serialize(T2Comp, aT1C)))
def test_conversion_of_binary_compatible_nested(self):
def make():
class Interior(NamedTuple(a=int)):
pass
class Exterior(NamedTuple(a=Interior)):
pass
return Exterior
E1 = make()
E2 = make()
OneOf(None, E2)(E1())
def test_python_objects_in_tuples(self):
class NormalPyClass(object):
pass
class NormalPySubclass(NormalPyClass):
pass
NT = NamedTuple(x=NormalPyClass, y=NormalPySubclass)
nt = NT(x=NormalPyClass(),y=NormalPySubclass())
self.assertIsInstance(nt.x, NormalPyClass)
self.assertIsInstance(nt.y, NormalPySubclass)
def test_construct_alternatives_with_positional_arguments(self):
a = Alternative("A", HasOne = {'a': str}, HasTwo = {'a': str, 'b': str})
with self.assertRaises(TypeError):
a.HasTwo("hi")
self.assertEqual(a.HasOne("hi"), a.HasOne(a="hi"))
hasOne = a.HasOne("hi")
self.assertEqual(a.HasOne(hasOne), hasOne)
with self.assertRaises(TypeError):
a.HasOne(a.HasTwo(a='1',b='b'))
def test_recursive_classes_repr(self):
class ASelfRecursiveClass(Class):
x = Member(OneOf(None, lambda: ASelfRecursiveClass))
a = ASelfRecursiveClass()
a.x = a
b = ASelfRecursiveClass()
b.x = b
print(repr(a))
def test_unsafe_pointers_to_list_internals(self):
x = ListOf(int)()
x.resize(100)
for i in range(len(x)):
x[i] = i
aPointer = x.pointerUnsafe(0)
self.assertTrue(str(aPointer).startswith("(Int64*)0x"))
self.assertEqual(aPointer.get(), x[0])
aPointer.set(100)
self.assertEqual(aPointer.get(), 100)
self.assertEqual(x[0], 100)
aPointer = aPointer + 10
self.assertEqual(aPointer.get(), x[10])
self.assertEqual(aPointer[10], x[20])
aPointer.set(20)
self.assertEqual(aPointer.get(), 20)
self.assertEqual(x[10], 20)
#this is OK because ints are POD.
aPointer.initialize(30)
self.assertEqual(x[10], 30)
def test_unsafe_pointers_to_uninitialized_list_items(self):
#because this is testing unsafe operations, the test is
#really just that we don't segfault!
for _ in range(100):
x = ListOf(TupleOf(int))()
x.reserve(10)
for i in range(x.reserved()):
x.pointerUnsafe(i).initialize((i,))
x.setSizeUnsafe(10)
#now check that if we fail to set the size we'll leak the tuple
aLeakedTuple = TupleOf(int)((1,2,3))
x = ListOf(TupleOf(int))()
x.reserve(1)
x.pointerUnsafe(0).initialize(aLeakedTuple)
x = None
self.assertEqual(_types.refcount(aLeakedTuple), 2)
def test_list_copy_operation_duplicates_list(self):
T = ListOf(int)
x = T([1,2,3])
y = T(x)
x[0] = 100
self.assertNotEqual(y[0], 100)
def test_list_and_tuple_conversion_to_numpy(self):
for T in [ListOf(bool), TupleOf(bool)]:
for arr in [
| numpy.array([]) | numpy.array |
#!/usr/bin/python
'''
Improved Minima Controlled Recursive Averaging (IMCRA) single channel
noise estmation after
[1] Israel Cohen, Noise Spectrum estimation in Adverse Environments:
Improved Minima Controlled Recursive Averaging. IEEE. Trans. Acoust.
Speech Signal Process. VOL. 11, NO. 5, Sep 2003.
<NAME> Feb2015
'''
import numpy as np
import sys
import os
# Add the path of the toolbox root
# from ns import MMSE_LSA
# For debugging purposes
#import ipdb
#np.seterr(divide='ignore',invalid='raise')
def post_speech_prob(Y_l, q, Gamma, xi):
'''
Posterior speech probability given prior speech absence and the complex
Gaussian model of speech distortion
Input: Y_l [K, 1] STFT frame
Input: q [K, 1] a priori speech presence
Input: Gamma [K, 1] A posteriori SNR
Input: xi [K, 1] A priori SNR
'''
nu = Gamma*xi/(1+xi)
p = np.zeros(Y_l.shape)
p[q < 1] = 1./(1+(q[q < 1]/(1-q[q < 1]))*(1+xi[q < 1])*np.exp(-nu[q < 1]))
return p
def sym_hanning(n):
'''
Same Hanning as the matlab default
'''
# to float
n = float(n)
if np.mod(n, 2) == 0:
# Even length window
half = n/2;
else:
# Odd length window
half = (n+1)/2;
w = .5*(1 - np.cos(2*np.pi*np.arange(1,half+1)/(n+1)))
return np.concatenate((w, w[:-1]));
# Default buffer size
L_MAX = 1000
class imcra_se():
'''
Simple class for enhancement using IMCRA
'''
def __init__(self, nfft, Lambda_D=None, Bmin=3.2, alpha =0.92, xi_min=10**(-25./20), IS=10):
# Decision directed smoothing factor
self.alpha = alpha
# Decision directed a priori SNR floor
self.xi_min = xi_min
self.nfft = int(nfft/2+1)
#
self.store = {}
self.store['Lambda_D'] = np.zeros((self.nfft, L_MAX))
self.store['p'] = np.zeros((self.nfft, L_MAX))
self.store['xi'] = np.zeros((self.nfft, L_MAX))
self.store['MSE'] = np.zeros((self.nfft, L_MAX))
self.l = 0
# IMCRA initial background segment (frames)
# Initialization
self.imcra = imcra(nfft, IS=IS, Bmin=Bmin)
self.G = 1
self.p = np.zeros([self.nfft, 1])
# Initial noise estimate
if Lambda_D is None:
self.Lambda_D = 1e-6*np.ones([self.nfft, 1])
else:
self.Lambda_D = Lambda_D
def update(self, Y):
hat_X = np.zeros(Y.shape, dtype=complex)
G = self.G
Gamma = G
Lambda_D = self.Lambda_D
p = self.p
K, L = Y.shape
if self.l + L > L_MAX:
# If maximum size surpassed, add a new batch of zeroes
self.store['Lambda_D'] = np.concatenate((self.store['Lambda_D'],
np.zeros((K, L_MAX))), 1)
self.store['p'] = np.concatenate((self.store['p'],
np.zeros((K, L_MAX))), 1)
self.store['xi'] = np.concatenate((self.store['xi'],
np.zeros((K, L_MAX))), 1)
self.store['MSE'] = np.concatenate((self.store['MSE'],
np.zeros((K, L_MAX))), 1)
for l in np.arange(0, L):
# A priori SNR, stationary parameter estimate (uses last Gamma)
xi_G = (G**2)*Gamma
# A posterori SNR
Gamma = (np.abs(Y[:, l:l+1])**2)/Lambda_D
# A priori SNR, maximum likelihood estimate
xi_ML = Gamma - 1
xi_ML[xi_ML<1e-6] = 1e-6
# Decision directed rule
xi = self.alpha*xi_G + (1-self.alpha)*xi_ML
# Flooring
xi[xi<self.xi_min] = self.xi_min
# MMSE-LSA
# Get Wiener gain
G = xi/(1 + xi)
hat_X[:, l:l+1] = MMSE_LSA(G*Y[:, l:l+1], G*Lambda_D)
# Residual MSE of Wiener filter
MSE = G*Lambda_D
# TODO: Store additional variables if solicited
self.store['Lambda_D'][:, self.l:self.l+1] = Lambda_D
self.store['p'][:, self.l:self.l+1] = p
self.store['xi'][:, self.l:self.l+1] = xi
self.store['MSE'][:, self.l:self.l+1] = MSE
self.l += 1
# IMCRA noise estimate and posterior speech probability for the
# next iteration
Lambda_D, p = self.imcra.update(Y[:, l:l+1], Gamma, xi)
# Keep these for the next iteration
self.G = G
self.Lambda_D = Lambda_D[:, -2:]
self.p = p
return hat_X
def get_param(self, param_list):
'''
Return stored parameters
'''
val_list = []
for par in param_list:
if par not in self.store:
raise(ValueError, "Parameter %s was not recorded" % par)
val_list.append(self.store[par][:, :self.l])
return val_list
class imcra():
'''
IMCRA class
'''
def __init__(self, nfft, Bmin=None, **kwargs):
# IMCRA DEFAULT CONFIGURATION
# Consult [1] on how to set the parameters
# Number of initial frames of the signal assumed to be noise
self.IS = 15
# How many adjacent bins (before and after bin k) are used to smooth
# spectrogram in frecuency (S_f[k,l])
self.w = 1
# Adaptation rate for the spectrogram smoothing in time
self.alpha_s = 0.9
# Adaptation rate for speech probability dependent time smoothing
# paramater
self.alpha_d = 0.85
# U spectrogram values are stored to perform minimum tracking
self.U = 8 # 8
# Each V frames minimum tracking will take place
self.V = 15 # 15
# Number of frames before the actual frame considered in minimum
# traking. (Irrelevant its included in Bmin)
self.D = self.U*self.V
# Significance levels
# Significance level for the first VAD
self.epsilon = 0.01
# Significance level for the second VAD
self.epsilon1 = 0.05
# Overload defaults
for par in kwargs.keys():
# If parameter is one of the defaults, overload it
if par in self.__dict__:
setattr(self, par, kwargs[par])
else:
raise ValueError("%s is not an imcra parameter" % par)
# If the standard significance levels and smoothing parameters not used
# we need to recompute everything
if ((self.epsilon == 0.01) & (self.epsilon1 == 0.05)
& (self.alpha_s == 0.9) & (self.w == 1)):
# VAD is attained through hypothesis test assuming distributions
# for ratios related to the minimum statistics, these are the
# parameteres
# Treshold to achieve 0.01 significance in first VAD speech absence
# hypothesis test
self.Gamma0 = 4.6
# Treshold to achieve 0.05 significance in second VAD speech
# presence hypothesis test
self.Gamma1 = 3
# Treshold to achieve 0.05 significance in second VAD speech
# presence hypothesis test
self.zeta0 = 1.67
# Noise variance estimate bias for speech absence (depends only
# on the last three parameters though [1, Eq. 31])
self.beta = 1.47
else:
# Note: This STILL assumes that we use the posterior probability
# as defined by [1, Eq. 7], see [1, App. II]
# This will need SCIPY!
import scipy.stats.chi2 as chi2
# Approx degrees of freedom of Eq. 20, see App. II
mu = (1+self.alpha_s)/(1-self.alha_s)*(1 + 0.7*w)
# Treshold to achieve 0.01 significance in first VAD speech absence
# hypothesis test
self.Gamma0 = -np.log(epsilon)
self.zeta0 = chi2.ppf(1-epsilon,mu)/mu
self.Gamma1 = -np.log(epsilon1)
# Treshold to achieve 0.05 significance in second VAD speech
# presence hypothesis test [1, Eq. 31])
self.beta = ((gamma1 - 1 -np.exp(-1) + np.exp(-gamma1))/
(gamma1 -1 - 3*np.exp(-1)
+ (gamma1+2)*np.exp(-gamma1)))
# Check for smoothed spectrogram bias set
if Bmin is None:
import warnings
warnings.warn("Minimum statistic bias Bmin is not set. Run "
"imcra.setBmin(), until then 2.1 used.",
DeprecationWarning)
self.Bmin = 2.1 # This is for my config!
else:
self.Bmin = Bmin
self.K = int(nfft/2+1) # Number of frequency bins under Nyquist
self.l = -1 # Set frame index. -1 is no frame processed
self.j = 0 # Set counter for the buffer update
self.u = 0 # Set copunter for buffer last filled position
# To do the smoothing in frequency fast, we create indices to expand
# each frame (column) to a matrix with that column on the center and
# neighbouring frequencies on each row. Thay way we can smooth with
# One single loop
# Create matrix of indices
self.sm_idx = np.arange(0,self.K)[:,None] + np.arange(-self.w,self.w+1)[None,:]
# Create coresponding matrix of hamming windows
self.sm_win = np.tile(sym_hanning(2*self.w+1),(self.K,1))
# Ignore indices out of bounds
self.sm_win[self.sm_idx<0] = 0
self.sm_win[self.sm_idx>self.K-1] = 0
self.sm_idx[self.sm_idx<0] = 0
self.sm_idx[self.sm_idx>self.K-1] = self.K-1
# Normalize
self.sm_win = self.sm_win/np.sum(self.sm_win, 1, keepdims=True)
# BUFFERS
# They will be propperly initialized when the first frame is processed
# Smoothed Spectrogram first iteration
self.S = np.zeros([self.K, 1])
# Smoothed Spectrogram minimum first iteration
self.Smin = np.zeros([self.K, 1])
# Smoothed Spectrogram second iteration
self.tilde_S = np.zeros([self.K, 1])
# Smoothed Spectrogram second iteration
self.tilde_Smin = np.zeros([self.K, 1])
# Smoothed Spectrogram minimum running minimum
self.Smin_sw = np.zeros([self.K, 1])
# Second smoothed Spectrogram minimum running minimum
self.tilde_Smin_sw = np.zeros([self.K, 1])
# Smoothed Spectrogram minimum first iteration store buffer
self.Storing = np.zeros([self.K, self.U])
# Smoothed Spectrogram minimum second iteration store buffer
self.tilde_Storing = np.zeros([self.K, self.U])
# Biased noise variance estimate
self.ov_Lambda_D = np.zeros([self.K, 1])
# Unbiased noise variance estimate
self.Lambda_D = np.zeros([self.K, 1])
# A posteriori speech presence probability
self.q = np.ones([self.K, 1])
# A posteriori speech presence probability
self.p = np.zeros([self.K, 1])
# Speech presence prob upbound
self.p_upthr = 0.9
def reset(self, nfft=512, Bmin=3.2):
self.__init__(self, nfft, Bmin)
def setBmin(self, N):
'''
Computes Bmin given the stft of a white noise signal as obtained e.g
n = np.random.randn(1e5)
N = stft(n, windowsize, shift, nfft)
Bmin = imcra.computeBmin(N)
'''
# SANITY CHECK: Enough samples
if N.shape[1] < 3*self.U*self.V:
raise ValueError("Not enough samples, pick a langer white noise signal")
Bmin = np.zeros(N.shape)
for l in np.arange(0,N.shape[1]):
# Init
if l == 0:
self.init_params(N[:,l:l+1])
# Get minimum statistics
Bmin = (np.abs(N[:,l:l+1])**2)/self.Smin # [3,eq.18]
#zeta[:,l:l+1] = imcra.S/(imcra.Bmin*imcra.Smin) # [3,eq.21]
#tilde_Gamma_min[:,l:l+1] = (np.abs(Y[:,l:l+1])**2)/(imcra.Bmin*imcra.tilde_Smin) # [3,eq.18]
#tilde_zeta[:,l:l+1] = imcra.S/(imcra.Bmin*imcra.tilde_Smin) # [3,eq.21]
# Compute mean as average
self.Bmin = np.mean(Bmin)
return self.Bmin
'''
Fast frequency smoothing
'''
def fsmooth(self, P_l):
return np.sum(self.sm_win*P_l[self.sm_idx][:, :, 0], 1)[:,None]
def init_params(self,Y_l):
# Smoothed spectrograms
# Smoothed Spectrogram first iteration
self.S = self.fsmooth(np.abs(Y_l)**2)
# Smoothed Spectrogram second iteration
self.tilde_S = self.S.copy()
# Smoothed Spectrogram minimum first iteration
self.Smin = self.S.copy()
# Smoothed Spectrogram minimum first second iteration
self.tilde_Smin = self.S.copy()
# Smoothed Spectrogram minimum running minimum
self.Smin_sw = self.S.copy()
# Second smoothed Spectrogram minimum running minimum
self.tilde_Smin_sw = self.S.copy()
# Other parameters
# Biased noise variance estimate
self.ov_Lambda_D = np.abs(Y_l)**2
# Unbiased noise variance estimate
self.Lambda_D = self.ov_Lambda_D
# A posteriori speech presence probability
self.p = np.zeros(Y_l.shape)
def update(self, Y_l, Gamma, xi):
'''
This calls the components of IMCRA as in the original paper. These are
A priori speech absence probability estimator
A posteriori speech probability estimator
Probabilistic recursive smoothing
For the initialization period (only noise assumed) it uses normal smoothing
'''
# Increase frame counter
self.l += 1
# If in first frame, initialize buffers with observed frame
if self.l == 0:
# print('first frame!')
self.init_params(Y_l)
# If in initialization segment, update noise stats only
# Note: Keep in mind that IS might be zero
if self.l < self.IS:
# Frequency smoothing [3,eq.14]
Sf = self.fsmooth(np.abs(Y_l)**2)
# Frequency and time smoothing [3,eqs.15]
self.S = self.alpha_s*self.S + (1-self.alpha_s)*Sf
# Update running minimum
self.Smin = np.min(np.concatenate((self.Smin,self.S),1),1)[:,None]
self.Smin_sw = np.min(np.concatenate((self.Smin_sw,self.S),1),1)[:,None]
# Compute smoothed spectrogram for p = 0
self.Lambda_D = self.alpha_d*self.Lambda_D + (1-self.alpha_d)*np.abs(Y_l)**2
# Set a priori background probability to one
self.q[:] = 1
# Set a posteriori speech probability to zero
self.p[:] = 0
else:
# FIRST MINIMA CONTROLLED VAD
# This provides a rough VAD to eliminate relatively strong speech
# components towards the second power spectrum estimation
Sf = self.fsmooth(np.abs(Y_l)**2) # [3,eq.14]
# Time smoothing
self.S = self.alpha_s*self.S+(1-self.alpha_s)*Sf # [3,eq.15]
# update running minimum
self.Smin = np.min(np.concatenate((self.Smin,self.S),1),1)[:,None]
self.Smin_sw = np.min(np.concatenate((self.Smin_sw,self.S),1),1)[:,None]
# Indicator function for VAD
Gamma_min = (np.abs(Y_l)**2)/(self.Bmin*self.Smin) # [3,eq.18]
zeta = self.S/(self.Bmin*self.Smin) # [3,eq.21]
I = np.zeros([self.K, 1])
I[(Gamma_min < self.Gamma0 ) & (zeta < self.zeta0)] = 1 # [3,eq.21]
# SECOND MINIMA CONTROLLED VAD
# This provides the speech probability needed to compute the final
# noise estimation. The hard VAD index I, computed in the previous
# estimation, is here used to exclude strong speech components.
norm = self.fsmooth(I)
self.tilde_Sf = self.fsmooth(I*np.abs(Y_l)**2)
self.tilde_Sf[norm>0] = self.tilde_Sf[norm>0]/norm[norm>0]
# Time smoothing
self.tilde_S = self.alpha_s*self.tilde_S+(1-self.alpha_s)*self.tilde_Sf # [3,eq.27]
# Update running minimum
self.tilde_Smin = np.min(np.concatenate((self.tilde_Smin,self.tilde_S),1),1)[:,None] # [3,eq.26]
self.tilde_Smin_sw = np.min(np.concatenate((self.tilde_Smin_sw,self.tilde_S),1),1)[:,None] # [3,eq.27]
# A PRIORI SPEECH ABSENCE
tilde_Gamma_min = (np.abs(Y_l)**2)/(self.Bmin*self.tilde_Smin)
tilde_zeta = self.S/(self.Bmin*self.tilde_Smin) # [3,eq.28]
# Speech absence
self.q = np.zeros(Y_l.shape)
self.q[(tilde_Gamma_min <= 1) & (tilde_zeta < self.zeta0)] = 1 # [3,eq.29]
self.q[(1 < tilde_Gamma_min) & (tilde_Gamma_min < self.Gamma1) & (tilde_zeta < self.zeta0)] = (self.Gamma1 - tilde_Gamma_min[(1 < tilde_Gamma_min) & (tilde_Gamma_min < self.Gamma1) & (tilde_zeta < self.zeta0)])/(self.Gamma1-1) # [3,Eq.29]
# self.q[:] = 1
# A POSTERIORI SPEECH PROBABILITY
self.p = post_speech_prob(Y_l,self.q,Gamma,xi)
self.p[self.p>self.p_upthr] = self.p_upthr
# PROBABILITY DRIVEN RECURSIVE SMOOTHING
# Smoothing parameter
tilde_alpha_d = self.alpha_d+(1-self.alpha_d)*self.p # [3,eq.11]
# UPDATE NOISE SPECTRUM ESTIMATE
self.ov_Lambda_D = tilde_alpha_d*self.ov_Lambda_D + (1-tilde_alpha_d)*np.abs(Y_l)**2 # [3,eq.10]
# Bias correction
self.Lambda_D = self.beta*self.ov_Lambda_D # [3,eq.12]
# UPDATE MINIMUM TRACKING
self.j += 1
if self.j == self.V:
# Minimum tracking for the first estimation
if self.u < self.U:
self.Storing[:,self.u:self.u+1] = self.Smin_sw
else:
self.Storing = | np.roll(self.Storing,-1,axis=1) | numpy.roll |
from typing import Any, Set, Tuple, Union, Optional
from pathlib import Path
from collections import defaultdict
from html.parser import HTMLParser
import pytest
from anndata import AnnData
import numpy as np
import xarray as xr
from imageio import imread, imsave
import tifffile
from squidpy.im import ImageContainer
from squidpy.im._utils import CropCoords, CropPadding, _NULL_COORDS
from squidpy._constants._pkg_constants import Key
class SimpleHTMLValidator(HTMLParser): # modified from CellRank
def __init__(self, n_expected_rows: int, expected_tags: Set[str], **kwargs: Any):
super().__init__(**kwargs)
self._cnt = defaultdict(int)
self._n_rows = 0
self._n_expected_rows = n_expected_rows
self._expected_tags = expected_tags
def handle_starttag(self, tag: str, attrs: Any) -> None:
self._cnt[tag] += 1
self._n_rows += tag == "strong"
def handle_endtag(self, tag: str) -> None:
self._cnt[tag] -= 1
def validate(self) -> None:
assert self._n_rows == self._n_expected_rows
assert set(self._cnt.keys()) == self._expected_tags
if len(self._cnt):
assert set(self._cnt.values()) == {0}
class TestContainerIO:
def test_empty_initialization(self):
img = ImageContainer()
assert not len(img)
assert isinstance(img.data, xr.Dataset)
assert img.shape == (0, 0)
assert str(img)
assert repr(img)
def _test_initialize_from_dataset(self):
dataset = xr.Dataset({"foo": xr.DataArray(np.zeros((100, 100, 3)))}, attrs={"foo": "bar"})
img = ImageContainer._from_dataset(data=dataset)
assert img.data is not dataset
assert "foo" in img
assert img.shape == (100, 100)
np.testing.assert_array_equal(img.data.values(), dataset.values)
assert img.data.attrs == dataset.attrs
def test_save_load_zarr(self, tmpdir):
img = ImageContainer(np.random.normal(size=(100, 100, 1)))
img.data.attrs["scale"] = 42
img.save(Path(tmpdir) / "foo")
img2 = ImageContainer.load(Path(tmpdir) / "foo")
np.testing.assert_array_equal(img["image"].values, img2["image"].values)
np.testing.assert_array_equal(img.data.dims, img2.data.dims)
np.testing.assert_array_equal(sorted(img.data.attrs.keys()), sorted(img2.data.attrs.keys()))
for k, v in img.data.attrs.items():
assert type(v) == type(img2.data.attrs[k]) # noqa: E721
assert v == img2.data.attrs[k]
def test_load_zarr_2_objects_can_overwrite_store(self, tmpdir):
img = ImageContainer(np.random.normal(size=(100, 100, 1)))
img.data.attrs["scale"] = 42
img.save(Path(tmpdir) / "foo")
img2 = ImageContainer.load(Path(tmpdir) / "foo")
img2.data.attrs["sentinel"] = "foobar"
img2["image"].values += 42
img2.save(Path(tmpdir) / "foo")
img3 = ImageContainer.load(Path(tmpdir) / "foo")
assert "sentinel" in img3.data.attrs
assert img3.data.attrs["sentinel"] == "foobar"
np.testing.assert_array_equal(img3["image"].values, img2["image"].values)
np.testing.assert_allclose(img3["image"].values - 42, img["image"].values)
@pytest.mark.parametrize(
("shape1", "shape2"),
[
((100, 200, 3), (100, 200, 1)),
((100, 200, 3), (100, 200)),
],
)
def test_add_img(self, shape1: Tuple[int, ...], shape2: Tuple[int, ...]):
img_orig = np.random.randint(low=0, high=255, size=shape1, dtype=np.uint8)
cont = ImageContainer(img_orig, layer="img_orig")
img_new = np.random.randint(low=0, high=255, size=shape2, dtype=np.uint8)
cont.add_img(img_new, layer="img_new", channel_dim="mask")
assert "img_orig" in cont
assert "img_new" in cont
np.testing.assert_array_equal(np.squeeze(cont.data["img_new"]), np.squeeze(img_new))
@pytest.mark.parametrize("shape", [(100, 200, 3), (100, 200, 1)])
def test_load_jpeg(self, shape: Tuple[int, ...], tmpdir):
img_orig = np.random.randint(low=0, high=255, size=shape, dtype=np.uint8)
fname = tmpdir / "tmp.jpeg"
imsave(str(fname), img_orig)
gt = imread(str(fname)) # because of compression, we load again
cont = ImageContainer(str(fname))
np.testing.assert_array_equal(cont["image"].values.squeeze(), gt.squeeze())
@pytest.mark.parametrize("shape", [(100, 200, 3), (100, 200, 1), (10, 100, 200, 1)])
def test_load_tiff(self, shape: Tuple[int, ...], tmpdir):
img_orig = np.random.randint(low=0, high=255, size=shape, dtype=np.uint8)
fname = tmpdir / "tmp.tiff"
tifffile.imsave(fname, img_orig)
cont = ImageContainer(str(fname))
if len(shape) > 3: # multi-channel tiff
np.testing.assert_array_equal(cont["image"], img_orig[..., 0].transpose(1, 2, 0))
else:
| np.testing.assert_array_equal(cont["image"], img_orig) | numpy.testing.assert_array_equal |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.