prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
"""
Define the unit tests for the :mod:`colour.characterisation.correction`
module.
"""
from __future__ import annotations
import numpy as np
import platform
import unittest
from itertools import product
from numpy.linalg import LinAlgError
from colour.characterisation.correction import (
matrix_augmented_Cheung2004,
polynomial_expansion_Finlayson2015,
polynomial_expansion_Vandermonde,
matrix_colour_correction_Cheung2004,
matrix_colour_correction_Finlayson2015,
matrix_colour_correction_Vandermonde,
colour_correction_Cheung2004,
colour_correction_Finlayson2015,
colour_correction_Vandermonde,
)
from colour.hints import NDArray
from colour.utilities import ignore_numpy_errors
__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "<EMAIL>"
__status__ = "Production"
__all__ = [
"MATRIX_TEST",
"MATRIX_REFERENCE",
"TestMatrixAugmentedCheung2004",
"TestPolynomialExpansionFinlayson2015",
"TestPolynomialExpansionVandermonde",
"TestMatrixColourCorrectionCheung2004",
"TestMatrixColourCorrectionFinlayson2015",
"TestMatrixColourCorrectionVandermonde",
"TestColourCorrectionCheung2004",
"TestColourCorrectionFinlayson2015",
"TestColourCorrectionVandermonde",
]
MATRIX_TEST: NDArray = np.array(
[
[0.17224810, 0.09170660, 0.06416938],
[0.49189645, 0.27802050, 0.21923399],
[0.10999751, 0.18658946, 0.29938611],
[0.11666120, 0.14327905, 0.05713804],
[0.18988879, 0.18227649, 0.36056247],
[0.12501329, 0.42223442, 0.37027445],
[0.64785606, 0.22396782, 0.03365194],
[0.06761093, 0.11076896, 0.39779139],
[0.49101797, 0.09448929, 0.11623839],
[0.11622386, 0.04425753, 0.14469986],
[0.36867946, 0.44545230, 0.06028681],
[0.61632937, 0.32323906, 0.02437089],
[0.03016472, 0.06153243, 0.29014596],
[0.11103655, 0.30553067, 0.08149137],
[0.41162190, 0.05816656, 0.04845934],
[0.73339206, 0.53075188, 0.02475212],
[0.47347718, 0.08834792, 0.30310315],
[0.00000000, 0.25187016, 0.35062450],
[0.76809639, 0.78486240, 0.77808297],
[0.53822392, 0.54307997, 0.54710883],
[0.35458526, 0.35318419, 0.35524431],
[0.17976704, 0.18000531, 0.17991488],
[0.09351417, 0.09510603, 0.09675027],
[0.03405071, 0.03295077, 0.03702047],
]
)
MATRIX_REFERENCE: NDArray = np.array(
[
[0.15579559, 0.09715755, 0.07514556],
[0.39113140, 0.25943419, 0.21266708],
[0.12824821, 0.18463570, 0.31508023],
[0.12028974, 0.13455659, 0.07408400],
[0.19368988, 0.21158946, 0.37955964],
[0.19957424, 0.36085439, 0.40678123],
[0.48896605, 0.20691688, 0.05816533],
[0.09775522, 0.16710693, 0.47147724],
[0.39358649, 0.12233400, 0.10526425],
[0.10780332, 0.07258529, 0.16151473],
[0.27502671, 0.34705454, 0.09728099],
[0.43980441, 0.26880559, 0.05430533],
[0.05887212, 0.11126272, 0.38552469],
[0.12705825, 0.25787860, 0.13566464],
[0.35612929, 0.07933258, 0.05118732],
[0.48131976, 0.42082843, 0.07120612],
[0.34665585, 0.15170714, 0.24969804],
[0.08261116, 0.24588716, 0.48707733],
[0.66054904, 0.65941137, 0.66376412],
[0.48051509, 0.47870296, 0.48230082],
[0.33045354, 0.32904184, 0.33228886],
[0.18001305, 0.17978567, 0.18004416],
[0.10283975, 0.10424680, 0.10384975],
[0.04742204, 0.04772203, 0.04914226],
]
)
class TestMatrixAugmentedCheung2004(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
matrix_augmented_Cheung2004` definition unit tests methods.
"""
def test_matrix_augmented_Cheung2004(self):
"""
Test :func:`colour.characterisation.correction.\
matrix_augmented_Cheung2004` definition.
"""
RGB = np.array([0.17224810, 0.09170660, 0.06416938])
polynomials = [
np.array([0.17224810, 0.09170660, 0.06416938]),
np.array(
[0.17224810, 0.09170660, 0.06416938, 0.00101364, 1.00000000]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.00101364,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
0.00511050,
0.00077126,
0.00026423,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
0.00272088,
0.00053967,
0.00070927,
0.00511050,
0.00077126,
0.00026423,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
0.00272088,
0.00053967,
0.00070927,
0.00511050,
0.00077126,
0.00026423,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
0.00272088,
0.00053967,
0.00070927,
0.00190387,
0.00144862,
0.00037762,
0.00511050,
0.00077126,
0.00026423,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
0.00272088,
0.00053967,
0.00070927,
0.00190387,
0.00144862,
0.00037762,
0.00511050,
0.00077126,
0.00026423,
1.00000000,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.01579629,
0.01105305,
0.00588476,
0.02966941,
0.00841010,
0.00411771,
0.00101364,
0.00272088,
0.00053967,
0.00070927,
0.00190387,
0.00144862,
0.00037762,
0.00511050,
0.00077126,
0.00026423,
0.00017460,
0.00009296,
0.00006504,
]
),
]
for i, terms in enumerate(
[3, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22]
):
np.testing.assert_almost_equal(
matrix_augmented_Cheung2004(RGB, terms),
polynomials[i],
decimal=7,
)
def test_raise_exception_matrix_augmented_Cheung2004(self):
"""
Test :func:`colour.characterisation.correction.\
matrix_augmented_Cheung2004` definition raised exception.
"""
self.assertRaises(
ValueError,
matrix_augmented_Cheung2004,
np.array([0.17224810, 0.09170660, 0.06416938]),
4,
)
@ignore_numpy_errors
def test_nan_matrix_augmented_Cheung2004(self):
"""
Test :func:`colour.characterisation.correction.\
matrix_augmented_Cheung2004` definition nan support.
"""
cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]
cases = np.array(list(set(product(cases, repeat=3))))
matrix_augmented_Cheung2004(cases)
class TestPolynomialExpansionFinlayson2015(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
polynomial_expansion_Finlayson2015` definition unit tests methods.
"""
def test_polynomial_expansion_Finlayson2015(self):
"""
Test :func:`colour.characterisation.correction.\
polynomial_expansion_Finlayson2015` definition.
"""
RGB = np.array([0.17224810, 0.09170660, 0.06416938])
polynomials = [
[
np.array([0.17224810, 0.09170660, 0.06416938]),
np.array([0.17224810, 0.09170660, 0.06416938]),
],
[
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.02966941,
0.00841010,
0.00411771,
0.01579629,
0.00588476,
0.01105305,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.12568328,
0.07671216,
0.10513350,
]
),
],
[
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.02966941,
0.00841010,
0.00411771,
0.01579629,
0.00588476,
0.01105305,
0.00511050,
0.00077126,
0.00026423,
0.00144862,
0.00037762,
0.00070927,
0.00272088,
0.00053967,
0.00190387,
0.00101364,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.12568328,
0.07671216,
0.10513350,
0.11314930,
0.07228010,
0.08918053,
0.13960570,
0.08141598,
0.12394021,
0.10045255,
]
),
],
[
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.02966941,
0.00841010,
0.00411771,
0.01579629,
0.00588476,
0.01105305,
0.00511050,
0.00077126,
0.00026423,
0.00144862,
0.00037762,
0.00070927,
0.00272088,
0.00053967,
0.00190387,
0.00101364,
0.00088027,
0.00007073,
0.00001696,
0.00046867,
0.00032794,
0.00013285,
0.00004949,
0.00004551,
0.00002423,
0.00024952,
0.00003463,
0.00012217,
0.00017460,
0.00009296,
0.00006504,
]
),
np.array(
[
0.17224810,
0.09170660,
0.06416938,
0.12568328,
0.07671216,
0.10513350,
0.11314930,
0.07228010,
0.08918053,
0.13960570,
0.08141598,
0.12394021,
0.10045255,
0.14713499,
0.13456986,
0.10735915,
0.08387498,
0.08213618,
0.07016104,
0.11495009,
0.09819082,
0.08980545,
]
),
],
]
for i in range(4):
np.testing.assert_almost_equal(
polynomial_expansion_Finlayson2015(RGB, i + 1, False),
polynomials[i][0],
decimal=7,
)
np.testing.assert_almost_equal(
polynomial_expansion_Finlayson2015(RGB, i + 1, True),
polynomials[i][1],
decimal=7,
)
def test_raise_exception_polynomial_expansion_Finlayson2015(self):
"""
Test :func:`colour.characterisation.correction.\
polynomial_expansion_Finlayson2015` definition raised exception.
"""
self.assertRaises(
ValueError,
polynomial_expansion_Finlayson2015,
np.array([0.17224810, 0.09170660, 0.06416938]),
5,
)
@ignore_numpy_errors
def test_nan_polynomial_expansion_Finlayson2015(self):
"""
Test :func:`colour.characterisation.correction.\
polynomial_expansion_Finlayson2015` definition nan support.
"""
cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]
cases = np.array(list(set(product(cases, repeat=3))))
polynomial_expansion_Finlayson2015(cases)
class TestPolynomialExpansionVandermonde(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
polynomial_expansion_Vandermonde` definition unit tests methods.
"""
def test_polynomial_expansion_Vandermonde(self):
"""
Test :func:`colour.characterisation.correction.\
polynomial_expansion_Vandermonde` definition.
"""
RGB = np.array([0.17224810, 0.09170660, 0.06416938])
polynomials = [
np.array([0.17224810, 0.09170660, 0.06416938, 1.00000000]),
np.array(
[
0.02966941,
0.00841010,
0.00411771,
0.17224810,
0.09170660,
0.06416938,
1.00000000,
]
),
np.array(
[
0.00511050,
0.00077126,
0.00026423,
0.02966941,
0.00841010,
0.00411771,
0.17224810,
0.09170660,
0.06416938,
1.00000000,
]
),
np.array(
[
0.00088027,
0.00007073,
0.00001696,
0.00511050,
0.00077126,
0.00026423,
0.02966941,
0.00841010,
0.00411771,
0.17224810,
0.09170660,
0.06416938,
1.00000000,
]
),
]
for i in range(4):
np.testing.assert_almost_equal(
polynomial_expansion_Vandermonde(RGB, i + 1),
polynomials[i],
decimal=7,
)
@ignore_numpy_errors
def test_nan_polynomial_expansion_Vandermonde(self):
"""
Test :func:`colour.characterisation.correction.\
polynomial_expansion_Vandermonde` definition nan support.
"""
cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]
cases = np.array(list(set(product(cases, repeat=3))))
polynomial_expansion_Vandermonde(cases)
class TestMatrixColourCorrectionCheung2004(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
matrix_colour_correction_Cheung2004` definition unit tests methods.
"""
def test_matrix_colour_correction_Cheung2004(self):
"""
Test :func:`colour.characterisation.correction.\
matrix_colour_correction_Cheung2004` definition.
"""
np.testing.assert_almost_equal(
matrix_colour_correction_Cheung2004(MATRIX_TEST, MATRIX_REFERENCE),
np.array(
[
[0.69822661, 0.03071629, 0.16210422],
[0.06893498, 0.67579611, 0.16430385],
[-0.06314956, 0.09212471, 0.97134152],
]
),
decimal=7,
)
np.testing.assert_almost_equal(
matrix_colour_correction_Cheung2004(
MATRIX_TEST, MATRIX_REFERENCE, terms=7
),
np.array(
[
[
0.80512769,
0.04001012,
-0.01255261,
-0.41056170,
-0.28052094,
0.68417697,
0.02251728,
],
[
0.03270288,
0.71452384,
0.17581905,
-0.00897913,
0.04900199,
-0.17162742,
0.01688472,
],
[
-0.03973098,
-0.07164767,
1.16401636,
0.29017859,
-0.88909018,
0.26675507,
0.02345109,
],
]
),
decimal=7,
)
@ignore_numpy_errors
def test_nan_matrix_colour_correction_Cheung2004(self): # pragma: no cover
"""
Test :func:`colour.characterisation.correction.\
matrix_colour_correction_Cheung2004` definition nan support.
"""
# NOTE: Hangs on "Linux".
if platform.system() == "Linux":
return
cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]
cases = np.array(list(set(product(cases, repeat=3))))
for case in cases:
try:
matrix_colour_correction_Cheung2004(
np.vstack([case, case, case]),
np.transpose(np.vstack([case, case, case])),
)
except LinAlgError:
pass
class TestMatrixColourCorrectionFinlayson2015(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
matrix_colour_correction_Finlayson2015` definition unit tests methods.
"""
def test_matrix_colour_correction_Finlayson2015(self):
"""
Test :func:`colour.characterisation.correction.\
matrix_colour_correction_Finlayson2015` definition.
"""
np.testing.assert_almost_equal(
matrix_colour_correction_Finlayson2015(
MATRIX_TEST, MATRIX_REFERENCE
),
np.array(
[
[0.69822661, 0.03071629, 0.16210422],
[0.06893498, 0.67579611, 0.16430385],
[-0.06314956, 0.09212471, 0.97134152],
]
),
decimal=7,
)
np.testing.assert_almost_equal(
matrix_colour_correction_Finlayson2015(
MATRIX_TEST, MATRIX_REFERENCE, degree=3
),
np.array(
[
[
2.87796213,
9.85720054,
2.99863978,
76.97227806,
73.73571500,
-49.37563169,
-48.70879206,
-47.53280959,
29.88241815,
-39.82871801,
-37.11388282,
23.30393209,
3.81579802,
],
[
-0.78448243,
5.63631335,
0.95306110,
14.19762287,
20.60124427,
-18.05512861,
-14.52994195,
-13.10606336,
10.53666341,
-3.63132534,
-12.49672335,
8.17401039,
3.37995231,
],
[
-2.39092600,
10.57193455,
4.16361285,
23.41748866,
58.26902059,
-39.39669827,
-26.63805785,
-35.98397757,
21.25508558,
-4.12726077,
-34.31995017,
18.72796247,
7.33531009,
],
]
),
decimal=7,
)
@ignore_numpy_errors
def test_nan_matrix_colour_correction_Finlayson2015(
self,
): # pragma: no cover
"""
Test :func:`colour.characterisation.correction.\
matrix_colour_correction_Finlayson2015` definition nan support.
"""
# NOTE: Hangs on "Linux".
if platform.system() == "Linux":
return
cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]
cases = np.array(list(set(product(cases, repeat=3))))
for case in cases:
try:
matrix_colour_correction_Finlayson2015(
np.vstack([case, case, case]),
np.transpose(np.vstack([case, case, case])),
)
except LinAlgError:
pass
class TestMatrixColourCorrectionVandermonde(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
matrix_colour_correction_Vandermonde` definition unit tests methods.
"""
def test_matrix_colour_correction_Vandermonde(self):
"""
Test :func:`colour.characterisation.correction.\
matrix_colour_correction_Vandermonde` definition.
"""
np.testing.assert_almost_equal(
matrix_colour_correction_Vandermonde(
MATRIX_TEST, MATRIX_REFERENCE
),
np.array(
[
[0.66770040, 0.02514036, 0.12745797, 0.02485425],
[0.03155494, 0.66896825, 0.12187874, 0.03043460],
[-0.14502258, 0.07716975, 0.87841836, 0.06666049],
]
),
decimal=7,
)
np.testing.assert_almost_equal(
matrix_colour_correction_Vandermonde(
MATRIX_TEST, MATRIX_REFERENCE, degree=3
),
np.array(
[
[
-0.04328223,
-1.87886146,
1.83369170,
-0.10798116,
1.06608177,
-0.87495813,
0.75525839,
-0.08558123,
0.15919076,
0.02404598,
],
[
0.00998152,
0.44525275,
-0.53192490,
0.00904507,
-0.41034458,
0.36173334,
0.02904178,
0.78362950,
0.07894900,
0.01986479,
],
[
-1.66921744,
3.62954420,
-2.96789849,
2.31451409,
-3.10767297,
1.85975390,
-0.98795093,
0.85962796,
0.63591240,
0.07302317,
],
]
),
decimal=7,
)
@ignore_numpy_errors
def test_nan_matrix_colour_correction_Vandermonde(
self,
): # pragma: no cover
"""
Test :func:`colour.characterisation.correction.\
matrix_colour_correction_Vandermonde` definition nan support.
"""
# NOTE: Hangs on "Linux".
if platform.system() == "Linux":
return
cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]
cases = np.array(list(set(product(cases, repeat=3))))
for case in cases:
try:
matrix_colour_correction_Vandermonde(
np.vstack([case, case, case]),
np.transpose(np.vstack([case, case, case])),
)
except LinAlgError:
pass
class TestColourCorrectionCheung2004(unittest.TestCase):
"""
Define :func:`colour.characterisation.correction.\
colour_correction_Cheung2004` definition unit tests methods.
"""
def test_colour_correction_Cheung2004(self):
"""
Test :func:`colour.characterisation.correction.\
colour_correction_Cheung2004` definition.
"""
RGB = np.array([0.17224810, 0.09170660, 0.06416938])
np.testing.assert_almost_equal(
colour_correction_Cheung2004(RGB, MATRIX_TEST, MATRIX_REFERENCE),
np.array([0.13348722, 0.08439216, 0.05990144]),
decimal=7,
)
np.testing.assert_almost_equal(
colour_correction_Cheung2004(
RGB, MATRIX_TEST, MATRIX_REFERENCE, terms=7
),
np.array([0.15850295, 0.09871628, 0.08105752]),
decimal=7,
)
def test_n_dimensional_colour_correction_Cheung2004(self):
"""
Test :func:`colour.characterisation.correction.\
colour_correction_Cheung2004` definition n-dimensional support.
"""
RGB = np.array([0.17224810, 0.09170660, 0.06416938])
RGB_c = colour_correction_Cheung2004(
RGB, MATRIX_TEST, MATRIX_REFERENCE
)
RGB = np.tile(RGB, (6, 1))
RGB_c = | np.tile(RGB_c, (6, 1)) | numpy.tile |
from scipy.special import multigammaln
from scipy.special import psi
import numpy as np
import numpy.matlib
from ars import ARS
from collections import Counter
def fbeta(x, s=[0.5,1.5], w=1.5):
'''
logbetapdf
'''
k = len(s)
return -k * multigammaln(x / 2, 1) - 1 / (2 * x) + \
(k * x - 3) / 2 * np.log(x / 2) + \
(x / 2) * np.sum(np.add(np.log(w), np.log(s))) - x * np.sum(np.multiply(s, w / 2))
def fbetaprima(x, s=[0.5,1.5],w=1.5):
'''
logbetapdfprime
'''
k = len(s)
return -k/2*psi(x/2)+1/(2*(x**2))+k/2*np.log(x/2)+(k*x-3)/(2*x)+\
np.sum(np.subtract(np.add( | np.log(s) | numpy.log |
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error, mean_absolute_error
import numpy as np
import torch
from torch.nn import functional as F
from data_handler import add_unknown_filler_labels
from torch.distributions.normal import Normal
def predict_downstream(X, y, X_val, y_val, model, downstream_model=None, labels_val=[None], labels_train=[None], cv=10, seed=None):
np.random.seed(seed)
assert downstream_model != None, "Please specify downstream model"
ae = []
se = []
try:
X, _ = model.pretrained_model.encoder(X, labels_train)
X_val, _ = model.pretrained_model.encoder(X_val, labels_val)
except: AttributeError
if len(X_val) == 0:
kf = KFold(n_splits=cv)
for train_index, test_index in kf.split(X):
if type(labels_train[0]) != type(None):
labels_training = labels_train[train_index]
labels_test = labels_train[test_index]
else:
labels_training = labels_train
labels_test = [None]
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
encoded_X_train, _ = model.encoder(X_train, labels_training)#.cuda() if torch.cuda.is_available() else model.encoder(X_train, labels_training)
encoded_X_test, _ = model.encoder(X_test, labels_test)#.cuda() if torch.cuda.is_available() else model.encoder(X_test, labels_test)
downstream_model.fit(encoded_X_train.cpu().detach().numpy(), y_train)
pred = downstream_model.predict(encoded_X_test.cpu().detach().numpy())
se.append(mean_squared_error(pred, y_test))
ae.append(mean_absolute_error(pred, y_test))
else:
encoded_X_train, _ = model.encoder(X, labels_train)
encoded_X_test, _ = model.encoder(X_val, labels_val)
downstream_model.fit(encoded_X_train.cpu().detach().numpy(), y)
pred = downstream_model.predict(encoded_X_test.cpu().detach().numpy())
se.append(mean_squared_error(pred, y_val))
ae.append(mean_absolute_error(pred, y_val))
mse = np.mean(se)
mae = np.mean(ae)
mse_std = | np.std(se, ddof=1) | numpy.std |
import pandas as pd
import numpy as np
class CorrectBias(object):
def __init__(self, taper_width, npv_observations):
self.taper_width = taper_width
self.sampled_controls_loc, self.sampled_controls_beta = self.get_data(npv_observations)
self.est_mean_alpha = np.mean(self.sampled_controls_beta)
def get_data(self, obs_data):
"""
obs_data: col_1 = random control;
col_2 = npv obtained from a single model realization (random controls applied to different realizations)
col_3 = npv obtained from mean model
"""
# get a list of sampled controls from .csv files
action_name = obs_data["control"]
action_list = list()
for action_index in range(0, action_name.size):
temp_seq = action_name[action_index]
temp_seq = temp_seq[1:-1].split(",")
temp_seq = [it.replace(" ", "")[1:-1] for it in temp_seq]
action_list.append(temp_seq)
# compute partial correction factor beta f
sampled_controls_beta = obs_data["individual_realization"].to_numpy() / obs_data["mean_model"].to_numpy()
# compute well-position based location for all sampled random drilling sequences
sampled_controls_loc = self.get_loc_multiple(action_list)
return sampled_controls_loc, sampled_controls_beta
def get_loc_multiple(self, action_list):
ref_order = ['OP_1', 'OP_2', 'OP_3', 'OP_4', 'OP_5', 'WI_1', 'WI_2', 'WI_3']
all_locations = np.zeros((len(action_list), 8))
for action_index in range(0, len(action_list)):
temp_action = action_list[action_index]
if temp_action[0] == '':
temp_order = [1] * len(ref_order)
all_locations[action_index, :] = temp_order
else:
temp_order = [len(temp_action) + 1] * len(ref_order)
temp_order = np.array(temp_order)
upd_order = list(range(1, len(temp_action) + 1))
upd_order = np.array(upd_order)
order_index = []
for j in range(0, len(temp_action)):
get_index = ref_order.index(temp_action[j])
order_index.append(get_index)
order_index = np.array(order_index)
temp_order[order_index] = upd_order
temp_order = np.reshape(temp_order, (1, 8))
all_locations[action_index, :] = temp_order
return all_locations
# compute location for a set of random drilling sequences
def get_loc_single(self, seq_action):
"""
# permutation encodings:
ref., ['OP_1', 'OP_2', 'OP_3', 'OP_4', 'OP_5', 'WI_1', 'WI_2', 'WI_3'] -> [1 , 2 , 3 , 4, 5, 6, 7, 8];
if input = ['WI_3', 'OP_5', 'OP_3', 'OP_1', 'OP_4', 'WI_2', 'OP_2', 'WI_1']
output = [4 , 7 , 3 , 5, 2, 8, 6, 1];
"""
ref_order = ['OP_1', 'OP_2', 'OP_3', 'OP_4', 'OP_5', 'WI_1', 'WI_2', 'WI_3']
loc_seq = np.zeros((1, 8))
temp_action = seq_action
temp_order = [len(temp_action) + 1] * len(ref_order)
temp_order = np.array(temp_order)
upd_order = list(range(1, len(temp_action) + 1))
upd_order = np.array(upd_order)
order_index = []
if temp_action == []:
temp_order = [1] * len(ref_order)
loc_seq[0, :] = temp_order
else:
for j in range(0, len(temp_action)):
get_index = ref_order.index(temp_action[j])
order_index.append(get_index)
order_index = np.array(order_index)
temp_order[order_index] = upd_order
temp_order = np.reshape(temp_order, (1, 8))
loc_seq[0, :] = temp_order
return loc_seq
#
def gaspari_cohn(self, distance_values):
distance_range = self.taper_width
weight_values = np.zeros(distance_values.shape[0], )
z = distance_values / distance_range
index_1 = np.where(z <= 1)[0]
index_2 = np.where(z <= 2)[0]
index_12 = np.setdiff1d(index_2, index_1)
weight_values[index_1] = - (z[index_1] ** 5) / 4 + (z[index_1] ** 4) / 2 + (z[index_1] ** 3) * (5 / 8) - (
z[index_1] ** 2) * (5 / 3) + 1
weight_values[index_12] = (z[index_12] ** 5) / 12 - (z[index_12] ** 4) / 2 + (z[index_12] ** 3) * (5 / 8) + (
z[index_12] ** 2) * (5 / 3) - z[index_12] * 5 + 4 - (z[index_12] ** -1) * (2 / 3)
return weight_values
def cal_distance(self, est_control_loc):
"""
ref_seq_loc: location for estimation point (
return: a list of distance between estimation point
"""
# sampled_control_loc = self.selected_seq_loc
# compute distance between estimation point and all sampled control
dist_each = | np.abs(self.sampled_controls_loc - est_control_loc) | numpy.abs |
# -*- coding: utf-8 -*-
# test_imagecodecs.py
# Copyright (c) 2018-2019, <NAME>
# Copyright (c) 2018-2019, The Regents of the University of California
# Produced at the Laboratory for Fluorescence Dynamics
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of any
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Unittests for the imagecodecs package.
:Author:
`<NAME> <https://www.lfd.uci.edu/~gohlke/>`_
:Organization:
Laboratory for Fluorescence Dynamics. University of California, Irvine
:License: 3-clause BSD
:Version: 2019.12.3
"""
from __future__ import division, print_function
import sys
import os
import io
import re
import glob
import tempfile
import os.path as osp
import pytest
import numpy
from numpy.testing import assert_array_equal, assert_allclose
try:
import tifffile
except ImportError:
tifffile = None
try:
import czifile
except ImportError:
czifile = None
if (
'imagecodecs_lite' in os.getcwd() or
osp.exists(osp.join(osp.dirname(__file__), '..', 'imagecodecs_lite'))
):
try:
import imagecodecs_lite as imagecodecs
from imagecodecs_lite import _imagecodecs_lite # noqa
from imagecodecs_lite import imagecodecs as imagecodecs_py
except ImportError:
pytest.exit('the imagecodec-lite package is not installed')
lzma = zlib = bz2 = zstd = lz4 = lzf = blosc = bitshuffle = None
_jpeg12 = _jpegls = _zfp = None
else:
try:
import imagecodecs
import imagecodecs.imagecodecs as imagecodecs_py
from imagecodecs.imagecodecs import (lzma, zlib, bz2, zstd, lz4, lzf,
blosc, bitshuffle)
from imagecodecs import _imagecodecs # noqa
except ImportError:
pytest.exit('the imagecodec package is not installed')
try:
from imagecodecs import _jpeg12
except ImportError:
_jpeg12 = None
try:
from imagecodecs import _jpegls
except ImportError:
_jpegls = None
try:
from imagecodecs import _zfp
except ImportError:
_zfp = None
IS_PY2 = sys.version_info[0] == 2
IS_32BIT = sys.maxsize < 2**32
TEST_DIR = osp.dirname(__file__)
class TempFileName():
"""Temporary file name context manager."""
def __init__(self, name=None, suffix='', remove=True):
self.remove = bool(remove)
if not name:
self.name = tempfile.NamedTemporaryFile(prefix='test_',
suffix=suffix).name
else:
self.name = osp.join(tempfile.gettempdir(),
'test_%s%s' % (name, suffix))
def __enter__(self):
return self.name
def __exit__(self, exc_type, exc_value, traceback):
if self.remove:
try:
os.remove(self.name)
except Exception:
pass
def test_version():
"""Assert imagecodecs versions match docstrings."""
ver = ':Version: ' + imagecodecs.__version__
assert ver in __doc__
assert ver in imagecodecs.__doc__
assert imagecodecs.version().startswith('imagecodecs')
assert ver in imagecodecs_py.__doc__
if zlib:
assert imagecodecs.version(dict)['zlib'].startswith('1.')
@pytest.mark.skipif(not hasattr(imagecodecs, 'imread'),
reason='imread function missing')
@pytest.mark.filterwarnings('ignore:Possible precision loss')
def test_imread_imwrite():
"""Test imread and imwrite functions."""
imread = imagecodecs.imread
imwrite = imagecodecs.imwrite
data = image_data('rgba', 'uint8')
# codec from file extension
with TempFileName(suffix='.npy') as filename:
imwrite(filename, data, level=99)
im, codec = imread(filename, return_codec=True)
assert codec == imagecodecs.numpy_decode
assert_array_equal(data, im)
with TempFileName() as filename:
# codec from name
imwrite(filename, data, codec='numpy')
im = imread(filename, codec='npy')
assert_array_equal(data, im)
# codec from function
imwrite(filename, data, codec=imagecodecs.numpy_encode)
im = imread(filename, codec=imagecodecs.numpy_decode)
assert_array_equal(data, im)
# codec from name list
im = imread(filename, codec=['npz'])
assert_array_equal(data, im)
# autodetect
im = imread(filename)
assert_array_equal(data, im)
# fail
with pytest.raises(ValueError):
imwrite(filename, data)
with pytest.raises(ValueError):
im = imread(filename, codec='unknown')
def test_none():
"""Test NOP codec."""
encode = imagecodecs.none_encode
decode = imagecodecs.none_decode
data = b'None'
assert encode(data) is data
assert decode(data) is data
def test_bitorder():
"""Test BitOrder codec with bytes."""
decode = imagecodecs.bitorder_decode
data = b'\x01\x00\x9a\x02'
reverse = b'\x80\x00Y@'
# return new string
assert decode(data) == reverse
assert data == b'\x01\x00\x9a\x02'
# provide output
out = bytearray(len(data))
decode(data, out=out)
assert out == reverse
assert data == b'\x01\x00\x9a\x02'
# inplace
decode(data, out=data)
assert data == reverse
# bytes range
assert BYTES == decode(readfile('bytes.bitorder.bin'))
def test_bitorder_ndarray():
"""Test BitOrder codec with ndarray."""
decode = imagecodecs.bitorder_decode
data = numpy.array([1, 666], dtype='uint16')
reverse = numpy.array([128, 16473], dtype='uint16')
# return new array
assert_array_equal(decode(data), reverse)
# inplace
decode(data, out=data)
assert_array_equal(data, numpy.array([128, 16473], dtype='uint16'))
# array view
data = numpy.array([[1, 666, 1431655765, 62],
[2, 667, 2863311530, 32],
[3, 668, 1431655765, 30]], dtype='uint32')
reverse = numpy.array([[1, 666, 1431655765, 62],
[2, 16601, 1431655765, 32],
[3, 16441, 2863311530, 30]], dtype='uint32')
assert_array_equal(decode(data[1:, 1:3]), reverse[1:, 1:3])
# array view inplace
decode(data[1:, 1:3], out=data[1:, 1:3])
assert_array_equal(data, reverse)
def test_packints_decode():
"""Test PackInts decoder."""
decode = imagecodecs.packints_decode
decoded = decode(b'', 'B', 1)
assert len(decoded) == 0
decoded = decode(b'a', 'B', 1)
assert tuple(decoded) == (0, 1, 1, 0, 0, 0, 0, 1)
decoded = decode(b'ab', 'B', 2)
assert tuple(decoded) == (1, 2, 0, 1, 1, 2, 0, 2)
decoded = decode(b'abcd', 'B', 3)
assert tuple(decoded) == (3, 0, 2, 6, 1, 1, 4, 3, 3, 1)
decoded = decode(numpy.frombuffer(b'abcd', dtype='uint8'), 'B', 3)
assert tuple(decoded) == (3, 0, 2, 6, 1, 1, 4, 3, 3, 1)
PACKBITS_DATA = [
(b'', b''),
(b'X', b'\x00X'),
(b'123', b'\x02123'),
(b'112112', b'\xff1\x002\xff1\x002'),
(b'1122', b'\xff1\xff2'),
(b'1' * 126, b'\x831'),
(b'1' * 127, b'\x821'),
(b'1' * 128, b'\x811'),
(b'1' * 127 + b'foo', b'\x821\x00f\xffo'),
(b'12345678' * 16, # literal 128
b'\x7f1234567812345678123456781234567812345678123456781234567812345678'
b'1234567812345678123456781234567812345678123456781234567812345678'),
(b'12345678' * 17,
b'~1234567812345678123456781234567812345678123456781234567812345678'
b'123456781234567812345678123456781234567812345678123456781234567\x08'
b'812345678'),
(b'1' * 128 + b'12345678' * 17,
b'\x821\xff1~2345678123456781234567812345678123456781234567812345678'
b'1234567812345678123456781234567812345678123456781234567812345678'
b'12345678\x0712345678'),
(b'\xaa\xaa\xaa\x80\x00\x2a\xaa\xaa\xaa\xaa\x80\x00'
b'\x2a\x22\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa',
b'\xfe\xaa\x02\x80\x00\x2a\xfd\xaa\x03\x80\x00\x2a\x22\xf7\xaa')]
@pytest.mark.parametrize('data', range(len(PACKBITS_DATA)))
@pytest.mark.parametrize('codec', ['encode', 'decode'])
def test_packbits(codec, data):
"""Test PackBits codec."""
encode = imagecodecs.packbits_encode
decode = imagecodecs.packbits_decode
uncompressed, compressed = PACKBITS_DATA[data]
if codec == 'decode':
assert decode(compressed) == uncompressed
elif codec == 'encode':
try:
assert encode(uncompressed) == compressed
except AssertionError:
# roundtrip
assert decode(encode(uncompressed)) == uncompressed
def test_packbits_nop():
"""Test PackBits decoding empty data."""
decode = imagecodecs.packbits_decode
assert decode(b'\x80') == b''
assert decode(b'\x80\x80') == b''
@pytest.mark.parametrize('output', [None, 'array'])
@pytest.mark.parametrize('codec', ['encode', 'decode'])
def test_packbits_array(codec, output):
"""Test PackBits codec with arrays."""
encode = imagecodecs.packbits_encode
decode = imagecodecs.packbits_decode
uncompressed, compressed = PACKBITS_DATA[-1]
shape = (2, 7, len(uncompressed))
data = numpy.empty(shape, dtype='uint8')
data[..., :] = numpy.frombuffer(uncompressed, dtype='uint8')
compressed = compressed * (shape[0] * shape[1])
if codec == 'encode':
if output == 'array':
out = numpy.empty(data.size, data.dtype)
assert_array_equal(encode(data, out=out),
numpy.frombuffer(compressed, dtype='uint8'))
else:
assert encode(data) == compressed
else:
if output == 'array':
out = numpy.empty(data.size, data.dtype)
assert_array_equal(decode(compressed, out=out), data.flat)
else:
assert decode(compressed) == data.tobytes()
@pytest.mark.parametrize('output', ['new', 'out', 'inplace'])
@pytest.mark.parametrize('codec', ['encode', 'decode'])
@pytest.mark.parametrize(
'kind', ['u1', 'u2', 'u4', 'u8', 'i1', 'i2', 'i4', 'i8', 'f4', 'f8', 'B',
pytest.param('b', marks=pytest.mark.skipif(
sys.version_info[0] == 2, reason='Python 2'))])
@pytest.mark.parametrize('func', ['delta', 'xor'])
def test_delta(output, kind, codec, func):
"""Test Delta codec."""
if func == 'delta':
encode = imagecodecs.delta_encode
decode = imagecodecs.delta_decode
encode_py = imagecodecs_py.delta_encode
# decode_py = imagecodecs_py.imagecodecs.delta_decode
elif func == 'xor':
encode = imagecodecs.xor_encode
decode = imagecodecs.xor_decode
encode_py = imagecodecs_py.xor_encode
# decode_py = imagecodecs_py.imagecodecs.xor_decode
bytetype = bytearray
if kind == 'b':
bytetype = bytes
kind = 'B'
axis = -2 # do not change
dtype = numpy.dtype(kind)
if kind[0] in 'iuB':
low = numpy.iinfo(dtype).min
high = numpy.iinfo(dtype).max
data = numpy.random.randint(low, high, size=33 * 31 * 3,
dtype=dtype).reshape(33, 31, 3)
else:
low, high = -1e5, 1e5
data = numpy.random.randint(low, high, size=33 * 31 * 3,
dtype='i4').reshape(33, 31, 3)
data = data.astype(dtype)
data[16, 14] = [0, 0, 0]
data[16, 15] = [low, high, low]
data[16, 16] = [high, low, high]
data[16, 17] = [low, high, low]
data[16, 18] = [high, low, high]
data[16, 19] = [0, 0, 0]
if kind == 'B':
# data = data.reshape(-1)
data = data.tobytes()
diff = encode_py(data, axis=0)
if output == 'new':
if codec == 'encode':
encoded = encode(data, out=bytetype)
assert encoded == diff
elif codec == 'decode':
decoded = decode(diff, out=bytetype)
assert decoded == data
elif output == 'out':
if codec == 'encode':
encoded = bytetype(len(data))
encode(data, out=encoded)
assert encoded == diff
elif codec == 'decode':
decoded = bytetype(len(data))
decode(diff, out=decoded)
assert decoded == data
elif output == 'inplace':
if codec == 'encode':
encoded = bytetype(data)
encode(encoded, out=encoded)
assert encoded == diff
elif codec == 'decode':
decoded = bytetype(diff)
decode(decoded, out=decoded)
assert decoded == data
else:
# if func == 'xor' and kind in ('f4', 'f8'):
# with pytest.raises(ValueError):
# encode(data, axis=axis)
# pytest.skip("XOR codec not implemented for float data")
diff = encode_py(data, axis=-2)
if output == 'new':
if codec == 'encode':
encoded = encode(data, axis=axis)
assert_array_equal(encoded, diff)
elif codec == 'decode':
decoded = decode(diff, axis=axis)
assert_array_equal(decoded, data)
elif output == 'out':
if codec == 'encode':
encoded = numpy.zeros_like(data)
encode(data, axis=axis, out=encoded)
assert_array_equal(encoded, diff)
elif codec == 'decode':
decoded = numpy.zeros_like(data)
decode(diff, axis=axis, out=decoded)
assert_array_equal(decoded, data)
elif output == 'inplace':
if codec == 'encode':
encoded = data.copy()
encode(encoded, axis=axis, out=encoded)
assert_array_equal(encoded, diff)
elif codec == 'decode':
decoded = diff.copy()
decode(decoded, axis=axis, out=decoded)
assert_array_equal(decoded, data)
@pytest.mark.parametrize('output', ['new', 'out'])
@pytest.mark.parametrize('codec', ['encode', 'decode'])
@pytest.mark.parametrize('endian', ['le', 'be'])
@pytest.mark.parametrize('planar', ['rgb', 'rrggbb'])
def test_floatpred(planar, endian, output, codec):
"""Test FloatPred codec."""
encode = imagecodecs.floatpred_encode
decode = imagecodecs.floatpred_decode
data = numpy.fromfile(
datafiles('rgb.bin'), dtype='<f4').reshape(33, 31, 3)
if planar == 'rgb':
axis = -2
if endian == 'le':
encoded = numpy.fromfile(
datafiles('rgb.floatpred_le.bin'), dtype='<f4')
encoded = encoded.reshape(33, 31, 3)
if output == 'new':
if codec == 'decode':
assert_array_equal(decode(encoded, axis=axis), data)
elif codec == 'encode':
assert_array_equal(encode(data, axis=axis), encoded)
elif output == 'out':
out = numpy.empty_like(data)
if codec == 'decode':
decode(encoded, axis=axis, out=out)
assert_array_equal(out, data)
elif codec == 'encode':
out = numpy.empty_like(data)
encode(data, axis=axis, out=out)
assert_array_equal(out, encoded)
elif endian == 'be':
data = data.astype('>f4')
encoded = numpy.fromfile(
datafiles('rgb.floatpred_be.bin'), dtype='>f4')
encoded = encoded.reshape(33, 31, 3)
if output == 'new':
if codec == 'decode':
assert_array_equal(decode(encoded, axis=axis), data)
elif codec == 'encode':
assert_array_equal(encode(data, axis=axis), encoded)
elif output == 'out':
out = numpy.empty_like(data)
if codec == 'decode':
decode(encoded, axis=axis, out=out)
assert_array_equal(out, data)
elif codec == 'encode':
out = numpy.empty_like(data)
encode(data, axis=axis, out=out)
assert_array_equal(out, encoded)
elif planar == 'rrggbb':
axis = -1
data = numpy.ascontiguousarray(numpy.moveaxis(data, 2, 0))
if endian == 'le':
encoded = numpy.fromfile(
datafiles('rrggbb.floatpred_le.bin'), dtype='<f4')
encoded = encoded.reshape(3, 33, 31)
if output == 'new':
if codec == 'decode':
assert_array_equal(decode(encoded, axis=axis), data)
elif codec == 'encode':
assert_array_equal(encode(data, axis=axis), encoded)
elif output == 'out':
out = numpy.empty_like(data)
if codec == 'decode':
decode(encoded, axis=axis, out=out)
assert_array_equal(out, data)
elif codec == 'encode':
out = numpy.empty_like(data)
encode(data, axis=axis, out=out)
assert_array_equal(out, encoded)
elif endian == 'be':
data = data.astype('>f4')
encoded = numpy.fromfile(
datafiles('rrggbb.floatpred_be.bin'), dtype='>f4')
encoded = encoded.reshape(3, 33, 31)
if output == 'new':
if codec == 'decode':
assert_array_equal(decode(encoded, axis=axis), data)
elif codec == 'encode':
assert_array_equal(encode(data, axis=axis), encoded)
elif output == 'out':
out = numpy.empty_like(data)
if codec == 'decode':
decode(encoded, axis=axis, out=out)
assert_array_equal(out, data)
elif codec == 'encode':
out = numpy.empty_like(data)
encode(data, axis=axis, out=out)
assert_array_equal(out, encoded)
def test_lzw_msb():
"""Test LZW decoder with MSB."""
# TODO: add test_lzw_lsb
decode = imagecodecs.lzw_decode
for data, decoded in [
(b'\x80\x1c\xcc\'\x91\x01\xa0\xc2m6\x99NB\x03\xc9\xbe\x0b'
b'\x07\x84\xc2\xcd\xa68|"\x14 3\xc3\xa0\xd1c\x94\x02\x02\x80',
b'say hammer yo hammer mc hammer go hammer'),
(b'\x80\x18M\xc6A\x01\xd0\xd0e\x10\x1c\x8c\xa73\xa0\x80\xc7\x02'
b'\x10\x19\xcd\xe2\x08\x14\x10\xe0l0\x9e`\x10\x10\x80',
b'and the rest can go and play'),
(b'\x80\x18\xcc&\xe19\xd0@t7\x9dLf\x889\xa0\xd2s',
b"can't touch this"),
(b'\x80@@', b'')]:
assert decode(data) == decoded
@pytest.mark.parametrize('output', ['new', 'size', 'ndarray', 'bytearray'])
def test_lzw_decode(output):
"""Test LZW decoder of input with horizontal differencing."""
decode = imagecodecs.lzw_decode
delta_decode = imagecodecs.delta_decode
data = readfile('bytes.lzw_horizontal.bin')
decoded_size = len(BYTES)
if output == 'new':
decoded = decode(data)
decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16)
delta_decode(decoded, out=decoded, axis=-1)
assert_array_equal(BYTESIMG, decoded)
elif output == 'size':
decoded = decode(data, out=decoded_size)
decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16)
delta_decode(decoded, out=decoded, axis=-1)
assert_array_equal(BYTESIMG, decoded)
# with pytest.raises(RuntimeError):
decode(data, buffersize=32, out=decoded_size)
elif output == 'ndarray':
decoded = numpy.empty_like(BYTESIMG)
decode(data, out=decoded.reshape(-1))
delta_decode(decoded, out=decoded, axis=-1)
assert_array_equal(BYTESIMG, decoded)
elif output == 'bytearray':
decoded = bytearray(decoded_size)
decode(data, out=decoded)
decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16)
delta_decode(decoded, out=decoded, axis=-1)
assert_array_equal(BYTESIMG, decoded)
def test_lzw_decode_image_noeoi():
"""Test LZW decoder of input without EOI 512x512u2."""
decode = imagecodecs.lzw_decode
fname = datafiles('image_noeoi.lzw.bin')
with open(fname, 'rb') as fh:
encoded = fh.read()
fname = datafiles('image_noeoi.bin')
with open(fname, 'rb') as fh:
decoded_known = fh.read()
# new output
decoded = decode(encoded)
assert decoded == decoded_known
# provide output
decoded = bytearray(len(decoded))
decode(encoded, out=decoded)
assert decoded == decoded_known
# truncated output
decoded = bytearray(100)
decode(encoded, out=decoded)
assert len(decoded) == 100
@pytest.mark.skipif(not hasattr(imagecodecs, 'blosc_decode'),
reason='compression codecs missing')
@pytest.mark.parametrize('output', ['new', 'out', 'size', 'excess', 'trunc'])
@pytest.mark.parametrize('length', [0, 2, 31 * 33 * 3])
@pytest.mark.parametrize('codec', ['encode', 'decode'])
@pytest.mark.parametrize('module', [
'zlib', 'bz2',
pytest.param('blosc',
marks=pytest.mark.skipif(blosc is None,
reason='import blosc')),
pytest.param('lzma',
marks=pytest.mark.skipif(lzma is None,
reason='import lzma')),
pytest.param('zstd',
marks=pytest.mark.skipif(zstd is None,
reason='import zstd')),
pytest.param('lzf',
marks=pytest.mark.skipif(lzf is None,
reason='import lzf')),
pytest.param('lz4',
marks=pytest.mark.skipif(lz4 is None,
reason='import lz4')),
pytest.param('lz4h',
marks=pytest.mark.skipif(lz4 is None,
reason='import lz4')),
pytest.param('bitshuffle',
marks=pytest.mark.skipif(bitshuffle is None,
reason='import bitshuffle'))
])
def test_compressors(module, codec, output, length):
"""Test various non-image codecs."""
if length:
data = numpy.random.randint(255, size=length, dtype='uint8').tobytes()
else:
data = b''
if module == 'blosc':
encode = imagecodecs.blosc_encode
decode = imagecodecs.blosc_decode
level = 9
encoded = blosc.compress(data, clevel=level)
elif module == 'zlib':
encode = imagecodecs.zlib_encode
decode = imagecodecs.zlib_decode
level = 5
encoded = zlib.compress(data, level)
elif module == 'lzma':
encode = imagecodecs.lzma_encode
decode = imagecodecs.lzma_decode
level = 6
encoded = lzma.compress(data)
elif module == 'zstd':
encode = imagecodecs.zstd_encode
decode = imagecodecs.zstd_decode
level = 5
if length == 0:
# bug in zstd.compress?
encoded = encode(data, level)
else:
encoded = zstd.compress(data, level)
elif module == 'lzf':
encode = imagecodecs.lzf_encode
decode = imagecodecs.lzf_decode
level = 1
encoded = lzf.compress(data, ((len(data) * 33) >> 5) + 1)
if encoded is None:
pytest.skip("lzf can't compress empty input")
elif module == 'lz4':
encode = imagecodecs.lz4_encode
decode = imagecodecs.lz4_decode
level = 1
encoded = lz4.block.compress(data, store_size=False)
elif module == 'lz4h':
def encode(*args, **kwargs):
return imagecodecs.lz4_encode(*args, header=True, **kwargs)
def decode(*args, **kwargs):
return imagecodecs.lz4_decode(*args, header=True, **kwargs)
level = 1
encoded = lz4.block.compress(data, store_size=True)
elif module == 'bz2':
encode = imagecodecs.bz2_encode
decode = imagecodecs.bz2_decode
level = 9
encoded = bz2.compress(data, compresslevel=level)
elif module == 'bitshuffle':
encode = imagecodecs.bitshuffle_encode
decode = imagecodecs.bitshuffle_decode
level = 0
encoded = bitshuffle.bitshuffle(
numpy.frombuffer(data, 'uint8')).tobytes()
else:
raise ValueError(module)
if codec == 'encode':
size = len(encoded)
if output == 'new':
assert encoded == encode(data, level)
elif output == 'size':
ret = encode(data, level, out=size)
assert encoded == ret
elif output == 'out':
if module == 'zstd':
out = bytearray(max(size, 64))
# elif module == 'blosc':
# out = bytearray(max(size, 17)) # bug in blosc ?
elif module == 'lzf':
out = bytearray(size + 1) # bug in liblzf ?
else:
out = bytearray(size)
ret = encode(data, level, out=out)
assert encoded == out[:size]
assert encoded == ret
elif output == 'excess':
out = bytearray(size + 1021)
ret = encode(data, level, out=out)
if module == 'blosc':
# pytest.skip("blosc output depends on output size")
assert data == decode(ret)
else:
assert ret == out[:size]
assert encoded == ret
elif output == 'trunc':
size = max(0, size - 1)
out = bytearray(size)
if size == 0 and module == 'bitshuffle':
encode(data, level, out=out) == b''
else:
with pytest.raises(RuntimeError):
encode(data, level, out=out)
else:
raise ValueError(output)
elif codec == 'decode':
size = len(data)
if output == 'new':
assert data == decode(encoded)
elif output == 'size':
ret = decode(encoded, out=size)
assert data == ret
elif output == 'out':
out = bytearray(size)
ret = decode(encoded, out=out)
assert data == out
assert data == ret
elif output == 'excess':
out = bytearray(size + 1021)
ret = decode(encoded, out=out)
assert data == out[:size]
assert data == ret
elif output == 'trunc':
size = max(0, size - 1)
out = bytearray(size)
if length > 0 and module in ('zlib', 'zstd', 'lzf', 'lz4', 'lz4h',
'blosc', 'bitshuffle'):
with pytest.raises(RuntimeError):
decode(encoded, out=out)
else:
decode(encoded, out=out)
assert data[:size] == out
else:
raise ValueError(output)
else:
raise ValueError(codec)
@pytest.mark.skipif(not hasattr(imagecodecs, 'bitshuffle_decode'),
reason='bitshuffle codec missing')
@pytest.mark.parametrize('dtype', ['bytes', 'ndarray'])
@pytest.mark.parametrize('itemsize', [1, 2, 4, 8])
@pytest.mark.parametrize('blocksize', [0, 8, 64])
def test_bitshuffle_roundtrip(dtype, itemsize, blocksize):
"""Test Bitshuffle codec."""
encode = imagecodecs.bitshuffle_encode
decode = imagecodecs.bitshuffle_decode
if dtype == 'bytes':
data = numpy.random.randint(255, size=1024, dtype='uint8').tobytes()
else:
data = numpy.random.randint(255, size=1024, dtype='u%i' % itemsize)
data.shape = 2, 4, 128
encoded = encode(data, itemsize=itemsize, blocksize=blocksize)
decoded = decode(encoded, itemsize=itemsize, blocksize=blocksize)
if dtype == 'bytes':
assert data == decoded
else:
assert_array_equal(data, decoded)
@pytest.mark.skipif(not hasattr(imagecodecs, 'blosc_decode'),
reason='blosc codec missing')
@pytest.mark.parametrize('numthreads', [1, 6])
@pytest.mark.parametrize('level', [None, 1])
@pytest.mark.parametrize('shuffle', ['noshuffle', 'shuffle', 'bitshuffle'])
@pytest.mark.parametrize('compressor', ['blosclz', 'lz4', 'lz4hc', 'snappy',
'zlib', 'zstd'])
def test_blosc_roundtrip(compressor, shuffle, level, numthreads):
"""Test Blosc codec."""
encode = imagecodecs.blosc_encode
decode = imagecodecs.blosc_decode
data = numpy.random.randint(255, size=2021, dtype='uint8').tobytes()
encoded = encode(data, level=level, compressor=compressor,
shuffle=shuffle, numthreads=numthreads)
decoded = decode(encoded, numthreads=numthreads)
assert data == decoded
AEC_TEST_DIR = osp.join(TEST_DIR, 'libaec/121B2TestData')
AEC_TEST_OPTIONS = list(
osp.split(f)[-1][5:-3] for f in glob.glob(osp.join(
AEC_TEST_DIR, 'AllOptions', '*.rz')))
AEC_TEST_EXTENDED = list(
osp.split(f)[-1][:-3] for f in glob.glob(osp.join(
AEC_TEST_DIR, 'ExtendedParameters', '*.rz')))
@pytest.mark.skipif(not hasattr(imagecodecs, 'aec_decode'),
reason='aec codec missing')
@pytest.mark.parametrize('dtype', ['bytes', 'numpy'])
@pytest.mark.parametrize('name', AEC_TEST_EXTENDED)
def test_aec_extended(name, dtype):
"""Test AEC codec with libaec ExtendedParameters."""
encode = imagecodecs.aec_encode
decode = imagecodecs.aec_decode
size = 512 * 512 * 4
bitspersample = 32
flags = imagecodecs.AEC_DATA_PREPROCESS | imagecodecs.AEC_PAD_RSI
matches = re.search(r'j(\d+)\.r(\d+)', name).groups()
blocksize = int(matches[0])
rsi = int(matches[1])
filename = osp.join(AEC_TEST_DIR, 'ExtendedParameters', '%s.rz' % name)
with open(filename, 'rb') as fh:
rz = fh.read()
filename = osp.join(AEC_TEST_DIR, 'ExtendedParameters',
'%s.dat' % name.split('.')[0])
if dtype == 'bytes':
with open(filename, 'rb') as fh:
dat = fh.read()
out = size
else:
dat = numpy.fromfile(filename, 'uint32').reshape(512, 512)
out = numpy.empty_like(dat)
# decode
decoded = decode(rz, bitspersample=bitspersample, flags=flags,
blocksize=blocksize, rsi=rsi, out=out)
if dtype == 'bytes':
assert decoded == dat
else:
pass
# roundtrip
if dtype == 'bytes':
encoded = encode(dat, bitspersample=bitspersample, flags=flags,
blocksize=blocksize, rsi=rsi)
# fails with AEC_DATA_ERROR if libaec wasn't built with libaec.diff
decoded = decode(encoded, bitspersample=bitspersample, flags=flags,
blocksize=blocksize, rsi=rsi, out=size)
assert decoded == dat
else:
encoded = encode(dat, flags=flags, blocksize=blocksize, rsi=rsi)
# fails with AEC_DATA_ERROR if libaec wasn't built with libaec.diff
decoded = decode(encoded, flags=flags, blocksize=blocksize, rsi=rsi,
out=out)
assert_array_equal(decoded, out)
@pytest.mark.skipif(not hasattr(imagecodecs, 'aec_decode'),
reason='aec codec missing')
@pytest.mark.parametrize('name', AEC_TEST_OPTIONS)
def test_aec_options(name):
"""Test AEC codec with libaec 121B2TestData."""
encode = imagecodecs.aec_encode
decode = imagecodecs.aec_decode
rsi = 128
blocksize = 16
flags = imagecodecs.AEC_DATA_PREPROCESS
if 'restricted' in name:
flags |= imagecodecs.AEC_RESTRICTED
matches = re.search(r'p(\d+)n(\d+)', name).groups()
size = int(matches[0])
bitspersample = int(matches[1])
if bitspersample > 8:
size *= 2
if bitspersample > 16:
size *= 2
filename = osp.join(AEC_TEST_DIR, 'AllOptions', 'test_%s.rz' % name)
with open(filename, 'rb') as fh:
rz = fh.read()
filename = filename.replace('.rz', '.dat'
).replace('-basic', ''
).replace('-restricted', '')
with open(filename, 'rb') as fh:
dat = fh.read()
out = size
# decode
decoded = decode(rz, bitspersample=bitspersample, flags=flags,
blocksize=blocksize, rsi=rsi, out=out)
assert decoded == dat
# roundtrip
encoded = encode(dat, bitspersample=bitspersample, flags=flags,
blocksize=blocksize, rsi=rsi)
decoded = decode(encoded, bitspersample=bitspersample, flags=flags,
blocksize=blocksize, rsi=rsi, out=out)
assert decoded == dat
@pytest.mark.skipif(not hasattr(imagecodecs, 'jpeg_encode'),
reason='jpeg codecs missing')
@pytest.mark.filterwarnings('ignore:Possible precision loss')
@pytest.mark.parametrize('optimize', [False, True])
@pytest.mark.parametrize('smoothing', [0, 25])
@pytest.mark.parametrize('subsampling', ['444', '422', '420', '411', '440'])
@pytest.mark.parametrize('itype', ['rgb', 'rgba', 'gray'])
@pytest.mark.parametrize('codec', ['jpeg8', 'jpeg12'])
def test_jpeg_encode(codec, itype, subsampling, smoothing, optimize):
"""Test various JPEG encode options."""
# general and default options are tested in test_image_roundtrips
if codec == 'jpeg8':
dtype = 'uint8'
decode = imagecodecs.jpeg8_decode
encode = imagecodecs.jpeg8_encode
atol = 24
elif codec == 'jpeg12':
if _jpeg12 is None:
pytest.skip('_jpeg12 module missing')
if not optimize:
pytest.skip('jpeg12 fails without optimize')
dtype = 'uint16'
decode = imagecodecs.jpeg12_decode
encode = imagecodecs.jpeg12_encode
atol = 24 * 16
else:
raise ValueError(codec)
dtype = numpy.dtype(dtype)
data = image_data(itype, dtype)
data = data[:32, :16].copy() # make divisable by subsamples
encoded = encode(data, level=95, subsampling=subsampling,
smoothing=smoothing, optimize=optimize)
decoded = decode(encoded)
if itype == 'gray':
decoded = decoded.reshape(data.shape)
assert_allclose(data, decoded, atol=atol)
@pytest.mark.skipif(not hasattr(imagecodecs, 'jpeg8_decode'),
reason='jpeg8 codec missing')
@pytest.mark.parametrize('output', ['new', 'out'])
def test_jpeg8_decode(output):
"""Test JPEG 8-bit decoder with separate tables."""
decode = imagecodecs.jpeg8_decode
data = readfile('bytes.jpeg8.bin')
tables = readfile('bytes.jpeg8_tables.bin')
if output == 'new':
decoded = decode(data, tables)
elif output == 'out':
decoded = numpy.empty_like(BYTESIMG)
decode(data, tables, out=decoded)
elif output == 'bytearray':
decoded = bytearray(BYTESIMG.size * BYTESIMG.itemsize)
decoded = decode(data, out=decoded)
assert_array_equal(BYTESIMG, decoded)
@pytest.mark.skipif(_jpeg12 is None, reason='_jpeg12 module missing')
@pytest.mark.parametrize('output', ['new', 'out', 'bytearray'])
def test_jpeg12_decode(output):
"""Test JPEG 12-bit decoder with separate tables."""
decode = imagecodecs.jpeg12_decode
data = readfile('words.jpeg12.bin')
tables = readfile('words.jpeg12_tables.bin')
if output == 'new':
decoded = decode(data, tables)
elif output == 'out':
decoded = numpy.empty_like(WORDSIMG)
decode(data, tables, out=decoded)
elif output == 'bytearray':
decoded = bytearray(WORDSIMG.size * WORDSIMG.itemsize)
decoded = decode(data, out=decoded)
assert numpy.max(numpy.abs(WORDSIMG.astype('int32') -
decoded.astype('int32'))) < 2
@pytest.mark.skipif(not hasattr(imagecodecs, 'jpegsof3_decode'),
reason='jpegsof3 codec missing')
@pytest.mark.parametrize('output', ['new', 'out', 'bytearray'])
@pytest.mark.parametrize('fname', ['gray8.sof3.jpg', 'gray16.sof3.jpg'])
def test_jpegsof3(fname, output):
"""Test JPEG SOF3 decoder with 8 and 16-bit images."""
decode = imagecodecs.jpegsof3_decode
shape = 535, 800
if fname == 'gray8.sof3.jpg':
dtype = 'uint8'
value = 75
elif fname == 'gray16.sof3.jpg':
dtype = 'uint16'
value = 19275
data = readfile(fname)
if output == 'new':
decoded = decode(data)
elif output == 'out':
decoded = numpy.empty(shape, dtype)
decode(data, out=decoded)
elif output == 'bytearray':
decoded = bytearray(535 * 800 * numpy.dtype(dtype).itemsize)
decoded = decode(data, out=decoded)
assert decoded.shape == shape
assert decoded.dtype == dtype
assert decoded[500, 600] == value
@pytest.mark.skipif(not hasattr(imagecodecs, 'jxr_decode'),
reason='jxr codec missing')
@pytest.mark.parametrize('output', ['new', 'out', 'bytearray'])
def test_jxr_decode(output):
"""Test JXR decoder with RGBA32 image."""
decode = imagecodecs.jxr_decode
image = readfile('rgba32.jxr.bin')
image = numpy.frombuffer(image, dtype='uint8').reshape(100, 100, -1)
data = readfile('rgba32.jxr')
if output == 'new':
decoded = decode(data)
elif output == 'out':
decoded = numpy.empty_like(image)
decode(data, out=decoded)
elif output == 'bytearray':
decoded = bytearray(image.size * image.itemsize)
decoded = decode(data, out=decoded)
assert_array_equal(image, decoded)
@pytest.mark.skipif(not hasattr(imagecodecs, 'j2k_decode'),
reason='j2k codec missing')
@pytest.mark.parametrize('output', ['new', 'out', 'bytearray'])
def test_j2k_int8_4bit(output):
"""Test J2K decoder with int8, 4-bit image."""
decode = imagecodecs.j2k_decode
data = readfile('int8_4bit.j2k')
dtype = 'int8'
shape = 256, 256
if output == 'new':
decoded = decode(data, verbose=2)
elif output == 'out':
decoded = numpy.empty(shape, dtype)
decode(data, out=decoded)
elif output == 'bytearray':
decoded = bytearray(shape[0] * shape[1])
decoded = decode(data, out=decoded)
assert decoded.dtype == dtype
assert decoded.shape == shape
assert decoded[0, 0] == -6
assert decoded[-1, -1] == 2
@pytest.mark.skipif(not hasattr(imagecodecs, 'j2k_decode'),
reason='j2k codec missing')
def test_j2k_ycbc():
"""Test J2K decoder with subsampling."""
decode = imagecodecs.j2k_decode
data = readfile('ycbc.j2k')
decoded = decode(data, verbose=2)
assert decoded.dtype == 'uint8'
assert decoded.shape == (256, 256, 3)
assert tuple(decoded[0, 0]) == (243, 243, 240)
assert tuple(decoded[-1, -1]) == (0, 0, 0)
@pytest.mark.skipif(_jpegls is None, reason='_jpegls module missing')
@pytest.mark.parametrize('output', ['new', 'out', 'bytearray'])
def test_jpegls_decode(output):
"""Test JPEGLS decoder with RGBA32 image."""
decode = imagecodecs.jpegls_decode
data = readfile('rgba.u1.jls')
dtype = 'uint8'
shape = 32, 31, 4
if output == 'new':
decoded = decode(data)
elif output == 'out':
decoded = numpy.empty(shape, dtype)
decode(data, out=decoded)
elif output == 'bytearray':
decoded = bytearray(shape[0] * shape[1] * shape[2])
decoded = decode(data, out=decoded)
assert decoded.dtype == dtype
assert decoded.shape == shape
assert decoded[25, 25, 1] == 97
assert decoded[-1, -1, -1] == 63
@pytest.mark.skipif(not hasattr(imagecodecs, 'webp_decode'),
reason='webp codec missing')
@pytest.mark.parametrize('output', ['new', 'out', 'bytearray'])
def test_webp_decode(output):
"""Test WebpP decoder with RGBA32 image."""
decode = imagecodecs.webp_decode
data = readfile('rgba.u1.webp')
dtype = 'uint8'
shape = 32, 31, 4
if output == 'new':
decoded = decode(data)
elif output == 'out':
decoded = numpy.empty(shape, dtype)
decode(data, out=decoded)
elif output == 'bytearray':
decoded = bytearray(shape[0] * shape[1] * shape[2])
decoded = decode(data, out=decoded)
assert decoded.dtype == dtype
assert decoded.shape == shape
assert decoded[25, 25, 1] == 94 # lossy
assert decoded[-1, -1, -1] == 63
@pytest.mark.skipif(_zfp is None, reason='_zfp module missing')
@pytest.mark.filterwarnings('ignore:Possible precision loss')
@pytest.mark.parametrize('execution', [None, 'omp'])
@pytest.mark.parametrize('mode', [(None, None), ('p', None)]) # ('r', 24)
@pytest.mark.parametrize('deout', ['new', 'out', 'bytearray']) # 'view',
@pytest.mark.parametrize('enout', ['new', 'out', 'bytearray'])
@pytest.mark.parametrize('itype', ['rgba', 'view', 'gray', 'line'])
@pytest.mark.parametrize('dtype', ['float32', 'float64', 'int32', 'int64'])
def test_zfp(dtype, itype, enout, deout, mode, execution):
"""Test ZFP codecs."""
if execution == 'omp' and os.environ.get('SKIP_OMP', False):
pytest.skip('omp test skip because of enviroment variable')
decode = imagecodecs.zfp_decode
encode = imagecodecs.zfp_encode
mode, level = mode
dtype = numpy.dtype(dtype)
itemsize = dtype.itemsize
data = image_data(itype, dtype)
shape = data.shape
kwargs = dict(mode=mode, level=level, execution=execution)
encoded = encode(data, **kwargs)
if enout == 'new':
pass
elif enout == 'out':
encoded = numpy.empty(len(encoded), 'uint8')
encode(data, out=encoded, **kwargs)
elif enout == 'bytearray':
encoded = bytearray(len(encoded))
encode(data, out=encoded, **kwargs)
if deout == 'new':
decoded = decode(encoded)
elif deout == 'out':
decoded = numpy.empty(shape, dtype)
decode(encoded, out=decoded)
elif deout == 'view':
temp = numpy.empty((shape[0] + 5, shape[1] + 5, shape[2]), dtype)
decoded = temp[2:2 + shape[0], 3:3 + shape[1], :]
decode(encoded, out=decoded)
elif deout == 'bytearray':
decoded = bytearray(shape[0] * shape[1] * shape[2] * itemsize)
decoded = decode(encoded, out=decoded)
decoded = numpy.asarray(decoded, dtype=dtype).reshape(shape)
if dtype.char == 'f':
atol = 1e-6
else:
atol = 20
assert_allclose(data, decoded, atol=atol, rtol=0)
@pytest.mark.skipif(not hasattr(imagecodecs, 'jxr_decode'),
reason='jxr codec missing')
@pytest.mark.filterwarnings('ignore:Possible precision loss')
@pytest.mark.parametrize('level', [None, 90, 0.4])
@pytest.mark.parametrize('deout', ['new', 'out', 'bytearray']) # 'view',
@pytest.mark.parametrize('enout', ['new', 'out', 'bytearray'])
@pytest.mark.parametrize('itype', [
'gray uint8', 'gray uint16', 'gray float16', 'gray float32',
'rgb uint8', 'rgb uint16', 'rgb float16', 'rgb float32',
'rgba uint8', 'rgba uint16', 'rgba float16', 'rgba float32',
'channels uint8', 'channelsa uint8', 'channels uint16', 'channelsa uint16',
'cmyk uint8', 'cmyka uint8'])
def test_jxr(itype, enout, deout, level):
"""Test JpegXR codecs."""
decode = imagecodecs.jxr_decode
encode = imagecodecs.jxr_encode
itype, dtype = itype.split()
dtype = numpy.dtype(dtype)
itemsize = dtype.itemsize
data = image_data(itype, dtype)
shape = data.shape
kwargs = dict(level=level)
if itype.startswith('cmyk'):
kwargs['photometric'] = 'cmyk'
if itype.endswith('a'):
kwargs['hasalpha'] = True
print(data.shape, data.dtype, data.strides)
encoded = encode(data, **kwargs)
if enout == 'new':
pass
elif enout == 'out':
encoded = numpy.empty(len(encoded), 'uint8')
encode(data, out=encoded, **kwargs)
elif enout == 'bytearray':
encoded = bytearray(len(encoded))
encode(data, out=encoded, **kwargs)
if deout == 'new':
decoded = decode(encoded)
elif deout == 'out':
decoded = numpy.empty(shape, dtype)
decode(encoded, out= | numpy.squeeze(decoded) | numpy.squeeze |
'''
Created on Dec 31, 2013
@author: <NAME> (<EMAIL>)
@copyright: (c) 2013 <NAME>
@license: MIT
'''
# standard library
from __future__ import division, print_function
import logging
import os
import types
# external libraries
import numpy as np
import scipy.signal
import scipy.io.wavfile
import matplotlib.pyplot as plt
#===================================================================================================
# Classes
#===================================================================================================
class Audio(object):
def __init__(self, channels=0, fs=96000, nofsamples=0, duration=None,
initialdata=None, dtype=np.float64):
"""Base class for audio processing. Samples are stored as a numpy array.
We can create an instance by specifying a channel count and one of either
a duration or a sample count parameter. The other way of creating an
instance is by providing an already existing numpy array containing the
audio samples.
The shape of the audio samples are always (Nsamples_per_channel, Nchannels).
"""
self._logger = logging.getLogger(__name__)
# We sometimes divide by the sample rate to get time values
assert fs > 0, "sample rate cannot be zero or negative"
self.fs = fs # sample rate should always be specified in the constructor
self.nofsamples = None # number of samples per channel
self.duration = None # duration (length) in seconds
self.ch = None # number of channels
self._comment = ''
if initialdata is None:
# if we are not given any initial samples we create an empty array of
# zeros for the audio samples.
assert isinstance(channels, int)
assert not(nofsamples!=0 and duration is not None), "choose either samples or duration"
self.ch = channels
if duration is not None:
self.nofsamples = int(duration*self.fs)
self.duration = duration
else:
self.nofsamples = nofsamples
self._set_duration()
# create space for the samples
self.samples = np.zeros((self.nofsamples, self.ch), dtype=dtype)
else:
# An array of initial samples are given, use this to extract
# channel count and durations.
assert isinstance(initialdata, np.ndarray), \
'Only numpy arrays are allowed as initial data'
assert channels == 0, "parameter 'channels' is redundant if initial data is specified"
assert nofsamples == 0, "parameter 'nofsamples' is redundant if initial data is specified"
assert duration is None, "parameter 'duration' is redundant if initial data is specified"
# copy the data to avoid unexpected data corruption
self.samples = initialdata.copy()
if self.samples.ndim == 1:
# if the array is
# array([ 1., 1., 1.])
# we expand it to
# array([[ 1.],
# [ 1.],
# [ 1.]])
#
self.samples = np.expand_dims(self.samples, axis=1)
assert self.samples.ndim == 2, 'shape must be (Nsamples, Nchannels)'
self.nofsamples, self.ch = self.samples.shape
# initial data is assumed to have more samples than channels
assert self.nofsamples > self.ch, 'shape must be (Nsamples, Nchannels)'
self._set_duration()
assert self.nofsamples is not None
assert self.duration is not None
assert self.ch is not None
def __str__(self):
s = '=======================================\n'
s += 'classname : %s\n' %self.__class__.__name__
s += 'sample rate : %.1f [Hz]\n' %self.fs
s += 'channels : %i\n' %self.ch
s += 'duration : %.3f [s]\n' %self.duration
s += 'datatype : %s\n' %self.samples.dtype
s += 'samples per ch : %i\n' %self.nofsamples
s += 'data size : %.3f [Mb]\n' %(self.samples.nbytes/(1024*1024))
s += 'has comment : %s\n' %('yes' if len(self._comment)!=0 else 'no')
if self.ch != 0:
# += '-----------------:---------------------\n'
s += 'peak : %s\n' %np.array_str(self.peak()[0],
precision=4, suppress_small=True)
s += 'RMS : %s\n' %np.array_str(self.rms(),
precision=4, suppress_small=True)
s += 'crestfactor : %s\n' %np.array_str(self.crest_factor(),
precision=4, suppress_small=True)
s += '-----------------:---------------------\n'
return s
def __len__(self):
return self.nofsamples
def _set_duration(self):
"""internal method
If we have modified the samples variable (by padding with zeros
for example) we need to re-calculate the duration
"""
self.duration = self.nofsamples/self.fs
def _set_samples(self, idx=0, samples=None):
"""internal method
NOTE: idx != channel
idx is always zero indexed since it refers to the numpy array. Channels
are always indexed from one since this is the natural way of identifying
channel numbers.
"""
assert isinstance(samples, np.ndarray)
assert len(samples) == self.nofsamples
self.samples[:,idx] = samples
def pretty_string_samples(self, idx_start=0, idx_end=20, precision=4, header=False):
s = ''
if header:
t = ' '
u = 'ch'
for i in range(self.ch):
t += '-------:'
u += ' %2i :' %(i+1)
t += '\n'
u += '\n'
s += t # -------:-------:-------:
s += u # ch 1 : 2 : 3 :
s += t # -------:-------:-------:
s += np.array_str(self.samples[idx_start:idx_end,:],
max_line_width=260, # we can print 32 channels before linewrap
precision=precision,
suppress_small=True)
if (idx_end-idx_start) < self.nofsamples:
s = s[:-1] # strip the right ']' character
s += '\n ...,\n'
lastlines = np.array_str(self.samples[-3:,:],
max_line_width=260,
precision=precision,
suppress_small=True)
s += ' %s\n' %lastlines[1:] # strip first '['
return s
def pad(self, nofsamples=0):
"""Zero pad *at the end* of the current audio data.
increases duration by samples/fs
"""
assert nofsamples >= 0, "Can't append negative number of samples"
zeros = np.zeros((nofsamples, self.ch), dtype=self.samples.dtype)
self.samples = np.append(self.samples, zeros, axis=0)
self.nofsamples=len(self.samples)
self._set_duration()
def trim(self, start=None, end=None):
"""Trim samples **IN PLACE** """
self.samples = self.samples[start:end]
self.nofsamples=len(self.samples)
self._set_duration()
def _fade(self, millisec, direction):
"""Internal method.
Fade in/out is essentially the same exept the slope (and position) of the
ramp. Currently only a linear ramp is implemented.
"""
assert np.issubdtype(self.samples.dtype, float), \
"only floating point processing implemented"
assert millisec >= 0, "Got a time machine?"
assert direction in ("in", "out")
fade_seconds = millisec/1000
assert self.duration > fade_seconds, "fade cannot be longer than the length of the audio"
sample_count = np.ceil(fade_seconds*self.fs)
self._logger.debug("fade %s sample count: %i" %(direction, sample_count))
# generate the ramp
if direction is "out":
# ramp down
ramp = np.linspace(1, 0, num=sample_count, endpoint=True)
else:
# ramp up
ramp = np.linspace(0, 1, num=sample_count, endpoint=True)
ones = np.ones(len(self)-len(ramp))
# glue the ones and the ramp together
if direction is "out":
gains = np.append(ones, ramp, axis=0)
else:
gains = np.append(ramp, ones, axis=0)
# expand the dimension so we get a one channels array of samples,
# as in (samples, channels)
gains = np.expand_dims(gains, axis=1)
assert len(gains) == len(self)
# repeat the gain vector so we get as many gain channels as all the channels
gains = np.repeat(gains, self.ch, axis=1)
assert gains.shape == self.samples.shape
# apply gains
self.samples = self.samples * gains
def fade_in(self, millisec=10):
"""Fade in over 'millisec' seconds. Applies on *all* channels"""
self._fade(millisec, "in")
def fade_out(self, millisec=30):
"""Fade out over 'millisec' seconds. Applies on *all* channels"""
self._fade(millisec, "out")
def delay(self, n, channel=1):
"""Delay channel x by n samples"""
self.samples[:,channel-1] = np.pad(self.samples[:,channel-1], (n, 0),
mode="constant")[:-n]
def get_time(self):
"""Return a vector of time values, starting with t0=0. Useful when plotting."""
return np.linspace(0, self.duration, num=self.nofsamples, endpoint=False)
def comment(self, comment=None):
"""Modify or return a string comment."""
assert isinstance(comment, (basestring, types.NoneType)), "A comment is a string"
if comment is not None:
self._comment = comment
return self._comment
def append(self, *args):
"""Add (append) channels *to the right* of the current audio data.
does zeropadding
increases channel count
"""
for i, other in enumerate(args):
assert isinstance(other, Audio), "only Audio() instances can be used"
self._logger.debug("** iteration %02i --> appending %s" %((i+1), other.__class__.__name__))
assert self.fs == other.fs, "Sample rates must match (%s != %s)" %(self.fs, other.fs)
assert self.samples.dtype == other.samples.dtype, \
"Data types must match (%s != %s)"%(self.samples.dtype, other.samples.dtype)
max_nofsamples = max(self.nofsamples, other.nofsamples)
missingsamples = abs(self.nofsamples - other.nofsamples)
self._logger.debug("max nof samples: %i" %max_nofsamples)
self._logger.debug("appending %i new channel(s) and %i samples" %(other.ch, missingsamples))
if self.nofsamples > other.nofsamples:
self._logger.debug("self.nofsamples > other.nofsamples")
tmp = np.append(other.samples,
np.zeros(((missingsamples), other.ch), dtype=other.samples.dtype),
axis=0)
self.samples = np.append(self.samples, tmp, axis=1)
elif self.nofsamples < other.nofsamples:
self._logger.debug("self.nofsamples < other.nofsamples")
tmp = np.append(self.samples,
np.zeros(((missingsamples), self.ch), dtype=self.samples.dtype),
axis=0)
self.samples = np.append(tmp, other.samples, axis=1)
else:
self._logger.debug("self.nofsamples == other.nofsamples")
self.samples = np.append(self.samples, other.samples, axis=1)
self.ch = self.ch+other.ch
self.nofsamples=max_nofsamples
self._set_duration()
def concat(self, *args):
"""Concatenate (append) samples *after* the current audio data.
example:
x1 = 1234
x2 = 5678
x1.concat(x2) --> 12345678
"""
for i, other in enumerate(args):
assert isinstance(other, Audio), "only Audio() instances can be used"
self._logger.debug("** iteration %02i --> appending %s" %((i+1), other.__class__.__name__))
assert self.fs == other.fs, "Sample rates must match (%s != %s)" %(self.fs, other.fs)
assert self.samples.dtype == other.samples.dtype, \
"Data types must match (%s != %s)"%(self.samples.dtype, other.samples.dtype)
assert self.ch == other.ch, "channel count must match"
self.samples = np.append(self.samples, other.samples, axis=0)
self.nofsamples=len(self.samples)
self._set_duration()
def gain(self, *args):
"""Apply gain to the audio samples. Always specify gain values in dB.
Converts **IN PLACE**
"""
self._logger.debug('gains: %s' %str(args))
dt = self.samples.dtype
lin = db2lin(args)
# apply the (linear) gain
self.samples = lin*self.samples
# make sure that the data type is retained
self.samples = self.samples.astype(dt)
def rms(self):
"""Calculate the RMS (Root Mean Square) value of the audio
data. Returns the RMS value for each individual channel
"""
if not (self.samples == 0).all():
if np.issubdtype(self.samples.dtype, float):
rms = np.sqrt(np.mean(np.power(self.samples, 2), axis=0))
else:
# use a bigger datatype for ints since we most likely will
# overflow when calculating to the power of 2
bigger = np.asarray(self.samples, dtype=np.int64)
rms = np.sqrt(np.mean(np.power(bigger, 2), axis=0))
elif len(self.samples) == 0:
# no samples are set but channels are configured
rms = np.zeros(self.ch)
rms[:] = float('nan')
else:
rms = np.zeros(self.ch)
return rms
def peak(self):
"""Calculate peak sample value (with sign)"""
if len(self.samples) != 0:
if np.issubdtype(self.samples.dtype, float):
idx = np.absolute(self.samples).argmax(axis=0)
else:
# We have to be careful when checking two's complement since the absolute value
# of the smallest possible value can't be represented without overflowing. For
# example: signed 16bit has range [-32768, 32767] so abs(-32768) cannot be
# represented in signed 16 bits --> use a bigger datatype
bigger = np.asarray(self.samples, dtype=np.int64)
idx = np.absolute(bigger).argmax(axis=0)
peak = np.array([self.samples[row,col] for col, row in enumerate(idx)])
else:
# no samples are set but channels are configured
idx = np.zeros(self.ch, dtype=np.int64)
peak = np.zeros(self.ch)
peak[:] = float('nan')
return peak, idx
def crest_factor(self):
"""Calculate the Crest Factor (peak over RMS) value of the
audio. Returns the crest factor value for each channel.
Some common crest factor values:
sine : 1.414...
MLS : 1 (if no emphasis filter is applied)
impulse : very high. The value gets higher the longer
the length of the audio data.
square : 1 (ideal square)
zeros : NaN (we cannot calculate 0/0)
"""
rms = self.rms()
assert len(rms) != 0
with np.errstate(invalid='ignore'):
# if the rms is zero we will get division errors. Ignore them.
if len(self.samples) != 0:
crest = np.abs(self.samples).max(axis=0)/rms
else:
# no samples are set but channels are configured
crest = np.zeros(self.ch)
crest[:] = float('nan')
return crest
def convert_to_integer(self, targetbits=16):
"""Scale floating point values between [-1.0, 1.0] to the equivalent
signed integer value. Converts **IN PLACE**
Note: 24 bit signed integers and 8 bit unsigned integers currently unsupported.
"""
assert targetbits in (8, 16, 32, 64)
assert self.samples.dtype in (np.int8, np.int16, np.int32, np.int64,
np.float32, np.float64)
dt = { 8 : 'int8',
16 : 'int16',
32 : 'int32',
64 : 'int64'}
sourcebits = self.samples.itemsize * 8
if self.samples.dtype in (np.float32, np.float64):
self._logger.debug("source is %02i bits (float), target is %2i bits (integer)"
%(sourcebits, targetbits))
self.samples = np.array(self.samples*(2**(targetbits-1)-1),
dtype=dt.get(targetbits))
else:
self._logger.debug("source is %02i bits (integer), target is %2i bits (integer)"
%(sourcebits, targetbits))
raise NotImplementedError("TODO: implement scale int->int")
def convert_to_float(self, targetbits=64):
"""Scale integer values to equivalent floating point values
between [-1.0, 1.0]. Converts **IN PLACE**
"""
assert targetbits in (32, 64)
assert self.samples.dtype in (np.int8, np.int16, np.int32, np.int64,
np.float32, np.float64)
dt = {32 : 'float32',
64 : 'float64'}
sourcebits = self.samples.itemsize * 8
if self.samples.dtype in (np.int8, np.int16, np.int32, np.int64):
self._logger.debug("source is %02i bits (integer), target is %2i bits (float)"
%(sourcebits, targetbits))
self.samples = np.array(self.samples/(2**(sourcebits-1)), dtype=dt.get(targetbits))
else:
self._logger.debug("source is %02i bits (float), target is %2i bits (float)"
%(sourcebits, targetbits))
self.samples = np.array(self.samples, dtype=dt.get(targetbits))
def write_wav_file(self, filename=None):
"""Save audio data to .wav file."""
assert filename is not None, "Specify a filename, for example 'filename=audio.wav'"
self._logger.debug("writing file %s" %filename)
if self.samples.dtype == np.float64:
self._logger.warn("datatype is %s" %self.samples.dtype)
try:
scipy.io.wavfile.write(filename, self.fs, self.samples)
except:
self._logger.exception("Could not write file: '%s'" %filename)
def plot(self, ch=1, plotname=None, **kwargs):
"""Plot the audio data on a time domain plot.
example:
x1 = Sinetone(f0=0.2, fs=10, nofsamples=50)
x1.plot(linestyle='--', marker='x', color='r', label='sine at 0.2Hz')
"""
# TODO: add range to plotdata [None:None] is everything
if ch != 'all':
assert ch-1 < self.ch, "channel does not exist"
plt.figure(1)
plt.title("%s" %self.__class__.__name__)
if ch != 'all':
plt.plot(self.get_time(), self.samples[:,ch-1], **kwargs)
else:
plt.plot(self.get_time(), self.samples, **kwargs)
plt.xlabel('Time [s]')
plt.ylabel('Amplitude [linear]')
if 'label' in kwargs:
plt.legend(loc='best')
plt.grid(True)
if plotname is None:
plt.show()
else:
plt.savefig(plotname)
plt.close(1)
def plot_fft(self, plotname=None, window='hann', normalise=True, **kwargs):
"""Make a plot (in the frequency domain) of all channels"""
ymin = kwargs.get('ymin', -160) #dB
freq, mag = self.fft(window=window, normalise=normalise)
fig_id = 1
plt.figure(fig_id)
#plt.semilogx(freq, mag, **kwargs) # plots all channel directly
plt.hold(True)
for ch in range(self.ch):
plt.semilogx(freq, mag[:,ch], label='ch%2i' %(ch+1))
plt.hold(False)
plt.xlim(xmin=1) # we're not interested in freqs. below 1 Hz
plt.ylim(ymin=ymin)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude [dB]')
plt.legend(loc='best')
plt.grid(True)
if plotname is None:
plt.show()
else:
plt.savefig(plotname)
plt.close(fig_id)
def fft(self, window='hann', normalise=True):
"""Calculate the FFT of all channels. Returns data up to fs/2"""
fftsize = self.nofsamples
# Avoid Mersenne Primes
if fftsize in [(2**13)-1, (2**17)-1, (2**19)-1, (2**31)-1]:
self._logger.warn("FFT size is a Mersenne Prime, increasing size by 1")
fftsize = fftsize+1
self._logger.debug("fftsize: %i" %fftsize)
self._logger.debug("window : %s" %str(window))
win = scipy.signal.windows.get_window(window, Nx=self.nofsamples) # not fftsize!
win = np.expand_dims(win, axis=1)
y = self.samples*win
Y = np.fft.fft(y, n=fftsize, axis=0)
if normalise:
Y = Y/fftsize
mag = lin2db(np.abs(Y))
frq = | np.fft.fftfreq(fftsize, 1/self.fs) | numpy.fft.fftfreq |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import numba
from functools import partial
import multiprocessing
import random
from scipy import stats
class naive_sghmc():
def __init__(self,lnp,lnp_grad,initialguess,data=None,usedata = False, M = None):
'''
'''
self.data = data
self.ndim = len(initialguess)
self.get_mass_matrix(M)
self.theta0 = initialguess
self.lnp = lnp
self.lnp_grad = lnp_grad
self.res = []
self.r = []
self.usedata = usedata
if usedata:
self.n = len(data)
def get_mass_matrix(self, mass_matrix=None):
"""
get the inverse of the mass matrix
"""
if mass_matrix is None:
self.mass_matrix = np.identity(self.ndim)
self.inverse_mass_matrix = np.identity(self.ndim)
else:
if len(mass_matrix) != self.ndim:
print("Invalid mass matrix")
elif len(mass_matrix) == 1:
self.mass_matrix = mass_matrix
self.inverse_mass_matrix = 1. / mass_matrix
#self.ndim_mass = 1
else:
self.mass_matrix = mass_matrix
self.inverse_mass_matrix = np.linalg.inv(mass_matrix)
#self.ndim_mass = 2
def define_momentum(self):
"""
sample momentum
"""
if self.ndim == 1:
r = np.random.normal(0, np.sqrt(self.mass_matrix))
else:
r = np.random.multivariate_normal( | np.zeros(self.ndim) | numpy.zeros |
from __future__ import division
import numpy as np
from scipy.stats import norm
from scipy import stats
from sklearn.metrics.pairwise import euclidean_distances
from scipy.spatial.distance import cdist
from acquisition_maximization import acq_max
counter = 0
###############################################################################
'''
The max_bound_size variable below contols the size of the maximum allowed
bound. This is set at [0,max_bound_size] in each dimention.
###IMPORTANT###
This variable must be consistant in all of the following files:
1) acquisition_functions.py
2) bayesian_optimization_function.py
3) function.py
4) real_experiment_functon.py
'''
max_bound_size=10
###############################################################################
class AcquisitionFunction(object):
"""
An object to compute the acquisition functions.
"""
def __init__(self, acq, bb_function=False):
self.acq=acq
acq_name=acq['name']
if bb_function:
self.bb_function=bb_function
if 'WW' not in acq:
self.WW=False
else:
self.WW=acq['WW']
if 'WW_dim' not in acq:
self.WW_dim=False
else:
self.WW_dim=acq['WW_dim']
ListAcq=['ei']
# check valid acquisition function
IsTrue=[val for idx,val in enumerate(ListAcq) if val in acq_name]
#if not in acq_name:
if IsTrue == []:
err = "The utility function " \
"{} has not been implemented, " \
"please choose one of ucb, ei, or poi.".format(acq_name)
raise NotImplementedError(err)
else:
self.acq_name = acq_name
self.dim=acq['dim']
if 'scalebounds' not in acq:
self.scalebounds=[0,1]*self.dim
else:
self.scalebounds=acq['scalebounds']
self.initialized_flag=0
self.objects=[]
def acq_kind(self, x, gp, y_max):
#print self.kind
if np.any(np.isnan(x)):
return 0
if self.acq_name == 'ei':
return self._ei(x, gp, y_max)
if self.acq_name == 'ei_regularizerH':
bound=np.array(self.scalebounds).reshape(self.dim,-1)
length=bound[:,1]-bound[:,0]
x_bar=bound[:,0]+length/2
return self._ei_regularizerH(x, gp, y_max,x_bar=x_bar,R=0.5)
@staticmethod
def _ei(x, gp, y_max):
"""
Calculates the EI acquisition function values
Inputs: gp: The Gaussian process, also contains all data
y_max: The maxima of the found y values
x:The point at which to evaluate the acquisition function
Output: acq_value: The value of the aquisition function at point x
"""
y_max=np.asscalar(y_max)
mean, var = gp.predict(x, eval_MSE=True)
var2 = np.maximum(var, 1e-8 + 0 * var)
z = (mean - y_max)/np.sqrt(var2)
out=(mean - y_max) * norm.cdf(z) + np.sqrt(var2) * norm.pdf(z)
out[var2<1e-8]=0
return out
def _ei_regularizerH(self,x, gp, y_max,x_bar,R=0.5):
"""
Calculates the EI acquisition function values with a hinge regulariser
Inputs: gp: The Gaussian process, also contains all data
y_max: The maxima of the found y values
x:The point at which to evaluate the acquisition function
x_bar: Centroid for the regulariser
R: Radius for the regulariser
Output: acq_value: The value of the aquisition function at point x
"""
mean, var = gp.predict(x, eval_MSE=True)
extended_bound=np.array(self.scalebounds).copy()
extended_bound=extended_bound.reshape(self.dim,-1)
extended_bound[:,0]=extended_bound[:,0]-2
extended_bound[:,1]=extended_bound[:,1]+2
for d in range(0,self.dim):
extended_bound[d,0]=max(extended_bound[d,0],0)
extended_bound[d,1]=min(extended_bound[d,1],max_bound_size)
#compute regularizer xi
dist= np.linalg.norm(x - x_bar)
if dist>R:
xi=dist/R-1
else:
xi=0
if gp.nGP==0:
var = np.maximum(var, 1e-9 + 0 * var)
z = (mean - y_max-y_max*xi)/np.sqrt(var)
out=(mean - y_max-y_max*xi) * norm.cdf(z) + np.sqrt(var) * norm.pdf(z)
return out
else:
z=[None]*gp.nGP
out=[None]*gp.nGP
# Avoid points with zero variance
for idx in range(gp.nGP):
var[idx] = np.maximum(var[idx], 1e-9 + 0 * var[idx])
z[idx] = (mean[idx] - y_max-y_max*xi)/np.sqrt(var[idx])
out[idx]=(mean[idx] - y_max-y_max*xi) * norm.cdf(z[idx]) + np.sqrt(var[idx]) * norm.pdf(z[idx])
if len(x)==1000:
return out
else:
return np.mean(out)# get mean over acquisition functions
return np.prod(out,axis=0) # get product over acquisition functions
class ThompsonSampling(object):
"""
Class used for calulating Thompson samples. Re-usable calculations are
done in __init__ to reduce compuational cost.
"""
#Calculates the thompson sample paramers
def __init__(self,gp,seed=False):
var_mag=1
ls_mag=1
if seed!=False:
np.random.seed(seed)
dim=gp.X.shape[1]
# used for Thompson Sampling
self.WW_dim=200 # dimension of random feature
self.WW=np.random.multivariate_normal([0]*self.WW_dim,np.eye(self.WW_dim),dim)/(gp.lengthscale*ls_mag)
self.bias=np.random.uniform(0,2*3.14,self.WW_dim)
# computing Phi(X)^T=[phi(x_1)....phi(x_n)]
Phi_X=np.sqrt(2.0/self.WW_dim)*np.hstack([np.sin(np.dot(gp.X,self.WW)+self.bias), np.cos(np.dot(gp.X,self.WW)+self.bias)]) # [N x M]
# computing A^-1
A=np.dot(Phi_X.T,Phi_X)+np.eye(2*self.WW_dim)*gp.noise_delta*var_mag
gx= | np.dot(Phi_X.T,gp.Y) | numpy.dot |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import multiprocessing
import random
from itertools import product, repeat
import numpy as np
import tensorflow as tf
from cleverhans.attacks import SPSA
from cleverhans.model import Model
from foolbox.attacks import BoundaryAttack as FoolboxBoundaryAttack
from imagenet_c import corrupt
from six.moves import xrange
from unrestricted_advex.cleverhans_fast_spatial_attack import SpatialTransformationMethod
class Attack(object):
name = None
# TODO: Refactor this out of this object
_stop_after_n_datapoints = None # An attack can optionally run on only a subset of the dataset
def __call__(self, *args, **kwargs):
raise NotImplementedError()
class CleanData(Attack):
"""Also known as the "null attack". Just returns the unaltered clean image"""
name = 'clean'
def __call__(self, model_fn, images_batch_nhwc, y_np):
del y_np, model_fn # unused
return images_batch_nhwc
class SpsaAttack(Attack):
name = 'spsa'
def __init__(self, model, image_shape_hwc, epsilon=(16. / 255),
num_steps=200, batch_size=32, is_debug=False):
self.graph = tf.Graph()
with self.graph.as_default():
self.sess = tf.Session(graph=self.graph)
self.x_input = tf.placeholder(tf.float32, shape=(1,) + image_shape_hwc)
self.y_label = tf.placeholder(tf.int32, shape=(1,))
self.model = model
attack = SPSA(CleverhansPyfuncModelWrapper(self.model), sess=self.sess)
self.x_adv = attack.generate(
self.x_input,
y=self.y_label,
epsilon=epsilon,
num_steps=num_steps,
early_stop_loss_threshold=-1.,
batch_size=batch_size,
is_debug=is_debug)
self.graph.finalize()
def __call__(self, model, x_np, y_np): # (4. / 255)):
if model != self.model:
raise ValueError('Cannot call spsa attack on different models')
del model # unused except to check that we already wired it up right
with self.graph.as_default():
all_x_adv_np = []
for i in xrange(len(x_np)):
x_adv_np = self.sess.run(self.x_adv, feed_dict={
self.x_input: np.expand_dims(x_np[i], axis=0),
self.y_label: np.expand_dims(y_np[i], axis=0),
})
all_x_adv_np.append(x_adv_np)
return np.concatenate(all_x_adv_np)
def corrupt_float32_image(x, corruption_name, severity):
"""Convert to uint8 and back to conform to corruption API"""
x = np.copy(x) # We make a copy to avoid changing things in-place
x = (x * 255).astype(np.uint8)
corrupt_x = corrupt(
x,
corruption_name=corruption_name,
severity=severity)
return corrupt_x.astype(np.float32) / 255.
def _corrupt_float32_image_star(args):
return corrupt_float32_image(*args)
class CommonCorruptionsAttack(Attack):
name = "common_corruptions"
def __init__(self, severity=1):
self.corruption_names = [
'gaussian_noise',
'shot_noise',
'impulse_noise',
'defocus_blur',
'glass_blur',
'motion_blur',
'zoom_blur',
# 'snow', # Snow does not work in python 2.7
# 'frost', # Frost is not working correctly
'fog',
'brightness',
'contrast',
'elastic_transform',
'pixelate',
'jpeg_compression',
'speckle_noise',
'gaussian_blur',
'spatter',
'saturate']
self.severity = severity
self.pool = multiprocessing.Pool(len(self.corruption_names))
def __call__(self, model_fn, images_batch_nhwc, y_np):
assert images_batch_nhwc.shape[1:] == (224, 224, 3), \
"Image shape must equal (N, 224, 224, 3)"
batch_size = len(images_batch_nhwc)
# Keep track of the worst corruption for each image
worst_corruption = np.copy(images_batch_nhwc)
worst_loss = [np.NINF] * batch_size
# Iterate through each image in the batch
for batch_idx, x in enumerate(images_batch_nhwc):
corrupt_args = [(x, corruption_name, self.severity)
for corruption_name in self.corruption_names]
corrupt_x_batch = self.pool.map(_corrupt_float32_image_star, corrupt_args)
logits_batch = model_fn(np.array(corrupt_x_batch))
label = y_np[batch_idx]
# This is left un-vectorized for readability
for (logits, corrupt_x) in zip(logits_batch, corrupt_x_batch):
correct_logit, wrong_logit = logits[label], logits[1 - label]
# We can choose different loss functions to optimize in the
# attack. For now, optimize the magnitude of the wrong logit
# because we use this as our confidence threshold
loss = wrong_logit
# loss = wrong_logit - correct_logit
if loss > worst_loss[batch_idx]:
worst_corruption[batch_idx] = corrupt_x
worst_loss[batch_idx] = loss
return worst_corruption
class BoundaryAttack(Attack):
name = "boundary"
def __init__(self, model, image_shape_hwc, max_l2_distortion=4, label_to_examples=None):
if label_to_examples is None:
label_to_examples = {}
self.max_l2_distortion = max_l2_distortion
class Model:
def bounds(self):
return [0, 1]
def predictions(self, img):
return model(img[np.newaxis, :, :, :])[0]
def batch_predictions(self, img):
return model(img)
self.label_to_examples = label_to_examples
h, w, c = image_shape_hwc
mse_threshold = max_l2_distortion ** 2 / (h * w * c)
try:
# Foolbox 1.5 allows us to use a threshold the attack will abort after
# reaching. Because we only care about a distortion of less than 4, as soon
# as we reach it, we can just abort and move on to the next image.
self.attack = FoolboxBoundaryAttack(model=Model(), threshold=mse_threshold)
except:
# Fall back to the original implementation.
print("WARNING: Using foolbox version < 1.5 will cuase the "
"boundary attack to perform more work than is required. "
"Please upgrade to version 1.5")
self.attack = FoolboxBoundaryAttack(model=Model())
def __call__(self, model, x_np, y_np):
r = []
for i in range(len(x_np)):
other = 1 - y_np[i]
initial_adv = random.choice(self.label_to_examples[other])
try:
adv = self.attack(x_np[i], y_np[i],
log_every_n_steps=100, # Reduce verbosity of the attack
starting_point=initial_adv
)
distortion = np.sum((x_np[i] - adv) ** 2) ** .5
if distortion > self.max_l2_distortion:
# project to the surface of the L2 ball
adv = x_np[i] + (adv - x_np[i]) / distortion * self.max_l2_distortion
except AssertionError as error:
if str(error).startswith("Invalid starting point provided."):
print("WARNING: The model misclassified the starting point (the target) "
"from BoundaryAttack. This means that the attack will fail on this "
"specific point (but is likely to succeed on other points.")
adv = x_np[i] # Just return the non-adversarial point
else:
raise error
r.append(adv)
return np.array(r)
class FastSpatialGridAttack(Attack):
"""Fast attack from "A Rotation and a Translation Suffice: Fooling CNNs with
Simple Transformations", Engstrom et al. 2018
https://arxiv.org/pdf/1712.02779.pdf
"""
name = 'spatial_grid'
def __init__(self, model,
image_shape_hwc,
spatial_limits,
grid_granularity,
black_border_size,
):
self.graph = tf.Graph()
with self.graph.as_default():
self.sess = tf.Session(graph=self.graph)
self.x_input = tf.placeholder(
tf.float32, shape=[None] + list(image_shape_hwc))
self.y_input = tf.placeholder(tf.float32, shape=(None, 2))
self.model = model
attack = SpatialTransformationMethod(
CleverhansPyfuncModelWrapper(self.model), sess=self.sess)
self.x_adv = attack.generate(
self.x_input,
y=self.y_input,
n_samples=None,
dx_min=-float(spatial_limits[0]) / image_shape_hwc[0],
dx_max=float(spatial_limits[0]) / image_shape_hwc[0],
n_dxs=grid_granularity[0],
dy_min=-float(spatial_limits[1]) / image_shape_hwc[1],
dy_max=float(spatial_limits[1]) / image_shape_hwc[1],
n_dys=grid_granularity[1],
angle_min=-spatial_limits[2],
angle_max=spatial_limits[2],
n_angles=grid_granularity[2],
black_border_size=black_border_size,
)
self.graph.finalize()
def __call__(self, model_fn, x_np, y_np):
if model_fn != self.model:
raise ValueError('Cannot call spatial attack on different models')
del model_fn # unused except to check that we already wired it up right
y_np_one_hot = np.zeros([len(y_np), 2], np.float32)
y_np_one_hot[np.arange(len(y_np)), y_np] = 1.0
# Reduce the batch size to 1 to avoid OOM errors
with self.graph.as_default():
all_x_adv_np = []
for i in xrange(len(x_np)):
x_adv_np = self.sess.run(self.x_adv, feed_dict={
self.x_input: np.expand_dims(x_np[i], axis=0),
self.y_input: np.expand_dims(y_np_one_hot[i], axis=0),
})
all_x_adv_np.append(x_adv_np)
return np.concatenate(all_x_adv_np)
class SpatialGridAttack(Attack):
"""Attack from "A Rotation and a Translation Suffice: Fooling CNNs with
Simple Transformations", Engstrom et al. 2018
https://arxiv.org/pdf/1712.02779.pdf
"""
name = 'spatial_grid'
def __init__(self, image_shape_hwc,
spatial_limits,
grid_granularity,
black_border_size,
valid_check=None,
):
"""
:param model_fn: a callable: batch-input -> batch-probability in [0, 1]
:param spatial_limits:
:param grid_granularity:
"""
self.limits = spatial_limits
self.granularity = grid_granularity
self.valid_check = valid_check
# Construct graph for spatial attack
self.graph = tf.Graph()
with self.graph.as_default():
self._x_for_trans = tf.placeholder(tf.float32, shape=[None] + list(image_shape_hwc))
self._t_for_trans = tf.placeholder(tf.float32, shape=[None, 3])
x = apply_black_border(
self._x_for_trans,
image_height=image_shape_hwc[0],
image_width=image_shape_hwc[1],
border_size=black_border_size
)
self._tranformed_x_op = apply_transformation(
x,
transform=self._t_for_trans,
image_height=image_shape_hwc[0],
image_width=image_shape_hwc[1],
)
self.session = tf.Session()
self.grid_store = []
def __call__(self, model_fn, x_np, y_np):
n = len(x_np)
grid = product(*list(np.linspace(-l, l, num=g)
for l, g in zip(self.limits, self.granularity)))
worst_x = np.copy(x_np)
max_xent = np.zeros(n)
all_correct = np.ones(n).astype(bool)
trans_np = np.stack(
repeat([0, 0, 0], n))
with self.graph.as_default():
x_downsize_np = self.session.run(self._tranformed_x_op, feed_dict={
self._x_for_trans: x_np,
self._t_for_trans: trans_np,
})
for horizontal_trans, vertical_trans, rotation in grid:
trans_np = np.stack(
repeat([horizontal_trans, vertical_trans, rotation], n))
# Apply the spatial attack
with self.graph.as_default():
x_np_trans = self.session.run(self._tranformed_x_op, feed_dict={
self._x_for_trans: x_np,
self._t_for_trans: trans_np,
})
# See how the model_fn performs on the perturbed input
logits = model_fn(x_np_trans)
preds = np.argmax(logits, axis=1)
cur_xent = _sparse_softmax_cross_entropy_with_logits_from_numpy(
logits, y_np, self.graph, self.session)
cur_xent = np.asarray(cur_xent)
cur_correct = np.equal(y_np, preds)
if self.valid_check:
is_valid = self.valid_check(x_downsize_np, x_np_trans)
cur_correct |= ~is_valid
cur_xent -= is_valid * 1e9
# Select indices to update: we choose the misclassified transformation
# of maximum xent (or just highest xent if everything else if correct).
idx = (cur_xent > max_xent) & (cur_correct == all_correct)
idx = idx | (cur_correct < all_correct)
max_xent = | np.maximum(cur_xent, max_xent) | numpy.maximum |
import random
import numpy as np
from model.model_manager import ModelManager
from model.input_pipeline import ALInputPipeline
from model.monte_carlo_evaluation import get_monte_carlo_metric
from preprocessing.dataset import load
def get_al_manager(al_type):
if al_type == 'common':
return ActiveLearningModelManager
elif al_type == 'continuous':
return ContinuousActiveLearning
elif al_type == 'ceal':
return CealModelManager
class ActiveLearningModelManager(ModelManager):
def __init__(self, model_params, active_learning_params, verbose):
self.active_learning_params = active_learning_params
self.round = 0
super().__init__(model_params, verbose)
def create_dataset(self):
train_data = self.model_params['train_data']
validation_data = self.model_params['validation_data']
test_data = self.model_params['test_data']
batch_size = self.model_params['batch_size']
perform_shuffle = self.model_params['perform_shuffle']
bucket_width = self.model_params['bucket_width']
num_buckets = self.model_params['num_buckets']
input_pipeline = ALInputPipeline(
train_data, validation_data, test_data, batch_size, perform_shuffle,
bucket_width, num_buckets)
input_pipeline.build_pipeline()
return input_pipeline
def get_index(self, train_labels, label, size):
# Initialize variable with a single 0
label_indexes = np.zeros(shape=(1), dtype=np.int64)
for index, review_label in enumerate(train_labels):
if review_label == label:
label_indexes = np.append(label_indexes, np.array([index], dtype=np.int64))
# Remove initialization variable
label_indexes = label_indexes[1:]
np.random.shuffle(label_indexes)
return label_indexes[:size]
def create_initial_dataset(self):
train_file = self.active_learning_params['train_file']
test_file = self.active_learning_params['test_file']
train_initial_size = self.active_learning_params['train_initial_size']
train_data = load(train_file)
test_data = load(test_file)
random.shuffle(train_data)
data_ids, data_labels, data_sizes = [], [], []
test_ids, test_labels, test_sizes = [], [], []
for word_ids, label, size in train_data:
data_ids.append(word_ids)
data_labels.append(label)
data_sizes.append(size)
for word_ids, label, size in test_data:
test_ids.append(word_ids)
test_labels.append(label)
test_sizes.append(size)
train_ids = np.array(data_ids[:train_initial_size])
train_labels = np.array(data_labels[:train_initial_size])
train_sizes = np.array(data_sizes[:train_initial_size])
unlabeled_ids = np.array(data_ids[train_initial_size:])
unlabeled_labels = np.array(data_labels[train_initial_size:])
unlabeled_sizes = np.array(data_sizes[train_initial_size:])
size = int(train_initial_size / 2)
negative_samples = self.get_index(train_labels, 0, size)
positive_samples = self.get_index(train_labels, 1, size)
train_indexes = np.concatenate([negative_samples, positive_samples])
np.random.shuffle(train_indexes)
labeled_dataset = (train_ids[train_indexes], train_labels[train_indexes],
train_sizes[train_indexes])
unlabeled_dataset = (unlabeled_ids, unlabeled_labels, unlabeled_sizes)
test_dataset = (test_ids, test_labels, test_sizes)
return labeled_dataset, unlabeled_dataset, test_dataset
def unlabeled_uncertainty(self, uncertainty_metric, pool_ids, pool_sizes,
num_classes, num_samples=10):
MonteCarlo = get_monte_carlo_metric(uncertainty_metric)
monte_carlo_evaluation = MonteCarlo(
sess=self.sess,
model=self.recurrent_model,
data_batch=pool_ids,
sizes_batch=pool_sizes,
labels_batch=None,
num_classes=num_classes,
num_samples=num_samples,
max_len=self.active_learning_params['max_len'],
verbose=self.verbose)
print('Getting prediction samples ...')
variation_ratios = monte_carlo_evaluation.evaluate()
return variation_ratios
def select_samples(self):
sample_size = self.active_learning_params['sample_size']
if sample_size >= self.unlabeled_dataset_id.shape[0]:
sample_size = self.unlabeled_dataset_id.shape[0] - 1
pool_indexes = np.array(
random.sample(range(0, self.unlabeled_dataset_id.shape[0]), sample_size)
)
pool_ids = self.unlabeled_dataset_id[pool_indexes]
pool_labels = self.unlabeled_dataset_labels[pool_indexes]
pool_sizes = self.unlabeled_dataset_sizes[pool_indexes]
return (pool_ids, pool_labels, pool_sizes, pool_indexes)
def select_new_examples(self, pool_ids, pool_labels, pool_sizes):
num_passes = self.active_learning_params['num_passes']
num_queries = self.active_learning_params['num_queries']
uncertainty_metric = self.active_learning_params['uncertainty_metric']
num_classes = self.model_params['num_classes']
unlabeled_uncertainty = self.unlabeled_uncertainty(
uncertainty_metric, pool_ids, pool_sizes, num_classes, num_passes)
new_samples = unlabeled_uncertainty.argsort()[-num_queries:][::-1]
np.random.shuffle(new_samples)
pooled_id = pool_ids[new_samples]
pooled_labels = pool_labels[new_samples]
pooled_sizes = pool_sizes[new_samples]
return pooled_id, pooled_labels, pooled_sizes, new_samples
def new_labeled_dataset(self, pooled_id, pooled_labels, pooled_sizes):
labeled_id = self.labeled_dataset[0]
labeled_labels = self.labeled_dataset[1]
labeled_sizes = self.labeled_dataset[2]
labeled_id = np.concatenate([labeled_id, pooled_id], axis=0)
labeled_labels = np.concatenate([labeled_labels, pooled_labels], axis=0)
labeled_sizes = np.concatenate([labeled_sizes, pooled_sizes], axis=0)
return labeled_id, labeled_labels, labeled_sizes
def remove_data_from_dataset(self, ids, labels, sizes, data_index):
deleted_ids = np.delete(ids, (data_index), axis=0)
deleted_labels = np.delete(labels, (data_index), axis=0)
deleted_sizes = np.delete(sizes, (data_index), axis=0)
return deleted_ids, deleted_labels, deleted_sizes
def update_unlabeled_dataset(self, delete_id, delete_id_sample, delete_labels,
delete_labels_sample, delete_sizes, delete_sizes_sample):
self.unlabeled_dataset_id = np.concatenate([delete_id, delete_id_sample], axis=0)
self.unlabeled_dataset_labels = np.concatenate([delete_labels, delete_labels_sample],
axis=0)
self.unlabeled_dataset_sizes = np.concatenate([delete_sizes, delete_sizes_sample], axis=0)
def clear_train_dataset(self):
return None
def update_labeled_dataset(self, pool_ids, pool_labels, pool_sizes):
sample_id, sample_labels, sample_sizes, sample_index = self.select_new_examples(
pool_ids, pool_labels, pool_sizes)
labeled_id, labeled_labels, labeled_sizes = self.new_labeled_dataset(
sample_id, sample_labels, sample_sizes)
self.labeled_dataset = (labeled_id, labeled_labels, labeled_sizes)
return sample_index
def set_random_seeds(self):
metric = self.active_learning_params['uncertainty_metric']
if metric == 'variation_ratio':
random.seed(9011)
elif metric == 'entropy':
random.seed(2001)
elif metric == 'bald':
random.seed(5001)
elif metric == 'random':
random.seed(9001)
elif metric == 'softmax':
return random.seed(7001)
elif metric == 'ceal':
return random.seed(6001)
def manage_graph(self):
self.reset_graph()
def run_cycle(self):
self.set_random_seeds()
(self.labeled_dataset, unlabeled_dataset,
test_dataset) = self.create_initial_dataset()
self.unlabeled_dataset_id = unlabeled_dataset[0]
self.unlabeled_dataset_labels = unlabeled_dataset[1]
self.unlabeled_dataset_sizes = unlabeled_dataset[2]
test_accuracies, train_data_sizes = [], []
self.model_params['num_validation'] = self.active_learning_params['sample_size']
self.model_params['test_data'] = test_dataset
for i in range(self.active_learning_params['num_rounds']):
print('Starting round {}'.format(i))
pool_ids, pool_labels, pool_sizes, pool_indexes = self.select_samples()
pool_dataset = (pool_ids, pool_labels, pool_sizes)
print('Train data size: {}'.format(len(self.labeled_dataset[0])))
self.model_params['train_data'] = self.labeled_dataset
self.model_params['validation_data'] = pool_dataset
_, _, _, test_accuracy = self.run_model()
test_accuracies.append(test_accuracy)
self.clear_train_dataset()
train_data_sizes.append(len(self.labeled_dataset[0]))
sample_index = self.update_labeled_dataset(pool_ids, pool_labels, pool_sizes)
self.manage_graph()
(delete_id_sample, delete_labels_sample,
delete_sizes_sample) = self.remove_data_from_dataset(
pool_ids, pool_labels, pool_sizes, sample_index)
delete_id, delete_labels, delete_sizes = self.remove_data_from_dataset(
self.unlabeled_dataset_id, self.unlabeled_dataset_labels,
self.unlabeled_dataset_sizes, pool_indexes)
self.unlabeled_dataset_id = | np.concatenate([delete_id, delete_id_sample], axis=0) | numpy.concatenate |
import os
import sys
import socket
import numpy as np
import h5py
import scipy
from scipy.io import loadmat
sys.path.append('./latent_3d_points_py3/')
from latent_3d_points_py3.src import in_out
from latent_3d_points_py3.src.general_utils import plot_3d_point_cloud
from functools import partial
import tqdm
import tensorflow as tf
import tensorflow.math as tm
import multiprocessing
import torch
# from numpy import pi, cos, sin, arccos, arange
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
# Download dataset for point cloud classification
DATA_DIR = os.path.join(BASE_DIR, 'data')
if socket.gethostname == 'tianxing-GS73-7RE':
SHAPENET_DIR = '/media/tianxing/Data/datasets/shape_net_core_uniform_samples_2048/'
else:
SHAPENET_DIR = './data/shape_net_core_uniform_samples_2048/'
scratch_shapenet_dir = '/scratch/shape_net_core_uniform_samples_2048'
if os.path.exists(scratch_shapenet_dir):
SHAPENET_DIR = scratch_shapenet_dir
print(f'Loading shapenet from {SHAPENET_DIR}')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
def get_shapenet_data():
labels_lst = list(in_out.snc_category_to_synth_id().keys())
data = []
labels = []
for label in tqdm.tqdm(labels_lst, desc='loading data'):
syn_id = in_out.snc_category_to_synth_id()[label]
class_dir = os.path.join(SHAPENET_DIR , syn_id)
pc = in_out.load_all_point_clouds_under_folder(class_dir, n_threads=8, file_ending='*.ply', verbose=False)
cur_data, _, _ = pc.full_epoch_data(shuffle=False)
data.append(cur_data)
labels.append([labels_lst.index(label)] * cur_data.shape[0])
current_data = np.concatenate(data, axis=0)
current_label = np.concatenate(labels, axis=0)
print(current_data.shape)
print(current_label.shape)
current_data, current_label, _ = shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
return current_data, current_label
def shuffle_data(data, labels):
""" Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices
"""
idx = np.arange(len(labels))
np.random.shuffle(idx)
return data[idx, ...], labels[idx], idx
def rotate_point_cloud(batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
Bx1 array, rotated angle for all point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
angles = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
angles[k, ...] = rotation_angle
return rotated_data, angles
def rotate_tensor_point_cloud(point_cloud):
""" Randomly rotate one tensor point cloud
Nx3 tensor, original point cloud
Return:
Nx3 tensor, rotated point clouds
"""
random_angles = np.random.uniform(size = 3) * 2 * np.pi
angle_x, angle_y, angle_z = random_angles[0], random_angles[1], random_angles[2]
rotated_tensor = rotate_tensor_by_angle_xyz(point_cloud, angle_x, angle_y, angle_z)
return rotated_tensor
def rotate_point_cloud_by_angle(batch_data, rotation_angle):
""" Rotate the point cloud along up direction with certain angle.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
#rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def rotate_point_cloud_by_angle_list(batch_data, rotation_angles):
""" Rotate the point cloud along up direction with certain angle list.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
#rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angles[k])
sinval = np.sin(rotation_angles[k])
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def rotate_point_cloud_by_angle_xyz(batch_data, angle_x=0, angle_y=0, angle_z=0):
""" Rotate the point cloud along up direction with certain angle.
Rotate in the order of x, y and then z.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = batch_data.reshape((-1, 3))
cosval = np.cos(angle_x)
sinval = np.sin(angle_x)
rotation_matrix = np.array([[1, 0, 0],
[0, cosval, -sinval],
[0, sinval, cosval]])
rotated_data = np.dot(rotated_data, rotation_matrix)
cosval = np.cos(angle_y)
sinval = np.sin(angle_y)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
rotated_data = np.dot(rotated_data, rotation_matrix)
cosval = np.cos(angle_z)
sinval = np.sin(angle_z)
rotation_matrix = np.array([[cosval, -sinval, 0],
[sinval, cosval, 0],
[0, 0, 1]])
rotated_data = np.dot(rotated_data, rotation_matrix)
return rotated_data.reshape(batch_data.shape)
def rotate_point_cloud_by_angle_xyz_cuda(batch_data, angle_x=0, angle_y=0, angle_z=0):
""" Same interface as rotate_point_cloud_by_angle_xyz, but use gpu to compute
"""
rotated_data = torch.Tensor(batch_data).cuda()
rotated_data = rotated_data.view((-1, 3))
cosval = np.cos(angle_x)
sinval = np.sin(angle_x)
rotation_matrix = torch.Tensor([[1, 0, 0],
[0, cosval, -sinval],
[0, sinval, cosval]])
rotation_matrix = rotation_matrix.cuda()
rotated_data = torch.mm(rotated_data, rotation_matrix)
cosval = np.cos(angle_y)
sinval = np.sin(angle_y)
rotation_matrix = torch.Tensor([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
rotation_matrix = rotation_matrix.cuda()
rotated_data = torch.mm(rotated_data, rotation_matrix)
cosval = np.cos(angle_z)
sinval = np.sin(angle_z)
rotation_matrix = torch.Tensor([[cosval, -sinval, 0],
[sinval, cosval, 0],
[0, 0, 1]])
rotation_matrix = rotation_matrix.cuda()
rotated_data = torch.mm(rotated_data, rotation_matrix)
rotated_data = rotated_data.view(batch_data.shape)
return rotated_data.cpu().numpy()
def rotate_point_cloud_by_axis_angle(batch_data, u, theta):
""" Rotate the point cloud around the axis u by angle theta
u is a list of tuples, B * (x,y,z), consisting of unit vectors of the axis
theta is a list of angles, B length array, representing the angle
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
u = np.squeeze(u)
theta = np.squeeze(theta)
eps = 1e-6
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
x, y, z = u[k]
assert 1-eps < x*x+y*y+z*z < 1+eps
cosval = np.cos(theta[k])
sinval = np.sin(theta[k])
rotation_matrix = np.array([[cosval + x*x*(1-cosval), x*y*(1-cosval) - z*sinval, x*z*(1-cosval) + y*sinval],
[y*x*(1-cosval) + z*sinval, cosval + y*y*(1-cosval), y*z*(1-cosval) - x*sinval],
[z*x*(1-cosval) - y*sinval, z*y*(1-cosval) + x*sinval, cosval + z*z*(1-cosval)]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def tflt(value):
return tf.constant(value, dtype=tf.float32)
def rotate_tensor_by_angle_xyz(input_data, graph, angle_x=0, angle_y=0, angle_z=0):
""" Rotate the point cloud along up direction with certain angle.
Rotate in the order of x, y and then z.
Input:
input_data: Nx3 tensor, original batch of point clouds
angle_x: tf constant
angle_y: tf constant
angle_z: tf constant
Return:
Nx3 tensor, rotated batch of point clouds
"""
with graph.as_default():
# print('angle_x', angle_x)
if angle_x == 0:
angle_x = tflt(0)
if angle_y == 0:
angle_y = tflt(0)
if angle_z == 0:
angle_z = tflt(0)
input_data = tf.cast(input_data, tf.float32)
rotation_matrix1 = tf.stack([1, 0, 0,
0, tm.cos(angle_x), -tm.sin(angle_x),
0, tm.sin(angle_x), tm.cos(angle_x)])
rotation_matrix1 = tf.reshape(rotation_matrix1, (3,3))
rotation_matrix1 = tf.cast(rotation_matrix1, tf.float32)
shape_pc = tf.matmul(input_data, rotation_matrix1)
rotation_matrix2 = tf.stack([tm.cos(angle_y), 0, tm.sin(angle_y),
0, 1, 0,
-tm.sin(angle_y), 0, tm.cos(angle_y)])
rotation_matrix2 = tf.reshape(rotation_matrix2, (3,3))
rotation_matrix2 = tf.cast(rotation_matrix2, tf.float32)
shape_pc = tf.matmul(shape_pc, rotation_matrix2)
rotation_matrix3 = tf.stack([tm.cos(angle_z), -tm.sin(angle_z), 0,
tm.sin(angle_z), tm.cos(angle_z), 0,
0, 0, 1])
rotation_matrix3 = tf.reshape(rotation_matrix3, (3,3))
rotation_matrix3 = tf.cast(rotation_matrix3, tf.float32)
shape_pc = tf.matmul(shape_pc, rotation_matrix3)
return shape_pc
def rotate_tensor_by_batch(batch_data, label):
batch_size = batch_data.get_shape().as_list()[0]
phi, theta = get_sunflower_angle(batch_size, label)
rotate_fun = partial(rotate_tensor_by_angle_xyz, angle_x=theta, angle_z=phi)
rotated_data = tf.map_fn(rotate_fun, batch_data)
return rotated_data
def get_sunflower_angle(num_points, label):
pts = sunflower_distri(num_points)
pt = pts[label]
phi = compute_angle([pt[0],pt[1],0],[1,0,0])
theta = compute_angle(pt,[0,0,1])
return phi, theta
def nested_tf_cond(conditions, callables):
cond, to_call = conditions[0], callables[0]
if len(conditions) == 1:
return tf.cond(cond, lambda: to_call, lambda: to_call)
else:
return tf.cond(cond, lambda: to_call, lambda: nested_tf_cond(conditions[1:], callables[1:]))
def rotate_tensor_by_label(batch_data, label, graph):
""" Rotate a batch of points by [label] to 6 or 18 possible angles
[label] is a tensor
Input:
BxNx3 array
Return:
BxNx3 array
"""
with graph.as_default():
batch_size = batch_data.get_shape().as_list()[0]
rotated_data = [None] * batch_size
splits = tf.split(batch_data, batch_size, 0)
label = tf.dtypes.cast(label, dtype=tf.float32)
label = tf.split(label, batch_size, 0)
label = [tf.squeeze(l) for l in label]
for k in range(batch_size):
shape_pc = splits[k]
l = label[k]
cond0 = tm.equal(tflt(0), l)
cond1 = tm.logical_and(tm.less_equal(tflt(1), l), tm.less_equal(l, tflt(3)))
cond2 = tm.logical_and(tm.less_equal(tflt(4), l), tm.less_equal(l, tflt(5)))
cond3 = tm.logical_and(tm.less_equal(tflt(6), l), tm.less_equal(l, tflt(9)))
cond4 = tm.logical_and(tm.less_equal(tflt(10), l), tm.less_equal(l, tflt(13)))
cond5 = tm.logical_and(tm.less_equal(tflt(14), l), tm.less_equal(l, tflt(17)))
call0= rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=0)
call1= rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=(l)*np.pi/4)
call2 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_z=(l*2-7)*np.pi/2)
call3 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=(l*2-11)*np.pi/4)
call4 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_z=(l*2-19)*np.pi/4)
call5 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi/2, angle_z=(l*2-27)*np.pi/4)
conditions = [cond0, cond1, cond2, cond3, cond4, cond5]
callables = [call0, call1, call2, call3, call4, call5]
shape_pc = nested_tf_cond(conditions, callables)
rotated_data[k] = shape_pc
rotated_data = tf.squeeze(tf.stack(rotated_data, axis=0))
return rotated_data
def rotate_point_by_label(batch_data, label):
""" Rotate a batch of points by the label
Input:
BxNx3 array
Return:
BxNx3 array
"""
rotate_func = rotate_point_cloud_by_angle_xyz
batch_size = batch_data.shape[0]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_size):
shape_pc = batch_data[k, ...]
l = label[k]
if l==0:
pass
elif 1<=l<=3:
shape_pc = rotate_func(shape_pc, angle_x=l*np.pi/2)
elif 4<=l<=5:
shape_pc = rotate_func(shape_pc, angle_z=(l*2-7)*np.pi/2)
elif 6<=l<=9:
shape_pc = rotate_func(shape_pc, angle_x=(l*2-11)*np.pi/4)
elif 10<=l<=13:
shape_pc = rotate_func(shape_pc, angle_z=(l*2-19)*np.pi/4)
else: #l == 14 ~ 17
shape_pc = rotate_func(shape_pc, angle_x=np.pi/2, angle_z=(l*2-27)*np.pi/4)
rotated_data[k, ...] = shape_pc
return rotated_data
def rotate_tensor_by_label_32(batch_data, label, graph):
""" Rotate a batch of points by the label
32 possible directions:
vertices of a regular icosahedron
vertices of a regular dodecahedron
Input:
BxNx3 array
Return:
BxNx3 array
"""
with graph.as_default():
batch_size = batch_data.get_shape().as_list()[0]
rotated_data = [None] * batch_size
splits = tf.split(batch_data, batch_size, 0)
label = tf.dtypes.cast(label, dtype=tf.float32)
label = tf.split(label, batch_size, 0)
label = [tf.squeeze(l) for l in label]
for k in range(batch_size):
shape_pc = splits[k]
l = label[k]
cond0 = tm.equal(tflt(0), l)
cond1 = tm.logical_and(tm.less_equal(tflt(1), l), tm.less_equal(l, tflt(5)))
cond2 = tm.logical_and(tm.less_equal(tflt(6), l), tm.less_equal(l, tflt(10)))
cond3 = tm.logical_and(tm.less_equal(tflt(11), l), tm.less_equal(l, tflt(20)))
cond4 = tm.logical_and(tm.less_equal(tflt(21), l), tm.less_equal(l, tflt(25)))
cond5 = tm.logical_and(tm.less_equal(tflt(26), l), tm.less_equal(l, tflt(30)))
cond6 = tm.equal(tflt(31), l)
call0= rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=0)
call1= rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=0.646, angle_y=(l-1)*np.pi/2.5)
call2 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=1.108, angle_y=(l*2-11)*np.pi/5)
call3 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi/2, angle_y=(l-11)*np.pi/5)
call4 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=2.033, angle_y=(l*2-11)*np.pi/5)
call5 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=2.496, angle_y=(l-26)*np.pi/2.5)
call6 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi)
conditions = [cond0, cond1, cond2, cond3, cond4, cond5, cond6]
callables = [call0, call1, call2, call3, call4, call5, call6]
shape_pc = nested_tf_cond(conditions, callables)
rotated_data[k] = shape_pc
rotated_data = tf.squeeze(tf.stack(rotated_data, axis=0))
return rotated_data
def rotate_point_by_label_32(batch_data, label, use_tensor=False):
""" Rotate a batch of points by the label
32 possible directions:
vertices of a regular icosahedron
vertices of a regular dodecahedron
Input:
BxNx3 array
Return:
BxNx3 array
"""
if use_tensor:
rotate_func = rotate_tensor_by_angle_xyz
batch_size = batch_data.get_shape().as_list()[0]
rotated_data = [None] * batch_size
splits = tf.split(batch_data, batch_size, 0)
else:
rotate_func = rotate_point_cloud_by_angle_xyz
batch_size = batch_data.shape[0]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_size):
shape_pc = splits[k] if use_tensor else batch_data[k, ...]
l = label[k]
if l==0:
pass # not rotate, upright
elif 0 < l <= 5:
# 1 - 5 is the upper layer
# rotate down 37 degree, then 72 degree along gravity axis
shape_pc = rotate_func(shape_pc, angle_x=0.646, angle_y=(l-1)*np.pi/2.5)
elif 6 <= l <= 10:
# 6 - 10 is the second layer
# rotate down 63.5 degree, then 72 degree along gravity axis
shape_pc = rotate_func(shape_pc, angle_x=1.108, angle_y=(l*2-11)*np.pi/5)
elif 11 <= l <= 20:
# 11 - 20 is the horizontal layer
# rotate down 90 degree, then 36 degree along gravity axis
shape_pc = rotate_func(shape_pc, angle_x=np.pi/2, angle_y=(l-11)*np.pi/5)
elif 21 <= l <= 25:
# 21 - 25 is symmetrical to 6 - 10
# rotate down 180 - 63.5 degree, then 72 degree along gravity axis
shape_pc = rotate_func(shape_pc, angle_x=2.033, angle_y=(l*2-11)*np.pi/5)
elif 26 <= l <= 30:
# 26 - 30 is symmetrical to 1 - 5
# rotate down 180 - 37 degree, then 72 degree along gravity axis
shape_pc = rotate_func(shape_pc, angle_x=2.496, angle_y=(l-26)*np.pi/2.5)
else:
# downwards
shape_pc = rotate_func(shape_pc, angle_x=np.pi)
if use_tensor:
rotated_data[k] = shape_pc
else:
rotated_data[k, ...] = shape_pc
if use_tensor:
rotated_data = tf.squeeze(tf.stack(rotated_data, axis=0))
return rotated_data
def rotate_tensor_by_label_54(batch_data, label, graph):
""" Rotate a batch of points by the label
54 possible directions:
vertices of a regular icosahedron
vertices of a regular dodecahedron
Input:
BxNx3 array
Return:
BxNx3 array
"""
with graph.as_default():
batch_size = batch_data.get_shape().as_list()[0]
rotated_data = [None] * batch_size
splits = tf.split(batch_data, batch_size, 0)
label = tf.dtypes.cast(label, dtype=tf.float32)
label = tf.split(label, batch_size, 0)
label = [tf.squeeze(l) for l in label]
for k in range(batch_size):
shape_pc = splits[k]
l = label[k]
cond0 = tm.logical_or(tm.equal(tflt(0), l), tm.equal(tflt(1), l))
cond1 = tm.logical_and(tm.logical_and(tm.less_equal(tflt(2), l), tm.less_equal(l, tflt(15))), tm.equal(tflt(0), tm.mod(l, tflt(2))))
cond2 = tm.logical_and(tm.logical_and(tm.less_equal(tflt(2), l), tm.less_equal(l, tflt(15))), tm.equal(tflt(1), tm.mod(l, tflt(2))))
cond3 = tm.logical_and(tm.logical_and(tm.less_equal(tflt(16), l), tm.less_equal(l, tflt(39))), tm.equal(tflt(0), tm.mod(l, tflt(2))))
cond4 = tm.logical_and(tm.logical_and(tm.less_equal(tflt(16), l), tm.less_equal(l, tflt(39))), tm.equal(tflt(1), tm.mod(l, tflt(2))))
cond5 = tm.logical_and(tm.less_equal(tflt(40), l), tm.less_equal(l, tflt(53)))
call0= rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi*l)
call1= rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi/6, angle_z=2*(l-2)*np.pi/7)
call2 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=5*np.pi/6, angle_z=2*(l-2)*np.pi/7)
call3 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi/3, angle_z=2*(l-16)*np.pi/12)
call4 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=2*np.pi/3, angle_z=2*(l-16)*np.pi/12)
call5 = rotate_tensor_by_angle_xyz(shape_pc, graph, angle_x=np.pi/2, angle_z=2*(l-40)*np.pi/14)
conditions = [cond0, cond1, cond2, cond3, cond4, cond5]
callables = [call0, call1, call2, call3, call4, call5]
shape_pc = nested_tf_cond(shape_pc, conditions, callables)
rotated_data[k] = shape_pc
rotated_data = tf.squeeze(tf.stack(rotated_data, axis=0))
return rotated_data
def rotate_point_by_label_54(batch_data, label, use_tensor=False):
""" Rotate a batch of points by the label
54 possible directions:
2 points at poles
14 points at 30 degrees from the z-axis (7 points on each hemisphere)
24 points at 60 degrees from the z-axis (12 points on each hemisphere)
14 points on the equator
Input:
BxNx3 array
Return:
BxNx3 array
"""
if use_tensor: #only rotate one tensor
rotate_func = rotate_tensor_by_angle_xyz
batch_size = batch_data.get_shape().as_list()[0]
rotated_data = [None] * batch_size
splits = tf.split(batch_data, batch_size, 0)
else:
rotate_func = rotate_point_cloud_by_angle_xyz
batch_size = batch_data.shape[0]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_size):
shape_pc = splits[k] if use_tensor else batch_data[k, ...]
l = label[k] # l = 0, ..., 53
if l==0 or l==1:
shape_pc = rotate_func(shape_pc, angle_x=np.pi*l)
elif 2<=l<=15:
shape_pc = rotate_func(shape_pc, angle_z=2*(l-2)*np.pi/7)
if l%2==0:
shape_pc = rotate_func(shape_pc, angle_x=np.pi/6)
else:
shape_pc = rotate_func(shape_pc, angle_x=5*np.pi/6)
elif 16<=l<=39:
shape_pc = rotate_func(shape_pc, angle_z=2*(l-16)*np.pi/12)
if l%2==0:
shape_pc = rotate_func(shape_pc, angle_x=np.pi/3)
else:
shape_pc = rotate_func(shape_pc, angle_x=2*np.pi/3)
else:
shape_pc = rotate_func(shape_pc, angle_x=np.pi/2, angle_z=2*(l-40)*np.pi/14)
if use_tensor:
rotated_data[k] = shape_pc
else:
rotated_data[k, ...] = shape_pc
if use_tensor:
rotated_data = tf.squeeze(tf.stack(rotated_data, axis=0))
return rotated_data
def rotate_point_by_label_n(batch_data, label, graph, n, use_tensor=False, distri='sunflower'):
""" Rotate a batch of points by the label
n possible directions:
n points forms a sunflower spiral distribution
with golden ratio (1 + sqrt(5))/2
Input:
BxNx3 array
Return:
BxNx3 array
"""
if use_tensor: #only rotate one tensor
rotate_func = rotate_tensor_by_angle_xyz
batch_size = batch_data.get_shape().as_list()[0]
rotated_data = [None] * batch_size
splits = tf.split(batch_data, batch_size, 0)
# label = tf.dtypes.cast(label, dtype=tf.float32)
# label = tf.split(label, batch_size, 0)
# label = [tf.squeeze(l) for l in label]
label = np.random.randint(0, n, size=batch_size)
else:
rotate_func = rotate_point_cloud_by_angle_xyz
batch_size = batch_data.shape[0]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
if distri == 'sunflower':
pts = sunflower_distri(n)
elif distri == 'normal':
pts = normal_distri(n)
np.random.shuffle(pts)
for k in range(batch_data.shape[0]):
shape_pc = splits[k] if use_tensor else batch_data[k, ...]
l = label[k] # l = 0, ..., n-1
pt = pts[l]
phi = compute_angle([pt[0],pt[1],0],[1,0,0])
theta = compute_angle(pt,[0,0,1])
if use_tensor:
shape_pc = rotate_func(shape_pc, graph, angle_x=theta, angle_z=phi)
rotated_data[k] = shape_pc
else:
shape_pc = rotate_func(shape_pc, angle_x=theta, angle_z=phi)
rotated_data[k, ...] = shape_pc
if use_tensor:
rotated_data = tf.squeeze(tf.stack(rotated_data, axis=0))
return rotated_data
def compute_angle(pt1, pt2):
""" Compute the angle between pt1 and pt2 with respect to the origin
Input:
pt1: 1x3 list
pt2: 1x3 list
"""
a=np.array(pt1)
c=np.array(pt2)
b = np.array([0, 0, 0])
ba = a - b
bc = c - b
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
angle = np.arccos(cosine_angle)
return angle
def compute_angle_tensor(pts1, pts2):
""" Compute the angle between pt1 and pt2 with respect to the origin
Input:
pts1: batch_size x 1 x 3 tensor
pts2: batch_size x 1 x 3 tensor
"""
b = tf.constant([0.,0.,0.])
angle_diff = []
for pt1, pt2 in zip(pts1, pts2):
ba = tf.subtract(pt1, b)
bc = tf.subtract(pt2, b)
cosine_angle = tm.divide(tf.tensordot(ba, bc, 1), tm.multiply(tf.norm(ba), tf.norm(bc)))
angle = tm.acos(cosine_angle)
angle_diff.append(tf.cast(angle, tf.float32))
return tf.stack(angle_diff, axis=0)
def sunflower_distri(num_pts):
""" Compute [num_pts] of points that conforms a sunflower distribution
with golden ratio (1 + sqrt(5))/2
Input:
num_pts: number of points, int
"""
indices = np.arange(0, num_pts, dtype=float) + 0.5
phi = np.arccos(1 - 2*indices/num_pts)
theta = np.pi * (1 + 5**0.5) * indices
x, y, z = np.cos(theta) * np.sin(phi), np.sin(theta) * np.sin(phi), np.cos(phi)
pts=np.concatenate((np.expand_dims(x, axis=1), np.expand_dims(y, axis=1), np.expand_dims(z, axis=1)), axis=1)
return pts
def normal_distri(num_pts):
""" Compute [num_pts] of points following https://stats.stackexchange.com/users/919/whuber
with x, y, z conforming to normal distributions
Input:
num_pts: number of points, int
"""
pts = np.random.normal(size = (num_pts, 3))
pts_normed = sklearn.preprocessing.normalize(pts, axis=1, norm='l2')
return pts_normed
def re(x, y, z):
return tf.stack([x,y,z], axis=0)
def map_label_to_angle_18(label):
"""
return a list of tensors, each is the rotation angle corresponding to label [l]
"""
batch_size = label.shape[0]
label = tf.dtypes.cast(label, dtype=tf.float32)
label = tf.split(label, batch_size, 0)
label = [tf.squeeze(l) for l in label]
angles = []
for l in label:
cond0 = tm.equal(tflt(0), l)
cond1 = tm.logical_and(tm.less_equal(tflt(1), l), tm.less_equal(l, tflt(3)))
cond2 = tm.logical_and(tm.less_equal(tflt(4), l), tm.less_equal(l, tflt(5)))
cond3 = tm.logical_and(tm.less_equal(tflt(6), l), tm.less_equal(l, tflt(9)))
cond4 = tm.logical_and(tm.less_equal(tflt(10), l), tm.less_equal(l, tflt(13)))
cond5 = tm.logical_and(tm.less_equal(tflt(14), l), tm.less_equal(l, tflt(17)))
call0= re(0., 0., 0.)
call1= re(l*np.pi/2, 0, 0)
call2 = re(0, 0, (l*2-7)*np.pi/2)
call3 = re((l*2-11)*np.pi/4, 0, 0)
call4 = re(0, 0, (l*2-19)*np.pi/4)
call5 = re(np.pi/2, 0, (l*2-27)*np.pi/4)
conditions = [cond0, cond1, cond2, cond3, cond4, cond5]
callables = [call0, call1, call2, call3, call4, call5]
angle = nested_tf_cond(conditions, callables)
angles.append(angle)
return angles
def map_label_to_angle_32(label):
"""
return a list of tensors, each is the rotation angle corresponding to label [l]
"""
batch_size = label.shape[0]
label = tf.dtypes.cast(label, dtype=tf.float32)
label = tf.split(label, batch_size, 0)
label = [tf.squeeze(l) for l in label]
angles = []
for l in label:
cond0 = tm.equal(tflt(0), l)
cond1 = tm.logical_and(tm.less_equal(tflt(1), l), tm.less_equal(l, tflt(5)))
cond2 = tm.logical_and(tm.less_equal(tflt(6), l), tm.less_equal(l, tflt(10)))
cond3 = tm.logical_and(tm.less_equal(tflt(11), l), tm.less_equal(l, tflt(20)))
cond4 = tm.logical_and(tm.less_equal(tflt(21), l), tm.less_equal(l, tflt(25)))
cond5 = tm.logical_and(tm.less_equal(tflt(26), l), tm.less_equal(l, tflt(30)))
cond6 = tm.equal(tflt(31), l)
call0= re(0., 0., 0.)
call1= re(0.646, (l-1)*np.pi/2.5, 0)
call2 = re(1.108, (l*2-11)*np.pi/5, 0)
call3 = re(np.pi/2, (l-11)*np.pi/5, 0)
call4 = re(2.033, (l*2-11)*np.pi/5, 0)
call5 = re(2.496, (l-26)*np.pi/2.5, 0)
call6 = re(np.pi, 0, 0)
conditions = [cond0, cond1, cond2, cond3, cond4, cond5, cond6]
callables = [call0, call1, call2, call3, call4, call5, call6]
angle = nested_tf_cond(conditions, callables)
angles.append(angle)
return angles
def get_rotated_angle_diff(num_angles, label1, label2):
"""
get the angle between two rotation directions,
represented as label1 and label2
Input:
label1:[batch_size] tensor
label2:[batch_size] tensor
Return:
[batch_size] list of tensors
"""
label1 = tf.to_int64(label1)
label2 = tf.to_int64(label2)
if num_angles <= 18:
angles1 = map_label_to_angle_18(label1)
angles2 = map_label_to_angle_18(label2)
elif num_angles == 32:
angle1 = map_label_to_angle_32(label1)
angle2 = map_label_to_angle_32(label2)
else:
raise NotImplementedError
return compute_angle_tensor(angles1, angles2)
def _rotation_multiprocessing_worker(func, batch_data, label, return_dict, idx, *args):
result = func(batch_data, label, *args)
return_dict[idx] = result
def rotation_multiprocessing_wrapper(func, batch_data, label, *args, num_workers=8):
"""
A wrapper for doing rotation using multiprocessing
Input:
func: a function for rotating on batch data, e.g. rotate_point_by_label
batch_data: B*N*3 numpy array
label: B length numpy array
Returns:
B*N*3 numpy array
"""
batch_size = batch_data.shape[0] // num_workers
manager = multiprocessing.Manager()
return_dict = manager.dict()
jobs = []
for i in range(num_workers):
start_idx = i * batch_size
end_idx = (i+1) * batch_size if i < num_workers - 1 else batch_data.shape[0]
# print(f"[INFO] batch {i}, start index {start_idx}, end index {end_idx}")
cur_data = batch_data[start_idx: end_idx]
cur_label = label[start_idx: end_idx]
p = multiprocessing.Process(target=_rotation_multiprocessing_worker,
args=(func, cur_data, cur_label, return_dict, i, *args))
p.start()
jobs.append(p)
for proc in jobs:
proc.join()
result = np.concatenate([return_dict[i] for i in range(num_workers)])
# print("[INFO] rotated dimension:", result.shape)
return result
def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
""" Randomly jitter points. jittering is per point.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, jittered batch of point clouds
"""
B, N, C = batch_data.shape
assert(clip > 0)
jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
jittered_data += batch_data
return jittered_data
def getDataFiles(list_filename):
return [line.rstrip() for line in open(list_filename)]
def load_h5(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
return (data, label)
def loadDataFile(filename):
return load_h5(filename)
def load_h5_data_label_seg(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
seg = f['pid'][:]
return (data, label, seg)
def loadDataFile_with_seg(filename):
return load_h5_data_label_seg(filename)
def load_mat_keypts(files, keypts_path, NUM_POINT):
keypts_dict = loadmat(keypts_path)
keypts = keypts_dict['keypts']
# print('\n')
# print(keypts[1])
# print('\n')
# print(keypts[2])
# print('\n')
# print(keypts[3])
names = [n[0][0] for n in keypts_dict['modelname']]
data = None
label = None
data = []
labels = []
for f in files:
x = loadmat(f)
pts = x['pts']
# pts = [pt[0][0:NUM_POINT, :] for pt in pts]
# pts = [pt[0] for pt in pts]
# pts = np.stack(pts, axis = 0)
model_names = [n[0][0] for n in x['modelList']]
indices = [names.index(n) for n in model_names]
keypts_labels = np.asarray([keypts[i] for i in indices])
for i in range(len(pts)):
pt = pts[i][0]
if pt.shape[0] < NUM_POINT:
continue # skip invalid object
keypt = keypts_labels[i]
t = sum([1 for ke in keypt if ke != []])
if t < 10:
continue # skip objects with fewer than 10 keypts
label = np.zeros(NUM_POINT-t)
label = np.concatenate((label, | np.ones(t) | numpy.ones |
import os
import numpy as np
import pandas as pd
import pytest
from skmultiflow.data.data_stream import DataStream
def test_data_stream(test_path, package_path):
test_file = os.path.join(package_path, 'src/skmultiflow/data/datasets/sea_stream.csv')
raw_data = pd.read_csv(test_file)
stream = DataStream(raw_data, name='Test')
assert not stream._Y_is_defined
stream.prepare_for_use()
assert stream.n_remaining_samples() == 40000
expected_names = ['attrib1', 'attrib2', 'attrib3']
assert stream.feature_names == expected_names
expected_targets = [0, 1]
assert stream.target_values == expected_targets
assert stream.target_names == ['class']
assert stream.n_features == 3
assert stream.n_cat_features == 0
assert stream.n_num_features == 3
assert stream.n_targets == 1
assert stream.get_data_info() == 'Test: 1 target(s), 2 classes'
assert stream.has_more_samples() is True
assert stream.is_restartable() is True
# Load test data corresponding to first 10 instances
test_file = os.path.join(test_path, 'sea_stream_file.npz')
data = np.load(test_file)
X_expected = data['X']
y_expected = data['y']
X, y = stream.next_sample()
assert np.alltrue(X[0] == X_expected[0])
assert np.alltrue(y[0] == y_expected[0])
X, y = stream.last_sample()
assert | np.alltrue(X[0] == X_expected[0]) | numpy.alltrue |
# Implementation of trustworthiness and continuity (T&C), a quality measure for NLDR embeddings.
# For more details on the measure, see <NAME>., & <NAME>. (2006).
# Local multidimensional scaling. Neural Networks, 19(6-7), 889-899.
# This implementation has been written by <NAME> (University of Namur).
import numpy as np
from scipy.spatial.distance import pdist, squareform
# This function computes the continuity for a particular K, as in Venna et al.'s paper
def compute_continuity(dataset, visu, projection_K, dataset_K, I_projection):
N = len(visu)
K = len(projection_K[0])
acc = 0
for i in range(0, N-1):
_, common_neighborhood, _ = np.intersect1d(dataset_K[i, :], projection_K[i, :], return_indices=True)
VK_i = np.delete(dataset_K[i, :], common_neighborhood)
for j in VK_i:
acc += np.where(I_projection[i, :] == j)[0][0] - K
return 1 - ((2/(N*K*((2*N)-(3*K)-1)))*acc)
# Compute T&C for all K in logarithmic scale, as performed by AUClogRNX,
# see <NAME>., <NAME>., & <NAME>. (2015).
# Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing, 169, 246-261.
def compute(dataset, visu):
N = len(visu)
D_dataset = squareform(pdist(dataset))
D_projection = squareform(pdist(visu))
numerator = 0.0
denominator = 0.0
I_dataset = | np.argsort(D_dataset, 1) | numpy.argsort |
"""
Created on 22. apr. 2015
@author: pab
References
----------
A METHODOLOGY FOR ROBUST OPTIMIZATION OF
LOW-THRUST TRAJECTORIES IN MULTI-BODY
ENVIRONMENTS
<NAME> (2010)
Phd thesis, Georgia Institute of Technology
USING MULTICOMPLEX VARIABLES FOR AUTOMATIC
COMPUTATION OF HIGH-ORDER DERIVATIVES
<NAME>, <NAME> , and <NAME>
ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 16,
April 2012, 21 pages,
<NAME>, <NAME>, <NAME>, <NAME> (2012)
CUBO A Mathematical Journal
Vol. 14, No 2, (61-80). June 2012.
Computation of higher-order derivatives using the multi-complex
step method
<NAME>, (2014)
Project report, NTNU
"""
from __future__ import division
import numpy as np
_TINY = np.finfo(float).machar.tiny
def c_atan2(x, y):
a, b = np.real(x), np.imag(x)
c, d = np.real(y), np.imag(y)
return np.arctan2(a, c) + 1j * (c * b - a * d) / (a**2 + c**2)
def c_max(x, y):
return np.where(x.real < y.real, y, x)
def c_min(x, y):
return np.where(x.real > y.real, y, x)
def c_abs(z):
return np.where(np.real(z) >= 0, z, -z)
class bicomplex(object):
"""
BICOMPLEX(z1, z2)
Creates an instance of a bicomplex object.
zeta = z1 + j*z2, where z1 and z2 are complex numbers.
"""
def __init__(self, z1, z2):
z1, z2 = np.broadcast_arrays(z1, z2)
self.z1 = | np.asanyarray(z1, dtype=np.complex128) | numpy.asanyarray |
import torch
import re
import numpy as np
import argparse
from scipy import io as sio
from tqdm import tqdm
# code adapted from https://github.com/bilylee/SiamFC-TensorFlow/blob/master/utils/train_utils.py
def convert(mat_path):
"""Get parameter from .mat file into parms(dict)"""
def squeeze(vars_):
# Matlab save some params with shape (*, 1)
# However, we don't need the trailing dimension in TensorFlow.
if isinstance(vars_, (list, tuple)):
return [np.squeeze(v, 1) for v in vars_]
else:
return np.squeeze(vars_, 1)
netparams = sio.loadmat(mat_path)["net"]["params"][0][0]
params = dict()
name_map = {(1, 'conv'): 0, (1, 'bn'): 1,
(2, 'conv'): 4, (2, 'bn'): 5,
(3, 'conv'): 8, (3, 'bn'): 9,
(4, 'conv'): 11, (4, 'bn'): 12,
(5, 'conv'): 14}
for i in tqdm(range(netparams.size)):
param = netparams[0][i]
name = param["name"][0]
value = param["value"]
value_size = param["value"].shape[0]
match = re.match(r"([a-z]+)([0-9]+)([a-z]+)", name, re.I)
if match:
items = match.groups()
elif name == 'adjust_f':
continue
elif name == 'adjust_b':
params['corr_bias'] = torch.from_numpy(squeeze(value))
continue
op, layer, types = items
layer = int(layer)
if layer in [1, 2, 3, 4, 5]:
idx = name_map[(layer, op)]
if op == 'conv': # convolution
if types == 'f':
params['features.{}.weight'.format(idx)] = torch.from_numpy(value.transpose(3, 2, 0, 1))
elif types == 'b':# and layer == 5:
value = squeeze(value)
params['features.{}.bias'.format(idx)] = torch.from_numpy(value)
elif op == 'bn': # batch normalization
if types == 'x':
m, v = squeeze( | np.split(value, 2, 1) | numpy.split |
from hcipy import *
import numpy as np
def check_energy_conservation(shift_input, scale, shift_output, q, fov, dims):
grid = make_uniform_grid(dims, 1).shifted(shift_input).scaled(scale)
f_in = Field(np.random.randn(grid.size), grid)
#f_in = Field(np.exp(-30 * grid.as_('polar').r**2), grid)
fft = FastFourierTransform(grid, q=q, fov=fov, shift=shift_output)
mft = MatrixFourierTransform(grid, fft.output_grid)
nft = NaiveFourierTransform(grid, fft.output_grid, True)
nft2 = NaiveFourierTransform(grid, fft.output_grid, False)
fourier_transforms = [fft, mft, nft, nft2]
energy_ratios = []
patterns_match = []
for ft1 in fourier_transforms:
for ft2 in fourier_transforms:
f_inter = ft1.forward(f_in)
f_out = ft2.backward(f_inter)
energy_in = np.sum(np.abs(f_in)**2 * f_in.grid.weights)
energy_out = np.sum(np.abs(f_out)**2 * f_out.grid.weights)
energy_ratio = energy_out / energy_in
pattern_match = np.abs(f_out - f_in).max() / f_in.max()
if fov == 1:
# If the full fov is retained, energy and pattern should be conserved
# for all fourier transform combinations.
assert np.allclose(f_in, f_out)
assert np.allclose(energy_in, energy_out)
energy_ratios.append(energy_ratio)
patterns_match.append(pattern_match)
energy_ratios = | np.array(energy_ratios) | numpy.array |
"""
Benchmark for prior learning
Compressed sensing
"""
import time
import numpy as np
import pandas as pd
import itertools
import signal
from pathlib import Path
from joblib import Memory
from scipy.optimize import linear_sum_assignment
from scipy.fftpack import dct
from plipy.ddl import DeepDictionaryLearning
from plipy.dpdpl import (DeepPrimalDualPriorLearningUN,
DeepPrimalDualPriorLearningUNTF)
mem = Memory(location='./tmp_inv_prob/', verbose=0)
##############
# Parameters #
##############
NUM_EXP = 1
###########
# Solvers #
###########
SOLVERS = {
"DDL": [DeepDictionaryLearning, "synthesis"],
"DPDPL_UN": [DeepPrimalDualPriorLearningUN, "analysis"],
"DPDPL_UNTF": [DeepPrimalDualPriorLearningUNTF, "analysis"]
}
###################
# Data generation #
###################
def find_signal_analysis(prior, sparsity, sigma_data):
"""
Generates a signal using an analytic prior.
Works only with square and overcomplete full-rank priors.
"""
N, L = prior.shape
k = np.sum(np.random.random(L) > (1 - sparsity))
V = np.zeros(shape=(L, L - k))
while np.linalg.matrix_rank(V) != L - k:
s = | np.random.permutation(N) | numpy.random.permutation |
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import os, sys
import subprocess
from scipy import stats
from scipy.cluster.hierarchy import distance, linkage, fcluster
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from utils import parallel_analysis, calculate_deg
# short functions ----------------------------------------
def in_ipython():
return 'TerminalIPythonApp' in get_ipython().config
def corr_inter(X, Y):
# X (n x p1), Y (n x p2)
X_normed = (X - X.mean(axis=0)) / X.std(axis=0, ddof=0)
Y_normed = (Y - Y.mean(axis=0)) / Y.std(axis=0, ddof=0)
return np.dot(X_normed.T, Y_normed) / X.shape[0]
def plot_gene(gene_name):
long_form_df = data_df.loc[gene_name].reset_index()
fig, ax = plt.subplots()
sns.swarmplot(data=long_form_df, x='week', y=gene_name,
hue='condition', dodge=True)
def correlation_adjust():
p1 = 10**4
p2 = 10**3
for n in [3,4,5]:
res = np.abs(corr_inter( | np.random.randn(n, p1) | numpy.random.randn |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 17 10:31:31 2020
@author: grat05
"""
import numpy as np
from numpy import exp
import pandas as pd
from functools import wraps
class ObjDict():
def __repr__(self):
return str(self.__dict__)
def isList(thing):
return isinstance(thing, (list, tuple, np.ndarray))
class SodiumChannelModel():
def __init__(self, TEMP = 310.0, naO = 140.0, naI = 7,
recArrayNames = [],
state_vals = [],
retOptions = {'G': True, 'INa': True, 'INaL': True,\
'Open': True, 'RevPot': True}):
self.TEMP = TEMP
self.naO = naO
self.naI = naI
self.recArrayNames = pd.Index(recArrayNames)
self.num_states = len(self.recArrayNames)
self._state_vals = np.array(state_vals, dtype='float64')
self._recArray = []
self.retOptions = retOptions
self.lastVal = None
self.memoize = True
self.RGAS = 8314.0;
self.FDAY = 96487.0;
@property
def recArray(self):
return pd.DataFrame(np.array(self._recArray), columns=self.recArrayNames)
@property
def state_vals(self):
return pd.Series(self._state_vals, index=self.recArrayNames, dtype='float64')
def calc_constants(self, vOld):
pass
def jac(self, vOld):
pass
def ddtcalc(self, vals, vOld):
pass
def getRevPot(self):
return (self.RGAS * self.TEMP / self.FDAY) * np.log(self.naO / self.naI)
def calcCurrent(self, vals, vOld, setRecArray=True):
pass
def update(self, vOld, dt, record=True):
vals = self._state_vals
ddt = self.ddtcalc(vals, vOld)
vals += ddt*dt
return self.calcCurrent(vals, vOld, setRecArray=record)
def memoize_calc_constants(calc_constants):
@wraps(calc_constants)
def memoized(self, vOld):
if self.memoize:
if self.lastVal is not None and np.array_equal(self.lastVal[0], vOld):
return self.lastVal[1]
ret = calc_constants(self, vOld)
if self.memoize:
self.lastVal = (vOld, ret)
return ret
return memoized
class OHaraRudy_INa(SodiumChannelModel):
num_params = 33
param_bounds = [(-3,3)]*2 + \
[(-0.1,3)] + [(-3,3)] + [(-0.1,3)] +\
[(-3,3)] + [(-0.1,3)] +\
[(-1,3), (-3,3), (-0.1,3)] + \
[(-3,3)] + [(-0.1,3)] +\
[(-3,3)] + [(-1,3)] +\
[(-3,3)] + [(-1,3)] +\
[(-20,20)] + \
[(-3,3)] + [(-3,3)] + [(-1,3)] +\
[(-3,3)] + [(-1,3)] +\
[(-1,1)]*3 + \
[(-1,1)]*2 + \
[(-1,1)]*2 + \
[(-15,15)]*2 + \
[(-15,15), (-1,3)]
KmCaMK = 0.15
CaMKa = 1e-5
def __init__(self, GNaFactor=0, GNaLFactor=0, \
mss_tauFactor=0, tm_maxFactor=0, tm_tau1Factor=0,\
tm_shiftFactor=0, tm_tau2Factor=0,\
hss_tauFactor=0, thf_maxFactor=0, thf_tau1Factor=0,\
thf_shiftFactor=0, thf_tau2Factor=0,\
ths_maxFactor=0, ths_tau1Factor=0,\
ths_shiftFactor=0, ths_tau2Factor=0,\
Ahf_multFactor=0,\
tj_baselineFactor=0, tj_maxFactor=0, tj_tau1Factor=0,\
tj_shiftFactor=0, tj_tau2Factor=0,\
hssp_tauFactor=0, tssp_multFactor=0, tjp_multFactor=0,\
mLss_tauFactor=0, hLss_tauFactor=0,\
thL_baselineFactor=0, thLp_multFactor=0,\
mss_shiftFactor=0, hss_shiftFactor=0,\
jss_shiftFactor=0, jss_tauFactor=0,
TEMP = 310.0, naO = 140.0, naI = 7):
super().__init__(TEMP=TEMP, naO=naO, naI=naI,
recArrayNames = ["m","hf","hs","j","hsp","jp","mL","hL","hLp"],
state_vals = [0,1,1,1,1,1,0,1,1])
# scaling currents 0
self.GNa = 75*np.exp(GNaFactor);
self.GNaL = 0.0075*np.exp(GNaLFactor);
#m gate 2
self.mss_tau = 9.871*np.exp(mss_tauFactor)
self.tm_max = 0.473824721*np.exp(tm_maxFactor)
self.tm_tau1 = 34.77*np.exp(tm_tau1Factor)
self.tm_shift = -57.6379999+tm_shiftFactor
self.tm_tau2 = 5.955*np.exp(tm_tau2Factor)
tm_cshift = np.log(self.tm_tau1/self.tm_tau2)/(1/self.tm_tau1+1/self.tm_tau2)
tm_cmax = np.exp(tm_cshift/self.tm_tau1) + np.exp(-tm_cshift/self.tm_tau2)
self.tm_shift -= tm_cshift #shift correction
self.tm_max *= tm_cmax #height correction
#h gate 7
self.hss_tau = 6.086*np.exp(hss_tauFactor)
self.thf_max = 3.594172982376325*np.exp(thf_maxFactor)
self.thf_tau1 = 6.285*np.exp(thf_tau1Factor)
self.thf_shift = -57.639999999606744+thf_shiftFactor
self.thf_tau2 = 20.27*np.exp(thf_tau2Factor)
thf_cshift = np.log(self.thf_tau2/self.thf_tau1)/(1/self.thf_tau2+1/self.thf_tau1)
thf_cmax = np.exp(thf_cshift/self.thf_tau2) + np.exp(-thf_cshift/self.thf_tau1)
self.thf_shift -= thf_cshift
self.thf_max *= thf_cmax
#12
self.ths_max = 5.894233734241695*np.exp(ths_maxFactor)
self.ths_tau1 = 28.05*np.exp(ths_tau1Factor)
self.ths_shift = -66.94699999965118+ths_shiftFactor
self.ths_tau2 = 56.66*np.exp(ths_tau2Factor)
ths_cshift = np.log(self.ths_tau2/self.ths_tau1)/(1/self.ths_tau2+1/self.ths_tau1)
ths_cmax = np.exp(ths_cshift/self.ths_tau2) + np.exp(-ths_cshift/self.ths_tau1)
self.ths_shift -= ths_cshift
self.ths_max *= ths_cmax
mixingodds = np.exp(Ahf_multFactor+np.log(99))
self.Ahf_mult = mixingodds/(mixingodds+1)# np.exp(Ahf_multFactor)
#j gate 17
self.tj_baseline = 2.038*np.exp(tj_baselineFactor)
self.tj_max = 27.726847365476033*np.exp(tj_maxFactor)
self.tj_tau1 = 8.281*np.exp(tj_tau1Factor)
self.tj_shift = -90.60799999976416+tj_shiftFactor
self.tj_tau2 = 38.45*np.exp(tj_tau2Factor)
tj_cshift = np.log(self.tj_tau2/self.tj_tau1)/(1/self.tj_tau2+1/self.tj_tau1)
tj_cmax = np.exp(tj_cshift/self.tj_tau2) + np.exp(-tj_cshift/self.tj_tau1)
self.tj_shift -= tj_cshift
self.tj_max *= tj_cmax
# phosphorylated gates
self.hssp_tau = 6.086*np.exp(hssp_tauFactor)
self.tssp_mult = 3.0*np.exp(tssp_multFactor)
self.tjp_mult = 1.46*np.exp(tjp_multFactor)
#late gates & late gate phosphorylation
self.mLss_tau = 5.264*np.exp(mLss_tauFactor)
self.hLss_tau = 7.488*np.exp(hLss_tauFactor)
self.hLssp_tau = self.hLss_tau
self.thL_baseline = 200.0*np.exp(thL_baselineFactor)
self.thLp_mult = 3*np.exp(thLp_multFactor)
#added later 29
self.mss_shift = 39.57+mss_shiftFactor
self.hss_shift = 82.90+hss_shiftFactor
self.jss_shift = 82.90+jss_shiftFactor
self.jss_tau = 6.086*np.exp(jss_tauFactor)
@memoize_calc_constants
def calc_constants(self, vOld):
tau = ObjDict()
ss = ObjDict()
ss.mss = 1.0 / (1.0 + np.exp((-(vOld + self.mss_shift)) / self.mss_tau));
tau.tm = self.tm_max/(np.exp((vOld-self.tm_shift)/self.tm_tau1)
+ np.exp(-(vOld-self.tm_shift)/self.tm_tau2))
ss.hss = 1.0 / (1 + np.exp((vOld + self.hss_shift) / self.hss_tau));
tau.thf = self.thf_max/(np.exp((vOld-self.thf_shift)/self.thf_tau2)
+ np.exp(-(vOld-self.thf_shift)/self.thf_tau1))
tau.ths = self.ths_max/(np.exp((vOld-self.ths_shift)/self.ths_tau2)
+ np.exp(-(vOld-self.ths_shift)/self.ths_tau1))
ss.jss = ss.hss#1.0 / (1 + np.exp((vOld + self.jss_shift) / self.jss_tau));#hss;
tau.tj = self.tj_baseline + self.tj_max/(np.exp((vOld-self.tj_shift)/self.tj_tau2)
+ np.exp(-(vOld-self.tj_shift)/self.tj_tau1))
ss.hssp = 1.0 / (1 + np.exp((vOld + 89.1) / self.hssp_tau));
tau.thsp = self.tssp_mult * tau.ths;
tau.tjp = self.tjp_mult * tau.tj;
ss.mLss = 1.0 / (1.0 + np.exp((-(vOld + 42.85)) / self.mLss_tau));
tau.tmL = tau.tm;
ss.hLss = 1.0 / (1.0 + np.exp((vOld + 87.61) / self.hLss_tau));
tau.thL = self.thL_baseline;
ss.hLssp = 1.0 / (1.0 + np.exp((vOld + 93.81) / self.hLssp_tau));
tau.thLp = self.thLp_mult * tau.thL;
tau.__dict__ = {key: min(max(value, 1e-8), 1e20) for key,value in tau.__dict__.items()}
return tau, ss
def jac(self, vOld):
vOld = np.array(vOld,ndmin=1)
d_vals = np.squeeze(np.zeros((9,len(vOld))))
tau, _ = self.calc_constants(vOld)
d_vals[0] = -1 / tau.tm
d_vals[1] = -1 / tau.thf
d_vals[2] = -1 / tau.ths
d_vals[3] = -1 / tau.tj
d_vals[4] = -1 / tau.thsp
d_vals[5] = -1 / tau.tjp
d_vals[6] = -1 / tau.tmL
d_vals[7] = -1 / tau.thL
d_vals[8] = -1 / tau.thLp
# np.clip(d_vals, a_min=-1e15, a_max=None, out=d_vals)
return np.diag(d_vals)
def ddtcalc(self, vals, vOld):
d_vals = np.zeros_like(vals)
tau, ss = self.calc_constants(vOld)
d_vals[0] = (ss.mss-vals[0]) / tau.tm
d_vals[1] = (ss.hss-vals[1]) / tau.thf
d_vals[2] = (ss.hss-vals[2]) / tau.ths
d_vals[3] = (ss.jss-vals[3]) / tau.tj
d_vals[4] = (ss.hssp-vals[4]) / tau.thsp
d_vals[5] = (ss.jss-vals[5]) / tau.tjp
d_vals[6] = (ss.mLss-vals[6]) / tau.tmL
d_vals[7] = (ss.hLss-vals[7]) / tau.thL
d_vals[8] = (ss.hLssp-vals[8]) / tau.thLp
# np.clip(d_vals, a_min=-1e15, a_max=1e15, out=d_vals)
return d_vals
def calcCurrent(self, vals, vOld, setRecArray=True):
vals = np.array(vals)
if len(vals.shape) == 1:
vals.shape = (9,-1)
elif vals.shape[0] != 9 and vals.shape[-1] == 9:
vals = vals.T
m,hf,hs,j,hsp,jp,mL,hL,hLp = vals
if setRecArray:
self._recArray += list(np.copy(vals.T))
ena = self.getRevPot()
Ahf = 0.99*self.Ahf_mult;
Ahs = 1.0 - Ahf;
h = Ahf * hf + Ahs * hs;
hp = Ahf * hf + Ahs *hsp;
fINap = (1.0 / (1.0 + self.KmCaMK / self.CaMKa));
# oprob = self.m * self.m * self.m * ((1.0 - fINap) * h * self.j + fINap * hp * self.jp)
# oprob = m**3 * ((1.0 - fINap) * h + fINap * hp * jp)
oprob = m**3 * ((1.0 - fINap) * h * j + fINap * hp * jp)
INa = (self.GNa if self.retOptions['G'] else 1) *\
(oprob if self.retOptions['Open'] else 1) *\
((vOld - ena) if self.retOptions['RevPot'] else 1);
fINaLp = (1.0 / (1.0 + self.KmCaMK / self.CaMKa));
loprob = mL * ((1.0 - fINaLp) * hL + fINaLp * hLp)
INaL = (self.GNaL if self.retOptions['G'] else 1)*\
(loprob if self.retOptions['Open'] else 1)*\
((vOld - ena) if self.retOptions['RevPot'] else 1);
return (INa if self.retOptions['INa'] else 0)+\
(INaL if self.retOptions['INaL'] else 0)
def update(self, vOld, dt, record=True):
m,hf,hs,j,hsp,jp,mL,hL,hLp = self.state_vals
tau, ss = self.calc_taus_ss(vOld)
m = ss.mss - (ss.mss - m) * np.exp(-dt / tau.tm);
hf = ss.hss - (ss.hss - hf) * np.exp(-dt / tau.thf);
hs = ss.hss - (ss.hss - hs) * np.exp(-dt / tau.ths);
j = ss.jss - (ss.jss - j) * np.exp(-dt / tau.tj);
hsp = ss.hssp - (ss.hssp - hsp) * np.exp(-dt / tau.thsp);
jp = ss.jss - (ss.jss - jp) * np.exp(-dt / tau.tjp);
mL = ss.mLss - (ss.mLss - mL) * np.exp(-dt / tau.tmL);
hL = ss.hLss - (ss.hLss - hL) * np.exp(-dt / tau.thL);
hLp = ss.hLssp - (ss.hLssp - hLp) * np.exp(-dt / tau.thLp);
self.state_vals = m,hf,hs,j,hsp,jp,mL,hL,hLp
return self.calcCurrent(self.state_vals, vOld, setRecArray=record)
class OHaraRudy_wMark_INa(SodiumChannelModel):
num_params = 25
param_bounds = [(-3,3),
(-3,3),
(-1,3), (-15,15),
(-3,3), (-1,3),
(-15,15), (-1,3),
(-1,3), (-15,15),# (-15,15),
(-3,3), (-15,15),
(-1,3), (-3,3),
(-3,3), (-15,15),
(-1,3), (-1,3),
(-5,5),
(-1,3), (-15,15),
(-3,3), (-15,15),
(-1,3), (-1,3),
]
def __init__(self, GNaFactor=0,
baselineFactor=0,
mss_tauFactor=0, mss_shiftFactor=0,
tm_maxFactor=0, tm_tau1Factor=0,
tm_shiftFactor=0, tm_tau2Factor=0,
hss_tauFactor=0, hss_shiftFactor=0,
thf_maxFactor=0, thf_shiftFactor=0,
thf_tau1Factor=0, thf_tau2Factor=0,
ths_maxFactor=0, ths_shiftFactor=0,
ths_tau1Factor=0, ths_tau2Factor=0,
Ahf_multFactor=0,
jss_tauFactor=0, jss_shiftFactor=0,
tj_maxFactor=0, tj_shiftFactor=0,
tj_tau2Factor=0, tj_tau1Factor=0,
TEMP = 310.0, naO = 140.0, naI = 7):
# scaling currents 0
self.GNa = np.exp(GNaFactor);
#fastest tau 1
self.baseline = 2.038*np.exp(baselineFactor)
#m gate 2
self.mss_tau = 9.871*np.exp(mss_tauFactor)
self.mss_shift = 51.57+mss_shiftFactor
self.tm_max = 0.474*np.exp(tm_maxFactor)
self.tm_tau1 = 34.77*np.exp(tm_tau1Factor)
self.tm_shift = -57.6+tm_shiftFactor
self.tm_tau2 = 5.955*np.exp(tm_tau2Factor)
tm_cshift = np.log(self.tm_tau1/self.tm_tau2)/(1/self.tm_tau1+1/self.tm_tau2)
tm_cmax = np.exp(tm_cshift/self.tm_tau1) + np.exp(-tm_cshift/self.tm_tau2)
self.tm_shift -= tm_cshift #shift correction
self.tm_max *= tm_cmax #height correction
#h gate 8
self.hss_tau = 14.086*np.exp(hss_tauFactor)
self.hfss_shift = -76+hss_shiftFactor
#self.hsss_shift = -87.90+hss_shiftFactor#np.exp(hsss_shiftFactor)
self.thf_max = 5*np.exp(thf_maxFactor)
self.thf_tau1 = 6.285*np.exp(thf_tau1Factor)
self.thf_shift = -57.639999999606744+thf_shiftFactor
self.thf_tau2 = 15*np.exp(thf_tau2Factor)
thf_cshift = np.log(self.thf_tau2/self.thf_tau1)/(1/self.thf_tau2+1/self.thf_tau1)
thf_cmax = np.exp(thf_cshift/self.thf_tau2) + np.exp(-thf_cshift/self.thf_tau1)
self.thf_shift -= thf_cshift
self.thf_max *= thf_cmax
self.ths_max = 5.894233734241695*np.exp(ths_maxFactor)
self.ths_tau1 = 28.05*np.exp(ths_tau1Factor)
self.ths_shift = -66.94699999965118+ths_shiftFactor
self.ths_tau2 = 40*np.exp(ths_tau2Factor)
ths_cshift = np.log(self.ths_tau2/self.ths_tau1)/(1/self.ths_tau2+1/self.ths_tau1)
ths_cmax = np.exp(ths_cshift/self.ths_tau2) + np.exp(-ths_cshift/self.ths_tau1)
self.ths_shift -= ths_cshift
self.ths_max *= ths_cmax
mixingodds = np.exp(Ahf_multFactor)
self.Ahf_mult = mixingodds/(mixingodds+1)# np.exp(Ahf_multFactor)
#j gate 18
self.jss_tau = 20*np.exp(jss_tauFactor)
self.jss_shift = -110+jss_shiftFactor
self.tj_max = 100*np.exp(tj_maxFactor)
self.tj_tau2 = 10*np.exp(tj_tau2Factor)
self.tj_tau1 = 20*np.exp(tj_tau1Factor)
self.tj_shift = -80+tj_shiftFactor
tj_cshift = np.log(self.tj_tau1/self.tj_tau2)/(1/self.tj_tau1+1/self.tj_tau2)
tj_cmax = np.exp(tj_cshift/self.tj_tau1) + np.exp(-tj_cshift/self.tj_tau2)
self.tj_shift -= tj_cshift #shift correction
self.tj_max *= tj_cmax #height correction
retOptions = {'G': True, 'INa': True, 'INaL': True,\
'Open': True, 'RevPot': True,
'fh': True, 'sh': True}
super().__init__(TEMP=TEMP, naO=naO, naI=naI,
recArrayNames = ["m",
"hf","jf","if","i2f",
"hs","js","is","i2s"],
state_vals = [0,
1,0,0,0,
1,0,0,0],
retOptions=retOptions)
self.lastddt = None
@memoize_calc_constants
def calc_constants(self, vOld):
vOld = np.array(vOld,ndmin=1)
tau = ObjDict()
ss = ObjDict()
num_a_b = 5
a = np.empty((num_a_b, len(vOld)))#np.empty(num_a_b)#
b = np.empty((num_a_b, len(vOld)))#np.empty(num_a_b)#np.empty((num_a_b, len(vOld)))
ss.mss = 1.0 / (1.0 + exp((-(vOld + self.mss_shift)) / self.mss_tau));
tau.tm = self.baseline/15+ self.tm_max/(exp((vOld-self.tm_shift)/self.tm_tau1)
+ exp(-(vOld-self.tm_shift)/self.tm_tau2))
#1.0 / (self.tm_mult1 * np.exp((vOld + 11.64) / self.tm_tau1) +
# self.tm_mult2 * np.exp(-(vOld + 77.42) / self.tm_tau2));
a[0] = ss.mss/tau.tm
b[0] = (1-ss.mss)/tau.tm
ss.hfss = 1.0 / (1 + exp((vOld - self.hfss_shift) / (self.hss_tau)))
tau.thf = self.baseline/10 + self.thf_max/(exp((vOld-self.thf_shift)/self.thf_tau2)
+ exp(-(vOld-self.thf_shift)/self.thf_tau1))
a[1] = ss.hfss/tau.thf
b[1] = (1-ss.hfss)/tau.thf
# tau.thf = self.baseline/5 + 1/(6.149) * np.exp(-(vOld + 0.5096) / 15);
# if vOld < -100:
# tau.thf = self.baseline
# tau.thf = np.clip(tau.thf, a_max=15, a_min=None)
#1.0 / (1 + np.exp((vOld - self.hsss_shift) / (self.hss_tau)))
ss.hsss = ss.hfss
tau.ths = self.baseline + self.ths_max/(exp((vOld-self.ths_shift)/self.ths_tau2)
+ exp(-(vOld-self.ths_shift)/self.ths_tau1))
a[2] = ss.hsss/tau.ths
b[2] = (1-ss.hsss)/tau.ths
# tau.ths = self.baseline + 1.0 / (0.3343) * np.exp(-(vOld + 5.730) / 30);
# if vOld < -100:
# tau.ths = self.baseline
# tau.ths = np.clip(tau.ths, a_max=20, a_min=None)
ss.jss = 1.0 / (1 + exp((vOld - self.jss_shift) / (self.jss_tau)));#hss;
tau.tj = self.baseline + (self.tj_max-self.baseline)/(exp((vOld-self.tj_shift)/self.tj_tau1)
+ exp(-(vOld-self.tj_shift)/self.tj_tau2))
a[3] = ss.jss/tau.tj
b[3] = (1-ss.jss)/tau.tj
# mask = vOld > -60
# tau.tj[mask] = 100 + (self.tj_max-100)/(1+np.exp(2/self.tj_tau*(vOld[mask]-(self.tj_shift+40))))
# tau.tj *= 0.001
# tau.tj = 0.1
#ss.jss2 = 1.0 / (1 + np.exp((vOld - self.jss2_shift) / (self.jss_tau)));#hss;
#tau.tj2 = self.baseline + (self.tj2_max-self.baseline) / (1+np.exp(-(vOld-self.tj_shift)/self.tj_tau2))
a[4] = 0#ss.jss2/(tau.tj2)
b[4] = 0#(1-ss.jss2)/(tau.tj2)
### tau.__dict__ = {key: min(max(value, 1e-8), 1e20) for key,value in tau.__dict__.items()}
# a = np.squeeze(a)
# b = np.squeeze(b)
# tau.__dict__ = {key: np.squeeze(value) for key,value in tau.__dict__.items()}
# ss.__dict__ = {key: np.squeeze(value) for key,value in ss.__dict__.items()}
return tau, ss, a, b
def jac(self, vOld):
d_vals = np.zeros(self.num_states)
_, _, a, b = self.calc_constants(vOld)
#m
d_vals[0] = -a[0]-b[0]#-1 / tau.tm
#hf jf if i2f
d_vals[1] = -b[1]
d_vals[2] = -(b[3]+a[1])
d_vals[3] = -(a[3]+b[4])
d_vals[4] = -a[4]
#hs js is i2s
d_vals[5] = -b[2]
d_vals[6] = -(b[3]+a[2])
d_vals[7] = -(a[3]+b[4])
d_vals[8] = -a[4]
# np.clip(d_vals, a_min=-1e15, a_max=None, out=d_vals)
d_vals = np.diag(d_vals)
#m (none)
#hf jf if i2f
d_vals[1,2] = a[1]
d_vals[2,1] = b[1]
d_vals[2,3] = a[3]
d_vals[3,2] = b[3]
d_vals[3,4] = a[4]
d_vals[4,3] = b[4]
#hs js is i2s
d_vals[5,6] = a[2]
d_vals[6,5] = b[2]
d_vals[6,7] = a[3]
d_vals[7,6] = b[3]
d_vals[7,8] = a[4]
d_vals[8,7] = b[4]
return d_vals
def ddtcalc(self, vals, vOld):
d_vals = np.zeros_like(vals)
vals = np.clip(vals, a_min=0, a_max=1)
if self.memoize and\
self.lastddt is not None and\
np.array_equal(self.lastddt[0], vOld) and\
np.array_equal(self.lastddt[1], vals):
# print(np.sum(np.abs(self.lastddt[1]- vals)))
return self.lastddt[2]
tau, ss, a, b = self.calc_constants(vOld)
#m
d_vals[0] = (1-vals[0])*a[0] - vals[0]*b[0]
#hf jf if i2f
d_vals[1] = vals[2]*a[1] - vals[1]*b[1]
d_vals[2] = a[3]*vals[3]+b[1]*vals[1] - vals[2]*(b[3]+a[1])
d_vals[3] = b[3]*vals[2]+a[4]*vals[4] - vals[3]*(a[3]+b[4])
d_vals[4] = b[4]*vals[3] - vals[4]*a[4]
#hs js is i2s
d_vals[5] = vals[6]*a[2] - vals[5]*b[2]
d_vals[6] = a[3]*vals[7]+b[2]*vals[5] - vals[6]*(b[3]+a[2])
d_vals[7] = b[3]*vals[6]+a[4]*vals[8] - vals[7]*(a[3]+b[4])
d_vals[8] = b[4]*vals[7] - vals[8]*a[4]
# if not np.isclose(np.sum(vals[1:]),2):
# print(np.sum(vals[1:]))
# np.clip(d_vals, a_min=-1e15, a_max=1e15, out=d_vals)
self.lastddt = (vOld, vals, d_vals)
return d_vals
def calcCurrent(self, vals, vOld, setRecArray=True):
vals = np.array(vals)
if len(vals.shape) == 1:
vals.shape = (self.num_states,-1)
elif vals.shape[0] != self.num_states and vals.shape[-1] == self.num_states:
vals = vals.T
m, hf,jf,i1f,i2f, hs,js,i1s,i2s = np.clip(vals, a_min=0, a_max=1)
if setRecArray:
self._recArray += list(np.copy(vals.T))
ena = self.getRevPot()
if self.retOptions['fh'] and self.retOptions['sh']:
Ahf = self.Ahf_mult;
Ahs = 1.0 - Ahf;
elif self.retOptions['fh']:
Ahf = 1
Ahs = 1.0 - Ahf;
elif self.retOptions['sh']:
Ahf = 0
Ahs = 1.0 - Ahf;
h = Ahf*hf + Ahs*hs;
# hp = Ahf * hf + Ahs *hsp;
# fINap = (1.0 / (1.0 + self.KmCaMK / self.CaMKa));
# oprob = self.m * self.m * self.m * ((1.0 - fINap) * h * self.j + fINap * hp * self.jp)
# oprob = m**3 * ((1.0 - fINap) * h + fINap * hp * jp)
oprob = m**3 * h
INa = (self.GNa if self.retOptions['G'] else 1) *\
(oprob if self.retOptions['Open'] else 1) *\
((vOld - ena) if self.retOptions['RevPot'] else 1);
# fINaLp = (1.0 / (1.0 + self.KmCaMK / self.CaMKa));
# loprob = mL * ((1.0 - fINaLp) * hL + fINaLp * hLp)
INaL = 0#(self.GNaL if self.retOptions['G'] else 1)*\
#(loprob if self.retOptions['Open'] else 1)*\
# ((vOld - ena) if self.retOptions['RevPot'] else 1);
return (INa if self.retOptions['INa'] else 0)+\
(INaL if self.retOptions['INaL'] else 0)
#10.1161/CIRCULATIONAHA.112.105320 P glynn
class Koval_ina(SodiumChannelModel):
num_params = 22
param_bounds = \
[(-3,4)] +\
[(-3,4)]*3 +\
[(-3,4)] + [(-0.5,4)] + [(-3,4)] +\
[(-0.5,4),(-3,4)] + [(-10,10)] +\
[(-3,4)] + [(-10,10)] + [(-3,4)] +\
[(-3,4)]*9
def __init__(self, gNaFactor = 0,
P1a1Factor=0, P2a1Factor=0, P1a4Factor=0,
P1a5Factor=0, P2a5Factor=0, P1b1Factor=0,
P2b1Factor=0, P1b2Factor=0, P2b2Factor=0,
P1b3Factor=0, P2b3Factor=0, P1b5Factor=0,
P2b5Factor=0, P1a6Factor=0, P1b6Factor=0,
P1a7Factor=0, P1b7Factor=0, P1a8Factor=0,
P1b8Factor=0, P1a9Factor=0, P1b9Factor=0,
TEMP = 310.0, naO = 140.0, naI = 8.35504003):
self.P1a1 = np.exp(P1a1Factor)*7.5207
self.P2a1 = np.exp(P2a1Factor)*0.1027
self.P1a4 = np.exp(P1a4Factor)*0.188495
self.P1a5 = np.exp(P1a5Factor)*7.0e-7
self.P2a5 = np.exp(P2a5Factor)*7.7
self.P1b1 = np.exp(P1b1Factor)*0.1917
self.P2b1 = np.exp(P2b1Factor)*20.3
self.P1b2 = np.exp(P1b2Factor)*0.2
self.P2b2 = P2b2Factor+2.5
self.P1b3 = np.exp(P1b3Factor)*0.22
self.P2b3 = P2b3Factor+7.5
self.P1b5 = np.exp(P1b5Factor)*0.0108469
self.P2b5 = np.exp(P2b5Factor)*2e-5
self.P1a6 = np.exp(P1a6Factor)*1000.0
self.P1b6 = np.exp(P1b6Factor)*6.0448e-3
self.P1a7 = np.exp(P1a7Factor)*1.05263e-5
self.P1b7 = np.exp(P1b7Factor)*0.02
self.P1a8 = np.exp(P1a8Factor)*4.0933e-13
self.P1b8 = np.exp(P1b8Factor)*9.5e-4
self.P1a9 = np.exp(P1a9Factor)*8.2
self.P1b9 = np.exp(P1b9Factor)*0.022
self.gNa = np.exp(gNaFactor)*7.35
super().__init__(TEMP=TEMP, naO=naO, naI=naI,
recArrayNames = ["C1","C2","C3",
"IC2","IC3","IF",
"IM1","IM2",
"LC1","LC2","LC3",
"O", "LO",
"OB", "LOB"],
state_vals = [0.0003850597267,0.02639207662,0.7015088787,
0.009845083654,0.2616851145,0.0001436395221,
3.913769904e-05,3.381242427e-08,
1.659002962e-13,1.137084204e-11,3.02240205e-10,
9.754706096e-07,4.202747013e-16,
0,0])
self.RanolazineConc = 0
@memoize_calc_constants
def calc_constants(self, vOld):
exp = np.exp
a = np.zeros(10)
b = np.zeros(10)
# P123a_max = 45
# P123a_tau = 6#15
# P123a_shift = -25
# P123a_shift_diff = 4-10
# P4a_max = 2.53835453
# P4a_shift = -20
# P4a_tau = 16.6
# P5a_max = 600
# P5a_shift = -160
# P5a_tau = 6
# a[1] = P123a_max/((exp(-(vOld-(P123a_shift-P123a_shift_diff))/P123a_tau)) + 1)
# a[2] = P123a_max/((exp(-(vOld-(P123a_shift))/P123a_tau)) + 1)
# a[3] = P123a_max/((exp(-(vOld-(P123a_shift+P123a_shift_diff))/P123a_tau)) + 1)
# a[4] = P4a_max/(exp(-(vOld-P4a_shift)/P4a_tau) + 1)
# a[5] = P5a_max/(exp((vOld-P5a_shift)/P5a_tau) + 1)
# a[6] = a[4]/self.P1a6
# a[7] = self.P1a7*a[4]
# a[8] = self.P1a8
# a[9] = self.RanolazineConc*self.P1a9
# b[1] = 400/(exp((vOld+137-P123a_shift_diff)/self.P2b1)+1)
# b[2] = 400/(exp((vOld+137)/self.P2b1)+1)
# b[3] = 400/(exp((vOld+137+P123a_shift_diff)/self.P2b1)+1)
# b[5] = self.P1b5 + self.P2b5*(vOld+7.0)
# b[4] = (a[3]*a[4]*a[5])/(b[3]*b[5])
# b[6] = self.P1b6*a[5]
# b[7] = self.P1b7*a[5]
# b[8] = self.P1b8
# b[9] = self.P1b9
a[1] = self.P1a1/((self.P2a1*exp(-(vOld+2.5)/17))
+ 0.20*exp(-(vOld+2.5)/150))
a[2] = self.P1a1/((self.P2a1*exp(-(vOld+2.5)/15))
+ 0.23*exp(-(vOld+2.5)/150))
a[3] = self.P1a1/((self.P2a1*exp(-(vOld+2.5)/12))
+ 0.25*exp(-(vOld+2.5)/150))
a[4] = 1.0/(self.P1a4*exp(-(vOld+7.0)/16.6) + 0.393956)
a[5] = self.P1a5*exp(-(vOld+7)/self.P2a5) #self.P1a5*exp(-Vm/self.P2a5)
a[6] = a[4]/self.P1a6
a[7] = self.P1a7*a[4]
a[8] = self.P1a8
a[9] = self.RanolazineConc*self.P1a9
b[1] = self.P1b1*exp(-(vOld+2.5)/self.P2b1)
b[2] = self.P1b2*exp(-(vOld-self.P2b2)/self.P2b1)
b[3] = self.P1b3*exp(-(vOld-self.P2b3)/self.P2b1)
b[5] = self.P1b5 + self.P2b5*(vOld+7.0)
b[4] = (a[3]*a[4]*a[5])/(b[3]*b[5])
b[6] = self.P1b6*a[5]
b[7] = self.P1b7*a[5]
b[8] = self.P1b8
b[9] = self.P1b9
# if np.max(a) > 1e6 or np.max(b) > 1e6:
# print('test')
return a, b
def ddtcalc(self, vals, vOld):
C1,C2,C3,\
IC2,IC3,IF,\
IM1,IM2,\
LC1,LC2,LC3,\
O,LO,\
OB,LOB = vals
d_vals = np.zeros_like(vals)
a, b = self.calc_constants(vOld)
dC1 = (a[5]*IF+b[3]*O+b[8]*LC1+a[2]*C2 -(b[5]+a[3]+a[8]+b[2])*C1)
dC2 = (a[5]*IC2+b[2]*C1+b[8]*LC2+a[1]*C3 -(b[5]+a[2]+a[8]+b[1])*C2)
dC3 = (a[5]*IC3+b[1]*C2+b[8]*LC3 -(b[5]+a[1]+a[8])*C3)
dIC2 = (b[2]*IF+b[5]*C2+a[1]*IC3 -(a[2]+a[5]+b[1])*IC2)
dIC3 = (b[1]*IC2+b[5]*C3 -(a[1]+a[5])*IC3)
dIF = (b[6]*IM1+a[4]*O+b[5]*C1+a[2]*IC2 -(a[6]+b[4]+a[5]+b[2])*IF)
dIM1 = (b[7]*IM2+a[6]*IF -(a[7]+b[6])*IM1)
dIM2 = (a[7]*IM1 -(b[7])*IM2)
dLC1 = (a[8]*C1+b[3]*LO+a[2]*LC2 -(b[8]+a[3]+b[2])*LC1)
dLC2 = (a[8]*C2+b[2]*LC1+a[1]*LC3 -(b[8]+a[2]+b[1])*LC2)
dLC3 = (b[1]*LC2+a[8]*C3 -(a[1]+b[8])*LC3)
dO = (b[9]*OB+b[8]*LO+a[3]*C1+b[4]*IF -(a[9]+a[8]+b[3]+a[4])*O)
dLO = (a[8]*O+b[9]*LOB+a[3]*LC1 -(b[8]+a[9]+b[3])*LO)
dOB = (a[9]*O -(b[9])*OB)
dLOB = (a[9]*LO -(b[9])*LOB)
d_vals = dC1,dC2,dC3,dIC2, dIC3, dIF, dIM1, dIM2, dLC1, dLC2, dLC3, dO, dLO, dOB, dLOB
return d_vals
def jac(self, vOld):
a, b = self.calc_constants(vOld)
J = np.array([
[-(b[5]+a[3]+a[8]+b[2]), a[2], 0, 0, 0, a[5], 0, 0, b[8], 0, 0, b[3], 0, 0, 0],
[b[2], -(b[5]+a[2]+a[8]+b[1]), a[1], a[5], 0, 0, 0, 0, 0, b[8], 0, 0, 0, 0, 0],
[0, b[1], -(b[5]+a[1]+a[8]), 0, a[5], 0, 0, 0, 0, 0, b[8], 0, 0, 0, 0],
[0, b[5], 0, -(a[2]+a[5]+b[1]), a[1], b[2], 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, b[5], b[1], -(a[1]+a[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[b[5], 0, 0, a[2], 0, -(a[6]+b[4]+a[5]+b[2]), b[6], 0, 0, 0, 0, a[4], 0, 0, 0],
[0, 0, 0, 0, 0, a[6], -(a[7]+b[6]), b[7], 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, a[7], -(b[7]), 0, 0, 0, 0, 0, 0, 0],
[a[8], 0, 0, 0, 0, 0, 0, 0, -(b[8]+a[3]+b[2]), a[2], 0, 0, b[3], 0, 0],
[0, a[8], 0, 0, 0, 0, 0, 0, b[2], -(b[8]+a[2]+b[1]), a[1], 0, 0, 0, 0],
[0, 0, a[8], 0, 0, 0, 0, 0, 0, b[1], -(a[1]+b[8]), 0, 0, 0, 0],
[a[3], 0, 0, 0, 0, b[4], 0, 0, 0, 0, 0, -(a[9]+a[8]+b[3]+a[4]), b[8], b[9], 0],
[0, 0, 0, 0, 0, 0, 0, 0, a[3], 0, 0, a[8], -(b[8]+a[9]+b[3]), 0, b[9]],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a[9], 0, -b[9], 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a[9], 0, -b[9]]
])
return J
def calcCurrent(self, vals, vOld, setRecArray=True):
vals = np.array(vals)
if len(vals.shape) == 1:
vals.shape = (9,-1)
elif vals.shape[0] != 9 and vals.shape[-1] == 9:
vals = vals.T
C1,C2,C3,\
IC2,IC3,IF,\
IM1,IM2,\
LC1,LC2,LC3,\
O,LO,\
OB,LOB = vals
if setRecArray:
self._recArray += list(np.copy(vals.T))
ena = self.getRevPot()
oprob = (O if self.retOptions['INa'] else 0)+\
(LO if self.retOptions['INaL'] else 0)
INa = (self.gNa if self.retOptions['G'] else 1) *\
(oprob if self.retOptions['Open'] else 1) *\
((vOld - ena) if self.retOptions['RevPot'] else 1);
return INa
class OHaraRudy_Gratz_INa():
num_params = 31
param_bounds = [(-3,3), (-3,3),
(-3,3),
(-1,3), (-15,15),
(-3,3), (-0.1,3),
(-3,3), (-0.1,3),
(-1,3), (-15,15), (-15,15),
(-3,3), (-15,15), (-1,3),
(-3,3), (-15,15), (-1,3),
(-5,5),
(-1,3), (-15,15),
(-3,3), (-15,15), (-1,3),
(-1,3), (-3,3), (-15,15),
(-1,3), (-1,3),
(-3,3), (-3,3)]
RGAS = 8314.0;
FDAY = 96487.0;
KmCaMK = 0.15
CaMKa = 1e-5
def __init__(self, GNaFactor=0, GNaLFactor=0,
baselineFactor=0,
mss_tauFactor=0, mss_shiftFactor=0,
tm_mult1Factor=0, tm_tau1Factor=0,
tm_mult2Factor=0, tm_tau2Factor=0,
hss_tauFactor=0, hss_shiftFactor=0, hsss_shiftFactor=0,
thf_maxFactor=0, thf_shiftFactor=0, thf_tauFactor=0,
ths_maxFactor=0, ths_shiftFactor=0, ths_tauFactor=0,
Ahf_multFactor=0,
jss_tauFactor=0, jss_shiftFactor=0,
tj_maxFactor=0, tj_shiftFactor=0, tj_tauFactor=0,
hssp_tauFactor=0, tssp_multFactor=0, tjp_multFactor=0,\
mLss_tauFactor=0, hLss_tauFactor=0,
thL_baselineFactor=0, thLp_multFactor=0,
TEMP = 310.0, naO = 140.0, naI = 7):
# scaling currents 0
self.GNa = 75*np.exp(GNaFactor);
self.GNaL = 0.0075*np.exp(GNaLFactor);
#fastest tau 2
self.baseline = 2.038*np.exp(baselineFactor)
#m gate 3
self.mss_tau = 9.871*np.exp(mss_tauFactor)
self.mss_shift = 39.57+mss_shiftFactor
self.tm_mult1 = 6.765*np.exp(tm_mult1Factor)
self.tm_tau1 = 34.77*np.exp(tm_tau1Factor)
self.tm_mult2 = 8.552*np.exp(tm_mult2Factor)
self.tm_tau2 = 5.955*np.exp(tm_tau2Factor)
#h gate 9
self.hss_tau = 6.086*np.exp(hss_tauFactor)
self.hfss_shift = 82.90+hss_shiftFactor
self.hsss_shift = 60*np.exp(hsss_shiftFactor)
self.thf_max = 50*np.exp(thf_maxFactor)
self.thf_shift = -78+thf_shiftFactor
self.thf_tau = 15*np.exp(thf_tauFactor)
self.ths_max = 50*np.exp(ths_maxFactor)
self.ths_shift = -75+ths_shiftFactor
self.ths_tau = 40*np.exp(ths_tauFactor)
mixingodds = np.exp(Ahf_multFactor)
self.Ahf_mult = mixingodds/(mixingodds+1)# np.exp(Ahf_multFactor)
#j gate 19
self.jss_tau = 6.086*np.exp(jss_tauFactor)
self.jss_shift = 80+jss_shiftFactor
self.tj_max = 200*np.exp(tj_maxFactor)
self.tj_shift = -95+tj_shiftFactor
self.tj_tau = 3*np.exp(tj_tauFactor)
# phosphorylated gates 24
self.hssp_tau = 6.086*np.exp(hssp_tauFactor)
self.tssp_mult = 3.0*np.exp(tssp_multFactor)
self.tjp_mult = 1.46*np.exp(tjp_multFactor)
#late gates & late gate phosphorylation 27
self.mLss_tau = 5.264*np.exp(mLss_tauFactor)
self.hLss_tau = 7.488*np.exp(hLss_tauFactor)
self.hLssp_tau = self.hLss_tau
self.thL_baseline = 200.0*np.exp(thL_baselineFactor)
self.thLp_mult = 3*np.exp(thLp_multFactor)
self.TEMP = TEMP
self.naO = naO
self.naI = naI
self.recArrayNames = pd.Index(["m","hf","hs","j","hsp","jp","mL","hL","hLp"])
self.state_vals = pd.Series([0,1,1,1,1,1,0,1,1], index=self.recArrayNames, dtype='float64')
self._recArray = pd.DataFrame(columns=self.recArrayNames)
self.retOptions = {'G': True, 'INa': True, 'INaL': True,\
'Open': True, 'RevPot': True}
self.lastVal = None
def calc_taus_ss(self, vOld):
if self.lastVal is not None and np.array_equal(self.lastVal[0], vOld):
return self.lastVal[1]
tau = ObjDict()
ss = ObjDict()
ss.mss = 1.0 / (1.0 + np.exp((-(vOld + self.mss_shift+12)) / self.mss_tau));
tau.tm = self.baseline/15+ 1.0 / (self.tm_mult1 * np.exp((vOld + 11.64) / self.tm_tau1) +
self.tm_mult2 * np.exp(-(vOld + 77.42) / self.tm_tau2));
ss.hfss = 1.0 / (1 + np.exp((vOld + self.hfss_shift+5) / self.hss_tau));
tau.thf = self.baseline/5 + (self.thf_max-self.baseline/5) / (1+np.exp((vOld-self.thf_shift)/self.thf_tau))
# tau.thf = self.baseline/5 + 1/(6.149) * np.exp(-(vOld + 0.5096) / 15);
# if vOld < -100:
# tau.thf = self.baseline
# tau.thf = np.clip(tau.thf, a_max=15, a_min=None)
ss.hsss = 1.0 / (1 + np.exp((vOld + self.hsss_shift-5) / (self.hss_tau+8)));
tau.ths = self.baseline + (self.ths_max-self.baseline) / (1+np.exp((vOld-self.ths_shift)/self.ths_tau))
# tau.ths = self.baseline + 1.0 / (0.3343) * np.exp(-(vOld + 5.730) / 30);
# if vOld < -100:
# tau.ths = self.baseline
# tau.ths = np.clip(tau.ths, a_max=20, a_min=None)
ss.jss = 1.0 / (1 + np.exp((vOld + self.jss_shift+5) / (self.jss_tau)));#hss;
tau.tj = self.baseline + (self.tj_max-self.baseline)/(1+np.exp(-1/self.tj_tau*(vOld-self.tj_shift)))
if vOld > -60:
tau.tj = 100 + (self.tj_max-100)/(1+np.exp(2/self.tj_tau*(vOld-(self.tj_shift+40))))
ss.hssp = 1.0 / (1 + np.exp((vOld + 89.1) / self.hssp_tau));
tau.thsp = self.tssp_mult * tau.ths;
tau.tjp = self.tjp_mult * tau.tj;
ss.mLss = 1.0 / (1.0 + np.exp((-(vOld + 42.85)) / self.mLss_tau));
tau.tmL = tau.tm;
ss.hLss = 1.0 / (1.0 + np.exp((vOld + 87.61) / self.hLss_tau));
tau.thL = self.thL_baseline;
ss.hLssp = 1.0 / (1.0 + np.exp((vOld + 93.81) / self.hLssp_tau));
tau.thLp = self.thLp_mult * tau.thL;
# tau.__dict__ = {key: min(max(value, 1e-8), 1e20) for key,value in tau.__dict__.items()}
self.lastVal = (vOld, (tau, ss))
return tau, ss
def jac(self, vOld):
vOld = np.array(vOld,ndmin=1)
d_vals = np.squeeze(np.zeros((9,len(vOld))))
tau, _ = self.calc_taus_ss(vOld)
d_vals[0] = -1 / tau.tm
d_vals[1] = -1 / tau.thf
d_vals[2] = -1 / tau.ths
d_vals[3] = -1 / tau.tj
d_vals[4] = -1 / tau.thsp
d_vals[5] = -1 / tau.tjp
d_vals[6] = -1 / tau.tmL
d_vals[7] = -1 / tau.thL
d_vals[8] = -1 / tau.thLp
# np.clip(d_vals, a_min=-1e15, a_max=None, out=d_vals)
return np.diag(d_vals)
def ddtcalc(self, vals, vOld):
d_vals = np.zeros_like(vals)
tau, ss = self.calc_taus_ss(vOld)
d_vals[0] = (ss.mss-vals[0]) / tau.tm
d_vals[1] = (ss.hfss-vals[1]) / tau.thf
d_vals[2] = (ss.hsss-vals[2]) / tau.ths
d_vals[3] = (ss.jss-vals[3]) / tau.tj
d_vals[4] = (ss.hssp-vals[4]) / tau.thsp
d_vals[5] = (ss.jss-vals[5]) / tau.tjp
d_vals[6] = (ss.mLss-vals[6]) / tau.tmL
d_vals[7] = (ss.hLss-vals[7]) / tau.thL
d_vals[8] = (ss.hLssp-vals[8]) / tau.thLp
# np.clip(d_vals, a_min=-1e15, a_max=1e15, out=d_vals)
return d_vals
def getRevPot(self):
return (self.RGAS * self.TEMP / self.FDAY) * np.log(self.naO / self.naI)
def calcCurrent(self, vals, vOld, ret=[True]*3, setRecArray=True):
vals = np.array(vals)
if len(vals.shape) == 1:
vals.shape = (9,-1)
elif vals.shape[0] != 9 and vals.shape[-1] == 9:
vals = vals.T
m,hf,hs,j,hsp,jp,mL,hL,hLp = vals
self.recArray = self.recArray.append(pd.DataFrame(vals.T, columns=self.recArrayNames))
ena = self.getRevPot()
Ahf = self.Ahf_mult;
Ahs = 1.0 - Ahf;
h = Ahf * hf + Ahs * hs;
hp = Ahf * hf + Ahs *hsp;
fINap = (1.0 / (1.0 + self.KmCaMK / self.CaMKa));
# oprob = self.m * self.m * self.m * ((1.0 - fINap) * h * self.j + fINap * hp * self.jp)
# oprob = m**3 * ((1.0 - fINap) * h + fINap * hp * jp)
oprob = m**3 * ((1.0 - fINap) * h * j + fINap * hp * jp)
INa = (self.GNa if self.retOptions['G'] else 1) *\
(oprob if self.retOptions['Open'] else 1) *\
((vOld - ena) if self.retOptions['RevPot'] else 1);
fINaLp = (1.0 / (1.0 + self.KmCaMK / self.CaMKa));
loprob = mL * ((1.0 - fINaLp) * hL + fINaLp * hLp)
INaL = (self.GNaL if self.retOptions['G'] else 1)*\
(loprob if self.retOptions['Open'] else 1)*\
((vOld - ena) if self.retOptions['RevPot'] else 1);
return (INa if self.retOptions['INa'] else 0)+\
(INaL if self.retOptions['INaL'] else 0)
def update(self, vOld, dt):
m,hf,hs,j,hsp,jp,mL,hL,hLp = self.state_vals
tau, ss = self.calc_taus_ss(vOld)
m = ss.mss - (ss.mss - m) * np.exp(-dt / tau.tm);
hf = ss.hss - (ss.hss - hf) * np.exp(-dt / tau.thf);
hs = ss.hss - (ss.hss - hs) * | np.exp(-dt / tau.ths) | numpy.exp |
import numpy as np
from pycbc import waveform, psd, detector
from scipy.stats import betaprime, uniform, randint
from scipy.special import erf, erfinv
import time
from scipy.interpolate import interp1d
import scipy.interpolate as si
from gwcosmo import priors as p
from scipy.stats import truncnorm
from astropy.cosmology import FlatLambdaCDM, z_at_value
import argparse
import dill
import os
import sys
cdir = os.path.dirname(os.path.dirname(sys.path[0]))
print(cdir)
cosmo = FlatLambdaCDM(H0 = 70, Om0 = 0.31)
np.random.seed(7)
parser = argparse.ArgumentParser(description='Generate population and posterior samples.')
parser.add_argument('--N',type=int,help='number of population events',default=10000)
args = parser.parse_args()
N = int(args.N) # nunber of events
# Here come all the definitions used in this script
def TruncNormSampler(clip_a, clip_b, mean, std, Nsamples):
a, b = (clip_a - mean) / std, (clip_b - mean) / std
return truncnorm.rvs(a,b,size=Nsamples ) * std + mean
def AntennaPattern(inclination, rightAscension, declination, polarisation,
GPStime, interferometer = 'L1'):
"""
This is a measure for the detector response, depending on the sky
localisation and orbital configuration of the binary and the arrival time
of the GW (for the transformation between the source frame and the
detector frame).
"""
scienceMachien = detector.Detector(interferometer)
Fplus, Fcross = scienceMachien.antenna_pattern(rightAscension, declination,
polarisation, GPStime)
Aplus = 0.5*Fplus*(1 + np.cos(inclination)**2)
Across = Fcross*np.cos(inclination)
A = (Aplus**2 + Across**2)**0.5
return A
def LuminosityDistance(redshift):
dL = cosmo.luminosity_distance(redshift).value
return dL
def InclinationPPF(u):
"""For sampling the inclination"""
ppf = np.arccos(1 - 2*u)
return ppf
def LogNormIshPPF(u, a = 1.1375, b = 0.8665, zmax = 15):
"""For sampling the analytical approximation of the redshift distribution"""
ppf = np.exp(a**2 + b - a*2**0.5*erfinv(1 - u*(1 - erf((a**2 + b -
np.log(zmax))/2**0.5/a))))
return ppf
def BetaprimePPF(u, a = 2.906, b = 0.0158, c = 0.58, zmax = 15):
"""For sampling the analytical approximation of the redshift distribution"""
ppf = betaprime.ppf(u*betaprime.cdf(zmax, a, b, loc = c), a, b, loc = c)
return ppf
def RedshiftSampler(lambda_z = 0.563, a1 = 2.906, b1 = 0.0158, c = 0.58,
a2 = 1.1375, b2 = 0.8665, zmax = 15, Nsample=1):
"""
Function for sampling the redshift distribution using a
rejection sampling procedure.
"""
# Random number between 0 and 1 that will define which
# distribution will be drawn from
u = uniform.rvs(size=Nsample)
sample = | np.zeros(u.shape) | numpy.zeros |
"""
Explanation of the Algorithm
============================
First of all it is crucial to understand how a STL file is constructed. For this purpose I would recommend reading the
following articles, since this explanation aims on outlining the implementation of the below algorithm only:
* http://www.fabbers.com/tech/STL_Format
* https://danbscott.ghost.io/writing-an-stl-file-from-scratch/
With that in mind, we basically only need to accomplish the transformation of pixels into facets (triangles). This is
achieved by the following steps:
0. Reading the GeoTiff and turning it into a 2d array where each pixel value equals the altitude
------------------------------------------------------------------------------------------------
Reading the GeoTiff and turning it into a numpy array is not considered part of the below algorithm. It is taken care of
by `mapa/__init__.py` and not described in greater detail here.
1. Creating a 2d array (raster) given the input GeoTIFF data
------------------------------------------------------------
A 2d numpy array is created within `_create_raster`. It has one more row and one more column compared to the input
array of the GeoTIFF. That is because we are going to describe each input pixel by four triangles.
A pixel with center C and corners 1,2,3 and 4 represented by four triangles:
1-----------------2
| x x |
| x x |
| x x |
| x x |
| C |
| x x |
| x x |
| x x |
| x x |
3-----------------4
All four triangles are connected to each other in the center C of the pixel. Imaging we are moving the raster slightly
across/above the input array.
r r r r r r
a a a a a
r r r r r r
a a a a a
r r r r r r
a a a a a
r r r r r r
a a a a a
r r r r r r
a a a a a
r r r r r r
The values of the raster r can then be used to describe the altitude at the corners (1,2,3 and 4) of a pixel, while the
values of the array a describe the altitude at the center C of the pixel. With this approach the information for
computing the position of the required triangles representing the 3d surface of the desired output model can easily be
determined by looking into the input array and the constructed raster.
2. Computing the triangles representing the elevation data
----------------------------------------------------------
With the above step in mind, determining the altitude values basically consists of a lookup into the given raster and
input array. The function `_compute_triangles_of_3d_surface` takes care of this while at the same time adding offset
values and scaling the x, y and z-axis to achieve the desired model size. The return value of the function is a numpy
array containing the computed triangles. Each triangle T consists of 3 vertices V where each vertex V corresponds to one
coordinates C, where each coordinate C in turn consists of a X, Y and Z value:
T = V1, V2, V3
V = C
C = X, Y, Z
This means each triangle consists of nine values. The `_compute_triangles_of_3d_surface` therefore needs to iterate over
all pixels and compute the positions of the four triangles for each pixel. The triangles per pixel are described as top,
left, bottom and right triangles.
3. Computing the triangles representing the side and bottom of the output 3d model
----------------------------------------------------------------------------------
With the above steps we manage to compute the triangles for describing the 3d surface which we derived from the input
GeoTIFF file. However, in order to make a 3d-printable STL file, we need to ensure that the resulting mesh is actually
closed i.e. watertight. This is done by `_compute_triangles_of_body_side` and `_compute_triangles_of_bottom`. The
vertices of the triangles for the side of the resulting STL model are computed in the following fashion. Imaging moving
along one side (x or y) of the computed 3d surface. Each coordinate along this side will be the considered the vertex of
two triangles, while the next coordinate along the side of the surface is the second vertex and one coordinate at the
bottom of the model will be the third vertex of the triangle. Or one vertex at the surface and two at the bottom.
s
s s s s s s s
s s s s s
b b b b b b b b b b b b b
s illustrates a coordinate at the side of the 3d surface and b a coordinate at the bottom of the model. Imaging drawing
triangles between the s's and the b's. This approach is used to compute the side triangles within
`_compute_triangles_of_body_side`.
Computing the triangles of the bottom in the scope of `_compute_triangles_of_bottom` is super straight forward, as it
only needs to compute two triangles, where the altitude value z is zero and all other x and y values correspond the
desired model dimensions.
4. Write triangles to STL file
------------------------------
This is not considered part of the algorithm and is taken care of by `mapa/__init__._save_to_stl_file`. It boils down to
the usage of numpy-stl, which has a super convenient and efficient interface for writing triangles to a (binary of ascii)
STL file.
"""
import logging
from dataclasses import dataclass
from typing import Union
import numba as nb
import numpy as np
import numpy.typing as npt
from numpy.lib.stride_tricks import as_strided
log = logging.getLogger(__name__)
@dataclass
class ModelSize:
x: float
y: float
@nb.njit(fastmath=True, cache=True)
def _create_raster(array: npt.ArrayLike, max_x: int, max_y: int) -> np.ndarray:
max_x, max_y = array.shape
raster = np.zeros((max_x + 1, max_y + 1))
# loop over raster elements to determine z value of raster elements
for ix in range(0, raster.shape[0]):
for iy in range(0, raster.shape[1]):
# special treatment of first and last rows/cols
if ix >= max_x or iy >= max_y:
if ix >= max_x and iy < max_y:
raster[ix][iy] = array[ix - 1][iy]
elif iy >= max_y and ix < max_x:
raster[ix][iy] = array[ix][iy - 1]
else:
raster[ix][iy] = array[ix - 1][iy - 1]
elif ix == 0 or iy == 0:
raster[ix][iy] = array[ix][iy]
else:
# z value in raster is average of four neighbors
raster[ix][iy] = (array[ix][iy] + array[ix - 1][iy] + array[ix][iy - 1] + array[ix - 1][iy - 1]) / 4
return raster
@nb.njit(fastmath=True, cache=True)
def _compute_triangles_of_3d_surface(
raster: npt.ArrayLike,
array: npt.ArrayLike,
max_x: int,
max_y: int,
x_scale: float,
y_scale: float,
z_scale: float,
z_offset: float,
) -> np.ndarray:
triangles = np.full((max_x, max_y, 4, 3, 3), -1.0, dtype=np.float64)
for ix in range(0, max_x):
for iy in range(0, max_y):
if ix > max_x or iy > max_y:
continue
else:
# top triangle
# first vertex
triangles[ix, iy, 0, 0, 0] = (ix + 1 / 2) * x_scale
triangles[ix, iy, 0, 0, 1] = (iy + 1 / 2) * y_scale
triangles[ix, iy, 0, 0, 2] = (array[ix, iy]) * z_scale + z_offset
# second vertex
triangles[ix, iy, 0, 1, 0] = ix * x_scale
triangles[ix, iy, 0, 1, 1] = iy * y_scale
triangles[ix, iy, 0, 1, 2] = (raster[ix, iy]) * z_scale + z_offset
# third vertex
triangles[ix, iy, 0, 2, 0] = (ix + 1) * x_scale
triangles[ix, iy, 0, 2, 1] = iy * y_scale
triangles[ix, iy, 0, 2, 2] = (raster[ix + 1, iy]) * z_scale + z_offset
# left triangle
# first vertex
triangles[ix, iy, 1, 0, 0] = ix * x_scale
triangles[ix, iy, 1, 0, 1] = (iy + 1) * y_scale
triangles[ix, iy, 1, 0, 2] = (raster[ix, iy + 1]) * z_scale + z_offset
# second vertex
triangles[ix, iy, 1, 1, 0] = ix * x_scale
triangles[ix, iy, 1, 1, 1] = iy * y_scale
triangles[ix, iy, 1, 1, 2] = (raster[ix, iy]) * z_scale + z_offset
# third vertex
triangles[ix, iy, 1, 2, 0] = (ix + 1 / 2) * x_scale
triangles[ix, iy, 1, 2, 1] = (iy + 1 / 2) * y_scale
triangles[ix, iy, 1, 2, 2] = (array[ix, iy]) * z_scale + z_offset
# bottom triangle
# first vertex
triangles[ix, iy, 2, 0, 0] = (ix + 1) * x_scale
triangles[ix, iy, 2, 0, 1] = (iy + 1) * y_scale
triangles[ix, iy, 2, 0, 2] = (raster[ix + 1, iy + 1]) * z_scale + z_offset
# second vertex
triangles[ix, iy, 2, 1, 0] = ix * x_scale
triangles[ix, iy, 2, 1, 1] = (iy + 1) * y_scale
triangles[ix, iy, 2, 1, 2] = (raster[ix, iy + 1]) * z_scale + z_offset
# third vertex
triangles[ix, iy, 2, 2, 0] = (ix + 1 / 2) * x_scale
triangles[ix, iy, 2, 2, 1] = (iy + 1 / 2) * y_scale
triangles[ix, iy, 2, 2, 2] = (array[ix, iy]) * z_scale + z_offset
# right triangle
# first vertex
triangles[ix, iy, 3, 0, 0] = (ix + 1 / 2) * x_scale
triangles[ix, iy, 3, 0, 1] = (iy + 1 / 2) * y_scale
triangles[ix, iy, 3, 0, 2] = (array[ix, iy]) * z_scale + z_offset
# second vertex
triangles[ix, iy, 3, 1, 0] = (ix + 1) * x_scale
triangles[ix, iy, 3, 1, 1] = iy * y_scale
triangles[ix, iy, 3, 1, 2] = (raster[ix + 1, iy]) * z_scale + z_offset
# third vertex
triangles[ix, iy, 3, 2, 0] = (ix + 1) * x_scale
triangles[ix, iy, 3, 2, 1] = (iy + 1) * y_scale
triangles[ix, iy, 3, 2, 2] = (raster[ix + 1, iy + 1]) * z_scale + z_offset
return triangles.reshape((max_x * max_y * 4, 3, 3))
def _compute_triangles_of_body_side(
raster: npt.ArrayLike, max_x: int, max_y: int, x_scale: float, y_scale: float, z_scale: float, z_offset: float
) -> np.ndarray:
# loop over raster and build triangles when in first and last col and row
triangles = np.full((max_x * 4 + max_y * 4, 3, 3), -1.0, dtype=np.float64)
cnt = 0
for ix in range(0, max_x):
for iy in range(0, max_y):
if ix == 0: # first row
# triangle with two points at top of mesh
# first vertex
triangles[cnt + 0, 0, 0] = 0
triangles[cnt + 0, 0, 1] = iy * y_scale
triangles[cnt + 0, 0, 2] = raster[ix][iy] * z_scale + z_offset
# second vertex
triangles[cnt + 0, 1, 0] = 0
triangles[cnt + 0, 1, 1] = (iy + 1) * y_scale
triangles[cnt + 0, 1, 2] = raster[ix][iy + 1] * z_scale + z_offset
# third vertex
triangles[cnt + 0, 2, 0] = 0
triangles[cnt + 0, 2, 1] = iy * y_scale
triangles[cnt + 0, 2, 2] = 0
# triangle with two points at ground
# first vertex
triangles[cnt + 1, 0, 0] = 0
triangles[cnt + 1, 0, 1] = iy * y_scale
triangles[cnt + 1, 0, 2] = 0
# second vertex
triangles[cnt + 1, 1, 0] = 0
triangles[cnt + 1, 1, 1] = (iy + 1) * y_scale
triangles[cnt + 1, 1, 2] = raster[ix][iy + 1] * z_scale + z_offset
# third vertex
triangles[cnt + 1, 2, 0] = 0
triangles[cnt + 1, 2, 1] = (iy + 1) * y_scale
triangles[cnt + 1, 2, 2] = 0
cnt += 2
if ix == max_x - 1: # last row
# two points at top 3d mesh
# first vertex
triangles[cnt + 0, 0, 0] = max_x * x_scale
triangles[cnt + 0, 0, 1] = (iy + 1) * y_scale
triangles[cnt + 0, 0, 2] = raster[ix + 1][iy + 1] * z_scale + z_offset
# second vertex
triangles[cnt + 0, 1, 0] = max_x * x_scale
triangles[cnt + 0, 1, 1] = iy * y_scale
triangles[cnt + 0, 1, 2] = raster[ix + 1][iy] * z_scale + z_offset
# third vertex
triangles[cnt + 0, 2, 0] = max_x * x_scale
triangles[cnt + 0, 2, 1] = iy * y_scale
triangles[cnt + 0, 2, 2] = 0
# two points at ground
# first vertex
triangles[cnt + 1, 0, 0] = max_x * x_scale
triangles[cnt + 1, 0, 1] = (iy + 1) * y_scale
triangles[cnt + 1, 0, 2] = raster[ix + 1][iy + 1] * z_scale + z_offset
# second vertex
triangles[cnt + 1, 1, 0] = max_x * x_scale
triangles[cnt + 1, 1, 1] = iy * y_scale
triangles[cnt + 1, 1, 2] = 0
# third vertex
triangles[cnt + 1, 2, 0] = max_x * x_scale
triangles[cnt + 1, 2, 1] = (iy + 1) * y_scale
triangles[cnt + 1, 2, 2] = 0
cnt += 2
if iy == 0: # first col
# two points at top 3d mesh
# first vertex
triangles[cnt + 0, 0, 0] = (ix + 1) * x_scale
triangles[cnt + 0, 0, 1] = 0
triangles[cnt + 0, 0, 2] = raster[ix + 1][iy] * z_scale + z_offset
# second vertex
triangles[cnt + 0, 1, 0] = ix * x_scale
triangles[cnt + 0, 1, 1] = 0
triangles[cnt + 0, 1, 2] = raster[ix][iy] * z_scale + z_offset
# third vertex
triangles[cnt + 0, 2, 0] = ix * x_scale
triangles[cnt + 0, 2, 1] = 0
triangles[cnt + 0, 2, 2] = 0
# two points at ground
# first vertex
triangles[cnt + 1, 0, 0] = (ix + 1) * x_scale
triangles[cnt + 1, 0, 1] = 0
triangles[cnt + 1, 0, 2] = raster[ix + 1][iy] * z_scale + z_offset
# second vertex
triangles[cnt + 1, 1, 0] = ix * x_scale
triangles[cnt + 1, 1, 1] = 0
triangles[cnt + 1, 1, 2] = 0
# third vertex
triangles[cnt + 1, 2, 0] = (ix + 1) * x_scale
triangles[cnt + 1, 2, 1] = 0
triangles[cnt + 1, 2, 2] = 0
cnt += 2
if iy == max_y - 1: # last col
# two points at top 3d mesh
# first vertex
triangles[cnt + 0, 0, 0] = ix * x_scale
triangles[cnt + 0, 0, 1] = max_y * y_scale
triangles[cnt + 0, 0, 2] = raster[ix][iy + 1] * z_scale + z_offset
# second vertex
triangles[cnt + 0, 1, 0] = (ix + 1) * x_scale
triangles[cnt + 0, 1, 1] = max_y * y_scale
triangles[cnt + 0, 1, 2] = raster[ix + 1][iy + 1] * z_scale + z_offset
# third vertex
triangles[cnt + 0, 2, 0] = ix * x_scale
triangles[cnt + 0, 2, 1] = max_y * y_scale
triangles[cnt + 0, 2, 2] = 0
# two points at ground
# first vertex
triangles[cnt + 1, 0, 0] = ix * x_scale
triangles[cnt + 1, 0, 1] = max_y * y_scale
triangles[cnt + 1, 0, 2] = 0
# second vertex
triangles[cnt + 1, 1, 0] = (ix + 1) * x_scale
triangles[cnt + 1, 1, 1] = max_y * y_scale
triangles[cnt + 1, 1, 2] = raster[ix + 1][iy + 1] * z_scale + z_offset
# third vertex
triangles[cnt + 1, 2, 0] = (ix + 1) * x_scale
triangles[cnt + 1, 2, 1] = max_y * y_scale
triangles[cnt + 1, 2, 2] = 0
cnt += 2
return triangles
def _compute_triangles_of_bottom(max_x: int, max_y: int, x_scale: float, y_scale: float) -> np.ndarray:
# first row
fr_triangles = np.full((max_x - 1, 3, 3), -1.0, dtype=np.float64)
for i, cnt in enumerate(range(0, max_x - 1)):
fr_triangles[i, 0, 0] = cnt * x_scale
fr_triangles[i, 0, 1] = 0
fr_triangles[i, 0, 2] = 0
fr_triangles[i, 1, 0] = 0
fr_triangles[i, 1, 1] = 1 * y_scale
fr_triangles[i, 1, 2] = 0
fr_triangles[i, 2, 0] = (cnt + 1) * x_scale
fr_triangles[i, 2, 1] = 0
fr_triangles[i, 2, 2] = 0
# first col
fc_triangles = np.full((max_y - 1, 3, 3), -1.0, dtype=np.float64)
for i, cnt in enumerate(range(1, max_y)):
fc_triangles[i, 0, 0] = 0
fc_triangles[i, 0, 1] = cnt * y_scale
fc_triangles[i, 0, 2] = 0
fc_triangles[i, 1, 0] = 0
fc_triangles[i, 1, 1] = (cnt + 1) * y_scale
fc_triangles[i, 1, 2] = 0
fc_triangles[i, 2, 0] = 1 * x_scale
fc_triangles[i, 2, 1] = max_y * y_scale
fc_triangles[i, 2, 2] = 0
# last row
lr_triangles = np.full((max_x - 1, 3, 3), -1.0, dtype=np.float64)
for i, cnt in enumerate(range(1, max_x)):
lr_triangles[i, 0, 0] = cnt * x_scale
lr_triangles[i, 0, 1] = max_y * y_scale
lr_triangles[i, 0, 2] = 0
lr_triangles[i, 1, 0] = (cnt + 1) * x_scale
lr_triangles[i, 1, 1] = max_y * y_scale
lr_triangles[i, 1, 2] = 0
lr_triangles[i, 2, 0] = max_x * x_scale
lr_triangles[i, 2, 1] = (max_y - 1) * y_scale
lr_triangles[i, 2, 2] = 0
# last col
lc_triangles = np.full((max_y - 1, 3, 3), -1.0, dtype=np.float64)
for i, cnt in enumerate(range(0, max_y - 1)):
lc_triangles[i, 0, 0] = max_x * x_scale
lc_triangles[i, 0, 1] = cnt * y_scale
lc_triangles[i, 0, 2] = 0
lc_triangles[i, 1, 0] = (max_x - 1) * x_scale
lc_triangles[i, 1, 1] = 0
lc_triangles[i, 1, 2] = 0
lc_triangles[i, 2, 0] = max_x * x_scale
lc_triangles[i, 2, 1] = (cnt + 1) * y_scale
lc_triangles[i, 2, 2] = 0
center_triangles = np.full((2, 3, 3), -1.0, dtype=np.float64)
center_triangles[0, 0, 0] = (max_x - 1) * x_scale
center_triangles[0, 0, 1] = 0 * y_scale
center_triangles[0, 0, 2] = 0
center_triangles[0, 1, 0] = 1 * x_scale
center_triangles[0, 1, 1] = max_y * y_scale
center_triangles[0, 1, 2] = 0
center_triangles[0, 2, 0] = max_x * x_scale
center_triangles[0, 2, 1] = (max_y - 1) * y_scale
center_triangles[0, 2, 2] = 0
center_triangles[1, 0, 0] = 1 * x_scale
center_triangles[1, 0, 1] = max_y * y_scale
center_triangles[1, 0, 2] = 0
center_triangles[1, 1, 0] = (max_x - 1) * x_scale
center_triangles[1, 1, 1] = 0 * y_scale
center_triangles[1, 1, 2] = 0
center_triangles[1, 2, 0] = 0 * x_scale
center_triangles[1, 2, 1] = 1 * y_scale
center_triangles[1, 2, 2] = 0
return np.vstack((fr_triangles, lr_triangles, fc_triangles, lc_triangles, center_triangles))
def _determine_z_offset(z_offset: Union[None, float], minimum: float, elevation_scale: float) -> float:
if z_offset is None:
# using the natural height, i.e. islands will have an z_offset of ~0 and mountains will have a larger z_offset
return minimum * elevation_scale
else:
if z_offset < 0:
log.warning("☝️ Warning: Be careful using negative z_offsets, as it might break your 3D model.")
# subtract scaled minimum from z_offset to ensure the input z_offset will remain
return z_offset - minimum * elevation_scale
def compute_all_triangles(
array: npt.ArrayLike,
desired_size: ModelSize,
z_offset: Union[None, float],
z_scale: float,
elevation_scale: float,
) -> np.ndarray:
max_x, max_y = array.shape
log.debug("🗺 creating base raster for tiff...")
raster = _create_raster(array, max_x, max_y)
x_scale, y_scale = desired_size.x / max_x, desired_size.y / max_y
z_offset = _determine_z_offset(z_offset, raster.min(), elevation_scale)
combined_z_scale = elevation_scale * z_scale
# compute triangles for 3d surface, sides and bottom
log.debug("⛰ computing triangles of 3d surface...")
dem_triangles = _compute_triangles_of_3d_surface(
raster=raster,
array=array,
max_x=max_x,
max_y=max_y,
x_scale=x_scale,
y_scale=y_scale,
z_scale=combined_z_scale,
z_offset=z_offset,
)
log.debug("📐 computing triangles of body sides...")
side_triangles = _compute_triangles_of_body_side(
raster=raster,
max_x=max_x,
max_y=max_y,
x_scale=x_scale,
y_scale=y_scale,
z_scale=combined_z_scale,
z_offset=z_offset,
)
bottom_triangles = _compute_triangles_of_bottom(max_x=max_x, max_y=max_y, x_scale=x_scale, y_scale=y_scale)
return | np.vstack((dem_triangles, side_triangles, bottom_triangles)) | numpy.vstack |
import logging
import numba
import numpy as np
import numpy.random as npr
import second.core.box_np_ops as box_np_ops
logger = logging.getLogger(__name__)
def unmap(data, count, inds, fill=0):
"""Unmap a subset of item (data) back to the original set of items (of
size count)"""
if count == len(inds):
return data
if len(data.shape) == 1:
ret = np.empty((count, ), dtype=data.dtype)
ret.fill(fill)
ret[inds] = data
else:
ret = np.empty((count, ) + data.shape[1:], dtype=data.dtype)
ret.fill(fill)
ret[inds, :] = data
return ret
def create_target_np(all_anchors,
gt_boxes,
similarity_fn,
box_encoding_fn,
prune_anchor_fn=None,
gt_classes=None,
matched_threshold=0.6,
unmatched_threshold=0.45,
bbox_inside_weight=None,
positive_fraction=None,
rpn_batch_size=300,
norm_by_num_examples=False,
gt_importance=None,
box_code_size=7):
"""Modified from FAIR detectron.
Args:
all_anchors: [num_of_anchors, box_ndim] float tensor.
gt_boxes: [num_gt_boxes, box_ndim] float tensor.
similarity_fn: a function, accept anchors and gt_boxes, return
similarity matrix(such as IoU).
box_encoding_fn: a function, accept gt_boxes and anchors, return
box encodings(offsets).
prune_anchor_fn: a function, accept anchors, return indices that
indicate valid anchors.
gt_classes: [num_gt_boxes] int tensor. indicate gt classes, must
start with 1.
matched_threshold: float, iou greater than matched_threshold will
be treated as positives.
unmatched_threshold: float, iou smaller than unmatched_threshold will
be treated as negatives.
bbox_inside_weight: unused
positive_fraction: [0-1] float or None. if not None, we will try to
keep ratio of pos/neg equal to positive_fraction when sample.
if there is not enough positives, it fills the rest with negatives
rpn_batch_size: int. sample size
norm_by_num_examples: bool. norm box_weight by number of examples, but
I recommend to do this outside.
gt_importance: 1d array. loss weight per gt.
Returns:
labels, bbox_targets, bbox_outside_weights
"""
total_anchors = all_anchors.shape[0]
if prune_anchor_fn is not None:
inds_inside = prune_anchor_fn(all_anchors)
anchors = all_anchors[inds_inside, :]
if not isinstance(matched_threshold, float):
matched_threshold = matched_threshold[inds_inside]
if not isinstance(unmatched_threshold, float):
unmatched_threshold = unmatched_threshold[inds_inside]
else:
anchors = all_anchors
inds_inside = None
num_inside = len(inds_inside) if inds_inside is not None else total_anchors
box_ndim = all_anchors.shape[1]
logger.debug('total_anchors: {}'.format(total_anchors))
logger.debug('inds_inside: {}'.format(num_inside))
logger.debug('anchors.shape: {}'.format(anchors.shape))
if gt_classes is None:
gt_classes = np.ones([gt_boxes.shape[0]], dtype=np.int32)
if gt_importance is None:
gt_importance = np.ones([gt_boxes.shape[0]], dtype=np.float32)
# Compute anchor labels:
# label=1 is positive, 0 is negative, -1 is don't care (ignore)
labels = np.empty((num_inside, ), dtype=np.int32)
gt_ids = np.empty((num_inside, ), dtype=np.int32)
labels.fill(-1)
gt_ids.fill(-1)
importance = np.empty((num_inside, ), dtype=np.float32)
importance.fill(1)
if len(gt_boxes) > 0:
# Compute overlaps between the anchors and the gt boxes overlaps
anchor_by_gt_overlap = similarity_fn(anchors, gt_boxes)
# Map from anchor to gt box that has highest overlap
anchor_to_gt_argmax = anchor_by_gt_overlap.argmax(axis=1)
# For each anchor, amount of overlap with most overlapping gt box
anchor_to_gt_max = anchor_by_gt_overlap[np.arange(num_inside),
anchor_to_gt_argmax] #
# Map from gt box to an anchor that has highest overlap
gt_to_anchor_argmax = anchor_by_gt_overlap.argmax(axis=0)
# For each gt box, amount of overlap with most overlapping anchor
gt_to_anchor_max = anchor_by_gt_overlap[gt_to_anchor_argmax,
np.arange(anchor_by_gt_overlap.
shape[1])]
# must remove gt which doesn't match any anchor.
empty_gt_mask = gt_to_anchor_max == 0
gt_to_anchor_max[empty_gt_mask] = -1
"""
if not np.all(empty_gt_mask):
gt_to_anchor_max = gt_to_anchor_max[empty_gt_mask]
anchor_by_gt_overlap = anchor_by_gt_overlap[:, empty_gt_mask]
gt_classes = gt_classes[empty_gt_mask]
gt_boxes = gt_boxes[empty_gt_mask]
"""
# Find all anchors that share the max overlap amount
# (this includes many ties)
anchors_with_max_overlap = np.where(
anchor_by_gt_overlap == gt_to_anchor_max)[0]
# Fg label: for each gt use anchors with highest overlap
# (including ties)
gt_inds_force = anchor_to_gt_argmax[anchors_with_max_overlap]
labels[anchors_with_max_overlap] = gt_classes[gt_inds_force]
gt_ids[anchors_with_max_overlap] = gt_inds_force
# Fg label: above threshold IOU
pos_inds = anchor_to_gt_max >= matched_threshold
gt_inds = anchor_to_gt_argmax[pos_inds]
labels[pos_inds] = gt_classes[gt_inds]
gt_ids[pos_inds] = gt_inds
bg_inds = np.where(anchor_to_gt_max < unmatched_threshold)[0]
importance[pos_inds] = gt_importance[gt_inds]
else:
# labels[:] = 0
bg_inds = np.arange(num_inside)
fg_inds = np.where(labels > 0)[0]
fg_max_overlap = None
if len(gt_boxes) > 0:
fg_max_overlap = anchor_to_gt_max[fg_inds]
gt_pos_ids = gt_ids[fg_inds]
# bg_inds = np.where(anchor_to_gt_max < unmatched_threshold)[0]
# bg_inds = np.where(labels == 0)[0]
# subsample positive labels if we have too many
if positive_fraction is not None:
num_fg = int(positive_fraction * rpn_batch_size)
if len(fg_inds) > num_fg:
disable_inds = npr.choice(
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
labels[disable_inds] = -1
fg_inds = np.where(labels > 0)[0]
# subsample negative labels if we have too many
# (samples with replacement, but since the set of bg inds is large most
# samples will not have repeats)
num_bg = rpn_batch_size - np.sum(labels > 0)
# print(num_fg, num_bg, len(bg_inds) )
if len(bg_inds) > num_bg:
enable_inds = bg_inds[npr.randint(len(bg_inds), size=num_bg)]
labels[enable_inds] = 0
bg_inds = np.where(labels == 0)[0]
else:
if len(gt_boxes) == 0:
labels[:] = 0
else:
labels[bg_inds] = 0
# re-enable anchors_with_max_overlap
labels[anchors_with_max_overlap] = gt_classes[gt_inds_force]
bbox_targets = np.zeros((num_inside, box_code_size),
dtype=all_anchors.dtype)
if len(gt_boxes) > 0:
# print(anchors[fg_inds, :].shape, gt_boxes[anchor_to_gt_argmax[fg_inds], :].shape)
# bbox_targets[fg_inds, :] = box_encoding_fn(
# anchors[fg_inds, :], gt_boxes[anchor_to_gt_argmax[fg_inds], :])
bbox_targets[fg_inds, :] = box_encoding_fn(
gt_boxes[anchor_to_gt_argmax[fg_inds], :], anchors[fg_inds, :])
# Bbox regression loss has the form:
# loss(x) = weight_outside * L(weight_inside * x)
# Inside weights allow us to set zero loss on an element-wise basis
# Bbox regression is only trained on positive examples so we set their
# weights to 1.0 (or otherwise if config is different) and 0 otherwise
# NOTE: we don't need bbox_inside_weights, remove it.
# bbox_inside_weights = np.zeros((num_inside, box_ndim), dtype=np.float32)
# bbox_inside_weights[labels == 1, :] = [1.0] * box_ndim
# The bbox regression loss only averages by the number of images in the
# mini-batch, whereas we need to average by the total number of example
# anchors selected
# Outside weights are used to scale each element-wise loss so the final
# average over the mini-batch is correct
# bbox_outside_weights = np.zeros((num_inside, box_ndim), dtype=np.float32)
bbox_outside_weights = np.zeros((num_inside, ), dtype=all_anchors.dtype)
# uniform weighting of examples (given non-uniform sampling)
if norm_by_num_examples:
num_examples = np.sum(labels >= 0) # neg + pos
num_examples = | np.maximum(1.0, num_examples) | numpy.maximum |
"""
Tests for zipline.utils.validate.
"""
from operator import attrgetter
from types import FunctionType
from unittest import TestCase
from parameterized import parameterized
from numpy import arange, array, dtype
import pytz
from six import PY3
from zipline.utils.preprocess import call, preprocess
from zipline.utils.input_validation import (
expect_dimensions,
ensure_timezone,
expect_element,
expect_dtypes,
expect_types,
optional,
optionally,
)
def noop(func, argname, argvalue):
assert isinstance(func, FunctionType)
assert isinstance(argname, str)
return argvalue
if PY3:
qualname = attrgetter('__qualname__')
else:
def qualname(ob):
return '.'.join((__name__, ob.__name__))
class PreprocessTestCase(TestCase):
@parameterized.expand([
('too_many', (1, 2, 3), {}),
('too_few', (1,), {}),
('collision', (1,), {'a': 1}),
('unexpected', (1,), {'q': 1}),
])
def test_preprocess_doesnt_change_TypeErrors(self, name, args, kwargs):
"""
Verify that the validate decorator doesn't swallow typeerrors that
would be raised when calling a function with invalid arguments
"""
def undecorated(x, y):
return x, y
decorated = preprocess(x=noop, y=noop)(undecorated)
with self.assertRaises(TypeError) as e:
undecorated(*args, **kwargs)
undecorated_errargs = e.exception.args
with self.assertRaises(TypeError) as e:
decorated(*args, **kwargs)
decorated_errargs = e.exception.args
self.assertEqual(len(decorated_errargs), 1)
self.assertEqual(len(undecorated_errargs), 1)
self.assertEqual(decorated_errargs[0], undecorated_errargs[0])
def test_preprocess_co_filename(self):
def undecorated():
pass
decorated = preprocess()(undecorated)
self.assertEqual(
undecorated.__code__.co_filename,
decorated.__code__.co_filename,
)
def test_preprocess_preserves_docstring(self):
@preprocess()
def func():
"My awesome docstring"
self.assertEqual(func.__doc__, "My awesome docstring")
def test_preprocess_preserves_function_name(self):
@preprocess()
def arglebargle():
pass
self.assertEqual(arglebargle.__name__, 'arglebargle')
@parameterized.expand([
((1, 2), {}),
((1, 2), {'c': 3}),
((1,), {'b': 2}),
((), {'a': 1, 'b': 2}),
((), {'a': 1, 'b': 2, 'c': 3}),
])
def test_preprocess_no_processors(self, args, kwargs):
@preprocess()
def func(a, b, c=3):
return a, b, c
self.assertEqual(func(*args, **kwargs), (1, 2, 3))
def test_preprocess_bad_processor_name(self):
a_processor = preprocess(a=int)
# Should work fine.
@a_processor
def func_with_arg_named_a(a):
pass
@a_processor
def func_with_default_arg_named_a(a=1):
pass
message = "Got processors for unknown arguments: %s." % {'a'}
with self.assertRaises(TypeError) as e:
@a_processor
def func_with_no_args():
pass
self.assertEqual(e.exception.args[0], message)
with self.assertRaises(TypeError) as e:
@a_processor
def func_with_arg_named_b(b):
pass
self.assertEqual(e.exception.args[0], message)
@parameterized.expand([
((1, 2), {}),
((1, 2), {'c': 3}),
((1,), {'b': 2}),
((), {'a': 1, 'b': 2}),
((), {'a': 1, 'b': 2, 'c': 3}),
])
def test_preprocess_on_function(self, args, kwargs):
decorators = [
preprocess(a=call(str), b=call(float), c=call(lambda x: x + 1)),
]
for decorator in decorators:
@decorator
def func(a, b, c=3):
return a, b, c
self.assertEqual(func(*args, **kwargs), ('1', 2.0, 4))
@parameterized.expand([
((1, 2), {}),
((1, 2), {'c': 3}),
((1,), {'b': 2}),
((), {'a': 1, 'b': 2}),
((), {'a': 1, 'b': 2, 'c': 3}),
])
def test_preprocess_on_method(self, args, kwargs):
decorators = [
preprocess(a=call(str), b=call(float), c=call(lambda x: x + 1)),
]
for decorator in decorators:
class Foo(object):
@decorator
def method(self, a, b, c=3):
return a, b, c
@classmethod
@decorator
def clsmeth(cls, a, b, c=3):
return a, b, c
self.assertEqual(Foo.clsmeth(*args, **kwargs), ('1', 2.0, 4))
self.assertEqual(Foo().method(*args, **kwargs), ('1', 2.0, 4))
def test_expect_types(self):
@expect_types(a=int, b=int)
def foo(a, b, c):
return a, b, c
self.assertEqual(foo(1, 2, 3), (1, 2, 3))
self.assertEqual(foo(1, 2, c=3), (1, 2, 3))
self.assertEqual(foo(1, b=2, c=3), (1, 2, 3))
self.assertEqual(foo(1, 2, c='3'), (1, 2, '3'))
for not_int in (str, float):
with self.assertRaises(TypeError) as e:
foo(not_int(1), 2, 3)
self.assertEqual(
e.exception.args[0],
"{qualname}() expected a value of type "
"int for argument 'a', but got {t} instead.".format(
qualname=qualname(foo),
t=not_int.__name__,
)
)
with self.assertRaises(TypeError):
foo(1, not_int(2), 3)
with self.assertRaises(TypeError):
foo(not_int(1), not_int(2), 3)
def test_expect_types_custom_funcname(self):
class Foo(object):
@expect_types(__funcname='ArgleBargle', a=int)
def __init__(self, a):
self.a = a
foo = Foo(1)
self.assertEqual(foo.a, 1)
for not_int in (str, float):
with self.assertRaises(TypeError) as e:
Foo(not_int(1))
self.assertEqual(
e.exception.args[0],
"ArgleBargle() expected a value of type "
"int for argument 'a', but got {t} instead.".format(
t=not_int.__name__,
)
)
def test_expect_types_with_tuple(self):
@expect_types(a=(int, float))
def foo(a):
return a
self.assertEqual(foo(1), 1)
self.assertEqual(foo(1.0), 1.0)
with self.assertRaises(TypeError) as e:
foo('1')
expected_message = (
"{qualname}() expected a value of "
"type int or float for argument 'a', but got str instead."
).format(qualname=qualname(foo))
self.assertEqual(e.exception.args[0], expected_message)
def test_expect_optional_types(self):
@expect_types(a=optional(int))
def foo(a=None):
return a
self.assertIs(foo(), None)
self.assertIs(foo(None), None)
self.assertIs(foo(a=None), None)
self.assertEqual(foo(1), 1)
self.assertEqual(foo(a=1), 1)
with self.assertRaises(TypeError) as e:
foo('1')
expected_message = (
"{qualname}() expected a value of "
"type int or NoneType for argument 'a', but got str instead."
).format(qualname=qualname(foo))
self.assertEqual(e.exception.args[0], expected_message)
def test_expect_element(self):
set_ = {'a', 'b'}
@expect_element(a=set_)
def f(a):
return a
self.assertEqual(f('a'), 'a')
self.assertEqual(f('b'), 'b')
with self.assertRaises(ValueError) as e:
f('c')
expected_message = (
"{qualname}() expected a value in {set_!r}"
" for argument 'a', but got 'c' instead."
).format(
# We special-case set to show a tuple instead of the set repr.
set_=tuple(sorted(set_)),
qualname=qualname(f),
)
self.assertEqual(e.exception.args[0], expected_message)
def test_expect_element_custom_funcname(self):
set_ = {'a', 'b'}
class Foo(object):
@expect_element(__funcname='ArgleBargle', a=set_)
def __init__(self, a):
self.a = a
with self.assertRaises(ValueError) as e:
Foo('c')
expected_message = (
"ArgleBargle() expected a value in {set_!r}"
" for argument 'a', but got 'c' instead."
).format(
# We special-case set to show a tuple instead of the set repr.
set_=tuple(sorted(set_)),
)
self.assertEqual(e.exception.args[0], expected_message)
def test_expect_dtypes(self):
@expect_dtypes(a=dtype(float), b=dtype('datetime64[ns]'))
def foo(a, b, c):
return a, b, c
good_a = arange(3, dtype=float)
good_b = arange(3).astype('datetime64[ns]')
good_c = object()
a_ret, b_ret, c_ret = foo(good_a, good_b, good_c)
self.assertIs(a_ret, good_a)
self.assertIs(b_ret, good_b)
self.assertIs(c_ret, good_c)
with self.assertRaises(TypeError) as e:
foo(good_a, arange(3, dtype='int64'), good_c)
expected_message = (
"{qualname}() expected a value with dtype 'datetime64[ns]'"
" for argument 'b', but got 'int64' instead."
).format(qualname=qualname(foo))
self.assertEqual(e.exception.args[0], expected_message)
with self.assertRaises(TypeError) as e:
foo(arange(3, dtype='uint32'), good_c, good_c)
expected_message = (
"{qualname}() expected a value with dtype 'float64'"
" for argument 'a', but got 'uint32' instead."
).format(qualname=qualname(foo))
self.assertEqual(e.exception.args[0], expected_message)
def test_expect_dtypes_with_tuple(self):
allowed_dtypes = (dtype('datetime64[ns]'), dtype('float'))
@expect_dtypes(a=allowed_dtypes)
def foo(a, b):
return a, b
for d in allowed_dtypes:
good_a = arange(3).astype(d)
good_b = object()
ret_a, ret_b = foo(good_a, good_b)
self.assertIs(good_a, ret_a)
self.assertIs(good_b, ret_b)
with self.assertRaises(TypeError) as e:
foo(arange(3, dtype='uint32'), object())
expected_message = (
"{qualname}() expected a value with dtype 'datetime64[ns]' "
"or 'float64' for argument 'a', but got 'uint32' instead."
).format(qualname=qualname(foo))
self.assertEqual(e.exception.args[0], expected_message)
def test_expect_dtypes_custom_funcname(self):
allowed_dtypes = (dtype('datetime64[ns]'), | dtype('float') | numpy.dtype |
#%% STARmap_AllenVISp
import os
os.chdir('STARmap_AllenVISp/')
import pickle
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('qt5agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
import matplotlib.pyplot as plt
import seaborn as sns
import sys
sys.path.insert(1,'SpaGE/')
from principal_vectors import PVComputation
with open ('data/SpaGE_pkl/Starmap.pkl', 'rb') as f:
datadict = pickle.load(f)
Starmap_data_scaled = datadict['Starmap_data_scaled']
del datadict
with open ('data/SpaGE_pkl/Allen_VISp.pkl', 'rb') as f:
datadict = pickle.load(f)
RNA_data_scaled = datadict['RNA_data_scaled']
del datadict
Common_data = RNA_data_scaled[ | np.intersect1d(Starmap_data_scaled.columns,RNA_data_scaled.columns) | numpy.intersect1d |
import sys
import operator
import numpy as np
from sklearn.base import BaseEstimator, RegressorMixin, clone
from sklearn.externals import six
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
class MetaRegressor(BaseEstimator, RegressorMixin):
""" A combined multi-class regressor
Parameters
----------
regressors : array-like, shape = [n_regressors]
weights : array-like, shape = [n_regressors]
Optional, default: None
If a list of `int` or `float` values are
provided, the regressors are weighted by importance;
Uses uniform weights if `weights=None`.
"""
def __init__(self, regressors, weights=None):
self.regressors = regressors
self.weights = weights
def fit(self, Xs, ys, nested=True):
""" Fit regressors
Parameters
----------
Xs : List of {array-like, sparse matrix},
length = number of regressors
List of matrices of training samples
ys : List of array-like,
length = number of regressors
List of vectors of target class labels
nested: Bool (default = True)
Returns
-------
self : object
"""
assert(len(Xs) == len(ys) == len(self.regressors))
if (not isinstance(Xs,list)) or (not isinstance(ys,list)):
raise TypeError
sys.exit()
if nested:
Xs = map(np.vstack, Xs)
ys = map(np.hstack, ys)
self.regressors_ = []
for i,reg in enumerate(self.regressors):
fitted_reg = clone(reg).fit(Xs[i], ys[i])
self.regressors_.append(fitted_reg)
return self
def predict(self, Xs):
""" Predict class labels.
Parameters
----------
Xs : List of {array-like, sparse matrix},
length = number of regressors
List of matrices of training samples
Returns
-------
weighted_pred : array-like, shape = [n_samples]
Predicted (weighted) target values
"""
num_regs = len(self.regressors_)
preds = []
for index, X in enumerate(Xs):
pred = [np.mean(self.regressors_[index].predict(P), axis=0) for P in X]
preds.append(pred)
preds = np.asarray(preds)
weighted_pred = np.average(preds, axis=0, weights=self.weights)
return weighted_pred
def score(self, Xs, y_true, scoring='rmse'):
"""
Returns the R2 (Coefficient of Determination) score by default
Parameters
----------
Xs : List of {array-like, sparse matrix},
length = number of regressors
List of matrices of training samples
y_true: Single vectors of true y values
"""
y_true = np.asarray(y_true)
if scoring == 'r2':
return r2_score(y_true,self.predict(Xs))
elif scoring == 'mean_abs_error':
return mean_absolute_error(y_true, self.predict(Xs))
elif scoring == 'rmse':
return np.sqrt(mean_squared_error(y_true, self.predict(Xs)))
class LateFusionRegressor(BaseEstimator, RegressorMixin):
"""
Weighted Combined Regressor
"""
def __init__(self,regressors,weights=None):
self.regressors = regressors # list of regressors
self.weights = weights # weights for each of the regressors
def fit(self,Xs,ys):
"""
Trains on the data.
Xs = [[], [], []] (one matrix for each mode)
ys = [[], [], []]
Returns: self
"""
if isinstance(Xs,list) and isinstance(ys,list):
assert(len(Xs) == len(ys) == len(self.regressors))
self.regressors_ = [] # store trained regressors
for idx, reg in enumerate(self.regressors):
fitted_reg = clone(reg).fit(Xs[idx],ys[idx])
self.regressors_.append(fitted_reg)
return self
def predict(self,Xs):
"""
Predicts new data instances
Args:
Xs = [[], [], []]
Returns:
weighted_pred: Weighted prediction of the target
"""
preds = []
for mode_idx, reg in enumerate(self.regressors_):
preds.append(reg.predict(Xs[mode_idx]))
preds = | np.asarray(preds) | numpy.asarray |
import numpy as np
import pandas as pd
import scipy.cluster.hierarchy as hr
from scipy.spatial.distance import squareform
import riskfolio.RiskFunctions as rk
import riskfolio.AuxFunctions as af
import riskfolio.ParamsEstimation as pe
class HCPortfolio(object):
r"""
Class that creates a portfolio object with all properties needed to
calculate optimal portfolios.
Parameters
----------
returns : DataFrame, optional
A dataframe that containts the returns of the assets.
The default is None.
alpha : float, optional
Significance level of CVaR, EVaR, CDaR and EDaR. The default is 0.05.
"""
def __init__(self, returns=None, alpha=0.05):
self._returns = returns
self.alpha = alpha
self.asset_order = None
self.clusters = None
self.cov = None
self.corr = None
self.corr_sorted = None
@property
def returns(self):
if self._returns is not None and isinstance(self._returns, pd.DataFrame):
return self._returns
else:
raise NameError("returns must be a DataFrame")
@returns.setter
def returns(self, value):
if value is not None and isinstance(value, pd.DataFrame):
self._returns = value
else:
raise NameError("returns must be a DataFrame")
@property
def assetslist(self):
if self._returns is not None and isinstance(self._returns, pd.DataFrame):
return self._returns.columns.tolist()
# get naive-risk weights
def _naive_risk(self, returns, cov, rm="MV", rf=0):
assets = returns.columns.tolist()
n = len(assets)
if rm == "equal":
weight = np.ones((n, 1)) * 1 / n
else:
inv_risk = | np.zeros((n, 1)) | numpy.zeros |
import math
import numpy as np
from scipy import io
import scipy
import cv2
import matplotlib.pyplot as plt
#################################### MAP #####################################
def initializeMap(res, xmin, ymin, xmax, ymax, memory = None, trust = None, optimism = None, occupied_thresh = None, free_thresh = None, confidence_limit = None):
if memory == None:
memory = 1 # set to value between 0 and 1 if memory is imperfect
if trust == None:
trust = 0.8
if optimism == None:
optimism = 0.5
if occupied_thresh == None:
occupied_thresh = 0.85
if free_thresh == None:
free_thresh = 0.2 # 0.5 # 0.25
if confidence_limit == None:
confidence_limit = 100 * memory
MAP = {}
MAP['res'] = res #meters; used to detrmine the number of square cells
MAP['xmin'] = xmin #meters
MAP['ymin'] = ymin
MAP['xmax'] = xmax
MAP['ymax'] = ymax
MAP['sizex'] = int(np.ceil((MAP['xmax'] - MAP['xmin']) / MAP['res'] + 1)) # number of horizontal cells
MAP['sizey'] = int(np.ceil((MAP['ymax'] - MAP['ymin']) / MAP['res'] + 1)) # number of vertical cells
MAP['map'] = np.zeros((MAP['sizex'], MAP['sizey']), dtype=np.float64) # contains log odds. DATA TYPE: char or int8
# Related to log-odds
MAP['memory'] = memory
MAP['occupied'] = np.log(trust / (1 - trust))
MAP['free'] = optimism * np.log((1 - trust) / trust) # Try to be optimistic about exploration, so weight free space
MAP['confidence_limit'] = confidence_limit
# Related to occupancy grid
MAP['occupied_thresh'] = np.log(occupied_thresh / (1 - occupied_thresh))
MAP['free_thresh'] = np.log(free_thresh / (1 - free_thresh))
(h, w) = MAP['map'].shape
MAP['plot'] = np.zeros((h, w, 3), np.uint8)
return MAP
def updateMap(MAP, x_w, y_w, x_curr, y_curr):
# convert lidar hits to map coordinates
x_m, y_m = world2map(MAP, x_w, y_w)
# convert robot's position to map coordinates
x_curr_m, y_curr_m = world2map(MAP, x_curr, y_curr)
indGood = np.logical_and(np.logical_and(np.logical_and((x_m > 1), (y_m > 1)), (x_m < MAP['sizex'])),
(y_m < MAP['sizey']))
MAP['map'] = MAP['map'] * MAP['memory']
MAP['map'][x_m[0][indGood[0]], y_m[0][indGood[0]]] += MAP['occupied'] - MAP['free'] # we're going to add the MAP['free'] back in a second
# initialize a mask where we will label the free cells
free_grid = np.zeros(MAP['map'].shape).astype(np.int8)
x_m = np.append(x_m, x_curr_m) # Must consider robot's current cell
y_m = np.append(y_m, y_curr_m)
contours = np.vstack((x_m, y_m)) # SWITCH
# find the cells that are free, and update the map
cv2.drawContours(free_grid, [contours.T], -1, MAP['free'], -1)
MAP['map'] += free_grid
# prevent overconfidence
MAP['map'][MAP['map'] > MAP['confidence_limit']] = MAP['confidence_limit']
MAP['map'][MAP['map'] < -MAP['confidence_limit']] = -MAP['confidence_limit']
# update plot
occupied_grid = MAP['map'] > MAP['occupied_thresh']
free_grid = MAP['map'] < MAP['free_thresh']
MAP['plot'][occupied_grid] = [0, 0, 0]
MAP['plot'][free_grid] = [255, 255, 255]
MAP['plot'][np.logical_and(np.logical_not(free_grid), np.logical_not(occupied_grid))] = [127, 127, 127]
x_m, y_m = world2map(MAP, x_w, y_w)
MAP['plot'][y_m, x_m] = [0, 255, 0] # plot latest lidar scan hits
def lidar2map(MAP, x_l, y_l):
#x_w, y_w = lidar2world()
x_m, y_m = world2map(MAP, x_l, y_l)
# build a single map in the lidar's frame of reference
indGood = np.logical_and(np.logical_and(np.logical_and((x_m > 1), (y_m > 1)), (x_m < MAP['sizex'])),
(y_m < MAP['sizey']))
map = np.zeros(MAP['map'].shape)
map[x_m[0][indGood[0]], y_m[0][indGood[0]]] = 1
np.int8(map)
return map
def world2map(MAP, x_w, y_w):
# convert from meters to cells
x_m = np.ceil((x_w - MAP['xmin']) / MAP['res']).astype(np.int16) - 1
y_m = np.ceil((y_w - MAP['ymin']) / MAP['res']).astype(np.int16) - 1
indGood = np.logical_and(np.logical_and(np.logical_and((x_m > 1), (y_m > 1)), (x_m < MAP['sizex'])),
(y_m < MAP['sizey']))
x_m = x_m[indGood]
y_m = y_m[indGood]
return x_m.astype(np.int), y_m.astype(np.int)
################################## PARTICLES #################################
# A particle is just a tuple of weights (scalar) and pose (3x1)
def initializeParticles(num = None, n_thresh = None, noise_cov = None):
if num == None:
num = 100
if n_thresh == None:
n_thresh = 0.1 * num # set threshold to 20% of original number of particles to resample
if noise_cov == None:
noise_cov = np.zeros((3,3)) # for debugging purposes
noise_cov = 0.5 * np.eye(3) # set noise covariances for multivariate Gaussian. This is 10% of the delta_pose movement (check predictParticles)
noise_cov = np.array([[.1, 0, 0], [0, .1, 0], [0, 0, 0.005]])
PARTICLES = {}
PARTICLES['num'] = num
PARTICLES['n_thresh'] = n_thresh # below this value, resample
PARTICLES['noise_cov'] = noise_cov # covariances for Gaussian noise in each dimension
PARTICLES['weights'] = np.ones(PARTICLES['num']) / PARTICLES['num']
PARTICLES['poses'] = np.zeros((PARTICLES['num'], 3))
return PARTICLES
def predictParticles(PARTICLES, d_x, d_y, d_yaw, x_prev, y_prev, yaw_prev):
noise_cov = np.matmul(PARTICLES['noise_cov'], np.abs(np.array([[d_x, 0, 0], [0, d_y, 0], [0, 0, d_yaw]])))
# create hypothesis (particles) poses
noise = np.random.multivariate_normal([0, 0, 0], noise_cov, PARTICLES['num'])
PARTICLES['poses'] = noise + np.array([[x_prev, y_prev, yaw_prev]])
# update poses according to deltas
PARTICLES['poses'] += np.array([[d_x, d_y, d_yaw]])
return
def updateParticles(PARTICLES, MAP, x_l, y_l, psi, theta):
n_eff = 1 / np.sum(np.square(PARTICLES['weights']))
if (n_eff < PARTICLES['n_thresh']):
print("resampling!")
resampleParticles(PARTICLES)
correlations = np.zeros(PARTICLES['num'])
_, plot = cv2.threshold(MAP['plot'], 127, 255, cv2.THRESH_BINARY)
for i in range(PARTICLES['num']):
x_w, y_w, _ = lidar2world(psi, theta, x_l, y_l, PARTICLES['poses'][i][0], PARTICLES['poses'][i][1], PARTICLES['poses'][i][2])
x_m, y_m = world2map(MAP, x_w, y_w)
particle_plot = np.zeros(MAP['plot'].shape)
particle_plot[y_m, x_m] = [0, 1, 0]
correlations[i] = np.sum(np.logical_and(plot, particle_plot)) # switched x and y
weights = scipy.special.softmax(correlations - np.max(correlations)) # np.multiply(PARTICLES['weights'], scipy.special.softmax(correlations)) # multiply or add or replace?
if (np.count_nonzero(correlations) == 0):
print("ALL ZERO CORRELATIONS")
PARTICLES['weights'] = weights
return
def resampleParticles(PARTICLES):
# implemented low-variance resampling according to: https://robotics.stackexchange.com/questions/7705/low-variance-resampling-algorithm-for-particle-filter
M = PARTICLES['num']
new_poses = np.zeros(PARTICLES['poses'].shape)
r = np.random.uniform(0, 1 / M)
w = PARTICLES['weights'][0]
i = 0
j = 0
for m in range(M):
U = r + m / M
while (U > w):
i += 1
w += PARTICLES['weights'][i]
new_poses[j, :] = PARTICLES['poses'][i, :]
j += 1
PARTICLES['poses'] = new_poses
PARTICLES['weights'] = np.ones(PARTICLES['num']) / PARTICLES['num']
return
################################# TRANSFORMS #################################
b = 0.93 # distance from world to body in meters
h = 0.33 # distance from body to head
l = 0.15 # distance from head to lidar
k = 0.07 # distance from head to kinect
def pol2cart(rho, phi):
x = rho * np.cos(phi)
y = rho * | np.sin(phi) | numpy.sin |
#!/usr/bin/python2
# -*- coding: utf-8 -*-
import sys
import os.path
import numpy as np
from utils.util import *
ZENITH_LEVEL = 64
AZIMUTH_LEVEL = 512
INPUT_MEAN = np.array([[[10.88, 0.23, -1.04, 12.12]]]) # Need to be changed to accomodate airsmith environment
INPUT_STD = np.array([[[11.47, 6.91, 0.86, 12.32]]]) # Need to be changed to accomodate airsmith environment
def spherical_project(point_cloud):
np_p = np.load(point_cloud)
# perform fov filter by using hv_in_range
cond = self.hv_in_range(x=np_p[:, 0],
y=np_p[:, 1],
z=np_p[:, 2],
fov=[-45, 45])
np_p_ranged = np_p[cond]
# get depth map
lidar = self.pto_depth_map(velo_points=np_p_ranged, C=7)
lidar_f = lidar.astype(np.float32)
# to perform prediction
lidar_mask = np.reshape(
(lidar[:, :, 6] > 0),
[ZENITH_LEVEL, AZIMUTH_LEVEL, 1]
)
lidar_f = (lidar_f - INPUT_MEAN) / INPUT_STD
return lidar_f
def hv_in_range( x, y, z, fov, fov_type='h'):
"""
Extract filtered in-range velodyne coordinates based on azimuth & elevation angle limit
Args:
`x`:velodyne points x array
`y`:velodyne points y array
`z`:velodyne points z array
`fov`:a two element list, e.g.[-45,45]
`fov_type`:the fov type, could be `h` or 'v',defualt in `h`
Return:
`cond`:condition of points within fov or not
Raise:
`NameError`:"fov type must be set between 'h' and 'v' "
"""
d = np.sqrt(x ** 2 + y ** 2 + z ** 2)
if fov_type == 'h':
return np.logical_and(np.arctan2(y, x) > (-fov[1] * np.pi / 180), \
np.arctan2(y, x) < (-fov[0] * np.pi / 180))
elif fov_type == 'v':
return np.logical_and(np.arctan2(z, d) < (fov[1] * np.pi / 180), \
np.arctan2(z, d) > (fov[0] * np.pi / 180))
else:
raise NameError("fov type must be set between 'h' and 'v' ")
def pto_depth_map(velo_points, H=64, W=512, C=7, dtheta=np.radians(0.4), dphi=np.radians(90./512.0)):
x, y, z = velo_points[:, 0], velo_points[:, 1], velo_points[:, 2]
r, g, b = velo_points[:, 3], velo_points[:, 4], velo_points[:, 5]
d = np.sqrt(x ** 2 + y ** 2 + z**2)
r = np.sqrt(x ** 2 + y ** 2)
d[d==0] = 0.000001
r[r==0] = 0.000001
phi = np.radians(45.) - | np.arcsin(y/r) | numpy.arcsin |
import numpy as np
import os
import re
import requests
import sys
import time
from netCDF4 import Dataset
import pandas as pd
from bs4 import BeautifulSoup
from tqdm import tqdm
# setup constants used to access the data from the different M2M interfaces
BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL
SENSOR_URL = '12576/sensor/inv/' # Sensor Information
# setup access credentials
AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>']
def M2M_Call(uframe_dataset_name, start_date, end_date):
options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf'
r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1]))
if r.status_code == requests.codes.ok:
data = r.json()
else:
return None
# wait until the request is completed
print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes')
url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0]
check_complete = url + '/status.txt'
with tqdm(total=400, desc='Waiting') as bar:
for i in range(400):
r = requests.get(check_complete)
bar.update(1)
if r.status_code == requests.codes.ok:
bar.n = 400
bar.last_print_n = 400
bar.refresh()
print('\nrequest completed in %f minutes.' % elapsed)
break
else:
time.sleep(3)
elapsed = (i * 3) / 60
return data
def M2M_Files(data, tag=''):
"""
Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog.
Collected data is gathered into an xarray dataset for further processing.
:param data: JSON object returned from M2M data request with details on where the data is to be found for download
:param tag: regex tag to use in discriminating the data files, so we only collect the correct ones
:return: the collected data as an xarray dataset
"""
# Create a list of the files from the request above using a simple regex as a tag to discriminate the files
url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0]
files = list_files(url, tag)
return files
def list_files(url, tag=''):
"""
Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system.
:param url: URL to user's THREDDS catalog specific to a data request
:param tag: regex pattern used to distinguish files of interest
:return: list of files in the catalog with the URL path set relative to the catalog
"""
page = requests.get(url).text
soup = BeautifulSoup(page, 'html.parser')
pattern = re.compile(tag)
return [node.get('href') for node in soup.find_all('a', text=pattern)]
def M2M_Data(nclist,variables):
thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/'
#nclist is going to contain more than one url eventually
for jj in range(len(nclist)):
url=nclist[jj]
url=url[25:]
dap_url = thredds + url + '#fillmismatch'
openFile = Dataset(dap_url,'r')
for ii in range(len(variables)):
dum = openFile.variables[variables[ii].name]
variables[ii].data = np.append(variables[ii].data, dum[:].data)
tmp = variables[0].data/60/60/24
time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01'))
return variables, time_converted
class var(object):
def __init__(self):
"""A Class that generically holds data with a variable name
and the units as attributes"""
self.name = ''
self.data = np.array([])
self.units = ''
def __repr__(self):
return_str = "name: " + self.name + '\n'
return_str += "units: " + self.units + '\n'
return_str += "data: size: " + str(self.data.shape)
return return_str
class structtype(object):
def __init__(self):
""" A class that imitates a Matlab structure type
"""
self._data = []
def __getitem__(self, index):
"""implement index behavior in the struct"""
if index == len(self._data):
self._data.append(var())
return self._data[index]
def __len__(self):
return len(self._data)
def M2M_URLs(platform_name,node,instrument_class,method):
var_list = structtype()
#MOPAK
if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#METBK
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#FLORT
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
#FDCHP
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#DOSTA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
#ADCP
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#ZPLSC
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#WAVSS
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
#VELPT
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
#PCO2W
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#PHSEN
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
#SPKIR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
#PRESF
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
#CTDBP
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#VEL3D
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
#VEL3DK
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#PCO2A
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#PARAD
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
#OPTAA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#NUTNR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
##
#MOPAK
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#METBK
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#FLORT
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
#FDCHP
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#DOSTA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
#ADCP
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#WAVSS
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
#VELPT
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
#uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
#PCO2W
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#PHSEN
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
#SPKIR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
#PRESF
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
#CTDBP
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#VEL3D
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
#PCO2A
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#OPTAA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#NUTNR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered'
var_list[0].name = 'time'
var_list[1].name = 'significant_wave_height'
var_list[2].name = 'peak_wave_period'
var_list[3].name = 'peak_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'seconds'
var_list[3].units = 'degrees'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered'
var_list[0].name = 'time'
var_list[1].name = 'significant_wave_height'
var_list[2].name = 'peak_wave_period'
var_list[3].name = 'peak_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'seconds'
var_list[3].units = 'degrees'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_no_seawater_pressure'
var_list[5].name = 'ctdbp_no_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_no_seawater_pressure'
var_list[5].name = 'ctdbp_no_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#CSPP Data below
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'seawater_pressure'
var_list[5].name = 'seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'dpc_ctd_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'dpc_ctd_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample'
var_list[0].name = 'time'
var_list[1].name = 'corrected_dissolved_oxygen'
var_list[2].name = 'seawater_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a'
var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient '
var_list[3].name = 'flntu_x_mmp_cds_bback_total'
var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'ug/L'
var_list[2].units = 'm-1 sr-1'
var_list[3].units = 'm-1'
var_list[4].units = 'ppb'
var_list[5].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a'
var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient '
var_list[3].name = 'flntu_x_mmp_cds_bback_total'
var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'ug/L'
var_list[2].units = 'm-1 sr-1'
var_list[3].units = 'm-1'
var_list[4].units = 'ppb'
var_list[5].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample'
var_list[0].name = 'time'
var_list[1].name = 'par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record'
var_list[0].name = 'time'
var_list[1].name = 'spkir_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'velpt_d_eastward_velocity'
var_list[2].name = 'velpt_d_northward_velocity'
var_list[3].name = 'velpt_d_upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[9].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = | np.array([]) | numpy.array |
# Author: <NAME>
# Date: 2014-01-17
# pylint: disable=invalid-name, line-too-long
"""
Class for kernel density estimation.
Currently, only Gaussian kernels are implemented.
"""
from __future__ import absolute_import, division, print_function
__license__ = """MIT License
Copyright (c) 2014-2019 <NAME> and <NAME>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from copy import copy
import numexpr
import numpy as np
from scipy import linalg
from .stat_tools import weighted_cov
__all__ = ['gaussian_kde', 'bootstrap_kde']
class gaussian_kde(object):
"""Representation of a kernel-density estimate using Gaussian kernels.
Kernel density estimation is a way to estimate the probability density
function (PDF) of a random variable in a non-parametric way.
It includes automatic bandwidth determination.
Parameters
----------
dataset : array_like
Datapoints to estimate from. In case of univariate data this is a 1-D
array, otherwise a 2-D array with shape (# of dims, # of data).
weights : array_like
A 1-D array containing the weights of the data points.
This option should be used if data points are weighted
in order to calculate the a weighted KDE.
adaptive : boolean
Should adaptive kernel density estimation be applied?
For the implementation see:
Algorithm 3.1 in DOI: 10.1214/154957804100000000
weight_adaptive_bw : boolean
If using the adaptive kernel density estimation it can be chosen
if the adaptive bandwidth should be calculated by
the weighted (True) or unweighted (False) dataset.
alpha : float
The sensitivity parameter alpha in the range [0,1] is needed for the
adaptive KDE. Also for this see:
Algorithm 3.1 in DOI: 10.1214/154957804100000000
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as `kde.factor`. If a callable, it should
take a `gaussian_kde` instance as only parameter and return a scalar.
If None (default), 'scott' is used. See Notes for more details.
Attributes
----------
dataset : ndarray
The dataset with which `gaussian_kde` was initialized.
d : int
Number of dimensions.
n : int
Number of datapoints.
factor : float
The bandwidth factor, obtained from `kde.covariance_factor`, with which
the covariance matrix is multiplied.
covariance : ndarray
The covariance matrix of `dataset`, scaled by the calculated bandwidth
(`kde.factor`).
inv_cov : ndarray
The inverse of `covariance`.
local_covariance : ndarray
An array of covariance matrices of `dataset`
scaled by the calculated adaptive bandwidth.
local_inv_cov : ndarray
The inverse of `local_covariance`.
Methods
-------
kde.evaluate(points) : ndarray
Evaluate the estimated pdf on a provided set of points.
kde(points) : ndarray
Same as kde.evaluate(points)
kde.set_bandwidth(bw_method='scott') : None
Computes the bandwidth, i.e. the coefficient that multiplies the data
covariance matrix to obtain the kernel covariance matrix.
.. versionadded:: 0.11.0
kde.covariance_factor : float
Computes the coefficient (`kde.factor`) that multiplies the data
covariance matrix to obtain the kernel covariance matrix.
The default is `scotts_factor`. A subclass can overwrite this method
to provide a different method, or set it through a call to
`kde.set_bandwidth`.
kde._compute_adaptive_covariance : None
Computes the adaptive bandwidth for `dataset`.
Notes
-----
Bandwidth selection strongly influences the estimate obtained from the KDE
(much more so than the actual shape of the kernel). Bandwidth selection
can be done by a "rule of thumb", by cross-validation, by "plug-in
methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
uses a rule of thumb, the default is Scott's Rule.
Scott's Rule [1]_, implemented as `scotts_factor`, is::
n**(-1./(d+4)),
with ``n`` the number of data points and ``d`` the number of dimensions.
Silverman's Rule [2]_, implemented as `silverman_factor`, is::
n * (d + 2) / 4.)**(-1. / (d + 4)).
Good general descriptions of kernel density estimation can be found in [1]_
and [2]_, the mathematics for this multi-dimensional implementation can be
found in [1]_.
References
----------
.. [1] <NAME>, "Multivariate Density Estimation: Theory, Practice, and
Visualization", John Wiley & Sons, New York, Chicester, 1992.
.. [2] <NAME>, "Density Estimation for Statistics and Data
Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
Chapman and Hall, London, 1986.
.. [3] <NAME>, "Bandwidth Selection in Kernel Density Estimation: A
Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
.. [4] <NAME> and <NAME>, "Bandwidth selection for kernel
conditional density estimation", Computational Statistics & Data
Analysis, Vol. 36, pp. 279-298, 2001.
Examples
--------
Generate some random two-dimensional data:
>>> from scipy import stats
>>> def measure(n):
>>> "Measurement model, return two coupled measurements."
>>> m1 = np.random.normal(size=n)
>>> m2 = np.random.normal(scale=0.5, size=n)
>>> return m1+m2, m1-m2
>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()
Perform a kernel density estimate on the data:
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)
Plot the results:
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()
"""
def __init__(self, dataset, weights=None, kde_values=None,
adaptive=False, weight_adaptive_bw=False, alpha=0.3,
bw_method='silverman'):
self.inv_cov12 = None
self.ds = None
self._normalized_weights = None
self.dataset = np.atleast_2d(dataset)
self.d, self.n = self.dataset.shape
max_array_length = 1e8
"""Maximum amount of data in memory (~2GB, scales linearly)"""
self.m_max = np.int(np.floor(max_array_length/self.n))
if self.n > max_array_length:
raise ValueError("`dataset` is too large (too many array entries)!")
if weights is not None and len(weights) == self.n:
self.weights = weights
elif weights is None:
self.weights = np.ones(self.n)
else:
raise ValueError("unequal dimension of `dataset` and `weights`.")
self.kde_values = kde_values
if self.kde_values is not None:
print("Warning: By giving `kde_values`, `weight_adaptive_bw` is"
" useless. You have to be sure what was used to calculate"
" those values!")
if len(self.kde_values) != self.n:
raise ValueError("unequal dimension of `dataset` and `kde_values`.")
if not self.dataset.size > 1:
raise ValueError("`dataset` input should have multiple elements.")
# compute covariance matrix
self.set_bandwidth(bw_method=bw_method)
self.adaptive = adaptive
if self.adaptive:
self.weight_adaptive_bw = weight_adaptive_bw
try:
self.alpha = float(alpha)
except:
raise ValueError("`alpha` has to be a number.")
if self.alpha < 0. or self.alpha > 1.:
raise ValueError("`alpha` has to be in the range [0,1].")
self._compute_adaptive_covariance()
elif not self.adaptive and self.kde_values is not None:
raise ValueError("Giving `kde_values`, `adaptive` cannot be False!")
def evaluate(self, points, adaptive=False):
"""Evaluate the estimated pdf on a set of points.
Parameters
----------
points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and
treated as a single point.
Returns
-------
values : (# of points,)-array
The values at each point.
Raises
------
ValueError : if the dimensionality of the input points is different than
the dimensionality of the KDE.
"""
points = np.dot(self.inv_cov12, np.atleast_2d(points))
ds = self.ds # pylint: disable=unused-variable
normalized_weights = self._normalized_weights # pylint: disable=unused-variable
d, m = points.shape
if d != self.d:
if d == 1 and m == self.d:
# points was passed in as a row vector
points = np.reshape(points, (m, d))
d, m = points.shape
else:
msg = "points have dimension %s, dataset has dimension %s" % (d, self.d)
raise ValueError(msg)
nloops = np.int(np.ceil(m/self.m_max))
dm = self.m_max
modulo_dm = m%dm
results = np.empty((m,), dtype=float)
if adaptive:
inv_loc_bw = self.inv_loc_bw # pylint: disable=unused-variable
for i in range(nloops):
index = i*dm
if modulo_dm and i == (nloops-1):
dm = modulo_dm
pt = points[:, index:index+dm].T.reshape(dm, self.d, 1)
# has to be done due to BUG in `numexpr` (`sum` in `numexpr` != `numpy.sum`)
if self.d == 1:
energy = numexpr.evaluate( # pylint: disable=unused-variable
"(ds - pt)**2",
optimization='aggressive'
).reshape(dm, self.n)
else:
energy = numexpr.evaluate( # pylint: disable=unused-variable
"sum((ds - pt)**2, axis=1)",
optimization='aggressive'
)
results[index:index+dm] = numexpr.evaluate(
"sum(normalized_weights * exp(-0.5 * energy * inv_loc_bw), axis=1)",
optimization='aggressive'
)
del pt
else:
for i in range(nloops):
index = i*dm
if modulo_dm and i == (nloops-1):
dm = modulo_dm
pt = points[:, index:index+dm].T.reshape(dm, self.d, 1)
# has to be done due to BUG in `numexpr` (`sum` in `numexpr` != `numpy.sum`)
if self.d == 1:
energy = numexpr.evaluate(
"(ds - pt)**2",
optimization='aggressive'
).reshape(dm, self.n)
else:
energy = numexpr.evaluate(
"sum((ds - pt)**2, axis=1)",
optimization='aggressive'
)
results[index:index+dm] = numexpr.evaluate(
"sum(normalized_weights * exp(-0.5 * energy), axis=1)",
optimization='aggressive'
)
del pt
return results
def __call__(self, points):
return self.evaluate(points, adaptive=self.adaptive)
def scotts_factor(self):
return self.n ** (-1 / (self.d + 4))
def silverman_factor(self):
return (self.n * (self.d + 2) / 4) ** (-1 / (self.d + 4))
# Default method to calculate bandwidth, can be overwritten by subclass
covariance_factor = scotts_factor
def set_bandwidth(self, bw_method=None):
"""Compute the estimator bandwidth with given method.
The new bandwidth calculated after a call to `set_bandwidth` is used
for subsequent evaluations of the estimated density.
Parameters
----------
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a
scalar, this will be used directly as `kde.factor`. If a callable,
it should take a `gaussian_kde` instance as only parameter and
return a scalar. If None (default), nothing happens; the current
`kde.covariance_factor` method is kept.
Examples
--------
>>> x1 = np.array([-7, -5, 1, 4, 5.])
>>> kde = stats.gaussian_kde(x1)
>>> xs = np.linspace(-10, 10, num=50)
>>> y1 = kde(xs)
>>> kde.set_bandwidth(bw_method='silverman')
>>> y2 = kde(xs)
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
>>> y3 = kde(xs)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
... label='Data points (rescaled)')
>>> ax.plot(xs, y1, label='Scott (default)')
>>> ax.plot(xs, y2, label='Silverman')
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
>>> ax.legend()
>>> plt.show()
"""
if bw_method is None:
pass
elif bw_method == 'scott':
self.covariance_factor = self.scotts_factor
elif bw_method == 'silverman':
self.covariance_factor = self.silverman_factor
elif np.isscalar(bw_method) and not isinstance(bw_method, basestring):
self._bw_method = 'use constant'
self.covariance_factor = lambda: bw_method
elif callable(bw_method):
self._bw_method = bw_method
self.covariance_factor = lambda: self._bw_method(self)
else:
msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
"or a callable."
raise ValueError(msg)
self._compute_covariance()
def _compute_covariance(self):
"""Computes the covariance matrix for each Gaussian kernel using
covariance_factor().
"""
factor = self.covariance_factor()
# Cache covariance and inverse covariance of the data
data_covariance = np.atleast_2d(weighted_cov(self.dataset, weights=self.weights, bias=False))
data_inv_cov = linalg.inv(data_covariance)
covariance = data_covariance * factor**2
inv_cov = data_inv_cov / factor**2
self.inv_cov12 = linalg.cholesky(inv_cov).T
self.ds = np.dot(self.inv_cov12, self.dataset)
norm_factor = np.sqrt(linalg.det(2*np.pi*covariance))
#inv_norm_factor = 1. / (norm_factor * sum(self.weights))
self._normalized_weights = self.weights / (norm_factor * sum(self.weights))
def _compute_adaptive_covariance(self):
"""Computes an adaptive covariance matrix for each Gaussian kernel using
_compute_covariance().
"""
# evaluate dataset for kde without adaptive kernel:
if self.kde_values is None:
if self.weight_adaptive_bw:
self.kde_values = self.evaluate(self.dataset, adaptive=False)
else:
weights_temp = copy(self.weights)
self.weights = np.ones(self.n)
self._compute_covariance()
self.kde_values = self.evaluate(self.dataset, adaptive=False)
self.weights = weights_temp
self._compute_covariance()
# Define global bandwidth `glob_bw` by using the kde without adaptive kernel:
# NOTE: is this really self.n or should it be sum(weights)?
glob_bw = np.exp(1./self.n * np.sum(np.log(self.kde_values)))
# Define local bandwidth `loc_bw`:
self.inv_loc_bw = np.power(self.kde_values/glob_bw, 2.*self.alpha)
#inv_local_norm_factors = self._inv_norm_factor * power(self.inv_loc_bw, 0.5*self.d)
self._normalized_weights = self._normalized_weights * np.power(self.inv_loc_bw, 0.5*self.d)
class bootstrap_kde(object):
"""Bootstrapping to estimate uncertainty in KDE.
Parameters
----------
dataset
niter : int > 0
**kwargs
Passed on to `gaussian_kde`, except 'weights' which,if present, is
extracted and re-sampled in the same manner as `dataset`.
"""
def __init__(self, dataset, niter=10, **kwargs):
self.kernels = []
self.bootstrap_indices = []
self.dataset = np.atleast_2d(dataset)
self.d, self.n = self.dataset.shape
if "weights" in kwargs:
weights = kwargs.pop("weights")
else:
weights = None
for _ in range(niter):
indices = self.get_bootstrap_indices()
self.bootstrap_indices.append(indices)
if weights is not None:
kernel = gaussian_kde(self.dataset[:, indices], weights=weights[indices], **kwargs)
self.kernels.append(kernel)
else:
kernel = gaussian_kde(self.dataset[:, indices], **kwargs)
self.kernels.append(kernel)
def __call__(self, points):
return self.evaluate(points)
def evaluate(self, points):
points = np.atleast_2d(points)
_, m = points.shape
means, sqmeans = np.zeros(m), | np.zeros(m) | numpy.zeros |
import pickle
import random
import socket
import logging
import socketserver
import numpy as np
from utils import *
# compatible with Windows
socket.SO_REUSEPORT = socket.SO_REUSEADDR
class SignatureRequestHandler(socketserver.BaseRequestHandler):
user_num = 0
ka_pub_keys_map = {} # {id: {c_pk: bytes, s_pk, bytes, signature: bytes}}
U_1 = []
def handle(self) -> None:
# receive data from the client
data = SocketUtil.recv_msg(self.request)
msg = pickle.loads(data)
id = msg["id"]
del msg["id"]
self.ka_pub_keys_map[id] = msg
self.U_1.append(id)
received_num = len(self.U_1)
logging.info("[%d/%d] | received user %s's signature", received_num, self.user_num, id)
class SecretShareRequestHandler(socketserver.BaseRequestHandler):
U_1_num = 0
ciphertexts_map = {} # {u:{v1: ciphertexts, v2: ciphertexts}}
U_2 = []
def handle(self) -> None:
# receive data from the client
data = SocketUtil.recv_msg(self.request)
msg = pickle.loads(data)
id = msg[0]
# retrieve each user's ciphertexts
for key, value in msg[1].items():
if key not in self.ciphertexts_map:
self.ciphertexts_map[key] = {}
self.ciphertexts_map[key][id] = value
self.U_2.append(id)
received_num = len(self.U_2)
logging.info("[%d/%d] | received user %s's ciphertexts", received_num, self.U_1_num, id)
class MaskingRequestHandler(socketserver.BaseRequestHandler):
U_2_num = 0
masked_gradients_list = []
U_3 = []
def handle(self) -> None:
# receive data from the client
data = SocketUtil.recv_msg(self.request)
msg = pickle.loads(data)
id = msg[0]
self.U_3.append(msg[0])
self.masked_gradients_list.append(msg[1])
received_num = len(self.U_3)
logging.info("[%d/%d] | received user %s's masked gradients", received_num, self.U_2_num, id)
class ConsistencyRequestHandler(socketserver.BaseRequestHandler):
U_3_num = 0
consistency_check_map = {}
U_4 = []
def handle(self) -> None:
data = SocketUtil.recv_msg(self.request)
msg = pickle.loads(data)
id = msg[0]
self.U_4.append(id)
self.consistency_check_map[id] = msg[1]
received_num = len(self.U_4)
logging.info("[%d/%d] | received user %s's consistency check", received_num, self.U_3_num, id)
class UnmaskingRequestHandler(socketserver.BaseRequestHandler):
U_4_num = 0
priv_key_shares_map = {} # {id: []}
random_seed_shares_map = {} # {id: []}
U_5 = []
def handle(self) -> None:
data = SocketUtil.recv_msg(self.request)
msg = pickle.loads(data)
id = msg[0]
# retrieve the private key shares
for key, value in msg[1].items():
if key not in self.priv_key_shares_map:
self.priv_key_shares_map[key] = []
self.priv_key_shares_map[key].append(value)
# retrieve the ramdom seed shares
for key, value in msg[2].items():
if key not in self.random_seed_shares_map:
self.random_seed_shares_map[key] = []
self.random_seed_shares_map[key].append(value)
self.U_5.append(id)
received_num = len(self.U_5)
logging.info("[%d/%d] | received user %s's shares", received_num, self.U_4_num, id)
class Server:
def __init__(self):
self.id = "0"
self.host = socket.gethostname()
self.broadcast_port = 10000
self.signature_port = 20000
self.ss_port = 20001
self.masking_port = 20002
self.consistency_port = 20003
self.unmasking_port = 20004
socketserver.ThreadingTCPServer.allow_reuse_address = True
self.signature_server = socketserver.ThreadingTCPServer(
(self.host, self.signature_port), SignatureRequestHandler)
self.ss_server = socketserver.ThreadingTCPServer(
(self.host, self.ss_port), SecretShareRequestHandler)
self.masking_server = socketserver.ThreadingTCPServer(
(self.host, self.masking_port), MaskingRequestHandler)
self.consistency_server = socketserver.ThreadingTCPServer(
(self.host, self.consistency_port), ConsistencyRequestHandler)
self.unmasking_server = socketserver.ThreadingTCPServer(
(self.host, self.unmasking_port), UnmaskingRequestHandler)
def broadcast_signatures(self, port: int):
"""Broadcasts all users' key pairs and corresponding signatures.
Args:
port (int): the port used to broadcast the message.
"""
server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# reuse port so we will be able to run multiple clients on single (host, port).
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
# enable broadcasting mode
server.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
data = pickle.dumps(SignatureRequestHandler.ka_pub_keys_map)
SocketUtil.broadcast_msg(server, data, port)
logging.info("broadcasted all signatures.")
server.close()
def send(self, msg: bytes, host: str, port: int):
"""Sends message to host:port.
Args:
msg (bytes): the message to be sent.
host (str): the target host.
port (int): the target port.
"""
sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
sock.connect((host, port))
SocketUtil.send_msg(sock, msg)
sock.close()
def unmask(self, shape: tuple) -> np.ndarray:
"""Unmasks gradients by reconstructing random vectors and private mask vectors.
Args:
shape (tuple): the shape of the raw gradients.
Returns:
np.ndarray: the sum of the raw gradients.
"""
# reconstruct random vectors p_v_u
recon_random_vec_list = []
for u in SecretShareRequestHandler.U_2:
if u not in MaskingRequestHandler.U_3:
# the user drops out, reconstruct its private keys and then generate the corresponding random vectors
priv_key = SS.recon(UnmaskingRequestHandler.priv_key_shares_map[u])
for v in MaskingRequestHandler.U_3:
shared_key = KA.agree(priv_key, SignatureRequestHandler.ka_pub_keys_map[v]["s_pk"])
random.seed(shared_key)
rs = np.random.RandomState(random.randint(0, 2**32 - 1))
if int(u) > int(v):
recon_random_vec_list.append(rs.random(shape))
else:
recon_random_vec_list.append(-rs.random(shape))
# reconstruct private mask vectors p_u
recon_priv_vec_list = []
for u in MaskingRequestHandler.U_3:
random_seed = SS.recon(UnmaskingRequestHandler.random_seed_shares_map[u])
rs = np.random.RandomState(random_seed)
priv_mask_vec = rs.random(shape)
recon_priv_vec_list.append(priv_mask_vec)
masked_gradients = np.sum(np.array(MaskingRequestHandler.masked_gradients_list), axis=0)
recon_priv_vec = np.sum(np.array(recon_priv_vec_list), axis=0)
recon_random_vec = np.sum( | np.array(recon_random_vec_list) | numpy.array |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras activation functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.keras import activations
from tensorflow.python.keras import backend
from tensorflow.python.keras import combinations
from tensorflow.python.keras.layers import advanced_activations
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.layers import serialization
from tensorflow.python.ops import nn_ops as nn
from tensorflow.python.platform import test
def _ref_softmax(values):
m = | np.max(values) | numpy.max |
import numpy as np
import bethy_fapar as fapar
class photosynthesis():
def __init__(self):
'''
Class initialisation and setup of parameters
'''
# zero C in K
self.zeroC = 273.15
# gas constant J mol-1 K-1
self.R_gas = 8.314
# Minimum of maximum carboxylation rate [10^(-6) mol/(m^2 s)]
self.minOfMaxCarboxrate = 1e-12
# Minimum stomatal conductance [mol H2O /(m^2 s)]
self.minStomaConductance = 0.0
# oxygen concentration
self.Ox = 0.21 # mol(O2)mol(air)-1
# energy content of PAR quanta
self.EPAR = 220. # kJmol-1
# photon capture efficiency
self.alpha = 0.28
# maximum Michaelis-Menton values for CO2
self.KC0 = 460.e-6 # mol(CO2)mol(air)-1
# maximum Michaelis-Menton values for O2
self.KO0 = 330.e-3 # mol(O2)mol(air)-1
# activation energy for KC
self.EC = 59396. # J mol-1
# activation energy for KO
self.EO = 35948. # J mol-1
# activation energy for VCMAX
self.EV = 58520. # J mol-1
# activation energy for dark respiration
self.ER = 45000. # J mol-1
# Q10=2 (Collatz et al. 1992)
self.EK = 50967.
# ratio of dark respiration to PVM at 25 C
self.FRDC3 = 0.011
self.FRDC4 = 0.042
# scaling for GammaStar
self.GammaStarScale = 1.7e-6
# Effective quantum efficiency C4
self.ALC4 = 0.04
# Curvature parameter (C4)
self.Theta = 0.83
self.molarMassAir_kg = 28.97e-3
self.molarMassCO2_kg = 44.011e-3
# LAI limit used in N scaling
self.LaiLimit = 3.
def calc_nitrogen_scaling_factors(self,zlai,layer_bounds,declination,latitude):
'''
'''
factors = np.ones((layer_bounds.size,zlai.size))
cos_zenith_noon = np.cos(declination)*np.cos(latitude) \
+ np.sin(declination)*np.sin(latitude)
ww = np.where(cos_zenith_noon < 1e-3)
cos_zenith_noon[ww] = 1e-3
# Extinction factor
k12 = 0.5 / cos_zenith_noon
# Condition: LAI>LaiLimit
ww = np.where(zlai >= self.LaiLimit)
for i in range(ayer_bounds.size):
factors[i,:] = np.exp(-k12 * layer_bounds[i] * zlai.flatten())
return factors
def assimilate(self,delta_time,mask,cos_zenith,declination,latitude,\
swdown, par, frac_par_direct, pressure,\
canopy_temp, soil_albedo, CO2_concentration_air,\
canopy_conductance, lai, waterLimitationFlag):
'''
'''
# Expresse radiation in mol(photons) / (m^2 s)
swdown_mol = swdown/self.EPAR
# soil reflectivity is set to soil albedo of the visible range
soil_reflectivity_par = soil_albedo
# canopy_boundaries_lai
canopy_boundaries_lai = np.arange(ncanopy)/float(ncanopy)
# calculate nitrogen scaling factors
nitrogen_scaling_factors = self.calc_nitrogen_scaling_factors(lai,\
canopy_boundaries_lai,\
declination,\
latitude)
(laiPerLayer,fAPAR) = fapar.faparl(mask,ncanopy,lai,soil_reflectivity_par,cos_zenith,frac_par_direct,\
canopy_boundaries_lai)
# Compute absorbed PAR per leaf area in canopy layer [units: (absorbed photons) / (m^2(leaf area) s)] from
# par and fraction of absorbed PAR (Epar is needed to convert radiation intensity from W/m^2 to mol/(m^2 s))
apar_acc = np.zeros_like(faPAR)
lai_ = laiPerLayer*1.
ww = np.where(lai_ < 1.e-10)
lai_[ww] = 1.e-10
for icanopy in range(ncanopy):
apar_layer = (par/Epar)*faPAR[icanopy]/lai_[icanopy]
apar_acc += (par/Epar)*faPAR[icanopy]*delta_time
# Convert CO2 mass mixing ratio [kg/kg] to volume mixing ratio [mol/mol]
CO2_concentration_mol = CO2_concentration_air * self.molarMassAir_kg / self.molarMassCO2_kg
# estimate CO2 leaf conc
CO2_conc_leaf = self.FCI1C3*CO2_concentration_mol
self.photosynthesis(C3Flag,waterLimitationFlag,PAR,PIRRIN,P,T,CO2_concentration_mol,\
NSCL,ETransport,CarboxRate,Ci,Gs)
def photosynthesis(self,C3Flag,waterLimitedFlag,PAR,PIRRIN,P,T,Atm_co2_conc,\
NSCL,ETransport,CarboxRate,\
Ci,Gs):
'''
Farquar et al. 1980 C3 photosynthesis
args:
C3Flag : True if C3, False for C4
waterLimited : flags to indicate water limited or not
PAR : Absorbed PAR mol(photons) m-2 s-1
PIRRIN : Total irridiance at the surface mol m-2 s-1
P : air pressure (Pa)
T : vegetation (leaf) temperature (K)
Atm_co2_conc : Atmospheric CO2 conc.
NSCL : Nitrogen scaling factor at maximum
carboxylation rate and maximum
electron transport rate
ETransport
: The maximum rate of electron transport
at 25 C for each PFT (mol(CO2) m-2 s-1)
CarboxRate
: The maximum carboxilation rate at 25 C
(micro mol(CO2) m-2 s-1)
Ci : CO2 concentration inside leaf mol(CO2) mol(air)-1
Gs : Stomatal conductance (use for water-limited)
Returns:
(A,Diagnostics) : A = gross assimilation
'''
# return None if no data
if C3Flag.size == 0:
return None
# work out which are C3 and C4
wC3 = np.where(C3Flag)
wC4 = np.where(not C3Flag)
# process C3
if wC3.sum():
(A3,C3diagnostics) = self.photosynthesisC3(PAR[wC3],PIRRIN[wC3],P[wC3],T[wC3],Atm_co2_conc[wC3],\
NSCL[wC3],ETransport[wC3],CarboxRate[wC3],\
Ci[wC3],Gs[wC3],waterLimited[wC3])
else:
A3 = np.array([])
C3diagnostics = {}
# process C4
if wC4.sum():
(A4,C4diagnostics) = self.photosynthesisC4(PAR[wC4],PIRRIN[wC4],P[wC4],T[wC4],Atm_co2_conc[wC4],\
NSCL[wC4],ETransport[wC4],CarboxRate[wC4],\
Ci[wC4],Gs[wC4],waterLimited[wC4])
else:
A4 = np.array([])
C4diagnostics = {}
# combine
A = np.zeros_like(C3Flag).astype(float)
A[C3Flag] = A3
A[not C3Flag] = A4
self.Diagnostics = {}
keys = np.unique(np.array(C3diagnostics.keys() + C4diagnostics.keys()))
for k in keys:
self.Diagnostics[k] = np.zeros_like(A)
try:
self.Diagnostics[k][wC3] = C3diagnostics[k]
except:
pass
try:
self.Diagnostics[k][wC4] = C4diagnostics[k]
except:
pass
self.Diagnostics['C3Flag'] = C3Flag
self.Diagnostics['waterLimited'] = waterLimited
return (A,self.Diagnostics)
def photosynthesisC4(self,PAR,PIRRIN,P,T,Atm_co2_conc,\
NSCL,ETransport,CarboxRate,\
Ci,Gs,waterLimited):
'''
Similar to C3 case, but
For C4 plants the Farquhar equations are replaced by the set of equations of
Collatz et al. 1992:
args:
PAR : Absorbed PAR mol(photons) m-2 s-1
PIRRIN : Total irridiance at the surface mol m-2 s-1
P : air pressure (Pa)
T : vegetation (leaf) temperature (K)
Atm_co2_conc : Atmospheric CO2 conc.
NSCL : Nitrogen scaling factor at maximum
carboxylation rate and maximum
electron transport rate
ETransport
: The maximum rate of electron transport
at 25 C for each PFT (mol(CO2) m-2 s-1)
CarboxRate
: The maximum carboxilation rate at 25 C
(micro mol(CO2) m-2 s-1)
Ci : CO2 concentration inside leaf mol(CO2) mol(air)-1
Gs : Stomatal conductance
waterLimited : flags for water limited or not
Returns:
(A,Diagnostics) : A = gross assimilation
'''
# T1 = 25 C in K
T1 = 25. + self.zeroC
# T0 is veg temperature relative tp 25 C
T0 = T - T1
# TC is the temperatrure in C
TC = T - self.zeroC
# K is the PECase CO2 specifity instead of the electron transport capacity
# within C3 plants
K = ETransport * 1.e3 * NSCL \
* np.exp(self.EK * T0 / T1 / self.R_gas / T)
# VCMAX : : assume N content, therefore Rubisco is placed
# where most incoming light is
# NB .. this is a structural consideration
VCMAX = CarboxRate * NSCL * np.exp(self.EV * T0 / T1 / self.R_gas / T)
# dark respiration (mol(CO2)m-2s-1)
Rd = self.FRDC4 * CarboxRate * NSCL \
* np.exp(self.ER * T0 / T1 / self.R_gas / T) \
* highTInhibit(TC) \
* darkInhibit(PIRRIN)
# C4 gross photosynthesis at given Ci
J0 = (self.ALC4 * PAR + VCMAX) / 2. / self.Theta
Je = J0 - np.sqrt(J0*J0 - VCMAX * self.ALC4 * PAR / self.Theta)
Jc = np.zeros_like(Rd)
A = np.zeros_like(Rd)
waterLimit = np.where(waterLimited)
notWaterLimit = np.where(not waterLimited)
if notWaterLimit.sum() > 0:
Ci_ = Ci[notWaterLimit]
TC_ = TC[notWaterLimit]
Rd_ = Rd[notWaterLimit]
Atm_co2_conc_ = Atm_co2_conc[notWaterLimit]
P_ = P[notWaterLimit]
T_ = T[notwaterLimit]
K_ = K[notWaterLimit]
Je_ = Je[notWaterLimit]
Jc_ = K_ * Ci_
# assimilation is the minimum of Je and Jc
# with a high temperature inhibition
# mol(CO2)m-2s-1
A_ = Je_
ww = np.where(Jc_ < Je_)
A_[ww] = Jc_[ww]
A_ = A_ * highTInhhibit(TC_)
# stomatal conductance
Gs_ = 1.6 * (A_-Rd_) * self.R_gas * T_/ (Atm_co2_conc_ - Ci_) / P_
ww = np.where(Gs_ < self.minStomaConductance)
Gs_[ww] = self.minStomaConductance
Gs[notWaterLimit] = Gs_
Jc[notWaterLimit] = Jc_
A[notWaterLimit] = A_
else:
# water limted, so Gs is defined and Ci must be calculated
Gs_ = Gs[waterLimit]
TC_ = TC[waterLimit]
Rd_ = Rd[waterLimit]
Atm_co2_conc_ = Atm_co2_conc[waterLimit]
P_ = P[waterLimit]
T_ = T[waterLimit]
K_ = K[waterLimit]
Je_ = Je[waterLimit]
G0 = Gs_ / 1.6 / self.R_gas / T_ * P_
Jc_ = (G0 * Atm_co2_conc_ + Rd_)/(1. + G0/K_)
ww = np.where(Jc_ < 0)
Jc_[ww] = 0.
# assimilation is the minimum of Je and Jc
# with a high temperature inhibition
# mol(CO2)m-2s-1
A_ = Je_
ww = np.where(Jc_ < Je_)
A_[ww] = Jc_[ww]
A_ = A_ * highTInhhibit(TC)
maxer1 = A_ - Rd_
maxer2 = G0
ww = np.where(G0<1e-6)
maxer2[ww] = 1e-6
maxer = maxer1/maxer2
ww = np.where(maxer < 0)
maxer[ww] = 0.
Ci_ = Atm_co2_conc_ - maxer
Ci[notWaterLimit] = Ci_
Jc[notWaterLimit] = Jc_
A[notWaterLimit] = A_
Diagnostics = {'max carboxylation rate':VMAX,\
'internal leaf CO2':Ci,\
'gross assimilation':A,\
'dark respiration':Rd,\
'stomatal conductance':Gs,\
'max e-transport rate':Jmax,\
'carboxylation rate':Jc,\
'e-transport rate':Je}
return (A,Diagnostics)
def photosynthesisC3(self,PAR,PIRRIN,P,T,Atm_co2_conc,\
NSCL,ETransport,CarboxRate,\
Ci,Gs,waterLimited):
'''
Farquar et al. 1980 C3 photosynthesis
args:
PAR : Absorbed PAR mol(photons) m-2 s-1
PIRRIN : Total irridiance at the surface mol m-2 s-1
P : air pressure (Pa)
T : vegetation (leaf) temperature (K)
Atm_co2_conc : Atmospheric CO2 conc.
NSCL : Nitrogen scaling factor at maximum
carboxylation rate and maximum
electron transport rate
ETransport
: The maximum rate of electron transport
at 25 C for each PFT (mol(CO2) m-2 s-1)
CarboxRate
: The maximum carboxilation rate at 25 C
(micro mol(CO2) m-2 s-1)
Ci : CO2 concentration inside leaf mol(CO2) mol(air)-1
Gs : Stomatal conductance
waterLimited : flags to indicate water limited or not
Returns:
(A,Diagnostics) : A = gross assimilation
'''
# T1 = 25 C in K
T1 = 25. + self.zeroC
# T0 is veg temperature relative tp 25 C
T0 = T - T1
# TC is the temperatrure in C
TC = T - self.zeroC
# Temperature dependent rates and compensation point
KC = self.KC0 * np.exp(self.EC * T0 / T1 / self.R_gas / T)
KO = self.KO0 * np.exp(self.EO * T0 / T1 / self.R_gas / T)
# CO2 compensation point without leaf respiration
# assumed in JSBACH to be a linear fn of temperature (C)
GammaStar = self.GammaStarScale * TC
ww = np.where(GammaStar < 0)
GammaStar[ww] = 0.
# VCMAX : assume N content, therefore Rubisco is placed
# where most incoming light is
# NB .. this is a structural consideration
VCMAX = CarboxRate * NSCL * np.exp(self.EV * T0 / T1 / self.R_gas / T)
# Jmax maximum electron transport rate mol(CO2)m-2s-1
Jmax = ETransport * NSCL * TC/25.
ww = np.where(Jmax <= self.minOfMaxCarboxrate)
Jmax[ww] = self.minOfMaxCarboxrate
# electron transport rate:
ww = np.where(Jmax <= self.minOfMaxCarboxrate)
J = self.alpha * PAR * Jmax \
/ np.sqrt(Jmax * Jmax + self.alpha * self.alpha * PAR * PAR)
J[ww] = 0.
# dark respiration (mol(CO2)m-2s-1)
Rd = self.FRDC3 * CarboxRate * NSCL \
* np.exp(self.ER * T0 / T1 / self.R_gas / T) \
* highTInhibit(TC) \
* darkInhibit(PIRRIN)
Jc = np.zeros_like(Rd)
Je = np.zeros_like(Rd)
A = np.zeros_like(Rd)
waterLimit = np.where(waterLimited)
notWaterLimit = np.where(not waterLimited)
if notWaterLimit.sum() > 0:
VCMAX_ = VCMAX[notWaterLimit]
Ci_ = Ci[notWaterLimit]
GammaStar_ = GammaStar[notWaterLimit]
Kc_ = Kc[notWaterLimit]
KO_ = KO[notWaterLimit]
J_ = J[notWaterLimit]
TC_ = TC[notWaterLimit]
Rd_ = Rd[notWaterLimit]
Atm_co2_conc_ = Atm_co2_conc[notWaterLimit]
P_ = P[notWaterLimit]
T_ = T[notWaterLimit]
# no water limiting
# so Ci is defined and Gs is calculated
# electron transport limited rate Je and
# carboxylating rate Jc (mol(CO2)m-2s-1
Jc_ = VCMAX_ * (Ci_ - GammaStar_)/\
(Ci_ + Kc_ * (1 + (self.Ox/KO_)))
Je_ = J_ * (Ci_ - GammaStar_)/\
(4. * (Ci_ + 2. * GammaStar_))
# assimilation is the minimum of Je and Jc
# with a high temperature inhibition
# mol(CO2)m-2s-1
A_ = Je_
ww = np.where(Jc_ < Je_)
A_[ww] = Jc_[ww]
A_ = A_ * highTInhhibit(TC_)
# stomatal conductance
Gs_ = 1.6 * (A_-Rd_) * self.R_gas * T_/ (Atm_co2_conc_ - Ci_) / P_
ww = np.where(Gs < self.minStomaConductance)
Gs_[ww] = self.minStomaConductance
Gs[notWaterLimit] = Gs_
A[notWaterLimit] = A_
Jc[notWaterLimit] = Jc_
Je[notWaterLimit] = Je_
if waterLimit.sum() > 0:
VCMAX_ = VCMAX[waterLimit]
Gs_ = Gs[waterLimit]
GammaStar_ = GammaStar[waterLimit]
Kc_ = Kc[waterLimit]
KO_ = KO[waterLimit]
J_ = J[waterLimit]
TC_ = TC[waterLimit]
Rd_ = Rd[waterLimit]
Atm_co2_conc_ = Atm_co2_conc[waterLimit]
P_ = P[waterLimit]
T_ = T[waterLimit]
# water limted, so Gs is defined and Ci must be calculated
K1 = 2. * GammaStar_
W1 = i_ / 4.
W2 = VCMAX_
K2 = Kc_ * (1 + Ox/KO_)
G0 = Gs_ / 1.6 / self.R_gas / T_ * P_
B = Rd_ + W1 + G0 * (Atm_co2_conc_ + K1)
C = W1 * G0 * (Atm_co2_conc_ - GammaStar_) + W1 * Rd_
sqrter = (B*B / 4.) - C
ww = np.where(sqrter < 0)
sqrter[ww] = 0.
Je_ = B / 2. - np.sqrt(sqrter)
ww = np.where(Je < 0)
Je_[ww] = 0.
B = Rd_ + W2 + G0 * (Atm_co2_conc_ + K2)
C = W2 * G0 * (Atm_co2_conc_ - GammaStar_) + W2 * Rd_
sqrter = (B*B / 4.) - C
ww = np.where(sqrter < 0)
sqrter[ww] = 0.
Jc_ = B / 2. - np.sqrt(sqrter)
ww = np.where(Jc_ < 0)
Jc_[ww] = 0.
# assimilation is the minimum of Je and Jc
# with a high temperature inhibition
# mol(CO2)m-2s-1
A_ = Je_
ww = np.where(Jc_ < Je_)
A_[ww] = Jc_[ww]
A_ = A_ * highTInhhibit(TC_)
maxer1 = A_ - Rd_
maxer2 = G0
ww = np.where(G0<1e-6)
maxer2[ww] = 1e-6
maxer = maxer1/maxer2
ww = np.where(maxer < 0)
maxer[ww] = 0.
Ci_ = Atm_co2_conc_ - maxer
Ci[waterLimit] = Ci_
A[waterLimit] = A_
Jc[waterLimit] = Jc_
Je[waterLimit] = Je_
Diagnostics = {'max carboxylation rate':VMAX,\
'internal leaf CO2':Ci,\
'gross assimilation':A,\
'dark respiration':Rd,\
'stomatal conductance':Gs,\
'max e-transport rate':Jmax,\
'carboxylation rate':Jc,\
'e-transport rate':Je}
return (A,Diagnostics)
def highTInhibit(self,Tc):
'''
Inhibit assimilation and respiration at temperatures
above 55 C
From:
Collatz et al., Physiological and environmental regulation
of stomatal conductance, photosynthesis and transpiration: a model that
includes a laminar boundary layer,
Agricultural and Forest Meteorology, 54, pp. 107-136, 1991
Args:
Tc (np.array or similar) : Leaf temperature in C
Kwargs:
None
Returns:
A scaling term to reduce assimilation/respiration
(same type as input)
'''
out = 1./(1. + np.exp(1.3 * (T- 55.)))
ww = np.where(out > 1.)
out[ww] = 1.
return out
def darkInhibit(self,IRR):
'''
Inhibit dark respiration
Brooks and Farquhar, Effect of temperature on the CO2/O2 specifity on RBisCO
and the rate of respiration in the light, Planta 165, 397-406, 1985
inhibit the dark-respiration to 50% of it's uninhibited value
up from 50 umol/m^2s
From Bethy model (JSBACH)
Args:
IRR (np.array or similar) : Total irridiance at the surface [mol/(m^2 s)]
Kwargs:
None
Returns:
A scaling term to reduce dark respiration
(same type as input)
'''
out = 0.5 + 0.5*np.exp(-IRR * 1e6 / 10.)
ww = np.where(IRR == 0.)
out[ww] = 0.
ww = | np.where(out > 1.) | numpy.where |
__author__ = 'Ardalan'
CODE_FOLDER = "/home/ardalan/Documents/kaggle/bnp/"
# CODE_FOLDER = "/home/arda/Documents/kaggle/bnp/"
import os, sys, time, re, zipfile, pickle, operator, glob
import pandas as pd
import numpy as np
from xgboost import XGBClassifier, XGBRegressor
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
from sklearn import cross_validation
from sklearn import linear_model
from sklearn import ensemble
from sklearn import naive_bayes
from sklearn import svm
from sklearn import calibration
from keras.preprocessing import text, sequence
from keras.optimizers import *
from keras.models import Sequential
from keras.utils import np_utils
from keras.layers import core, embeddings, recurrent, advanced_activations, normalization
from keras.utils import np_utils
from keras.callbacks import EarlyStopping
def clipProba(ypredproba):
"""
Taking list of proba and returning a list of clipped proba
:param ypredproba:
:return: ypredproba clipped
"""""
ypredproba = np.where(ypredproba <= 0., 1e-5 , ypredproba)
ypredproba = np.where(ypredproba >= 1., 1.-1e-5, ypredproba)
return ypredproba
def reshapePrediction(ypredproba):
result = None
if len(ypredproba.shape) > 1:
if ypredproba.shape[1] == 1: result = ypredproba[:, 0]
if ypredproba.shape[1] == 2: result = ypredproba[:, 1]
else:
result = ypredproba.ravel()
result = clipProba(result)
return result
def eval_func(ytrue, ypredproba):
return metrics.log_loss(ytrue, ypredproba)
def loadFileinZipFile(zip_filename, filename, dtypes=None, parsedate = None, password=None, **kvargs):
"""
Load file to dataframe.
"""
with zipfile.ZipFile(zip_filename, 'r') as myzip:
if password:
myzip.setpassword(password)
if parsedate:
return pd.read_csv(myzip.open(filename), sep=',', parse_dates=parsedate, dtype=dtypes, **kvargs)
else:
return pd.read_csv(myzip.open(filename), sep=',', dtype=dtypes, **kvargs)
def CreateDataFrameFeatureImportance(model, pd_data):
dic_fi = model.get_fscore()
df = pd.DataFrame(dic_fi.items(), columns=['feature', 'fscore'])
df['col_indice'] = df['feature'].apply(lambda r: r.replace('f','')).astype(int)
df['feat_name'] = df['col_indice'].apply(lambda r: pd_data.columns[r])
return df.sort('fscore', ascending=False)
def LoadParseData(l_filenames):
l_X = []
l_X_test=[]
l_Y = []
for filename in l_filenames:
filename = filename[:-2]
print(filename)
dic_log = pickle.load(open(filename + '.p','rb'))
pd_temp = pd.read_csv(filename + '.csv')
test_idx = pd_temp['ID'].values.astype(int)
l_X.append(np.hstack(dic_log['ypredproba']))
l_X_test.append(pd_temp['PredictedProb'].values)
l_Y.append(np.hstack(dic_log['yval']))
X = np.array(l_X).T
X_test = np.array(l_X_test).T
Y = np.array(l_Y).T.mean(1).astype(int)
# Y = np.array(l_Y).T
return X, Y, X_test, test_idx
def xgb_accuracy(ypred, dtrain):
ytrue = dtrain.get_label().astype(int)
ypred = np.where(ypred <= 0., 1e-5 , ypred)
ypred = np.where(ypred >= 1., 1.-1e-5, ypred)
return 'logloss', metrics.log_loss(ytrue, ypred)
class NN():
def __init__(self, input_dim, output_dim,
hidden_units=(512, 256),
activation=('tanh', 'tanh'),
dropout=(0.3, 0.3), l2_regularizer=(1e-4, 1e-4),
loss="categorical_crossentropy",
optimizer=RMSprop(lr=0.001, tho=0.9),
batch_size=512,
nb_epoch=3, early_stopping_epoch=None,
verbose=1, class_mode='binary'):
self.name = 'NN'
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_units = hidden_units
self.activation = activation
self.dropout = dropout
self.loss = loss
self.optimizer = optimizer
self.l2_regularizer = l2_regularizer
self.batch_size = batch_size
self.nb_epoch = nb_epoch
self.verbose = verbose
self.class_mode = class_mode
self.model = None
self.esr = early_stopping_epoch
self.params = {'input_dim': self.input_dim,
'output_dim': self.output_dim,
'hidden_units': self.hidden_units,
'activation': self.activation,
'dropout': self.dropout,
'l2_regularizer': self.l2_regularizer,
'loss': self.loss,
'optimizer': self.optimizer,
'batch_size': self.batch_size,
'nb_epoch': self.nb_epoch,
'esr': self.esr,
'verbose': self.verbose}
def _build_model(self, input_dim, output_dim, hidden_units, activation, dropout, loss="binary_crossentropy", optimizer=RMSprop(), class_mode='binary'):
model = Sequential()
model.add(core.Dense(hidden_units[0], input_dim=input_dim, W_regularizer=None, ))
model.add(activation[0])
model.add(normalization.BatchNormalization())
# model.add(core.Dropout(dropout[0]))
for i in range(1, len(activation) - 1):
model.add(core.Dense(hidden_units[i], input_dim=hidden_units[i-1], W_regularizer=None))
model.add(activation[i])
model.add(normalization.BatchNormalization())
# model.add(core.Dropout(dropout[i]))
model.add(core.Dense(output_dim, input_dim=hidden_units[-1], W_regularizer=None))
model.add(core.Activation(activation[-1]))
model.compile(loss=loss, optimizer=optimizer, class_mode=class_mode)
return model
def fit(self, X, y, eval_set=None, class_weight=None, show_accuracy=True):
if self.loss == 'categorical_crossentropy':
y = np_utils.to_categorical(y)
if eval_set != None and self.loss == 'categorical_crossentropy':
eval_set = (eval_set[0], np_utils.to_categorical(eval_set[1]))
self.model = self._build_model(self.input_dim,self.output_dim,self.hidden_units,self.activation,
self.dropout, self.loss, self.optimizer, self.class_mode)
if eval_set !=None:
early_stopping = EarlyStopping(monitor='val_loss', patience=self.esr, verbose=1, mode='min')
logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, validation_data=eval_set, callbacks=[early_stopping], show_accuracy=True, shuffle=True)
else:
logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, show_accuracy=True, shuffle=True)
return logs
def predict_proba(self, X):
prediction = self.model.predict_proba(X, verbose=0)
return prediction
def models():
params = {'n_jobs':nthread,'random_state':seed,'class_weight':None}
# extra = ensemble.ExtraTreesClassifier(n_estimators=1000,max_features='auto',criterion= 'entropy',min_samples_split= 2, max_depth= None, min_samples_leaf= 1, **params)
# extra1 = ensemble.ExtraTreesClassifier(n_estimators=1000,max_features=60,criterion= 'gini',min_samples_split= 4, max_depth= 40, min_samples_leaf= 2, **params)
# rf = ensemble.RandomForestClassifier(n_estimators=1000,max_features= 'auto',criterion= 'gini',min_samples_split= 2, max_depth= None, min_samples_leaf= 1, **params)
# rf1 = ensemble.RandomForestClassifier(n_estimators=1000,max_features=60,criterion= 'entropy',min_samples_split= 4, max_depth= 40, min_samples_leaf= 2, **params)
# xgb_binlog = XGBClassifier(objective="binary:logistic" ,max_depth=10, learning_rate=0.01, n_estimators=5,nthread=nthread, seed=seed)
# xgb_reglog = XGBClassifier(objective="reg:logistic", max_depth=10, learning_rate=0.01, n_estimators=5,nthread=nthread, seed=seed)
# xgb_poi = XGBClassifier(objective="count:poisson", max_depth=10, learning_rate=0.01, n_estimators=5,nthread=nthread, seed=seed)
# xgb_reglin = XGBClassifier(objective="reg:linear", max_depth=10, learning_rate=0.01, n_estimators=5,nthread=nthread, seed=seed)
rf_params = {'n_estimators':850,'max_features':60,'criterion':'entropy','min_samples_split': 4,'max_depth': 40, 'min_samples_leaf': 2, 'n_jobs': -1}
clfs = [
# (D1, XGBRegressor(objective="reg:linear", max_depth=6, learning_rate=0.01, subsample=.8, n_estimators=2000,nthread=nthread, seed=seed)),
(D1, XGBClassifier(objective="binary:logistic" ,max_depth=6, learning_rate=0.01, subsample=.8, n_estimators=2000,nthread=nthread, seed=seed)),
# (D1, XGBRegressor(objective="reg:linear", max_depth=5, learning_rate=0.01, subsample=.8, n_estimators=2000,nthread=nthread, seed=seed)),
# (D1,XGBClassifier(objective="binary:logistic", max_depth=5, learning_rate=0.01, subsample=.8, n_estimators=2000,nthread=nthread, seed=seed)),
# (D1, XGBRegressor(objective="reg:linear", max_depth=4, learning_rate=0.01, subsample=.8, n_estimators=2000,nthread=nthread, seed=seed)),
# (D1,XGBClassifier(objective="binary:logistic", max_depth=4, learning_rate=0.01, subsample=.8, n_estimators=2000,nthread=nthread, seed=seed)),
]
for clf in clfs:
yield clf
def printResults(dic_logs):
l_train_logloss = dic_logs['train_error']
l_val_logloss = dic_logs['val_error']
string = ("logTRVAL_{0:.4f}|{1:.4f}".format(np.mean(l_train_logloss), np.mean(l_val_logloss)))
return string
def KerasClassWeight(Y_vec):
# Find the weight of each class as present in y.
# inversely proportional to the number of samples in the class
recip_freq = 1. / np.bincount(Y_vec)
weight = recip_freq / np.mean(recip_freq)
dic_w = {index:weight_value for index, weight_value in enumerate(weight)}
return dic_w
def saveDicLogs(dic_logs, filename):
try:
with open(filename, 'wb') as f:
pickle.dump(dic_logs, f, protocol=pickle.HIGHEST_PROTOCOL)
except FileNotFoundError:
pass
CV = 'strat'
STORE = True
DOTEST = True
SELECT = False
n_folds = 5
test_size = 0.20
nthread = 4
seed = 123
import fnmatch
folder = CODE_FOLDER + 'diclogs/stage1/**/*'
pattern = "*XGB*.p"
pattern = "*.p"
l_filenames = [path for path in glob.iglob(folder) if fnmatch.fnmatch(path, pattern)]
print(len(l_filenames), l_filenames)
X, Y, X_test, test_idx = LoadParseData(l_filenames)
# X = StandardScaler().fit_transform(X) ; X_test = StandardScaler().fit_transform(X_test)
pd_corr = pd.DataFrame(X).corr()
mat_corr = np.array(pd_corr)
if SELECT:
# selectionTOP = 1000
cols2keep = []
thresh = .95
for line in range(mat_corr.shape[0]-1):
if max(mat_corr[line, line+1:]) < thresh:
cols2keep.append(line)
X = X[:, cols2keep]
X_test = X_test[:, cols2keep]
print(np.array(l_filenames)[cols2keep])
D1 = (X, Y, X_test,test_idx, "all")
if CV == 'strat': skf = cross_validation.StratifiedShuffleSplit(Y, n_iter=n_folds, test_size=test_size, random_state=seed)
if CV == 'random': skf = cross_validation.ShuffleSplit(len(Y), n_iter=n_folds, test_size=test_size, random_state=seed)
clfs = models()
##################################################################################
# CV
##################################################################################
for clf_indice, data_clf in enumerate(clfs):
print('-' * 50)
print("Classifier [%i]" % clf_indice)
X = data_clf[0][0] ; print(X.shape)
Y = data_clf[0][1]
X_test = data_clf[0][2]
test_idx = data_clf[0][3]
clf = data_clf[1]
print(clf)
clf_class_name = clf.__class__.__name__
clf_name = clf_class_name[:3]
data_name = data_clf[0][4]
dic_logs = {'name':clf_name, 'fold':[],'ypredproba':[],'yval':[],
'params':None,'prepro':None,'best_epoch':[],'best_val_metric':[],
'train_error': [], 'val_error':[]}
filename = 'blend_{}_{}_{}f_CV{}'.format(clf_name, data_name,X.shape[1],n_folds)
for fold_indice, (tr_idx, te_idx) in enumerate(skf):
print("Fold [%i]" % fold_indice)
xtrain = X[tr_idx]
ytrain = Y[tr_idx]
xval = X[te_idx]
yval = Y[te_idx]
if clf_class_name == 'XGBClassifier' or clf_class_name == 'XGBRegressor':
dic_logs['params'] = clf.get_params()
added_params = ["_{}".format('-'.join(list(map(lambda x: x[:3] ,clf.objective.split(':'))))),
"_d{}".format(clf.max_depth),
"_lr{}".format(clf.learning_rate)
]
clf.fit(xtrain, ytrain, eval_set=[(xval, yval)], eval_metric=xgb_accuracy, early_stopping_rounds=50, verbose=True)
dic_logs['best_epoch'].append(clf.best_iteration)
dic_logs['best_val_metric'].append(clf.best_score)
elif clf_class_name == 'NN':
logs = clf.fit(xtrain, ytrain, eval_set=(xval, yval), show_accuracy=True)
dic_logs['params'] = clf.model.get_config()
dic_logs['best_epoch'].append( | np.argmin(logs.history['val_loss']) | numpy.argmin |
import numpy as np
from mushroom_rl.algorithms.value.batch_td import BatchTD
from mushroom_rl.approximators.parametric import LinearApproximator
from mushroom_rl.features import get_action_features
from mushroom_rl.utils.dataset import parse_dataset
from mushroom_rl.utils.parameters import to_parameter
class LSPI(BatchTD):
"""
Least-Squares Policy Iteration algorithm.
"Least-Squares Policy Iteration". <NAME>. and <NAME>.. 2003.
"""
def __init__(self, mdp_info, policy, approximator_params=None,
epsilon=1e-2, fit_params=None, features=None):
"""
Constructor.
Args:
epsilon ([float, Parameter], 1e-2): termination coefficient.
"""
self._epsilon = to_parameter(epsilon)
self._add_save_attr(_epsilon='mushroom')
super().__init__(mdp_info, policy, LinearApproximator,
approximator_params, fit_params, features)
def fit(self, dataset):
phi_state, action, reward, phi_next_state, absorbing, _ = parse_dataset(
dataset, self.phi)
phi_state_action = get_action_features(phi_state, action,
self.mdp_info.action_space.n)
norm = np.inf
while norm > self._epsilon():
q = self.approximator.predict(phi_next_state)
if np.any(absorbing):
q *= 1 - absorbing.reshape(-1, 1)
next_action = | np.argmax(q, axis=1) | numpy.argmax |
# This file is part of NEORL.
# Copyright (c) 2021 Exelon Corporation and MIT Nuclear Science and Engineering
# NEORL is free software: you can redistribute it and/or modify
# it under the terms of the MIT LICENSE
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -*- coding: utf-8 -*-
#"""
#Created on Sun Aug 15 2021
#
#@author: Paul
#"""
import random
import numpy as np
import math
import time
import joblib
from neorl.evolu.discrete import mutate_discrete, encode_grid_to_discrete, decode_discrete_to_grid
from neorl.utils.seeding import set_neorl_seed
class CS(object):
"""
Cuckoo Search Algorithm
:param mode: (str) problem type, either ``min`` for minimization problem or ``max`` for maximization
:param bounds: (dict) input parameter type and lower/upper bounds in dictionary form. Example: ``bounds={'x1': ['int', 1, 4], 'x2': ['float', 0.1, 0.8], 'x3': ['float', 2.2, 6.2]}``
:param fit: (function) the fitness function
:param ncuckoos: (int) number of cuckoos or nests in the population: one cuckoos per nest. Default value is 15.
:param pa: (float) a scalar value for the coefficient that controls exploration/exploitation,
i.e. fraction of the cuckoos/nests that will be replaced by the new cuckoos/nests.
:param int_transform: (str) method of handling int/discrete variables, choose from: ``nearest_int``, ``sigmoid``, ``minmax``.
:param ncores: (int) number of parallel processors (must be ``<= ncuckoos``)
:param seed: (int) random seed for sampling
"""
def __init__(self, mode, bounds, fit, ncuckoos=15, pa=0.25, int_transform='nearest_int', ncores=1, seed=None):
set_neorl_seed(seed)
assert ncores <= ncuckoos, '--error: ncores ({}) must be less than or equal than ncuckoos ({})'.format(ncores, ncuckoos)
self.mode=mode # mode for optimization: CS only solves a minimization problem.
if mode == 'min':
self.fit=fit
elif mode == 'max':
def fitness_wrapper(*args, **kwargs):
return -fit(*args, **kwargs)
self.fit=fitness_wrapper
else:
raise ValueError('--error: The mode entered by user is invalid, use either `min` or `max`')
self.int_transform=int_transform
if int_transform not in ["nearest_int", "sigmoid", "minmax"]:
raise ValueError('--error: int_transform entered by user is invalid, must be `nearest_int`, `sigmoid`, or `minmax`')
self.bounds=bounds
self.ncores = ncores
self.ncuckoos = ncuckoos
self.pa = pa # Discovery rate of parasitic eggs/solutions
self.var_type = np.array([bounds[item][0] for item in bounds])# infer variable types
#mir-grid
if "grid" in self.var_type:
self.grid_flag=True
self.orig_bounds=bounds #keep original bounds for decoding
print('--debug: grid parameter type is found in the space')
self.bounds, self.bounds_map=encode_grid_to_discrete(self.bounds) #encoding grid to int
#define var_types again by converting grid to int
self.var_type = np.array([self.bounds[item][0] for item in self.bounds])
else:
self.grid_flag=False
self.bounds = bounds
self.dim = len(bounds)
self.lb=np.array([self.bounds[item][1] for item in self.bounds])
self.ub=np.array([self.bounds[item][2] for item in self.bounds])
def init_sample(self, bounds):
#"""
#Initialize the initial population of cuckoos/nests
#"""
indv=[]
for key in bounds:
if bounds[key][0] == 'int':
indv.append(random.randint(bounds[key][1], bounds[key][2]))
elif bounds[key][0] == 'float':
indv.append(random.uniform(bounds[key][1], bounds[key][2]))
else:
raise Exception ('unknown data type is given, either int, float, or grid are allowed for parameter bounds')
return np.array(indv)
def eval_cuckoos(self,newnest = None):
#---------------------
# Fitness calcs
#---------------------
core_lst=[]
if newnest is None:
for case in range (0, self.Positions.shape[0]):
core_lst.append(self.Positions[case, :])
if self.ncores > 1:
with joblib.Parallel(n_jobs=self.ncores) as parallel:
fitness_lst=parallel(joblib.delayed(self.fit_worker)(item) for item in core_lst)
else:
fitness_lst=[]
for item in core_lst:
fitness_lst.append(self.fit_worker(item))
else:# fitness of new cuckoo versus old cuckoo must also be compared. newnest are the new cuckoos
for case in range (0, newnest.shape[0]):
core_lst.append(newnest[case, :])
if self.ncores > 1:
with joblib.Parallel(n_jobs=self.ncores) as parallel:
fitness_lst=parallel(joblib.delayed(self.fit_worker)(item) for item in core_lst)
else:
fitness_lst=[]
for item in core_lst:
fitness_lst.append(self.fit_worker(item))
return fitness_lst
def select(self, pos, fit):
best_fit=np.min(fit)
min_idx= | np.argmin(fit) | numpy.argmin |
from __future__ import division, print_function, absolute_import
import numpy as np
from oeshoot.neuralnetwork import (FeedforwardNetwork, Logistic,
HyperbolicTangent, Identity)
from numpy.testing import (TestCase, assert_array_almost_equal,
assert_array_equal, assert_array_less,
assert_raises, assert_equal, assert_,
run_module_suite, assert_allclose, assert_warns,
dec)
import numdifftools as nd
class TestFeedforwardNetworkInit(TestCase):
def test_single_activation_function(self):
activ_func = Logistic()
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=activ_func)
assert_equal(net.ninput, 3)
assert_equal(net.noutput, 2)
assert_equal(net.nhidden, [2, 3])
assert_equal(net.weights_shape, [(2, 3),
(3, 2),
(2, 3)])
assert_equal(net.bias_shape, [(2, 1),
(3, 1),
(2, 1)])
assert_equal(net.nparams, 25)
assert_equal(net.nlayers, 3)
assert_equal(isinstance(net.activ_func[0], Logistic), True)
assert_equal(isinstance(net.activ_func[1], Logistic), True)
assert_equal(isinstance(net.activ_func[2], Identity), True)
def test_listof_activation_function(self):
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3, 4],
activ_func=[Logistic(),
HyperbolicTangent(),
Identity(),
Logistic()])
assert_equal(net.ninput, 3)
assert_equal(net.noutput, 2)
assert_equal(net.nhidden, [2, 3, 4])
assert_equal(net.weights_shape, [(2, 3),
(3, 2),
(4, 3),
(2, 4)])
assert_equal(net.bias_shape, [(2, 1),
(3, 1),
(4, 1),
(2, 1)])
assert_equal(net.nlayers, 4)
assert_equal(net.nparams, 43)
assert_equal(isinstance(net.activ_func[0], Logistic), True)
assert_equal(isinstance(net.activ_func[1], HyperbolicTangent), True)
assert_equal(isinstance(net.activ_func[2], Identity), True)
assert_equal(isinstance(net.activ_func[3], Logistic), True)
def test_raise_exception(self):
assert_raises(ValueError,
FeedforwardNetwork,
ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=[Logistic(),
"bsdfad"])
assert_raises(ValueError,
FeedforwardNetwork,
ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=[Logistic()])
class TestDisassembleParams(TestCase):
def test_disassemble_params(self):
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=Logistic())
params = [1111, 1112, 1113,
1121, 1122, 1123,
121, 122,
2111, 2112,
2121, 2122,
2131, 2132,
221, 222, 223,
3111, 3112, 3113,
3121, 3122, 3123,
321, 322]
w, b = net.disassemble_params(params)
W0 = [[1111, 1112, 1113],
[1121, 1122, 1123]]
W1 = [[2111, 2112],
[2121, 2122],
[2131, 2132]]
W2 = [[3111, 3112, 3113],
[3121, 3122, 3123]]
B0 = [[121], [122]]
B1 = [[221], [222], [223]]
B2 = [[321], [322]]
assert_array_almost_equal(w[0], W0)
assert_array_almost_equal(w[1], W1)
assert_array_almost_equal(w[2], W2)
assert_array_almost_equal(b[0], B0)
assert_array_almost_equal(b[1], B1)
assert_array_almost_equal(b[2], B2)
def test_disassemble_params_raise_exception(self):
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=Logistic())
params = [1111]
assert_raises(ValueError, net.disassemble_params, params)
class TestAssembleParams(TestCase):
def test_assemble_params(self):
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=Logistic())
expected_params = [1111, 1112, 1113,
1121, 1122, 1123,
121, 122,
2111, 2112,
2121, 2122,
2131, 2132,
221, 222, 223,
3111, 3112, 3113,
3121, 3122, 3123,
321, 322]
W0 = [[1111, 1112, 1113],
[1121, 1122, 1123]]
W1 = [[2111, 2112],
[2121, 2122],
[2131, 2132]]
W2 = [[3111, 3112, 3113],
[3121, 3122, 3123]]
B0 = [[121], [122]]
B1 = [[221], [222], [223]]
B2 = [[321], [322]]
params = net.assemble_params([W0, W1, W2], [B0, B1, B2])
assert_array_almost_equal(params, expected_params)
def test_assemble_params_raise_exception(self):
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=Logistic())
expected_params = [1111, 1112, 1113,
1121, 1122, 1123,
121, 122,
2111, 2112,
2121, 2122,
2131, 2132,
221, 222, 223,
3111, 3112, 3113,
3121, 3122, 3123,
321, 322]
W0 = [[1111, 1112, 1113],
[1121, 1122, 1123]]
W1 = [[2111, 2112],
[2121, 2122],
[2131, 2132]]
W2 = [[3111, 3112, 3113],
[3121, 3122, 3123]]
B0 = [[121], [122]]
B1 = [[221], [222], [223]]
B2 = [[321], [322]]
assert_raises(ValueError, net.assemble_params, [W0, W1], [B0, B1, B2])
assert_raises(ValueError, net.assemble_params, [W0, W1, W2], [B1, B2])
assert_raises(ValueError, net.assemble_params, [W0, W1, W2],
[[1, 2, 3], B1, B2])
assert_raises(ValueError, net.assemble_params, [[1, 2, 3], W1, W2],
[B0, B1, B2])
class TestFeedforwardNetworkCall(TestCase):
def test_two_hiddenlayer_three_input_two_output(self):
l = Logistic()
i = Identity()
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=Logistic())
params = np.array([1.111, 1.112, 11.13,
112.1, 0.1122, 1123,
12.1, 1.22,
0.2111, 0.2112,
2.121, 2.122,
0.2131, 0.2132,
2.21, 2.22, 0.223,
3.111, 0.3112, 3.113,
0.3121, 0.3122, 0.3123,
0.321, 3.22])
w, b = net.disassemble_params(params)
innet = np.asarray([1, 2, 3]).reshape(3, 1)
expected = i(np.dot(w[2], l(np.dot(w[1], l(np.dot(w[0], innet)+b[0]))+b[1]))+b[2]).flatten()
assert_array_almost_equal(net(innet, params), expected, decimal=3)
innet = np.asarray([1.78, -2, 3]).reshape(3, 1)
expected = i(np.dot(w[2], l(np.dot(w[1], l(np.dot(w[0], innet)+b[0]))+b[1]))+b[2]).flatten()
assert_array_almost_equal(net(innet, params), expected, decimal=3)
innet = np.asarray([1, 25, 3]).reshape(3, 1)
expected = i(np.dot(w[2], l(np.dot(w[1], l(np.dot(w[0], innet)+b[0]))+b[1]))+b[2]).flatten()
assert_array_almost_equal(net(innet, params), expected, decimal=3)
def test_raise_exception(self):
net = FeedforwardNetwork(ninput=3, noutput=2,
nhidden=[2, 3],
activ_func=Logistic())
params = np.array([1.111, 1.112, 11.13,
112.1, 0.1122, 1123,
12.1, 1.22,
0.2111, 0.2112,
2.121, 2.122,
0.2131, 0.2132,
2.21, 2.22, 0.223,
3.111, 0.3112, 3.113,
0.3121, 0.3122, 0.3123,
0.321, 3.22])
assert_raises(ValueError, net, [1, 2, 3, 4], params)
| assert_raises(ValueError, net, [1, 2, 3], params[:-1]) | numpy.testing.assert_raises |
"""
PTDB-TUG: Pitch Tracking Database from Graz University of Technology.
The original database is available at
https://www.spsc.tugraz.at/databases-and-tools/
ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html
"""
from typing import no_type_check
from typing import Union, Optional, Tuple
from os.path import exists, join
from os import makedirs, walk
import re
import numpy as np
import pandas as pd
import joblib
from sklearn.datasets import get_data_home
from sklearn.datasets._base import _pkl_filepath
from sklearn.utils.validation import _deprecate_positional_args
from sklearn.base import BaseEstimator
@no_type_check
@_deprecate_positional_args
def fetch_ptdb_tug_dataset(*, data_origin: Union[str, bytes],
data_home: Optional[Union[str, bytes]] = None,
preprocessor: Optional[BaseEstimator] = None,
augment: Union[int, np.integer] = 0,
force_preprocessing: bool = False) -> Tuple[np.ndarray,
np.ndarray,
np.ndarray,
np.ndarray]:
"""
Load the PTDB-TUG: Pitch Tracking Database from Graz University of Technology.
(classification and regression)
================= =====================
Outputs 2
Samples total TODO
Dimensionality TODO
Features TODO
================= =====================
Parameters
----------
data_origin : Optional[str]
Specify where the original dataset can be found. By default,
all pyrcn data is stored in '~/pyrcn_data' and all scikit-learn data in
'~/scikit_learn_data' subfolders.
data_home : Optional[str]
Specify another download and cache folder fo the datasets. By default,
all pyrcn data is stored in '~/pyrcn_data' and all scikit-learn data in
'~/scikit_learn_data' subfolders.
preprocessor : Optional[BaseEstimator], default=None,
Estimator for preprocessing the dataset (create features and targets from
audio and label files).
augment : Union[int, np.integer], default = 0
Semitone range used for data augmentation
force_preprocessing: bool, default=False
Force preprocessing (label computation and feature extraction)
Returns
-------
(X, y) : tuple
"""
data_home = get_data_home(data_home=data_home)
if not exists(data_home):
makedirs(data_home)
filepath = _pkl_filepath(data_home, 'ptdb_tug.pkz')
if not exists(filepath) or force_preprocessing:
print('preprocessing PTDB-TUG database from {0} to {1}'
.format(data_origin, data_home))
all_training_files = []
all_test_files = []
for root, dirs, files in walk(data_origin):
for f in files:
if (f.endswith(".wav") and f.startswith("mic")
and not re.search(r'\_[0-9]\.wav$', f)
and not re.search(r'\_\-[0-9]\.wav$', f)):
if "F09" in f or "F10" in f or "M09" in f or "M10" in f:
all_test_files.append(join(root, f))
else:
all_training_files.append(join(root, f))
if augment > 0:
augment = list(range(-augment, augment + 1))
augment.remove(0)
else:
augment = [0]
if len(augment) == 1:
X_train = np.empty(shape=(len(all_training_files),), dtype=object)
y_train = np.empty(shape=(len(all_training_files),), dtype=object)
else:
X_train = np.empty(shape=((1 + len(augment)) * len(all_training_files),),
dtype=object)
y_train = np.empty(shape=((1 + len(augment)) * len(all_training_files),),
dtype=object)
X_test = np.empty(shape=(len(all_test_files),), dtype=object)
y_test = np.empty(shape=(len(all_test_files),), dtype=object)
if len(augment) > 1:
for k, f in enumerate(all_training_files):
X_train[k] = preprocessor.transform(f)
y_train[k] = pd.read_csv(f.replace("MIC", "REF").
replace("mic", "ref").replace(".wav", ".f0"),
sep=" ",
header=None)
for m, st in enumerate(augment):
for k, f in enumerate(all_training_files):
X_train[k + int((m+1) * len(all_training_files))] = \
preprocessor.transform(
f.replace(".wav", "_" + str(st) + ".wav"))
df = pd.read_csv(f.replace("MIC", "REF").
replace("mic", "ref").
replace(".wav", ".f0"), sep=" ", header=None)
df[[0]] = df[[0]] * 2**(st/12)
y_train[k + int((m+1) * len(all_training_files))] = df
else:
for k, f in enumerate(all_training_files):
X_train[k] = preprocessor.transform(f)
y_train[k] = pd.read_csv(f.replace("MIC", "REF").
replace("mic", "ref").
replace(".wav", ".f0"), sep=" ", header=None)
for k, f in enumerate(all_test_files):
X_test[k] = preprocessor.transform(f)
y_test[k] = pd.read_csv(f.replace("MIC", "REF").
replace("mic", "ref").
replace(".wav", ".f0"), sep=" ", header=None)
joblib.dump([X_train, X_test, y_train, y_test], filepath, compress=6)
else:
X_train, X_test, y_train, y_test = joblib.load(filepath)
x_shape_zero = np.unique(
[x.shape[0] for x in X_train] + [x.shape[0] for x in X_test])
x_shape_one = np.unique(
[x.shape[1] for x in X_train] + [x.shape[1] for x in X_test])
if len(x_shape_zero) == 1 and len(x_shape_one) > 1:
for k in range(len(X_train)):
X_train[k] = X_train[k].T
y_train[k] = _get_labels(X_train[k], y_train[k])
for k in range(len(X_test)):
X_test[k] = X_test[k].T
y_test[k] = _get_labels(X_test[k], y_test[k])
elif len(x_shape_zero) > 1 and len(x_shape_one) == 1:
for k in range(len(X_train)):
y_train[k] = _get_labels(X_train[k], y_train[k])
for k in range(len(X_test)):
y_test[k] = _get_labels(X_test[k], y_test[k])
else:
raise TypeError("Invalid dataformat."
"Expected at least one equal dimension of all sequences.")
return X_train, X_test, y_train, y_test
def _get_labels(X: np.ndarray, df_label: pd.DataFrame) -> np.ndarray:
"""
Get the pitch labels of a recording.
Parameters
----------
X: np.ndarray
Feature matrix to know the shape of the input data.
df_label, pandas.DataFrame
Pandas dataframe that contains the annotations.
Returns
-------
y : np.ndarray
"""
labels = df_label[[0, 1]].to_numpy()
y = np.zeros(shape=(X.shape[0], 2))
if X.shape[0] == labels.shape[0]:
y[:, :] = labels
return y
elif X.shape[0] == labels.shape[0] + 2 or X.shape[0] == labels.shape[0] + 1:
y[1:1+len(labels), :] = labels
return y
elif X.shape[0] == 2*labels.shape[0]:
y[:, 0] = np.interp(
np.arange(len(labels), step=0.5), # type: ignore
xp=np.arange(len(labels), step=1), fp=labels[:, 0]) # type: ignore
y[:, 1] = np.interp(
np.arange(len(labels), step=0.5), # type: ignore
xp=np.arange(len(labels), step=1), fp=labels[:, 1]) # type: ignore
return y
elif X.shape[0] == 2*labels.shape[0] - 1:
y[1:1+2*len(labels)-1, 0] = np.interp(
np.arange(len(labels) - 1, step=0.5), # type: ignore
xp=np.arange(len(labels), step=1), fp=labels[:, 0]) # type: ignore
y[1:1+2*len(labels)-1, 1] = np.interp(
np.arange(len(labels) - 1, step=0.5), # type: ignore
xp=np.arange(len(labels), step=1), fp=labels[:, 1]) # type: ignore
return y
elif X.shape[0] == 2*labels.shape[0] + 1:
y[1:1+2*len(labels)+1, 0] = np.interp(
np.arange(len(labels), step=0.5), # type: ignore
xp=np.arange(len(labels), step=1), fp=labels[:, 0]) # type: ignore
y[1:1+2*len(labels)+1, 1] = np.interp(
np.arange(len(labels), step=0.5), # type: ignore
xp=np.arange(len(labels), step=1), fp=labels[:, 1]) # type: ignore
return y
else:
return | np.ndarray([]) | numpy.ndarray |
# coding=utf-8
import talib
import numpy as np
'''
TALIB综合调用函数
name:函数名称
price_h:最高价
price_l:最低价
price_c:收盘价
price_v:成交量
price_o:开盘价
'''
def ta(name, price_h, price_l, price_c, price_v, price_o):
# function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing
if name == 'AD':
return talib.AD(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float'))
if name == 'ADOSC':
return talib.ADOSC(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float'),
fastperiod=2, slowperiod=10)
if name == 'ADX':
return talib.ADX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'ADXR':
return talib.ADXR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'APO':
return talib.APO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0)
if name == 'AROON':
AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=90)
return (AROON_DWON, AROON2_UP)
if name == 'AROONOSC':
return talib.AROONOSC(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14)
if name == 'ATR':
return talib.ATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'AVGPRICE':
return talib.AVGPRICE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'BBANDS':
BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c, dtype='float'), matype=MA_Type.T3)
return BBANDS1
if name == 'BETA':
return talib.BETA(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=5)
if name == 'BOP':
return talib.BOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CCI':
return talib.CCI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'CDL2CROWS':
return talib.CDL2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDL3BLACKCROWS':
return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDL3INSIDE':
return talib.CDL3INSIDE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDL3LINESTRIKE':
return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDL3OUTSIDE':
return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDL3STARSINSOUTH':
return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDL3WHITESOLDIERS':
return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLABANDONEDBABY':
return talib.CDLABANDONEDBABY(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'), penetration=0)
if name == 'CDLADVANCEBLOCK':
return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLBELTHOLD':
return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLBREAKAWAY':
return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLCLOSINGMARUBOZU':
return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLCONCEALBABYSWALL':
return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLCOUNTERATTACK':
return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLDARKCLOUDCOVER':
return talib.CDLDARKCLOUDCOVER(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'), penetration=0)
if name == 'CDLDOJI':
return talib.CDLDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDLDOJISTAR':
return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLDRAGONFLYDOJI':
return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLENGULFING':
return talib.CDLENGULFING(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLEVENINGDOJISTAR':
return talib.CDLEVENINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'), penetration=0)
if name == 'CDLEVENINGSTAR':
return talib.CDLEVENINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'), penetration=0)
if name == 'CDLGAPSIDESIDEWHITE':
return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLGRAVESTONEDOJI':
return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLHAMMER':
return talib.CDLHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDLHANGINGMAN':
return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLHARAMI':
return talib.CDLHARAMI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDLHARAMICROSS':
return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLHIGHWAVE':
return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLHIKKAKE':
return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLHIKKAKEMOD':
return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLHOMINGPIGEON':
return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLIDENTICAL3CROWS':
return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLINNECK':
return talib.CDLINNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDLINVERTEDHAMMER':
return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLKICKING':
return talib.CDLKICKING(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLKICKINGBYLENGTH':
return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLLADDERBOTTOM':
return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLLONGLEGGEDDOJI':
return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLLONGLINE':
return talib.CDLLONGLINE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLMARUBOZU':
return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLMATCHINGLOW':
return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLMATHOLD':
return talib.CDLMATHOLD(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLMORNINGDOJISTAR':
return talib.CDLMORNINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'), penetration=0)
if name == 'CDLMORNINGSTAR':
return talib.CDLMORNINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'), penetration=0)
if name == 'CDLONNECK':
return talib.CDLONNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDLPIERCING':
return talib.CDLPIERCING(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLRICKSHAWMAN':
return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLRISEFALL3METHODS':
return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLSEPARATINGLINES':
return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLSHOOTINGSTAR':
return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLSHORTLINE':
return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLSPINNINGTOP':
return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLSTALLEDPATTERN':
return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLSTICKSANDWICH':
return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLTAKURI':
return talib.CDLTAKURI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'))
if name == 'CDLTASUKIGAP':
return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLTHRUSTING':
return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLTRISTAR':
return talib.CDLTRISTAR(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLUNIQUE3RIVER':
return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLUPSIDEGAP2CROWS':
return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CDLXSIDEGAP3METHODS':
return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h), np.array(price_l),
np.asarray(price_c, dtype='float'))
if name == 'CMO':
return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'CORREL':
return talib.CORREL(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=30)
if name == 'DEMA':
return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
if name == 'DX':
return talib.DX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'EMA':
return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30)
if name == 'HT_DCPERIOD':
return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float'))
if name == 'HT_DCPHASE':
return talib.HT_DCPHASE(np.asarray(price_c, dtype='float'))
if name == 'HT_PHASOR':
HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR(
np.asarray(price_c, dtype='float')) # use HT_PHASOR1 for the indication of up and down
return HT_PHASOR1
if name == 'HT_SINE':
HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float'))
return HT_SINE1
if name == 'HT_TRENDLINE':
return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float'))
if name == 'HT_TRENDMODE':
return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float'))
if name == 'KAMA':
return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30)
if name == 'LINEARREG':
return talib.LINEARREG(np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'LINEARREG_ANGLE':
return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'LINEARREG_INTERCEPT':
return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'LINEARREG_SLOPE':
return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'MA':
return talib.MA(np.asarray(price_c, dtype='float'), timeperiod=30, matype=0)
if name == 'MACD':
MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, signalperiod=9)
return MACD1
if nam == 'MACDEXT':
return talib.MACDEXT(np.asarray(price_c, dtype='float'), fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0,
signalperiod=9, signalmatype=0)
if name == 'MACDFIX':
MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c, dtype='float'), signalperiod=9)
return MACDFIX1
if name == 'MAMA':
MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'), fastlimit=0, slowlimit=0)
return MAMA1
if name == 'MEDPRICE':
return talib.MEDPRICE(np.array(price_h), np.asarray(price_l, dtype='float'))
if name == 'MINUS_DI':
return talib.MINUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'MINUS_DM':
return talib.MINUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14)
if name == 'MOM':
return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10)
if name == 'NATR':
return talib.NATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'OBV':
return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float'))
if name == 'PLUS_DI':
return talib.PLUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14)
if name == 'PLUS_DM':
return talib.PLUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14)
if name == 'PPO':
return talib.PPO( | np.asarray(price_c, dtype='float') | numpy.asarray |
import pandas as pd
import numpy as np
import os
import cv2 as cv
import matplotlib.pyplot as plt
from PIL import Image
import pickle
from torch.utils.data import DataLoader,Dataset
from torchvision import transforms as T
import torch
root = './dataset/image/'
directory = './dataset/label.csv'
class raw_dataset(Dataset):
"""import and package raw data into dataset
data preprocessing with transforms: 1.resize 2.to tensor 3. normalize"""
def __init__(self, root,directory):
self.img, self.label = self.read_dataset(directory)
self.root = root
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def __getitem__(self, index):
img_path = os.path.join(self.root,self.img[index])
#data = Image.open(img_path)
data = cv.imread(img_path)
data = Image.fromarray( | np.array(data) | numpy.array |
"""
Functions related to computation of the log-likelihood.
"""
#***************************************************************************************************
# Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
# Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights
# in this software.
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory.
#***************************************************************************************************
import numpy as _np
from pygsti import tools as _tools
#pos = lambda x: x**2
pos = abs
class WildcardBudget(object):
"""
A fixed wildcard budget.
Encapsulates a fixed amount of "wildcard budget" that allows each circuit
an amount "slack" in its outcomes probabilities. The way in which this
slack is computed - or "distributed", though it need not necessarily sum to
a fixed total - per circuit depends on each derived class's implementation
of the :method:`circuit_budget` method. Goodness-of-fit quantities such as
the log-likelihood or chi2 can utilize a `WildcardBudget` object to compute
a value that shifts the circuit outcome probabilities within their allowed
slack (so `|p_used - p_actual| <= slack`) to achieve the best goodness of
fit. For example, see the `wildcard` argument of :function:`two_delta_logl_terms`.
This is a base class, which must be inherited from in order to obtain a
full functional wildcard budge (the `circuit_budget` method must be
implemented and usually `__init__` should accept more customized args).
Parameters
----------
w_vec : numpy.array
vector of wildcard budget components.
"""
def __init__(self, w_vec):
"""
Create a new WildcardBudget.
Parameters
----------
w_vec : numpy array
The "wildcard vector" which stores the parameters of this budget
which can be varied when trying to find an optimal budget (similar
to the parameters of a :class:`Model`).
"""
self.wildcard_vector = w_vec
def to_vector(self):
"""
Get the parameters of this wildcard budget.
Returns
-------
numpy array
"""
return self.wildcard_vector
def from_vector(self, w_vec):
"""
Set the parameters of this wildcard budge.
Parameters
----------
w_vec : numpy array
A vector of parameter values.
Returns
-------
None
"""
self.wildcard_vector = w_vec
@property
def num_params(self):
"""
The number of parameters of this wildcard budget.
Returns
-------
int
"""
return len(self.wildcard_vector)
def circuit_budget(self, circuit):
"""
Get the amount of wildcard budget, or "outcome-probability-slack" for `circuit`.
Parameters
----------
circuit : Circuit
the circuit to get the budget for.
Returns
-------
float
"""
raise NotImplementedError("Derived classes must implement `circuit_budget`")
def circuit_budgets(self, circuits, precomp=None):
"""
Get the wildcard budgets for a list of circuits.
Parameters
----------
circuits : list
The list of circuits to act on.
precomp : numpy.ndarray, optional
A precomputed quantity that speeds up the computation of circuit
budgets. Given by :method:`precompute_for_same_circuits`.
Returns
-------
numpy.ndarray
"""
# XXX is this supposed to do something?
# circuit_budgets = [self.circuit_budget(circ) for circ in circuits]
pass
@property
def description(self):
"""
A dictionary of quantities describing this budget.
Return the contents of this budget in a dictionary containing
(description, value) pairs for each element name.
Returns
-------
dict
"""
raise NotImplementedError("Derived classes must implement `description`")
#def compute_circuit_wildcard_budget(c, w_vec):
# #raise NotImplementedError("TODO!!!")
# #for now, assume w_vec is a length-1 vector
# return abs(w_vec[0]) * len(c)
def precompute_for_same_circuits(self, circuits):
"""
Compute a pre-computed quantity for speeding up circuit calculations.
This value can be passed to `update_probs` or `circuit_budgets` whenever this
same `circuits` list is passed to `update_probs` to speed things up.
Parameters
----------
circuits : list
A list of :class:`Circuit` objects.
Returns
-------
object
"""
raise NotImplementedError("Derived classes must implement `precompute_for_same_circuits`")
def slow_update_probs(self, probs_in, probs_out, freqs, layout, precomp=None):
"""
Updates `probs_in` to `probs_out` by applying this wildcard budget.
Update a set of circuit outcome probabilities, `probs_in`, into a
corresponding set, `probs_out`, which uses the slack alloted to each
outcome probability to match (as best as possible) the data frequencies
in `freqs`. In particular, it computes this best-match in a way that
maximizes the likelihood between `probs_out` and `freqs`. This method is
the core function of a :class:`WildcardBudget`.
Parameters
----------
probs_in : numpy array
The input probabilities, usually computed by a :class:`Model`.
probs_out : numpy array
The output probabilities: `probs_in`, adjusted according to the
slack allowed by this wildcard budget, in order to maximize
`logl(probs_out, freqs)`. Note that `probs_out` may be the same
array as `probs_in` for in-place updating.
freqs : numpy array
An array of frequencies corresponding to each of the
outcome probabilites in `probs_in` or `probs_out`.
layout : CircuitOutcomeProbabilityArrayLayout
The layout for `probs_in`, `probs_out`, and `freqs`, specifying how array
indices correspond to circuit outcomes, as well as the list of circuits.
precomp : numpy.ndarray, optional
A precomputed quantity for speeding up this calculation.
Returns
-------
None
"""
#Special case where f_k=0, since ratio is ill-defined. One might think
# we shouldn't don't bother wasting any TVD on these since the corresponding
# p_k doesn't enter the likelihood. ( => treat these components as if f_k == q_k (ratio = 1))
# BUT they *do* enter in poisson-picture logl...
# so set freqs very small so ratio is large (and probably not chosen)
for i, circ in enumerate(layout.circuits):
elInds = layout.indices_for_index(i)
qvec = probs_in[elInds]
fvec = freqs[elInds]
W = self.circuit_budget(circ)
#print("Circuit %d: %s" % (i, circ))
#print(" inds = ", elInds, "q = ", qvec, " f = ", fvec)
updated_qvec = update_circuit_probs(qvec, fvec, W)
_tools.matrixtools._fas(probs_out, (elInds,), updated_qvec)
return
def precompute_for_same_probs_freqs(self, probs_in, freqs, layout):
tol = 1e-8 # for checking equality - same as in update_probs
tvd_precomp = 0.5 * _np.abs(probs_in - freqs)
A_precomp = _np.logical_and(probs_in > freqs + tol, freqs > 0)
B_precomp = _np.logical_and(probs_in < freqs - tol, freqs > 0)
C_precomp = _np.logical_and(freqs - tol <= probs_in, probs_in <= freqs + tol) # freqs == probs
D_precomp = _np.logical_and(~C_precomp, freqs == 0) # probs_in != freqs and freqs == 0
circuits = layout.circuits
precomp_info = []
for i, circ in enumerate(circuits):
elInds = layout.indices_for_index(i)
fvec = freqs[elInds]
qvec = probs_in[elInds]
initialTVD = sum(tvd_precomp[elInds]) # 0.5 * sum(_np.abs(qvec - fvec))
A = A_precomp[elInds]
B = B_precomp[elInds]
C = C_precomp[elInds]
D = D_precomp[elInds]
sum_fA = float(_np.sum(fvec[A]))
sum_fB = float(_np.sum(fvec[B]))
sum_qA = float(_np.sum(qvec[A]))
sum_qB = float(_np.sum(qvec[B]))
sum_qC = float(_np.sum(qvec[C]))
sum_qD = float(_np.sum(qvec[D]))
min_qvec = _np.min(qvec)
# sort(abs(qvec[A] / fvec[A] - 1.0)) but abs and 1.0 irrelevant since ratio is always > 1
iA = sorted(zip(_np.nonzero(A)[0], qvec[A] / fvec[A]), key=lambda x: x[1])
# sort(abs(1.0 - qvec[B] / fvec[B])) but abs and 1.0 irrelevant since ratio is always < 1
iB = sorted(zip(_np.nonzero(B)[0], qvec[B] / fvec[B]), key=lambda x: -x[1])
precomp_info.append((A, B, C, D, sum_fA, sum_fB, sum_qA, sum_qB, sum_qC, sum_qD,
initialTVD, fvec, qvec, min_qvec, iA, iB))
return precomp_info
def update_probs(self, probs_in, probs_out, freqs, layout, precomp=None, probs_freqs_precomp=None,
return_deriv=False):
"""
Updates `probs_in` to `probs_out` by applying this wildcard budget.
Update a set of circuit outcome probabilities, `probs_in`, into a
corresponding set, `probs_out`, which uses the slack alloted to each
outcome probability to match (as best as possible) the data frequencies
in `freqs`. In particular, it computes this best-match in a way that
maximizes the likelihood between `probs_out` and `freqs`. This method is
the core function of a :class:`WildcardBudget`.
Parameters
----------
probs_in : numpy array
The input probabilities, usually computed by a :class:`Model`.
probs_out : numpy array
The output probabilities: `probs_in`, adjusted according to the
slack allowed by this wildcard budget, in order to maximize
`logl(probs_out, freqs)`. Note that `probs_out` may be the same
array as `probs_in` for in-place updating.
freqs : numpy array
An array of frequencies corresponding to each of the
outcome probabilites in `probs_in` or `probs_out`.
layout : CircuitOutcomeProbabilityArrayLayout
The layout for `probs_in`, `probs_out`, and `freqs`, specifying how array
indices correspond to circuit outcomes, as well as the list of circuits.
precomp : numpy.ndarray, optional
A precomputed quantity for speeding up this calculation.
probs_freqs_precomp : list, optional
A precomputed list of quantities re-used when calling `update_probs`
using the same `probs_in`, `freqs`, and `layout`. Generate by calling
:method:`precompute_for_same_probs_freqs`.
return_deriv : bool, optional
When True, returns the derivative of each updated probability with
respect to its circuit budget as a numpy array. Useful for internal
methods.
Returns
-------
None
"""
#Note: special case where f_k=0, since ratio is ill-defined. One might think
# we shouldn't don't bother wasting any TVD on these since the corresponding
# p_k doesn't enter the likelihood. ( => treat these components as if f_k == q_k (ratio = 1))
# BUT they *do* enter in poisson-picture logl...
# so set freqs very small so ratio is large (and probably not chosen)
tol = 1e-8 # for checking equality
circuits = layout.circuits
circuit_budgets = self.circuit_budgets(circuits, precomp)
p_deriv = _np.empty(layout.num_elements, 'd')
if probs_freqs_precomp is None:
probs_freqs_precomp = self.precompute_for_same_probs_freqs(probs_in, freqs, layout)
for i, (circ, W, info) in enumerate(zip(circuits, circuit_budgets, probs_freqs_precomp)):
A, B, C, D, sum_fA, sum_fB, sum_qA, sum_qB, sum_qC, sum_qD, initialTVD, fvec, qvec, min_qvec, iA, iB = info
elInds = layout.indices_for_index(i)
if initialTVD <= W + tol: # TVD is already "in-budget" for this circuit - can adjust to fvec exactly
probs_out[elInds] = fvec # _tools.matrixtools._fas(probs_out, (elInds,), fvec)
if return_deriv: p_deriv[elInds] = 0.0
continue
if min_qvec < 0 or abs(1.0 - sum(qvec)) > 1e-6:
qvec, W = _adjust_qvec_to_be_nonnegative_and_unit_sum(qvec, W, min_qvec, circ)
#recompute A-D b/c we've updated qvec
A = _np.logical_and(qvec > fvec, fvec > 0); sum_fA = sum(fvec[A]); sum_qA = sum(qvec[A])
B = _np.logical_and(qvec < fvec, fvec > 0); sum_fB = sum(fvec[B]); sum_qB = sum(qvec[B])
C = (qvec == fvec); sum_qC = sum(qvec[C])
D = _np.logical_and(qvec != fvec, fvec == 0); sum_qD = sum(qvec[D])
#update other values tht depend on qvec (same as in precompute_for_same_probs_freqs)
sum_qA = float(_np.sum(qvec[A]))
sum_qB = float(_np.sum(qvec[B]))
sum_qC = float(_np.sum(qvec[C]))
sum_qD = float(_np.sum(qvec[D]))
iA = sorted(zip(_np.nonzero(A)[0], qvec[A] / fvec[A]), key=lambda x: x[1])
iB = sorted(zip(_np.nonzero(B)[0], qvec[B] / fvec[B]), key=lambda x: -x[1])
indices_moved_to_C = []; alist_ptr = blist_ptr = 0
while alist_ptr < len(iA): # and sum_fA > 0
# if alist_ptr < len(iA): # always true when sum_fA > 0
jA, alphaA = iA[alist_ptr]
betaA = (1.0 - alphaA * sum_fA - sum_qC) / sum_fB
testA = min(alphaA - 1.0, 1.0 - betaA)
#if blist_ptr < len(iB): # also always true
assert(sum_fB > 0) # sum_fB should always be > 0 - otherwise there's nowhere to take probability from
jB, betaB = iB[blist_ptr]
alphaB = (1.0 - betaB * sum_fB - sum_qC) / sum_fA
testB = min(alphaB - 1.0, 1.0 - betaB)
#Note: pushedSD = 0.0
if testA < testB:
j, alpha_break, beta_break = jA, alphaA, betaA
TVD_at_breakpt = 0.5 * (sum_qA - alpha_break * sum_fA
+ beta_break * sum_fB - sum_qB
+ sum_qD) # - pushedSD) # compute_tvd
if TVD_at_breakpt <= W + tol: break # exit loop
# move j from A -> C
sum_qA -= qvec[j]; sum_qC += qvec[j]; sum_fA -= fvec[j]
alist_ptr += 1
else:
j, alpha_break, beta_break = jB, alphaB, betaB
TVD_at_breakpt = 0.5 * (sum_qA - alpha_break * sum_fA
+ beta_break * sum_fB - sum_qB
+ sum_qD) # - pushedSD) # compute_tvd
if TVD_at_breakpt <= W + tol: break # exit loop
# move j from B -> C
sum_qB -= qvec[j]; sum_qC += qvec[j]; sum_fB -= fvec[j]
blist_ptr += 1
indices_moved_to_C.append(j)
else: # if we didn't break due to TVD being small enough, continue to process with empty A-list:
while blist_ptr < len(iB): # now sum_fA == 0 => alist_ptr is maxed out
assert(sum_fB > 0) # otherwise there's nowhere to take probability from
j, beta_break = iB[blist_ptr]
pushedSD = 1.0 - beta_break * sum_fB - sum_qC # just used for TVD calc below
TVD_at_breakpt = 0.5 * (sum_qA + beta_break * sum_fB - sum_qB
+ sum_qD - pushedSD) # compute_tvd
if TVD_at_breakpt <= W + tol: break # exit loop
# move j from B -> C
sum_qB -= qvec[j]; sum_qC += qvec[j]; sum_fB -= fvec[j]
blist_ptr += 1
indices_moved_to_C.append(j)
else:
assert(False), "TVD should reach zero: qvec=%s, fvec=%s, W=%g" % (str(qvec), str(fvec), W)
#Now A,B,C are fixed to what they need to be for our given W
# test if len(A) > 0, make tol here *smaller* than that assigned to zero freqs above
if sum_fA > tol:
alpha = (sum_qA - sum_qB + sum_qD - 2 * W) / sum_fA if sum_fB == 0 else \
(sum_qA - sum_qB + sum_qD + 1.0 - sum_qC - 2 * W) / (2 * sum_fA) # compute_alpha
beta = _np.nan if sum_fB == 0 else (1.0 - alpha * sum_fA - sum_qC) / sum_fB # beta_fn
pushedSD = 0.0 # assume initially that we don't need to push any TVD into the "D" set
dalpha_dW = -2 / sum_fA if sum_fB == 0 else -1 / sum_fA
dbeta_dW = 0.0 if sum_fB == 0 else (- dalpha_dW * sum_fA) / sum_fB
dpushedSD_dW = 0.0
else: # fall back to this when len(A) == 0
beta = -(sum_qA - sum_qB + sum_qD + sum_qC - 1 - 2 * W) / (2 * sum_fB) if sum_fA == 0 else \
-(sum_qA - sum_qB + sum_qD - 1.0 + sum_qC - 2 * W) / (2 * sum_fB)
# compute_beta (assumes pushedSD can be >0)
#beta = -(sum_qA - sum_qB + sum_qD - 2 * W) / sum_fB # assumes pushedSD == 0
alpha = 0.0 # doesn't matter OLD: _alpha_fn(beta, A, B, C, qvec, fvec)
pushedSD = 1 - beta * sum_fB - sum_qC
dalpha_dW = 0.0
dbeta_dW = 2 / sum_fB if sum_fA == 0 else 1 / sum_fB
dpushedSD_dW = -dbeta_dW * sum_fB
#compute_pvec
pvec = fvec.copy()
pvec[A] = alpha * fvec[A]
pvec[B] = beta * fvec[B]
pvec[C] = qvec[C]
#indices_moved_to_C = [x[0] for x in sorted_indices_and_ratios[0:nMovedToC]]
pvec[indices_moved_to_C] = qvec[indices_moved_to_C]
pvec[D] = pushedSD * qvec[D] / sum_qD
probs_out[elInds] = pvec # _tools.matrixtools._fas(probs_out, (elInds,), pvec)
assert(W > 0 or min_qvec < 0 or _np.linalg.norm(qvec - pvec) < 1e-6), \
"Probability shouldn't be updated when W=0!" # don't check this when there are negative probs
#Check with other version (for debugging)
#check_pvec = update_circuit_probs(qvec.copy(), fvec.copy(), W)
#assert(_np.linalg.norm(check_pvec - pvec) < 1e-6)
if return_deriv:
p_deriv_wrt_W = _np.zeros(len(pvec), 'd')
p_deriv_wrt_W[A] = dalpha_dW * fvec[A]
p_deriv_wrt_W[B] = dbeta_dW * fvec[B]
p_deriv_wrt_W[indices_moved_to_C] = 0.0
p_deriv_wrt_W[D] = dpushedSD_dW * qvec[D] / sum_qD
p_deriv[elInds] = p_deriv_wrt_W
return p_deriv if return_deriv else None
class PrimitiveOpsWildcardBudget(WildcardBudget):
"""
A wildcard budget containing one parameter per "primitive operation".
A parameter's absolute value gives the amount of "slack", or
"wildcard budget" that is allocated per that particular primitive
operation.
Primitive operations are the components of circuit layers, and so
the wilcard budget for a circuit is just the sum of the (abs vals of)
the parameters corresponding to each primitive operation in the circuit.
Parameters
----------
primitive_op_labels : iterable or dict
A list of primitive-operation labels, e.g. `Label('Gx',(0,))`,
which give all the possible primitive ops (components of circuit
layers) that will appear in circuits. Each one of these operations
will be assigned it's own independent element in the wilcard-vector.
A dictionary can be given whose keys are Labels and whose values are
0-based parameter indices. In the non-dictionary case, each label gets
it's own parameter. Dictionaries allow multiple labels to be associated
with the *same* wildcard budget parameter,
e.g. `{Label('Gx',(0,)): 0, Label('Gy',(0,)): 0}`.
If `'SPAM'` is included as a primitive op, this value correspond to a
uniform "SPAM budget" added to each circuit.
start_budget : float or dict, optional
An initial value to set all the parameters to (if a float), or a
dictionary mapping primitive operation labels to initial values.
"""
def __init__(self, primitive_op_labels, start_budget=0.0, idle_name=None):
"""
Create a new PrimitiveOpsWildcardBudget.
Parameters
----------
primitive_op_labels : iterable or dict
A list of primitive-operation labels, e.g. `Label('Gx',(0,))`,
which give all the possible primitive ops (components of circuit
layers) that will appear in circuits. Each one of these operations
will be assigned it's own independent element in the wilcard-vector.
A dictionary can be given whose keys are Labels and whose values are
0-based parameter indices. In the non-dictionary case, each label gets
it's own parameter. Dictionaries allow multiple labels to be associated
with the *same* wildcard budget parameter,
e.g. `{Label('Gx',(0,)): 0, Label('Gy',(0,)): 0}`.
If `'SPAM'` is included as a primitive op, this value correspond to a
uniform "SPAM budget" added to each circuit.
start_budget : float or dict, optional
An initial value to set all the parameters to (if a float), or a
dictionary mapping primitive operation labels to initial values.
idle_name : str, optional
The gate name to be used for the 1-qubit idle gate. If not `None`, then
circuit budgets are computed by considering layers of the circuit as being
"padded" with `1-qubit` idles gates on any empty lines.
"""
if isinstance(primitive_op_labels, dict):
assert(set(primitive_op_labels.values()) == set(range(len(set(primitive_op_labels.values())))))
self.primOpLookup = primitive_op_labels
else:
self.primOpLookup = {lbl: i for i, lbl in enumerate(primitive_op_labels)}
if 'SPAM' in self.primOpLookup:
self.spam_index = self.primOpLookup['SPAM']
else:
self.spam_index = None
self._idlename = idle_name
nParams = len(set(self.primOpLookup.values()))
if isinstance(start_budget, dict):
Wvec = | _np.zeros(nParams, 'd') | numpy.zeros |
from trimesh import TriMesh, Vertex
import pytest
import numpy as np
def test_manifold_creation():
trimesh = TriMesh()
assert np.array_equal(trimesh.get_faces_by_index(), np.array([]))
assert np.array_equal(trimesh.get_vertices(), np.array([]))
def test_trimesh_add_vertices():
trimesh = TriMesh()
vertices = [Vertex(1, 0, 0), Vertex(0, 1, 0), Vertex(0, 0, 1)]
trimesh.add_vertices(vertices)
assert np.array_equal(trimesh.get_vertices(), np.array(vertices))
def test_trimesh_add_faces():
trimesh = TriMesh()
vertices = [Vertex(1, 0, 0), Vertex(0, 1, 0)]
faces = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
trimesh.add_vertices(vertices)
trimesh.add_faces_by_index(faces)
assert np.array_equal(trimesh.get_faces_by_index(), np.array(faces))
def test_trimesh_remove_duplicate_faces():
trimesh = TriMesh()
vertices = [Vertex(1, 0, 0)]
faces = [(0, 0, 0), (0, 0, 0), (0, 0, 0)]
trimesh.add_vertices(vertices)
trimesh.add_faces_by_index(faces)
trimesh.remove_duplicate_faces()
assert np.array_equal(trimesh.get_faces_by_index(), np.array([(0, 0, 0)]))
def test_trimesh_remove_empty_faces():
trimesh = TriMesh()
vertices = [Vertex(1, 0, 0), Vertex(0, 1, 0)]
faces = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
trimesh.add_vertices(vertices)
trimesh.add_faces_by_index(faces)
trimesh.remove_empty_faces()
assert np.array_equal(trimesh.get_faces_by_index(), np.array([]))
#Generated mesh saved to "stl/pyramidtest.stl"
import stl
def test_trimesh_pyramid_test():
trimesh = TriMesh()
vertices = [Vertex(1, 0, 0), Vertex(-1, 0, 0), Vertex(0, 1, 0), Vertex(0, -1, 0), Vertex(0, 0, 1)]
faces = [(0, 2, 3), (1, 2, 3), (0, 2, 4), (1, 2, 4), (0, 3, 4), (1, 3, 4)]
trimesh.add_vertices(vertices)
trimesh.add_faces_by_index(faces)
trimesh.trimesh_to_npmesh().save('stl/pyramidtest.stl', mode=stl.Mode.BINARY)
assert np.array_equal(trimesh.get_faces_by_index(), | np.array(faces) | numpy.array |
import numpy as np
from .derivatives import (d_camera_d_shape_parameters,
d_camera_d_camera_parameters)
from .projectout import project_out, sample_uv_terms
def J_data(camera, warped_uv, shape_pc_uv, U_tex_pc, grad_x_uv,
grad_y_uv, focal_length_update=False):
# Compute derivative of camera wrt shape and camera parameters
dp_da_dr = d_camera_d_shape_parameters(camera, warped_uv, shape_pc_uv)
dp_dr = d_camera_d_camera_parameters(
camera, warped_uv, with_focal_length=focal_length_update)
# stack the shape_parameters/camera_parameters updates
dp_da_dr = np.hstack((dp_da_dr, dp_dr))
# Multiply image gradient with camera derivative
permuted_grad_x = | np.transpose(grad_x_uv[..., None], (0, 2, 1)) | numpy.transpose |
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 14 14:40:04 2017
@author: r.dewinter
"""
from testFunctions.TBTD import TBTD
from testFunctions.SRD import SRD
from testFunctions.WB import WB
from testFunctions.DBD import DBD
from testFunctions.SPD import SPD
from testFunctions.CSI import CSI
from testFunctions.WP import WP
from testFunctions.OSY import OSY
from testFunctions.CTP1 import CTP1
from testFunctions.CEXP import CEXP
from testFunctions.C3DTLZ4 import C3DTLZ4
from testFunctions.TNK import TNK
from testFunctions.SRN import SRN
from testFunctions.BNH import BNH
from CONSTRAINED_SMSEGO import CONSTRAINED_SMSEGO
import time
import numpy as np
## Real world like problems
problemCall = CSI
rngMin = np.array([0.5, 0.45, 0.5, 0.5, 0.875, 0.4, 0.4])
rngMax = np.array([1.5, 1.35, 1.5, 1.5, 2.625, 1.2, 1.2])
initEval = 30
maxEval = 200
smooth = 2
nVar = 7
runNo = 11
ref = np.array([42,4.5,13])
nconstraints = 10
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = WB
rngMin = np.array([0.125, 0.1, 0.1, 0.125])
rngMax = np.array([5, 10, 10, 5])
initEval = 30
maxEval = 200
smooth = 2
nVar = 4
runNo = 3
ref = np.array([350,0.1])
nconstraints = 5
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = TBTD
rngMin = np.array([1,0.0005,0.0005])
rngMax = np.array([3,0.05,0.05])
initEval = 30
maxEval = 200
smooth = 2
runNo = 5
ref = np.array([0.1,100000])
nconstraints = 3
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = DBD
rngMin = np.array([55, 75, 1000, 2])
rngMax = np.array([80, 110, 3000, 20])
initEval = 30
maxEval = 200
smooth = 2
nVar = 4
runNo = 3
ref = np.array([5,50])
nconstraints = 5
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = SPD
rngMin = np.array([150, 25, 12, 8, 14, 0.63])
rngMax = np.array([274.32, 32.31, 22, 11.71, 18, 0.75])
initEval = 30
maxEval = 200
smooth = 2
nVar = 6
runNo = 5
ref = np.array([16,19000,-260000])
nconstraints=9
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = WP
rngMin = np.array([0.01, 0.01, 0.01])
rngMax = np.array([0.45, 0.1, 0.1])
initEval = 30
maxEval = 200
smooth = 2
nVar = 3
runNo = 3
ref = np.array([83000, 1350, 2.85, 15989825, 25000])
nconstraints = 7
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
##########################theoreticala problems
problemCall = BNH
rngMin = np.array([0,0])
rngMax = np.array([5,3])
initEval = 30
maxEval = 200
smooth = 2
runNo = 2
ref = np.array([140,50])
nconstraints = 2
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = SRN
rngMin = np.array([-20,-20])
rngMax = np.array([20, 20])
initEval = 30
maxEval = 200
smooth = 2
runNo = 8
ref = np.array([301,72])
nconstraints = 2
epsilonInit=0.01
epsilonMax=0.02
s = time.time()
CONSTRAINED_SMSEGO(problemCall, rngMin, rngMax, ref, nconstraints, initEval, maxEval, smooth, runNo, epsilonInit, epsilonMax)
print(time.time()-s)
problemCall = TNK
rngMin = | np.array([1e-5,1e-5]) | numpy.array |
# -*- coding: utf-8 -*-
"""
Created on Sat May 19 17:13:47 2018
# 数据预处理工具函数,整体功能是读取指定路径下的npy格式数据文件,预处理后生成自己的训练/验证/测试数据
@author: liuhuaqing
"""
import time
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from itertools import product
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
def convert_to_onehot(y,C):
#将label转化为one-hot形式
y = y.astype(int)
y_shape = list(y.shape)
y_shape[-1] = C
y_onehot = np.reshape(np.eye(C)[y.reshape(-1)], y_shape)
return y_onehot.astype(float)
#弹性变形
def elastic_transform_V0(image3D,mask3D,alpha=1,sigma=1):
# 弹性变形函数版本0
shape = image3D.shape
random_state = np.random.RandomState(None)
dx = gaussian_filter((random_state.rand(*shape)*2-1),sigma)*alpha
dy = gaussian_filter((random_state.rand(*shape)*2-1),sigma)*alpha
dz = gaussian_filter((random_state.rand(*shape)*2-1),sigma)*alpha
x,y,z,c = np.meshgrid(np.arange(shape[1]),np.arange(shape[0]),np.arange(shape[2]),np.arange(1))
x,y,z = x[:,:,:,0],y[:,:,:,0],z[:,:,:,0]
indices = np.reshape(y+dy,(-1,1)),np.reshape(x+dx,(-1,1)),np.reshape(z+dz,(-1,1))
image3D_elastic = map_coordinates(image3D,indices,order=1,mode='reflect').reshape(shape)
mask3D_elastic = map_coordinates(mask3D,indices,order=1,mode='reflect').reshape(shape)
return image3D_elastic, mask3D_elastic
def elastic_transform_V1(image3D,alpha=1,sigma=1):
# 弹性变形函数版本1,实现的功能和版本0一样
shape = image3D.shape
random_state = np.random.RandomState(None)
dx = gaussian_filter((random_state.rand(*shape)*2-1),sigma)*alpha
dy = gaussian_filter((random_state.rand(*shape)*2-1),sigma)*alpha
dz = gaussian_filter((random_state.rand(*shape)*2-1),sigma)*alpha
x,y,z,c = np.meshgrid(np.arange(shape[1]),np.arange(shape[0]),np.arange(shape[2]),np.arange(1))
x,y,z = x[:,:,:,0],y[:,:,:,0],z[:,:,:,0]
indices = np.reshape(y+dy,(-1,1)),np.reshape(x+dx,(-1,1)),np.reshape(z+dz,(-1,1))
image3D_elastic = map_coordinates(image3D,indices,order=1,mode='reflect').reshape(shape)
return image3D_elastic
# 旋转,axis为旋转轴,0,1,2分别代表x,y,z轴
# theta为旋转角度,单位已改为度,非弧度
# center为旋转中心,其为一维np数组[x,y,z],默认值为图像中心点
def rotation(data, axis, theta, c = np.array([]), patch_shape=(64,64,32)):# c代表旋转点
#3D矩阵的旋转(实际仅仅又绕z轴旋转的功能,在该项目中,z轴特指CT图像人体身高方向)
theta = -np.pi * theta / 180
if c.size == 0:
c = np.array([np.floor((data.shape[0]-1)/2), np.floor((data.shape[1]-1)/2), np.floor((data.shape[1]-1)/2)])
s = patch_shape
new_data = np.zeros(s) # 补零
# 绕x轴旋转
if axis == 0:
print('axis==0 not supported')
# 绕y轴旋转
elif axis == 1:
print('axis==1 not supported')
# 绕z轴旋转
else:
c_theta = np.cos(theta)
s_theta = np.sin(theta)
i0,j0 = np.int(-s[0]/2),np.int(-s[1]/2)
i1,j1 = i0+s[0], j0+s[1]
z0 = c[2]-np.floor(patch_shape[2]/2).astype(int)
z1 = z0+patch_shape[2]
for i,j in product( range(i0,i1),range(j0,j1) ):
x = np.floor(i*c_theta-j*s_theta+c[0]).astype(int)
y = np.floor(i*s_theta+j*c_theta+c[1]).astype(int)
new_data[i-i0,j-j0,:] = data[x,y,z0:z1]
return new_data
def calc_c_range(data,patch_shape=(64,64,32)):
# 该函数的作用是:服务于数据扩增中的随机旋转与裁剪,计算允许截取数据块的原始CT范围
c_range = np.zeros([2,3])
c_range[0:2,0:2] = np.vstack(
(np.ceil( np.array([0,0])+np.linalg.norm(np.array(patch_shape)[0:2])/2),
np.floor(np.array(data.shape)[0:2]-1-np.linalg.norm(np.array(patch_shape)[0:2])/2))
)
c_range[0:2,2] = np.array([
np.ceil(np.array(patch_shape[2])/2).astype(int),
np.floor(np.array(data.shape[2])-1-np.array(patch_shape[2])/2).astype(int)])
return c_range
def read_npy_file(item1,item2,get_label=True,do_augment=True,do_patch=True,D=16,H=128,W=128):
# 读取文件并根据do_patch决定是否做数据扩增
# 训练的时候做数据扩增,验证和测试的时候不做
image = np.load(item1)+70.75# 原始数据三个维度对应人体的:左右、前后、上下
if get_label:
mask = np.load(item2)
else:
mask = np.array([])
#随机裁剪
if do_patch and not do_augment:
imageShape = image.shape
x1 = np.random.randint(low=0, high=imageShape[0]-H, dtype='l')#这个方法产生离散均匀分布的整数,这些整数大于等于low,小于high。
y1 = np.random.randint(low=0, high=imageShape[1]-W, dtype='l')
z1 = np.random.randint(low=0, high=imageShape[2]-D, dtype='l')
image = image[x1:x1+H,y1:y1+W,z1:z1+D]
if get_label:
mask = mask[x1:x1+H,y1:y1+W,z1:z1+D]
#随机旋转与裁剪
if do_patch and do_augment:
c_range = calc_c_range(image,patch_shape=(H,W,D))
c = np.array([np.random.randint(low=c_range[0,0],high=c_range[1,0]),
np.random.randint(low=c_range[0,1],high=c_range[1,1]),
np.random.randint(low=c_range[0,2],high=c_range[1,2])])
theta = np.random.normal(loc=0.0,scale=10)#旋转角
image = rotation(image,axis=3,c=c,theta=theta,patch_shape=(H,W,D))
if get_label:
mask = rotation(mask,axis=3,c=c,theta=theta,patch_shape=(H,W,D))
if do_augment:
# =============================================================================
# #弹性变形,实验发现性价比不高:耗时且效果提升不明显
# alpha=2
# sigma=1
# if get_label:
# image,mask = elastic_transform_V0(image,mask,alpha,sigma)
# else:
# image = elastic_transform_V1(image,alpha,sigma)
# =============================================================================
#正太分布随机噪声
noise = np.random.normal(0, 1, image.shape)
image = image+noise
image = image.astype(np.float32)
if get_label:
mask = mask.astype(np.float32)
#左右翻转
if np.random.rand()>0.5:
image = np.flip(image,0)
if get_label:
mask = np.flip(mask,0)
image = np.transpose(image,(2,0,1))#调换维度顺序后,各维度分别是:D,H,W
image = image[:,:,:,np.newaxis]#在最后增加一个channel维度,得到的维度分别是:D,H,W,channel
if get_label:
mask = np.transpose(mask,(2,0,1))#调换维度顺序后,各维度分别是:D,H,W,channel
mask = mask[:,:,:,np.newaxis]#在最后增加一个channel维度
if get_label:
return (image,mask)
else:
return image
def get_files(file_dir,get_label=True,do_shuffle=True):
# 获取CT和mask成对的数据集文件名,并打乱顺序但不影响CT和mask的对应关系
# get_label:表示是否获取标签mask
# step1;获取file_dir下所有的图路径名
image_list = []
mask_list = []
for file in os.listdir(file_dir+'/CT'):
image_list.append(file_dir+'/CT'+'/'+file)
if get_label:
mask_list.append(file_dir+'/SegmentationLabel'+'/'+file)
#for file in os.listdir(file_dir+'/SegmentationLabel'):
# step2: 对生成的图片路径和标签做打乱处理
# 利用shuffle打乱顺序
if do_shuffle:
if get_label:
temp = np.array([image_list,mask_list])
temp = temp.transpose()#n行2列
np.random.shuffle(temp)
#从打乱顺序的temp中取list
image_list = list(temp[:,0])#打乱顺序的文件路径名字符串
mask_list = list(temp[:,1])#打乱顺序的文件路径名字符串
else:
temp = | np.array(image_list) | numpy.array |
import os, sys
import json
import numpy as np
import quaternion
import torch
from torch.utils.data import Dataset
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
# import scan2cad_utils
from s2c_config import Scan2CADDatasetConfig
import s2c_utils
DC = Scan2CADDatasetConfig()
MAX_NUM_POINT = 40000
MAX_NUM_OBJ = 64
NOT_CARED_ID = np.array([0])
SYM2CLASS = {"__SYM_NONE": 0, "__SYM_ROTATE_UP_2": 1, "__SYM_ROTATE_UP_4": 2, "__SYM_ROTATE_UP_INF": 3}
def roty(t):
"""Rotation about the y-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
def from_q_to_6d(q):
q = np.quaternion(q[0], q[1], q[2], q[3])
mat = quaternion.as_rotation_matrix(q) # 3x3
rep6d = mat[:, 0:2].transpose().reshape(-1, 6) # 6
return rep6d
def nn_search(p, ps):
target = torch.from_numpy(ps.copy())
p = torch.from_numpy(p.copy())
p_diff = target - p
p_dist = torch.sum(p_diff**2, dim=-1)
dist, idx = torch.min(p_dist, dim=-1)
return dist.item(), idx.item()
def make_M_from_tqs(t, q, s):
q = np.quaternion(q[0], q[1], q[2], q[3])
T = np.eye(4)
T[0:3, 3] = t
R = np.eye(4)
R[0:3, 0:3] = quaternion.as_rotation_matrix(q)
S = np.eye(4)
S[0:3, 0:3] = np.diag(s)
M = T.dot(R).dot(S)
return M
class Scan2CADDataset(Dataset):
def __init__(self, split_set='train', num_points=40000, augment=False):
self.data_path = os.path.join(BASE_DIR, 'scan2cad_data')
filename_json = BASE_DIR + "/full_annotations.json"
assert filename_json
all_scan_names = list(set([os.path.basename(x)[0:12] \
for x in os.listdir(self.data_path) if x.startswith('scene')]))
self.scan_names = []
# Split scan list
if split_set=='all':
self.scan_list = all_scan_names
elif split_set in ['train', 'val', 'test']:
split_filenames = os.path.join(BASE_DIR, 'scannet_meta',
'scan2cad_{}.txt'.format(split_set))
with open(split_filenames, 'r') as f:
self.scan_list = f.read().splitlines()
# remove unavailiable scans
num_scans = len(self.scan_list)
self.scan_list = [sname for sname in self.scan_list \
if sname in all_scan_names]
print('Dataset for {}: kept {} scans out of {}'.format(split_set, len(self.scan_list), num_scans))
num_scans = len(self.scan_list)
else:
print('illegal split name')
return
self.dataset = {}
self.test: int = None
with open(filename_json, 'r') as f:
data = json.load(f)
d = {}
i = -1
for idx, r in enumerate(data):
i_scan = r["id_scan"]
if i_scan not in self.scan_list:
continue
self.scan_names.append(i_scan)
i += 1
d[i] = {}
d[i]['id_scan'] = i_scan
d[i]['trs'] = r["trs"]
n_model = r["n_aligned_models"]
d[i]['n_total'] = n_model
d[i]['models'] = {}
for j in range(n_model):
d[i]['models'][j] = {}
d[i]['models'][j]['trs'] = r["aligned_models"][j]['trs']
d[i]['models'][j]['sym'] = SYM2CLASS[r["aligned_models"][j]['sym']]
cat_id = r["aligned_models"][j]['catid_cad']
if cat_id in DC.ShapenetIDToName:
d[i]['models'][j]['sem_cls'] = DC.ShapenetIDToName[cat_id]
else:
d[i]['models'][j]['sem_cls'] = 'other'
d[i]['models'][j]['id'] = r["aligned_models"][j]['id_cad']
self.dataset = d
self.num_points = num_points
self.augment = augment
def __len__(self):
return len(self.dataset)
def get_alignment_matrix(self, index):
data = self.dataset[index]
id_scan = data['id_scan']
m_scan = make_M_from_tqs(data['trs']['translation'], data['trs']['rotation'], data['trs']['scale'])
return id_scan, m_scan
def __getitem__(self, index):
data = self.dataset[index]
id_scan = data['id_scan']
K = data['n_total']
assert(K <= MAX_NUM_OBJ)
# Point Cloud
mesh_vertices = np.load(os.path.join(self.data_path, id_scan) + '_vert.npy') # (N, 3)
instance_labels = np.load(os.path.join(self.data_path, id_scan) + '_ins_label.npy') # (N, obj_id)
semantic_labels = np.load(os.path.join(self.data_path, id_scan) + '_sem_label.npy') # (N, sem_cls)
instance_bboxes = np.load(os.path.join(self.data_path, id_scan) + '_bbox.npy') # (obj_id, 7)
point_cloud = mesh_vertices[:,0:3] # do not use color for now
point_cloud, choices = s2c_utils.random_sampling(point_cloud, self.num_points, return_choices=True)
instance_labels = instance_labels[choices]
semantic_labels = semantic_labels[choices]
# Target CAD Objects (K, cls, 9 DoF)
target_obj_classes = np.zeros((MAX_NUM_OBJ), dtype=np.int64)
target_obj_symmetry = np.zeros((MAX_NUM_OBJ), dtype=np.int64)
target_obj_alignments = np.zeros((MAX_NUM_OBJ, 10), dtype=np.float32) # trs, rot, scl
target_obj_6d_rotation = np.zeros((MAX_NUM_OBJ, 6), dtype=np.float32)
for model in range(K):
# Class (1)
cls_str = data['models'][model]['sem_cls']
target_obj_classes[model] = int(DC.ShapenetNameToClass[cls_str])
# Center (3)
target_obj_alignments[model, 0:3] = | np.array(data['models'][model]['trs']['translation']) | numpy.array |
import numpy as np
import pandas as pd
import math
from sklearn.metrics import log_loss
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import ensemble
# https://github.com/sublee/elo/blob/master/elo.py
"""
elo
~~~
The Elo rating system.
:copyright: (c) 2012 by <NAME>
:license: BSD, see LICENSE for more details.
"""
from datetime import datetime
import inspect
__version__ = '0.1.dev'
__all__ = ['Elo', 'Rating', 'CountedRating', 'TimedRating', 'rate', 'adjust',
'expect', 'rate_1vs1', 'adjust_1vs1', 'quality_1vs1', 'setup',
'global_env', 'WIN', 'DRAW', 'LOSS', 'K_FACTOR', 'RATING_CLASS',
'INITIAL', 'BETA']
#: The actual score for win.
WIN = 1.01
#: The actual score for draw.
DRAW = 0.5
#: The actual score for loss.
LOSS = 0.
#: Default K-factor.
K_FACTOR = 10
#: Default rating class.
RATING_CLASS = float
#: Default initial rating.
INITIAL = 1300
#: Default Beta value.
BETA = 170
class Rating(object):
try:
__metaclass__ = __import__('abc').ABCMeta
except ImportError:
# for Python 2.5
pass
value = None
def __init__(self, value=None):
if value is None:
value = global_env().initial
self.value = value
def rated(self, value):
"""Creates a :class:`Rating` object for the recalculated rating.
:param value: the recalculated rating value.
"""
return type(self)(value)
def __int__(self):
"""Type-casting to ``int``."""
return int(self.value)
def __long__(self):
"""Type-casting to ``long``."""
return long(self.value)
def __float__(self):
"""Type-casting to ``float``."""
return float(self.value)
def __nonzero__(self):
"""Type-casting to ``bool``."""
return bool(int(self))
def __eq__(self, other):
return float(self) == float(other)
def __lt__(self, other):
"""Is Rating < number.
:param other: the operand
:type other: number
"""
return self.value < other
def __le__(self, other):
"""Is Rating <= number.
:param other: the operand
:type other: number
"""
return self.value <= other
def __gt__(self, other):
"""Is Rating > number.
:param other: the operand
:type other: number
"""
return self.value > other
def __ge__(self, other):
"""Is Rating >= number.
:param other: the operand
:type other: number
"""
return self.value >= other
def __iadd__(self, other):
"""Rating += number.
:param other: the operand
:type other: number
"""
self.value += other
return self
def __isub__(self, other):
"""Rating -= number.
:param other: the operand
:type other: number
"""
self.value -= other
return self
def __repr__(self):
c = type(self)
ext_params = inspect.getargspec(c.__init__)[0][2:]
kwargs = ', '.join('%s=%r' % (param, getattr(self, param))
for param in ext_params)
if kwargs:
kwargs = ', ' + kwargs
args = ('.'.join([c.__module__, c.__name__]), self.value, kwargs)
return '%s(%.3f%s)' % args
try:
Rating.register(float)
except AttributeError:
pass
class CountedRating(Rating):
"""Increases count each rating recalculation."""
times = None
def __init__(self, value=None, times=0):
self.times = times
super(CountedRating, self).__init__(value)
def rated(self, value):
rated = super(CountedRating, self).rated(value)
rated.times = self.times + 1
return rated
class TimedRating(Rating):
"""Writes the final rated time."""
rated_at = None
def __init__(self, value=None, rated_at=None):
self.rated_at = rated_at
super(TimedRating, self).__init__(value)
def rated(self, value):
rated = super(TimedRating, self).rated(value)
rated.rated_at = datetime.utcnow()
return rated
class Elo(object):
def __init__(self, k_factor=K_FACTOR, rating_class=RATING_CLASS,
initial=INITIAL, beta=BETA):
self.k_factor = k_factor
self.rating_class = rating_class
self.initial = initial
self.beta = beta
def expect(self, rating, other_rating):
"""The "E" function in Elo. It calculates the expected score of the
first rating by the second rating.
"""
# http://www.chess-mind.com/en/elo-system
diff = float(other_rating) - float(rating)
f_factor = 2 * self.beta # rating disparity
return 1. / (1 + 11 ** (diff / f_factor))
def adjust(self, rating, series):
"""Calculates the adjustment value."""
return sum(score - self.expect(rating, other_rating)
for score, other_rating in series)
def rate(self, rating, series):
"""Calculates new ratings by the game result series."""
rating = self.ensure_rating(rating)
k = self.k_factor(rating) if callable(self.k_factor) else self.k_factor
new_rating = float(rating) + k * self.adjust(rating, series)
if hasattr(rating, 'rated'):
new_rating = rating.rated(new_rating)
return new_rating
def adjust_1vs1(self, rating1, rating2, drawn=False):
return self.adjust(rating1, [(DRAW if drawn else WIN, rating2)])
def rate_1vs1(self, rating1, rating2, drawn=False):
scores = (DRAW, DRAW) if drawn else (WIN, LOSS)
return (self.rate(rating1, [(scores[0], rating2)]),
self.rate(rating2, [(scores[1], rating1)]))
def quality_1vs1(self, rating1, rating2):
return 2 * (0.5 - abs(0.5 - self.expect(rating1, rating2)))
def create_rating(self, value=None, *args, **kwargs):
if value is None:
value = self.initial
return self.rating_class(value, *args, **kwargs)
def ensure_rating(self, rating):
if isinstance(rating, self.rating_class):
return rating
return self.rating_class(rating)
def make_as_global(self):
"""Registers the environment as the global environment.
>>> env = Elo(initial=2000)
>>> Rating()
elo.Rating(1200.000)
>>> env.make_as_global() #doctest: +ELLIPSIS
elo.Elo(..., initial=2000.000, ...)
>>> Rating()
elo.Rating(2000.000)
But if you need just one environment, use :func:`setup` instead.
"""
return setup(env=self)
def __repr__(self):
c = type(self)
rc = self.rating_class
if callable(self.k_factor):
f = self.k_factor
k_factor = '.'.join([f.__module__, f.__name__])
else:
k_factor = '%.3f' % self.k_factor
args = ('.'.join([c.__module__, c.__name__]), k_factor,
'.'.join([rc.__module__, rc.__name__]), self.initial, self.beta)
return ('%s(k_factor=%s, rating_class=%s, '
'initial=%.3f, beta=%.3f)' % args)
def rate(rating, series):
return global_env().rate(rating, series)
def adjust(rating, series):
return global_env().adjust(rating, series)
def expect(rating, other_rating):
return global_env().expect(rating, other_rating)
def rate_1vs1(rating1, rating2, drawn=False):
return global_env().rate_1vs1(rating1, rating2, drawn)
def adjust_1vs1(rating1, rating2, drawn=False):
return global_env().adjust_1vs1(rating1, rating2, drawn)
def quality_1vs1(rating1, rating2):
return global_env().quality_1vs1(rating1, rating2)
def setup(k_factor=K_FACTOR, rating_class=RATING_CLASS,
initial=INITIAL, beta=BETA, env=None):
if env is None:
env = Elo(k_factor, rating_class, initial, beta)
global_env.__elo__ = env
return env
def global_env():
"""Gets the global Elo environment."""
try:
global_env.__elo__
except AttributeError:
# setup the default environment
setup()
return global_env.__elo__
# -------------------------------------------------------
def Outputs(data):
return 1.-(1./(1.+np.exp(-data)))
def GPIndividual1(data):
predictions = (np.sinh(((((np.sinh(data["team1Seed"]) - data["team2Seed"]) + ((np.tanh(data["team2Wmax"]) + ((data["team1Lstd"] + np.minimum( (data["team1losses"]), (data["year"])))/2.0))/2.0)) + ((data["team2Seed"] == (1.0/(1.0 + np.exp(- data["team2wins"])))).astype(float)))/2.0)) +
((np.cos(((np.round(data["team2Wmedian"]) <= data["team1LAverage"]).astype(float))) - np.maximum( ((data["team1Seed"] * data["team2Lstd"])), (np.round(np.tanh(np.maximum( (np.maximum( (data["team2Lstd"]), (data["team2Wstd"]))), (data["team1wins"]))))))) / 2.0) +
((np.floor(np.minimum( (((1.732051 == data["team1Lmax"]).astype(float))), (np.cos(data["team1WAverage"])))) == ((np.round(((((-(data["team2LAverage"])) <= data["team2losses"]).astype(float)) - 2.212120)) <= (data["team2Wmin"] * data["team2losses"])).astype(float))).astype(float)) +
np.minimum( ((np.abs(data["team1Wmedian"]) - ((data["team1Seed"] >= np.abs(data["team1Lmedian"])).astype(float)))), (np.round(np.sinh(np.minimum( ((((data["team2WAverage"] != data["team1Seed"]).astype(float)) + data["team2WAverage"])), ((-(((data["team1Wmin"] >= 2.718282).astype(float)))))))))) +
((np.minimum( (-1.0), (data["team2Lmax"])) > (data["team2Wmax"] - np.minimum( (data["team1Lmax"]), ((data["team2Wmin"] * (data["team2Wmax"] - np.minimum( (data["team2Wmin"]), (np.tanh(np.sin((data["team1Lmax"] * 2.0))))))))))).astype(float)) +
np.minimum( (((data["team2WAverage"] >= np.floor(data["team2Wmin"])).astype(float))), (np.abs(((data["team1Seed"] >= np.sinh(((0.693147 > np.minimum( (data["team2Wmedian"]), (((data["team1Seed"] <= ((data["team1Wmedian"] <= np.cos(0.693147)).astype(float))).astype(float))))).astype(float)))).astype(float))))) +
np.sin(np.sinh(((((-((((-(0.367879)) <= data["team1Lmax"]).astype(float)))) + ((data["team1Wmin"] >= np.floor(data["team1Seed"])).astype(float)))/2.0) - ((np.sin(data["team2Wstd"]) > (data["team2Wmax"] + np.abs(data["team2"]))).astype(float))))) +
(((((np.sin(data["team1Lmax"]) > data["team1Wstd"]).astype(float)) != ((data["team1Lmax"] == data["team2wins"]).astype(float))).astype(float)) * (((-(data["team2Wmin"])) + ((data["team1Lstd"] + np.minimum( (data["team2wins"]), (np.minimum( (data["team1Lmax"]), (data["team2Wmin"])))))/2.0))/2.0)) +
np.maximum( (np.minimum( (data["team1Wmin"]), (np.ceil(np.minimum( (np.minimum( (0.138462), (((data["team1Seed"] >= data["team2Lmedian"]).astype(float))))), (data["team2losses"])))))), ((((-(np.maximum( (data["team2"]), (data["team2Seed"])))) > ((data["team1losses"] < 1.414214).astype(float))).astype(float)))) +
np.minimum( (np.maximum( (data["team1Lmin"]), ((-(((data["team1wins"] >= np.cos(0.720430)).astype(float))))))), (np.minimum( (np.ceil((data["team1Wmedian"] / 2.0))), ((-(((data["team1Wmin"] >= (1.197370 + ((data["team1Wstd"] < 0.094340).astype(float)))).astype(float)))))))) +
((((-(np.abs(np.abs(((data["team1"] + (-(0.138462)))/2.0))))) * ((0.367879 >= data["team2wins"]).astype(float))) > ((data["team1Wmedian"] + np.maximum( (data["team1"]), (((0.367879 != data["team1"]).astype(float)))))/2.0)).astype(float)) +
((3.0 == np.maximum( (np.round(np.maximum( (np.sinh(data["team2Lmin"])), (data["team2LAverage"])))), (np.floor(np.maximum( (np.sinh(np.maximum( ((data["team1"] * 2.0)), (data["team1Wmedian"])))), (np.sinh((data["team2Wmedian"] * np.sin(data["team2WAverage"]))))))))).astype(float)) +
np.minimum( (np.ceil(((data["team2Wmin"] + ((0.094340 >= data["team2"]).astype(float)))/2.0))), ((np.minimum( ((data["team1Lmax"] * data["team1Wmedian"])), (((data["team1Wmedian"] < (data["team1Wmax"] - data["team2Lmedian"])).astype(float)))) * np.maximum( (data["team2Seed"]), (data["team1Wmax"]))))) +
((-(((data["team2Wmin"] >= ((-((data["team2Wstd"] + 0.318310))) * (1.0/(1.0 + np.exp(- (-((1.0/(1.0 + np.exp(- 0.318310)))))))))).astype(float)))) * (((1.0/(1.0 + np.exp(- data["year"]))) * data["team1Lmin"]) * data["team2Lstd"])) +
np.floor(np.cos(((data["team1WAverage"] * np.minimum( ((data["team1WAverage"] * data["team2Lmax"])), (data["team1Lstd"]))) * ((np.sin(np.round(data["team2Lmax"])) + ((data["team1LAverage"] != data["team2WAverage"]).astype(float)))/2.0)))) +
np.ceil(((2.675680 <= np.abs(np.maximum( ((data["team2"] + np.maximum( (np.abs(data["team1Seed"])), (data["team2LAverage"])))), ((0.318310 + (np.minimum( (data["team1Wmedian"]), (((data["team2"] != data["team2LAverage"]).astype(float)))) - data["team2Lmin"])))))).astype(float))) +
((np.sinh(np.sin(data["team2Lstd"])) * np.round(np.minimum( (np.sin(np.sinh(np.round(data["team1Wmin"])))), ((np.minimum( (data["team1Lstd"]), (np.sin(data["team2Lstd"]))) * np.sin(data["team2Lstd"])))))) / 2.0) +
((((data["team2"] <= ((((data["team1Lmin"] + 5.428570)/2.0) + (np.cos(np.maximum( (data["team1Lmin"]), (np.maximum( ((1.0/(1.0 + np.exp(- data["team1Wmin"])))), (data["team2LAverage"]))))) / 2.0))/2.0)).astype(float)) <= ((((data["team2"] + 5.428570)/2.0) <= data["team1Wmedian"]).astype(float))).astype(float)) +
np.floor(np.cos((data["team2Lmin"] * np.minimum( ((data["team1wins"] + ((data["year"] + data["team2Wmedian"])/2.0))), ((np.minimum( (data["year"]), (data["team1wins"])) + ((((data["year"] > data["team2Wmin"]).astype(float)) + data["team2Wmedian"])/2.0))))))) +
np.minimum( ((((np.minimum( (((data["team1Wmedian"] >= data["team1WAverage"]).astype(float))), (data["team2losses"])) / 2.0) > data["team1Lmax"]).astype(float))), (((data["team1Wmedian"] >= (1.0/(1.0 + np.exp(- ((data["team1Wmax"] > ((data["team1WAverage"] < (data["team1Wmedian"] - data["team2Lmin"])).astype(float))).astype(float)))))).astype(float)))) +
(((0.602941 <= (data["team2Wmin"] - ((((np.cos(data["team1Wmedian"]) * 2.0) * 2.0) >= 1.570796).astype(float)))).astype(float)) * np.sin(np.sinh(np.sinh(data["team2Wstd"])))) +
(data["team1losses"] * ((data["team1Wmedian"] >= (np.tanh((((((-(data["team1Lmin"])) > 0.434294).astype(float)) != ((np.minimum( (data["team1wins"]), (((0.434294 <= data["team2losses"]).astype(float)))) < data["team1Wmedian"]).astype(float))).astype(float))) * 2.0)).astype(float))) +
np.maximum( (((np.minimum( (data["team1Lmedian"]), (((data["team2"] > np.maximum( (data["team2losses"]), (0.585714))).astype(float)))) >= (data["team1WAverage"] + ((1.414214 > data["team2Lmin"]).astype(float)))).astype(float))), (((data["team2Wmin"] < (data["team1wins"] - 3.141593)).astype(float)))) +
np.round((np.round(((data["team2Lmedian"] * ((data["year"] > ((2.675680 + ((data["team1LAverage"] <= np.maximum( (data["team1WAverage"]), (0.094340))).astype(float)))/2.0)).astype(float))) * 2.0)) * 2.0)) +
((np.abs(np.sinh(np.abs(data["team2Lstd"]))) <= (data["team1Lmax"] * ((data["team2losses"] <= (-(((((data["team2Lstd"] <= np.minimum( (data["team2wins"]), (data["team2losses"]))).astype(float)) < np.maximum( (data["team2Wmedian"]), (data["team1losses"]))).astype(float))))).astype(float)))).astype(float)) +
np.minimum( (np.cos(data["team1"])), (((((((((((data["team1"] / 2.0) / 2.0) * 9.869604) <= 0.058823).astype(float)) <= data["team1Wstd"]).astype(float)) == np.ceil(((data["team1"] / 2.0) * 9.869604))).astype(float)) - 0.094340))) +
np.maximum( (np.round(((2.212120 <= (data["team1Wmax"] - ((data["team2Lmin"] + data["team2Lmedian"])/2.0))).astype(float)))), (((3.0 < (data["team2losses"] + np.maximum( ((-(((data["team2Lmin"] + data["team2LAverage"])/2.0)))), (data["team1"])))).astype(float)))) +
((data["team2wins"] - np.sin(data["team2Wmin"])) * ((np.maximum( (data["team2wins"]), (0.840000)) <= np.minimum( (data["team1Lmax"]), ((np.maximum( (data["team2Wmax"]), ((data["team2wins"] * np.floor(data["team2Wmax"])))) - 0.058823)))).astype(float))) +
((math.tanh((-(1.630430))) > np.sin(np.maximum( (data["team2Wmin"]), (np.minimum( (np.minimum( (data["team2Seed"]), (((data["team1LAverage"] + data["team1Wstd"])/2.0)))), ((((data["team2Seed"] <= data["team2Wmin"]).astype(float)) - data["team2Lstd"]))))))).astype(float)) +
np.floor(np.cos(((1.570796 + (np.minimum( (data["team1LAverage"]), (((data["team1WAverage"] <= ((((((data["team1Wmin"] + data["team1WAverage"])/2.0) < ((data["team2Seed"] >= data["team1Seed"]).astype(float))).astype(float)) + (data["team2Lmedian"] * 0.636620))/2.0)).astype(float)))) * 2.0))/2.0))) +
((data["team2Wmin"] > ((0.318310 + (((1.0/(1.0 + np.exp(- (((data["team2Seed"] * np.maximum( (data["team2"]), (data["team1Lmax"]))) <= ((data["team2losses"] < data["team1Lmax"]).astype(float))).astype(float))))) < data["team2Wmin"]).astype(float))) * 2.0)).astype(float)) +
np.sinh(np.floor((0.367879 - (((((np.minimum( (data["team1LAverage"]), (np.floor(data["team2WAverage"]))) == ((2.409090 < -3.0))).astype(float)) + (data["team2wins"] * np.sin(np.minimum( (data["team1Lmax"]), (data["team2WAverage"])))))/2.0) / 2.0)))) +
(((data["team1Wmax"] < (-2.0 + ((data["team1wins"] < ((data["team1Wstd"] - (((data["team1Wstd"] * data["team1Wstd"]) < data["team2Wstd"]).astype(float))) - np.sinh((((data["team2Wmax"] > data["team2Lstd"]).astype(float)) * 2.0)))).astype(float)))).astype(float)) * 2.0) +
np.tanh(np.sin(np.round(np.tanh((data["team2Wmax"] * ((np.round(data["team2LAverage"]) == ((((data["team1Wmin"] < data["team1LAverage"]).astype(float)) > ((data["team2Wmin"] >= np.cos(np.minimum( (data["team2Wmax"]), (data["team2LAverage"])))).astype(float))).astype(float))).astype(float))))))) +
np.minimum( (np.cos(data["team1losses"])), (((1.197370 < (data["team2"] * ((data["team1Lmax"] + np.round(((data["team1Wstd"] - ((((data["team1Lmax"] / 2.0) > data["team2Wmax"]).astype(float)) / 2.0)) / 2.0)))/2.0))).astype(float)))) +
np.abs(((((data["team1WAverage"] > data["team2Wstd"]).astype(float)) * 2.0) * (np.tanh(1.732051) * ((((data["team1wins"] <= 1.732051).astype(float)) < ((np.cos(data["team2Lmedian"]) > np.abs(np.sin((data["team2losses"] * 2.0)))).astype(float))).astype(float))))) +
np.minimum( (np.cos((data["team1Wmin"] * data["team2WAverage"]))), (np.minimum( (((-(((np.abs(data["team1WAverage"]) > 1.414214).astype(float)))) / 2.0)), (np.cos(np.maximum( (data["team1Wmax"]), ((data["team1wins"] - data["team2Wmedian"])))))))) +
np.abs(np.minimum( (np.minimum( (((np.abs(data["team1Lmax"]) > ((1.732051 > (data["team1Wmedian"] + data["team1"])).astype(float))).astype(float))), (np.cos(np.minimum( (data["team2wins"]), ((-(np.abs(data["team1Lmax"]))))))))), ( | np.cos(data["team1LAverage"]) | numpy.cos |
import numpy as np
import cv2
import os
import torch.utils.data as data
import math
from utils.image import flip, color_aug
from utils.image import get_affine_transform, affine_transform
from utils.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian
from utils.image import draw_dense_reg
from opts import opts
import matplotlib.pyplot as plt
class CenterLandmarkDataset(data.Dataset):
def get_border(self, border, size):
i = 1
while size - border // i <= border // i:
i *= 2
return border // i
def __getitem__(self, index):
img_id = self.images[index]
#loadImgs(ids=[img_id]) return a list, whose length = 1
file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
img_path = os.path.join(self.img_dir, file_name)
ann_ids = self.coco.getAnnIds(imgIds=[img_id])
anns = self.coco.loadAnns(ids=ann_ids)
num_objs = min(len(anns), self.max_objs)
cropped = False
if self.split == 'train':
if np.random.random() < 1:
cropped = True
file_name = file_name.split('.')[0]+'crop.jpg'
img_path = os.path.join(self.img_dir, file_name)
if self.split == 'val':
cropped = True
img = cv2.imread(img_path)
height, width = img.shape[0], img.shape[1]
c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
s = max(img.shape[0], img.shape[1]) * 1.0
rot = 0
flipped = False
rotted = False
# input_res is max(input_h, input_w), input is the size of original img
if np.random.random() < self.opts.keep_inp_res_prob and max((height | 127) + 1, (width | 127) + 1) < 1024:
self.opts.input_h = (height | 127) + 1
self.opts.input_w = (width | 127) + 1
self.opts.output_h = self.opts.input_h // self.opts.down_ratio
self.opts.output_w = self.opts.input_w // self.opts.down_ratio
self.opts.input_res = max(self.opts.input_h, self.opts.input_w)
self.opts.output_res = max(self.opts.output_h, self.opts.output_w)
trans_input = get_affine_transform(
c, s, rot, [self.opts.input_res, self.opts.input_res])
inp = cv2.warpAffine(img, trans_input,
(self.opts.input_res, self.opts.input_res),
flags=cv2.INTER_LINEAR)
inp = (inp.astype(np.float32) / 255.)
inp = (inp - self.mean) / self.std
#change data shape to [3, input_size, input_size]
inp = inp.transpose(2, 0, 1)
#output_res is max(output_h, output_w), output is the size after down sampling
output_res = self.opts.output_res
num_joints = self.num_joints
trans_output_rot = get_affine_transform(c, s, rot, [output_res, output_res])
trans_output = get_affine_transform(c, s, 0, [output_res, output_res])
hm = np.zeros((self.num_classes, output_res, output_res), dtype=np.float32)
hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32)
dense_kps = np.zeros((num_joints, 2, output_res, output_res), dtype=np.float32)
dense_kps_mask = np.zeros((num_joints, output_res, output_res), dtype=np.float32)
wh = np.zeros((self.max_objs, 2), dtype=np.float32)
kps = np.zeros((self.max_objs, 2*num_joints), dtype=np.float32)
reg = np.zeros((self.max_objs, 2), dtype=np.float32)
ind = np.zeros((self.max_objs), dtype=np.int64)
reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
kps_mask = np.zeros((self.max_objs, self.num_joints * 2), dtype=np.uint8)
hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32)
hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64)
hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64)
draw_gaussian = draw_msra_gaussian if self.opts.mse_loss else \
draw_umich_gaussian
gt_det = []
for k in range(num_objs):
ann = anns[k]
if cropped:
bbox = np.array(ann['bbox'])
else:
bbox = np.array(ann['org_bbox'])
cls_id = int(ann['category_id']) - 1
if cropped:
pts = | np.array(ann['keypoints'], np.float32) | numpy.array |
"""Simulate a population of Kepler planets."""
import numpy as np
import matplotlib.pyplot as pl
import tidal
from scipy.stats import beta
from tqdm import tqdm
from collections import OrderedDict
np.random.seed(1234)
def sample_e(size=1):
"""From Kipping (2013). See also Hogg, Myers and Bovy (2010)."""
a = 0.867
b = 3.03
return beta.rvs(a, b, size=size)
def sample_a(size=1):
"""Sample from a flat prior for a, based on zero physics."""
inner = 0.01
outer = 0.3
return inner + (outer - inner) * np.random.random(size)
def sample_r(size=1):
"""
Sample from the planet radius distribution.
Very loosely based on Fulton et al. (2017).
"""
mu = 2.4
sig = 0.7
res = mu + sig * np.random.randn(size)
res[res < 0.1] = 0.1
return res
def sample_M(size=1):
"""Every star is a Sun, ish."""
res = 1 + 0.1 * np.random.randn(size)
res[res < 0.1] = 0.1
return res
def sample_R(M, size=1):
"""Very simple mass-radius relation for stars."""
res = M ** (3. / 7.) + 0.1 * np.random.randn(size)
res[res < 0.1] = 0.1
return res
def sample_m(r, size=1):
"""Made-up radius-mass relation for planets."""
res = r ** (1 / 0.55) + 0.1 * | np.random.randn(size) | numpy.random.randn |
import numpy as np
from scipy.sparse import diags,bmat
from scipy.sparse.linalg import spsolve
class CurvedTrapezoidalDuctFlowClass(object):
"""This class provides a finite difference implementation for solving
steady flow through a curved duct having a trapezoidal cross-section.
Solutions may be computed both with and without using the Dean
approximation (solutions in this are often referred to as Dean flow).
The specific equations and non-dimensionalisation used within this class
are described in my publication here doi.org/10.1017/S1446181118000287
(noting, however, that this paper describes an alternative numerical method
to solve these equations for a larger variety of cross-section shapes).
Specifically, refer to the non-linear PDE given in equations (2.3).
This class, in fact, solves an appropriate transformation of these equations,
i.e. one which maps rectangular coordinates to certain trapezoidal cross-sections.
The solver uses Newton's method to solve the fully coupled non-linear problem.
The linear system for each iteration is contructed in sparse matrix format
and solved using sparse LU by default (although using bicgstab is an option).
The discretisation is such that the solutions achieve second order
convergence with respect to grid resolution.
"""
def __init__(self,m=65,n=65,W=2.0,H=2.0,epsilon=0.01,K=1.0,G=4.0,\
alpha=0.0,beta=0.0,delta=None,symmetric=True):
"""
Initialise the class with the desired parameters.
Some parameters can be changed later, excepting W,H (I would
recommend using a separate class instance for different shapes).
Similarly, changing m,n is loosely supported, but using different
instances would probably better.
Parameters
----------
m,n : int,int
The number of points in the finite difference discretisation,
m being the number of points across the width, and
n being the number of points across the height.
Note that array shape/dimensions will be ordered as (n,m).
Defaults to 65,65
W,H : float
The width and height of the rectangular cross-section
(in dimensionless coordinates).
To be consistent with the non-dimensionalisation in the referenced
paper these should generally be scaled such that min(W,H)=2.
Defaults to 2.0,2.0
epsilon: float
The curvature of the duct, that is 1/R given a bend radius R
in dimensionless coordinates.
Providing a value of 0 means the solution corresponds to 'Dean flow'.
Defaults to 0.0
K : float
The Dean number used in the equations (specifically K=epsilon*Re^2).
Observe this can be specified as non-zero even if epsilon=0.
Defaults to 1.0
G : float
The pressure gradient driving the axial flow.
Ideally it should be chosen such that max(u)=1.0 given K=0.0
(e.g. 4.0/L^2 would be the appropriate choice for a circular
pipe and is generally close enough for our purposes).
You should only change this if you understand the consequences on
the scaling of both the axial velocity and stream-function.
Defaults to 4.0
alpha,beta: float
Coefficients which describe the cross-section shape.
Specifically, the rectangular coordinates
(r,z) in [-W/2,W/2]x[-H/2,H/2]
are mapped to
(r,z+alpha*r+beta*r*z)
which can describe a wide range of trapezoidal/rhombus cross-sections
having vertical side walls.
If delta!=None any values passed here are ignored.
delta: float
Provides a convenient way to specify trapezoidal cross-sections.
The delta parameter describes a cross-section whose height is
H*(1+delta*r/(W/2)) for each r across its width.
If delta!=None is specified, then the alpha,beta parameters
are ignored and the symmetric parameter is checked.
symmetric: bool
Only checked when delta!=None is specified.
If True then alpha=0 is set so that the cross-section is
vertically symmetric, if False then alpha is set such that
the bottom wall is flat (i.e. perpendicular to the sides).
"""
self._shape = (n,m)
self._size = (H,W)
self._epsilon = epsilon
self._K = K
self._G = G
#
self._alpha = alpha
self._beta = beta
if delta is not None:
self._beta = delta*2/W
if symmetric:
# z -> z*(1+delta*r/(W/2))
self._alpha = 0.0
else:
# z -> (z+H/2)*(1+delta*r/(W/2))-H/2=z+r*z*delta/(W/2)+r*delta*H/W
self._alpha = delta*H/W
# Define other useful numbers
self._L = min(0.5*W,0.5*H) # probably not really needed...
self._N = n*m # probably not really needed...
self._dr = W/(m-1)
self._dz = H/(n-1)
# Construct the arrays describing the rectangular coordinate system
self._r = np.linspace(-0.5*W,0.5*W,m)
self._z = np.linspace(-0.5*H,0.5*H,n)
self._R,self._Z = np.meshgrid(self._r,self._z) # Note: use default index order
# Construct array describing the vertical trapezoidal coordinate (R is same)
self._Zt = self._Z+self._alpha*self._R+self._beta*self._R*self._Z
# Define some useful meshgrids depending on physical dimensions
if self._epsilon==0.0:
self._Tau = 1.0
else:
self._Tau = 1.0+self._epsilon*self._R
if self._beta==0.0:
self._Sigma = 1.0
self._Omega = self._alpha
else:
self._Sigma = 1.0+self._beta*self._R
self._Omega = self._alpha+self._beta*self._Z
# Pre-allocate array for holding an initial guess (2*8*m*n bytes)
self._u_old = np.zeros((n,m))
self._Phi_old = np.zeros((n,m))
self._u_old_is_zero = True # tracks whether an initial u iteration should be performed
# Pre-allocate arrays of intermediate results
self._dudr = np.zeros((n,m))
self._dudz = np.zeros((n,m))
self._d2udr2 = np.zeros((n,m))
self._d2udrdz = np.zeros((n,m))
self._d2udz2 = | np.zeros((n,m)) | numpy.zeros |
# test module for resqpy.olio.transmission.py
import math as maths
import os
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal
import resqpy.grid as grr
import resqpy.model as rq
import resqpy.olio.transmission as rqtr
import resqpy.olio.uuid as bu
import resqpy.olio.vector_utilities as vec
def test_regular_grid_half_cell_transmission(tmp_path):
def try_one_half_t_regular(model,
extent_kji = (2, 2, 2),
dxyz = (1.0, 1.0, 1.0),
perm_kji = (1.0, 1.0, 1.0),
ntg = 1.0,
darcy_constant = 1.0,
rotate = None,
dip = None):
ones = np.ones(extent_kji)
grid = grr.RegularGrid(model, extent_kji = extent_kji, dxyz = dxyz)
if dip is not None: # dip positive x axis downwards
r_matrix = vec.rotation_matrix_3d_axial(1, dip)
p = grid.points_ref(masked = False)
p[:] = vec.rotate_array(r_matrix, p)
if rotate is not None: # rotate anticlockwise in xy plane (viewed from above)
r_matrix = vec.rotation_matrix_3d_axial(2, rotate)
p = grid.points_ref(masked = False)
p[:] = vec.rotate_array(r_matrix, p)
half_t = rqtr.half_cell_t(grid,
perm_k = perm_kji[0] * ones,
perm_j = perm_kji[1] * ones,
perm_i = perm_kji[2] * ones,
ntg = ntg * ones,
darcy_constant = darcy_constant)
expected = 2.0 * darcy_constant * np.array(
(perm_kji[0] * dxyz[0] * dxyz[1] / dxyz[2], ntg * perm_kji[1] * dxyz[0] * dxyz[2] / dxyz[1],
ntg * perm_kji[2] * dxyz[1] * dxyz[2] / dxyz[0]))
assert np.all(np.isclose(half_t, expected.reshape(1, 1, 1, 3)))
temp_epc = str(os.path.join(tmp_path, f"{bu.new_uuid()}.epc"))
model = rq.Model(temp_epc, new_epc = True, create_basics = True)
try_one_half_t_regular(model)
try_one_half_t_regular(model, extent_kji = (3, 4, 5))
try_one_half_t_regular(model, dxyz = (127.53, 21.05, 12.6452))
try_one_half_t_regular(model, perm_kji = (123.23, 512.4, 314.7))
try_one_half_t_regular(model, ntg = 0.7)
try_one_half_t_regular(model, darcy_constant = 0.001127)
try_one_half_t_regular(model,
extent_kji = (5, 4, 3),
dxyz = (84.23, 77.31, 15.823),
perm_kji = (0.6732, 298.14, 384.2),
ntg = 0.32,
darcy_constant = 0.008527)
try_one_half_t_regular(model, rotate = 67.8)
# should not have written anything, but try clean-up just in case
try:
os.remove(temp_epc)
except Exception:
pass
try:
os.remove(temp_epc[-4] + '.h5')
except Exception:
pass
def test_half_cell_t_2d_triangular_precursor_equilateral():
side = 123.45
height = side * maths.sin(vec.radians_from_degrees(60.0))
# create a pair of equilateral triangles
p = np.array([(0.0, 0.0), (side, 0.0), (side / 2.0, height), (side * 3.0 / 2.0, height)])
t = np.array([(0, 1, 2), (1, 2, 3)], dtype = int)
a, b = rqtr.half_cell_t_2d_triangular_precursor(p, t)
a_over_l = a / b
expected = side / (height / 3)
assert a_over_l.shape == (2, 3)
| assert_array_almost_equal(a_over_l, expected) | numpy.testing.assert_array_almost_equal |
# -*- coding: utf-8 -*-
"""
Detect CV (consonant-vowel) pair events in speaker and microphone channels.
"""
# Third party libraries
import numpy as np
import scipy.signal as sgn
from ecogvis.signal_processing.resample import resample
def detect_events(speaker_data, mic_data=None, interval=None, dfact=30,
smooth_width=0.4, speaker_threshold=0.05, mic_threshold=0.05,
direction='both'):
"""
Automatically detects events in audio signals.
Parameters
----------
speaker_data : 'pynwb.base.TimeSeries' object
Object containing speaker data.
mic_data : 'pynwb.base.TimeSeries' object
Object containing microphone data.
interval : list of floats
Interval to be used [Start_bin, End_bin]. If 'None', the whole
signal is used.
dfact : float
Downsampling factor. Default 30.
smooth_width: float
Width scale for median smoothing filter (default = .4, decent for CVs).
speaker_threshold : float
Sets threshold level for speaker.
mic_threshold : float
Sets threshold level for mic.
direction : str
'Up' detects events start times. 'Down' detects events stop times.
'Both'
detects both start and stop times.
Returns
-------
speakerDS : 1D array of floats
Downsampled speaker signal.
speakerEventDS : 1D array of floats
Event times for speaker signal.
speakerFilt : 1D array of floats
Filtered speaker signal.
micDS : 1D array of floats
Downsampled microphone signal.
micEventDS : 1D array of floats
Event times for microphone signal.
micFilt : 1D array of floats
Filtered microphone signal.
"""
# Downsampling Speaker ---------------------------------------------------
speakerDS, speakerEventDS, speakerFilt = None, None, None
if speaker_data is not None:
if interval is None:
X = speaker_data.data[:]
else:
X = speaker_data.data[interval[0]:interval[1]]
fs = speaker_data.rate # sampling rate
ds = fs / dfact
# Pad zeros to make signal length a power of 2, improves performance
nBins = X.shape[0]
extraBins = 2 ** (np.ceil(np.log2(nBins)).astype('int')) - nBins
extraZeros = np.zeros(extraBins)
X = np.append(X, extraZeros)
speakerDS = resample(X, ds, fs)
# Remove excess bins (because of zero padding on previous step)
excessBins = int(np.ceil(extraBins * ds / fs))
speakerDS = speakerDS[0:-excessBins]
# Kernel size must be an odd number
speakerFilt = sgn.medfilt(
volume=np.diff(np.append(speakerDS, speakerDS[-1])) ** 2,
kernel_size=int((smooth_width * ds // 2) * 2 + 1))
# Normalize the filtered signal.
speakerFilt /= np.max(np.abs(speakerFilt))
# Find threshold crossing times
stimBinsDS = threshcross(speakerFilt, speaker_threshold, direction)
# Remove events that have a duration less than 0.1 s.
speaker_events = stimBinsDS.reshape((-1, 2))
rem_ind = np.where((speaker_events[:, 1] - speaker_events[:, 0]) < ds * 0.1)[0]
speaker_events = np.delete(speaker_events, rem_ind, axis=0)
stimBinsDS = speaker_events.reshape((-1))
# Transform bins to time
speakerEventDS = (stimBinsDS / ds) + (interval[0] / fs)
# Downsampling Mic -------------------------------------------------------
micDS, micEventDS, micFilt = None, None, None
if mic_data is not None:
if interval is None:
X = mic_data.data[:]
else:
X = mic_data.data[interval[0]:interval[1]]
fs = mic_data.rate # sampling rate
ds = fs / dfact
# Pad zeros to make signal length a power of 2, improves performance
nBins = X.shape[0]
extraBins = 2 ** (np.ceil( | np.log2(nBins) | numpy.log2 |
import sys
import numpy as np
import pytest
import polynomials_on_simplices.algebra.multiindex as multiindex
from polynomials_on_simplices.calculus.finite_difference import central_difference, central_difference_jacobian
from polynomials_on_simplices.calculus.polynomial.polynomials_calculus import derivative
from polynomials_on_simplices.calculus.polynomial.polynomials_simplex_bernstein_basis_calculus import (
integrate_bernstein_polynomial_unit_simplex)
from polynomials_on_simplices.geometry.mesh.simplicial_complex import opposite_sub_simplex, simplex_vertices
from polynomials_on_simplices.geometry.primitives.simplex import unit
from polynomials_on_simplices.polynomial.polynomials_base import get_dimension, polynomials_equal
from polynomials_on_simplices.polynomial.polynomials_monomial_basis import unique_identifier_monomial_basis
from polynomials_on_simplices.polynomial.polynomials_unit_simplex_bernstein_basis import (
PolynomialBernstein, bernstein_basis_fn, degree_elevated_bernstein_basis_fn, dual_bernstein_basis_fn,
dual_bernstein_basis_polynomial, dual_vector_valued_bernstein_basis, get_associated_sub_simplex,
unique_identifier_bernstein_basis, unit_polynomial, vector_valued_bernstein_basis, zero_polynomial)
from polynomials_on_simplices.probability_theory.uniform_sampling import nsimplex_sampling
def test_call():
# Test calling a scalar valued univariate polynomial
p = PolynomialBernstein([1, 1, 1], 2, 1)
value = p(0.5)
expected_value = 1
assert value == expected_value
# Test calling a vector valued univariate polynomial
p = PolynomialBernstein([[1, 1], [1, 1], [1, 1]], 2, 1)
value = p(0.5)
expected_value = np.array([1, 1])
assert np.linalg.norm(value - expected_value) < 1e-10
# Test calling a scalar valued bivariate polynomial
p = PolynomialBernstein([1, 1, 1, 1, 1, 1], 2, 2)
value = p([1 / 3, 1 / 3])
expected_value = 1
assert value == expected_value
# Test calling a vector valued bivariate polynomial
p = PolynomialBernstein([[1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1]], 2, 2)
value = p([1 / 3, 1 / 3])
expected_value = np.array([1, 1])
assert np.linalg.norm(value - expected_value) < 1e-10
def test_getitem():
# Test getting the components of a polynomial in P(R^m, R^n)
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r = 3
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
p = PolynomialBernstein(a, r, m)
for i in range(n):
if n == 1:
def pi_expected(x):
return p(x)
else:
def pi_expected(x):
return p(x)[i]
assert polynomials_equal(p[i], pi_expected, r, m)
def test_add():
# Test adding two polynomials in P(R^m, R^n)
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r = 3
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
b = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
b = np.random.random_sample((dim, n))
p1 = PolynomialBernstein(a, r, m)
p2 = PolynomialBernstein(b, r, m)
def p_expected(x):
return p1(x) + p2(x)
assert polynomials_equal(p1 + p2, p_expected, r, m)
# Test adding two polynomials in P(R^m, R^n) of different degree
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r1 = 2
r2 = 3
dim1 = get_dimension(r1, m)
dim2 = get_dimension(r2, m)
if n == 1:
a = np.random.random_sample(dim1)
b = np.random.random_sample(dim2)
else:
a = np.random.random_sample((dim1, n))
b = np.random.random_sample((dim2, n))
p1 = PolynomialBernstein(a, r1, m)
p2 = PolynomialBernstein(b, r2, m)
def p_expected(x):
return p1(x) + p2(x)
assert polynomials_equal(p1 + p2, p_expected, r, m)
def test_sub():
# Test subtracting two polynomials in P(R^m, R^n)
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r = 3
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
b = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
b = np.random.random_sample((dim, n))
p1 = PolynomialBernstein(a, r, m)
p2 = PolynomialBernstein(b, r, m)
def p_expected(x):
return p1(x) - p2(x)
assert polynomials_equal(p1 - p2, p_expected, r, m)
# Test subtracting two polynomials in P(R^m, R^n) of different degree
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r1 = 2
r2 = 3
dim1 = get_dimension(r1, m)
dim2 = get_dimension(r2, m)
if n == 1:
a = np.random.random_sample(dim1)
b = np.random.random_sample(dim2)
else:
a = np.random.random_sample((dim1, n))
b = np.random.random_sample((dim2, n))
p1 = PolynomialBernstein(a, r1, m)
p2 = PolynomialBernstein(b, r2, m)
def p_expected(x):
return p1(x) - p2(x)
assert polynomials_equal(p1 - p2, p_expected, r, m)
def test_mul():
# Test multiplying a polynomial in P(R^m, R^n) with a scalar
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r = 3
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
s = np.random.rand()
p = PolynomialBernstein(a, r, m)
def p_expected(x):
return s * p(x)
assert polynomials_equal(s * p, p_expected, r, m)
assert polynomials_equal(p * s, p_expected, r, m)
# Test multiplying a polynomial in P(R^m) = P(R^m, R^1) with a vector
for m in [1, 2, 3]:
r = 3
dim = get_dimension(r, m)
a = np.random.random_sample(dim)
v = np.random.rand(2)
p = PolynomialBernstein(a, r, m)
def p_expected(x):
return v * p(x)
# Can't do this, because this will be handled by the Numpy ndarray __mul__ method and result in Numpy array
# of polynomials
# assert polynomials_equal(v * p, p_expected, r, m)
assert polynomials_equal(p * v, p_expected, r, m)
# Test multiplying two polynomials in P(R^m) = P(R^m, R^1)
for m in [1, 2, 3]:
r1 = 3
r2 = 2
dim1 = get_dimension(r1, m)
a = np.random.random_sample(dim1)
dim2 = get_dimension(r2, m)
b = np.random.random_sample(dim2)
p1 = PolynomialBernstein(a, r1, m)
p2 = PolynomialBernstein(b, r2, m)
def p_expected(x):
return p1(x) * p2(x)
assert polynomials_equal(p1 * p2, p_expected, r1 + r2, m)
def test_div():
# Test dividing a polynomial in P(R^m, R^n) with a scalar
for m in [1, 2, 3]:
for n in [1, 2, 3]:
r = 3
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
s = np.random.rand()
p = PolynomialBernstein(a, r, m)
def p_expected(x):
return p(x) / s
assert polynomials_equal(p / s, p_expected, r, m)
def test_pow():
# Test taking the power of a polynomial in P(R^m, R^n)
r = 3
for m in [1, 2, 3]:
for n in [1, 2, 3]:
if n == 1:
exponents = range(r + 1)
else:
exponents = multiindex.generate_all(n, r)
for exponent in exponents:
r_base = 1
dim = get_dimension(r_base, m)
if n == 1:
a = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
p = PolynomialBernstein(a, r_base, m)
if n == 1:
def p_expected(x):
return p(x)**exponent
else:
def p_expected(x):
return multiindex.power(p(x), exponent)
assert polynomials_equal(p**exponent, p_expected, r, m)
def test_partial_derivative():
for m in [1, 2, 3]:
for n in [1, 2, 3]:
for r in [0, 1, 2, 3]:
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
p = PolynomialBernstein(a, r, m)
for i in range(m):
if n == 1:
if m == 1:
def dp_dxi_fd(x):
return central_difference(p, x)
else:
def dp_dxi_fd(x):
return central_difference(p, x)[i]
else:
def dp_dxi_fd(x):
return central_difference_jacobian(p, n, x)[:, i]
assert polynomials_equal(p.partial_derivative(i), dp_dxi_fd, r, m, rel_tol=1e-4, abs_tol=1e-6)
def test_degree_elevate():
for m in [1, 2, 3]:
for n in [1, 2, 3]:
for r in [0, 1, 2, 3]:
dim = get_dimension(r, m)
if n == 1:
a = np.random.random_sample(dim)
else:
a = np.random.random_sample((dim, n))
p = PolynomialBernstein(a, r, m)
for s in range(r, r + 3):
q = p.degree_elevate(s)
assert polynomials_equal(p, q, s, m)
@pytest.mark.slow
def test_to_monomial_basis():
for m in [1, 2, 3]:
for n in [1, 2, 3]:
for r in [0, 1, 2, 3]:
dim = get_dimension(r, m)
if n == 1:
a = | np.random.random_sample(dim) | numpy.random.random_sample |
"""Contains a bunch of utilities useful during network training in PyTorch."""
import math
from collections import deque
from typing import Dict, Union, List, Tuple, Any, Callable
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
def init_orthogonal(tensor, gain=1):
r"""
Taken from a future torch version
"""
if tensor.ndimension() < 2:
raise ValueError("Only tensors with 2 or more dimensions are supported")
rows = tensor.size(0)
cols = tensor.numel() // rows
flattened = tensor.new(rows, cols).normal_(0, 1)
if rows < cols:
flattened.t_()
# Compute the qr factorization
q, r = torch.qr(flattened)
# Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
d = torch.diag(r, 0)
ph = d.sign()
q *= ph
if rows < cols:
q.t_()
tensor.view_as(q).copy_(q)
tensor.mul_(gain)
return tensor
def get_gpu_memory_map():
# From https://discuss.pytorch.org/t/access-gpu-memory-usage-in-pytorch/3192/3
import subprocess
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
result = subprocess.check_output(
["nvidia-smi", "--query-gpu=memory.used", "--format=csv,nounits,noheader"],
encoding="utf-8",
)
# Convert lines into a dictionary
gpu_memory = [int(x) for x in result.strip().split("\n")]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
return gpu_memory_map
def load_model_from_state_dict(model, state_dict):
model_state_dict = model.state_dict()
model_keys = set(model_state_dict.keys())
dict_keys = set(state_dict.keys())
in_model_not_in_dict = []
in_dict_not_in_model = []
wrong_parameter_sizes = []
for key in model_keys | dict_keys:
if key in model_keys and key not in dict_keys:
in_model_not_in_dict.append(key)
elif key not in model_keys and key in dict_keys:
in_dict_not_in_model.append(key)
elif model_state_dict[key].shape != state_dict[key].shape:
wrong_parameter_sizes.append(key)
if (
len(in_model_not_in_dict) == 0
and len(in_dict_not_in_model) == 0
and len(wrong_parameter_sizes) == 0
):
return model.load_state_dict(state_dict)
else:
print(
(
"WARNING: Loading model from state dictionary but:\n"
"* The following parameters are present in the state"
" dictionary and not in the model and will be ignored: {}\n"
"* The following parameters are present in the model but "
"not in the state and will remain in their initial state: {}\n"
"* The following parameters are present in both the model and "
"saved state but are of incompatible sizes, they will remain as in the model: {}\n"
).format(
"\n\t- None"
if len(in_dict_not_in_model) == 0
else "\n\t- " + "\n\t- ".join(in_dict_not_in_model),
"\n\t- None"
if len(in_model_not_in_dict) == 0
else "\n\t- " + "\n\t- ".join(in_model_not_in_dict),
"\n\t- None"
if len(wrong_parameter_sizes) == 0
else "\n\t- " + "\n\t- ".join(wrong_parameter_sizes),
)
)
yn = input("Continue? (y/n)").lower().strip()
if yn not in ["y", "yes"]:
print("Aborting...")
quit()
return model.load_state_dict(
{
**model.state_dict(),
**{
k: state_dict[k]
for k in ((dict_keys - set(wrong_parameter_sizes)) & model_keys)
},
}
)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def binary_search_for_model_with_least_upper_bound_parameters(
target_parameter_count,
create_model_func: Callable[[int], nn.Module],
lower: int,
upper: int,
):
assert lower <= upper
lower_count = count_parameters(create_model_func(lower))
upper_count = count_parameters(create_model_func(upper))
assert lower_count <= target_parameter_count <= upper_count, "Invalid range"
def run_search(
target_parameter_count,
create_model_func: Callable[[int], nn.Module],
lower: int,
upper: int,
):
if lower == upper:
return lower
mid = int(math.floor((lower + upper) / 2))
mid_count = count_parameters(create_model_func(mid))
if mid_count == target_parameter_count:
return mid
elif mid_count > target_parameter_count:
return run_search(
target_parameter_count=target_parameter_count,
create_model_func=create_model_func,
lower=lower,
upper=mid,
)
else:
return run_search(
target_parameter_count=target_parameter_count,
create_model_func=create_model_func,
lower=mid + 1,
upper=upper,
)
return run_search(
target_parameter_count=target_parameter_count,
create_model_func=create_model_func,
lower=lower,
upper=upper,
)
def logit_offsets_for_conditional_probabilities(
action_group_dims: Tuple[int, ...]
) -> List[float]:
consts = [0.0]
for i in range(1, len(action_group_dims)):
consts.append(math.log(action_group_dims[0] / action_group_dims[i]))
return consts
class ScalarMeanTracker(object):
def __init__(self) -> None:
self._sums: Dict[str, float] = {}
self._counts: Dict[str, int] = {}
def add_scalars(self, scalars: Dict[str, Union[float, int]]) -> None:
for k in scalars:
if np.isscalar(scalars[k]):
if k not in self._sums:
self._sums[k] = float(scalars[k])
self._counts[k] = 1
else:
self._sums[k] += float(scalars[k])
self._counts[k] += 1
def means(self):
means = {k: self._sums[k] / self._counts[k] for k in self._sums}
return means
def counts(self):
return {**self._counts}
def pop_and_reset_for_key(self, k):
s = self._sums[k]
c = self._counts[k]
del self._sums[k]
del self._counts[k]
return s / c
def pop_and_reset(self):
means = {k: self._sums[k] / self._counts[k] for k in self._sums}
self._sums = {}
self._counts = {}
return means
class TensorConcatTracker(object):
def __init__(self) -> None:
self._tensors: Dict[str, torch.FloatTensor] = {}
def add_tensors(self, tensors: Dict[str, Union[torch.FloatTensor, Any]]) -> None:
for k in tensors:
if type(tensors[k]) == torch.FloatTensor:
if k not in self._tensors:
self._tensors[k] = tensors[k]
else:
self._tensors[k] = torch.cat((self._tensors[k], tensors[k]), dim=0)
def pop_and_reset(self):
t = self._tensors
self._tensors = {}
return t
class RollingAverage(object):
"""Computes and stores the running average as well
as the average within a recent window"""
def __init__(self, window_size):
assert window_size > 0
self.window_size = window_size
self.rolling_sum = 0
self.sum = 0
self.count = 0
self.rolling_deque = deque()
def add(self, val):
"""Add one value."""
self.sum += val
self.rolling_sum += val
self.count += 1
self.rolling_deque.append(val)
if len(self.rolling_deque) > self.window_size:
self.rolling_sum -= self.rolling_deque.popleft()
def rolling_average(self):
assert self.count > 0
return self.rolling_sum / (1.0 * len(self.rolling_deque))
def full_average(self):
assert self.count > 0
return self.sum / self.count
class TrainTestInfoStore(object):
def __init__(self, train_window_size, test_window_size):
self.train_window_size = train_window_size
self.test_window_size = test_window_size
self.train_recent_save = []
self.train_averages = []
self.train_num_frames = []
self.test_recent_save = []
self.test_averages = []
self.test_num_frames = []
def add_train_result(self, episode_reward, num_frames):
self.train_recent_save.append(episode_reward)
if len(self.train_recent_save) == self.train_window_size:
self.train_averages.append(np.mean(self.train_recent_save))
self.train_num_frames.append(num_frames)
self.train_recent_save = []
def add_test_result(self, episode_reward, num_frames):
self.test_recent_save.append(episode_reward)
if len(self.test_recent_save) == self.test_window_size:
self.test_averages.append(np.mean(self.test_recent_save))
self.test_num_frames.append(num_frames)
self.test_recent_save = []
def train_results(self):
return self.train_averages, self.train_num_frames
def test_results(self):
return self.test_averages, self.test_num_frames
def train_full_average(self):
sum = (
np.sum(self.train_recent_save)
+ np.sum(self.train_averages) * self.train_window_size
)
return sum / (
len(self.train_averages) * self.train_window_size
+ len(self.train_recent_save)
)
def test_full_average(self):
sum = (
np.sum(self.test_recent_save)
+ np.sum(self.test_averages) * self.test_window_size
)
return sum / (
len(self.test_averages) * self.test_window_size + len(self.test_recent_save)
)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
"""Resets counters."""
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
"""Updates counters."""
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_gpu_model(model, optim, epoch, ckpt_fname):
state_dict = model.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].cpu()
optimizer = optim.state_dict()
for key in optimizer.keys():
optimizer[key] = optimizer[key].cpu()
torch.save(
{"epoch": epoch, "state_dict": state_dict, "optimizer": optimizer}, ckpt_fname
)
def save_model(model, optim, epoch, ckpt_fname):
state_dict = model.state_dict()
optimizer = optim.state_dict()
torch.save(
{"epoch": epoch, "state_dict": state_dict, "optimizer": optimizer}, ckpt_fname
)
def show_image_stack(image_stack):
"""Displays the stack of images
If the image_stack is of type torch.Tensor, then expected size is (1, N, H, W)
If the image_stack is of type np.ndarray, then expected size is (H, W, N)
"""
import matplotlib
matplotlib.use("TkAgg", force=False)
import matplotlib.pyplot as plt # Keeping this outside causes issues in multiprocessing.
if isinstance(image_stack, torch.Tensor):
image_stack = image_stack.squeeze().cpu().numpy()
image_stack = np.transpose(image_stack, (1, 2, 0))
num_images = image_stack.shape[2]
length = np.ceil(np.sqrt(num_images)).item()
plt.figure()
for idx in range(num_images):
plt.subplot(length, length, idx + 1)
img = image_stack[:, :, idx]
plt.imshow(img, cmap="gray")
plt.show()
def recursively_detach(to_detach: Any):
"""Recursively detach tensors in nested structure."""
if to_detach is None:
return to_detach
elif isinstance(to_detach, tuple):
return tuple(recursively_detach(x) for x in to_detach)
elif isinstance(to_detach, list):
return [recursively_detach(x) for x in to_detach]
elif isinstance(to_detach, dict):
return {k: recursively_detach(to_detach[k]) for k in to_detach}
elif isinstance(to_detach, set):
return set(recursively_detach(x) for x in to_detach)
elif (
isinstance(to_detach, np.ndarray)
or | np.isscalar(to_detach) | numpy.isscalar |
# mathematical imports
import numpy as np
from sklearn import metrics
import pandas as pd
# graphical imports
from matplotlib import pyplot as plt
import seaborn as sns
# system imports
import pickle
import sys
import os
# pytorch imports
import torch
import torch.utils.data as data
# my file imports
sys.path.insert(0, '/Users/chanaross/dev/Thesis/MachineLearning/forGPU/')
from LSTM_inputFullGrid_multiClassSmooth import Model, moving_average
from dataLoader_uber import DataSet_oneLSTM_allGrid
sys.path.insert(0, '/Users/chanaross/dev/Thesis/UtilsCode/')
from createGif import create_gif
sns.set()
np.random.seed(1)
def loadFile(fileName):
with open(fileName+'.pkl', 'rb') as handle:
data = pickle.load(handle)
return data
def checkResults(data_net, data_labels, data_real, timeIndexs, xIndexs, yIndexs, filePath, fileName, dataType):
clr = np.random.rand(3, 3)
t_size = data_net.shape[0]
x_size = data_net.shape[1]
y_size = data_net.shape[2]
if dataType == 'Real':
fileName = 'RealInput_'+fileName
elif dataType == 'Smooth':
fileName = 'SmoothInput_'+fileName
for i, x in enumerate(xIndexs):
for j, y in enumerate(yIndexs):
fig, ax = plt.subplots(1, 1)
# ax.plot(timeIndex, data_labels[:, i, j], color='g', marker='.', linestyle='-.', label=dataType + ' label output')
ax.plot(timeIndexs, data_real[:, i, j], color='m', marker='o', linestyle='-', label=dataType + ' output')
ax.plot(timeIndexs, data_net[:, i, j], color='k', marker='*', linestyle='--', label='net output')
ax.set_xlabel('Time')
ax.set_ylabel('Num Events')
ax.set_title(fileName + ', (x,y):(' + str(x) + ',' + str(y) + ')')
plt.legend()
plt.show()
# plt.savefig(filePath + 'timeResults_' + fileName + str(x) + 'x_' + str(y) + 'y_' + '.png')
# plt.close()
return
def plotSpesificTime(data_net, data_labels, data_real, t, pathName, fileName, dataType, maxTick):
dataReal = data_real.reshape(data_real.shape[1], data_real.shape[2])
dataPred = data_net.reshape(data_net.shape[1], data_net.shape[2])
day = np.floor_divide(t, 2 * 24) + 1 # sunday is 1
week = np.floor_divide(t, 2 * 24 * 7) + 14 # first week is week 14 of the year
temp_hour, temp = np.divmod(t, 2)
temp_hour += 8 # data starts from 98 but was normalized to 0
_, hour = np.divmod(temp_hour, 24)
minute = temp * 30
dataFixed = np.zeros_like(dataReal)
dataFixed = np.swapaxes(dataReal, 1, 0)
dataFixed = np.flipud(dataFixed)
dataFixedPred = np.zeros_like(dataPred)
dataFixedPred = np.swapaxes(dataPred, 1, 0)
dataFixedPred = np.flipud(dataFixedPred)
f, axes = plt.subplots(1, 4)
ticksDict = list(range(maxTick+1))
sns.heatmap(dataFixed, cbar=False, center=1, square=True, vmin=0, vmax=np.max(ticksDict), ax=axes[1],
cmap='BuPu', cbar_kws=dict(ticks=ticksDict))
sns.heatmap(dataFixedPred, cbar=True, center=1, square=True, vmin=0, vmax=np.max(ticksDict), ax=axes[2],
cmap='BuPu', cbar_kws=dict(ticks=ticksDict))
f.set_suptitle('week- {0}, day- {1},time- {2}:{3}'.format(week, day, hour, minute))
axes[0].set_title(dataType + 'real data')
axes[1].set_title('predicted data')
# plt.title('time is - {0}:{1}'.format(hour, minute))
axes[0].set_xlabel('X axis')
axes[0].set_ylabel('Y axis')
axes[1].set_xlabel('X axis')
axes[1].set_ylabel('Y axis')
plt.savefig(pathName + dataType + '_' + fileName + '_' + str(t) +'.png')
plt.close()
return
def plotSpesificTime_allData(data_net, data_real, t, pathName, fileName, dataType, maxTick):
dataReal = data_real.reshape(data_real.shape[1], data_real.shape[2])
dataPred = data_net.reshape(data_net.shape[1], data_net.shape[2])
day = np.floor_divide(t, 2 * 24) + 1 # sunday is 1
week = np.floor_divide(t, 2 * 24 * 7) + 14 # first week is week 14 of the year
temp_hour, temp = np.divmod(t, 2)
temp_hour += 8 # data starts from 98 but was normalized to 0
_, hour = np.divmod(temp_hour, 24)
minute = temp * 30
dataFixed = np.zeros_like(dataReal)
dataFixed = np.swapaxes(dataReal, 1, 0)
dataFixed = np.flipud(dataFixed)
dataFixedPred = np.zeros_like(dataPred)
dataFixedPred = np.swapaxes(dataPred, 1, 0)
dataFixedPred = np.flipud(dataFixedPred)
f, axes = plt.subplots(1, 4)
ticksDict = list(range(maxTick+1))
cbar_ax = f.add_axes([.91, .3, .03, .4])
sns.heatmap(dataFixedPred, cbar=False, center=1, square=True, vmin=0, vmax=np.max(ticksDict), ax=axes[1], cmap='CMRmap_r', cbar_kws=dict(ticks=ticksDict))
sns.heatmap(dataFixed, cbar=True, cbar_ax=cbar_ax, center=1, square=True, vmin=0, vmax=np.max(ticksDict), ax=axes[2], cmap='CMRmap_r', cbar_kws=dict(ticks=ticksDict))
f.suptitle('week- {0}, day- {1},time- {2}:{3}'.format(week, day, hour, minute), fontsize=16)
axes[0].set_title('net-real data')
axes[1].set_title('real data')
axes[0].set_xlabel('X axis')
axes[0].set_ylabel('Y axis')
axes[1].set_xlabel('X axis')
plt.savefig(pathName + dataType + '_' + fileName + '_' + str(t) +'.png')
plt.close()
return
def createTimeGif(net_data, labels_data, real_data, timeIndexs, fileName, pathName, dataType):
lengthX = net_data.shape[1]
lengthY = net_data.shape[2]
maxTick = np.max(real_data).astype(int)
maxTick = 10
for i, t in enumerate(timeIndexs):
temp_net = net_data[i, :, :].reshape([1, lengthX, lengthY])
temp_real = real_data[i, :, :].reshape([1, lengthX, lengthY])
temp_label = labels_data[i, :, :].reshape([1, lengthX, lengthY])
plotSpesificTime(temp_net, temp_label, temp_real, t, pathName, fileName, dataType, maxTick)
listNames = [dataType + '_' + fileName + '_' + str(t) + '.png' for t in timeIndexs]
create_gif(pathName, listNames, 1, dataType + '_' + fileName)
for fileName in listNames:
os.remove(pathName + fileName)
return
def createTimeGif_allData(net_data, real_data, timeIndexs, fileName, pathName, dataType):
lengthX = net_data.shape[1]
lengthY = net_data.shape[2]
maxTick = np.max(real_data).astype(int)
for i, t in enumerate(timeIndexs):
temp_net = net_data[i, :, :].reshape([1, lengthX, lengthY])
temp_real = real_data[i, :, :].reshape([1, lengthX, lengthY])
plotSpesificTime_allData(temp_net, temp_real, t, pathName, fileName, dataType, maxTick)
listNames = [dataType + '_' + fileName + '_' + str(t) + '.png' for t in timeIndexs]
create_gif(pathName, listNames, 1, dataType + '_' + fileName)
for fileName in listNames:
os.remove(pathName + fileName)
return
def create_bm_seq_input(data, t_index, seq_len, createLabel = True):
# in this case we assume that the batches are the different grid points
t_size = data.shape[0]
x_size = data.shape[1]
y_size = data.shape[2]
temp = np.zeros(shape=(seq_len, x_size, y_size))
if (t_index - seq_len > 0):
temp = data[t_index - seq_len:t_index, :, :]
else:
temp[seq_len - t_index:, :, :] = data[0:t_index, :, :]
xArr = np.zeros(shape=(x_size * y_size, seq_len))
if createLabel:
tempOut = np.zeros(shape=(seq_len, x_size, y_size))
try:
if (t_index + 1 <= t_size) and (t_index + 1 - seq_len > 0):
tempOut = data[t_index + 1 - seq_len: t_index + 1, :, :].reshape(seq_len, x_size, y_size)
elif (t_index + 1 <= t_size) and (t_index + 1 - seq_len <= 0):
tempOut[seq_len - t_index - 1:, :, :] = data[0:t_index + 1, :, :]
elif (t_index + 1 > t_size) and (t_index + 1 - seq_len > 0):
tempOut[0:seq_len - 1, :, :] = data[t_index + 1 - seq_len: t_index, :, :] # taking the last part of the sequence
except:
print('couldnt find correct output sequence!!!')
try:
yArrTemp = tempOut[-1, :, :]
except:
print("couldnt take last value of time sequence for output!!!")
yArr = np.zeros(shape=(x_size*y_size))
k = 0
for i in range(x_size):
for j in range(y_size):
xArr[k, :] = temp[:, i, j]
if createLabel:
yArr[k] = yArrTemp[i, j]
k += 1
# xArr is of shape: [grid id, seq]
# yArr is of shape: [grid id]
if not createLabel:
yArr = []
return xArr, yArr
def calc_bm_seq_Output_fromData_probability(data_in, class_size, timeIndexs, sequence_size):
time_size = timeIndexs.size
x_size = data_in.shape[1]
y_size = data_in.shape[2]
grid_size = x_size*y_size
net_accuracy = []
net_rmse = []
correct_non_zeros = []
correct_zeros = []
numEventsCreated = []
numEventsPredicted = []
bm_seq_output = np.zeros((time_size, x_size, y_size))
label_output = np.zeros((time_size, x_size, y_size))
# testOutTemp = []
# netlabelTemp = []
# inputTemp = []
cdf = np.zeros(class_size)
events_mat = np.zeros(shape=[x_size, y_size, class_size])
for i, t in enumerate(timeIndexs):
# print("t:" + str(i) + " out of:" + str(timeIndexs.size))
for x in range(x_size):
for y in range(y_size):
# print("t:" + str(i) + ",x:"+str(x)+", y:"+str(y))
input, label = create_bm_seq_input(data_in[:, x, y].reshape([-1, 1, 1]), t, sequence_size)
# input size is: [grid_id, seq_len]
# label size is: [grid_id]
for t_seq in range(sequence_size):
num_events = int(input[0, t_seq])
events_mat[x, y, num_events] += 1
events_mat[x, y, :] = events_mat[x, y, :]/np.sum(events_mat[x, y, :])
probOut = events_mat[x, y, :]
for j in range(probOut.size):
cdf[j] = np.sum(probOut[0:j + 1])
randNum = np.random.uniform(0, 1)
# find how many events are happening at the same time
numEvents = np.searchsorted(cdf, randNum, side='left')
numEvents = np.floor(numEvents).astype(int)
bm_labelsNp = np.array([numEvents]).reshape([1, 1])
# testOutTemp.append(testOut.detach().numpy())
# netlabelTemp.append(net_labelsNp)
# inputTemp.append(input)
labelsNp = label
sizeMat = bm_labelsNp.size
net_rmse.append(np.sqrt(metrics.mean_squared_error(labelsNp.reshape(-1), bm_labelsNp.reshape(-1))))
net_accuracy.append(np.sum(labelsNp == bm_labelsNp) / sizeMat)
sizeMat_zeros = bm_labelsNp[labelsNp == 0].size
sizeMat_non_zeros = bm_labelsNp[labelsNp != 0].size
if (sizeMat_non_zeros > 0):
correct_non_zeros.append(np.sum(bm_labelsNp[labelsNp != 0] == labelsNp[labelsNp != 0]) / sizeMat_non_zeros)
if sizeMat_zeros > 0:
correct_zeros.append(np.sum(bm_labelsNp[labelsNp == 0] == labelsNp[labelsNp == 0]) / sizeMat_zeros)
numEventsCreated.append(np.sum(labelsNp))
numEventsPredicted.append(np.sum(bm_labelsNp))
bm_seq_output[i, x, y] = bm_labelsNp
label_output[i, x, y] = labelsNp
results = {'accuracy' : net_accuracy,
'rmse' : net_rmse,
'numCreated' : numEventsCreated,
'numPredicted' : numEventsPredicted,
'correctedZeros' : correct_zeros,
'correctedNonZeros' : correct_non_zeros}
return bm_seq_output, label_output, results
def plotEpochGraphs(my_net, filePath, fileName):
f, ax = plt.subplots(2,1)
ax[0].plot(range(len(my_net.accVecTrain)), np.array(my_net.accVecTrain), label = "Train accuracy")
ax[0].plot(range(len(my_net.accVecTest)), np.array(my_net.accVecTest), label="Test accuracy")
ax[0].set_xlabel('Epoch')
ax[0].set_ylabel('Accuracy [%]')
ax[1].plot(range(len(my_net.lossVecTrain)), np.array(my_net.lossVecTrain), label="Train Loss")
ax[1].plot(range(len(my_net.lossVecTest)), np.array(my_net.lossVecTest), label="Test Loss")
ax[1].set_xlabel('Epoch')
ax[1].set_ylabel('Loss')
plt.legend()
plt.savefig(filePath + 'lossResults_' + fileName + '.png')
plt.close()
# plt.show()
return
def main():
data_path = '/Users/chanaross/dev/Thesis/UberData/'
data_name = '3D_allDataLatLonCorrected_20MultiClass_500gridpickle_30min.p'
# network_path = '/Users/chanaross/dev/Thesis/MachineLearning/forGPU/GPU_results/uberSingleGridTrain_longSeq/'
network_path = '/Users/chanaross/dev/Thesis/MachineLearning/forGPU/GPU_results/singleGridId_multiClassSmooth/'
# GPU_results/singleGridId_multiClassSmooth/'
# network_name = 'smooth_30_seq_50_bs_40_hs_128_lr_0.9_ot_1_wd_0.002_torch.pkl'
network_name = 'smooth_10_seq_50_bs_40_hs_128_lr_0.9_ot_1_wd_0.002_torch.pkl'
my_net = torch.load(network_path + network_name, map_location=lambda storage, loc: storage)
sequence_size = my_net.sequence_size
plot_graph_vs_time = True
plot_time_gif = False
# create dictionary for storing result for each network tested
results = {'mean RMSE' : [],
'mean accuracy' : [],
'mean zeros accuracy' : [],
'mean nonZeros accuracy' : [],
'mean smooth RMSE' : [],
'mean smooth accuracy' : [],
'mean smooth zeros accuracy' : [],
'mean smooth nonZeros accuracy' : []}
dataInputReal = np.load(data_path + data_name, allow_pickle=True)
lengthT = dataInputReal.shape[2]
lengthX = dataInputReal.shape[0]
lengthY = dataInputReal.shape[1]
xmin = 0
xmax = dataInputReal.shape[0] # 6
ymin = 0
ymax = dataInputReal.shape[1] # 11
zmin = 0 # np.floor(dataInputReal.shape[2]*0.7).astype(int)
zmax = dataInputReal.shape[2]
dataInputReal = dataInputReal[xmin:xmax, ymin:ymax, zmin:zmax] # shrink matrix size for fast training in order to test model
class_size = int(np.max(dataInputReal) + 1)
dataInputReal = dataInputReal[5:6, 10:11, :]
# reshape input data for network format -
dataInputReal = np.swapaxes(dataInputReal, 0, 1)
dataInputReal = np.swapaxes(dataInputReal, 0, 2)
# create results index's -
tmin = 2000
tmax = 2100
timeIndexs = np.arange(tmin, tmax, 1).astype(int)
xIndexs = np.arange(xmin, xmax, 1).astype(int)
yIndexs = np.arange(ymin, ymax, 1).astype(int)
numRuns = timeIndexs.size
figPath = data_path + 'figures/'
fileName = str(numRuns) + '_bm_easy_seqBased'
try:
smoothParam = my_net.smoothingParam
except:
print("no smoothing param, using default 15")
smoothParam = 15
# create smooth data -
dataInputSmooth = moving_average(dataInputReal, smoothParam, axis=0) # smoothing data so that results are more clear to network
# calc network output
# real data -
bm_output_fromData, label_output_fromData, net_results = calc_bm_seq_Output_fromData_probability(dataInputReal,
class_size,
timeIndexs,
sequence_size)
bm_output_fromData_smooth, label_output_fromData_smooth, net_results_smooth = calc_bm_seq_Output_fromData_probability(dataInputSmooth,
class_size,
timeIndexs,
sequence_size)
# plot each grid point vs. time
if plot_graph_vs_time:
# real data-
checkResults(bm_output_fromData, label_output_fromData, dataInputReal[timeIndexs, :, :],
timeIndexs, xIndexs, yIndexs, figPath, fileName, 'Real')
# real data-
checkResults(bm_output_fromData_smooth, label_output_fromData_smooth, dataInputSmooth[timeIndexs, :, :],
timeIndexs, xIndexs, yIndexs, figPath, fileName, 'Smooth')
# save total results to dictionary for each network tested -
# real data -
results['mean RMSE'].append(np.mean(net_results['rmse']))
results['mean accuracy'].append(100 * np.mean(net_results['accuracy']))
results['mean nonZeros accuracy'].append(100 * np.mean(net_results['correctedNonZeros']))
results['mean zeros accuracy'].append(100 * np.mean(net_results['correctedZeros']))
# smooth data -
results['mean smooth RMSE'].append(np.mean(net_results_smooth['rmse']))
results['mean smooth accuracy'].append(100 * | np.mean(net_results_smooth['accuracy']) | numpy.mean |
"""
Large-scale version of population.py
"""
import pandas as pd
import numpy as np
import humanleague
import neworder
import ethpop
from helpers import *
class Microsynth:
def __init__(self, countries):
country_lookup = pd.read_csv("./examples/world/data/CountryLookup.csv", sep="\t").set_index("Code")["Country"].to_dict()
self.value_column = "2019 [YR2019]"
self.countries = countries
self.pop = pd.DataFrame()
alldata = pd.read_csv("./examples/world/data/CountryData.csv").replace("..","")
alldata[self.value_column] = pd.to_numeric(alldata[self.value_column])
for country in self.countries:
neworder.log("Microsynthesising population for %s" % country_lookup[country])
data = alldata[(alldata["Country Code"] == country) & (alldata["Series Code"]).str.match("SP.POP.*(FE|MA)$")]
# fallback to gender totals if age-specific values not available
if data[self.value_column].isnull().values.any():
neworder.log("%s: age-gender specific population data not available" % country_lookup[country])
data = alldata[(alldata["Country Code"] == country) & (alldata["Series Code"]).str.match("^SP.POP.TOTL.(FE|MA).IN$")]
# fallback to overall total if gender-specific values not available
if data[self.value_column].isnull().values.any():
neworder.log("%s: gender specific population data not available" % country_lookup[country])
data = alldata[(alldata["Country Code"] == country) & (alldata["Series Code"]).str.match("^SP.POP.TOTL$")]
assert len(data) == 1
if np.isnan(data[self.value_column].values):
neworder.log("%s: total population data not available - skipping" % country)
else:
self._generate_from_total(data[self.value_column].values, country)
else:
raise NotImplementedError("microsynth from M/F totals")
else:
data = pd.concat([data, data["Series Code"].str.split(".", expand=True)], axis=1) \
.drop(["Country Code", "Series Code", 0, 1], axis=1) \
.set_index([2,3]).unstack()
# get synth pop for the country
self._generate(data.values, country)
# memory used in MB scaled up to world pop
#neworder.log(self.pop.memory_usage() / len(self.pop) * 7.5e9 / 1024 / 1024)
def _generate(self, agg_data, country):
agg_data = humanleague.integerise(agg_data)["result"]
# split 5y groups
split = humanleague.prob2IntFreq(np.ones(5) / 5, int(agg_data.sum()))["freq"]
msynth = humanleague.qis([np.array([0,1], dtype=int), np.array([2], dtype=int)], [agg_data, split])
if not isinstance(msynth, dict):
raise RuntimeError("microsynthesis general failure: %s" % msynth)
if not msynth["conv"]:
raise RuntimeError("microsynthesis convergence failure")
#neworder.log(pop["result"])
raw = humanleague.flatten(msynth["result"])
pop = pd.DataFrame(columns=["AGE5", "AGE1", "SEX"])
pop.AGE5 = raw[0]
pop.AGE1 = raw[2]
pop.SEX = raw[1]
# could fail here if zero people in any category
assert len(pop.AGE5.unique()) == 17
assert len(pop.AGE1.unique()) == 5
assert len(pop.SEX.unique()) == 2
# construct single year of age
pop["Country"] = country
pop["AGE"] = pop.AGE5 * 5 + pop.AGE1
self.pop = self.pop.append(pop.drop(["AGE5", "AGE1"], axis=1))
def _generate_from_total(self, agg_value, country):
# TODO improve distribution
sex_split = humanleague.prob2IntFreq( | np.ones(2) | numpy.ones |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Class of variatonal Gaussian Mixture Image models.
It serves as a baseline for a hidden Potts-MRF for Bayesian unsupervised image
segmentation.
Author: <NAME>
Date: 29-11-2018
"""
import numpy as np
import numpy.random as rnd
from numpy.linalg import inv, cholesky
from scipy.misc import logsumexp
from scipy.special import betaln, digamma, gammaln
from scipy.spatial.distance import cdist
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from vis import plot_posteriors
class VariationalMixture(object):
"""
Superclass of variational mixture models.
Methods are functions common to all submixture models.
"""
def log_multivariate_gamma(self, n, p):
"""
Logarithmic multivariate gamma function.
This function is necessary for expectations and partition functions of
Wishart distributions. See also:
https://en.wikipedia.org/wiki/Multivariate_gamma_function
Parameters
----------
nu : float
Degrees of freedom.
p : int
Dimensionality.
Returns
-------
Gp : float
p-th order multivariate gamma function.
"""
# Check for appropriate degree of freedom
if not n > (p-1):
raise ValueError('Degrees of freedom too low for dimensionality.')
# Preallocate
Gp = 0
# Product from d=1 to p
for d in range(1, p+1):
# Gamma function of degrees of freedom and dimension
Gp += gammaln((n + 1 - d)/2)
return (p * (p-1) / 4)*np.log(np.pi) + Gp
def multivariate_digamma(self, n, p):
"""
Multivariate digamma function.
This function is necessary for expectations and partition functions of
Wishart distributions. See also:
https://en.wikipedia.org/wiki/Multivariate_gamma_function
Parameters
----------
nu : float
Degrees of freedom.
p : int
Dimensionality.
Returns
-------
Pp : float
p-th order multivariate digamma function.
"""
# Check for appropriate degree of freedom
if not n > (p-1):
raise ValueError('Degrees of freedom too low for dimensionality.')
# Preallocate
Pp = 0
# Sum from d=1 to D
for d in range(1, p+1):
# Digamma function of degrees of freedom and dimension
Pp += digamma((n + 1 - d)/2)
return Pp
def log_partition_Wishart(self, W, n):
"""
Logarithmic partition function of the Wishart distribution.
To compute variational expectations, the partition of the Wishart
distribution is sometimes needed. The current computation follows
Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition &
Machine Learning."
Parameters
----------
W : array
Positive definite, symmetric precision matrix.
nu : int
Degrees of freedom.
Returns
-------
B : float
Partition of Wishart distribution.
"""
# Extract dimensionality
D, D_ = W.shape
# Check for symmetric matrix
if not D == D_:
raise ValueError('Matrix is not symmetric.')
# Check for appropriate degree of freedom
if not n > D-1:
raise ValueError('Degrees of freedom too low for dimensionality.')
# Compute log-multivariate gamma
lmG = self.log_multivariate_gamma(n, D)
# Compute partition function
B = (-n/2)*self.log_det(W) - (n*D/2)*np.log(2) - lmG
return B
def entropy_Wishart(self, W, n):
"""
Entropy of the Wishart distribution.
To compute variational expectations, the entropy of the Wishart
distribution is sometimes needed. The current computation follows
Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition &
Machine Learning."
Parameters
----------
W : array
Positive definite, symmetric precision matrix.
nu : int
Degrees of freedom.
Returns
-------
H : float
Entropy of Wishart distribution.
"""
# Extract dimensionality
D, D_ = W.shape
# Check for symmetric matrix
if not D == D_:
raise ValueError('Matrix is not symmetric.')
# Check for appropriate degree of freedom
if not n > D-1:
raise ValueError('Degrees of freedom too low for dimensionality.')
# Expected log-determinant of precision matrix
E = self.multivariate_digamma(n, D) + D*np.log(2) + self.log_det(W)
# Entropy
H = -self.log_partition_Wishart(W, n) - (n - D - 1)/2 * E + n*D/2
return H
def log_det(self, A):
"""
Numerically stable computation of log determinant of a matrix.
Parameters
----------
A : array
Expecting a positive definite, symmetric matrix.
Returns
-------
float
Log-determinant of given matrix.
"""
# Perform cholesky decomposition
L = cholesky(A)
# Stable log-determinant
return np.sum(2*np.log(np.diag(L)))
def distW(self, X, S):
"""
Compute weighted distance.
Parameters
----------
X : array
Vectors (N by D) or (H by W by D).
W : array
Weights (D by D).
Returns
-------
array
Weighted distance for each vector.
"""
if not S.shape[0] == S.shape[1]:
raise ValueError('Weight matrix not symmetric.')
if not X.shape[-1] == S.shape[0]:
raise ValueError('Dimensionality of data and weights mismatch.')
if len(X.shape) == 2:
# Shapes
N, D = X.shape
# Preallocate
A = np.zeros((N,))
# Loop over samples
for n in range(N):
# Compute weighted inner product between vectors
A[n] = X[n, :] @ S @ X[n, :].T
elif len(X.shape) == 3:
# Shape
H, W, D = X.shape
# Preallocate
A = np.zeros((H, W))
# Loop over samples
for h in range(H):
for w in range(W):
# Compute weighted inner product between vectors
A[h, w] = X[h, w, :] @ S @ X[h, w, :].T
return A
def one_hot(self, A):
"""
Map array to pages with binary encodings.
Parameters
----------
A : array
2-dimensional array of integers
Returns
-------
B : array (height by width by number of unique integers in A)
3-dimensional array with each page as an indicator of value in A.
"""
# Unique values
labels = np.unique(A)
# Preallocate new array
B = np.zeros((*A.shape, len(labels)))
# Loop over unique values
for i, label in enumerate(labels):
B[:, :, i] = (A == label)
return B
class UnsupervisedGaussianMixture(VariationalMixture):
"""
Variational Gaussian Mixture Image model.
This implementation multivariate images (height by width by channel).
It is based on the RPubs note by <NAME>:
https://rpubs.com/cakapourani/variational-bayes-gmm
"""
def __init__(self, num_channels=1,
num_components=2,
init_params='nn',
max_iter=10,
tol=1e-5):
"""
Model-specific constructors.
Parameters
----------
num_channels : int
Number of channels of image (def: 1).
num_components : int
Number of components (def: 2).
theta0 : tuple
Prior hyperparameters.
max_iter : int
Maximum number of iterations to run for (def: 10).
tol : float
Tolerance on change in x-value (def: 1e-5).
Returns
-------
None
"""
# Store data dimensionality
if num_channels >= 1:
self.D = num_channels
else:
raise ValueError('Number of channels must be larger than 0.')
# Store model parameters
if num_components >= 2:
self.K = num_components
else:
raise ValueError('Too few components specified')
# Optimization parameters
self.init_params = init_params
self.max_iter = max_iter
self.tol = tol
# Set prior hyperparameters
self.set_prior_hyperparameters(D=num_channels,
K=num_components)
def set_prior_hyperparameters(self, D, K,
a0=np.array([0.1]),
b0=np.array([0.1]),
n0=np.array([2.0]),
m0=np.array([0.0]),
W0=np.array([1.0])):
"""
Set hyperparameters of prior distributions.
Default prior hyperparameters are minimally informative symmetric
parameters.
Parameters
----------
D : int
Dimensionality of data.
K : int
Number of components.
a0 : float / array (components by None)
Hyperparameters of Dirichlet distribution on component weights.
b0 : float / array (components by None)
Scale parameters for hypermean normal distribution.
n0 : array (components by None)
Degrees of freedom for Wishart precision prior.
m0 : array (components by dimensions)
Hypermeans.
W0 : array (dimensions by dimensions by components)
Wishart precision parameters.
Returns
-------
theta : tuple
"""
# Expand alpha's if necessary
if not a0.shape[0] == K:
a0 = np.tile(a0[0], (K,))
# Expand beta's if necessary
if not b0.shape[0] == K:
b0 = np.tile(b0[0], (K,))
# Expand nu's if necessary
if not n0.shape[0] == K:
# Check for sufficient degrees of freedom
if n0[0] < D:
print('Cannot set Wishart degrees of freedom lower than data \
dimensionality.\n Setting it to data dim.')
n0 = np.tile(D, (K,))
else:
n0 = np.tile(n0[0], (K,))
# Expand hypermeans if necessary
if not np.all(m0.shape == (K, D)):
# If mean vector given, replicate to each component
if len(m0.shape) == 2:
if m0.shape[1] == D:
m0 = np.tile(m0, (K, 1))
else:
m0 = np.tile(m0[0], (K, D))
# Expand hypermeans if necessary
if not np.all(W0.shape == (D, D, K)):
# If single covariance matrix given, replicate to each component
if len(W0.shape) == 2:
if np.all(m0.shape[:2] == (D, D)):
W0 = np.tile(W0, (1, 1, K))
else:
W0_ = np.zeros((D, D, K))
for k in range(K):
W0_[:, :, k] = W0[0]*np.eye(D)
# Store tupled parameters as model attribute
self.theta0 = (a0, b0, n0, m0, W0_)
def initialize_posteriors(self, X):
"""
Initialize posterior hyperparameters
Parameters
----------
X : array
Observed image (height by width by channels)
Returns
-------
theta : tuple
Set of parameters.
"""
# Current shape
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
if self.init_params == 'random':
# Dirichlet concentration hyperparameters
at = np.ones((self.K,))*(H*W)/2
# Normal precision-scale hyperparameters
bt = np.ones((self.K,))*(H*W)/2
# Wishart degrees of freedom
nt = np.ones((self.K,))*(H*W)/2
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = np.mean(X, axis=0) + rnd.randn(1, D)*.1
# Hyperprecisions
Wt[:, :, k] = np.eye(D)
# Initialize variational posterior responsibilities
rho = np.ones((H, W, self.K)) / self.K
elif self.init_params in ('kmeans', 'k-means'):
# Fit k-means to data and obtain cluster assignment
label = KMeans(n_clusters=self.K, n_init=1).fit(X).labels_
# Set rho based on cluster labels
rho = np.zeros((H*W, self.K))
rho[np.arange(H*W), label] = 1
# Dirichlet concentration hyperparameters
at = np.sum(rho, axis=0)
# Normal precision-scale hyperparameters
bt = np.sum(rho, axis=0)
# Wishart degrees of freedom
nt = np.sum(rho, axis=0)
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = np.sum(rho[:, [k]] * X, axis=0) / np.sum(rho[:, k])
# Hyperprecisions
Wt[:, :, k] = np.eye(D)
else:
raise ValueError('Provided method not recognized.')
return (at, bt, nt, mt, Wt), rho
def free_energy(self, X, rho, thetat, report=True):
"""
Compute free energy term to monitor progress.
Parameters
----------
X : array
Observed image (height by width by channels).
rho : array
Array of variational parameters (height by width by channels).
thetat : array
Parameters of variational posteriors.
theta0 : array
Parameters of variational priors.
report : bool
Print value of free energy function.
Returns
-------
rho : array
Updated array of variational parameters.
"""
# Shapes
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
rho = rho.reshape((H*W, self.K))
# Unpack parameter sets
a0, b0, n0, m0, W0 = self.theta0
at, bt, nt, mt, Wt = thetat
# Preallocate terms for energy function
E1 = 0
E2 = 0
E3 = 0
E4 = 0
E5 = 0
E6 = 0
E7 = 0
# Loop over classes
for k in range(self.K):
''' Convenience variables '''
# Proportion assigned to each component
Nk = np.sum(rho[:, k], axis=0)
# Responsibility-weighted mean
xk = np.sum(rho[:, [k]] * X, axis=0) / Nk
# Reponsibility-weighted variance
Sk = ((X - xk) * rho[:, [k]]).T @ (X - xk) / Nk
# Mahalanobis distance from hypermean
mWm = (mt[k, :] - m0[k, :]).T @ Wt[:, :, k] @ (mt[k, :] - m0[k, :])
# Mahalanobis distance from responsibility-weighted mean
xWx = (xk - mt[k, :]) @ Wt[:, :, k] @ (xk - mt[k, :]).T
# Entropy-based terms
Elog_pik = digamma(at[k]) - digamma(np.sum(at))
Elog_Lak = (D*np.log(2) +
self.log_det(Wt[:, :, k]) +
self.multivariate_digamma(nt[k], D))
''' Energy function '''
# First term
E1 += Nk/2*(Elog_Lak - D / bt[k] -
nt[k]*(np.trace(Sk @ Wt[:, :, k]) + xWx) -
D*np.log(2*np.pi))
# Second term
E2 += np.sum(rho[:, k] * Elog_pik, axis=0)
# Third term
E3 += (a0[k] - 1)*Elog_pik + (gammaln(np.sum(a0)) -
np.sum(gammaln(a0))) / self.K
# Fourth term
E4 += 1/2*(D* | np.log(b0[k] / (2*np.pi)) | numpy.log |
import pytest
from bfieldtools import coil_optimize
from .test_mesh_conductor import _fake_mesh_conductor
import cvxpy
import numpy as np
from numpy.testing import assert_allclose
def test_coil_optimize():
"""
test that optimization works for different mesh_conductor objects and solvers
"""
for test_mesh in ["unit_sphere", "unit_disc", "plane_w_holes"]:
for basis_name in ["suh"]: # , 'inner', 'vertex']:
c = _fake_mesh_conductor(
mesh_name=test_mesh, basis_name=basis_name, N_suh=10
)
spec = dict(
coupling=c.B_coupling(np.array([[0, -0.1, 1], [0, 0, 1], [0, 0.1, 1]])),
target=np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]),
abs_error=0.01,
)
for objective in [
"minimum_inductive_energy",
"minimum_ohmic_power",
(0.5, 0.5),
]:
results = []
results.append(coil_optimize.optimize_lsq(c, [dict(spec)], reg=1e3))
# For now, test with all solvers that can handle SOC problems
for solver in [
i
for i in cvxpy.solvers.defines.INSTALLED_CONIC_SOLVERS
if i not in ("GLPK", "GLPK_MI", "SCS")
]:
results.append(
coil_optimize.optimize_streamfunctions(
c, [spec], objective, solver
)[0]
)
if len(results) > 1:
# tolerance is quite high, since some solvers give a bit differing results
# in real life, let's not use those solvers.
assert_allclose(
results[-2],
results[-1],
rtol=5e-1,
atol=0.001 * np.mean(np.abs(results[-2])),
)
def test_standalone_functions():
"""
Tests standalone functions in coil_optimize
"""
P = 2 * np.array([[2, 0.5], [0.5, 1]])
q = np.array([1.0, 1.0])
G = np.array([[-1.0, 0.0], [0.0, -1.0]])
h = | np.array([0.0, 0.0]) | numpy.array |
"""implementation of argmin step"""
from scipy import optimize
import numpy as np
from BanditPricing import randUnitVector
def argmin(eta, s_radius, barrier, g_bar_aggr_t, g_tilde, d, max_iter = 1e4):
#implement argmin_ball(eta * (g_bar_1:t + g_tilde_t+1)^T x + barrier(x)
#argmin is over ball with radius r
TOL = 1e-10 # numerical error allowed
#g_bar_aggr_t = complex_to_real(g_bar_aggr_t)
#g_tilde = complex_to_real(g_tilde)
#init_pt = complex_to_real(randUnitVector(d)*s_radius/2)
cons = {'type': 'ineq', 'fun': lambda x: s_radius - np.linalg.norm(x),
'jac': lambda x: x / np.linalg.norm(x) if np.linalg.norm(x) > TOL else np.zeros(x.shape)}
res = optimize.minimize(fun=obj,
x0=randUnitVector(d)*s_radius/2,
args=(eta, barrier, g_bar_aggr_t, g_tilde),
constraints=cons,
options={'disp': False, 'maxiter': max_iter})
return res['x']
def obj(x, eta, barrier, g_bar_aggr_t, g_tilde):
return eta * | np.dot(g_bar_aggr_t + g_tilde, x) | numpy.dot |
from keras.utils.vis_utils import plot_model
from keras.models import Model
from keras.models import load_model
from keras.layers import Input, GaussianNoise
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.merge import concatenate
from time import time
from keras.callbacks import TensorBoard, ReduceLROnPlateau
import numpy as np
from sklearn.model_selection import train_test_split
import importlib
util = importlib.import_module('util')
START_FROM_SCRATCH = True
def define_model(lengths, tokenizers):
inputs = []
embeddings = []
noises = []
flattens = []
convs = []
drops = []
pools = []
for (length, tokenizer) in zip(lengths, tokenizers):
vocab_size = len(tokenizer.word_index) + 1
inputs.append(Input(shape=(length,)))
embeddings.append(Embedding(vocab_size, min(vocab_size, 100))(inputs[-1]))
noises.append(GaussianNoise(stddev=0.1)(embeddings[-1]))
if length > 50:
convs.append(Conv1D(filters=32, kernel_size=4, activation='relu')(noises[-1]))
drops.append(Dropout(0.5)(convs[-1]))
convs.append(Conv1D(filters=32, kernel_size=4, activation='relu')(drops[-1]))
drops.append(Dropout(0.5)(convs[-1]))
pools.append(MaxPooling1D(pool_size=2)(drops[-1]))
flattens.append(Flatten()(pools[-1]))
else:
flat = Flatten()(noises[-1])
flattens.append(Dense(10, activation='relu')(flat))
#inputs2 = Input(shape=(length,))
#embedding1 = Embedding(vocab_size, 100)(inputs1)
#inputs2 = Input(shape=(length,))
#embedding2 = Embedding(vocab_size, 100)(inputs2)
#conv2 = Conv1D(filters=32, kernel_size=6, activation='relu')(embedding2)
#drop2 = Dropout(0.5)(conv2)
#pool2 = MaxPooling1D(pool_size=2)(drop2)
#flat2 = Flatten()(pool2)
#inputs3 = Input(shape=(length,))
#embedding3 = Embedding(vocab_size, 100)(inputs3)
#conv3 = Conv1D(filters=32, kernel_size=8, activation='relu')(embedding3)
#drop3 = Dropout(0.5)(conv3)
#pool3 = MaxPooling1D(pool_size=2)(drop3)
#flat3 = Flatten()(pool3)
#merged = concatenate([flat1, flat2, flat3])
merged = concatenate(flattens)
dense1 = Dense(20, activation='relu')(merged)
outputs = Dense(2, activation='sigmoid')(dense1)
#model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
plot_model(model, show_shapes=True, to_file='nn_multichannel.png')
return model
#dataset='trec07'
dataset='imap-mail'
model_name = dataset
[X, y_labels] = util.load_dataset(file_identifier=dataset, prefix='eval')
[tokenizers, lengths] = util.load_dataset(file_identifier=model_name, prefix='tokenizers')
x_input = []
for i in range(0, len(tokenizers)):
if lengths[i] > 600:
# reduce the document length to the first N words
old_length = lengths[i]
lengths[i] = 600
print("Reducing document-length from %d to %d" % (old_length, lengths[i]))
print("Shape: ", X[i+1].shape)
x = X[i+1][:,0:600]
# x.resize(600)
print("New Shape: ", x.shape)
x_input.append(x)
else:
x_input.append(np.array(X[i+1]))
print('Max document length: %d' % lengths[i])
vocab_size = len(tokenizers[i].word_index) + 1
tokenizer_size = tokenizers[i].num_words
print('Tokenizer/Vocabulary size: %d / %d ' % (tokenizer_size, vocab_size))
y_labels = | np.array(y_labels) | numpy.array |
"""
Slightly edited verions of some functions from postprocess from DNest4/python/classic.py
"""
import os
import copy
import numpy as np
from matplotlib import pyplot as plt
def logsumexp(values):
biggest = np.max(values)
x = values - biggest
result = np.log(np.sum(np.exp(x))) + biggest
return result
def logdiffexp(x1, x2):
biggest = x1
xx1 = x1 - biggest
xx2 = x2 - biggest
result = np.log(np.exp(xx1) - np.exp(xx2)) + biggest
return result
def loadtxt_rows(filename, rows, single_precision=False):
"""
Load only certain rows
"""
# Open the file
f = open(filename, "r")
# Storage
results = {}
# Row number
i = 0
# Number of columns
ncol = None
while(True):
# Read the line and split by whitespace
line = f.readline()
cells = line.split()
# Quit when you see a different number of columns
if ncol is not None and len(cells) != ncol:
break
# Non-comment lines
if cells[0] != "#":
# If it's the first one, get the number of columns
if ncol is None:
ncol = len(cells)
# Otherwise, include in results
if i in rows:
if single_precision:
results[i] = np.array([float(cell) for cell in cells], dtype="float32")
else:
results[i] = np.array([float(cell) for cell in cells])
i += 1
results["ncol"] = ncol
return results
# postprocess from DNest4/python/classic.py, with minor edits to data loading
def postprocess(temperature=1., numResampleLogX=1, plot=True, rundir=".", \
cut=0., save=True, zoom_in=True, compression_bias_min=1., verbose=True,\
compression_scatter=0., moreSamples=1., compression_assert=None, single_precision=False):
try:
levels_orig = np.atleast_2d(np.loadtxt(os.path.join(rundir, "levels.txt"), comments="#"))
except:
return None # some error during file reading
try:
sample_info = np.atleast_2d(np.loadtxt(os.path.join(rundir, "sample_info.txt"), comments="#"))
except:
return None # some error during file reading
# Remove regularisation from levels_orig if we asked for it
if compression_assert is not None:
levels_orig[1:,0] = -np.cumsum(compression_assert*np.ones(levels_orig.shape[0] - 1))
cut = int(cut*sample_info.shape[0])
sample_info = sample_info[cut:, :]
if plot:
plt.figure(1)
plt.plot(sample_info[:,0], "k")
plt.xlabel("Iteration")
plt.ylabel("Level")
plt.figure(2)
plt.subplot(2,1,1)
plt.plot(np.diff(levels_orig[:,0]), "k")
plt.ylabel("Compression")
plt.xlabel("Level")
xlim = plt.gca().get_xlim()
plt.axhline(-1., color='g')
plt.axhline(-np.log(10.), color='g', linestyle="--")
plt.ylim(ymax=0.05)
plt.subplot(2,1,2)
good = np.nonzero(levels_orig[:,4] > 0)[0]
plt.plot(levels_orig[good,3]/levels_orig[good,4], "ko-")
plt.xlim(xlim)
plt.ylim([0., 1.])
plt.xlabel("Level")
plt.ylabel("MH Acceptance")
# Convert to lists of tuples
logl_levels = [(levels_orig[i,1], levels_orig[i, 2]) for i in range(0, levels_orig.shape[0])] # logl, tiebreaker
logl_samples = [(sample_info[i, 1], sample_info[i, 2], i) for i in range(0, sample_info.shape[0])] # logl, tiebreaker, id
logx_samples = np.zeros((sample_info.shape[0], numResampleLogX))
logp_samples = np.zeros((sample_info.shape[0], numResampleLogX))
logP_samples = np.zeros((sample_info.shape[0], numResampleLogX))
P_samples = np.zeros((sample_info.shape[0], numResampleLogX))
logz_estimates = np.zeros((numResampleLogX, 1))
H_estimates = np.zeros((numResampleLogX, 1))
# Find sandwiching level for each sample
sandwich = sample_info[:,0].copy().astype('int')
for i in range(0, sample_info.shape[0]):
while sandwich[i] < levels_orig.shape[0]-1 and logl_samples[i] > logl_levels[sandwich[i] + 1]:
sandwich[i] += 1
for z in range(0, numResampleLogX):
# Make a monte carlo perturbation of the level compressions
levels = levels_orig.copy()
compressions = -np.diff(levels[:,0])
compressions *= compression_bias_min + (1. - compression_bias_min)*np.random.rand()
compressions *= np.exp(compression_scatter*np.random.randn(compressions.size))
levels[1:, 0] = -compressions
levels[:, 0] = np.cumsum(levels[:,0])
# For each level
for i in range(0, levels.shape[0]):
# Find the samples sandwiched by this level
which = np.nonzero(sandwich == i)[0]
logl_samples_thisLevel = [] # (logl, tieBreaker, ID)
for j in range(0, len(which)):
logl_samples_thisLevel.append(copy.deepcopy(logl_samples[which[j]]))
logl_samples_thisLevel = sorted(logl_samples_thisLevel)
N = len(logl_samples_thisLevel)
# Generate intermediate logx values
logx_max = levels[i, 0]
if i == levels.shape[0]-1:
logx_min = -1E300
else:
logx_min = levels[i+1, 0]
Umin = np.exp(logx_min - logx_max)
if N == 0 or numResampleLogX > 1:
U = Umin + (1. - Umin)*np.random.rand(len(which))
else:
U = Umin + (1. - Umin)*np.linspace(1./(N+1), 1. - 1./(N+1), N)
logx_samples_thisLevel = np.sort(logx_max + np.log(U))[::-1]
for j in range(0, which.size):
logx_samples[logl_samples_thisLevel[j][2]][z] = logx_samples_thisLevel[j]
if j != which.size - 1:
left = logx_samples_thisLevel[j+1]
elif i == levels.shape[0]-1:
left = -1E300
else:
left = levels[i+1][0]
if j != 0:
right = logx_samples_thisLevel[j-1]
else:
right = levels[i][0]
logp_samples[logl_samples_thisLevel[j][2]][z] = np.log(0.5) + logdiffexp(right, left)
logl = sample_info[:,1]/temperature
logp_samples[:,z] = logp_samples[:,z] - logsumexp(logp_samples[:,z])
logP_samples[:,z] = logp_samples[:,z] + logl
logz_estimates[z] = logsumexp(logP_samples[:,z])
logP_samples[:,z] -= logz_estimates[z]
P_samples[:,z] = np.exp(logP_samples[:,z])
H_estimates[z] = -logz_estimates[z] + np.sum(P_samples[:,z]*logl)
if plot:
plt.figure(3)
plt.subplot(2,1,1)
plt.plot(logx_samples[:,z], sample_info[:,1], 'k.', label='Samples')
plt.plot(levels[1:,0], levels[1:,1], 'g.', label='Levels')
plt.legend(numpoints=1, loc='lower left')
plt.ylabel('log(L)')
plt.title(str(z+1) + "/" + str(numResampleLogX) + ", log(Z) = " + str(logz_estimates[z][0]))
# Use all plotted logl values to set ylim
combined_logl = np.hstack([sample_info[:,1], levels[1:, 1]])
combined_logl = np.sort(combined_logl)
lower = combined_logl[int(0.1*combined_logl.size)]
upper = combined_logl[-1]
diff = upper - lower
lower -= 0.05*diff
upper += 0.05*diff
if zoom_in:
plt.ylim([lower, upper])
xlim = plt.gca().get_xlim()
if plot:
plt.subplot(2,1,2)
plt.plot(logx_samples[:,z], P_samples[:,z], 'k.')
plt.ylabel('Posterior Weights')
plt.xlabel('log(X)')
plt.xlim(xlim)
P_samples = np.mean(P_samples, 1)
P_samples = P_samples/np.sum(P_samples)
logz_estimate = np.mean(logz_estimates)
logz_error = np.std(logz_estimates)
H_estimate = np.mean(H_estimates)
H_error = np.std(H_estimates)
ESS = np.exp(-np.sum(P_samples*np.log(P_samples+1E-300)))
errorbar1 = ""
errorbar2 = ""
if numResampleLogX > 1:
errorbar1 += " +- " + str(logz_error)
errorbar2 += " +- " + str(H_error)
if verbose:
print("log(Z) = " + str(logz_estimate) + errorbar1)
print("Information = " + str(H_estimate) + errorbar2 + " nats.")
print("Effective sample size = " + str(ESS))
# Resample to uniform weight
N = int(moreSamples*ESS)
w = P_samples
w = w/np.max(w)
rows = np.empty(N, dtype="int64")
for i in range(0, N):
while True:
which = np.random.randint(sample_info.shape[0])
if np.random.rand() <= w[which]:
break
rows[i] = which + cut
# Get header row
f = open(os.path.join(rundir, "sample.txt"), "r")
line = f.readline()
if line[0] == "#":
header = line[1:]
else:
header = ""
f.close()
try:
sample = loadtxt_rows(os.path.join(rundir, "sample.txt"), set(rows), single_precision)
except:
return None # some error during file reading
posterior_sample = None
if single_precision:
posterior_sample = | np.empty((N, sample["ncol"]), dtype="float32") | numpy.empty |
# This file is part of qdpy.
#
# qdpy is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# qdpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with qdpy. If not, see <http://www.gnu.org/licenses/>.
"""A collection of functions to plot containers using Matplotlib."""
import os
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from functools import reduce
from operator import mul
from typing import Optional, Tuple, List, Iterable, Iterator, Any, TypeVar, Generic, Union, Sequence, MutableSet, MutableSequence, Type, Callable, Generator, Mapping, MutableMapping, overload
from qdpy.utils import is_iterable
from qdpy import containers
from qdpy import algorithms
########### Plots ########### {{{1
# TODO refactor name, etc
def plotGridSubplots(data, outputFilename, cmap, featuresBounds=((0., 1.), (0., 1.), (0., 1.), (0., 1.)), fitnessBounds=(0., 1.), drawCbar = True, xlabel = "", ylabel = "", cBarLabel = "", nbBins = None, nbTicks = None, binSizeInInches = 0.30):
"""TODO"""
# Verify data dimension is supported by this funtion
if len(data.shape) > 4:
raise ValueError("plotGridSubplots only supports up to 4 dimensions.")
elif len(data.shape) <= 2:
plotGrid(data, outputFilename, cmap, featuresBounds=featuresBounds, fitnessBounds=fitnessBounds, drawCbar=drawCbar, xlabel=xlabel, ylabel=ylabel, cBarLabel=cBarLabel, nbBins=nbBins, nbTicks=nbTicks)
return
# Verify dimension is even
if len(data.shape) % 2 == 1:
data = data.reshape((data.shape[0], 1) + data.shape[1:])
featuresBounds = (featuresBounds[0], (0., 0.)) + tuple(featuresBounds[1:])
if nbBins != None:
nbBins = (nbBins[0], 1) + nbBins[1:]
if not nbBins:
nbBins = data.shape
#data[0,:,:,:] = np.linspace(0., 1., nbBins[1] * nbBins[2] * nbBins[3]).reshape((nbBins[1], nbBins[2], nbBins[3]))
# Compute figure infos from nbBins
horizNbBins = nbBins[::2]
horizNbBinsProd = reduce(mul, horizNbBins, 1)
vertNbBins = nbBins[1::2]
vertNbBinsProd = reduce(mul, vertNbBins, 1)
totProp = horizNbBinsProd + vertNbBinsProd
upperlevelTot = nbBins[0] + nbBins[1]
# Determine figure size from nbBins infos
#figsize = [2.1 + 10. * horizNbBinsProd / upperlevelTot, 1. + 10. * vertNbBinsProd / upperlevelTot]
#if figsize[1] < 2:
# figsize[1] = 2.
figsize = [2.1 + horizNbBinsProd * binSizeInInches, 1. + vertNbBinsProd * binSizeInInches]
# Create figure
fig, axes = plt.subplots(nrows=nbBins[1], ncols=nbBins[0], figsize=figsize)
# Create subplots
for x in range(nbBins[0]):
for y in range(nbBins[1]):
ax = plt.subplot(nbBins[1], nbBins[0], (nbBins[1] - y - 1) * nbBins[0] + x + 1)
#ax = axes[x,y]
cax = drawGridInAx(data[x, y, 0:nbBins[2], 0:nbBins[3]], ax, cmap=cmap, featuresBounds=featuresBounds[-2:], fitnessBounds=fitnessBounds[-2:], aspect="equal", xlabel=xlabel, ylabel=ylabel, nbBins=(nbBins[2], nbBins[3]), nbTicks=nbTicks)
plt.tight_layout()
if drawCbar:
fig.subplots_adjust(right=0.85, wspace=0.40)
#cbarAx = fig.add_axes([0.90, 0.15, 0.01, 0.7])
if figsize[0] < 4.:
cbarAx = fig.add_axes([0.75, 0.15, 0.02, 0.7])
elif figsize[0] < 6.:
cbarAx = fig.add_axes([0.80, 0.15, 0.02, 0.7])
elif figsize[0] < 10.:
cbarAx = fig.add_axes([0.85, 0.15, 0.02, 0.7])
else:
cbarAx = fig.add_axes([0.90, 0.15, 0.02, 0.7])
cbar = fig.colorbar(cax, cax=cbarAx, format="%.2f")
cbar.ax.tick_params(labelsize=20)
cbar.ax.set_ylabel(cBarLabel, fontsize=22)
fig.savefig(outputFilename)
# TODO refactor name, etc
def drawGridInAx(data, ax, cmap, featuresBounds, fitnessBounds, aspect="equal", xlabel = "", ylabel = "", nbBins=None, nbTicks = 5):
# Determine bounds
vmin = fitnessBounds[0]
if np.isnan(vmin) or np.isinf(vmin):
vmin = | np.nanmin(data) | numpy.nanmin |
# coding: utf-8
# <h1 align="center"> Lending Club Loan Analysis </h1> <br>
# ## Company Information:
# Lending Club is a peer to peer lending company based in the United States, in which investors provide funds for potential borrowers and investors earn a profit depending on the risk they take (the borrowers credit score). Lending Club provides the "bridge" between investors and borrowers. For more basic information about the company please check out the wikipedia article about the company. <br><br>
#
#
# <a src="https://en.wikipedia.org/wiki/Lending_Club"> Lending Club Information </a>
#
#
#
#
# ## How Lending Club Works?
# <img src="http://echeck.org/wp-content/uploads/2016/12/Showing-how-the-lending-club-works-and-makes-money-1.png"><br><br>
#
#
# ## Outline: <br><br>
# I. Introduction <br>
# a) [General Information](#general_information)<br>
# b) [Similar Distributions](#similar_distributions)<br><br>
#
# II. <b>Good Loans vs Bad Loans</b><br>
# a) [Types of Loans](#types_of_loans)<br>
# b) [Loans issued by Region](#by_region)<br>
# c) [A Deeper Look into Bad Loans](#deeper_bad_loans)<br><br>
#
# III. <b>The Business Perspective</b><br>
# a) [Understanding the Operative side of Business](#operative_side)<br>
# b) [Analysis by Income Category](#income_category) <br><br>
#
# IV. <b>Assesing Risks</b><br>
# a) [Understanding the Risky Side of Business](#risky_side)<br>
# b) [The importance of Credit Scores](#credit_scores)<br>
# c) [What determines a bad loan](#determines_bad_loan)<br>
# d) [Defaulted Loans](#defaulted_loans)
#
# ## References:
# 1) <a src="https://www.kaggle.com/arthurtok/global-religion-1945-2010-plotly-pandas-visuals"> Global Religion 1945-2010: Plotly & Pandas visuals</a> by Anisotropic <br>
# 2) <a src="https://www.kaggle.com/vigilanf/loan-metrics-by-state"> Loan Metrics By State </a> by <NAME><br>
# 3) Hands on Machine Learning by <NAME> <br>
# 4) <a src="https://www.youtube.com/watch?v=oYbVFhK_olY&list=PLSPWNkAMSvv5DKeSVDbEbUKSsK4Z-GgiP"> Deep Learning with Neural Networks and TensorFlow </a> by Sentdex
# # Introduction:
# ## General Information:
# <a id="general_information"></a>
# In[ ]:
# Import our libraries we are going to use for our data analysis.
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# Plotly visualizations
from plotly import tools
import plotly.plotly as py
import plotly.figure_factory as ff
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
init_notebook_mode(connected=True)
# plotly.tools.set_credentials_file(username='AlexanderBach', api_key='o4fx6i1MtEIJQxfWYvU1')
get_ipython().run_line_magic('matplotlib', 'inline')
df = pd.read_csv('../input/loan.csv', low_memory=False)
# Copy of the dataframe
original_df = df.copy()
df.head()
# In[ ]:
df.info()
# In[ ]:
# Replace the name of some columns
df = df.rename(columns={"loan_amnt": "loan_amount", "funded_amnt": "funded_amount", "funded_amnt_inv": "investor_funds",
"int_rate": "interest_rate", "annual_inc": "annual_income"})
# Drop irrelevant columns
df.drop(['id', 'member_id', 'emp_title', 'url', 'desc', 'zip_code', 'title'], axis=1, inplace=True)
# ## Similar Distributions:
# <a id="similar_distributions"></a>
# We will start by exploring the distribution of the loan amounts and see when did the loan amount issued increased significantly. <br>
#
# <h4> What we need to know: </h4> <br>
# <ul>
# <li> Understand what amount was <b>mostly issued</b> to borrowers. </li>
# <li> Which <b>year</b> issued the most loans. </li>
# <li> The distribution of loan amounts is a <b>multinomial distribution </b>.</li>
# </ul>
#
#
#
# <h4> Summary: </h4><br>
# <ul>
# <li> Most of the <b>loans issued</b> were in the range of 10,000 to 20,000 USD. </li>
# <li> The <b>year of 2015</b> was the year were most loans were issued.</li>
# <li> Loans were issued in an <b>incremental manner</b>. (Possible due to a recovery in the U.S economy) </li>
# <li> The loans <b>applied</b> by potential borrowers, the amount <b>issued</b> to the borrowers and the amount <b>funded</b> by investors are similarly distributed, <b>meaning</b> that it is most likely that qualified borrowers are going to get the loan they had applied for. </li>
#
# </ul>
#
#
#
#
# In[ ]:
fig, ax = plt.subplots(1, 3, figsize=(16,5))
loan_amount = df["loan_amount"].values
funded_amount = df["funded_amount"].values
investor_funds = df["investor_funds"].values
sns.distplot(loan_amount, ax=ax[0], color="#F7522F")
ax[0].set_title("Loan Applied by the Borrower", fontsize=14)
sns.distplot(funded_amount, ax=ax[1], color="#2F8FF7")
ax[1].set_title("Amount Funded by the Lender", fontsize=14)
sns.distplot(investor_funds, ax=ax[2], color="#2EAD46")
ax[2].set_title("Total committed by Investors", fontsize=14)
# In[ ]:
# Lets' transform the issue dates by year.
df['issue_d'].head()
dt_series = pd.to_datetime(df['issue_d'])
df['year'] = dt_series.dt.year
# In[ ]:
# The year of 2015 was the year were the highest amount of loans were issued
# This is an indication that the economy is quiet recovering itself.
plt.figure(figsize=(12,8))
sns.barplot('year', 'loan_amount', data=df, palette='tab10')
plt.title('Issuance of Loans', fontsize=16)
plt.xlabel('Year', fontsize=14)
plt.ylabel('Average loan amount issued', fontsize=14)
# <h1 align="center"> Good Loans vs Bad Loans: </h1>
# <h2>Types of Loans: </h2>
# <a id="types_of_loans"></a>
# <img src="http://strongarticle.com/wp-content/uploads/2017/09/1f42d6e77042d87f3bb6ae171ebbc530.jpg">
# <br><br>
# In this section, we will see what is the amount of bad loans Lending Club has declared so far, of course we have to understand that there are still loans that are at a risk of defaulting in the future.
#
# <h4> What we need to know: </h4>
# <ul>
# <li> The amount of bad loans could <b>increment</b> as the days pass by, since we still have a great amount of current loans. </li>
# <li> <b>Average annual income</b> is an important key metric for finding possible opportunities of investments in a specific region. </li>
#
# </ul>
#
# <h4> Summary: </h4>
# <ul>
# <li> Currently, <b>bad loans</b> consist 7.60% of total loans but remember that we still have <b>current loans</b> which have the risk of becoming bad loans. (So this percentage is subjected to possible changes.) </li>
# <li> The <b> NorthEast </b> region seems to be the most attractive in term of funding loans to borrowers. </li>
# <li> The <b> SouthWest </b> and <b> West</b> regions have experienced a slight increase in the "median income" in the past years. </li>
# <li> <b>Average interest</b> rates have declined since 2012 but this might explain the <b>increase in the volume</b> of loans. </li>
# <li> <b>Employment Length</b> tends to be greater in the regions of the <b>SouthWest</b> and <b>West</b></li>
# <li> Clients located in the regions of <b>NorthEast</b> and <b>MidWest</b> have not experienced a drastic increase in debt-to-income(dti) as compared to the other regions. </li>
# </ul>
# In[ ]:
df["loan_status"].value_counts()
# In[ ]:
# Determining the loans that are bad from loan_status column
bad_loan = ["Charged Off", "Default", "Does not meet the credit policy. Status:Charged Off", "In Grace Period",
"Late (16-30 days)", "Late (31-120 days)"]
df['loan_condition'] = np.nan
def loan_condition(status):
if status in bad_loan:
return 'Bad Loan'
else:
return 'Good Loan'
df['loan_condition'] = df['loan_status'].apply(loan_condition)
# In[ ]:
f, ax = plt.subplots(1,2, figsize=(16,8))
colors = ["#3791D7", "#D72626"]
labels ="Good Loans", "Bad Loans"
plt.suptitle('Information on Loan Conditions', fontsize=20)
df["loan_condition"].value_counts().plot.pie(explode=[0,0.25], autopct='%1.2f%%', ax=ax[0], shadow=True, colors=colors,
labels=labels, fontsize=12, startangle=70)
# ax[0].set_title('State of Loan', fontsize=16)
ax[0].set_ylabel('% of Condition of Loans', fontsize=14)
# sns.countplot('loan_condition', data=df, ax=ax[1], palette=colors)
# ax[1].set_title('Condition of Loans', fontsize=20)
# ax[1].set_xticklabels(['Good', 'Bad'], rotation='horizontal')
palette = ["#3791D7", "#E01E1B"]
sns.barplot(x="year", y="loan_amount", hue="loan_condition", data=df, palette=palette, estimator=lambda x: len(x) / len(df) * 100)
ax[1].set(ylabel="(%)")
# <h2> Loans Issued by Region</h2>
# <a id="by_region"></a>
# In this section we want to analyze loans issued by region in order to see region patters that will allow us to understand which region gives Lending Club.<br><br>
#
# ## Summary: <br>
# <ul>
# <li> <b> SouthEast</b> , <b>West </b> and <b>NorthEast</b> regions had the highest amount lof loans issued. </li>
# <li> <b>West </b> and <b>SouthWest </b> had a rapid increase in debt-to-income starting in 2012. </li>
# <li><b>West </b> and <b>SouthWest </b> had a rapid decrease in interest rates (This might explain the increase in debt to income). </li>
# </ul>
# In[ ]:
df['addr_state'].unique()
# Make a list with each of the regions by state.
west = ['CA', 'OR', 'UT','WA', 'CO', 'NV', 'AK', 'MT', 'HI', 'WY', 'ID']
south_west = ['AZ', 'TX', 'NM', 'OK']
south_east = ['GA', 'NC', 'VA', 'FL', 'KY', 'SC', 'LA', 'AL', 'WV', 'DC', 'AR', 'DE', 'MS', 'TN' ]
mid_west = ['IL', 'MO', 'MN', 'OH', 'WI', 'KS', 'MI', 'SD', 'IA', 'NE', 'IN', 'ND']
north_east = ['CT', 'NY', 'PA', 'NJ', 'RI','MA', 'MD', 'VT', 'NH', 'ME']
df['region'] = np.nan
def finding_regions(state):
if state in west:
return 'West'
elif state in south_west:
return 'SouthWest'
elif state in south_east:
return 'SouthEast'
elif state in mid_west:
return 'MidWest'
elif state in north_east:
return 'NorthEast'
df['region'] = df['addr_state'].apply(finding_regions)
# In[ ]:
# This code will take the current date and transform it into a year-month format
df['complete_date'] = pd.to_datetime(df['issue_d'])
group_dates = df.groupby(['complete_date', 'region'], as_index=False).sum()
group_dates['issue_d'] = [month.to_period('M') for
month in group_dates['complete_date']]
group_dates = group_dates.groupby(['issue_d', 'region'], as_index=False).sum()
group_dates = group_dates.groupby(['issue_d', 'region'], as_index=False).sum()
group_dates['loan_amount'] = group_dates['loan_amount']/1000
df_dates = pd.DataFrame(data=group_dates[['issue_d','region','loan_amount']])
# In[ ]:
plt.style.use('dark_background')
cmap = plt.cm.Set3
by_issued_amount = df_dates.groupby(['issue_d', 'region']).loan_amount.sum()
by_issued_amount.unstack().plot(stacked=False, colormap=cmap, grid=False, legend=True, figsize=(15,6))
plt.title('Loans issued by Region', fontsize=16)
# In[ ]:
employment_length = ['10+ years', '< 1 year', '1 year', '3 years', '8 years', '9 years',
'4 years', '5 years', '6 years', '2 years', '7 years', 'n/a']
# Create a new column and convert emp_length to integers.
lst = [df]
df['emp_length_int'] = np.nan
for col in lst:
col.loc[col['emp_length'] == '10+ years', "emp_length_int"] = 10
col.loc[col['emp_length'] == '9 years', "emp_length_int"] = 9
col.loc[col['emp_length'] == '8 years', "emp_length_int"] = 8
col.loc[col['emp_length'] == '7 years', "emp_length_int"] = 7
col.loc[col['emp_length'] == '6 years', "emp_length_int"] = 6
col.loc[col['emp_length'] == '5 years', "emp_length_int"] = 5
col.loc[col['emp_length'] == '4 years', "emp_length_int"] = 4
col.loc[col['emp_length'] == '3 years', "emp_length_int"] = 3
col.loc[col['emp_length'] == '2 years', "emp_length_int"] = 2
col.loc[col['emp_length'] == '1 year', "emp_length_int"] = 1
col.loc[col['emp_length'] == '< 1 year', "emp_length_int"] = 0.5
col.loc[col['emp_length'] == 'n/a', "emp_length_int"] = 0
# In[ ]:
# Loan issued by Region and by Credit Score grade
# Change the colormap for tomorrow!
sns.set_style('whitegrid')
f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
cmap = plt.cm.inferno
by_interest_rate = df.groupby(['year', 'region']).interest_rate.mean()
by_interest_rate.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, legend=False, ax=ax1, figsize=(16,12))
ax1.set_title('Average Interest Rate by Region', fontsize=14)
by_employment_length = df.groupby(['year', 'region']).emp_length_int.mean()
by_employment_length.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, legend=False, ax=ax2, figsize=(16,12))
ax2.set_title('Average Employment Length by Region', fontsize=14)
# plt.xlabel('Year of Issuance', fontsize=14)
by_dti = df.groupby(['year', 'region']).dti.mean()
by_dti.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, legend=False, ax=ax3, figsize=(16,12))
ax3.set_title('Average Debt-to-Income by Region', fontsize=14)
by_income = df.groupby(['year', 'region']).annual_income.mean()
by_income.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, ax=ax4, figsize=(16,12))
ax4.set_title('Average Annual Income by Region', fontsize=14)
ax4.legend(bbox_to_anchor=(-1.0, -0.5, 1.8, 0.1), loc=10,prop={'size':12},
ncol=5, mode="expand", borderaxespad=0.)
# ## A Deeper Look into Bad Loans:
# <a id="deeper_bad_loans"></a>
#
# <h4> What we need to know: </h4>
# <ul>
# <li>The number of loans that were classified as bad loans for each region by its <b>loan status</b>. (This will be shown in a dataframe below.)</li>
# <li> This won't give us the exact reasons why a loan is categorized as a bad loan (other variables that might have influence the condition of the loan) but it will give us a <b> deeper insight on the level of risk </b> in a particular region. </li>
# </ul>
#
# <h4> Summary: </h4>
# <ul>
# <li>The regions of the <b> West </b> and <b> SouthEast </b> had a higher percentage in most of the b "bad" loan statuses.</li>
# <li> The <b>NorthEast</b> region had a higher percentage in <b>Grace Period</b> and <b>Does not meet Credit Policy</b> loan status. However, both of these are not considered as bad as <b>default</b> for instance. </li>
# <li> Based on this small and brief summary we can conclude that the <b>West</b> and <b>SouthEast</b> regions have the most undesirable loan status, but just by a slightly higher percentage compared to the <b>NorthEast</b> region. </li>
# <li> Again, this does not tell us what causes a loan to be a <b> bad loan </b>, but it gives us some idea about <b>the level of risk</b> within the regions across the United States. </li>
# </ul>
# In[ ]:
# We have 67429 loans categorized as bad loans
badloans_df = df.loc[df["loan_condition"] == "Bad Loan"]
# loan_status cross
loan_status_cross = pd.crosstab(badloans_df['region'], badloans_df['loan_status']).apply(lambda x: x/x.sum() * 100)
number_of_loanstatus = pd.crosstab(badloans_df['region'], badloans_df['loan_status'])
# Round our values
loan_status_cross['Charged Off'] = loan_status_cross['Charged Off'].apply(lambda x: round(x, 2))
loan_status_cross['Default'] = loan_status_cross['Default'].apply(lambda x: round(x, 2))
loan_status_cross['Does not meet the credit policy. Status:Charged Off'] = loan_status_cross['Does not meet the credit policy. Status:Charged Off'].apply(lambda x: round(x, 2))
loan_status_cross['In Grace Period'] = loan_status_cross['In Grace Period'].apply(lambda x: round(x, 2))
loan_status_cross['Late (16-30 days)'] = loan_status_cross['Late (16-30 days)'].apply(lambda x: round(x, 2))
loan_status_cross['Late (31-120 days)'] = loan_status_cross['Late (31-120 days)'].apply(lambda x: round(x, 2))
number_of_loanstatus['Total'] = number_of_loanstatus.sum(axis=1)
# number_of_badloans
number_of_loanstatus
# In[ ]:
charged_off = loan_status_cross['Charged Off'].values.tolist()
default = loan_status_cross['Default'].values.tolist()
not_meet_credit = loan_status_cross['Does not meet the credit policy. Status:Charged Off'].values.tolist()
grace_period = loan_status_cross['In Grace Period'].values.tolist()
short_pay = loan_status_cross['Late (16-30 days)'] .values.tolist()
long_pay = loan_status_cross['Late (31-120 days)'].values.tolist()
charged = go.Bar(
x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'],
y= charged_off,
name='Charged Off',
marker=dict(
color='rgb(192, 148, 246)'
),
text = '%'
)
defaults = go.Bar(
x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'],
y=default,
name='Defaults',
marker=dict(
color='rgb(176, 26, 26)'
),
text = '%'
)
credit_policy = go.Bar(
x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'],
y= not_meet_credit,
name='Does not meet Credit Policy',
marker = dict(
color='rgb(229, 121, 36)'
),
text = '%'
)
grace = go.Bar(
x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'],
y= grace_period,
name='Grace Period',
marker = dict(
color='rgb(147, 147, 147)'
),
text = '%'
)
short_pays = go.Bar(
x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'],
y= short_pay,
name='Late Payment (16-30 days)',
marker = dict(
color='rgb(246, 157, 135)'
),
text = '%'
)
long_pays = go.Bar(
x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'],
y= long_pay,
name='Late Payment (31-120 days)',
marker = dict(
color = 'rgb(238, 76, 73)'
),
text = '%'
)
data = [charged, defaults, credit_policy, grace, short_pays, long_pays]
layout = go.Layout(
barmode='stack',
title = '% of Bad Loan Status by Region',
xaxis=dict(title='US Regions')
)
fig = go.Figure(data=data, layout=layout)
iplot(fig, filename='stacked-bar')
# In[ ]:
# Average interest rates clients pay
df['interest_rate'].mean()
# Average annual income of clients
df['annual_income'].mean()
# <h1 align="center"> The Business Perspective </h1>
# <h2 > Understanding the Operative Side of Business </h2>
# <a id="operative_side"></a>
# <img src="http://bestcredit.sg/wp-content/uploads/2017/07/licensed-money-lender.jpg"><br><br>
# Now we will have a closer look at the <b> operative side </b> of business by state. This will give us a clearer idea in which state we have a higher operating activity. This will allow us to ask further questions such as Why do we have a higher level of operating activity in this state? Could it be because of economic factors? or the risk level is low and returns are fairly decent? Let's explore!
#
# <h4> What we need to know: </h4>
# <ul>
# <li> We will focus on <b>three key metrics</b>: Loans issued by state (Total Sum), Average interest rates charged to customers and average annual income of all customers by state. </li>
# <li> The purpose of this analysis is to see states that give high returns at a descent risk. </li>
#
# </ul>
#
# <h4> Summary: </h4>
# <ul>
# <li> <b>California, Texas, New York and Florida</b> are the states in which the highest amount of loans were issued. </li>
# <li> Interesting enough, all four states have a approximate <b>interest rate of 13%</b> which is at the same level of the average interest rate for all states (13.24%) </li>
# <li> California, Texas and New York are <b>all above the average annual income</b> (with the exclusion of Florida), this might give possible indication why most loans are issued in these states. </li>
# </ul>
# In[ ]:
# Plotting by states
# Grouping by our metrics
# First Plotly Graph (We evaluate the operative side of the business)
by_loan_amount = df.groupby(['region','addr_state'], as_index=False).loan_amount.sum()
by_interest_rate = df.groupby(['region', 'addr_state'], as_index=False).interest_rate.mean()
by_income = df.groupby(['region', 'addr_state'], as_index=False).annual_income.mean()
# Take the values to a list for visualization purposes.
states = by_loan_amount['addr_state'].values.tolist()
average_loan_amounts = by_loan_amount['loan_amount'].values.tolist()
average_interest_rates = by_interest_rate['interest_rate'].values.tolist()
average_annual_income = by_income['annual_income'].values.tolist()
from collections import OrderedDict
# Figure Number 1 (Perspective for the Business Operations)
metrics_data = OrderedDict([('state_codes', states),
('issued_loans', average_loan_amounts),
('interest_rate', average_interest_rates),
('annual_income', average_annual_income)])
metrics_df = pd.DataFrame.from_dict(metrics_data)
metrics_df = metrics_df.round(decimals=2)
metrics_df.head()
# Think of a way to add default rate
# Consider adding a few more metrics for the future
# In[ ]:
# Now it comes the part where we plot out plotly United States map
import plotly.plotly as py
import plotly.graph_objs as go
for col in metrics_df.columns:
metrics_df[col] = metrics_df[col].astype(str)
scl = [[0.0, 'rgb(210, 241, 198)'],[0.2, 'rgb(188, 236, 169)'],[0.4, 'rgb(171, 235, 145)'], [0.6, 'rgb(140, 227, 105)'],[0.8, 'rgb(105, 201, 67)'],[1.0, 'rgb(59, 159, 19)']]
metrics_df['text'] = metrics_df['state_codes'] + '<br>' +'Average loan interest rate: ' + metrics_df['interest_rate'] + '<br>'+'Average annual income: ' + metrics_df['annual_income']
data = [ dict(
type='choropleth',
colorscale = scl,
autocolorscale = False,
locations = metrics_df['state_codes'],
z = metrics_df['issued_loans'],
locationmode = 'USA-states',
text = metrics_df['text'],
marker = dict(
line = dict (
color = 'rgb(255,255,255)',
width = 2
) ),
colorbar = dict(
title = "$s USD")
) ]
layout = dict(
title = 'Lending Clubs Issued Loans <br> (A Perspective for the Business Operations)',
geo = dict(
scope = 'usa',
projection=dict(type='albers usa'),
showlakes = True,
lakecolor = 'rgb(255, 255, 255)')
)
fig = dict(data=data, layout=layout)
iplot(fig, filename='d3-cloropleth-map')
# ## Analysis by Income Category:
# <a id="income_category"></a>
# In this section we will create different <b> income categories </b> in order to detect important patters and go more into depth in our analysis.
#
# **What we need to know:** <br>
# <ul>
# <li><b>Low income category:</b> Borrowers that have an annual income lower or equal to 100,000 usd.</li>
# <li> <b> Medium income category:</b> Borrowers that have an annual income higher than 100,000 usd but lower or equal to 200,000 usd. </li>
# <li><b> High income category: </b> Borrowers that have an annual income higher tha 200,000 usd. </li>
# </ul>
#
# **Summary:**
# <ul>
# <li>Borrowers that made part of the <b>high income category</b> took higher loan amounts than people from <b>low</b> and <b>medium income categories.</b> Of course, people with higher annual incomes are more likely to pay loans with a higher amount. (First row to the left of the subplots) </li>
# <li> Loans that were borrowed by the <b>Low income category</b> had a slightly higher change of becoming a bad loan. (First row to the right of the subplots) </li>
# <li>Borrowers with <b>High</b> and <b> Medium</b> annual incomes had a longer employment length than people with lower incomes.(Second row to the left of the subplots) </li>
# <li> Borrowers with a lower income had on average <b>higher interest rates</b> while people with a higher annual income had <b>lower interest rates</b> on their loans. (Second row to the right of the subplots)</li>
#
# </ul>
# In[ ]:
# Let's create categories for annual_income since most of the bad loans are located below 100k
df['income_category'] = np.nan
lst = [df]
for col in lst:
col.loc[col['annual_income'] <= 100000, 'income_category'] = 'Low'
col.loc[(col['annual_income'] > 100000) & (col['annual_income'] <= 200000), 'income_category'] = 'Medium'
col.loc[col['annual_income'] > 200000, 'income_category'] = 'High'
# In[ ]:
# Let's transform the column loan_condition into integrers.
lst = [df]
df['loan_condition_int'] = np.nan
for col in lst:
col.loc[df['loan_condition'] == 'Bad Loan', 'loan_condition_int'] = 0 # Negative (Bad Loan)
col.loc[df['loan_condition'] == 'Good Loan', 'loan_condition_int'] = 1 # Positive (Good Loan)
# In[ ]:
fig, ((ax1, ax2), (ax3, ax4))= plt.subplots(nrows=2, ncols=2, figsize=(14,6))
# Change the Palette types tomorrow!
sns.violinplot(x="income_category", y="loan_amount", data=df, palette="Set2", ax=ax1 )
sns.violinplot(x="income_category", y="loan_condition_int", data=df, palette="Set2", ax=ax2)
sns.boxplot(x="income_category", y="emp_length_int", data=df, palette="Set2", ax=ax3)
sns.boxplot(x="income_category", y="interest_rate", data=df, palette="Set2", ax=ax4)
# <h1 align="center"> Assesing Risks </h1>
# <h2> Understanding the Risky side of Business </h2>
# <a id="risky_side"></a>
#
# Although the <b> operative side of business </b> is important, we have to also analyze the level of risk in each state. Credit scores are important metrics to analyze the level of risk of an individual customer. However, there are also other important metrics to somehow estimate the level of risk of other states. <br><br>
#
# <h4> What we need to know: </h4>
# <ul>
# <li> <b>Debt-to-income</b> is an important metric since it says approximately the level of debt of each individual consumer with respect to its total income. </li>
# <li> The <b>average length of employment</b> tells us a better story about the labor market in each state which is helpful to assess the levelof risk. </li>
# </ul>
#
# <h4> Summary: </h4>
# <ul>
# <li> <b>IOWA</b> has the highest level of default ratio neverthless, the amount of loans issued in that state is <b>too low</b>. (Number of Bad loans is equal to 3) </li>
# <li> California and Texas seem to have the lowest risk and the highest possible return for investors. However, I will look more deeply into these states and create other metrics analyze the level of risk for each state. </li>
#
# </ul>
#
#
# **Note: I will be updating these section sooner or later (Stay in touch!)**
# In[ ]:
by_condition = df.groupby('addr_state')['loan_condition'].value_counts()/ df.groupby('addr_state')['loan_condition'].count()
by_emp_length = df.groupby(['region', 'addr_state'], as_index=False).emp_length_int.mean().sort_values(by="addr_state")
loan_condition_bystate = pd.crosstab(df['addr_state'], df['loan_condition'] )
cross_condition = pd.crosstab(df["addr_state"], df["loan_condition"])
# Percentage of condition of loan
percentage_loan_contributor = pd.crosstab(df['addr_state'], df['loan_condition']).apply(lambda x: x/x.sum() * 100)
condition_ratio = cross_condition["Bad Loan"]/cross_condition["Good Loan"]
by_dti = df.groupby(['region', 'addr_state'], as_index=False).dti.mean()
state_codes = sorted(states)
# Take to a list
default_ratio = condition_ratio.values.tolist()
average_dti = by_dti['dti'].values.tolist()
average_emp_length = by_emp_length["emp_length_int"].values.tolist()
number_of_badloans = loan_condition_bystate['Bad Loan'].values.tolist()
percentage_ofall_badloans = percentage_loan_contributor['Bad Loan'].values.tolist()
# Figure Number 2
risk_data = OrderedDict([('state_codes', state_codes),
('default_ratio', default_ratio),
('badloans_amount', number_of_badloans),
('percentage_of_badloans', percentage_ofall_badloans),
('average_dti', average_dti),
('average_emp_length', average_emp_length)])
# Figure 2 Dataframe
risk_df = pd.DataFrame.from_dict(risk_data)
risk_df = risk_df.round(decimals=3)
risk_df.head()
# In[ ]:
# Now it comes the part where we plot out plotly United States map
import plotly.plotly as py
import plotly.graph_objs as go
for col in risk_df.columns:
risk_df[col] = risk_df[col].astype(str)
scl = [[0.0, 'rgb(202, 202, 202)'],[0.2, 'rgb(253, 205, 200)'],[0.4, 'rgb(252, 169, 161)'], [0.6, 'rgb(247, 121, 108 )'],[0.8, 'rgb(232, 70, 54)'],[1.0, 'rgb(212, 31, 13)']]
risk_df['text'] = risk_df['state_codes'] + '<br>' +'Number of Bad Loans: ' + risk_df['badloans_amount'] + '<br>' + 'Percentage of all Bad Loans: ' + risk_df['percentage_of_badloans'] + '%' + '<br>' + 'Average Debt-to-Income Ratio: ' + risk_df['average_dti'] + '<br>'+'Average Length of Employment: ' + risk_df['average_emp_length']
data = [ dict(
type='choropleth',
colorscale = scl,
autocolorscale = False,
locations = risk_df['state_codes'],
z = risk_df['default_ratio'],
locationmode = 'USA-states',
text = risk_df['text'],
marker = dict(
line = dict (
color = 'rgb(255,255,255)',
width = 2
) ),
colorbar = dict(
title = "%")
) ]
layout = dict(
title = 'Lending Clubs Default Rates <br> (Analyzing Risks)',
geo = dict(
scope = 'usa',
projection=dict(type='albers usa'),
showlakes = True,
lakecolor = 'rgb(255, 255, 255)')
)
fig = dict(data=data, layout=layout)
iplot(fig, filename='d3-cloropleth-map')
# ## The Importance of Credit Scores:
# <a id="credit_scores"></a>
# Credit scores are important metrics for assesing the overall level of risk. In this section we will analyze the level of risk as a whole and how many loans were bad loans by the type of grade received in the credit score of the customer.
#
# <h4> What we need to know: </h4>
# <ul>
# <li> The lower the grade of the credit score, the higher the risk for investors. </li>
# <li> There are different factors that influence on the level of risk of the loan.</li>
# </ul>
#
# <h4> Summary: </h4>
# <ul>
# <li> The scores that has a lower grade received a larger amounts of loans (which might had contributed to a higher level of risk). </li>
# <li> Logically, the <b>lower the grade the higher the interest</b> the customer had to pay back to investors.</li>
# <li> Interstingly, customers with a <b>grade</b> of "C" were more likely to default on the loan </li>
# <ul>
# In[ ]:
# Let's visualize how many loans were issued by creditscore
f, ((ax1, ax2)) = plt.subplots(1, 2)
cmap = plt.cm.coolwarm
by_credit_score = df.groupby(['year', 'grade']).loan_amount.mean()
by_credit_score.unstack().plot(legend=False, ax=ax1, figsize=(14, 4), colormap=cmap)
ax1.set_title('Loans issued by Credit Score', fontsize=14)
by_inc = df.groupby(['year', 'grade']).interest_rate.mean()
by_inc.unstack().plot(ax=ax2, figsize=(14, 4), colormap=cmap)
ax2.set_title('Interest Rates by Credit Score', fontsize=14)
ax2.legend(bbox_to_anchor=(-1.0, -0.3, 1.7, 0.1), loc=5, prop={'size':12},
ncol=7, mode="expand", borderaxespad=0.)
# In[ ]:
fig = plt.figure(figsize=(16,12))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(212)
cmap = plt.cm.coolwarm_r
loans_by_region = df.groupby(['grade', 'loan_condition']).size()
loans_by_region.unstack().plot(kind='bar', stacked=True, colormap=cmap, ax=ax1, grid=False)
ax1.set_title('Type of Loans by Grade', fontsize=14)
loans_by_grade = df.groupby(['sub_grade', 'loan_condition']).size()
loans_by_grade.unstack().plot(kind='bar', stacked=True, colormap=cmap, ax=ax2, grid=False)
ax2.set_title('Type of Loans by Sub-Grade', fontsize=14)
by_interest = df.groupby(['year', 'loan_condition']).interest_rate.mean()
by_interest.unstack().plot(ax=ax3, colormap=cmap)
ax3.set_title('Average Interest rate by Loan Condition', fontsize=14)
ax3.set_ylabel('Interest Rate (%)', fontsize=12)
# <h2>What Determines a Bad Loan </h2>
# <a id="determines_bad_loan"></a>
# My main aim in this section is to find the main factors that causes for a loan to be considered a <b>"Bad Loan"</b>. Logically, we could assume that factors such as a low credit grade or a high debt to income could be possible contributors in determining whether a loan is at a high risk of being defaulted. <br><br>
#
# <h4> What we need to know: </h4>
# <ul>
# <li> There might be possible factors that contribute in whether a loan is bad or not. </li>
# <li> Factors that increase risk include: low annual income, high debt to income, high interest rates, low grade, among others. </li>
# </ul>
#
# <h4> Summary: </h4>
# <ul>
# <li> The types of bad loans in the last year are having a tendency to<b> decline</b>, except for late payments (might indicate an economical recovery.) </li>
# <li> <b>Mortgage </b> was the variable from the home ownership column that used the highest amount borrowed within loans that were considered to be bad.</li>
# <li> There is a slight <b>increase</b> on people who have mortgages that are applying for a loan.</li>
# <li>People who have a mortgage (depending on other factors as well within the mortgage) are more likely to ask for <bhigher loan amounts than other people who have other types of home ownerships. </li>
# </ul>
# In[ ]:
# Just get me the numeric variables
numeric_variables = df.select_dtypes(exclude=["object"])
# In[ ]:
# We will use df_correlations dataframe to analyze our correlations.
df_correlations = df.corr()
trace = go.Heatmap(z=df_correlations.values,
x=df_correlations.columns,
y=df_correlations.columns,
colorscale=[[0.0, 'rgb(165,0,38)'],
[0.1111111111111111, 'rgb(215,48,39)'],
[0.2222222222222222, 'rgb(244,109,67)'],
[0.3333333333333333, 'rgb(253,174,97)'],
[0.4444444444444444, 'rgb(254,224,144)'],
[0.5555555555555556, 'rgb(224,243,248)'],
[0.6666666666666666, 'rgb(171,217,233)'],
[0.7777777777777778, 'rgb(116,173,209)'],
[0.8888888888888888, 'rgb(69,117,180)'],
[1.0, 'rgb(49,54,149)']],
colorbar = dict(
title = 'Level of Correlation',
titleside = 'top',
tickmode = 'array',
tickvals = [-0.52,0.2,0.95],
ticktext = ['Negative Correlation','Low Correlation','Positive Correlation'],
ticks = 'outside'
)
)
layout = {"title": "Correlation Heatmap"}
data=[trace]
fig = dict(data=data, layout=layout)
iplot(fig, filename='labelled-heatmap')
# This data looks a little but messy maybe if we focus our correlation heatmap into columns that are more worth it we might actually see a trend with the **condition of the loan**.
# In[ ]:
title = 'Bad Loans: Loan Statuses'
labels = bad_loan # All the elements that comprise a bad loan.
len(labels)
colors = ['rgba(236, 112, 99, 1)', 'rgba(235, 152, 78, 1)', 'rgba(52, 73, 94, 1)', 'rgba(128, 139, 150, 1)',
'rgba(255, 87, 51, 1)', 'rgba(255, 195, 0, 1)']
mode_size = [8,8,8,8,8,8]
line_size = [2,2,2,2,2,2]
x_data = [
sorted(df['year'].unique().tolist()),
sorted(df['year'].unique().tolist()),
sorted(df['year'].unique().tolist()),
sorted(df['year'].unique().tolist()),
sorted(df['year'].unique().tolist()),
sorted(df['year'].unique().tolist()),
]
# type of loans
charged_off = df['loan_amount'].loc[df['loan_status'] == 'Charged Off'].values.tolist()
defaults = df['loan_amount'].loc[df['loan_status'] == 'Default'].values.tolist()
not_credit_policy = df['loan_amount'].loc[df['loan_status'] == 'Does not meet the credit policy. Status:Charged Off'].values.tolist()
grace_period = df['loan_amount'].loc[df['loan_status'] == 'In Grace Period'].values.tolist()
short_late = df['loan_amount'].loc[df['loan_status'] == 'Late (16-30 days)'].values.tolist()
long_late = df['loan_amount'].loc[df['loan_status'] == 'Late (31-120 days)'].values.tolist()
y_data = [
charged_off,
defaults,
not_credit_policy,
grace_period,
short_late,
long_late,
]
p_charged_off = go.Scatter(
x = x_data[0],
y = y_data[0],
name = 'A. Charged Off',
line = dict(
color = colors[0],
width = 3,
dash='dash')
)
p_defaults = go.Scatter(
x = x_data[1],
y = y_data[1],
name = 'A. Defaults',
line = dict(
color = colors[1],
width = 3,
dash='dash')
)
p_credit_policy = go.Scatter(
x = x_data[2],
y = y_data[2],
name = 'Not Meet C.P',
line = dict(
color = colors[2],
width = 3,
dash='dash')
)
p_graced = go.Scatter(
x = x_data[3],
y = y_data[3],
name = 'A. Graced Period',
line = dict(
color = colors[3],
width = 3,
dash='dash')
)
p_short_late = go.Scatter(
x = x_data[4],
y = y_data[4],
name = 'Late (16-30 days)',
line = dict(
color = colors[4],
width = 3,
dash='dash')
)
p_long_late = go.Scatter(
x = x_data[5],
y = y_data[5],
name = 'Late (31-120 days)',
line = dict(
color = colors[5],
width = 3,
dash='dash')
)
data=[p_charged_off, p_defaults, p_credit_policy, p_graced, p_short_late, p_long_late]
layout = dict(title = 'Types of Bad Loans <br> (Amount Borrowed Throughout the Years)',
xaxis = dict(title = 'Year'),
yaxis = dict(title = 'Amount Issued'),
)
fig = dict(data=data, layout=layout)
iplot(fig, filename='line-mode')
# In[ ]:
import seaborn as sns
plt.figure(figsize=(18,18))
# Create a dataframe for bad loans
bad_df = df.loc[df['loan_condition'] == 'Bad Loan']
plt.subplot(211)
g = sns.boxplot(x='home_ownership', y='loan_amount', hue='loan_condition',
data=bad_df, color='r')
g.set_xticklabels(g.get_xticklabels(),rotation=45)
g.set_xlabel("Type of Home Ownership", fontsize=12)
g.set_ylabel("Loan Amount", fontsize=12)
g.set_title("Distribution of Amount Borrowed \n by Home Ownership", fontsize=16)
plt.subplot(212)
g1 = sns.boxplot(x='year', y='loan_amount', hue='home_ownership',
data=bad_df, palette="Set3")
g1.set_xticklabels(g1.get_xticklabels(),rotation=45)
g1.set_xlabel("Type of Home Ownership", fontsize=12)
g1.set_ylabel("Loan Amount", fontsize=12)
g1.set_title("Distribution of Amount Borrowed \n through the years", fontsize=16)
plt.subplots_adjust(hspace = 0.6, top = 0.8)
plt.show()
# ## Defaulted Loans and Level of Risk:
# <a id="defaulted_loans"></a>
# From all the bad loans the one we are most interested about are the loans that are defaulted. Therefore, in this section we will implement an in-depth analysis of these types of Loans and see if we can gain any insight as to which features have a high correlation with the loan being defaulted.
#
# ## Main Aim:
# <ul>
# <li> Determine patters that will allow us to understand somehow factors that contribute to a loan being <b>defaulted</b> </li>
# </ul>
#
# ## Summary:
# <ul>
# <li>In the last year recorded, the <b>Midwest </b> and <b> SouthEast </b> regions had the most defaults. </li>
# <li>Loans that have a <b>high interest rate</b>(above 13.23%) are more likely to become a <b>bad loan </b>. </li>
# <li>Loans that have a longer <b> maturity date (60 months) </b> are more likely to be a bad loan. </li>
# </ul>
#
#
# In[ ]:
# Get the loan amount for loans that were defaulted by each region.
northe_defaults = df['loan_amount'].loc[(df['region'] == 'NorthEast') & (df['loan_status'] == 'Default')].values.tolist()
southw_defaults = df['loan_amount'].loc[(df['region'] == 'SouthWest') & (df['loan_status'] == 'Default')].values.tolist()
southe_defaults = df['loan_amount'].loc[(df['region'] == 'SouthEast') & (df['loan_status'] == 'Default')].values.tolist()
west_defaults = df['loan_amount'].loc[(df['region'] == 'West') & (df['loan_status'] == 'Default')].values.tolist()
midw_defaults = df['loan_amount'].loc[(df['region'] == 'MidWest') & (df['loan_status'] == 'Default')].values.tolist()
# Cumulative Values
y0_stck=northe_defaults
y1_stck=[y0+y1 for y0, y1 in zip(northe_defaults, southw_defaults)]
y2_stck=[y0+y1+y2 for y0, y1, y2 in zip(northe_defaults, southw_defaults, southe_defaults)]
y3_stck=[y0+y1+y2+y3 for y0, y1, y2, y3 in zip(northe_defaults, southw_defaults, southe_defaults, west_defaults)]
y4_stck=[y0+y1+y2+y3+y4 for y0, y1, y2, y3, y4 in zip(northe_defaults, southw_defaults, southe_defaults, west_defaults, midw_defaults)]
# Make original values strings and add % for hover text
y0_txt=['$' + str(y0) for y0 in northe_defaults]
y1_txt=['$' + str(y1) for y1 in southw_defaults]
y2_txt=['$' + str(y2) for y2 in southe_defaults]
y3_txt=['$' + str(y3) for y3 in west_defaults]
y4_txt=['$'+ str(y4) for y4 in midw_defaults]
year = sorted(df["year"].unique().tolist())
NorthEast_defaults = go.Scatter(
x= year,
y= y0_stck,
text=y0_txt,
hoverinfo='x+text',
name='NorthEast',
mode= 'lines',
line=dict(width=0.5,
color='rgb(131, 90, 241)'),
fill='tonexty'
)
SouthWest_defaults = go.Scatter(
x=year,
y=y1_stck,
text=y1_txt,
hoverinfo='x+text',
name='SouthWest',
mode= 'lines',
line=dict(width=0.5,
color='rgb(255, 140, 0)'),
fill='tonexty'
)
SouthEast_defaults = go.Scatter(
x= year,
y= y2_stck,
text=y2_txt,
hoverinfo='x+text',
name='SouthEast',
mode= 'lines',
line=dict(width=0.5,
color='rgb(240, 128, 128)'),
fill='tonexty'
)
West_defaults = go.Scatter(
x= year,
y= y3_stck,
text=y3_txt,
hoverinfo='x+text',
name='West',
mode= 'lines',
line=dict(width=0.5,
color='rgb(135, 206, 235)'),
fill='tonexty'
)
MidWest_defaults = go.Scatter(
x= year,
y= y4_stck,
text=y4_txt,
hoverinfo='x+text',
name='MidWest',
mode= 'lines',
line=dict(width=0.5,
color='rgb(240, 230, 140)'),
fill='tonexty'
)
data = [NorthEast_defaults, SouthWest_defaults, SouthEast_defaults, West_defaults, MidWest_defaults]
layout = dict(title = 'Amount Defaulted by Region',
xaxis = dict(title = 'Year'),
yaxis = dict(title = 'Amount Defaulted')
)
fig = dict(data=data, layout=layout)
iplot(fig, filename='basic-area-no-bound')
# In[ ]:
df['interest_rate'].describe()
# Average interest is 13.26% Anything above this will be considered of high risk let's see if this is true.
df['interest_payments'] = np.nan
lst = [df]
for col in lst:
col.loc[col['interest_rate'] <= 13.23, 'interest_payments'] = 'Low'
col.loc[col['interest_rate'] > 13.23, 'interest_payments'] = 'High'
df.head()
# In[ ]:
df['term'].value_counts()
# In[ ]:
from scipy.stats import norm
plt.figure(figsize=(20,10))
palette = ['#009393', '#930000']
plt.subplot(221)
ax = sns.countplot(x='interest_payments', data=df,
palette=palette, hue='loan_condition')
ax.set_title('The impact of interest rate \n on the condition of the loan', fontsize=14)
ax.set_xlabel('Level of Interest Payments', fontsize=12)
ax.set_ylabel('Count')
plt.subplot(222)
ax1 = sns.countplot(x='interest_payments', data=df,
palette=palette, hue='term')
ax1.set_title('The impact of maturity date \n on interest rates', fontsize=14)
ax1.set_xlabel('Level of Interest Payments', fontsize=12)
ax1.set_ylabel('Count')
plt.subplot(212)
low = df['loan_amount'].loc[df['interest_payments'] == 'Low'].values
high = df['loan_amount'].loc[df['interest_payments'] == 'High'].values
ax2= sns.distplot(low, color='#009393', label='Low Interest Payments', fit=norm, fit_kws={"color":"#483d8b"}) # Dark Blue Norm Color
ax3 = sns.distplot(high, color='#930000', label='High Interest Payments', fit=norm, fit_kws={"color":"#c71585"}) # Red Norm Color
plt.axis([0, 36000, 0, 0.00016])
plt.legend()
plt.show()
# ## Interest Rate by Loan Status:
# The main aim in this section is to compare the average interest rate for the loan status belonging to each type of loans (Good loan or bad loan) and see if there is any significant difference in the average of interest rate for each of the groups.
#
# ## Summary:
# <ul>
# <li> <b> Bad Loans: </b> Most of the loan statuses belonging to this group pay a interest ranging from 15% - 16%. </li>
# <li><b>Good Loans:</b> Most of the loan statuses belonging to this group pay interest ranging from 12% - 13%. </li>
# <li>There has to be a better assesment of risk since there is not that much of a difference in interest payments from <b>Good Loans</b> and <b>Bad Loans</b>. </li>
# <li> Remember, most loan statuses are <b>Current</b> so there is a risk that at the end of maturity some of these loans might become bad loans. </li>
# </ul>
# In[ ]:
import plotly.plotly as py
import plotly.graph_objs as go
# Interest rate good loans
avg_fully_paid = round(np.mean(df['interest_rate'].loc[df['loan_status'] == 'Fully Paid'].values), 2)
avg_current = round(np.mean(df['interest_rate'].loc[df['loan_status'] == 'Current'].values), 2)
avg_issued = round( | np.mean(df['interest_rate'].loc[df['loan_status'] == 'Issued'].values) | numpy.mean |
import matplotlib.pyplot as plt
import data
import solver
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
class DataVisual:
def __init__(self):
pass
def draw_scatter(self):
my_data = data.Data()
sol = solver.Solver()
sol.get_saveDis_simpleV_mileageCost_Fre()
left = sol.left
max_left = 0
for i in range(len(left)):
if np.sum(left[i]) > max_left:
max_left = np.sum(left[i])
max_left = max_left / 20
color = []
for i in range(len(left)):
color.append(int(min(np.sqrt(np.sum(left[i]) / max_left), 1) * 19))
print(color)
main_x = sol.machine_x
main_y = sol.machine_y
x, y, _, _ = my_data.get_info()
cm = plt.cm.get_cmap('RdYlBu')
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_title('provider scatter picture')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.scatter(x, y, marker='.', c=color, cmap=cm, label='provider')
ax.scatter(main_x, main_y, marker='x', s=50, label='center')
plt.xlim(xmax=np.max(x)+0.1, xmin=np.min(x)-0.1)
plt.ylim(ymax=np.max(y)+0.1, ymin=np.min(y)-0.1)
plt.legend()
plt.show()
def draw_carNum(self):
percent = []
car_num = 600
for i in range(11):
percent.append(int(((i - 5) / 10 + 1) * car_num))
total_dis1 = []
total_price1 = []
total_dis2 = []
total_price2 = []
total_dis3 = []
for pc in percent:
sol = solver.Solver(car_num=pc)
res1 = sol.get_saveDisSto_simpleV_mileageStockCost_Fre()
res2 = sol.get_saveDis_simpleV_mileageCost_Fre()
res3 = sol.get_trad_simpleV_mileageCost_noFre()
total_dis1.append(res1.total_dis)
total_price1.append(res1.total_price)
total_dis2.append(res2.total_dis)
total_price2.append(res2.total_price)
total_dis3.append(res3.total_dis)
fig1 = plt.figure()
ax1 = fig1.add_subplot(1, 1, 1)
ax1.set_title('harvest-distance picture')
ax1.set_xlabel('vehicle')
ax1.set_ylabel('km')
ax1.plot(percent, total_dis1, label='storage and distance')
ax1.plot(percent, total_dis2, label='only distance')
ax1.plot(percent, total_dis3, label='traditional')
fig1.legend()
fig2 = plt.figure()
ax2 = fig2.add_subplot(1, 1, 1)
ax2.set_title('harvest-price picture')
ax2.set_xlabel('vehicle')
ax2.set_ylabel('yuan')
ax2.plot(percent, total_price1, label='storage and distance')
ax2.plot(percent, total_price2, label='only distance')
fig2.legend()
plt.show()
def draw_carType(self):
vv = [26.42, 54.79, 68.36, 70.5, 85.79]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('v/m^3')
ax.set_ylabel('price/yuan')
ax.set_title('cartype-price picture')
y = []
for v in vv:
sol = solver.Solver(car_x=v, car_y=1, car_z=1)
res = sol.get_saveDisSto_simpleV_mileageStockCost_Fre(disPrice_coe=5.2*v/70.5)
y.append(res.total_price)
ax.plot(vv, y, label='car_type')
plt.legend()
plt.show()
def draw_carType_new(self):
vv = [26.42, 54.79, 68.36, 70.5, 85.79]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('v/m^3')
ax.set_ylabel('distance/km')
ax.set_title('cartype-distance picture')
y = []
for v in vv:
sol = solver.Solver(car_x=v, car_y=1, car_z=1)
res = sol.get_saveDisSto_simpleV_mileageStockCost_Fre(disPrice_coe=5.2*v/70.5)
y.append(res.total_dis)
ax.plot(vv, y, label='car_type')
plt.legend()
plt.show()
def draw_carV(self):
avg_v = 60
percent = []
for i in range(11):
percent.append(int(((i - 5) / 10 + 1) * avg_v))
sol = solver.Solver()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('v/m*s^-2')
ax.set_ylabel('price/yuan')
ax.set_title('carV-price picture')
y = []
for pc in percent:
res = sol.get_saveDisSto_simpleV_mileageStockCost_Fre(avg_v=pc)
y.append(res.total_price)
ax.plot(percent, y, label='the v of car')
plt.legend()
plt.show()
def draw_carV_new(self):
avg_v = 60
percent = []
for i in range(11):
percent.append(int(((i - 5) / 10 + 1) * avg_v))
sol = solver.Solver()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('v/m*s^-2')
ax.set_ylabel('distance/km')
ax.set_title('carV-distance picture')
y = []
for pc in percent:
res = sol.get_saveDisSto_simpleV_mileageStockCost_Fre(avg_v=pc)
y.append(res.total_dis)
ax.plot(percent, y, label='the v of car')
plt.legend()
plt.show()
def draw_position(self):
sol = solver.Solver()
sol.get_saveDis_simpleV_mileageCost_Fre()
main_x = sol.machine_x
main_y = sol.machine_y
X = np.arange(-0.5, 0.5, 0.1)
Y = np.arange(-0.5, 0.5, 0.1)
print(X)
print(Y)
X, Y = np.meshgrid(X, Y)
print(main_x)
print(main_y)
Z = | np.zeros_like(X) | numpy.zeros_like |
from gensim.models.word2vec import LineSentence
from gensim.models import Word2Vec
import linecache
import sys
from keras.models import Sequential
from keras.layers import Dense, Embedding, LSTM, TimeDistributed, Input, Bidirectional, Activation
from keras.models import Model
from keras.preprocessing import sequence
from keras.models import load_model
from sklearn.model_selection import train_test_split
import logging
import string
import pickle
import numpy as np
from sklearn import metrics
from sklearn.model_selection import KFold
import logging
import sys
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
file_handler = logging.FileHandler(
'/home/cry/chengxiao/dataset/tscanc/SARD_119_399/result/log/119_df_result.txt')
file_handler.setLevel(level=logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# StreamHandler
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(formatter)
stream_handler.setLevel(level=logging.INFO)
logger.addHandler(stream_handler)
NUM_EPOCHS = 50
BATCH_SIZE = 64
HIDDEN_LAYER_SIZE = 64
EMBEDDING_SIZE = 50
MAX_SENTENCE_LENGTH = 50
def appendApiInfo(lenFileVec, info):
"""在info末加入cgd在源文件中具体行的api,用于构建sel数据库.
Args:
lenFileVec: 所有cgd的数量
info: 所有cgd的信息
Returns:
None
Raises:
IOError: An error occurred accessing the bigtable.Table object.
"""
logger.info('解析源文件中cgd的api...'.encode('utf-8'))
inforoot = u'/Users/chengxiao/Desktop/VulDeepecker/ml/resource/CWE-399/source_files/'
for cdgIndex in range(lenFileVec):
# print(info[cdgIndex])
# print("%d %s"%(cdgIndex,info[cdgIndex][1]))
srcFilePath = inforoot + info[cdgIndex][1]
# srcFilePath = info[cdgIndex][2]
srcFileLine = int(info[cdgIndex][3])
# srcfile = open(srcFilePath, 'r', encoding='utf-8')
srcFunc = linecache.getline(srcFilePath, srcFileLine).strip()
alphac = 0
srcFilePathtmp = srcFilePath
while ((not srcFunc) and (alphac != 26)):
srcFilePathtmp = srcFilePath[:srcFilePath.index('.')] + string.ascii_lowercase[alphac] \
+ srcFilePath[srcFilePath.index('.'):]
srcFunc = linecache.getline(srcFilePathtmp, srcFileLine).strip()
linescount = len(linecache.getlines(srcFilePathtmp)) + 1
srcFileLine = srcFileLine - linescount - 2
alphac = alphac + 1
info[cdgIndex].append(srcFunc)
logger.info('解析api成功!'.encode('utf-8'))
def fixVec(fileIntVec, model, info, tao, type):
"""向量处理.
对于长度小于tao的向量,如果是前向api,后补0,否则前补0;
对于长度大雨tao的向量,如果是前向api,删后,否则删前;
Args:
fileIntVec: (已将token转成int)codeGadget的tokenIntlist集合 [cg1,cg2,...] cg1:[tk1Int, tk2Int, ...]
model: 训练模型
info: 训练集信息(源码位置,函数类型,行号)
tao: 预定义向量长度
type: 0 or 1(forw backw)
Returns:
None
Raises:
IOError: An error occurred accessing the bigtable.Table object.
"""
logger.info('修正向量...'.encode('utf-8'))
ipt = []
inforoot = u'/Users/chengxiao/Desktop/VulDeepecker/ml/resource/CWE-399/source_files/'
for cdgIndex in range(len(fileIntVec)):
# 通过info读源文件再判断
cdgInts = fileIntVec[cdgIndex]
# srcFilePath = inforoot + info[cdgIndex][1]
# srcFuncType = info[cdgIndex][2]
# srcFileLine = int(info[cdgIndex][3])
# srcfile = open(srcFilePath, 'r', encoding='utf-8')
# srcFunc = info[cdgIndex][4]
# srcFunc = srcfile.readline(srcFileLine)
# print(srcFunc)
if len(cdgInts) < tao: # 补0
# print(info[cdgIndex][1])
fixvec = (tao - len(cdgInts)) * [0]
# print(fixvec)
if (type == 1):
srcFuncType = info[cdgIndex][2]
# TODO(jumormt): 如何判断api为forward
if (srcFuncType == 'inputfunc'): # forward 后补0
fileIntVec[cdgIndex].extend(fixvec)
else:
fixvec.extend(cdgInts)
fileIntVec[cdgIndex] = fixvec
else:
fixvec.extend(cdgInts)
fileIntVec[cdgIndex] = fixvec
# print(len(fileIntVec[cdgIndex]))
# print(fileIntVec[cdgIndex])
if len(cdgInts) > tao: # 截断
# print(info[cdgIndex][1])
if (type == 1):
srcFuncType = info[cdgIndex][2]
# TODO(jumormt): 如何判断api为forward
if (srcFuncType == 'inputfunc'): # forward 删后
fileIntVec[cdgIndex] = fileIntVec[cdgIndex][:tao]
else:
fileIntVec[cdgIndex] = fileIntVec[cdgIndex][-tao:]
else:
fileIntVec[cdgIndex] = fileIntVec[cdgIndex][-tao:]
# print(len(fileIntVec[cdgIndex]))
# print(fileIntVec[cdgIndex])
# print(fileIntVec[cdgIndex])
# print(len(fileIntVec[cdgIndex]))
# ----------------------
logger.info('修正向量成功!'.encode('utf-8'))
def saveVec(picklefile, fileIntVec, target, info):
"""划分数据集并保存数据.
将数据划分成8:2并使用pickle模块存储,
x_train 和 x_test存放训练集和测试集向量,
y_train 和 y_test存放target和info的ziplist
Args:
fileIntVec: (已将token转成int)codeGadget的tokenIntlist集合 [cg1,cg2,...] cg1:[tk1Int, tk2Int, ...]
info: 训练集信息(源码位置,函数类型,行号)
target: 数据集标记
Returns:
None
Raises:
IOError: An error occurred accessing the bigtable.Table object.
"""
logger.info('划分数据集...'.encode('utf-8'))
# 划分数据集
Y = list(zip(target, info))
# X = sequence.pad_sequences(fileIntVec, maxlen=MAX_SENTENCE_LENGTH)
x_train, x_test, y_train, y_test = train_test_split(fileIntVec, Y, test_size=0.1, random_state=6)
logger.info('划分数据集成功!'.encode('utf-8'))
logger.info('保存数据集...'.encode('utf-8'))
# 保存数据
try:
with open(picklefile, 'wb') as pfile:
pickle.dump(
{
'x_train': x_train,
'x_test': x_test,
'y_train': y_train,
'y_test': y_test,
},
pfile, pickle.HIGHEST_PROTOCOL
)
except Exception as e:
logger.info('Unable to save data to', picklefile, ':', e)
raise
logger.info('Data cached in pickle file.')
def loadVec(picklefile):
"""读取序列化后的向量数据.
读取训练集和测试集
Args:
picklefile: picklefile的位置
Returns:
x_train: 训练集
x_test: 测试集
y_train: 训练集的(label,info)list
y_test: 测试集的(label, info)list
Raises:
IOError: An error occurred accessing the bigtable.Table object.
"""
logger.info('载入数据集...'.encode('utf-8'))
try:
with open(picklefile, 'rb') as f:
pickleData = pickle.load(f)
x_train = pickleData['x_train']
y_train = pickleData['y_train']
x_test = pickleData['x_test']
y_test = pickleData['y_test']
del pickleData
except Exception as e:
logger.info('Unable to load data:', picklefile, ':', e)
raise
logger.info('载入数据集成功!'.encode('utf-8'))
return x_train, y_train, x_test, y_test
# # TODO(Jumormt): 建立双向lstm模型
# def createModel(inputLen, maxIndex, wordSize):
# """创建神经网络.
#
# 创建双向lstm神经网络,包括输入层,循环层,输出层等。
#
# Args:
# inputLen: 输入向量维度
# maxIndex:词向量最大index
# wordSize: 词向量维度(暂时为1)
#
# Returns:
# model:网络模型
#
# Raises:
# IOError: An error occurred accessing the bigtable.Table object.
# """
# logger.info('创建blstm神经网络...')
# inpt = Input(shape=(inputLen,), dtype='int32')
# # embedded = Embedding(maxIndex + 1, wordSize, input_length=inputLen, mask_zero=True)(inpt)
# blstm = Bidirectional(LSTM(64, input_shape=(inputLen, 1), return_sequences=True), merge_mode='sum')(inpt)
# output = TimeDistributed(Dense(1, activation='sigmoid'))(blstm)
# model = Model(input = inpt, output = output)
# model.compile(loss='binary_crossentropy', optimizer = 'adamax', metrics = ['accuracy'])
# logger.info('创建blstm神经网络成功!')
# return model
# TODO(Jumormt): 建立双向lstm模型
def createModel(inputLen, maxIndex, wordSize):
"""创建神经网络.
创建双向lstm神经网络,包括输入层,循环层,输出层等。
Args:
inputLen: 输入向量维度
maxIndex:词向量最大index
wordSize: 词向量维度(暂时为1)
Returns:
model:网络模型
Raises:
IOError: An error occurred accessing the bigtable.Table object.
"""
logger.info('创建blstm神经网络...'.encode('utf-8'))
model = Sequential()
# model.add(Embedding(maxIndex + 1, wordSize, input_length=inputLen, mask_zero=True))
model.add(Embedding(maxIndex + 1, wordSize, input_length=inputLen))
model.add(Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.5, recurrent_dropout=0.5)))
model.add(Dense(1))
model.add(Activation("sigmoid"))
model.compile(loss='binary_crossentropy', optimizer='adamax', metrics=['binary_accuracy'])
logger.info('创建blstm神经网络成功!'.encode('utf-8'))
return model
def main():
# logging.basicConfig(filename=u'~/ml/out/log/logger.log', level=logging.INFO)
# 获取训练集------------------------------------
# sentences = Text8Corpus(u"~/ml/resource/text8")
# sentences = [['first', 'sentence'], ['second', 'sentence']]
logger.info('载入文本数据...'.encode('utf-8'))
resourcepath = u"~/ml/resource/"
# datapath = u"~/ml/resource/test_error_case.txt"
# datapath = u"~/ml/resource/cwe119_cgd_result.txt"
# datapath = u"~/ml/resource/test_output.txt"
# datapath = u"/Users/chengxiao/Desktop/VulDeepecker/ml/resource/cwe/cwe399/cwe399_cgd_result.txt"
# datapath = u"/Users/chengxiao/Desktop/VulDeepecker/ml/resource/cwe/cwe119/cwe119_cgd_result.txt"
# datapath = u"/Users/chengxiao/Desktop/VulDeepecker/资料/project/CGDSymbolization/src/main/resources/output1.txt"
# datapath = u"/Users/chengxiao/Downloads/119/sard_sym.txt"
# datapath = u"/Users/chengxiao/Downloads/CWE-840/sard_sym.txt"
# datapath = u"/home/cry/chengxiao/dataset/VulDeepeckerDB/840_sym.txt"
datapath = u"/home/cry/chengxiao/dataset/VulDeepeckerDB/cwe119_cgd_result.txt"
sentences = LineSentence(datapath)
fileVec = [] # codeGadget的tokenlist集合 [cg1,cg2,...] cg1:[tk1, tk2, ...]
info = [] # codeGadget的信息集合 [序号, src位置, 函数类型, 行数, api]
target = [] # codeGadget的标记
cdgVec = [] # 待加入fileVec的当前cdg的tokenlist
currentCdgVec = [] # 当前cdg的token集合,二维数组
for line in sentences:
"""
functype = ['Off_by_One_Error_in_Methods', 'Buffer_Overflow_fgets', 'cppfunc',
'Buffer_Overflow_LowBound', 'MultiByte_String_Length', 'inputfunc',
'Buffer_Overflow_boundedcpy', 'Format_String_Attack',
'Buffer_Overflow_scanf', 'String_Termination_Error',
'Buffer_Overflow_Indexes', 'cfunc', 'Buffer_Overflow_unbounded',
'API', 'Buffer_Overflow_cpycat', 'Missing_Precision']
"""
currentCdgVec.append(line)
if (line[0] == "---------------------------------"):
currentCdgVec.pop() # 移除分隔符
currentCdgTarget = currentCdgVec.pop()
target.append(int(currentCdgTarget[0])) # target
# print(currentCdgTarget[0])
infoLine = currentCdgVec[0]
# print(infoLine)
infoVec = []
infoVec.append(infoLine[0])
srcLocList = infoLine[:len(infoLine) - 2][1:]
srcLoc = " ".join(srcLocList) # 将src位置合并为一个字符串
infoVec.append(srcLoc) # src位置
# infoVec.append(infoLine[len(infoLine)-3]) #函数类型
infoVec.append(infoLine[len(infoLine) - 2]) # 行号
infoVec.append(infoLine[len(infoLine) - 1]) # api
info.append(infoVec)
# print("before")
# print(currentCdgVec[0])
del currentCdgVec[0]
# print("after")
# print(currentCdgVec[0])
# print(infoVec)
for tokenLine in currentCdgVec:
# print(tokenLine)
cdgVec.extend(tokenLine)
# print(cdgVec)
fileVec.append(cdgVec)
currentCdgVec = []
cdgVec = []
# if (len(line) == 4 and line[0].isdigit()
# and line[3].isdigit()):
# info.append(" ".join(line))
# info.append(line)
# continue
# if (len(line) == 1 and (line[0] == "0" or line[0] == "1")):
# fileVec.append(cdgVec)
# target.append(int(line[0]))
# cdgVec = []
# continue
# if (line[0] == "---------------------------------"):
# continue
# cdgVec.extend(line)
# print(info)
# appendApiInfo(len(fileVec), info)
logger.info('载入文本数据成功!'.encode('utf-8'))
# f = open("/home/centos/ml/resource/model2output.txt","w")
# print(fileVec,file = f)
# print(info,file = f)
# print(target,file =f)
# for i in range(1,10):
# print(fileVec[i])
# 训练模型------------------------------------
logger.info('训练word2vec模型中...'.encode('utf-8'))
# outpm = u"/Users/chengxiao/Desktop/VulDeepecker/ml/resource/model/word2vec_1102_test.model"
outpm = u"/home/cry/chengxiao/dataset/VulDeepeckerDB/model/word2vec_1102_test.model"
model = Word2Vec(sentences, min_count=0, size=1)
logger.info('词袋模型训练成功!'.encode('utf-8'))
model.save(outpm)
# model = Word2Vec.load(outpm)
# 构建向量------------------------------------
# wordVc = model.wv.index2entity
# mp = {}
# for i in range(len(wordVc)):
# mp[wordVc[i]] = i
#
#
# print(model.wv.index2entity.index("="))
# print(model.wv.word_vec("="))
# print(mp["="])
# wordDic = model.wv.vocab.keys()
# print(type(wordDic))
logger.info('构建向量数据库...'.encode('utf-8'))
i = 0
fileIntVec = [] # (已将token转成int)codeGadget的tokenIntlist集合 [cg1,cg2,...] cg1:[tk1Int, tk2Int, ...]
for cdgs in fileVec:
cdgInts = []
for token in cdgs:
if token in model.wv.vocab:
cdgInts.append(model.wv.vocab[token].index + 1)
else:
cdgInts.append(0)
# print(cdgInts)
fileIntVec.append(cdgInts)
fixVec(fileIntVec, model, info, MAX_SENTENCE_LENGTH, 1)
for i in range(1, 6):
print(i)
print(fileVec[i])
print(fileIntVec[i])
sys.stdout.flush()
logger.info('构建向量数据库成功!'.encode('utf-8'))
# ----------------------
# 保存向量化数据
picklefile = u"/home/cry/chengxiao/dataset/VulDeepeckerDB/vecdata/vecdata.pickle"
# saveVec(picklefile, fileIntVec, target, info)
# 载入向量化数据
# x_train, y_train_r, x_test, y_test_r = loadVec(picklefile)
# y_train = [i[0] for i in y_train_r]
# trainInfo = [i[1] for i in y_train_r]
# y_test = [i[0] for i in y_test_r]
# test_info = [i[1] for i in y_test_r]
# 载入picklefile
# try:
# with open(picklefile, 'rb') as f:
# pickleData = pickle.load(f)
# x_train = pickleData['x_train']
# y_train = pickleData['y_train']
# x_test = pickleData['x_test']
# y_test = pickleData['y_test']
# del pickleData
# except Exception as e:
# print('Unable to load data:', picklefile, ':', e)
# raise
# 创建神经网络------------------------------------
maxindex = len(model.wv.index2entity)
kf = KFold(n_splits=10, shuffle=True)
tprList = list()
fprList = list()
fnrList = list()
f1List = list()
AUCList = list()
accuracyList = list()
kfcount = 1
fileIntVec = np.array(fileIntVec)
target = np.array(target)
for train_idx, test_idx in kf.split(fileIntVec):
logger.info("split: {}".format(kfcount))
kfcount = kfcount + 1
x_train, y_train = fileIntVec[train_idx], target[train_idx]
x_test, y_test = fileIntVec[test_idx], target[test_idx]
blstmCgdModel = createModel(MAX_SENTENCE_LENGTH, maxindex, EMBEDDING_SIZE)
print(blstmCgdModel.metrics_names)
blstmCgdModel.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS, verbose=2)
# blstmCgdModel.save('/Users/chengxiao/Desktop/VulDeepecker/ml/resource/model/model-total-1105-test.h5')
# blstmCgdModel = load_model('model-total-1102.h5')
# print(type(x_test))
# y_result = blstmCgdModel.predict_classes(x_train)
# metricss = blstmCgdModel.evaluate(x_test, y_test, verbose=0)
y_result = blstmCgdModel.predict_classes(x_test)
# print('f1: %.8f' % metrics.f1_score(y_test, y_result))
TP = 0
TN = 0
FP = 0
FN = 0
for i in range(len(y_result)):
if (y_test[i] == 1):
if (y_result[i] == 1):
TP = TP + 1
else:
FN = FN + 1
else:
if (y_result[i] == 1):
FP = FP + 1
else:
TN = TN + 1
TPR = round(TP / (TP + FN), 10)
logger.info("tpr: {}".format(TPR))
FPR = round(FP / (FP + TN), 10)
logger.info("fpr: {}".format(FPR))
FNR = round(FN / (TP + FN), 10)
logger.info("fnr: {}".format(FNR))
if (TP + FP != 0):
P = round(TP / (TP + FP), 10)
logger.info("f1: {}".format(round(2 * P * TPR / (P + TPR), 10)))
accuracy = metrics.accuracy_score(y_test, y_result)
logger.info("accuracy: {}".format(accuracy))
AUC = metrics.roc_auc_score(y_test, y_result)
logger.info('AUC: %.8f' % AUC)
tprList.append(TPR)
fprList.append(FPR)
fnrList.append(FNR)
accuracyList.append(accuracy)
AUCList.append(AUC)
# ji = int(1)
# for i in range(len(y_result)):
# print("%d %d %d"%(i,y_result[i][0],y_train[i]))
# for item in y_result:
# print("%d %s" % (ji,item[0]))
# ji=ji+1
# print(y_result)
# logger.info(metricss)
logger.info("tpr: {}".format(np.mean(tprList)))
logger.info("fpr: {}".format(np.mean(fprList)))
logger.info("fnr: {}".format( | np.mean(fnrList) | numpy.mean |
import os
import numpy as np
import pandas as pd
import pickle
from tqdm import tqdm
from util.table_structure_infer import tb_struc_infer
class Evaluator(object):
def __init__(self, opt):
self.data_list = open(os.path.join(opt.dataroot, opt.phase+'.txt'), 'r', encoding='UTF-8').readlines()
if opt.phase == 'test' and opt.max_test_size != float("inf"):
self.data_list = self.data_list[0:opt.max_test_size]
self.gt_dict, self.gt_box_sum, self.gt_fgRel_sum, self.gt_bgRel_sum, self.pred_dict = self.create_gt_dict(self.data_list)
def reset(self):
self.matched_fgRel = 0.0
self.matched_bgRel = 0.0
self.pred_fgRel_sum = 0.0
self.pred_bgRel_sum = 0.0
self.pred_lloc_sum = 0.0
self.pred_rowSt_sum = 0.0
self.pred_rowEd_sum = 0.0
self.pred_colSt_sum = 0.0
self.pred_colEd_sum = 0.0
def summary(self, eval_mode = 'edge_rel | lloc'):
metric = ''
select_metric = 0.0
if 'edge_rel' in eval_mode:
print('Evaluation for neighbor relationship detection')
for tb_name in tqdm(self.gt_dict.keys()):
pred_fg_ind = np.where(self.pred_dict[tb_name]['edge_rel']>0)
pred_bg_ind = np.where(self.pred_dict[tb_name]['edge_rel']==0)
self.pred_fgRel_sum += pred_fg_ind[0].shape[0]
self.pred_bgRel_sum += pred_bg_ind[0].shape[0]
self.matched_fgRel += np.where(self.pred_dict[tb_name]['edge_rel'][pred_fg_ind]==self.gt_dict[tb_name]['edge_rel'][pred_fg_ind])[0].shape[0]
self.matched_bgRel += np.where(self.pred_dict[tb_name]['edge_rel'][pred_bg_ind]==self.gt_dict[tb_name]['edge_rel'][pred_bg_ind])[0].shape[0]
fg_precision = self.matched_fgRel / self.pred_fgRel_sum if self.pred_fgRel_sum!=0 else 0
fg_recall = self.matched_fgRel / self.gt_fgRel_sum if self.gt_fgRel_sum!=0 else 0
bg_precision = self.matched_bgRel / self.pred_bgRel_sum if self.pred_bgRel_sum!=0 else 0
bg_recall = self.matched_bgRel / self.gt_bgRel_sum if self.gt_bgRel_sum!=0 else 0
fg_f1 = 2*(fg_precision*fg_recall)/(fg_precision+fg_recall) if fg_precision+fg_recall != 0 else 0
select_metric += fg_f1
metric += 'Fg_Precision: {:.4f}, Fg_Recall: {:.4f}, Bg_Precision: {:.4f}, Bg_Recall: {:.4f}\n'.format(\
fg_precision, fg_recall, bg_precision, bg_recall)
if 'lloc' in eval_mode:
print('Evaluation for cell location inference')
for tb_name in tqdm(self.gt_dict.keys()):
self.pred_dict[tb_name]['lloc'] = tb_struc_infer(self.pred_dict[tb_name]['edge_rel'], self.gt_dict[tb_name]['bbox'])
self.pred_rowSt_sum += | np.where(self.pred_dict[tb_name]['lloc'][:,0] == self.gt_dict[tb_name]['lloc'][:,0]) | numpy.where |
"""
Tests for dit.math.sampling.
"""
from __future__ import division
import pytest
import numpy as np
import dit.math.sampling as module
import dit.example_dists
from dit.exceptions import ditException
#sample(dist, size=None, rand=None, prng=None):
def test_sample1():
# Basic sample
d = dit.example_dists.Xor()
dit.math.prng.seed(0)
x = module.sample(d)
assert x == '101'
# with log dist
dit.math.prng.seed(0)
d.set_base(3.5)
x = module.sample(d)
assert x == '101'
def test_sample2():
# Specified prng
d = dit.example_dists.Xor()
dit.math.prng.seed(0)
x = module.sample(d, prng=dit.math.prng)
assert x == '101'
def test_sample3():
# Specified rand number
d = dit.example_dists.Xor()
x = module.sample(d, rand=.3)
assert x == '011'
def test_sample4():
# More than one random number
d = dit.example_dists.Xor()
dit.math.prng.seed(0)
x = module.sample(d, 6)
assert x == ['101', '101', '101', '101', '011', '101']
def test_sample5():
# Bad prng
d = dit.example_dists.Xor()
with pytest.raises(ditException):
module.sample(d, prng=3)
def test_sample6():
# Not enough rands
d = dit.example_dists.Xor()
with pytest.raises(ditException):
module.sample(d, 5, rand=[.1]*3)
def test_sample_discrete_python1():
# Specified rand number
d = dit.example_dists.Xor()
x = module._sample_discrete__python(d.pmf, .5)
assert x == 2
def test_sample_discrete_python2():
# Specified rand number
d = dit.example_dists.Xor()
x = module._samples_discrete__python(d.pmf, np.array([.5, .3, .2]))
assert np.allclose(x, np.array([2, 1, 0]))
def test_sample_discrete_python3():
# Specified rand number
d = dit.example_dists.Xor()
out = np.zeros((3,))
module._samples_discrete__python(d.pmf, np.array([.5, .3, .2]), out=out)
assert np.allclose(out, np.array([2, 1, 0]))
def test_ball_smoke():
dit.math.prng.seed(0)
x = module.ball(3)
x_ = np.array([ 0.21324626, 0.4465436 , -0.65226253])
assert | np.allclose(x, x_) | numpy.allclose |
from bw2calc.errors import (
OutsideTechnosphere,
NonsquareTechnosphere,
EmptyBiosphere,
InconsistentGlobalIndex,
)
from bw2calc.lca import LCA
from pathlib import Path
import bw_processing as bwp
import json
import numpy as np
import pytest
from collections.abc import Mapping
fixture_dir = Path(__file__).resolve().parent / "fixtures"
######
### Basic functionality
######
def test_example_db_basic():
mapping = dict(json.load(open(fixture_dir / "bw2io_example_db_mapping.json")))
print(mapping)
packages = [
fixture_dir / "bw2io_example_db.zip",
fixture_dir / "ipcc_simple.zip",
]
lca = LCA(
{mapping["Driving an electric car"]: 1},
data_objs=packages,
)
lca.lci()
lca.lcia()
assert lca.supply_array.sum()
assert lca.technosphere_matrix.sum()
assert lca.score
def test_basic():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({1: 1}, data_objs=packages)
lca.lci()
answer = np.zeros((2,))
answer[lca.dicts.activity[101]] = 1
answer[lca.dicts.activity[102]] = 0.5
assert np.allclose(answer, lca.supply_array)
def test_basic_negative_production():
pass
def test_basic_substitution():
pass
def test_basic_nonunitary_production():
pass
def test_circular_inputs():
pass
######
### __init__
######
def test_invalid_datapackage():
packages = ["basic_fixture.zip"]
with pytest.raises(TypeError):
LCA({1: 1}, data_objs=packages)
def test_demand_not_mapping():
packages = [fixture_dir / "basic_fixture.zip"]
with pytest.raises(ValueError):
LCA((1, 1), data_objs=packages)
def test_demand_mapping_but_not_dict():
class M(Mapping):
def __getitem__(self, key):
return 1
def __iter__(self):
return iter((1,))
def __len__(self):
return 1
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA(M(), data_objs=packages)
lca.lci()
answer = np.zeros((2,))
answer[lca.dicts.activity[101]] = 1
answer[lca.dicts.activity[102]] = 0.5
assert np.allclose(answer, lca.supply_array)
######
### __next__
######
def test_next_data_array():
packages = [fixture_dir / "array_sequential.zip"]
lca = LCA({1: 1}, data_objs=packages, use_arrays=True)
lca.lci()
lca.lcia()
for x in range(1, 5):
assert lca.biosphere_matrix.sum() == x
next(lca)
def test_next_only_vectors():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({1: 1}, data_objs=packages)
lca.lci()
lca.lcia()
current = lca.characterized_inventory.sum()
next(lca)
assert lca.characterized_inventory.sum() == current
def test_next_plain_monte_carlo():
packages = [
fixture_dir / "mc_basic.zip",
]
mc = LCA({3: 1}, data_objs=packages, use_distributions=True)
mc.lci()
mc.lcia()
first = mc.score
next(mc)
assert first != mc.score
def test_next_monte_carlo_as_iterator():
packages = [
fixture_dir / "mc_basic.zip",
]
mc = LCA({3: 1}, data_objs=packages, use_distributions=True)
mc.lci()
mc.lcia()
for _, _ in zip(mc, range(10)):
assert mc.score > 0
def test_next_monte_carlo_all_matrices_change():
packages = [
fixture_dir / "mc_basic.zip",
]
mc = LCA({3: 1}, data_objs=packages, use_distributions=True)
mc.lci()
mc.lcia()
a = [
mc.technosphere_matrix.sum(),
mc.biosphere_matrix.sum(),
mc.characterization_matrix.sum(),
]
next(mc)
b = [
mc.technosphere_matrix.sum(),
mc.biosphere_matrix.sum(),
mc.characterization_matrix.sum(),
]
print(a, b)
for x, y in zip(a, b):
assert x != y
######
### build_demand_array
######
def test_build_demand_array():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({1: 1}, data_objs=packages)
lca.lci()
assert lca.demand_array.shape == (2,)
assert lca.demand_array.sum() == 1
assert lca.demand_array[lca.dicts.product[1]] == 1
def test_build_demand_array_pass_dict():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({1: 1}, data_objs=packages)
lca.lci()
lca.build_demand_array({2: 5})
assert lca.demand_array.shape == (2,)
assert lca.demand_array.sum() == 5
assert lca.demand_array[lca.dicts.product[2]] == 5
def test_build_demand_array_outside_technosphere():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({100: 1}, data_objs=packages)
with pytest.raises(OutsideTechnosphere):
lca.lci()
def test_build_demand_array_activity_not_product():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({101: 1}, data_objs=packages)
with pytest.raises(ValueError):
lca.lci()
def test_build_demand_array_pass_object():
packages = [fixture_dir / "basic_fixture.zip"]
class Foo:
pass
obj = Foo()
with pytest.raises(ValueError):
LCA(obj, data_objs=packages)
######
### load_lci_data
######
def test_load_lci_data():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({1: 1}, data_objs=packages)
lca.lci()
tm = np.array([[1, 0], [-0.5, 1]])
assert np.allclose(lca.technosphere_matrix.toarray(), tm)
assert lca.dicts.product[1] == 0
assert lca.dicts.product[2] == 1
assert lca.dicts.activity[101] == 0
assert lca.dicts.activity[102] == 1
assert lca.dicts.biosphere[1] == 0
def test_load_lci_data_nonsquare_technosphere():
dp = bwp.create_datapackage()
data_array = np.array([1, 1, 0.5, 2, 3])
indices_array = np.array(
[(1, 101), (2, 102), (2, 101), (3, 101), (3, 102)], dtype=bwp.INDICES_DTYPE
)
flip_array = np.array([0, 0, 1, 1, 1], dtype=bool)
dp.add_persistent_vector(
matrix="technosphere_matrix",
data_array=data_array,
name="technosphere",
indices_array=indices_array,
flip_array=flip_array,
)
lca = LCA({1: 1}, data_objs=[dp])
with pytest.raises(NonsquareTechnosphere):
lca.lci()
# lca.lci()
# tm = np.array([
# [1, 0],
# [-0.5, 1],
# [-2, -3]
# ])
# assert np.allclose(lca.technosphere_matrix.toarray(), tm)
# assert lca.dicts.product[1] == 0
# assert lca.dicts.product[2] == 1
# assert lca.dicts.product[3] == 2
# assert lca.dicts.activity[101] == 0
# assert lca.dicts.activity[102] == 1
def test_load_lci_data_empty_biosphere_warning():
lca = LCA({1: 1}, data_objs=[fixture_dir / "empty_biosphere.zip"])
with pytest.warns(UserWarning):
lca.lci()
######
### remap_inventory_dicts
######
def test_remap_inventory_dicts():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA(
{1: 1},
data_objs=packages,
remapping_dicts={"product": {1: ("foo", "bar")}, "biosphere": {1: "z"}},
)
lca.lci()
lca.remap_inventory_dicts()
tm = np.array([[1, 0], [-0.5, 1]])
assert np.allclose(lca.technosphere_matrix.toarray(), tm)
assert lca.dicts.product[("foo", "bar")] == 0
assert lca.dicts.product[2] == 1
assert lca.dicts.activity[101] == 0
assert lca.dicts.activity[102] == 1
assert lca.dicts.biosphere["z"] == 0
######
### load_lcia_data
######
def test_load_lcia_data():
packages = [fixture_dir / "basic_fixture.zip"]
lca = LCA({1: 1}, data_objs=packages)
lca.lci()
lca.lcia()
cm = np.array([[1]])
assert np.allclose(lca.characterization_matrix.toarray(), cm)
def test_load_lcia_data_multiple_characterization_packages():
dp = bwp.create_datapackage()
data_array = np.array([1, 1, 0.5])
indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE)
flip_array = | np.array([0, 0, 1], dtype=bool) | numpy.array |
# ============================================================================
# 9. 当該住戸の外皮の部位の面積等を用いずに外皮性能を評価する方法
# ============================================================================
import numpy as np
from math import ceil, floor
from pyhees.section3_2_b import get_H
from pyhees.section3_2_c import get_nu_H, get_nu_C
import pyhees.section3_4 as eater
# ============================================================================
# 9.2 主開口方位
# ============================================================================
# 標準住戸における主開口方位は南西とする。
# ============================================================================
# 9.3 外皮平均熱貫流率
# ============================================================================
def __calc_U_A(house_insulation_type, floor_bath_insulation, U_roof, U_wall, U_door, U_window, U_floor_bath, U_floor_other,
U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other,
Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall, Psi_HB_wall_wall, Psi_HB_wall_floor):
""" 外皮平均熱貫流率
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない
U_roof(float): 屋根又は天井の熱貫流率
U_wall(float): 壁の熱貫流率
U_door(float): ドアの熱貫流率
U_window(float): 窓の熱貫流率
U_floor_bath(float): 浴室の床の熱貫流率
U_floor_other(float): その他の熱貫流率
U_base_etrc(float): 玄関等の基礎の熱貫流率
U_base_bath(float): 浴室の基礎の熱貫流率
U_base_other(float): その他の基礎の熱貫流率
Psi_prm_etrc(float): 玄関等の土間床等の外周部の線熱貫流率
Psi_prm_bath(float): 浴室の土間床等の外周部の線熱貫流率
Psi_prm_other(float): その他の土間床等の外周部の線熱貫流率
Psi_HB_roof(float): 屋根または天井の熱橋の線熱貫流率
Psi_HB_wall(float): 壁の熱橋の線熱貫流率
Psi_HB_floor(float): 床の熱橋の線熱貫流率
Psi_HB_roof_wall(float): 屋根または天井と壁の熱橋の線熱貫流率
Psi_HB_wall_wall(float): 壁と壁の熱橋の線熱貫流率
Psi_HB_wall_floor(float): 壁と床の熱橋の線熱貫流率
Returns:
float: 外皮平均熱貫流率
"""
# 単位温度差当たりの外皮熱損失量[W/K] (9b)
q = get_q(house_insulation_type, floor_bath_insulation,
U_roof, U_wall, U_door, U_window, U_floor_bath, U_floor_other,
U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other,
Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor
)
# 外部部位の面積の合計 (m2)
A_dash_env = get_A_dash_env(house_insulation_type, floor_bath_insulation)
# 外皮平均熱貫流率 (9a)
U_A = get_U_A(q, A_dash_env)
return U_A
def get_U_A(q, A_dash_env):
"""外皮平均熱貫流率 (9a)
Args:
q(float): 単位温度差当たりの外皮熱損失量 (W/K)
A_dash_env(float): 標準住戸における外皮の部位の面積の合計 (m2)
Returns:
float: 外皮平均熱貫流率
"""
U_A_raw = q / A_dash_env
U_A = ceil(U_A_raw * 100) / 100
return U_A
def get_q(house_insulation_type, floor_bath_insulation,
U_roof, U_wall, U_door, U_window, U_floor_bath, U_floor_other,
U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other,
Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor
):
"""単位温度差当たりの外皮熱損失量[W/K] (9b)
(主開口方位は南西とする)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
U_roof(float): 屋根又は天井の熱貫流率
U_wall(float): 壁の熱貫流率
U_door(float): ドアの熱貫流率
U_window(float): 窓の熱貫流率
U_floor_bath(float): 浴室の床の熱貫流率
U_floor_other(float): その他の熱貫流率
U_base_etrc(float): 玄関等の基礎の熱貫流率
U_base_bath(float): 浴室の基礎の熱貫流率
U_base_other(float): その他の基礎の熱貫流率
Psi_prm_etrc(float): 玄関等の土間床等の外周部の線熱貫流率
Psi_prm_bath(float): 浴室の土間床等の外周部の線熱貫流率
Psi_prm_other(float): その他の土間床等の外周部の線熱貫流率
Psi_HB_roof(float): 屋根または天井の熱橋の線熱貫流率
Psi_HB_wall(float): 壁の熱橋の線熱貫流率
Psi_HB_floor(float): 床の熱橋の線熱貫流率
Psi_HB_roof_wall(float): 屋根または天井と壁の熱橋の線熱貫流率
Psi_HB_wall_wall(float): 壁と壁の熱橋の線熱貫流率
Psi_HB_wall_floor(float): 壁と床の熱橋の線熱貫流率
Returns:
float: 単位温度差当たりの外皮熱損失量[W/K]
"""
A_dash_roof = get_A_dash_roof()
A_dash_wall_0 = get_A_dash_wall_0()
A_dash_wall_90 = get_A_dash_wall_90()
A_dash_wall_180 = get_A_dash_wall_180()
A_dash_wall_270 = get_A_dash_wall_270()
A_dash_door_0 = get_A_dash_door_0()
A_dash_door_90 = get_A_dash_door_90()
A_dash_door_180 = get_A_dash_door_180()
A_dash_door_270 = get_A_dash_door_270()
A_dash_window_0 = get_A_dash_window_0()
A_dash_window_90 = get_A_dash_window_90()
A_dash_window_180 = get_A_dash_window_180()
A_dash_window_270 = get_A_dash_window_270()
A_dash_floor_bath = get_A_dash_floor_bath(house_insulation_type, floor_bath_insulation)
A_dash_floor_other = get_A_dash_floor_other(house_insulation_type, floor_bath_insulation)
A_dash_base_etrc_OS_0 = get_A_dash_base_etrc_OS_0()
A_dash_base_etrc_OS_90 = get_A_dash_base_etrc_OS_90()
A_dash_base_etrc_OS_180 = get_A_dash_base_etrc_OS_180()
A_dash_base_etrc_OS_270 = get_A_dash_base_etrc_OS_270()
A_dash_base_etrc_IS = get_A_dash_base_etrc_IS(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_0 = get_A_dash_base_bath_OS_0(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_90 = get_A_dash_base_bath_OS_90(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_180 = get_A_dash_base_bath_OS_180(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_270 = get_A_dash_base_bath_OS_270(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_IS = get_A_dash_base_bath_IS(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_0 = get_A_dash_base_other_OS_0(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_90 = get_A_dash_base_other_OS_90(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_180 = get_A_dash_base_other_OS_180(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_270 = get_A_dash_base_other_OS_270(house_insulation_type, floor_bath_insulation)
A_dash_base_other_IS = get_A_dash_base_other_IS(house_insulation_type, floor_bath_insulation)
L_dash_prm_etrc_OS_0 = get_L_dash_prm_etrc_OS_0()
L_dash_prm_etrc_OS_90 = get_L_dash_prm_etrc_OS_90()
L_dash_prm_etrc_OS_180 = get_L_dash_prm_etrc_OS_180()
L_dash_prm_etrc_OS_270 = get_L_dash_prm_etrc_OS_270()
L_dash_prm_etrc_IS = get_L_dash_prm_etrc_IS(house_insulation_type, floor_bath_insulation)
L_dash_prm_bath_OS_0 = get_L_dash_prm_bath_OS_0(house_insulation_type, floor_bath_insulation)
L_dash_prm_bath_OS_90 = get_L_dash_prm_bath_OS_90(house_insulation_type, floor_bath_insulation)
L_dash_prm_bath_OS_180 = get_L_dash_prm_bath_OS_180(house_insulation_type, floor_bath_insulation)
L_dash_prm_bath_OS_270 = get_L_dash_prm_bath_OS_270(house_insulation_type, floor_bath_insulation)
L_dash_prm_bath_IS = get_L_dash_prm_bath_IS(house_insulation_type, floor_bath_insulation)
L_dash_prm_other_OS_0 = get_L_dash_prm_other_OS_0(house_insulation_type, floor_bath_insulation)
L_dash_prm_other_OS_90 = get_L_dash_prm_other_OS_90(house_insulation_type, floor_bath_insulation)
L_dash_prm_other_OS_180 = get_L_dash_prm_other_OS_180(house_insulation_type, floor_bath_insulation)
L_dash_prm_other_OS_270 = get_L_dash_prm_other_OS_270(house_insulation_type, floor_bath_insulation)
L_dash_prm_other_IS = get_L_dash_prm_other_IS(house_insulation_type, floor_bath_insulation)
L_dash_HB_roof_top = get_L_dash_HB_roof_top()
L_dash_HB_wall_0 = get_L_dash_HB_wall_0()
L_dash_HB_wall_90 = get_L_dash_HB_wall_90()
L_dash_HB_wall_180 = get_L_dash_HB_wall_180()
L_dash_HB_wall_270 = get_L_dash_HB_wall_270()
L_dash_HB_floor_IS = get_L_dash_HB_floor_IS(house_insulation_type, floor_bath_insulation)
L_dash_HB_roof_wall_top_0 = get_L_dash_HB_roof_wall_top_0()
L_dash_HB_roof_wall_top_90 = get_L_dash_HB_roof_wall_top_90()
L_dash_HB_roof_wall_top_180 = get_L_dash_HB_roof_wall_top_180()
L_dash_HB_roof_wall_top_270 = get_L_dash_HB_roof_wall_top_270()
L_dash_HB_wall_wall_0_90 = get_L_dash_HB_wall_wall_0_90()
L_dash_HB_wall_wall_90_180 = get_L_dash_HB_wall_wall_90_180()
L_dash_HB_wall_wall_180_270 = get_L_dash_HB_wall_wall_180_270()
L_dash_HB_wall_wall_270_0 = get_L_dash_HB_wall_wall_270_0()
L_dash_HB_wall_floor_0_IS = get_L_dash_HB_wall_floor_0_IS()
L_dash_HB_wall_floor_90_IS = get_L_dash_HB_wall_floor_90_IS()
L_dash_HB_wall_floor_180_IS = get_L_dash_HB_wall_floor_180_IS()
L_dash_HB_wall_floor_270_IS = get_L_dash_HB_wall_floor_270_IS()
# 温度差係数
H_OS = get_H_OS()
H_IS = get_H_IS()
q_list = [
# 屋根又は天井
A_dash_roof * H_OS * U_roof,
# 壁
(A_dash_wall_0
+ A_dash_wall_90
+ A_dash_wall_180
+ A_dash_wall_270) * H_OS * U_wall,
# ドア
(A_dash_door_0
+ A_dash_door_90
+ A_dash_door_180
+ A_dash_door_270) * H_OS * U_door,
# 窓
(A_dash_window_0
+ A_dash_window_90
+ A_dash_window_180
+ A_dash_window_270) * H_OS * U_window,
# floor bath
A_dash_floor_bath * H_IS * U_floor_bath,
# floor other
A_dash_floor_other * H_IS * U_floor_other,
# 玄関等の基礎
((A_dash_base_etrc_OS_0
+ A_dash_base_etrc_OS_90
+ A_dash_base_etrc_OS_180
+ A_dash_base_etrc_OS_270) * H_OS
+ A_dash_base_etrc_IS * H_IS) * U_base_etrc,
# 浴室の床
((A_dash_base_bath_OS_0
+ A_dash_base_bath_OS_90
+ A_dash_base_bath_OS_180
+ A_dash_base_bath_OS_270) * H_OS
+ A_dash_base_bath_IS * H_IS) * U_base_bath,
# その他
((A_dash_base_other_OS_0
+ A_dash_base_other_OS_90
+ A_dash_base_other_OS_180
+ A_dash_base_other_OS_270) * H_OS
+ A_dash_base_other_IS * H_IS) * U_base_other,
# 玄関等の土間床等の外周部
((L_dash_prm_etrc_OS_0
+ L_dash_prm_etrc_OS_90
+ L_dash_prm_etrc_OS_180
+ L_dash_prm_etrc_OS_270) * H_OS
+ L_dash_prm_etrc_IS * H_IS) * Psi_prm_etrc,
# 浴室の土間床等の外周部
((L_dash_prm_bath_OS_0
+ L_dash_prm_bath_OS_90
+ L_dash_prm_bath_OS_180
+ L_dash_prm_bath_OS_270) * H_OS
+ L_dash_prm_bath_IS * H_IS) * Psi_prm_bath,
# その他の土間床等の外周部
((L_dash_prm_other_OS_0
+ L_dash_prm_other_OS_90
+ L_dash_prm_other_OS_180
+ L_dash_prm_other_OS_270) * H_OS
+ L_dash_prm_other_IS * H_IS) * Psi_prm_other,
# 屋根または天井の熱橋
L_dash_HB_roof_top * H_OS * Psi_HB_roof,
# 壁の熱橋
(L_dash_HB_wall_0
+ L_dash_HB_wall_90
+ L_dash_HB_wall_180
+ L_dash_HB_wall_270) * H_OS * Psi_HB_wall,
# 床の熱橋
L_dash_HB_floor_IS * H_IS * Psi_HB_floor,
# 屋根または天井と壁の熱橋
(L_dash_HB_roof_wall_top_0
+ L_dash_HB_roof_wall_top_90
+ L_dash_HB_roof_wall_top_180
+ L_dash_HB_roof_wall_top_270) * H_OS * Psi_HB_roof_wall,
# 壁と壁の熱橋
(L_dash_HB_wall_wall_0_90
+ L_dash_HB_wall_wall_90_180
+ L_dash_HB_wall_wall_180_270
+ L_dash_HB_wall_wall_270_0) * H_OS * Psi_HB_wall_wall,
# 壁と床の熱橋
(L_dash_HB_wall_floor_0_IS
+ L_dash_HB_wall_floor_90_IS
+ L_dash_HB_wall_floor_180_IS
+ L_dash_HB_wall_floor_270_IS) * H_OS * Psi_HB_wall_floor,
]
q = sum(q_list)
return q
# ============================================================================
# 9.4 暖房期の平均日射熱取得率及び冷房期の平均日射熱取得率
# ============================================================================
def get_eta_A_H(m_H, A_dash_env):
"""暖房期の平均日射熱取得率 (10a)
Args:
m_H(float): 単位日射強度当たりの暖房期の日射熱取得量 (W/(W/m2))
A_dash_env(float): 標準住戸における外皮の部位の面積の合計 (m2)
Returns:
float: 暖房期の平均日射熱取得率
"""
if m_H is None:
return None
etr_A_H = m_H / A_dash_env * 100
return floor(etr_A_H * 10) / 10
def get_m_H(region, house_insulation_type, floor_bath_insulation, U_roof, U_wall, U_door,
U_base_etrc, U_base_bath, U_base_other, Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor, etr_d, f_H=None):
"""単位日射強度当たりの暖房期の日射熱取得量[W/(W/m2)] (10b)
Args:
region(int): 省エネルギー地域区分
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
U_roof(float): 屋根又は天井の熱貫流率
U_wall(float): 壁の熱貫流率
U_door(float): ドアの熱貫流率
U_base_etrc(float): 玄関等の基礎の熱貫流率
U_base_bath(float): 浴室の基礎の熱貫流率
U_base_other(float): その他の基礎の熱貫流率
Psi_HB_roof(float): 屋根または天井の熱橋の線熱貫流率
Psi_HB_wall(float): 壁の熱橋の線熱貫流率
Psi_HB_floor(float): 床の熱橋の線熱貫流率
Psi_HB_roof_wall(float): 屋根または天井と壁の熱橋の線熱貫流率
Psi_HB_wall_wall(float): 壁と壁の熱橋の線熱貫流率
Psi_HB_wall_floor(float): 壁と床の熱橋の線熱貫流率
etr_d(float): 暖房期の垂直面日射熱取得率 (-)
f_H(float, optional): 暖房期の取得日射熱補正係数 (-) (Default value = None)
Returns:
float: 単位日射強度当たりの暖房期の日射熱取得量[W/(W/m2)]
"""
if region == 8:
return None
A_dash_roof = get_A_dash_roof()
A_dash_wall_0 = get_A_dash_wall_0()
A_dash_wall_90 = get_A_dash_wall_90()
A_dash_wall_180 = get_A_dash_wall_180()
A_dash_wall_270 = get_A_dash_wall_270()
A_dash_door_0 = get_A_dash_door_0()
A_dash_door_90 = get_A_dash_door_90()
A_dash_door_180 = get_A_dash_door_180()
A_dash_door_270 = get_A_dash_door_270()
A_dash_window_0 = get_A_dash_window_0()
A_dash_window_90 = get_A_dash_window_90()
A_dash_window_180 = get_A_dash_window_180()
A_dash_window_270 = get_A_dash_window_270()
A_dash_base_etrc_OS_0 = get_A_dash_base_etrc_OS_0()
A_dash_base_etrc_OS_90 = get_A_dash_base_etrc_OS_90()
A_dash_base_etrc_OS_180 = get_A_dash_base_etrc_OS_180()
A_dash_base_etrc_OS_270 = get_A_dash_base_etrc_OS_270()
A_dash_base_bath_OS_0 = get_A_dash_base_bath_OS_0(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_90 = get_A_dash_base_bath_OS_90(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_180 = get_A_dash_base_bath_OS_180(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_270 = get_A_dash_base_bath_OS_270(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_0 = get_A_dash_base_other_OS_0(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_90 = get_A_dash_base_other_OS_90(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_180 = get_A_dash_base_other_OS_180(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_270 = get_A_dash_base_other_OS_270(house_insulation_type, floor_bath_insulation)
L_dash_HB_roof_top = get_L_dash_HB_roof_top()
L_dash_HB_wall_0 = get_L_dash_HB_wall_0()
L_dash_HB_wall_90 = get_L_dash_HB_wall_90()
L_dash_HB_wall_180 = get_L_dash_HB_wall_180()
L_dash_HB_wall_270 = get_L_dash_HB_wall_270()
L_dash_HB_roof_wall_top_0 = get_L_dash_HB_roof_wall_top_0()
L_dash_HB_roof_wall_top_90 = get_L_dash_HB_roof_wall_top_90()
L_dash_HB_roof_wall_top_180 = get_L_dash_HB_roof_wall_top_180()
L_dash_HB_roof_wall_top_270 = get_L_dash_HB_roof_wall_top_270()
L_dash_HB_wall_wall_0_90 = get_L_dash_HB_wall_wall_0_90()
L_dash_HB_wall_wall_90_180 = get_L_dash_HB_wall_wall_90_180()
L_dash_HB_wall_wall_180_270 = get_L_dash_HB_wall_wall_180_270()
L_dash_HB_wall_wall_270_0 = get_L_dash_HB_wall_wall_270_0()
L_dash_HB_wall_floor_0_IS = get_L_dash_HB_wall_floor_0_IS()
L_dash_HB_wall_floor_90_IS = get_L_dash_HB_wall_floor_90_IS()
L_dash_HB_wall_floor_180_IS = get_L_dash_HB_wall_floor_180_IS()
L_dash_HB_wall_floor_270_IS = get_L_dash_HB_wall_floor_270_IS()
# 方位係数:主方位=南西
nu_H_top = get_nu_H(region, '上面')
nu_H_0 = get_nu_H(region, '南西')
nu_H_90 = get_nu_H(region, '北西')
nu_H_180 = get_nu_H(region, '北東')
nu_H_270 = get_nu_H(region, '南東')
# 付録Cより:方位の異なる外皮の部位(一般部位又は開口部)に接する熱橋等の方位係数は、異なる方位の方位係数の平均値とする。
nu_H_top_0 = (get_nu_H(region, '上面') + get_nu_H(region, '南西')) / 2
nu_H_top_90 = (get_nu_H(region, '上面') + get_nu_H(region, '北西')) / 2
nu_H_top_180 = (get_nu_H(region, '上面') + get_nu_H(region, '北東')) / 2
nu_H_top_270 = (get_nu_H(region, '上面') + get_nu_H(region, '南東')) / 2
nu_H_0_90 = (get_nu_H(region, '南西') + get_nu_H(region, '北西')) / 2
nu_H_90_180 = (get_nu_H(region, '北西') + get_nu_H(region, '北東')) / 2
nu_H_180_270 = (get_nu_H(region, '北東') + get_nu_H(region, '南東')) / 2
nu_H_270_0 = (get_nu_H(region, '南東') + get_nu_H(region, '南西')) / 2
nu_H_0_IS = (get_nu_H(region, '南西') + get_nu_H(region, '下面')) / 2
nu_H_90_IS = (get_nu_H(region, '北西') + get_nu_H(region, '下面')) / 2
nu_H_180_IS = (get_nu_H(region, '北東') + get_nu_H(region, '下面')) / 2
nu_H_270_IS = (get_nu_H(region, '南東') + get_nu_H(region, '下面')) / 2
# 屋根又は天井・壁・ドアの日射熱取得率
eta_H_roof = calc_eta_H_roof(U_roof)
eta_H_wall = calc_eta_H_wall(U_wall)
eta_H_door = calc_eta_H_door(U_door)
# 窓の日射熱取得率
eta_H_window_0, eta_H_window_90, eta_H_window_180, eta_H_window_270 = calc_eta_H_window(region, etr_d, f_H)
# 玄関等・浴室・その他の基礎の日射熱取得率
eta_H_base_etrc = calc_eta_H_base_etrc(U_base_etrc)
eta_H_base_bath = calc_eta_H_base_bath(U_base_bath)
eta_H_base_other = calc_eta_H_base_other(U_base_other)
# 熱橋の日射熱取得率
eta_dash_H_HB_roof = calc_eta_dash_H_HB_roof(Psi_HB_roof)
eta_dash_H_HB_wall = calc_eta_dash_H_HB_wall(Psi_HB_wall)
eta_dash_H_HB_roof_wall = calc_eta_dash_H_HB_roof_wall(Psi_HB_roof_wall)
eta_dash_H_HB_wall_wall = calc_eta_dash_H_HB_wall_wall(Psi_HB_wall_wall)
eta_dash_H_HB_wall_floor = calc_eta_dash_H_HB_wall_floor(Psi_HB_wall_floor)
m_H_list = [
# roof
A_dash_roof * nu_H_top * eta_H_roof,
# wall
(A_dash_wall_0 * nu_H_0
+ A_dash_wall_90 * nu_H_90
+ A_dash_wall_180 * nu_H_180
+ A_dash_wall_270 * nu_H_270) * eta_H_wall,
# door
(A_dash_door_0 * nu_H_0
+ A_dash_door_90 * nu_H_90
+ A_dash_door_180 * nu_H_180
+ A_dash_door_270 * nu_H_270) * eta_H_door,
# window
(A_dash_window_0 * nu_H_0 * eta_H_window_0
+ A_dash_window_90 * nu_H_90 * eta_H_window_90
+ A_dash_window_180 * nu_H_180 * eta_H_window_180
+ A_dash_window_270 * nu_H_270 * eta_H_window_270),
# base entrance
(A_dash_base_etrc_OS_0 * nu_H_0
+ A_dash_base_etrc_OS_90 * nu_H_90
+ A_dash_base_etrc_OS_180 * nu_H_180
+ A_dash_base_etrc_OS_270 * nu_H_270) * eta_H_base_etrc,
# base bath
(A_dash_base_bath_OS_0 * nu_H_0
+ A_dash_base_bath_OS_90 * nu_H_90
+ A_dash_base_bath_OS_180 * nu_H_180
+ A_dash_base_bath_OS_270 * nu_H_270) * eta_H_base_bath,
# base other
(A_dash_base_other_OS_0 * nu_H_0
+ A_dash_base_other_OS_90 * nu_H_90
+ A_dash_base_other_OS_180 * nu_H_180
+ A_dash_base_other_OS_270 * nu_H_270) * eta_H_base_other,
# HB roof
L_dash_HB_roof_top * nu_H_top * eta_dash_H_HB_roof,
# HB wall
(L_dash_HB_wall_0 * nu_H_0
+ L_dash_HB_wall_90 * nu_H_90
+ L_dash_HB_wall_180 * nu_H_180
+ L_dash_HB_wall_270 * nu_H_270) * eta_dash_H_HB_wall,
# HB roof_wall
(L_dash_HB_roof_wall_top_0 * nu_H_top_0
+ L_dash_HB_roof_wall_top_90 * nu_H_top_90
+ L_dash_HB_roof_wall_top_180 * nu_H_top_180
+ L_dash_HB_roof_wall_top_270 * nu_H_top_270) * eta_dash_H_HB_roof_wall,
# HB wall_wall
(L_dash_HB_wall_wall_0_90 * nu_H_0_90
+ L_dash_HB_wall_wall_90_180 * nu_H_90_180
+ L_dash_HB_wall_wall_180_270 * nu_H_180_270
+ L_dash_HB_wall_wall_270_0 * nu_H_270_0) * eta_dash_H_HB_wall_wall,
# HB wall_floor
(L_dash_HB_wall_floor_0_IS * nu_H_0_IS
+ L_dash_HB_wall_floor_90_IS * nu_H_90_IS
+ L_dash_HB_wall_floor_180_IS * nu_H_180_IS
+ L_dash_HB_wall_floor_270_IS * nu_H_270_IS) * eta_dash_H_HB_wall_floor
]
m_H = sum(m_H_list)
return m_H
def get_eta_A_C(m_C, A_dash_env):
"""冷房期の平均日射熱取得率 (-) (11a)
Args:
m_C(float): 単位日射強度当たりの冷房期の日射熱取得量 (W/(W/m2))
A_dash_env(float): 標準住戸における外皮の部位の面積の合計 (m2)
Returns:
float: 冷房期の平均日射熱取得率 (-)
"""
etr_A_C = m_C / A_dash_env * 100
return ceil(etr_A_C * 10) / 10
def get_m_C(region, house_insulation_type, floor_bath_insulation, U_roof, U_wall, U_door,
U_base_etrc, U_base_bath, U_base_other, Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor, etr_d, f_C=None):
"""単位日射強度当たりの冷房期の日射熱取得量[W/(W/m2)] (11b)
Args:
region(int): 省エネルギー地域区分
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
U_roof(float): 屋根又は天井の熱貫流率
U_wall(float): 壁の熱貫流率
U_door(float): ドアの熱貫流率
U_base_etrc(float): 玄関等の基礎の熱貫流率
U_base_bath(float): 浴室の基礎の熱貫流率
U_base_other(float): その他の基礎の熱貫流率
Psi_HB_roof(float): 屋根または天井の熱橋の線熱貫流率
Psi_HB_wall(float): 壁の熱橋の線熱貫流率
Psi_HB_floor(float): 床の熱橋の線熱貫流率
Psi_HB_roof_wall(float): 屋根または天井と壁の熱橋の線熱貫流率
Psi_HB_wall_wall(float): 壁と壁の熱橋の線熱貫流率
Psi_HB_wall_floor(float): 壁と床の熱橋の線熱貫流率
etr_d(float): 暖房期の垂直面日射熱取得率 (-)
f_C(float, optional): 冷房期の取得日射熱補正係数 (-) (Default value = None)
Returns:
float: 単位日射強度当たりの冷房期の日射熱取得量[W/(W/m2)]
"""
A_dash_roof = get_A_dash_roof()
A_dash_wall_0 = get_A_dash_wall_0()
A_dash_wall_90 = get_A_dash_wall_90()
A_dash_wall_180 = get_A_dash_wall_180()
A_dash_wall_270 = get_A_dash_wall_270()
A_dash_door_0 = get_A_dash_door_0()
A_dash_door_90 = get_A_dash_door_90()
A_dash_door_180 = get_A_dash_door_180()
A_dash_door_270 = get_A_dash_door_270()
A_dash_window_0 = get_A_dash_window_0()
A_dash_window_90 = get_A_dash_window_90()
A_dash_window_180 = get_A_dash_window_180()
A_dash_window_270 = get_A_dash_window_270()
A_dash_base_etrc_OS_0 = get_A_dash_base_etrc_OS_0()
A_dash_base_etrc_OS_90 = get_A_dash_base_etrc_OS_90()
A_dash_base_etrc_OS_180 = get_A_dash_base_etrc_OS_180()
A_dash_base_etrc_OS_270 = get_A_dash_base_etrc_OS_270()
A_dash_base_bath_OS_0 = get_A_dash_base_bath_OS_0(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_90 = get_A_dash_base_bath_OS_90(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_180 = get_A_dash_base_bath_OS_180(house_insulation_type, floor_bath_insulation)
A_dash_base_bath_OS_270 = get_A_dash_base_bath_OS_270(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_0 = get_A_dash_base_other_OS_0(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_90 = get_A_dash_base_other_OS_90(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_180 = get_A_dash_base_other_OS_180(house_insulation_type, floor_bath_insulation)
A_dash_base_other_OS_270 = get_A_dash_base_other_OS_270(house_insulation_type, floor_bath_insulation)
L_dash_HB_roof_top = get_L_dash_HB_roof_top()
L_dash_HB_wall_0 = get_L_dash_HB_wall_0()
L_dash_HB_wall_90 = get_L_dash_HB_wall_90()
L_dash_HB_wall_180 = get_L_dash_HB_wall_180()
L_dash_HB_wall_270 = get_L_dash_HB_wall_270()
L_dash_HB_roof_wall_top_0 = get_L_dash_HB_roof_wall_top_0()
L_dash_HB_roof_wall_top_90 = get_L_dash_HB_roof_wall_top_90()
L_dash_HB_roof_wall_top_180 = get_L_dash_HB_roof_wall_top_180()
L_dash_HB_roof_wall_top_270 = get_L_dash_HB_roof_wall_top_270()
L_dash_HB_wall_wall_0_90 = get_L_dash_HB_wall_wall_0_90()
L_dash_HB_wall_wall_90_180 = get_L_dash_HB_wall_wall_90_180()
L_dash_HB_wall_wall_180_270 = get_L_dash_HB_wall_wall_180_270()
L_dash_HB_wall_wall_270_0 = get_L_dash_HB_wall_wall_270_0()
L_dash_HB_wall_floor_0_IS = get_L_dash_HB_wall_floor_0_IS()
L_dash_HB_wall_floor_90_IS = get_L_dash_HB_wall_floor_90_IS()
L_dash_HB_wall_floor_180_IS = get_L_dash_HB_wall_floor_180_IS()
L_dash_HB_wall_floor_270_IS = get_L_dash_HB_wall_floor_270_IS()
# 方位係数:主方位=南西
nu_C_top = get_nu_C(region, '上面')
nu_C_0 = get_nu_C(region, '南西')
nu_C_90 = get_nu_C(region, '北西')
nu_C_180 = get_nu_C(region, '北東')
nu_C_270 = get_nu_C(region, '南東')
# 付録Cより:方位の異なる外皮の部位(一般部位又は開口部)に接する熱橋等の方位係数は、異なる方位の方位係数の平均値とする。
nu_C_top_0 = (get_nu_C(region, '上面') + get_nu_C(region, '南西')) / 2
nu_C_top_90 = (get_nu_C(region, '上面') + get_nu_C(region, '北西')) / 2
nu_C_top_180 = (get_nu_C(region, '上面') + get_nu_C(region, '北東')) / 2
nu_C_top_270 = (get_nu_C(region, '上面') + get_nu_C(region, '南東')) / 2
nu_C_0_90 = (get_nu_C(region, '南西') + get_nu_C(region, '北西')) / 2
nu_C_90_180 = (get_nu_C(region, '北西') + get_nu_C(region, '北東')) / 2
nu_C_180_270 = (get_nu_C(region, '北東') + get_nu_C(region, '南東')) / 2
nu_C_270_0 = (get_nu_C(region, '南東') + get_nu_C(region, '南西')) / 2
nu_C_0_IS = (get_nu_C(region, '南西') + get_nu_C(region, '下面')) / 2
nu_C_90_IS = (get_nu_C(region, '北西') + get_nu_C(region, '下面')) / 2
nu_C_180_IS = (get_nu_C(region, '北東') + get_nu_C(region, '下面')) / 2
nu_C_270_IS = (get_nu_C(region, '南東') + get_nu_C(region, '下面')) / 2
# 屋根又は天井・壁・ドアの日射熱取得率
eta_C_roof = calc_eta_C_roof(U_roof)
eta_C_wall = calc_eta_C_wall(U_wall)
eta_C_door = calc_eta_C_door(U_door)
# 窓の日射熱取得率
eta_C_window_0, eta_C_window_90, eta_C_window_180, eta_C_window_270 = calc_eta_C_window(region, etr_d, f_C)
# 玄関等・浴室・その他の基礎の日射熱取得率
eta_C_base_etrc = calc_eta_C_base_etrc(U_base_etrc)
eta_C_base_bath = calc_eta_C_base_bath(U_base_bath)
eta_C_base_other = calc_eta_C_base_other(U_base_other)
# 熱橋の日射熱取得率
eta_dash_C_HB_roof = calc_eta_dash_C_HB_roof(Psi_HB_roof)
eta_dash_C_HB_wall = calc_eta_dash_C_HB_wall(Psi_HB_wall)
eta_dash_C_HB_roof_wall = calc_eta_dash_C_HB_roof_wall(Psi_HB_roof_wall)
eta_dash_C_HB_wall_wall = calc_eta_dash_C_HB_wall_wall(Psi_HB_wall_wall)
eta_dash_C_HB_wall_floor = calc_eta_dash_C_HB_wall_floor(Psi_HB_wall_floor)
m_C_list = [
# roof
A_dash_roof * nu_C_top * eta_C_roof,
# wall
(A_dash_wall_0 * nu_C_0
+ A_dash_wall_90 * nu_C_90
+ A_dash_wall_180 * nu_C_180
+ A_dash_wall_270 * nu_C_270) * eta_C_wall,
# door
(A_dash_door_0 * nu_C_0
+ A_dash_door_90 * nu_C_90
+ A_dash_door_180 * nu_C_180
+ A_dash_door_270 * nu_C_270) * eta_C_door,
# window
(A_dash_window_0 * nu_C_0 * eta_C_window_0
+ A_dash_window_90 * nu_C_90 * eta_C_window_90
+ A_dash_window_180 * nu_C_180 * eta_C_window_180
+ A_dash_window_270 * nu_C_270 * eta_C_window_270),
# base entrance
(A_dash_base_etrc_OS_0 * nu_C_0
+ A_dash_base_etrc_OS_90 * nu_C_90
+ A_dash_base_etrc_OS_180 * nu_C_180
+ A_dash_base_etrc_OS_270 * nu_C_270) * eta_C_base_etrc,
# base bath
(A_dash_base_bath_OS_0 * nu_C_0
+ A_dash_base_bath_OS_90 * nu_C_90
+ A_dash_base_bath_OS_180 * nu_C_180
+ A_dash_base_bath_OS_270 * nu_C_270) * eta_C_base_bath,
# base other
(A_dash_base_other_OS_0 * nu_C_0
+ A_dash_base_other_OS_90 * nu_C_90
+ A_dash_base_other_OS_180 * nu_C_180
+ A_dash_base_other_OS_270 * nu_C_270) * eta_C_base_other,
# HB roof
L_dash_HB_roof_top * nu_C_top * eta_dash_C_HB_roof,
# HB wall
(L_dash_HB_wall_0 * nu_C_0
+ L_dash_HB_wall_90 * nu_C_90
+ L_dash_HB_wall_180 * nu_C_180
+ L_dash_HB_wall_270 * nu_C_270) * eta_dash_C_HB_wall,
# HB roof_wall
(L_dash_HB_roof_wall_top_0 * nu_C_top_0
+ L_dash_HB_roof_wall_top_90 * nu_C_top_90
+ L_dash_HB_roof_wall_top_180 * nu_C_top_180
+ L_dash_HB_roof_wall_top_270 * nu_C_top_270) * eta_dash_C_HB_roof_wall,
# HB wall_wall
(L_dash_HB_wall_wall_0_90 * nu_C_0_90
+ L_dash_HB_wall_wall_90_180 * nu_C_90_180
+ L_dash_HB_wall_wall_180_270 * nu_C_180_270
+ L_dash_HB_wall_wall_270_0 * nu_C_270_0) * eta_dash_C_HB_wall_wall,
# HB wall_floor
(L_dash_HB_wall_floor_0_IS * nu_C_0_IS
+ L_dash_HB_wall_floor_90_IS * nu_C_90_IS
+ L_dash_HB_wall_floor_180_IS * nu_C_180_IS
+ L_dash_HB_wall_floor_270_IS * nu_C_270_IS) * eta_dash_C_HB_wall_floor
]
m_C = sum(m_C_list)
return m_C
# ============================================================================
# 9.5 床面積の合計に対する外皮の部位の面積の合計の比
# ============================================================================
def get_r_env(A_dash_env, A_dash_A):
"""床面積の合計に対する外皮の部位の面積の合計の比 (12)
Args:
A_dash_env(float): 標準住戸における外皮の部位の面積の合計 (m2)
A_dash_A(float): 標準住戸における床面積の合計 (m2)
Returns:
float: 床面積の合計に対する外皮の部位の面積の合計の比 (-)
"""
return A_dash_env / A_dash_A
# ============================================================================
# 9.6 標準住戸における外皮の部位の面積及び土間床等の外周部の長さ等
# ============================================================================
def calc_U_A(insulation_structure, house_structure_type, floor_bath_insulation=None, bath_insulation_type=None,
U_roof=None, U_wall=None, U_door=None, U_window=None, U_floor_bath=None, U_floor_other=None,
U_base_etrc=None, U_base_bath=None, U_base_other=None,
Psi_prm_etrc=None, Psi_prm_bath=None, Psi_prm_other=None, Psi_HB_roof=None, Psi_HB_wall=None,
Psi_HB_floor=None, Psi_HB_roof_wall=None, Psi_HB_wall_wall=None, Psi_HB_wall_floor=None):
"""断熱構造による住戸の種類に応じてU_A値を計算する
Args:
insulation_structure(structure: structure: str): 断熱構造による住戸の種類
house_structure_type(structure_type: structure_type: str): 木造'または'鉄筋コンクリート造'または'鉄骨造'
floor_bath_insulation(str, optional): 浴室床の断熱 (Default value = None)
bath_insulation_type(str, optional): 浴室の断熱タイプ※ (Default value = None)
U_roof(float, optional): 屋根又は天井の熱貫流率 (Default value = None)
U_wall(float, optional): 壁の熱貫流率 (Default value = None)
U_door(float, optional): ドアの熱貫流率 (Default value = None)
U_window(float, optional): 窓の熱貫流率 (Default value = None)
U_floor_bath(float, optional): 浴室の床の熱貫流率 (Default value = None)
U_floor_other(float, optional): その他の熱貫流率 (Default value = None)
Psi_prm_etrc(float, optional): 玄関等の土間床等の外周部の線熱貫流率 (Default value = None)
Psi_prm_bath(float, optional): 浴室の土間床等の外周部の線熱貫流率 (Default value = None)
Psi_prm_other(float, optional): その他の土間床等の外周部の線熱貫流率 (Default value = None)
Psi_HB_roof(float, optional): 屋根または天井の熱橋の線熱貫流率 (Default value = None)
Psi_HB_wall(float, optional): 壁の熱橋の線熱貫流率 (Default value = None)
Psi_HB_floor(float, optional): 床の熱橋の線熱貫流率 (Default value = None)
Psi_HB_roof_wall(float, optional): 屋根または天井と壁の熱橋の線熱貫流率 (Default value = None)
Psi_HB_wall_wall(float, optional): 壁と壁の熱橋の線熱貫流率 (Default value = None)
Psi_HB_wall_floor(float, optional): 壁と床の熱橋の線熱貫流率 (Default value = None)
U_base_etrc: Default value = None)
U_base_bath: Default value = None)
U_base_other: Default value = None)
Returns:
tuple: 外皮平均熱貫流率 (U_A), 外皮の部位の熱貫流率 (U)
"""
# 断熱構造による住戸の種類
if insulation_structure == '床断熱住戸の場合':
U = get_U('床断熱住戸', house_structure_type, floor_bath_insulation, bath_insulation_type, U_roof, U_wall,
U_door, U_window, U_floor_bath, U_floor_other, U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other, Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor)
U_A = __calc_U_A(**U)
elif insulation_structure == '基礎断熱住戸の場合':
U = get_U('基礎断熱住戸', house_structure_type, floor_bath_insulation, bath_insulation_type, U_roof, U_wall,
U_door, U_window, U_floor_bath, U_floor_other, U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other, Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor)
U_A = __calc_U_A(**U)
elif insulation_structure == '玄関等及び浴室を除いた部分の外皮が床と土間床等の外周部の基礎のいずれにも該当する場合':
# 玄関等及び浴室を除いた部分の外皮が床と土間床等の外周部の基礎のいずれにも該当する場合は、
# 表3の標準住戸における部位の面積及び土間床等の外周部の長さ等の値について、表3(い)欄に示す値及び
# 表3(ろ)欄に示す値の両方を式(9a)及び式(9b)で表される外皮平均熱貫流率の計算に適用し、
# 外皮平均熱貫流率の値が大きい方の場合を採用する
U_0 = get_U('床断熱住戸', house_structure_type, floor_bath_insulation, bath_insulation_type, U_roof, U_wall,
U_door, U_window, U_floor_bath, U_floor_other, U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other, Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor)
U_1 = get_U('基礎断熱住戸', house_structure_type, floor_bath_insulation, bath_insulation_type, U_roof, U_wall,
U_door, U_window, U_floor_bath, U_floor_other, U_base_etrc, U_base_bath, U_base_other,
Psi_prm_etrc, Psi_prm_bath, Psi_prm_other, Psi_HB_roof, Psi_HB_wall, Psi_HB_floor, Psi_HB_roof_wall,
Psi_HB_wall_wall, Psi_HB_wall_floor)
U_A_0 = __calc_U_A(**U_0)
U_A_1 = __calc_U_A(**U_1)
if U_A_0 > U_A_1:
U = U_0
U_A = U_A_0
else:
U = U_1
U_A = U_A_1
else:
raise ValueError(insulation_structure)
return U_A, U
def get_table_3(i, house_insulation_type, floor_bath_insulation=None):
"""表3 標準住戸における部位の面積及び土間床等の外周部の長さ等
Args:
i(int): 表3における行番号
house_insulation_type(str): 床断熱'または'基礎断熱'
floor_bath_insulation(str, optional): 床断熱'または'基礎断熱'または'浴室の床及び基礎が外気等に面していない' (Default value = None)
Returns:
float: 標準住戸における部位の面積及び土間床等の外周部の長さ等 (m)または(m2)
"""
table_3 = [
(262.46, 262.46, 266.10, 275.69),
90.0,
50.85,
34.06,
22.74,
48.49,
22.97,
0.0,
1.89,
1.62,
0.0,
19.11,
2.01,
3.05,
3.68,
(3.31, 3.31, 0.00, 0.00),
(45.05, 45.05, 45.05, 0.00),
0.00,
0.33,
0.25,
0.00,
(0.57, 0.57, 0.57, 0.00),
(0.00, 0.00, 0.00, 0.00),
(0.00, 0.00, 0.91, 0.91),
(0.00, 0.00, 0.91, 0.91),
(0.00, 0.00, 0.00, 0.00),
(0.00, 0.00, 1.82, 0.00),
(0.00, 0.00, 0.00, 5.30),
(0.00, 0.00, 0.00, 0.58),
(0.00, 0.00, 0.00, 3.71),
(0.00, 0.00, 0.00, 2.40),
(0.00, 0.00, 0.00, 0.00),
0.00,
1.82,
1.37,
0.00,
(3.19, 3.19, 3.19, 0.00),
(0.00, 0.00, 0.00, 0.00),
(0.00, 0.00, 1.82, 1.82),
(0.00, 0.00, 1.82, 1.82),
(0.00, 0.00, 0.00, 0.00),
(0.00, 0.00, 3.64, 0.00),
(0.00, 0.00, 0.00, 10.61),
(0.00, 0.00, 0.00, 1.15),
(0.00, 0.00, 0.00, 7.42),
(0.00, 0.00, 0.00, 4.79),
(0.00, 0.00, 0.00, 0.00),
15.40,
13.89,
5.60,
5.60,
10.32,
(19.04, 19.04, 19.04, 0.0),
10.61,
14.23,
27.2,
4.79,
5.60,
17.2,
5.6,
5.6,
10.61,
2.97,
9.24,
4.79,
]
if house_insulation_type == '床断熱住戸':
if floor_bath_insulation == '浴室の床及び基礎が外気等に面していない':
return table_3[i][0]
elif floor_bath_insulation == '床断熱':
return table_3[i][1]
elif floor_bath_insulation == '基礎断熱':
return table_3[i][2]
else:
raise ValueError(floor_bath_insulation)
elif house_insulation_type == '基礎断熱住戸':
return table_3[i][3]
elif house_insulation_type == None:
return table_3[i]
else:
raise ValueError(house_insulation_type)
def get_A_dash_env(house_insulation_type, floor_bath_insulation):
"""標準住戸における外皮の部位の面積の合計 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 標準住戸における外皮の部位の面積の合計 (m2)
"""
return get_table_3(0, house_insulation_type, floor_bath_insulation)
def get_A_dash_A():
"""床面積の合計 (m2)
Args:
Returns:
float: 床面積の合計 (m2)
"""
return get_table_3(1, None)
def get_A_dash_roof():
"""屋根又は天井の面積 (m2)
Args:
Returns:
float: 屋根又は天井の面積 (m2)
"""
return get_table_3(2, None)
def get_A_dash_wall_0():
"""主開口方向から時計回りに0°の方向に面した壁の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向に面した壁の面積 (m2)
"""
return get_table_3(3, None)
def get_A_dash_wall_90():
"""主開口方向から時計回りに90°の方向に面した壁の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向に面した壁の面積 (m2)
"""
return get_table_3(4, None)
def get_A_dash_wall_180():
"""主開口方向から時計回りに180°の方向に面した壁の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向に面した壁の面積 (m2)
"""
return get_table_3(5, None)
def get_A_dash_wall_270():
"""主開口方向から時計回りに270°の方向に面した壁の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向に面した壁の面積 (m2)
"""
return get_table_3(6, None)
def get_A_dash_door_0():
"""主開口方向から時計回りに0°の方向に面したドアの面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向に面したドアの面積 (m2)
"""
return get_table_3(7, None)
def get_A_dash_door_90():
"""主開口方向から時計回りに90°の方向に面したドアの面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向に面したドアの面積 (m2)
"""
return get_table_3(8, None)
def get_A_dash_door_180():
"""主開口方向から時計回りに180°の方向に面したドアの面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向に面したドアの面積 (m2)
"""
return get_table_3(9, None)
def get_A_dash_door_270():
"""主開口方向から時計回りに270°の方向に面したドアの面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向に面したドアの面積 (m2)
"""
return get_table_3(10, None)
def get_A_dash_window_0():
"""主開口方向から時計回りに0°の方向に面した窓の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向に面した窓の面積 (m2)
"""
return get_table_3(11, None)
def get_A_dash_window_90():
"""主開口方向から時計回りに90°の方向に面した窓の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向に面した窓の面積 (m2)
"""
return get_table_3(12, None)
def get_A_dash_window_180():
"""主開口方向から時計回りに180°の方向に面した窓の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向に面した窓の面積 (m2)
"""
return get_table_3(13, None)
def get_A_dash_window_270():
"""主開口方向から時計回りに270°の方向に面した窓の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向に面した窓の面積 (m2)
"""
return get_table_3(14, None)
def get_A_dash_floor_bath(house_insulation_type, floor_bath_insulation):
"""浴室の床の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 浴室の床の面積 (m2)
"""
return get_table_3(15, house_insulation_type, floor_bath_insulation)
def get_A_dash_floor_other(house_insulation_type, floor_bath_insulation):
"""浴室の床の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 浴室の床の面積 (m2)
"""
return get_table_3(16, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_etrc_OS_0():
"""主開口方向から時計回りに0°の方向の外気に面した玄関等の基礎の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した玄関等の基礎の面積 (m2)
"""
return get_table_3(17, None)
def get_A_dash_base_etrc_OS_90():
"""主開口方向から時計回りに90°の方向の外気に面した玄関等の基礎の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した玄関等の基礎の面積 (m2)
"""
return get_table_3(18, None)
def get_A_dash_base_etrc_OS_180():
"""主開口方向から時計回りに180°の方向の外気に面した玄関等の基礎の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した玄関等の基礎の面積 (m2)
"""
return get_table_3(19, None)
def get_A_dash_base_etrc_OS_270():
"""主開口方向から時計回りに270°の方向の外気に面した玄関等の基礎の面積 (m2)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した玄関等の基礎の面積 (m2)
"""
return get_table_3(20, None)
def get_A_dash_base_etrc_IS(house_insulation_type, floor_bath_insulation):
"""床下に面した玄関等の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面した玄関等の基礎の面積 (m2)
"""
return get_table_3(21, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_bath_OS_0(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに0°の方向の外気に面した浴室の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した浴室の基礎の面積 (m2)
"""
return get_table_3(22, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_bath_OS_90(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに90°の方向の外気に面した浴室の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した浴室の基礎の面積 (m2)
"""
return get_table_3(23, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_bath_OS_180(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに180°の方向の外気に面した浴室の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した浴室の基礎の面積 (m2)
"""
return get_table_3(24, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_bath_OS_270(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに270°の方向の外気に面した浴室の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した浴室の基礎の面積 (m2)
"""
return get_table_3(25, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_bath_IS(house_insulation_type, floor_bath_insulation):
"""床下に面した浴室の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面した浴室の基礎の面積 (m2)
"""
return get_table_3(26, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_other_OS_0(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに0°の方向の外気に面したその他の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面したその他の基礎の面積 (m2)
"""
return get_table_3(27, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_other_OS_90(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに90°の方向の外気に面したその他の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面したその他の基礎の面積 (m2)
"""
return get_table_3(28, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_other_OS_180(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに180°の方向の外気に面したその他の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面したその他の基礎の面積 (m2)
"""
return get_table_3(29, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_other_OS_270(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに270°の方向の外気に面したその他の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面したその他の基礎の面積 (m2)
"""
return get_table_3(30, house_insulation_type, floor_bath_insulation)
def get_A_dash_base_other_IS(house_insulation_type, floor_bath_insulation):
"""床下に面したその他の基礎の面積 (m2)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面したその他の基礎の面積 (m2)
"""
return get_table_3(31, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_etrc_OS_0():
"""主開口方向から時計回りに0°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
"""
return get_table_3(32, None)
def get_L_dash_prm_etrc_OS_90():
"""主開口方向から時計回りに90°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
"""
return get_table_3(33, None)
def get_L_dash_prm_etrc_OS_180():
"""主開口方向から時計回りに180°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
"""
return get_table_3(34, None)
def get_L_dash_prm_etrc_OS_270():
"""主開口方向から時計回りに270°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した玄関等の土間床等の外周部の長さ (m)
"""
return get_table_3(35, None)
def get_L_dash_prm_etrc_IS(house_insulation_type, floor_bath_insulation):
"""床下に面した玄関等の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面した玄関等の土間床等の外周部の長さ (m)
"""
return get_table_3(36, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_bath_OS_0(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに0°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
"""
return get_table_3(37, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_bath_OS_90(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに90°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
"""
return get_table_3(38, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_bath_OS_180(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに180°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
"""
return get_table_3(39, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_bath_OS_270(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに270°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した浴室の土間床等の外周部の長さ (m)
"""
return get_table_3(40, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_bath_IS(house_insulation_type, floor_bath_insulation):
"""床下に面した浴室の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面した浴室の土間床等の外周部の長さ (m)
"""
return get_table_3(41, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_other_OS_0(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに0°の方向の外気に面したその他の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面したその他の土間床等の外周部の長さ (m)
"""
return get_table_3(42, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_other_OS_90(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに90°の方向の外気に面したその他の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面したその他の土間床等の外周部の長さ (m)
"""
return get_table_3(43, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_other_OS_180(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに180°の方向の外気に面したその他の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面したその他の土間床等の外周部の長さ (m)
"""
return get_table_3(44, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_other_OS_270(house_insulation_type, floor_bath_insulation):
"""主開口方向から時計回りに270°の方向の外気に面したその他の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面したその他の土間床等の外周部の長さ (m)
"""
return get_table_3(45, house_insulation_type, floor_bath_insulation)
def get_L_dash_prm_other_IS(house_insulation_type, floor_bath_insulation):
"""床下に面したその他の土間床等の外周部の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面したその他の土間床等の外周部の長さ (m)
"""
return get_table_3(46, house_insulation_type, floor_bath_insulation)
def get_L_dash_HB_roof_top():
"""上面に面した屋根又は天井の熱橋の長さ (m)
Args:
Returns:
float: 上面に面した屋根又は天井の熱橋の長さ (m)
"""
return get_table_3(47, None)
def get_L_dash_HB_wall_0():
"""主開口方向から時計回りに0°の方向の外気に面した壁の熱橋の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した壁の熱橋の長さ (m)
"""
return get_table_3(48, None)
def get_L_dash_HB_wall_90():
"""主開口方向から時計回りに90°の方向の外気に面した壁の熱橋の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した壁の熱橋の長さ (m)
"""
return get_table_3(49, None)
def get_L_dash_HB_wall_180():
"""主開口方向から時計回りに180°の方向の外気に面した壁の熱橋の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した壁の熱橋の長さ (m)
"""
return get_table_3(50, None)
def get_L_dash_HB_wall_270():
"""主開口方向から時計回りに270°の方向の外気に面した壁の熱橋の長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した壁の熱橋の長さ (m)
"""
return get_table_3(51, None)
def get_L_dash_HB_floor_IS(house_insulation_type, floor_bath_insulation):
"""床下に面した床の熱橋の長さ (m)
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない'
Returns:
float: 床下に面した床の熱橋の長さ (m)
"""
return get_table_3(52, house_insulation_type, floor_bath_insulation)
def get_L_dash_HB_roof_wall_top():
"""上面に面した屋根又は天井と壁の熱橋長さ (m)
Args:
Returns:
float: 面に面した屋根又は天井と壁の熱橋長さ (m)
"""
return get_table_3(53, None)
def get_L_dash_HB_roof_wall_top_0():
"""主開口方向から時計回りに0°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
"""
return get_table_3(53, None)
def get_L_dash_HB_roof_wall_top_90():
"""主開口方向から時計回りに90°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
"""
return get_table_3(54, None)
def get_L_dash_HB_roof_wall_top_180():
"""主開口方向から時計回りに180°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
"""
return get_table_3(55, None)
def get_L_dash_HB_roof_wall_top_270():
"""主開口方向から時計回りに270°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した屋根又は天井と壁の熱橋長さ (m)
"""
return get_table_3(56, None)
def get_L_dash_HB_wall_wall_0_90():
"""主開口方向から時計回りに0°の方向の外気に面した壁と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した壁と壁の熱橋長さ (m)
"""
return get_table_3(57, None)
def get_L_dash_HB_wall_wall_90_180():
"""主開口方向から時計回りに90°の方向の外気に面した壁と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した屋壁と壁の熱橋長さ (m)
"""
return get_table_3(58, None)
def get_L_dash_HB_wall_wall_180_270():
"""主開口方向から時計回りに180°の方向の外気に面した壁と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した壁と壁の熱橋長さ (m)
"""
return get_table_3(59, None)
def get_L_dash_HB_wall_wall_270_0():
"""主開口方向から時計回りに270°の方向の外気に面した壁と壁の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した壁と壁の熱橋長さ (m)
"""
return get_table_3(60, None)
def get_L_dash_HB_wall_floor_0_IS():
"""主開口方向から時計回りに0°の方向の外気に面した壁と床の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに0°の方向の外気に面した壁と床の熱橋長さ (m)
"""
return get_table_3(61, None)
def get_L_dash_HB_wall_floor_90_IS():
"""主開口方向から時計回りに90°の方向の外気に面した壁と床の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに90°の方向の外気に面した壁と床の熱橋長さ (m)
"""
return get_table_3(62, None)
def get_L_dash_HB_wall_floor_180_IS():
"""主開口方向から時計回りに180°の方向の外気に面した壁と床の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに180°の方向の外気に面した壁と床の熱橋長さ (m)
"""
return get_table_3(63, None)
def get_L_dash_HB_wall_floor_270_IS():
"""主開口方向から時計回りに270°の方向の外気に面した壁と床の熱橋長さ (m)
Args:
Returns:
float: 主開口方向から時計回りに270°の方向の外気に面した壁と床の熱橋長さ (m)
"""
return get_table_3(64, None)
# ============================================================================
# 9.7 外皮の部位及び熱橋等の温度差係数
# ============================================================================
def get_H_OS():
"""屋根又は天井の温度差係数 (-)
Args:
Returns:
float: 屋根又は天井の温度差係数 (-)
"""
adjacent_type = '外気'
return get_H(adjacent_type)
def get_H_IS():
"""壁の温度差係数 (-)
Args:
Returns:
float: 壁の温度差係数 (-)
"""
adjacent_type = '外気に通じていない空間・外気に通じる床裏'
return get_H(adjacent_type)
# ============================================================================
# 9.8 外皮の部位及び熱橋等の方位係数
# ============================================================================
# 標準住戸における外皮の部位及び熱橋等の方位係数は、地域の区分・方位・期間に応じて付録Cに定める方法により求めた値とする。
# ============================================================================
# 9.9 外皮の部位の熱貫流率及び熱橋等の線熱貫流率
# ============================================================================
def get_U(house_insulation_type, house_structure_type, floor_bath_insulation=None, bath_insulation_type=None, U_roof=None, U_wall=None,
U_door=None, U_window=None, U_floor_bath=None, U_floor_other=None, U_base_etrc=None, U_base_bath=None, U_base_other=None,
Psi_prm_etrc=None, Psi_prm_bath=None, Psi_prm_other=None,
Psi_HB_roof=None, Psi_HB_wall=None, Psi_HB_floor=None, Psi_HB_roof_wall=None,
Psi_HB_wall_wall=None, Psi_HB_wall_floor=None):
"""屋根又は天井・壁・ドア・窓・熱橋等の熱貫流率
Args:
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
house_structure_type(structure_type: structure_type: str): 木造'または'鉄筋コンクリート造'または'鉄骨造'
floor_bath_insulation(str, optional): 浴室床の断熱 (Default value = None)
bath_insulation_type(str, optional): 浴室の断熱タイプ※ (Default value = None)
U_roof(float, optional): 屋根又は天井の熱貫流率 (Default value = None)
U_wall(float, optional): 壁の熱貫流率 (Default value = None)
U_door(float, optional): ドアの熱貫流率 (Default value = None)
U_window(float, optional): 窓の熱貫流率 (Default value = None)
U_floor_bath(float, optional): 浴室の床の熱貫流率 (Default value = None)
U_floor_other(float, optional): その他の熱貫流率 (Default value = None)
Psi_prm_etrc(float, optional): 玄関等の土間床等の外周部の線熱貫流率 (Default value = None)
Psi_prm_bath(float, optional): 浴室の土間床等の外周部の線熱貫流率 (Default value = None)
Psi_prm_other(float, optional): その他の土間床等の外周部の線熱貫流率 (Default value = None)
Psi_HB_roof(float, optional): 屋根または天井の熱橋の線熱貫流率 (Default value = None)
Psi_HB_wall(float, optional): 壁の熱橋の線熱貫流率 (Default value = None)
Psi_HB_floor(float, optional): 床の熱橋の線熱貫流率 (Default value = None)
Psi_HB_roof_wall(float, optional): 屋根または天井と壁の熱橋の線熱貫流率 (Default value = None)
Psi_HB_wall_wall(float, optional): 壁と壁の熱橋の線熱貫流率 (Default value = None)
Psi_HB_wall_floor(float, optional): 壁と床の熱橋の線熱貫流率 (Default value = None)
U_base_etrc: Default value = None)
U_base_bath: Default value = None)
U_base_other: Default value = None)
Returns:
dict: 屋根又は天井・壁・ドア・窓・熱橋等の熱貫流率
"""
# 屋根又は天井・壁・ドア・窓の熱貫流率
if house_insulation_type == '床断熱住戸':
# 浴室の断熱構造
if floor_bath_insulation == '床断熱':
U_floor_bath = get_U_floor_bath(
U_floor_bath=U_floor_bath,
U_floor_other=U_floor_other,
house_insulation_type=house_insulation_type,
floor_bath_insulation='浴室部分の外皮を床とする'
)
Psi_prm_etrc = get_psi_prm_etrc(Psi_prm_etrc)
Psi_prm_bath = 0
U_base_bath = 0
elif floor_bath_insulation == '基礎断熱':
U_floor_bath = 0
Psi_prm_etrc = get_psi_prm_etrc(Psi_prm_etrc)
Psi_prm_bath = get_psi_prm_bath(Psi_prm_bath, Psi_prm_other, house_insulation_type)
U_base_bath = get_U_base_bath(U_base_bath, U_base_other, house_insulation_type, floor_bath_insulation)
elif floor_bath_insulation == '浴室の床及び基礎が外気等に面していない':
U_floor_bath = get_U_floor_bath(
U_floor_bath=U_floor_bath,
U_floor_other=U_floor_other,
house_insulation_type=house_insulation_type,
floor_bath_insulation=floor_bath_insulation
)
Psi_prm_etrc = get_psi_prm_etrc(Psi_prm_etrc)
Psi_prm_bath = 0
U_base_bath = 0
else:
raise ValueError(floor_bath_insulation)
U_roof = get_U_roof(U_roof)
U_wall = get_U_wall(U_wall)
U_door = get_U_door(U_door)
U_window = get_U_window(U_window)
U_floor_other = get_U_floor_other(U_floor_other)
U_base_etrc = get_U_base_etrc(U_base_etrc)
U_base_other = 0
Psi_prm_other = 0
elif house_insulation_type == '基礎断熱住戸':
U_roof = get_U_roof(U_roof)
U_wall = get_U_wall(U_wall)
U_door = get_U_door(U_door)
U_window = get_U_window(U_window)
U_floor_bath = 0
U_floor_other = 0
U_base_etrc = get_U_base_etrc(U_base_etrc)
U_base_bath = get_U_base_bath(U_base_bath, U_base_other, house_insulation_type, floor_bath_insulation)
U_base_bath = get_U_base_bath(U_base_bath, U_base_other, house_insulation_type, floor_bath_insulation)
U_base_other = get_U_base_other(U_base_other)
Psi_prm_etrc = get_psi_prm_etrc(Psi_prm_etrc)
Psi_prm_bath = get_psi_prm_bath(
psi_prm_bath=Psi_prm_bath,
phi_prm_other=Psi_prm_other,
house_insulation_type=house_insulation_type
)
Psi_prm_other = get_psi_prm_other(Psi_prm_other, house_insulation_type)
else:
raise ValueError(house_insulation_type)
# 熱橋
Psi_HB_roof = get_psi_HB_roof(Psi_HB_roof, house_structure_type)
Psi_HB_wall = get_psi_HB_wall(Psi_HB_wall, house_structure_type)
Psi_HB_floor = get_psi_HB_floor(Psi_HB_floor, house_structure_type)
Psi_HB_roof_wall = get_psi_HB_roof_wall(Psi_HB_roof_wall, house_structure_type)
Psi_HB_wall_wall = get_psi_HB_wall_wall(Psi_HB_wall_wall, house_structure_type)
Psi_HB_wall_floor = get_psi_HB_wall_floor(Psi_HB_wall_floor, house_structure_type)
return {
'house_insulation_type': house_insulation_type,
'floor_bath_insulation': floor_bath_insulation,
'U_roof': U_roof,
'U_door': U_door,
'U_wall': U_wall,
'U_window': U_window,
'U_floor_bath': U_floor_bath,
'U_floor_other': U_floor_other,
'U_base_etrc': U_base_etrc,
'U_base_bath': U_base_bath,
'U_base_other': U_base_other,
'Psi_prm_etrc': Psi_prm_etrc,
'Psi_prm_bath': Psi_prm_bath,
'Psi_prm_other': Psi_prm_other,
'Psi_HB_roof': Psi_HB_roof,
'Psi_HB_wall': Psi_HB_wall,
'Psi_HB_floor': Psi_HB_floor,
'Psi_HB_roof_wall': Psi_HB_roof_wall,
'Psi_HB_wall_wall': Psi_HB_wall_wall,
'Psi_HB_wall_floor': Psi_HB_wall_floor,
}
def get_U_roof(U_roof, H_roof=None):
"""9.9.1 屋根又は天井の熱貫流率
Args:
U_roof(float): 屋根又は天井の熱貫流率
H_roof(float, optional): 屋根又は天井の温度差係数 (Default value = None)
Returns:
float: 9屋根又は天井の熱貫流率
"""
if type(U_roof) in [list, tuple]:
return U_roof[np.argmax(np.array(U_roof) * np.array(H_roof))]
else:
return U_roof
def get_U_wall(U_wall, H_wall=None):
"""9.9.2 壁の熱貫流率
Args:
U_wall(float): 壁の熱貫流率
H_wall(float, optional): 壁の温度差係数 (Default value = None)
Returns:
float: 壁の熱貫流率
"""
if type(U_wall) in [list, tuple]:
return U_wall[np.argmax(np.array(U_wall) * np.array(H_wall))]
else:
return U_wall
def get_U_door(U_door, H_door=None):
"""9.9.3 ドアの熱貫流率
Args:
U_door(float): ドアの熱貫流率
H_door(float, optional): ドアの温度差係数 (Default value = None)
Returns:
float: ドアの熱貫流率
"""
if type(U_door) in [list, tuple]:
return U_door[np.argmax(np.array(U_door) * np.array(H_door))]
else:
return U_door
def get_U_window(U_window, H_window=None):
"""9.9.4 窓の熱貫流率
Args:
U_window(float): 窓の熱貫流率
H_window(float, optional): 窓の温度差係数 (Default value = None)
Returns:
float: 窓の熱貫流率
"""
if type(U_window) in [list, tuple]:
return U_window[np.argmax(np.array(U_window) * np.array(H_window))]
else:
return U_window
def get_U_floor_other(U_floor_other, H_floor_other=None):
"""9.9.5 その他の床の熱貫流率
Args:
U_floor_other(float): その他の床の熱貫流率
H_floor_other(float, optional): その他の床の温度差係数 (Default value = None)
Returns:
float: その他の床の熱貫流率
"""
if type(U_floor_other) in [list, tuple]:
return U_floor_other[np.argmax(np.array(U_floor_other) * np.array(H_floor_other))]
else:
return U_floor_other
def get_U_floor_bath(U_floor_bath, U_floor_other, house_insulation_type, floor_bath_insulation, H_floor_bath=None):
"""9.9.6 浴室の床の熱貫流率
Args:
U_floor_bath(float): 浴室の床の熱貫流率
U_floor_other(float): その他の熱貫流率
house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸'
floor_bath_insulation(str): 浴室床の断熱
H_floor_bath(float, optional): 浴室の床の温度差係数 (Default value = None)
Returns:
float: 浴室の床の熱貫流率
"""
if house_insulation_type == '床断熱住戸':
if floor_bath_insulation == '浴室部分の外皮を床とする':
if type(U_floor_bath) in [list, tuple]:
return U_floor_bath[np.argmax(np.array(U_floor_bath) * | np.array(H_floor_bath) | numpy.array |
# coding: utf-8
# # Table of Contents
# <p><div class="lev2 toc-item"><a href="#过程逻辑" data-toc-modified-id="过程逻辑-01"><span class="toc-item-num">0.1 </span>过程逻辑</a></div>
# In[153]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().magic('matplotlib inline')
import numpy_indexed as npi
from sklearn.datasets.samples_generator import make_blobs
from itertools import combinations,permutations
# In[154]:
def vdm(cols,clu):
m_u = np.unique(cols,return_counts=True)
vdm_value = np.zeros(len(list(combinations(m_u[0],2))))
for k in np.unique(clu):
m_ui = np.unique(cols[np.where(clu == k)],return_counts=True)
m_ui0,m_ui1 = m_ui
array_diff = np.setdiff1d(m_u[0],m_ui[0])
print(array_diff)
m_ui1 = np.append(m_ui1,[0]*len(array_diff))
m_ui0 = np.append(m_ui0,array_diff)
print(m_ui0,m_ui1,)
s_mui = sorted(zip(m_ui0,m_ui1),key=lambda x:x[0])
s_mui1 = np.array([y for x,y in s_mui])
clu_rate = zip(m_u[0],s_mui1/m_u[1])
clu_sq = [np.square(c[0][1]-c[1][1]) for c in combinations(clu_rate,2)]
print(clu_sq)
vdm_value += np.array(clu_sq)
print(vdm_value)
ret = dict(zip(combinations(m_u[0],2),vdm_value))
return ret
# In[155]:
class Kmean:
def __init__(self,k,iter_num):
self.k = k
self.iter_num = iter_num
def get_init_vector(self,X):
distance,max_cores = 0,''
for i in combinations(X,self.k):
npt = np.array(list(combinations(i,2)))
ret = np.sqrt(np.square(npt[:,0] - npt[:,1]).sum(axis=1)).sum()
if ret > distance:
distance,max_cores = ret,i
return np.array(max_cores)
def train(self,X):
init_vetor = avg_vector = self.get_init_vector(X)
get_nearcore = lambda x:np.argmin( | np.square(avg_vector - x) | numpy.square |
'''
/**
* © Copyright (C) 2016-2020 Xilinx, Inc
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may
* not use this file except in compliance with the License. A copy of the
* License is located at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
'''
# Author: <EMAIL>
# Date: 11 Feb 2020
import os
import numpy as np
import cv2
import sys
###############################################################################
# project folders
###############################################################################
def get_script_directory():
path = os.getcwd()
return path
# get current directory
SCRIPT_DIR = get_script_directory()
print("fcn_config.py runs from ", SCRIPT_DIR)
# dataset top level folder
DATASET_DIR = os.path.join(SCRIPT_DIR, "../workspace/dataset1")
# train, validation, test and calibration folders
SEG_TRAIN_DIR = os.path.join(DATASET_DIR, "annotations_prepped_train")
IMG_TRAIN_DIR = os.path.join(DATASET_DIR, "images_prepped_train")
SEG_TEST_DIR = os.path.join(DATASET_DIR, "annotations_prepped_test")
IMG_TEST_DIR = os.path.join(DATASET_DIR, "images_prepped_test")
# input directories
dir_data = DATASET_DIR
dir_train_seg_inp = SEG_TRAIN_DIR
dir_train_img_inp = IMG_TRAIN_DIR
dir_test_seg_inp = SEG_TEST_DIR
dir_test_img_inp = IMG_TEST_DIR
# output directories
dir_train_img = os.path.join(DATASET_DIR, "img_train")
dir_train_seg = os.path.join(DATASET_DIR, "seg_train")
dir_test_img = os.path.join(DATASET_DIR, "img_test")
dir_test_seg = os.path.join(DATASET_DIR, "seg_test")
dir_calib_img = os.path.join(DATASET_DIR, "img_calib")
dir_calib_seg = os.path.join(DATASET_DIR, "seg_calib")
dir_valid_img = os.path.join(DATASET_DIR, "img_valid")
dir_valid_seg = os.path.join(DATASET_DIR, "seg_valid")
# Augmented images folder
#AUG_IMG_DIR = os.path.join(SCRIPT_DIR,'aug_img/cifar10')
# Keras model folder
KERAS_MODEL_DIR = os.path.join(SCRIPT_DIR, "../keras_model")
# TF checkpoints folder
CHKPT_MODEL_DIR = os.path.join(SCRIPT_DIR, "../workspace/tf_chkpts")
# TensorBoard folder
TB_LOG_DIR = os.path.join(SCRIPT_DIR, "../workspace/tb_logs")
###############################################################################
# global variables
###############################################################################
#Size of images
WIDTH = 224
HEIGHT = 224
#normalization factor
NORM_FACTOR = 127.5
#number of classes
NUM_CLASSES = 12
# names of classes
CLASS_NAMES = ("Sky",
"Wall",
"Pole",
"Road",
"Sidewalk",
"Vegetation",
"Sign",
"Fence",
"vehicle",
"Pedestrian",
"Bicyclist",
"miscellanea")
BATCH_SIZE = 32
EPOCHS = 200
#######################################################################################################
# colors for segmented (COCO) classes
colorB = [128, 232, 70, 156, 153, 153, 30, 0, 35, 152, 180, 60, 0, 142, 70, 100, 100, 230, 32]
colorG = [ 64, 35, 70, 102, 153, 153, 170, 220, 142, 251, 130, 20, 0, 0, 0, 60, 80, 0, 11]
colorR = [128, 244, 70, 102, 190, 153, 250, 220, 107, 152, 70, 220, 255, 0, 0, 0, 0, 0, 119]
CLASS_COLOR = list()
for i in range(0, 19):
CLASS_COLOR.append([colorR[i], colorG[i], colorB[i]])
COLORS = | np.array(CLASS_COLOR, dtype="float32") | numpy.array |
import json
import numpy as np
import scipy.stats as st
import pickle
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import gridspec
matplotlib.use('TkAgg')
print(matplotlib.get_configdir())
if __name__ == '__main__':
nodes = 6
number_test = 0
# fr = open('./emulator/MIMII/saxsNew.pkl', 'rb')
# saxs = pickle.load(fr)
# ss, aa, xx = saxs
# s = ss[number_test]
# x = xx[number_test]
path_csv = 'measurement/pICA_'+str(nodes)+'details.csv'
node_details = np.loadtxt(path_csv, delimiter=',', usecols=np.arange(
1, nodes+2, 1))
len_subset = node_details[0,:]
process_latency = node_details[1,:]
separation_accuracy = node_details[2, :]
with plt.style.context(['science', 'ieee']):
fig_width = 6.5
barwidth = 0.15
# bardistance = barwidth * 1.2
colordict = {
'compute_forward': '#0077BB',
'store_forward': '#DDAA33',
'darkblue': '#024B7A',
'lightblue': '#3F9ABF',
'midblue': '#7ACFE5'
}
markerdict = {
'compute_forward': 'o',
'store_forward': 'v',
'store_forward_ia': 's'
}
plt.rcParams.update({'font.size': 11})
fig = plt.figure(figsize=(fig_width, fig_width / 1.618))
ax = fig.add_subplot(1, 1, 1)
ax.yaxis.grid(True, linestyle='--', which='major',
color='lightgrey', alpha=0.5, linewidth=0.2)
x_index = | np.arange(nodes + 1) | numpy.arange |
import numpy
import h5py
import pympi
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
bias, grid_size, box_size, bin_size, bins_to_use = (1.3, 2048, 1600.0, 30, 5)
density_file, momentumx_file, momentumy_file, momentumz_file = ()
deltagk_file, deltamk_file, deltavk_file = ()
num_particle, box_size, grid_size = (4096**3, 1600.0, 2048)
mpi = pympi.snapshot(num_particle=num_particle, box_size=box_size, grid_size=grid_size, comm=comm)
bins_large = numpy.linspace(4e-3, 4e-2, 5+1)
bins_small = numpy.linspace(1.0, 2.0, 5+1)
lsize = bins_large.size - 1
ssize = bins_small.size - 1
bins_large_size = lsize
bins_small_size = ssize
kfreq = numpy.fft.fftfreq(mpi.grid_size, mpi.grid_spacing) * numpy.pi * 2
kfreq = kfreq.astype(numpy.float64)
kx = numpy.empty((mpi.grids_per_core, mpi.grid_size, mpi.grid_size), dtype=numpy.float64)
ky = numpy.empty((mpi.grids_per_core, mpi.grid_size, mpi.grid_size), dtype=numpy.float64)
kz = numpy.empty((mpi.grids_per_core, mpi.grid_size, mpi.grid_size), dtype=numpy.float64)
for i in range(mpi.grids_per_core):
for j in range(mpi.grid_size):
for k in range(mpi.grid_size):
kz[i,j,k] = kfreq[k]
ky[i,j,k] = kfreq[j]
kx[i,j,k] = kfreq[mpi.start_grid + i]
knorm = numpy.sqrt(kx**2 + ky**2 + kz**2)
if rank == 0:
knorm[0,0,0] = 0.00001
def transfer(data):
recvdata = None
senddata = numpy.concatenate( (numpy.ravel(data.real), numpy.ravel(data.imag) ))
if rank == 0:
recvdata = numpy.empty(size * len(senddata), dtype=numpy.float64)
comm.Gather(senddata, recvdata, root=0)
if rank == 0:
d = recvdata.reshape(size, len(senddata)).sum(0)
d_list = numpy.split(d, 2)
data_real, data_imag = [
numpy.reshape( x, (bins_large_size, bins_small_size)) for x in alpha_list]
result = data_real + 1j * data_imag
return result
###############################################################################################################
alpha_mnn = numpy.zeros((bins_large_size, bins_small_size), dtype=numpy.complex128)
alpha_nmn = numpy.zeros((bins_large_size, bins_small_size), dtype=numpy.complex128)
alpha_final = numpy.zeros((bins_large_size, bins_small_size), dtype=numpy.complex128)
alpha_final_inv = numpy.zeros((bins_large_size, bins_small_size), dtype=numpy.complex128)
for n in xrange(ssize):
W_nu = numpy.logical_and(knorm > bins_small[n], knorm <= bins_small[n+1]).astype(numpy.int16)
function1 = mpi.ifft(W_nu)
function3 = mpi.ifft(function1 * function1)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
alpha_mnn[m,n] = numpy.sum(function3 * W_mu * knorm**2)
function2 = mpi.ifft(W_nu * knorm**2)
function3 = mpi.ifft(function1 * function2)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
alpha_nmn[m,n] = numpy.sum(function3 * W_mu)
alpha_final = transfer(alpha_mnn)
alpha_final_inv = transfer(alpha_nmn)
gamma_x_mnn = numpy.zeros((bins_large.size-1,bins_small.size-1), dtype=numpy.complex128)
gamma_y_mnn = numpy.zeros((bins_large.size-1,bins_small.size-1), dtype=numpy.complex128)
gamma_z_mnn = numpy.zeros((bins_large.size-1,bins_small.size-1), dtype=numpy.complex128)
gamma_mnn = numpy.zeros((bins_large.size-1,bins_small.size-1), dtype=numpy.complex128)
gamma_final = numpy.zeros((bins_large.size-1,bins_small.size-1), dtype=numpy.complex128)
for n in xrange(ssize):
W_nu = numpy.logical_and(knorm > bins_small[n], knorm <= bins_small[n+1]).astype(numpy.int16)
function1 = mpi.ifft(W_nu)
function2x = mpi.ifft(W_nu * kx)
function2y = mpi.ifft(W_nu * ky)
function2z = mpi.ifft(W_nu * kz)
productx = mpi.ifft(function1 * function2x)
producty = mpi.ifft(function1 * function2y)
productz = mpi.ifft(function1 * function2z)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
gamma_x_mnn[m,n] = numpy.sum(kx * W_mu * productx)
gamma_y_mnn[m,n] = numpy.sum(ky * W_mu * producty)
gamma_z_mnn[m,n] = numpy.sum(kz * W_mu * productz)
gamma_mnn = gamma_x_mnn + gamma_y_mnn + gamma_z_mnn
gamma_final = transfer(gamma_mnn)
#########################################################################################################
B_x_mnn = numpy.zeros((lsize,ssize), dtype=numpy.complex128)
B_y_mnn = numpy.zeros((lsize,ssize), dtype=numpy.complex128)
B_z_mnn = numpy.zeros((lsize,ssize), dtype=numpy.complex128)
B_mnn = numpy.zeros((lsize,ssize), dtype=numpy.complex128)
B_x_nmn = numpy.zeros((lsize, ssize), dtype=numpy.complex128)
B_y_nmn = numpy.zeros((lsize, ssize), dtype=numpy.complex128)
B_z_nmn = numpy.zeros((lsize, ssize), dtype=numpy.complex128)
B_nmn = numpy.zeros((lsize, ssize), dtype=numpy.complex128)
B_final = numpy.zeros((lsize, ssize), dtype=numpy.complex128)
B_final_inv = numpy.zeros((lsize,ssize), dtype=numpy.complex128)
density_k = h5py.File(deltagk_file, "r+")['d'][mpi.start_grid:mpi.end_grid,:,:]
momentum_kx = h5py.File(momentumx_file, "r+")['d'][mpi.start_grid:mpi.end_grid, :, :]
momentum_ky = h5py.File(momentumy_file, "r+")['d'][mpi.start_grid:mpi.end_grid, :, :]
momentum_kz = h5py.File(momentumz_file, "r+")['d'][mpi.start_grid:mpi.end_grid, :, :]
###############################################################################################################
for n in xrange(ssize):
W_nu = numpy.logical_and(knorm > bins_small[n], knorm <= bins_small[n+1]).astype(numpy.int16)
function1 = mpi.ifft(W_nu * density_k)
function2 = mpi.ifft(W_nu * momentum_kx)
product = mpi.ifft(function1 * function2)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
B_x_mnn[m,n] = numpy.sum(1j * kx * W_mu * density_k * product)
function1 = mpi.ifft(1j * kx * W_nu * density_k)
product = mpi.ifft(function1 * function2)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
B_x_nmn[m,n] = numpy.sum(W_mu * density_k * product)
###############################################################################################################
for n in xrange(ssize):
W_nu = numpy.logical_and(knorm > bins_small[n], knorm <= bins_small[n+1]).astype(numpy.int16)
function1 = mpi.ifft(W_nu * density_k)
function2 = mpi.ifft(W_nu * momentum_ky)
product = mpi.ifft(function1 * function2)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
B_y_mnn[m,n] = numpy.sum(1j * ky * W_mu * density_k * product)
function1 = mpi.ifft(1j * ky * W_nu * density_k)
product = mpi.ifft(function1 * function2)
for m in xrange(lsize):
W_mu = numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]).astype(numpy.int16)
B_y_nmn[m,n] = numpy.sum(W_mu * density_k * product)
###############################################################################################################
for n in xrange(ssize):
W_nu = numpy.logical_and(knorm > bins_small[n], knorm <= bins_small[n+1]).astype(numpy.int16)
function1 = mpi.ifft(W_nu * density_k)
function2 = mpi.ifft(W_nu * momentum_kz)
product = mpi.ifft(function1 * function2)
for m in xrange(lsize):
W_mu = | numpy.logical_and(knorm > bins_large[m], knorm <= bins_large[m+1]) | numpy.logical_and |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import time
from typing import Callable, Optional, Any
import numpy as np
from ..common.typetools import ArrayLike
from ..common import testing
from . import recaster
from . import optimizerlib
def test_message() -> None:
message = recaster.Message(1, 2, blublu=3)
np.testing.assert_equal(message.done, False)
np.testing.assert_equal(message.args, [1, 2])
np.testing.assert_equal(message.kwargs, {"blublu": 3})
message.result = 3
np.testing.assert_equal(message.done, True)
np.testing.assert_equal(message.result, 3)
def fake_caller(func: Callable[[int], int]) -> int:
output = 0
for k in range(10):
output += func(k)
return output
@testing.parametrized(
finished=(10, 30),
unfinished=(2, None), # should not hang at deletion!
)
def test_messaging_thread(num_iter: int, output: Optional[int]) -> None:
thread = recaster.MessagingThread(fake_caller)
num_answers = 0
while num_answers < num_iter:
if thread.messages and not thread.messages[0].done:
thread.messages[0].result = 3
num_answers += 1
time.sleep(0.001)
with testing.skip_error_on_systems(AssertionError, systems=("Windows",)): # TODO fix
np.testing.assert_equal(thread.output, output)
def test_automatic_thread_deletion() -> None:
thread = recaster.MessagingThread(fake_caller)
assert thread.is_alive()
def fake_cost_function(x: ArrayLike) -> float:
return float(np.sum(np.array(x) ** 2))
class FakeOptimizer(recaster.SequentialRecastOptimizer):
def get_optimization_function(self) -> Callable[[Callable[..., Any]], ArrayLike]:
# create a new instance to avoid deadlock
return self.__class__(self.parametrization, self.budget, self.num_workers)._optim_function
def _optim_function(self, func: Callable[..., Any]) -> ArrayLike:
suboptim = optimizerlib.OnePlusOne(parametrization=2, budget=self.budget)
recom = suboptim.minimize(func)
return recom.get_standardized_data(reference=self.parametrization)
def test_recast_optimizer() -> None:
optimizer = FakeOptimizer(parametrization=2, budget=100)
optimizer.minimize(fake_cost_function)
assert optimizer._messaging_thread is not None
np.testing.assert_equal(optimizer._messaging_thread._thread.call_count, 100)
def test_recast_optimizer_with_error() -> None:
optimizer = FakeOptimizer(parametrization=2, budget=100)
| np.testing.assert_raises(TypeError, optimizer.minimize) | numpy.testing.assert_raises |
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 29 16:41:56 2020
@author: <NAME>
"""
"""
Apply different deep learning models on PAMAP2 dataset.
ANN,CNN and RNN were applied.
"""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import h5py
from tensorflow.keras import regularizers
from tensorflow.keras.layers import (
Input,
Conv2D,
Dense,
Flatten,
Dropout,
LSTM,
GlobalMaxPooling1D,
MaxPooling2D,
BatchNormalization,
)
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools
from datetime import datetime
import os
class Models:
def __init__(self, path):
self.path = path
self.model_name = None
self.X = None
self.y = None
self.x_train = None
self.x_test = None
self.y_train = None
self.y_test = None
def read_h5(self):
file = h5py.File(path, "r")
X = file.get("inputs")
y = file.get("labels")
# print(type(X))
# print(type(y))
self.X = np.array(X)
self.y = np.array(y)
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(
self.X, self.y, test_size=0.4, random_state=1
)
print("X = ", self.X.shape)
print("y =", self.y.shape)
print(set(self.y))
# return X,y
def cnn_model(self, n_epochs=50):
# K = len(set(y_train))
# print(K)
K = len(set(self.y))
# X = np.expand_dims(X, -1)
self.x_train = np.expand_dims(self.x_train, -1)
self.x_test = np.expand_dims(self.x_test, -1)
# print(X)
# print(X[0].shape)
# i = Input(shape=X[0].shape)
i = Input(shape=self.x_train[0].shape)
x = Conv2D(
32,
(3, 3),
strides=2,
activation="relu",
padding="same",
kernel_regularizer=regularizers.l2(0.0005),
)(i)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2))(x)
x = Dropout(0.2)(x)
x = Conv2D(
64,
(3, 3),
strides=2,
activation="relu",
padding="same",
kernel_regularizer=regularizers.l2(0.0005),
)(x)
x = BatchNormalization()(x)
x = Dropout(0.4)(x)
x = Conv2D(
128,
(3, 3),
strides=2,
activation="relu",
padding="same",
kernel_regularizer=regularizers.l2(0.0005),
)(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2))(x)
x = Dropout(0.2)(x)
x = Flatten()(x)
x = Dropout(0.2)(x)
x = Dense(1024, activation="relu")(x)
x = Dropout(0.2)(x)
x = Dense(K, activation="softmax")(x)
self.model = Model(i, x)
self.model.compile(
optimizer=Adam(lr=0.001),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
# self.r = model.fit(X, y, validation_split = 0.4, epochs = 50, batch_size = 32 )
self.r = self.model.fit(
self.x_train,
self.y_train,
validation_data=(self.x_test, self.y_test),
epochs=n_epochs,
batch_size=32,
)
print(self.model.summary())
# It is better than using keras do the splitting!!
return self.r
def dnn_model(self):
# K = len(set(y_train))
# print(K)
K = len(set(self.y))
print(self.x_train[0].shape)
i = Input(shape=self.x_train[0].shape)
x = Flatten()(i)
x = Dense(128, activation="relu")(x)
x = Dense(128, activation="relu")(x)
x = Dropout(0.2)(x)
x = Dense(256, activation="relu")(x)
x = Dense(256, activation="relu")(x)
x = Dense(256, activation="relu")(x)
# x = Dropout(0.2)(x)
x = Dense(1024, activation="relu")(x)
x = Dense(K, activation="softmax")(x)
self.model = Model(i, x)
self.model.compile(
optimizer=Adam(lr=0.001),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
"""
K = len(set(self.y))
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=self.x_train[0].shape),
tf.keras.layers.Dense(256, activation = 'relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(256, activation = 'relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(K,activation = 'softmax')
])
model.compile(optimizer = Adam(lr=0.0005),
loss = 'sparse_categorical_crossentropy',
metrics = ['accuracy'])
"""
self.r = self.model.fit(
self.x_train,
self.y_train,
validation_data=(self.x_test, self.y_test),
epochs=50,
)
print(self.model.summary())
return self.r
def rnn_model(self):
K = len(set(self.y))
i = Input(shape=self.x_train[0].shape)
x = LSTM(256, return_sequences=True)(i)
x = Dense(128, activation="relu")(x)
x = GlobalMaxPooling1D()(x)
x = Dense(K, activation="softmax")(x)
self.model = Model(i, x)
self.model.compile(
optimizer=Adam(lr=0.001),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
self.r = self.model.fit(
self.x_train,
self.y_train,
validation_data=(self.x_test, self.y_test),
epochs=50,
batch_size=32,
)
# self.r = model.fit(X, y, validation_split = 0.2, epochs = 10, batch_size = 32 )
print(self.model.summary())
return self.r
def draw(self, path_to_model_folder):
f1 = plt.figure(1)
plt.title("Loss")
plt.plot(self.r.history["loss"], label="loss")
plt.plot(self.r.history["val_loss"], label="val_loss")
plt.legend()
f1.show()
# new: doesnt work (also not with plt) - no line in the chart
# f1.savefig(path_to_model_folder + '/training_loss.png')
f2 = plt.figure(2)
plt.plot(self.r.history["accuracy"], label="accuracy")
plt.plot(self.r.history["val_accuracy"], label="val_accuracy")
plt.legend()
f2.show()
# new: doesnt work (also not with plt) - no line in the chart
# f2.savefig(path_to_model_folder + '/training_acc.png')
# summary, confusion matrix and heatmap
def evaluation(self, model_folder_path):
K = len(set(self.y_train))
self.y_pred = self.model.predict(self.x_test).argmax(axis=1)
# accuracy
accuracy = | np.sum(self.y_pred == self.y_test) | numpy.sum |
# coding=utf-8
# Copyright (c) 2019 Alibaba PAI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
from easytransfer.engines.distribution import Process
import numpy as np
class LabelingPostprocessor(Process):
""" Postprocessor for sequence labeling, merge the sub-tokens and output the tag for each word
"""
def __init__(self,
label_enumerate_values,
output_schema,
thread_num=None,
input_queue=None,
output_queue=None,
prediction_colname="predictions",
job_name='LabelingPostprocessor'):
super(LabelingPostprocessor, self).__init__(
job_name, thread_num, input_queue, output_queue, batch_size=1)
self.prediction_colname = prediction_colname
self.label_enumerate_values = label_enumerate_values
self.output_schema = output_schema
if label_enumerate_values is not None:
self.idx_label_map = dict()
for (i, label) in enumerate(label_enumerate_values.split(",")):
if six.PY2:
self.idx_label_map[i] = label.encode("utf8")
else:
self.idx_label_map[i] = label
def process(self, in_data):
""" Post-process the model outputs
Args:
in_data (`dict`): a dict of model outputs
Returns:
ret (`dict`): a dict of post-processed model outputs
"""
if self.label_enumerate_values is None:
return in_data
tmp = {key: val for key, val in in_data.items()}
if self.prediction_colname in tmp:
raw_preds = tmp[self.prediction_colname]
tok_to_orig_indexes = [[int(t) for t in lst.split(",")]
for lst in
tmp["tok_to_orig_index"][0][0].split(" ")]
new_preds = []
for idx, (raw_pred, tok_to_orig_index) in enumerate(zip(raw_preds, tok_to_orig_indexes)):
final_pred = list()
prev_token_idx = -1
for k in range(min(len(raw_pred), len(tok_to_orig_index))):
token_pred = raw_pred[k]
token_orig_idx = tok_to_orig_index[k]
if token_orig_idx == -1:
continue
if token_orig_idx == prev_token_idx:
continue
if token_pred == -1 or token_pred > len(self.idx_label_map):
token_pred = len(self.idx_label_map) - 1
if self.idx_label_map[token_pred] == "[CLS]" or self.idx_label_map[token_pred] == "[SEP]":
token_pred = len(self.idx_label_map) - 1
final_pred.append(self.idx_label_map[token_pred])
prev_token_idx = token_orig_idx
raw_sequence_length = max(tok_to_orig_index) + 1
while len(final_pred) < raw_sequence_length:
final_pred.append(self.idx_label_map[len(self.idx_label_map) - 1])
new_preds.append(" ".join(final_pred))
tmp[self.prediction_colname] = | np.array(new_preds) | numpy.array |
import matplotlib.pyplot as plt
import numpy.random as npr
import numpy as np
import tensorflow as tf
import pickle as cPickle
from sklearn.manifold import TSNE
def one_hot(x,n):
if type(x) == list:
x = np.array(x)
x = x.flatten()
o_h = np.zeros((len(x),n))
o_h[np.arange(len(x)),x] = 1
return o_h
def computeTSNE(fileName='./for_tsne.pkl'):
with open(fileName,'r') as f:
fx, src_fx, src_labels, trg_fx, adda_trg_fx, trg_labels = cPickle.load(f)
src_labels = np.argmax(src_labels,1)
trg_labels = np.argmax(trg_labels,1)
print ('Computing T-SNE.')
model = TSNE(n_components=2, random_state=0)
print ('0')
TSNE_hA_0 = model.fit_transform(np.vstack((src_fx,fx)))
#~ print '1'
#~ TSNE_hA_1 = model.fit_transform(fx)
#~ print '2'
#~ TSNE_hA_2 = model.fit_transform(src_fx)
print ('3')
TSNE_hA_3 = model.fit_transform(np.vstack((src_fx,fx,trg_fx)))
print ('4')
TSNE_hA_4 = model.fit_transform(np.vstack((src_fx,fx,adda_trg_fx)))
plt.figure(0)
plt.scatter(TSNE_hA_0[:,0], TSNE_hA_0[:,1], c = np.hstack((src_labels,src_labels)))
plt.figure(1)
plt.scatter(TSNE_hA_0[:,0], TSNE_hA_0[:,1], c = np.hstack((np.ones((500,)), 2 * np.ones((500,)))))
#~ plt.figure(2)
#~ plt.scatter(TSNE_hA_1[:,0], TSNE_hA_1[:,1], c = colors_12)
#~ plt.figure(3)
#~ plt.scatter(TSNE_hA_2[:,0], TSNE_hA_2[:,1], c = colors_12)
plt.figure(4)
plt.scatter(TSNE_hA_3[:,0], TSNE_hA_3[:,1], c = np.hstack((np.ones((500,)), 2 * np.ones((500,)), 3 * np.ones((500,)))))
plt.figure(5)
plt.scatter(TSNE_hA_3[:,0], TSNE_hA_3[:,1], c = np.hstack((src_labels,src_labels,trg_labels)))
plt.figure(6)
plt.scatter(TSNE_hA_4[:,0], TSNE_hA_4[:,1], c = np.hstack((np.ones((500,)), 2 * | np.ones((500,)) | numpy.ones |
import numpy as np
import Activators # 引入自定义的激活器模块
import math
# 获取卷积区域。input_array为单通道或多通道的矩阵顺。i为横向偏移,j为纵向偏移,stride为步幅,filter_width为过滤器宽度,filter_height为过滤器的高度
def get_patch(input_array, i, j, filter_width, filter_height, stride):
'''
从输入数组中获取本次卷积的区域,
自动适配输入为2D和3D的情况
'''
start_i = i * stride
start_j = j * stride
if input_array.ndim == 2: # 如果只有一个通道
return input_array[start_i:start_i + filter_height, start_j: start_j + filter_width]
elif input_array.ndim == 3: # 如果有多个通道,也就是深度上全选
return input_array[:, start_i: start_i + filter_height, start_j: start_j + filter_width] # [深度、高度、宽度]
# 获取一个2D区域的最大值所在的索引
def get_max_index(array):
location = np.where(array == np.max(array)) # 获取最大值的位置where
return location[0], location[1]
# 计算一个过滤器的卷积运算,输出一个二维数据。每个通道的输入是图片,但是可能不是一个通道,所以这里自动适配输入为2D和3D的情况。
def conv(input_array, kernel_array, output_array, stride, bias):
output_width = output_array.shape[1] # 获取输出的宽度。一个过滤器产生的输出一定是一个通道
output_height = output_array.shape[0] # 获取输出的高度
kernel_width = kernel_array.shape[-1] # 过滤器的宽度。有可能有多个通道。多通道时shape=[深度、高度、宽度],单通道时shape=[高度、宽度]
kernel_height = kernel_array.shape[-2] # 过滤器的高度。有可能有多个通道。多通道时shape=[深度、高度、宽度],单通道时shape=[高度、宽度]
# print(output_width,output_height,kernel_width,kernel_height)
for i in range(output_height):
for j in range(output_width):
juanjiqu = get_patch(input_array, i, j, kernel_width, kernel_height, stride) # 获取输入的卷积区。(单通道或多通道)
# 这里是对每个通道的两个矩阵对应元素相乘求和,再将每个通道的和值求和
kernel_values = (
np.multiply(juanjiqu, kernel_array)).sum() # 卷积区与过滤器卷积运算。1,一个通道内,卷积区矩阵与过滤器矩阵对应点相乘后,求和值。2、将每个通道的和值再求和。
output_array[i][j] = kernel_values + bias # 将卷积结果加上偏量
def conv1(input_array, kernel_array, output_array, stride, bias):
output_width = output_array.shape[1] # 获取输出的宽度。一个过滤器产生的输出一定是一个通道
output_height = output_array.shape[0] # 获取输出的高度
kernel_width = kernel_array.shape[-1] # 过滤器的宽度。有可能有多个通道。多通道时shape=[深度、高度、宽度],单通道时shape=[高度、宽度]
kernel_height = kernel_array.shape[-2] # 过滤器的高度。有可能有多个通道。多通道时shape=[深度、高度、宽度],单通道时shape=[高度、宽度]
# print(output_width,output_height,kernel_width,kernel_height)
for i in range(output_height):
for j in range(output_width):
juanjiqu = get_patch(input_array, i, j, kernel_width, kernel_height, stride) # 获取输入的卷积区。(单通道或多通道)
# 这里是对每个通道的两个矩阵对应元素相乘求和,再将每个通道的和值求和
kernel_values = (
np.multiply(juanjiqu, kernel_array)).sum() # 卷积区与过滤器卷积运算。1,一个通道内,卷积区矩阵与过滤器矩阵对应点相乘后,求和值。2、将每个通道的和值再求和。
output_array[i][j] = kernel_values + bias # 将卷积结果加上偏量
return output_array
# 为数组增加Zero padding。zp步长,自动适配输入为2D和3D的情况
def padding(input_array, zp):
if zp == 0: # 如果不补0
return input_array
else:
if input_array.ndim == 3: # 如果输入有多个通道
input_width = input_array.shape[2] # 获取输入的宽度
input_height = input_array.shape[1] # 获取输入的宽度
input_depth = input_array.shape[0] # 获取输入的深度
padded_array = np.zeros((input_depth, input_height + 2 * zp, input_width + 2 * zp)) # 先定义一个补0后大小的全0矩阵
# print(input_height) # 8
# print(padded_array.shape[2])
padded_array[:, zp: zp + input_height,
zp: zp + input_width] = input_array # 每个通道上,将中间部分替换成输入,这样就变成了原矩阵周围补0 的形式
return padded_array # 12*16*16
elif input_array.ndim == 2: # 如果输入只有一个通道
input_width = input_array.shape[1] # 获取输入的宽度
input_height = input_array.shape[0] # 虎丘输入的高度
padded_array = np.zeros((input_height + 2 * zp, input_width + 2 * zp)) # 先定义一个补0后大小的全0矩阵
padded_array[zp:
zp + input_height, zp: zp + input_width] = input_array # 将中间部分替换成输入,这样就变成了原矩阵周围补0 的形式
return padded_array
# 对numpy数组进行逐个元素的操作。op为函数。element_wise_op函数实现了对numpy数组进行按元素操作,并将返回值写回到数组中
def element_wise_op(array, op):
for i in | np.nditer(array, op_flags=['readwrite']) | numpy.nditer |
"""
Max-p regions algorithm
Source: <NAME>, <NAME>, and <NAME> (2020) "Efficient
regionalization for spatially explicit neighborhood delineation." International
Journal of Geographical Information Science. Accepted 2020-04-12.
"""
from ..BaseClass import BaseSpOptHeuristicSolver
from .base import (w_to_g, move_ok, ok_moves, region_neighbors, _centroid,
_closest, _seeds, is_neighbor)
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist, squareform
import pandas as pd
import geopandas as gp
import time
import numpy as np
from copy import deepcopy
from scipy.sparse.csgraph import connected_components
ITERCONSTRUCT=999
ITERSA=10
def maxp(gdf, w, attrs_name, threshold_name, threshold, top_n, max_iterations_construction=ITERCONSTRUCT,
max_iterations_sa=ITERSA, verbose=True):
"""
Arguments
---------
gdf: geodataframe
w: pysal W
attrs_name: list of strings for attribute names (cols of gdf)
threshold_name: string (name of threshold variable)
threshold: numeric
value for threshold
top_n: int
Max number of candidate regions for enclave assignment
max_iterations_construction: int
max number of iterations for construction phase
max_iterations_SA: int
max number of iterations for customized simulated annealing
verbose: boolean
True
Returns
-------
max_p: int
number of regions
labels: array
region ids for observations
"""
attr = gdf[attrs_name].values
threshold_array = gdf[threshold_name].values
distance_matrix = squareform(pdist(attr, metric='cityblock'))
n,k = attr.shape
arr = np.arange(n)
max_p, rl_list = construction_phase(arr, attr, threshold_array,
distance_matrix, w, threshold, top_n,
max_iterations_construction)
if verbose:
print("max_p: ", max_p)
print('number of good partitions:', len(rl_list))
alpha = 0.998
tabuLength = 10
max_no_move = attr.size
best_obj_value = np.inf
best_label = None
best_fn = None
best_sa_time = np.inf
for irl, rl in enumerate(rl_list):
label, regionList, regionSpatialAttr = rl
if verbose:
print(irl)
for saiter in range(max_iterations_sa):
sa_start_time = time.time()
finalLabel, finalRegionList, finalRegionSpatialAttr = performSA(
label, regionList, regionSpatialAttr, threshold_array,
w, distance_matrix, threshold, alpha, tabuLength, max_no_move)
sa_end_time = time.time()
totalWithinRegionDistance = calculateWithinRegionDistance(
finalRegionList, distance_matrix)
if verbose:
print("totalWithinRegionDistance after SA: ")
print(totalWithinRegionDistance)
if totalWithinRegionDistance < best_obj_value:
best_obj_value = totalWithinRegionDistance
best_label = finalLabel
best_fn = irl
best_sa_time = sa_end_time - sa_start_time
if verbose:
print("best objective value:")
print(best_obj_value)
return max_p, best_label
def construction_phase(arr,
attr,
threshold_array,
distance_matrix,
weight,
spatialThre,
random_assign_choice,
max_it=999):
labels_list = []
pv_list = []
max_p = 0
maxp_labels = None
maxp_regionList = None
maxp_regionSpatialAttr = None
for _ in range(max_it):
labels = [0] * len(threshold_array)
C = 0
regionSpatialAttr = {}
enclave = []
regionList = {}
np.random.shuffle(arr)
labeledID = []
for arr_index in range(0, len(threshold_array)):
P = arr[arr_index]
if not (labels[P] == 0):
continue
NeighborPolys = deepcopy(weight.neighbors[P])
if len(NeighborPolys) < 0:
labels[P] = -1
else:
C += 1
labeledID, spatialAttrTotal = growClusterForPoly(
labels, threshold_array, P, NeighborPolys, C,
weight, spatialThre)
print('spatialAttrTotal, LabelID ', (spatialAttrTotal, labeledID))
if spatialAttrTotal < spatialThre:
enclave.extend(labeledID)
else:
regionList[C] = labeledID
regionSpatialAttr[C] = spatialAttrTotal
num_regions = len(regionList)
for i, l in enumerate(labels):
if l == -1:
enclave.append(i)
if num_regions < max_p:
continue
else:
max_p = num_regions
maxp_labels, maxp_regionList, maxp_regionSpatialAttr = assignEnclave(
enclave,
labels,
regionList,
regionSpatialAttr,
threshold_array,
weight,
distance_matrix,
random_assign=random_assign_choice)
pv_list.append(max_p)
labels_list.append(
[maxp_labels, maxp_regionList, maxp_regionSpatialAttr])
realLabelsList = []
realmaxpv = max(pv_list)
for ipv, pv in enumerate(pv_list):
if pv == realmaxpv:
realLabelsList.append(labels_list[ipv])
return [realmaxpv, realLabelsList]
def growClusterForPoly(labels, threshold_array, P, NeighborPolys, C,
weight, spatialThre):
labels[P] = C
labeledID = [P]
spatialAttrTotal = threshold_array[P]
i = 0
while i < len(NeighborPolys):
if spatialAttrTotal >= spatialThre:
break
Pn = NeighborPolys[i]
if labels[Pn] == 0:
labels[Pn] = C
labeledID.append(Pn)
spatialAttrTotal += threshold_array[Pn]
if spatialAttrTotal < spatialThre:
PnNeighborPolys = weight.neighbors[Pn]
for pnn in PnNeighborPolys:
if not pnn in NeighborPolys:
NeighborPolys.append(pnn)
i += 1
return labeledID, spatialAttrTotal
def assignEnclave(enclave,
labels,
regionList,
regionSpatialAttr,
threshold_array,
weight,
distance_matrix,
random_assign=1):
enclave_index = 0
while len(enclave) > 0:
ec = enclave[enclave_index]
ecNeighbors = weight.neighbors[ec]
minDistance = np.Inf
assignedRegion = 0
ecNeighborsList = []
ecTopNeighborsList = []
for ecn in ecNeighbors:
if ecn in enclave:
continue
rm = np.array(regionList[labels[ecn]])
totalDistance = distance_matrix[ec, rm].sum()
ecNeighborsList.append((ecn, totalDistance))
ecNeighborsList = sorted(ecNeighborsList, key=lambda tup: tup[1])
top_num = min([len(ecNeighborsList), random_assign])
if top_num > 0:
ecn_index = np.random.randint(top_num)
assignedRegion = labels[ecNeighborsList[ecn_index][0]]
if assignedRegion == 0:
enclave_index += 1
else:
labels[ec] = assignedRegion
regionList[assignedRegion].append(ec)
regionSpatialAttr[assignedRegion] += threshold_array[ec]
del enclave[enclave_index]
enclave_index = 0
return [
deepcopy(labels),
deepcopy(regionList),
deepcopy(regionSpatialAttr)
]
def calculateWithinRegionDistance(regionList, distance_matrix):
totalWithinRegionDistance = 0
for k, v in regionList.items():
nv = np.array(v)
regionDistance = distance_matrix[nv, :][:, nv].sum() / 2
totalWithinRegionDistance += regionDistance
return totalWithinRegionDistance
def pickMoveArea(labels, regionLists, regionSpatialAttrs,
threshold_array, weight, distance_matrix, threshold):
potentialAreas = []
labels_array = np.array(labels)
for k, v in regionSpatialAttrs.items():
rla = np.array(regionLists[k])
rasa = threshold_array[rla]
lostSA = v - rasa
pas_indices = np.where(lostSA > threshold)[0]
if pas_indices.size > 0:
for pasi in pas_indices:
leftAreas = np.delete(rla, pasi)
ws = weight.sparse
cc = connected_components(ws[leftAreas, :][:, leftAreas])
if cc[0] == 1:
potentialAreas.append(rla[pasi])
else:
continue
return potentialAreas
def checkMove(poa, labels, regionLists, threshold_array, weight,
distance_matrix, threshold):
poaNeighbor = weight.neighbors[poa]
donorRegion = labels[poa]
rm = np.array(regionLists[donorRegion])
lostDistance = distance_matrix[poa, rm].sum()
potentialMove = None
minAddedDistance = np.Inf
for poan in poaNeighbor:
recipientRegion = labels[poan]
if donorRegion != recipientRegion:
rm = | np.array(regionLists[recipientRegion]) | numpy.array |
#!/usr/bin/env python
import sys
from datetime import datetime, timedelta
import numpy as np
import requests
import json
from lxml import html
GOOD_RESPONSE = '✅'
BAD_RESPONSE = '❌'
POOR_RESPONSE = '🔴'
NO_RESPONSE = '⚪'
EXCEPTIONAL_RESPONSE = '🔵'
WARNING_RESPONSE = '⚠️'
print_console = True
print_pdf = False
dns_trt_thresholds = {
'fail': 120,
'warn': 50
}
diff_hours = 24 # Hours to look back at
pan_service_dict = {
"Prisma Access": 'q8kbg3n63tmp',
"Prisma Cloud Management": "61lhr4ly5h9b",
"Prisma Cloud": '1nvndw0xz3nd',
"Prisma SaaS": 'f0q7vkhppsgw',
}
# we will be using slack blocks for this response in place of text.
def blocks_section(wanted_text):
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": wanted_text
}
}
def blocks_divider():
return {
"type": "divider"
}
def pBold(str_to_print):
return '*' + str_to_print + '*'
def pFail(str_to_print):
return str_to_print + " " + POOR_RESPONSE
def pPass(str_to_print):
return str_to_print + " " + GOOD_RESPONSE
def pWarn(str_to_print):
return str_to_print + " " + WARNING_RESPONSE
def pExceptional(str_to_print):
return str_to_print + " " + EXCEPTIONAL_RESPONSE
def pUnderline(str_to_print):
return '_' + str_to_print + '_'
def dns_trt_classifier(dns_trt_time):
if dns_trt_time > dns_trt_thresholds['fail']:
return pFail(str(dns_trt_time))
elif dns_trt_time > dns_trt_thresholds['warn']:
return pWarn(str(dns_trt_time))
else:
return pPass(str(dns_trt_time))
def metric_classifier(value, expected, error_percentage_as_decimal, warn_percentage_as_decimal=0.05):
if value < (expected - (expected * error_percentage_as_decimal)):
return pFail(str(value))
elif value >= expected + (expected * error_percentage_as_decimal * 2):
return pExceptional(str(value))
elif value >= expected - (expected * warn_percentage_as_decimal):
return pPass(str(value))
else:
return pWarn(str(value))
class dbbox:
dl = u'\u255a'
ul = u'\u2554'
dc = u'\u2569'
uc = u'\u2566'
lc = u'\u2560'
u = u'\u2550'
c = u'\u256c'
l = u'\u2551'
P1 = "P1"
H1 = "H1"
H2 = "H2"
B1 = "B1"
B2 = "B2"
END_SECTION = "END_SECTION"
def vprint(text, style="B1", buffer=None):
if buffer is None:
buffer = []
if print_console:
if text == "END_SECTION":
buffer.append(blocks_divider())
buffer.append(blocks_section(" "))
elif style == "P1":
buffer.append(blocks_divider())
buffer.append(blocks_section(pBold(text)))
buffer.append(blocks_divider())
elif style == "H1":
buffer.append(blocks_divider())
buffer.append(blocks_section(pBold(text)))
buffer.append(blocks_divider())
elif style == "H2":
buffer.append(blocks_divider())
buffer.append(blocks_section(pBold(text)))
buffer.append(blocks_divider())
elif style == "B1":
buffer.append(blocks_section(text))
elif style == "B2":
buffer.append(blocks_section("• " + text))
return buffer
elif print_pdf == True:
return None
else:
return None
def getpanstatus(webcontent, str_service):
services_list = webcontent.xpath('//*[@data-component-id="' + str_service + '"]/span')
if (len(services_list) == 4):
service_status = (services_list[2].text).lstrip().rstrip()
else:
service_status = (services_list[1].text).lstrip().rstrip()
return service_status
def site_health_header(site_id, sdk, idname):
sites_id2n = idname.generate_sites_map()
vpnpaths_id2n = idname.generate_anynets_map()
site_count = 0
search_ratio = 0
site_name = sites_id2n.get(site_id)
# Output queue for slack blocks.
blocks = []
vprint("Health Check for SITE: " + pUnderline(pBold(site_name)) + " SITE ID: " + pBold(site_id), B1,
buffer=blocks)
# vprint(END_SECTION, buffer=blocks)
# Check if elements are online
site_elements = []
element_count = 0
resp = sdk.get.elements()
if resp.cgx_status:
vprint("ION Status for site", H1, buffer=blocks)
element_list = resp.cgx_content.get("items", None) # EVENT_LIST contains an list of all returned events
if len(element_list) >= 0:
for element in element_list: # Loop through each EVENT in the EVENT_LIST
if element['site_id'] == site_id:
element_count += 1
site_elements.append(element['id'])
# if element_count > 1:
# print(dbbox.l)
output_buffer = "ION found NAME: " + pBold(str(element['name'])) + " ION ID: " + \
pBold(str(element['id']))
if element['connected'] is True:
output_buffer += "\n ION Status: " + pPass("CONNECTED")
else:
output_buffer += "\n ION Status: " + pFail("OFFLINE (!!!)")
vprint(output_buffer, B1, buffer=blocks)
if element_count == 0:
vprint("ION Status: " + pBold("No IONS for site found"), B1, buffer=blocks)
vprint(END_SECTION, buffer=blocks)
# give back the slack message.
return blocks
def site_health_alarms(site_id, sdk, idname):
# Output queue for slack blocks.
blocks = []
################### ALARMS ###################
### Get last 5 ALARMS for last diff_hours hours
dt_now = str(datetime.now().isoformat())
dt_start = str((datetime.today() - timedelta(hours=diff_hours)).isoformat())
dt_yesterday = str((datetime.today() - timedelta(hours=48)).isoformat())
event_filter = '{"limit":{"count":5,"sort_on":"time","sort_order":"descending"},"view":{"summary":false},' \
'"severity":[],"query":{"site":["' + site_id + \
'"],"category":[],"code":[],"correlation_id":[],"type":["alarm"]}, ' \
'"start_time": "' + dt_start + '", "end_time": "' + dt_now + '"}'
resp = sdk.post.events_query(event_filter)
if resp.cgx_status:
vprint("Last 5 Alarms for site within the past " + str(diff_hours) + " hours", H1, buffer=blocks)
alarms_list = resp.cgx_content.get("items", None)
if len(alarms_list) == 0:
vprint("No Alarms found in the past " + str(diff_hours) + " hours", B1, buffer=blocks)
else:
for alarm in alarms_list:
vprint("ALARM: " + str(alarm['code']), B1, buffer=blocks)
vprint("Acknowledged: " + str(alarm['cleared']), B2, buffer=blocks)
if alarm['severity'] == "minor":
vprint("Severity : " + pWarn(str(alarm['severity'])), B2, buffer=blocks)
elif alarm['severity'] == "major":
vprint("Severity : " + pFail(str(alarm['severity'])), B2, buffer=blocks)
else:
vprint("Severity : " + str(alarm['severity']), B2, buffer=blocks)
vprint("Timestamp : " + str(alarm['time']), B2, buffer=blocks)
else:
vprint(pFail("ERROR in SCRIPT. Could not get ALARMS"), B1, buffer=blocks)
### Get SUMMARY ALARMS for last diff_hours hours
alarm_summary_dict = {}
event_filter = '{"limit":{"count":1000,"sort_on":"time","sort_order":"descending"},"view":{"summary":false},' \
'"severity":[],"query":{"site":["' + site_id + \
'"],"category":[],"code":[],"correlation_id":[],"type":["alarm"]}, "start_time": "' + dt_start + \
'", "end_time": "' + dt_now + '"}'
resp = sdk.post.events_query(event_filter)
if resp.cgx_status:
vprint("Alarm Summaries for the past " + pUnderline(str(diff_hours)) + pBold(" hours"), H2, buffer=blocks)
alarms_list = resp.cgx_content.get("items", None)
if len(alarms_list) > 0:
for alarm in alarms_list:
if alarm['code'] in alarm_summary_dict.keys():
alarm_summary_dict[alarm['code']] += 1
else:
alarm_summary_dict[alarm['code']] = 1
for alarm_code in alarm_summary_dict.keys():
vprint("CODE: " + str(alarm_code), B1, buffer=blocks)
vprint("TOTAL Count: " + pUnderline(str(alarm_summary_dict[alarm_code])), B2, buffer=blocks)
else:
vprint("No Alarm summaries", B1, buffer=blocks)
else:
vprint(pFail("ERROR in SCRIPT. Could not get ALARMS"), B1, buffer=blocks)
vprint(END_SECTION, buffer=blocks)
# give back the slack message.
return blocks
def site_health_alerts(site_id, sdk, idname):
# Output queue for slack blocks.
blocks = []
dt_now = str(datetime.now().isoformat())
dt_start = str((datetime.today() - timedelta(hours=diff_hours)).isoformat())
dt_yesterday = str((datetime.today() - timedelta(hours=48)).isoformat())
################### ALERTS ###################
### Get last 5 ALERTS for last diff_hours hours
event_filter = '{"limit":{"count":5,"sort_on":"time","sort_order":"descending"},"view":{"summary":false},' \
'"severity":[],"query":{"site":["' + site_id + \
'"],"category":[],"code":[],"correlation_id":[],"type":["alert"]}, "start_time": "' + dt_start + \
'", "end_time": "' + dt_now + '"}'
resp = sdk.post.events_query(event_filter)
if resp.cgx_status:
vprint("Last 5 Alerts for site within the past " + str(diff_hours) + " hours", H1, buffer=blocks)
alerts_list = resp.cgx_content.get("items", None)
if len(alerts_list) == 0:
vprint("No Alerts found", B1, buffer=blocks)
else:
for alert in alerts_list:
vprint("ALERT CODE: " + pBold(str(alert['code'])), B1, buffer=blocks)
if 'reason' in alert['info'].keys():
vprint("REASON : " + str(alert['info']['reason']), B2, buffer=blocks)
if 'process_name' in alert['info'].keys():
vprint("PROCESS : " + str(alert['info']['process_name']), B2, buffer=blocks)
if 'detail' in alert['info'].keys():
vprint("DETAIL : " + str(alert['info']['detail']), B2, buffer=blocks)
if alert['severity'] == "minor":
vprint("SEVERITY : " + pWarn(str(alert['severity'])), B2, buffer=blocks)
elif alert['severity'] == "major":
vprint("SEVERITY : " + pFail(str(alert['severity'])), B2, buffer=blocks)
else:
vprint("SEVERITY : " + (str(alert['severity'])), B2, buffer=blocks)
vprint("TIMESTAMP : " + str(alert['time']), B2, buffer=blocks)
else:
vprint("ERROR in SCRIPT. Could not get Alerts", buffer=blocks)
### Get ALERTS summary for last diff_hours hours
alert_summary_dict = {}
event_filter = '{"limit":{"count":1000,"sort_on":"time","sort_order":"descending"},"view":{"summary":false},' \
'"severity":[],"query":{"site":["' + site_id + \
'"],"category":[],"code":[],"correlation_id":[],"type":["alert"]}, ' \
'"start_time": "' + dt_start + '", "end_time": "' + dt_now + '"}'
resp = sdk.post.events_query(event_filter)
if resp.cgx_status:
vprint("Alert Summaries for the past " + pUnderline(str(diff_hours)) + pBold(" hours"), H1, buffer=blocks)
alerts_list = resp.cgx_content.get("items", None)
if len(alerts_list) > 0:
for alert in alerts_list:
if alert['code'] in alert_summary_dict.keys():
alert_summary_dict[alert['code']] += 1
else:
alert_summary_dict[alert['code']] = 1
for alert_code in alert_summary_dict.keys():
vprint("CODE: " + str(alert_code), B1, buffer=blocks)
vprint("TOTAL Count: " + pUnderline(str(alert_summary_dict[alert_code])), B2, buffer=blocks)
else:
vprint("No Alarm summaries", B1, buffer=blocks)
else:
vprint(pFail("ERROR in SCRIPT. Could not get Alerts"), B1, buffer=blocks)
vprint(END_SECTION, buffer=blocks)
# give back the slack message.
return blocks
def site_health_links(site_id, sdk, idname):
sites_id2n = idname.generate_sites_map()
vpnpaths_id2n = idname.generate_anynets_map()
site_count = 0
search_ratio = 0
site_name = sites_id2n.get(site_id)
dt_now = str(datetime.now().isoformat())
dt_start = str((datetime.today() - timedelta(hours=diff_hours)).isoformat())
dt_yesterday = str((datetime.today() - timedelta(hours=48)).isoformat())
# Output queue for slack blocks.
blocks1 = []
blocks2 = []
blocks3 = []
elements_id_to_name = idname.generate_elements_map()
site_id_to_name = idname.generate_sites_map()
wan_label_id_to_name = idname.generate_waninterfacelabels_map()
wan_if_id_to_name = idname.generate_waninterfaces_map()
wan_interfaces_resp = sdk.get.waninterfaces(site_id)
wan_interfaces_list = wan_interfaces_resp.cgx_content.get("items")
### GET LINKS status (VPN/PHYS)
topology_filter = '{"type":"basenet","nodes":["' + site_id + '"]}'
resp = sdk.post.topology(topology_filter)
if resp.cgx_status:
topology_list = resp.cgx_content.get("links", None)
vprint("VPN STATUS", H1, buffer=blocks1)
vpn_count = 0
output_buffer = ""
for links in topology_list:
if (links['type'] == 'vpn') and links['source_site_name'] == site_name:
if vpn_count > 0:
output_buffer += '\n'
vpn_count += 1
# print(dbbox.l + format(vpnpaths_id_to_name.get(links['path_id'], links['path_id'])))
output_buffer += f"VPN {vpn_count}-> SITE:{site_name} " \
f"[ION:{elements_id_to_name[links['source_node_id']]}] ---> " \
f"{wan_if_id_to_name[links['source_wan_if_id']]}:{links['source_wan_network']} " \
f"{dbbox.u * 3}{dbbox.c}{dbbox.u * 3} {links['target_wan_network']}:" \
f"{wan_if_id_to_name[links['target_wan_if_id']]} <--- [" \
f"{elements_id_to_name[links['target_node_id']]}] {links['target_site_name']}"
if links['status'] == "up":
output_buffer += "\n STATUS: " + pPass("UP")
else:
output_buffer += "\n STATUS: " + pFail("DOWN")
# flush the buffer
if vpn_count == 0:
vprint("No SDWAN VPN links found at site", B1, buffer=blocks1)
else:
# got links
vprint(output_buffer, B1, buffer=blocks1)
vprint(END_SECTION, buffer=blocks1)
pcm_metrics_array_up = []
pcm_metrics_array_down = []
vprint("PHYSICAL LINK STATUS", P1, buffer=blocks2)
stub_count = 0
for links in topology_list:
if links['type'] == 'internet-stub':
stub_count += 1
if 'target_circuit_name' in links.keys():
vprint("Physical LINK: " + pBold(str(links['network'])) + ":" + pUnderline(
str(links['target_circuit_name'])), H1, buffer=blocks2)
else:
vprint("Physical LINK: " + pBold(str(links['network'])), H1, buffer=blocks2)
output_buffer = ""
if links['status'] == "up":
output_buffer += " STATUS: " + pPass("UP")
elif links['status'] == "init":
output_buffer += " STATUS: " + pWarn("INIT")
else:
output_buffer += " STATUS: " + pFail("DOWN")
###PCM BANDWIDTH CAPACITY MEASUREMENTS
pcm_request = '{"start_time":"' + dt_start + 'Z","end_time":"' + dt_now + \
'Z","interval":"5min","view":{"summary":false,"individual":"direction"},' \
'"filter":{"site":["' + site_id + '"],"path":["' + \
links['path_id'] + '"]},"metrics":[{"name":"PathCapacity","statistics":["average"],' \
'"unit":"Mbps"}]}'
pcm_resp = sdk.post.metrics_monitor(pcm_request)
pcm_metrics_array_up.clear()
pcm_metrics_array_down.clear()
measurements_up = 0
measurements_down = 0
z_count_down = 0
z_count_up = 0
if pcm_resp.cgx_status:
# stop error with default value
direction = "Upload"
pcm_metric = pcm_resp.cgx_content.get("metrics", None)[0]['series']
if pcm_metric[0]['view']['direction'] == 'Ingress':
direction = "Download"
for series in pcm_metric:
if direction == "Download":
for datapoint in series['data'][0]['datapoints']:
if datapoint['value'] is None:
# pcm_metrics_array_down.append(0)
z_count_down += 1
else:
pcm_metrics_array_down.append(datapoint['value'])
measurements_down += 1
direction = 'Upload'
else:
for datapoint in series['data'][0]['datapoints']:
if datapoint['value'] is None:
# pcm_metrics_array_up.append(0)
z_count_up += 1
else:
pcm_metrics_array_up.append(datapoint['value'])
measurements_up += 1
direction = 'Download'
output_buffer += "\nConfigured Bandwidth/Throughput for the site:"
# Initialize in case no match, no exception
upload = None
download = None
for wan_int in wan_interfaces_list:
if wan_int['id'] == links['path_id']:
upload = wan_int['link_bw_up']
download = wan_int['link_bw_down']
output_buffer += "\nMaximum BW Download : " + str(wan_int['link_bw_down'])
output_buffer += "\nMaximum BW Upload : " + str(wan_int['link_bw_up'])
error_percentage = 0.1
warn_percentage = 0.05
output_buffer += "\nMeasured Link Capacity (PCM) STATS for the last 24 hours" \
"\nTHRESHOLDS: " + pFail("") + \
">=" + (str(error_percentage * 100)) + \
"% | " + pWarn("") + \
">=" + (str(warn_percentage * 100)) + \
"% | " + pPass("") + \
"=Within " + (str(warn_percentage * 100)) + \
"% | " + pExceptional("") + \
"=" + (str(error_percentage * 100 * 2)) + \
"% Above expected"
output_buffer += "Upload - Calculated from " + str(measurements_up) + \
" Measurements in the past 24 Hours in mbits"
if len(pcm_metrics_array_up) == 0:
pcm_metrics_array_up.append(0)
if len(pcm_metrics_array_down) == 0:
pcm_metrics_array_down.append(0)
np_array = np.array(pcm_metrics_array_up)
# vprint("Zeros:" + str(z_count_up), B1)
output_buffer += "\n25th percentile : " \
"" + metric_classifier(round(np.percentile(np_array, 25), 3), upload,
error_percentage, warn_percentage)
output_buffer += "\n50th Percentile(AVG) : " \
"" + metric_classifier(round(np.average(np_array), 3), upload,
error_percentage, warn_percentage)
output_buffer += "\n75th percentile : " \
"" + metric_classifier(round(np.percentile(np_array, 75), 3), upload,
error_percentage, warn_percentage)
output_buffer += "\n95th percentile : " \
"" + metric_classifier(round(np.percentile(np_array, 95), 3), upload,
error_percentage, warn_percentage)
output_buffer += "\nMax Value : " \
"" + metric_classifier(round(np.amax(np_array), 3), upload,
error_percentage, warn_percentage)
output_buffer += "\nDownload - Calculated from " + str(measurements_up) + \
" Measurements in the past 24 Hours"
np_array = np.array(pcm_metrics_array_down)
# vprint("Zeros:" + str(z_count_down), B1)
output_buffer += "\n25th percentile : " \
"" + metric_classifier(round(np.percentile(np_array, 25), 3), download,
error_percentage, warn_percentage)
output_buffer += "\n50th Percentile(AVG) : " \
"" + metric_classifier(round( | np.average(np_array) | numpy.average |
from base.base_test import BaseTest
from tqdm import tqdm
import numpy as np
from utils.utils_plotting import *
import cv2
import gc
def accuracy(a, b):
c = np.equal(a, b).astype(float)
acc = sum(c) / len(c)
return acc
def print_alphas_conv(alp):
for i in range(np.shape(alp)[1]):
curr_im = alp[:,i,:,:,:]
def normalize_im(im):
im_new = im.astype(np.float64)
minimum = im_new.min()
maximum = im_new.max()
im_norm = 255 * (im_new - minimum) / (maximum - minimum)
im_norm = im_norm.astype(np.uint8)
return im_norm
class ExampleTesterPlotAttention(BaseTest):
def __init__(self, sess, model, data_test, config, logger):
super(ExampleTesterPlotAttention, self).__init__(sess, model, config, logger)
self.data_test = data_test
# calculate number of training and validation steps per epochs
self.num_iter_data = data_test.len_lines // self.config.batch_size
def test(self):
losses_val = []
accs_add_val = []
accs_mul_val = []
predictions_add_val = []
predictions_mul_val = []
gt_classes_val = []
loop_test = tqdm(range(self.num_iter_data))
# iterate over steps (batches)
for _ in loop_test:
accu_add, accu_mul, loss, predictions_add, predictions_mul, gt_classes, a = self.test_step()
losses_val.append(loss)
accs_add_val.append(accu_add)
accs_mul_val.append(accu_mul)
# collect also the actual predictions to create confusion matrix
predictions_add_val = | np.append(predictions_add_val, predictions_add) | numpy.append |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : dataset.py
@Time : 2022/01/27 09:14:07
@Author : <NAME>
@Version : 1.0
@Contact : <EMAIL>
@License : (C)Copyright 2021-2022, SAIL-Lab
'''
######################################## import area ########################################
# common library
import os
import warnings
import pandas as pd
import numpy as np
from tqdm import tqdm
from Bio import PDB
from Bio import SeqIO
from Bio import pairwise2
from Bio.PDB import Selection, NeighborSearch
######################################## function area ########################################
amino2id = {
'U': 0, 'X': 21,
'A': 1, 'R': 2, 'N': 3, 'D': 4, 'C': 5, 'Q': 6, 'E': 7, 'G': 8, 'H': 9, 'I': 10,
'L': 11, 'K': 12, 'M': 13, 'F': 14, 'P': 15, 'S': 16, 'T': 17, 'W': 18, 'Y': 19, 'V': 20,
}
id2amino = {value:key for key, value in amino2id.items()}
amino3to1 = {
'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K',
'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N',
'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W',
'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'
}
def fasta_process(fasta_file):
with open(fasta_file, 'r') as f:
lines = f.readlines()
return lines[1].strip()
def pssm_process(fname,seq):
num_pssm_cols = 44
pssm_col_names = [str(j) for j in range(num_pssm_cols)]
if os.path.exists(fname) == 0:
print(fname)
return np.zeros((120,20))
with open(fname,'r') as f:
tmp_pssm = pd.read_csv(f,delim_whitespace=True,names=pssm_col_names).dropna().values[:,2:22].astype(float)
if tmp_pssm.shape[0] != len(seq):
print(tmp_pssm.shape[0], len(seq))
raise ValueError('PSSM file is in wrong format or incorrect!')
return tmp_pssm
def hmm_process(fname,seq):
num_hhm_cols = 22
hhm_col_names = [str(j) for j in range(num_hhm_cols)]
if os.path.exists(fname) == 0:
print(fname)
return np.zeros((120,30))
with open(fname,'r') as f:
hhm = pd.read_csv(f,delim_whitespace=True,names=hhm_col_names)
pos1 = (hhm['0']=='HMM').idxmax()+3
num_cols = len(hhm.columns)
hhm = hhm[pos1:-1].values[:,:num_hhm_cols].reshape([-1,44])
hhm[hhm=='*']='9999'
if hhm.shape[0] != len(seq):
print(hhm.shape[0], len(seq))
raise ValueError('HHM file is in wrong format or incorrect!')
return hhm[:,2:-12].astype(float)
def spd3_feature_sincos(x,seq):
ASA = x[:,0]
rnam1_std = "ACDEFGHIKLMNPQRSTVWYX"
ASA_std = (115, 135, 150, 190, 210, 75, 195, 175, 200, 170,
185, 160, 145, 180, 225, 115, 140, 155, 255, 230, 1)
dict_rnam1_ASA = dict(zip(rnam1_std, ASA_std))
ASA_div = np.array([dict_rnam1_ASA[i] for i in seq])
ASA = (ASA/ASA_div)[:,None]
angles = x[:,1:5]
HSEa = x[:,5:7]
HCEprob = x[:,-3:]
angles = np.deg2rad(angles)
angles = np.concatenate([np.sin(angles),np.cos(angles)],1)
return np.concatenate([ASA,angles,HSEa,HCEprob],1)
def spd33_process(fname,seq):
if os.path.exists(fname) == 0:
print(fname)
return np.zeros((120,14))
with open(fname,'r') as f:
spd3_features = pd.read_csv(f,delim_whitespace=True).values[:,3:].astype(float)
tmp_spd3 = spd3_feature_sincos(spd3_features,seq)
if tmp_spd3.shape[0] != len(seq):
print(tmp_spd3.shape[0], len(seq))
raise ValueError('SPD3 file is in wrong format or incorrect!')
return tmp_spd3
def label_process(fname, seq):
with open(fname, 'r') as f:
lines = f.readlines()
sequence, label = lines[1].strip(), lines[2].strip()
if not len(seq) == len(sequence) == len(label):
print(fname)
print(seq)
print(sequence)
print(label)
assert False
return [int(num) for num in label]
######################################## main area ########################################
if __name__ == '__main__':
# warning
warnings.filterwarnings("ignore")
data_path = './source'
result_path = './preprocess'
data = pd.read_csv(f'{data_path}/dataset.csv', sep=',')
data_pdb, data_H, data_L, data_A = data['pdb'].values, data['Hchain'].values, data['Lchain'].values, data['antigen_chain'].values
# refernce: https://github.com/eliberis/parapred
# H1: 24-34; H2: 50-56; H3: 89-97 ; 11 + 7 + 9 + (4 * 3) = 39
# L1: 26-32; L2: 52-56; L3: 95-102; 7 + 5 + 8 + (4 * 3) = 32
extra_index, distance = 2, 4.5
cdr_ranges = {'H1':[-extra_index + 24, 34 + extra_index], 'H2':[-extra_index + 50, 56 + extra_index], 'H3':[-extra_index + 89, 97 + extra_index],
'L1':[-extra_index + 26, 32 + extra_index], 'L2':[-extra_index + 52, 56 + extra_index], 'L3':[-extra_index + 95, 102 + extra_index]}
######################################## 1. from pdb to chain ########################################
for pdb_id, H_id, L_id, A_id in tqdm(zip(data_pdb, data_H, data_L, data_A), total=len(data_pdb)):
# prepared pdb
model = PDB.PDBParser(PERMISSIVE=1, QUIET=1).get_structure(pdb_id, f'{data_path}/features/pdb/{pdb_id}.pdb')[0]
# antigen chain maybe multichain
A_id = [A_id] if len(A_id) == 1 else A_id.split(' | ')
# save chain
for chain_id in [H_id, L_id] + A_id:
io = PDB.PDBIO()
io.set_structure(model[chain_id])
if os.path.exists(f'{data_path}/features/chain/{pdb_id}{chain_id}.pdb'):
continue
io.save(f'{data_path}/features/chain/{pdb_id}{chain_id}.pdb')
######################################## 2. from chain to fasta ########################################
for pdb_id, H_id, L_id in tqdm(zip(data_pdb, data_H, data_L), total=len(data_pdb)):
for record in SeqIO.parse(f'{data_path}/features/chain/{pdb_id}{H_id}.pdb', 'pdb-atom'):
if f'????:{H_id}' == record.id or H_id == record.id or H_id == record.id[-1]:
with open(f'{data_path}/features/fasta/{pdb_id}{H_id}.fasta','w') as fw:
fw.write(f'>{pdb_id}{H_id}\n')
fw.write("".join(list(record.seq)) + '\n')
for record in SeqIO.parse(f'{data_path}/features/chain/{pdb_id}{L_id}.pdb', 'pdb-atom'):
if f'????:{L_id}' == record.id or L_id == record.id or L_id == record.id[-1]:
with open(f'{data_path}/features/fasta/{pdb_id}{L_id}.fasta','w') as fw:
fw.write(f'>{pdb_id}{L_id}\n')
fw.write("".join(list(record.seq)) + '\n')
####################################### 3. from fasta to check pssm, hmm and spd33 ########################################
for name in tqdm(os.listdir(f'{data_path}/features/fasta')):
name = name.split('.')[0]
pdb_id, chain_id = name[:-1], name[-1]
sequence = fasta_process(f'{data_path}/features/fasta/{name}.fasta')
if not os.path.exists(f'{data_path}/features/pssm/{name}.pssm') \
and os.path.exists(f'{data_path}/features/hmm/{name}.hhm') \
and os.path.exists(f'{data_path}/features/spd33/{name}.spd33'):
print(name)
continue
pssm = pssm_process(f'{data_path}/features/pssm/{name}.pssm', sequence)
hmm = hmm_process(f'{data_path}/features/hmm/{name}.hhm', sequence)
spd33 = spd33_process(f'{data_path}/features/spd33/{name}.spd33', sequence)
if not len(sequence) == pssm.shape[0] == hmm.shape[0] == spd33.shape[0]:
print(name)
continue
######################################## 4. construct label ########################################
for pdb_id, H_id, L_id, A_id in tqdm(zip(data_pdb, data_H, data_L, data_A), total=len(data_pdb)):
# prepared pdb
model = PDB.PDBParser(PERMISSIVE=1, QUIET=1).get_structure(pdb_id, f'{data_path}/features/pdb/{pdb_id}.pdb')[0]
# get antigen chain
if '|' in A_id:
A_ids = A_id.split(' | ')
A_atoms = [a for c in A_ids for a in Selection.unfold_entities(model[c], target_level='A')]
A_chain = None
else:
A_atoms = Selection.unfold_entities(model[A_id], target_level='A')
A_chain = model[A_id]
A_search = NeighborSearch(A_atoms)
# H_chain
H_chain = model[H_id]
# collect label
H_temp_label = list()
for residue in H_chain:
if residue.get_resname() in amino3to1.keys():
if any(len(A_search.search(a.coord, distance)) > 0 for a in residue.get_unpacked_list()):
H_temp_label.append("1")
else:
H_temp_label.append("0")
# alignment label
H_label = list()
H_Chain_fasta = fasta_process(f'{data_path}/features/fasta/{pdb_id}{H_id}.fasta')
sequence = "".join([amino3to1[residue.get_resname()] for residue in H_chain if residue.get_resname() in amino3to1.keys()])
if sequence == H_Chain_fasta:
H_label = H_temp_label
else:
alignments = pairwise2.align.globalxx(H_Chain_fasta, sequence)
standard_fasta = alignments[0].seqA
align_sequence = alignments[0].seqB
for idx, aa in enumerate(standard_fasta):
if aa == align_sequence[idx]:
try:
cls = H_temp_label.pop(0)
except:
print(idx, aa)
print(standard_fasta)
print(align_sequence)
assert False
H_label.append(cls)
else:
H_label.append("0")
assert len(H_label) == len(H_Chain_fasta)
# write file
with open(f'{data_path}/features/label/{pdb_id}{H_id}.txt', 'w') as fw:
fw.write(f'>{pdb_id}{H_id}\n')
fw.write(H_Chain_fasta + '\n')
fw.write("".join(H_label) + '\n')
# L_chain
L_chain = model[L_id]
# collect label
L_temp_label = list()
for residue in L_chain:
if residue.get_resname() in amino3to1.keys():
if any(len(A_search.search(a.coord, distance)) > 0 for a in residue.get_unpacked_list()):
L_temp_label.append("1")
else:
L_temp_label.append("0")
# alignment label
L_label = list()
L_Chain_fasta = fasta_process(f'{data_path}/features/fasta/{pdb_id}{L_id}.fasta')
sequence = "".join([amino3to1[residue.get_resname()] for residue in L_chain if residue.get_resname() in amino3to1.keys()])
if sequence == L_Chain_fasta:
L_label = L_temp_label
else:
alignments = pairwise2.align.globalxx(L_Chain_fasta, sequence)
standard_fasta = alignments[0].seqA
align_sequence = alignments[0].seqB
for idx, aa in enumerate(standard_fasta):
if aa == align_sequence[idx]:
try:
cls = L_temp_label.pop(0)
except:
print(idx, aa)
print(standard_fasta)
print(align_sequence)
assert False
L_label.append(cls)
else:
L_label.append("0")
assert len(L_label) == len(L_Chain_fasta)
# write file
with open(f'{data_path}/features/label/{pdb_id}{L_id}.txt', 'w') as fw:
fw.write(f'>{pdb_id}{L_id}\n')
fw.write(L_Chain_fasta + '\n')
fw.write("".join(L_label) + '\n')
######################################## 5. construct concatenate cdrs ########################################
with open(f'{data_path}/total_277.fasta', 'w') as fw:
for pdb_id, H_id, L_id in tqdm(zip(data_pdb, data_H, data_L), total=len(data_pdb)):
H_Chain_fasta = fasta_process(f'{data_path}/features/fasta/{pdb_id}{H_id}.fasta')
H_Chain_pssm = pssm_process(f'{data_path}/features/pssm/{pdb_id}{H_id}.pssm', H_Chain_fasta)
H_Chain_hmm = hmm_process(f'{data_path}/features/hmm/{pdb_id}{H_id}.hhm', H_Chain_fasta)
H_Chain_spd33 = spd33_process(f'{data_path}/features/spd33/{pdb_id}{H_id}.spd33', H_Chain_fasta)
H_Chain_label = label_process(f'{data_path}/features/label/{pdb_id}{H_id}.txt', H_Chain_fasta)
L_Chain_fasta = fasta_process(f'{data_path}/features/fasta/{pdb_id}{L_id}.fasta')
L_Chain_pssm = pssm_process(f'{data_path}/features/pssm/{pdb_id}{L_id}.pssm', L_Chain_fasta)
L_Chain_hmm = hmm_process(f'{data_path}/features/hmm/{pdb_id}{L_id}.hhm', L_Chain_fasta)
L_Chain_spd33 = spd33_process(f'{data_path}/features/spd33/{pdb_id}{L_id}.spd33', L_Chain_fasta)
L_Chain_label = label_process(f'{data_path}/features/label/{pdb_id}{L_id}.txt', L_Chain_fasta)
# construct concatenate label
cdrs, pssms, hmms, spd33s, labels = list(), list(), list(), list(), list()
for cdr in ['H1', 'H2', 'H3']:
start, end = cdr_ranges[cdr]
try:
fasta = H_Chain_fasta[start:end]
pssm = H_Chain_pssm[start:end]
hmm = H_Chain_hmm[start:end]
spd33 = H_Chain_spd33[start:end]
label = H_Chain_label[start:end]
except:
print(f'{pdb_id}{H_id}')
assert False
# H1 U H2 U H3 U
cdrs.extend([amino2id[amino] for amino in fasta] + [amino2id['U']])
pssms.extend(np.vstack([pssm, np.array([0] * pssm.shape[-1])]))
hmms.extend(np.vstack([hmm, np.array([0] * hmm.shape[-1])]))
spd33s.extend(np.vstack([spd33, np.array([0] * spd33.shape[-1])]))
labels.extend(label + [0])
for cdr in ['L1', 'L2', 'L3']:
try:
fasta = L_Chain_fasta[start:end]
pssm = L_Chain_pssm[start:end]
hmm = L_Chain_hmm[start:end]
spd33 = L_Chain_spd33[start:end]
label = L_Chain_label[start:end]
except:
print(f'{pdb_id}{L_id}')
assert False
# H1 U H2 U H3 U L1 U L2 U L3
if cdr != 'L3':
cdrs.extend([amino2id[amino] for amino in fasta] + [amino2id['U']])
pssms.extend(np.vstack([pssm, np.array([0] * pssm.shape[-1])]))
hmms.extend(np.vstack([hmm, | np.array([0] * hmm.shape[-1]) | numpy.array |
"""
Script goal, to produce trends in netcdf files
This script can also be used in P03 if required
"""
#==============================================================================
__title__ = "Global Vegetation Trends"
__author__ = "<NAME>"
__version__ = "v1.0(28.03.2019)"
__email__ = "<EMAIL>"
#==============================================================================
# +++++ Check the paths and set ex path to fireflies folder +++++
import os
import sys
if not os.getcwd().endswith("fireflies"):
if "fireflies" in os.getcwd():
p1, p2, _ = os.getcwd().partition("fireflies")
os.chdir(p1+p2)
else:
raise OSError(
"This script was called from an unknown path. CWD can not be set"
)
sys.path.append(os.getcwd())
#==============================================================================
# Import packages
import numpy as np
import pandas as pd
import argparse
import datetime as dt
from collections import OrderedDict
import warnings as warn
from scipy import stats
import xarray as xr
from numba import jit
import bottleneck as bn
import scipy as sp
import glob
# from netCDF4 import Dataset, num2date, date2num
# from scipy import stats
# import statsmodels.stats.multitest as smsM
# Import plotting and colorpackages
import matplotlib.pyplot as plt
import matplotlib.colors as mpc
import matplotlib as mpl
import palettable
import seaborn as sns
import cartopy.crs as ccrs
import cartopy.feature as cpf
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
# Import debugging packages
import ipdb
print("numpy version : ", np.__version__)
print("pandas version : ", pd.__version__)
print("xarray version : ", xr.__version__)
#==============================================================================
def main():
# ========== Set up the params ==========
arraysize = 10000 # size of the area to test
mat = 40.0 # how long before a forest reaches maturity
germ = 10.0 # how long before a burnt site can germinate
burnfrac = 0.10 # how much burns
# burnfrac = BurntAreaFraction(year=2016)/2
# nburnfrac = 0.0 # how much burns in other years
nburnfrac = 0.02 # how much burns in other years
# nburnfrac = BurntAreaFraction(year=2018)/2.0 # how much burns in other years
# nburnfrac = np.mean([BurntAreaFraction(year=int(yr)) for yr in [2015, 2017, 2018]]) # how much burns in other years
firefreqL = [25, 20, 15, 11, 5, 4, 3, 2, 1] # how often the fires happen
years = 200 # number of years to loop over
RFfrac = 0.04 # The fraction that will fail to recuit after a fire
iterations = 100
# ========== Create empty lists to hold the variables ==========
obsMA = OrderedDict()
obsMF = OrderedDict()
obsGF = OrderedDict()
obsSF = OrderedDict()
obsMAstd = OrderedDict()
obsMFstd = OrderedDict()
obsGFstd = OrderedDict()
obsSFstd = OrderedDict()
# ========== Loop over the fire frequency list ==========
for firefreq in firefreqL:
print("Testing with a %d year fire frequency" % firefreq)
# ************VECTORISE THIS LOOP *********
iymean = []
ifmat = []
ifgerm = []
ifsap = []
for it in np.arange(iterations):
print("Iteration %d of %d" % (it, iterations))
# ========== Make an array ==========
array = np.zeros( arraysize)
rucfail = np.ones( arraysize)
index = np.arange( arraysize)
# ========== Make the entire array mature forest ==========
array[:] = mat
# ========== Create the empty arrays ==========
ymean = []
fmat = []
fgerm = []
fsap = []
rfhold = 0 #the left over fraction of RF
# ========== start the loop ==========
# ************VECTORISE THIS LOOP *********
for year in range(0, years):
# Loop over every year in case i want to add major fire events
# print(year)
if year % firefreq == 0:
# FIre year
array, rucfail, rfhold = firetime(array, index, mat, germ, burnfrac, rucfail, RFfrac, rfhold)
else:
# non fire year
array, rucfail, rfhold = firetime(array, index, mat, germ, nburnfrac, rucfail, RFfrac, rfhold)
# Mean years
ymean.append(np.mean(array))
# Fraction of mature forest\
fmat.append(np.sum(array>=mat)/float(arraysize))
# Fraction of germinating forest
fsap.append(np.sum(np.logical_and((array>germ), (array<mat)))/float(np.sum((array>germ))))
# Fraction of germinating forest
fgerm.append(np.sum(array>germ)/float(arraysize))
# if year>60 and firefreq == 1:
iymean.append(np.array(ymean))
ifmat.append (np.array(fmat))
ifgerm.append (np.array(fgerm))
ifsap .append ( | np.array(fsap) | numpy.array |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Includes the Biopac data source class
"""
import pandas as pd
import numpy as np
from scipy.io import loadmat
from scipy.interpolate import UnivariateSpline
from data_source import DataSource
from schema import Schema, Or, Optional
def _val(x, pos, label_bin):
return np.mean(x)
def _std(x, pos, label_bin):
return x.std(axis=0)
def _sem(x, pos, label_bin):
return x.sem(axis=0)
def _var(x, pos, label_bin):
return np.var(x)
class Biopac(DataSource):
def __init__(self, config, schedule):
# Call the parent class init
super(Biopac, self).__init__(config, schedule)
self.panels = {'bpm': {'VAL': _val,
'SEM': _sem},
'rr': {'VAL': _val,
'STD': _std},
'twave': {'VAL': _val,
'SEM': _sem}}
def load(self, file_paths):
"""Override for load method to include .mat compatibility."""
self.data['samples'] = pd.read_csv(file_paths['samples'],
comment="#",
delimiter="\t",
skipinitialspace=True,
header=None,
index_col=False,
names=['bpm', 'rr', 'twave'])
raw_mat = loadmat(file_paths['labels'])
events = raw_mat['events'][:, 0]
self.data['labels'] = pd.DataFrame({'flag': events},
index=np.arange(events.size))
def merge_data(self):
"""
Clean and merge the samples and labels data.
"""
# TODO(janmtl): return an error if the files have not been loaded yet.
# Clean the samples data frame and the labels data frame
self.data['samples'] = self._clean_samples(self.data['samples'])
self.data['labels'] = self._clean_labels(self.data['labels'])
self.label_config = self._label_config_to_df(self.config)
# Combine the labels data with the labels configuration
self.data['labels'] = self._merge_labels_and_config(
labels=self.data['labels'],
config=self.label_config)
@staticmethod
def _label_config_to_df(config):
"""Convert the label configuration dictionary to a data frame."""
labels_list = []
for event_type, label_config in config.iteritems():
pattern = label_config['pattern']
if isinstance(pattern, dict):
for event_group, flag in label_config['pattern'].iteritems():
labels_list.append({
'Label': event_type,
'Condition': event_group,
'Duration': label_config['duration'],
'N_Bins': label_config['bins'],
'Left_Trim': label_config.get('left_trim', 0),
'Right_Trim': label_config.get('right_trim', 0),
'flag': flag})
elif isinstance(pattern, int):
labels_list.append({
'Label': event_type,
'Condition': np.nan,
'Duration': label_config['duration'],
'N_Bins': label_config['bins'],
'Left_Trim': label_config.get('left_trim', 0),
'Right_Trim': label_config.get('right_trim', 0),
'flag': pattern})
else:
raise Exception('Bad Biopac config flag {}'.format(pattern))
return pd.DataFrame(labels_list)
@staticmethod
def _clean_labels(labels):
"""
Turn the Biopac flag channel into a data frame of label flags and start
times.
"""
# TODO(janmtl): finish this docstring
flags = labels['flag'].values
low_offset = np.append(-255, flags)
high_offset = np.append(flags, flags[-1])
sel = ((low_offset-high_offset) != 0)[:-1]
event_flags = flags[sel]
start_times = np.where((low_offset-high_offset) != 0)[0]
labels = pd.DataFrame({'flag': event_flags,
'Start_Time': start_times})
labels = labels[(labels['flag'] != 255)]
return labels
@staticmethod
def _clean_samples(samples):
"""
.
"""
scale = 0.55
samples.index = samples.index*100
for col_name, col in samples.iteritems():
x = col.index
y = col.values
spl = UnivariateSpline(x, y, k=5, s=scale*len(x))
samples[col_name] = spl(x)
samples['pos'] = True
return samples
@staticmethod
def _merge_labels_and_config(labels, config):
"""
Merge together the contents of the labels file with the label
configuration dictionary.
"""
labels = pd.merge(labels, config, on='flag')
labels = labels.sort_values(by='Start_Time', axis=0)
return labels
def create_label_bins(self, labels):
"""Replace the N_Bins column with Bin_Index and the Duration column
with End_Time. This procedure grows the number of rows in the labels
data frame."""
total_bins = labels['N_Bins'].sum()
label_bins = pd.DataFrame(columns=['Order', 'ID', 'Label',
'Condition', 'Bin_Order',
'Start_Time', 'End_Time',
'Bin_Index'],
index=np.arange(0, total_bins))
idx = 0
for _, label in labels.iterrows():
n_bins = label['N_Bins']
cuts = np.linspace(start=label['Start_Time'] + label['Left_Trim'],
stop=(label['Start_Time']
+ label['Duration']
- label['Right_Trim']),
num=n_bins+1)
label_info = np.tile(label.as_matrix(columns=['Label',
'Condition']),
(n_bins, 1))
# Order and ID
label_bins.iloc[idx:idx+n_bins, 0:2] = np.nan
# Label, Condition
label_bins.iloc[idx:idx+n_bins, 2:4] = label_info
# Bin_Order
label_bins.iloc[idx:idx+n_bins, 4] = idx+ | np.arange(0, n_bins, 1) | numpy.arange |
from corvus.structures import Handler, Exchange, Loop, Update
import corvutils.pyparsing as pp
import os, sys, subprocess, shutil #, resource
import re
import numpy as np
#from CifFile import ReadCif
#from cif2cell.uctools import *
# Debug: FDV
import pprint
pp_debug = pprint.PrettyPrinter(indent=4)
# Define dictionary of implemented calculations
implemented = {}
strlistkey = lambda L:','.join(sorted(L))
subs = lambda L:[{L[j] for j in range(len(L)) if 1<<j&k} for k in range(1,1<<len(L))]
for s in subs(['potlist','atomlist']):
key = strlistkey(s)
autodesc = 'Basic FEFF ' + ', '.join(s) + ' from ABINIT cell definition'
input = ['acell','znucl','xred','rprim','natom']
cost = 1
implemented[key] = {'type':'Exchange','out':list(s),'req':input,
'desc':autodesc,'cost':cost}
implemented['feffAtomicData'] = {'type':'Exchange','out':['feffAtomicData'],'cost':1,
'req':['cluster','absorbing_atom'],'desc':'Calculate atomic data using FEFF.'}
implemented['feffSCFPotentials'] = {'type':'Exchange','out':['feffSCFPotentials'],'cost':1,
'req':['cluster','absorbing_atom','feffAtomicData'],'desc':'Calculate SCF potentials using FEFF.'}
implemented['feffCrossSectionsAndPhases'] = {'type':'Exchange','out':['feffCrossSectionsAndPhases'],'cost':1,
'req':['cluster','absorbing_atom','feffSCFPotentials'],'desc':'Calculate atomic cross sections and phases using FEFF.'}
implemented['feffGreensFunction'] = {'type':'Exchange','out':['feffGreensFunction'],'cost':1,
'req':['cluster','absorbing_atom','feffCrossSectionsAndPhases'],'desc':'Calculate Greens function using FEFF.'}
implemented['feffPaths'] = {'type':'Exchange','out':['feffPaths'],'cost':1,
'req':['cluster','absorbing_atom','feffGreensFunction'],'desc':'Calculate paths using FEFF.'}
implemented['feffFMatrices'] = {'type':'Exchange','out':['feffFMatrices'],'cost':1,
'req':['cluster','absorbing_atom','feffPaths'],'desc':'Calculate scattering matrices using FEFF.'}
implemented['xanes'] = {'type':'Exchange','out':['xanes'],'cost':1,
'req':['cluster','absorbing_atom'],'desc':'Calculate XANES using FEFF.'}
implemented['feffXES'] = {'type':'Exchange','out':['feffXES'],'cost':1,
'req':['cluster','absorbing_atom'],'desc':'Calculate XANES using FEFF.'}
implemented['feffRIXS'] = {'type':'Exchange','out':['feffRIXS'],'cost':1,
'req':['cluster','absorbing_atom'],'desc':'Calculate XANES using FEFF.'}
implemented['opcons'] = {'type':'Exchange','out':['opcons'],'cost':1,
'req':['cif_input'],'desc':'Calculate optical constants using FEFF.'}
# Added by FDV
# Trying to implement and EXAFS with optimized geometry and ab initio DW factors
implemented['opt_dynmat_s2_exafs'] = {'type':'Exchange',
'out':['opt_dynmat_s2_exafs'], 'cost':3,
'req':['opt_dynmat','absorbing_atom'],
'desc':'Calculate EXAFS with optimized geometry and ab initio DW factors from a dynamical matrix using FEFF.'}
class Feff(Handler):
def __str__(self):
return 'FEFF Handler'
@staticmethod
def canProduce(output):
if isinstance(output, list) and output and isinstance(output[0], str):
return strlistkey(output) in implemented
elif isinstance(output, str):
return output in implemented
else:
raise TypeError('Output should be token or list of tokens')
@staticmethod
def requiredInputFor(output):
if isinstance(output, list) and output and isinstance(output[0], str):
unresolved = {o for o in output if not Feff.canProduce(o)}
canProduce = (o for o in output if Feff.canProduce(o))
additionalInput = (set(implemented[o]['req']) for o in canProduce)
return list(set.union(unresolved,*additionalInput))
elif isinstance(output, str):
if output in implemented:
return implemented[output]['req']
else:
return [output]
else:
raise TypeError('Output should be token or list of tokens')
@staticmethod
def cost(output):
if isinstance(output, list) and output and isinstance(output[0], str):
key = strlistkey(output)
elif isinstance(output, str):
key = output
else:
raise TypeError('Output should be token or list of tokens')
if key not in implemented:
raise LookupError('Corvus cannot currently produce ' + key + ' using FEFF')
return implemented[key]['cost']
@staticmethod
def sequenceFor(output,inp=None):
if isinstance(output, list) and output and isinstance(output[0], str):
key = strlistkey(output)
elif isinstance(output, str):
key = output
else:
raise TypeError('Output should be token of list of tokens')
if key not in implemented:
raise LookupError('Corvus cannot currently produce ' + key + ' using FEFF')
f = lambda subkey : implemented[key][subkey]
if f('type') is 'Exchange':
return Exchange(Feff, f('req'), f('out'), cost=f('cost'), desc=f('desc'))
@staticmethod
def prep(config):
if 'xcIndexStart' in config:
if config['xcIndexStart'] > 0:
subdir = config['pathprefix'] + str(config['xcIndex']) + '_FEFF'
xcDir = os.path.join(config['cwd'], subdir)
else:
xcDir = config['xcDir']
else:
subdir = config['pathprefix'] + str(config['xcIndex']) + '_FEFF'
xcDir = os.path.join(config['cwd'], subdir)
# Make new output directory if if doesn't exist
if not os.path.exists(xcDir):
os.makedirs(xcDir)
# Store current Exchange directory in configuration
config['xcDir'] = xcDir
#@staticmethod
#def setDefaults(input,target):
# JJ Kas - run now performs all 3 methods, i.e., generateInput, run, translateOutput
# Maybe we should also include prep here. Is there a reason that we want to limit the directory names
# to automated Corvus_FEFFNN? Also if we have prep included here, we can decide on making a new directory
# or not.
@staticmethod
def run(config, input, output):
# Set os specific executable ending
if os.name == 'nt':
win_exe = '.exe'
else:
win_exe = ''
# set atoms and potentials
# Set directory to feff executables.
# Debug: FDV
# pp_debug.pprint(config)
feffdir = config['feff']
# Debug: FDV
# sys.exit()
# Copy feff related input to feffinput here. Later we will be overriding some settings,
# so we want to keep the original input intact.
feffInput = {key:input[key] for key in input if key.startswith('feff.')}
# Generate any data that is needed from generic input and populate feffInput with
# global data (needed for all feff runs.)
if 'feff.target' in input or 'cluster' not in input:
if 'cif_input' in input: # Prefer using cif for input, but still use REAL space
# Replace path with absolute path
feffInput['feff.cif'] = [[os.path.abspath(input['cif_input'][0][0])]]
if 'feff.reciprocal' not in input:
feffInput['feff.real'] = [[True]]
if 'cluster' in input:
atoms = getFeffAtomsFromCluster(input)
setInput(feffInput,'feff.atoms',atoms)
potentials = getFeffPotentialsFromCluster(input)
setInput(feffInput,'feff.potentials',potentials)
debyeOpts = getFeffDebyeOptions(input)
if 'feff.exchange' in feffInput:
exch = feffInput['feff.exchange']
else:
exch = [[0, 0.0, 0.0, 2]]
if 'spectral_broadening' in input:
exch[0][2] = input['spectral_broadening'][0][0]
if 'fermi_shift' in input:
exch[0][1] = input['fermi_shift'][0][0]
feffInput['feff.exchange'] = exch
if debyeOpts is not None:
setInput(feffInput,'feff.debye',debyeOpts)
# Set directory for this exchange
dir = config['xcDir']
# Set input file
inpf = os.path.join(dir, 'feff.inp')
# Loop over targets in output. Not sure if there will ever be more than one output target here.
for target in output:
if (target == 'feffAtomicData'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeAtomicInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable.
# Run rdinp and atomic part of calculation
execs = ['rdinp','atomic','screen']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = [feffInput.get('feff.MPI.CMD')[0] + win_exe]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe) + win_exe]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
# For this case, I am only passing the directory for now so
# that other executables in FEFF can use the atomic data.
output[target] = dir
elif (target == 'feffSCFPotentials'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeSCFInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable. Here I am running
# rdinp again since writeSCFInput may have different cards than
# Run rdinp and atomic part of calculation
execs = ['rdinp','atomic', 'pot', 'screen']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
# For this case, I am only passing the directory for now so
# that other executables in FEFF can use the atomic data.
output[target] = dir
elif (target == 'feffCrossSectionsAndPhases'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeCrossSectionsInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable. Here I am running
# rdinp again since writeSCFInput may have different cards than
# Run rdinp and atomic part of calculation
execs = ['rdinp','atomic','screen', 'pot', 'xsph']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
output[target] = dir
elif (target == 'feffGreensFunction'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeGreensFunctionInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable. Here I am running
# rdinp again since writeSCFInput may have different cards than
execs = ['rdinp','atomic','pot','screen','xsph','fms','mkgtr']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
# For this case, I am only passing the directory for now so
# that other executables in FEFF can use the atomic data.
output[target] = dir
elif (target == 'feffPaths'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writePathsInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable. Here I am running
# rdinp again since writeSCFInput may have different cards than
execs = ['rdinp','atomic','pot','screen','xsph','fms','mkgtr','path']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
# For this case, I am only passing the directory for now so
# that other executables in FEFF can use the atomic data.
output[target] = dir
elif (target == 'feffFMatrices'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeFMatricesInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable. Here I am running
# rdinp again since writeSCFInput may have different cards than
execs = ['rdinp','atomic','pot','screen','xsph','fms','mkgtr','path','genfmt']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
output[target] = dir
elif (target == 'xanes'):
# Loop over edges. For now just run in the same directory. Should change this later.
for i,edge in enumerate(input['feff.edge'][0]):
feffInput['feff.edge'] = [[edge]]
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeXANESInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable. Here I am running
# rdinp again since writeSCFInput may have different cards than
execs = ['rdinp','atomic','pot','screen','opconsat','xsph','fms','mkgtr','path','genfmt','ff2x','sfconv']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = [feffInput.get('feff.MPI.CMD')[0][0] + win_exe]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe) + win_exe]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
outFile=os.path.join(dir,'xmu.dat')
w,xmu = np.loadtxt(outFile,usecols = (0,3)).T
if i==0:
xmu_arr = [xmu]
w_arr = [w]
else:
xmu_arr = xmu_arr + [xmu]
w_arr = w_arr + [w]
# Now combine energy grids, interpolate files, and sum.
wtot = np.unique(np.append(w_arr[0],w_arr[1:]))
xmutot = np.zeros_like(wtot)
xmuterp_arr = []
for i,xmu_elem in enumerate(xmu_arr):
xmuterp_arr = xmuterp_arr + [np.interp(wtot,w_arr[i],xmu_elem)]
xmutot = xmutot + np.interp(wtot,w_arr[i],xmu_elem)
#output[target] = np.array([wtot,xmutot] + xmuterp_arr).tolist()
output[target] = np.array([wtot,xmutot]).tolist()
#print output[target]
elif (target == 'feffXES'):
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
# Write input file for FEFF.
writeXESInput(feffInput,inpf)
# Loop over executable: This is specific to feff. Other codes
# will more likely have only one executable.
execs = ['rdinp','atomic','pot','screen','opconsat','xsph','fms','mkgtr','path','genfmt','ff2x','sfconv']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
# For this case, I am only passing the directory for now so
# that other executables in FEFF can use the data.
outFile=os.path.join(dir,'xmu.dat')
output[target] = np.loadtxt(outFile,usecols = (0,3)).T.tolist()
elif (target == 'feffRIXS'):
# For RIXS, need to run multiple times as follows.
# Core-Core RIXS
# 1. Run for the deep core-level.
# 2. Run for the shallow core-level.
# 3. Collect files.
# 4. Run rixs executable.
# Core-valence RIXS
# 1. Run for the deep core-level.
# 2. Run for the valence level.
# 3. Run and XES calculation.
# 4. Run rixs executable.
# Set global settings for all runs.
# Set default energy grid
setInput(feffInput,'feff.egrid',[['e_grid', -10, 10, 0.05],['k_grid', 'last', 4, 0.025]])
setInput(feffInput,'feff.exchange',[[0, 0.0, -20.0, 0]])
setInput(feffInput,'feff.corehole',[['RPA']],Force=True) # maybe not this one. Need 'NONE' for valence
setInput(feffInput,'feff.edge',[['K','VAL']])
edges = feffInput['feff.edge'][0]
# Save original state of input
savedInput = dict(feffInput)
# Loop over edges and run XANES for each edge:
# Save deep edge
edge0 = edges[0]
nEdge=0
for edge in edges:
nEdge = nEdge + 1
# Make directory
dirname = os.path.join(dir,edge)
if not os.path.exists(dirname):
os.mkdir(dirname)
if edge.upper() != "VAL":
outFileName='rixsET.dat'
# Delete XES input key
if 'feff.xes' in feffInput:
del feffInput['feff.xes']
# Set edge.
setInput(feffInput,'feff.edge',[[edge]],Force=True)
# Set icore to other edge
setInput(feffInput,'feff.icore',[[getICore(edge0)]],Force=True)
# Set corehole RPA
setInput(feffInput,'feff.corehole',[['RPA']],Force=True)
# Set default energy grid
setInput(feffInput,'feff.egrid',[['e_grid', -10, 10, 0.05],['k_grid', 'last', 4, 0.025]])
# Set RLPRINT
setInput(feffInput,'feff.rlprint',[[True]],Force=True)
feffinp = os.path.join(dirname, 'feff.inp')
# Write XANES input for this run
writeXANESInput(feffInput,feffinp)
else: # This is a valence calculation. Calculate NOHOLE and XES
# XANES calculation
outFileName='rixsET-sat.dat'
# Find out if we are using a valence hole for valence calculation.
# Set edge.
setInput(feffInput,'feff.edge',[[edge0]],Force=True)
if len(edges) == nEdge+1:
# Set corehole RPA
setInput(feffInput,'feff.corehole',[['RPA']],Force=True)
# We want to use this core-state as the core hole in place of the valence
# Set screen parameters
setInput(feffInput,'feff.screen',[['icore', getICore(edges[nEdge])]],Force=True)
else:
# Set corehole NONE
setInput(feffInput,'feff.corehole',[['NONE']],Force=True)
# Write wscrn.dat to VAL directory
wscrnFileW = os.path.join(dirname,'wscrn.dat')
writeList(wscrnLines,wscrnFileW)
# Set icore to deep edge
setInput(feffInput,'feff.icore',[[getICore(edge0)]],Force=True)
# Set default energy grid
setInput(feffInput,'feff.egrid',[['e_grid', -10, 10, 0.05],['k_grid', 'last', 4, 0.025]])
# Set RLPRINT
setInput(feffInput,'feff.rlprint',[[True]],Force=True)
#
# Run XES for the deep level
# Save XANES card, but delete from input
xanesInput = {}
if 'feff.xanes' in feffInput:
setInput(xanesInput, 'feff.xanes', feffInput['feff.xanes'])
del feffInput['feff.xanes']
# Set XES options
# Set default energy grid
del feffInput['feff.egrid']
setInput(feffInput,'feff.egrid',[['e_grid', -40, 10, 0.1]])
setInput(feffInput,'feff.xes', [[-20, 10, 0.1]])
xesdir = os.path.join(dir,'XES')
if not os.path.exists(xesdir):
os.mkdir(xesdir)
feffinp = os.path.join(xesdir,'feff.inp')
# Write XES input.
writeXESInput(feffInput,feffinp)
# Run executables to get XES
# Set output and error files
with open(os.path.join(xesdir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(xesdir, 'corvus.FEFF.stderr'), 'w') as err:
execs = ['rdinp','atomic','pot','screen','opconsat','xsph','fms','mkgtr','path','genfmt','ff2x','sfconv']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',xesdir,executable,args,out,err)
# Make xes.dat from xmu.dat
xmuFile = open(os.path.join(xesdir,'xmu.dat'))
xesFile = os.path.join(dir,'xes.dat')
xesLines=[]
for line in xmuFile:
if line.lstrip()[0] != '#':
fields=line.split()
xesLines = xesLines + [str(xmu - float(fields[1])) + ' ' + fields[3]]
elif 'Mu' in line:
fields = line.strip().split()
xmu = float(fields[2][3:len(fields[2])-3])
# Write lines in reverse order so that column 1 is sorted correctly.
writeList(xesLines[::-1],xesFile)
# Now make input file for XANES calculation.
if 'feff.xanes' in xanesInput:
feffInput['feff.xanes'] = xanesInput['feff.xanes']
del feffInput['feff.xes']
# Set default energy grid
setInput(feffInput,'feff.egrid',[['e_grid', -10, 10, 0.05],['k_grid', 'last', 4, 0.025]],Force=True)
feffinp = os.path.join(dirname, 'feff.inp')
# Write XANES input for this run
writeXANESInput(feffInput,feffinp)
# Run XANES for this edge
# Set output and error files
with open(os.path.join(dirname, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dirname, 'corvus.FEFF.stderr'), 'w') as err:
execs = ['rdinp','atomic','pot','screen','opconsat','xsph','fms','mkgtr','path','genfmt','ff2x','sfconv']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dirname,executable,args,out,err)
# Now copy files from this edge to main directory
shutil.copyfile(os.path.join(dirname,'wscrn.dat'), os.path.join(dir,'wscrn_' + str(nEdge) + '.dat'))
shutil.copyfile(os.path.join(dirname,'phase.bin'), os.path.join(dir,'phase_' + str(nEdge) + '.bin'))
shutil.copyfile(os.path.join(dirname,'gg.bin'), os.path.join(dir,'gg_' + str(nEdge) + '.bin'))
shutil.copyfile(os.path.join(dirname,'xsect.dat'), os.path.join(dir,'xsect_' + str(nEdge) + '.dat'))
shutil.copyfile(os.path.join(dirname,'xmu.dat'), os.path.join(dir,'xmu_' + str(nEdge) + '.dat'))
shutil.copyfile(os.path.join(dirname,'rl.dat'), os.path.join(dir,'rl_' + str(nEdge) + '.dat'))
shutil.copyfile(os.path.join(dirname,'.dimensions.dat'), os.path.join(dir,'.dimensions.dat'))
# If this is the first edge, get the screened potential.
if nEdge == 1:
wscrnLines = []
with open(os.path.join(dirname,'wscrn.dat'),'r') as wscrnFileR:
for wscrnLine in wscrnFileR.readlines():
if wscrnLine.lstrip()[0] == '#':
wscrnLines = wscrnLines + [wscrnLine.strip()]
else:
wscrnFields = wscrnLine.strip().split()
wscrnLines = wscrnLines + [wscrnFields[0] + ' 0.0 0.0']
# Finally, run rixs executable
feffInput = savedInput
setInput(feffInput,'feff.rixs', [[0.1, 0.1]])
feffinp = os.path.join(dir, 'feff.inp')
# Write XANES input for this run
writeXANESInput(feffInput,feffinp)
# Set output and error files
with open(os.path.join(dir, 'corvus.FEFF.stdout'), 'w') as out, open(os.path.join(dir, 'corvus.FEFF.stderr'), 'w') as err:
execs = ['rdinp','atomic','rixs']
for exe in execs:
if 'feff.MPI.CMD' in feffInput:
executable = feffInput.get('feff.MPI.CMD')[0]
args = feffInput.get('feff.MPI.ARGS',[['']])[0] + [os.path.join(feffdir,exe)]
else:
executable = [os.path.join(feffdir,exe)]
args = ['']
runExecutable('',dir,executable,args,out,err)
outFile=os.path.join(dir,outFileName)
output[target] = np.loadtxt(outFile).T.tolist()
## OPCONS BEGIN
elif (target == 'opcons'):
# Opcons imports
import copy
#import matplotlib.pyplot as plt
from corvus.controls import generateAndRunWorkflow
# Define some constants
hart = 2*13.605698
alpinv = 137.03598956
bohr = 0.529177249
# Used in fixing element symbols
only_alpha = re.compile('[^a-zA-Z]')
# Set prefix for sdtout of feff runs.
runExecutable.prefix = '\t\t\t'
# Copy general input to local one
input2 = copy.deepcopy(input)
# Modify the common values of local input
input2['feff.setedge'] = input.get('feff.setedge',[[True]])
input2['feff.absolute'] = [[True]]
input2['feff.rgrid'] = [[0.01]]
# Copy general config to local one
config2 = copy.deepcopy(config)
# Set directory to run in.
config2['cwd'] = config['xcDir']
# Set xcIndexStart to -1 so that xcDir will be set below rather than in prep.
config2['xcIndexStart'] = -1
# Use absolute units for everything.
config2['feff.absolute'] = [[True]]
# Initialize variables that collect results (?)
NumberDensity = []
vtot = 0.0
xas_arr = []
xas0_arr = []
en_arr = []
component_labels = []
# The logic of the lines below is weird: In opcons calculations the absorber is chosen on the fly by looping over all unique atoms
if 'absorbing_atom' not in input:
absorbers = []
else:
absorbers = input['absorbing_atom'][0]
# Build a list of absorbers for the system
# I think this also build a fake cluster to go in the input
if 'cif_input' in input2:
cifFile = ReadCif(os.path.abspath(input2['cif_input'][0][0]))
cif_dict = cifFile[list(cifFile.keys())[0]]
cell_data = CellData()
cell_data.getFromCIF(cif_dict)
cell_data.primitive()
symmult = []
cluster = []
i=1
for ia,a in enumerate(cell_data.atomdata): # This loops over sites in the original cif
symmult = symmult + [len(a)]
element = list(a[0].species.keys())[0]
component_labels = component_labels + [element + str(i)]
if 'absorbing_atom' not in input:
absorbers = absorbers + [ia+1]
cluster = cluster + [['Cu', 0.0, 0.0, ia*2.0 ]]
i += 1
if 'cluster' not in input2:
input2['cluster'] = cluster
# Debug: FDV
# print('ABSORBERS')
# pp_debug.pprint(absorbers)
# OPCONS LOOP SETUP BEGIN -------------------------------------------------------------------------------------
# Added by FDV
# Creating a list to collect the inputs for delayed execution
WF_Params_Dict = {}
# For each atom in absorbing_atoms run a full-spectrum calculation (all edges, XANES + EXAFS)
for absorber in absorbers:
print('')
print("##########################################################")
print(" Component: " + component_labels[absorber-1])
print("##########################################################")
print('')
### BEGIN INPUT GEN --------------------------------------------------------------------------------------------
input2['absorbing_atom'] = [[absorber]]
input2['feff.target'] = [[absorber]]
if 'cif_input' in input2:
input2['feff.target'] = [[absorber]]
element = list(cell_data.atomdata[absorber-1][0].species.keys())[0]
if 'number_density' not in input:
NumberDensity = NumberDensity + [symmult[absorber - 1]]
else:
# This only works if all elements are treated as the same for our calculation
element = input['cluster'][absorber-1][0]
if 'number_density' not in input:
n_element = 0
for atm in input['cluster']:
if element in atm:
n_element += 1
NumberDensity = NumberDensity + [n_element]
print('Number in unit cell: ' + str(NumberDensity[-1]))
### END INPUT GEN --------------------------------------------------------------------------------------------
# For each edge for this atom, run a XANES and EXAFS run
# Commented out by FDV, unused, simplifying
# FirstEdge = True
Item_Absorber = {}
for edge in feff_edge_dict[only_alpha.sub('',element)]:
Item_Edge = {}
print("\t" + edge)
print("\t\t" + 'XANES')
### BEGIN INPUT GEN --------------------------------------------------------------------------------------------
input2['feff.edge'] = [[edge]]
# Run XANES
input2['taget_list'] = [['xanes']]
# Set energy grid for XANES.
input2['feff.egrid'] = [['e_grid', -10, 10, 0.1], ['k_grid','last',5,0.07]]
input2['feff.control'] = [[1,1,1,1,1,1]]
config2['xcDir'] = os.path.join(config2['cwd'],component_labels[absorber-1],edge,'XANES')
targetList = [['xanes']]
if 'feff.scf' in input:
input2['feff.scf'] = input['feff.scf']
else:
input2['feff.scf'] = [[4.0,0,100,0.1,0]]
if 'feff.fms' in input:
input2['feff.fms'] = input['feff.fms']
else:
input2['feff.fms'] = [[6.0]]
input2['feff.rpath'] = [[0.1]]
### END INPUT GEN --------------------------------------------------------------------------------------------
# Added by FDV
Item_xanes = { 'config2':copy.deepcopy(config2),
'input2':copy.deepcopy(input2),
'targetList':copy.deepcopy(targetList) }
# Commented out by FDV, unused, simplifying
# FirstEdge = False
### BEGIN INPUT GEN --------------------------------------------------------------------------------------------
print("\t\t" + 'EXAFS')
xanesDir = config2['xcDir']
exafsDir = os.path.join(config2['cwd'],component_labels[absorber-1],edge,'EXAFS')
config2['xcDir'] = exafsDir
input2['feff.control'] = [[0, 1, 1, 1, 1, 1]]
input2['feff.egrid'] = [['k_grid', -20, -2, 1], ['k_grid',-2,0,0.07], ['k_grid', 0, 40, 0.07],['exp_grid', 'last', 500000.0, 10.0]]
if 'feff.fms' in input:
input2['feff.rpath'] = [[max(input['feff.fms'][0][0],0.1)]]
else:
input2['feff.rpath'] = [[6.0]]
input2['feff.fms'] = [[0.0]]
### END INPUT GEN --------------------------------------------------------------------------------------------
# Added by FDV
Item_exafs = { 'config2':copy.deepcopy(config2),
'input2':copy.deepcopy(input2),
'targetList':copy.deepcopy(targetList) }
Item_Absorber[edge] = { 'xanes':Item_xanes,
'exafs':Item_exafs }
print('')
WF_Params_Dict[absorber] = Item_Absorber
print('')
# OPCONS LOOP SETUP END ---------------------------------------------------------------------------------------
# Debug: FDV
print('#### FDV ####')
print('#### All WF Params ####')
pp_debug.pprint(WF_Params_Dict)
# Monty has issue on 2.7, so will just use pickle
import pickle
pickle.dump(WF_Params_Dict,open('WF_Params_Dict.pickle','wb'))
# Debug
# sys.exit()
# OPCONS LOOP RUN BEGIN ---------------------------------------------------------------------------------------
# For each atom in absorbing_atoms run a full-spectrum calculation (all edges, XANES + EXAFS)
for absorber in absorbers:
print('')
print("##########################################################")
print(" Component: " + component_labels[absorber-1])
print("##########################################################")
print('')
print('--- FDV ---', 'absorber', absorber)
for edge in WF_Params_Dict[absorber].keys():
print("\t" + edge)
print("\t\t" + 'XANES')
# Added by FDV
# Modified by FDV
# Commented out and moved to an independent loop
print('--- FDV ---', 'edge', edge)
config2 = WF_Params_Dict[absorber][edge]['xanes']['config2']
input2 = WF_Params_Dict[absorber][edge]['xanes']['input2']
targetList = WF_Params_Dict[absorber][edge]['xanes']['targetList']
if 'opcons.usesaved' not in input:
generateAndRunWorkflow(config2, input2,targetList)
else:
# Run if xmu.dat doesn't exist.
if not os.path.exists(os.path.join(config2['xcDir'],'xmu.dat')):
generateAndRunWorkflow(config2, input2,targetList)
else:
print("\t\t\txmu.dat already calculated. Skipping.")
### BEGIN INPUT GEN --------------------------------------------------------------------------------------------
print("\t\t" + 'EXAFS')
xanesDir = config2['xcDir']
exafsDir = os.path.join(config2['cwd'],component_labels[absorber-1],edge,'EXAFS')
if not os.path.exists(exafsDir):
os.makedirs(exafsDir)
shutil.copyfile(os.path.join(xanesDir,'apot.bin'), os.path.join(exafsDir,'apot.bin'))
shutil.copyfile(os.path.join(xanesDir,'pot.bin'), os.path.join(exafsDir,'pot.bin'))
# Modified by FDV
# Commented out and moved to an independent loop
config2 = WF_Params_Dict[absorber][edge]['exafs']['config2']
input2 = WF_Params_Dict[absorber][edge]['exafs']['input2']
targetList = WF_Params_Dict[absorber][edge]['exafs']['targetList']
if 'opcons.usesaved' not in input2:
generateAndRunWorkflow(config2, input2,targetList)
else:
# Run if xmu.dat doesn't exist.
if not os.path.exists(os.path.join(config2['xcDir'],'xmu.dat')):
generateAndRunWorkflow(config2, input2,targetList)
print('')
print('')
# OPCONS LOOP RUN END -----------------------------------------------------------------------------------------
# OPCONS LOOP ANA BEGIN ---------------------------------------------------------------------------------------
# For each atom in absorbing_atoms run a full-spectrum calculation (all edges, XANES + EXAFS)
emin = 100000.0
for iabs,absorber in enumerate(absorbers):
print('')
print("##########################################################")
print(" Component: " + component_labels[absorber-1])
print("##########################################################")
print('')
# Commented out by FDV, unused, simplifying
# FirstEdge = True
for edge in WF_Params_Dict[absorber].keys():
print("\t" + edge)
print("\t\t" + 'XANES')
# Added by FDV
config2 = WF_Params_Dict[absorber][edge]['xanes']['config2']
input2 = WF_Params_Dict[absorber][edge]['xanes']['input2']
targetList = WF_Params_Dict[absorber][edge]['xanes']['targetList']
### BEGIN OUTPUT ANA --------------------------------------------------------------------------------------------
if 'cif_input' in input:
# Get total volume from cif in atomic units.
vtot = cell_data.volume()*(cell_data.lengthscale/bohr)**3
else:
# Get norman radii from xmu.dat
with open(os.path.join(config2['xcDir'],'xmu.dat')) as f:
for line in f: # Go through the lines one at a time
words = line.split()
if 'Rnm=' in words:
vtot = vtot + (float(words[words.index('Rnm=')+1])/bohr)**3*4.0/3.0*np.pi
break
f.close()
outFile = os.path.join(config2['xcDir'],'xmu.dat')
e1,k1,xanes = np.loadtxt(outFile,usecols = (0,2,3)).T
xanes = np.maximum(xanes,0.0)
### END OUTPUT ANA --------------------------------------------------------------------------------------------
# Added by FDV
config2 = WF_Params_Dict[absorber][edge]['exafs']['config2']
input2 = WF_Params_Dict[absorber][edge]['exafs']['input2']
targetList = WF_Params_Dict[absorber][edge]['exafs']['targetList']
### BEGIN OUTPUT ANA --------------------------------------------------------------------------------------------
outFile = os.path.join(config2['xcDir'],'xmu.dat')
e2,k2,exafs,mu0 = np.loadtxt(outFile,usecols = (0,2,3,4)).T
exafs = np.maximum(exafs,0.0)
mu0 = np.maximum(mu0,0.0)
e0 = e2[100] - (k2[100]*bohr)**2/2.0*hart
emin = min(e0/2.0/hart,emin)
# Interpolate onto a union of the two energy-grids and smoothly go from one to the other between
e_tot = np.unique(np.append(e1,e2))
k_tot = np.where(e_tot > e0, np.sqrt(2.0*np.abs(e_tot-e0)/hart), -np.sqrt(2.0*np.abs(e0 - e_tot)/hart))/bohr
kstart = 3.0
kfin = 4.0
weight1 = np.cos((np.minimum(np.maximum(k_tot,kstart),kfin)-kstart)/(kfin-kstart)*np.pi/2)**2
weight2 = 1.0 - weight1
#NumberDensity[iabs] = NumberDensity[iabs]/2.0
print('Number density', NumberDensity[iabs], vtot, NumberDensity[iabs]/vtot)
xas_element = NumberDensity[iabs]*(np.interp(e_tot,e1,xanes)*weight1 + np.interp(e_tot,e2,exafs)*weight2)
xas0_element = NumberDensity[iabs]*np.interp(e_tot,e2,mu0)
xas_element[np.where(e_tot < e1[0])] = NumberDensity[iabs]*np.interp(e_tot[np.where(e_tot < e1[0])],e2,mu0)
xas_arr = xas_arr + [xas_element]
xas0_arr = xas0_arr + [xas0_element]
en_arr = en_arr + [e_tot]
#plt.plot(e_tot, xas_element)
#plt.show()
### END OUTPUT ANA --------------------------------------------------------------------------------------------
print('')
print('')
# OPCONS LOOP ANA END -----------------------------------------------------------------------------------------
# POST LOOP ANALYSYS: If everything is correct we should not have to change anything below
# Interpolate onto common grid from 0 to 500000 eV
# Make common grid as union of all grids.
energy_grid = np.unique(np.concatenate(en_arr))
# Now loop through all elements and add xas from each element
xas_tot = np.zeros_like(energy_grid)
xas0_tot = np.zeros_like(energy_grid)
for i,en in enumerate(en_arr):
xas_tot = xas_tot + np.interp(energy_grid,en,xas_arr[i],left=0.0,right=0.0)
xas0_tot = xas0_tot + np.interp(energy_grid,en,xas0_arr[i],left=0.0,right=0.0)
xas_tot = xas_tot/vtot
xas0_tot = xas0_tot/vtot
# transform to eps2. xas_tot*-4pi/apha/\omega*bohr**2
energy_grid = energy_grid/hart
eps2 = xas_tot*4*np.pi*alpinv*bohr**2/energy_grid
eps2 = eps2[np.where(energy_grid > emin)]
eps2_bg = xas0_tot*4*np.pi*alpinv*bohr**2/energy_grid
eps2_bg = eps2_bg[np.where(energy_grid > emin)]
energy_grid = energy_grid[np.where(energy_grid > emin)]
#plt.plot(energy_grid,eps2)
#plt.show()
if False:
# Test with Lorentzian
eps2 = -5.0/((energy_grid - 277.0)**2 + 5.0**2) + 5.0/((energy_grid + 277.0)**2 + 5.0**2)
# Perform KK-transform
print('Performaing KK-transform of eps2:')
print('')
w,eps1_bg = kk_transform(energy_grid, eps2_bg)
w,eps1 = kk_transform(energy_grid, eps2)
eps2 = np.interp(w,energy_grid,eps2)
eps1 = eps1 + 1.0
eps2_bg = np.interp(w,energy_grid,eps2_bg)
eps1_bg = eps1_bg + 1.0
eps_bg = eps1_bg + 1j*eps2_bg
eps = eps1 + 1j*eps2
# Transform to optical constants
index_of_refraction = np.sqrt(eps)
index_of_refraction_bg = np.sqrt(eps_bg)
reflectance = np.abs((index_of_refraction-1)/(index_of_refraction+1))**2
reflectance_bg = np.abs((index_of_refraction_bg-1)/(index_of_refraction_bg+1))**2
absorption = 2*w*1.0/alpinv* | np.imag(index_of_refraction) | numpy.imag |
import importlib.resources
import numpy as np
from hexrd import constants
from hexrd import symmetry, symbols
from hexrd.spacegroup import Allowed_HKLs
from hexrd.ipfcolor import sphere_sector, colorspace
from hexrd.valunits import valWUnit
import hexrd.resources
import warnings
import h5py
from pathlib import Path
from scipy.interpolate import interp1d
import time
eps = constants.sqrt_epsf
class unitcell:
'''
>> @AUTHOR: <NAME>, Lawrence Livermore National Lab, <EMAIL>
>> @DATE: 10/09/2018 SS 1.0 original
@DATE: 10/15/2018 SS 1.1 added space group handling
>> @DETAILS: this is the unitcell class
'''
# initialize the unitcell class
# need lattice parameters and space group data from HDF5 file
def __init__(self, lp, sgnum,
atomtypes, charge,
atominfo,
U, dmin, beamenergy,
sgsetting=0):
self._tstart = time.time()
self.pref = 0.4178214
self.atom_type = atomtypes
self.chargestates = charge
self.atom_pos = atominfo
self._dmin = dmin
self.lparms = lp
self.U = U
'''
initialize interpolation from table for anomalous scattering
'''
self.InitializeInterpTable()
'''
sets x-ray energy
calculate wavelength
also calculates anomalous form factors for xray scattering
'''
self.voltage = beamenergy * 1000.0
'''
calculate symmetry
'''
self.sgsetting = sgsetting
self.sgnum = sgnum
self._tstop = time.time()
self.tinit = self._tstop - self._tstart
def GetPgLg(self):
'''
simple subroutine to get point and laue groups
to maintain consistency for planedata initialization
in the materials class
'''
for k in list(_pgDict.keys()):
if self.sgnum in k:
pglg = _pgDict[k]
self._pointGroup = pglg[0]
self._laueGroup = pglg[1]
self._supergroup = pglg[2]
self._supergroup_laue = pglg[3]
def CalcWavelength(self):
# wavelength in nm
self.wavelength = constants.cPlanck * \
constants.cLight / \
constants.cCharge / \
self.voltage
self.wavelength *= 1e9
self.CalcAnomalous()
def calcBetaij(self):
self.betaij = np.zeros([self.atom_ntype, 3, 3])
for i in range(self.U.shape[0]):
U = self.U[i, :]
self.betaij[i, :, :] = np.array([[U[0], U[3], U[4]],
[U[3], U[1], U[5]],
[U[4], U[5], U[2]]])
self.betaij[i, :, :] *= 2. * np.pi**2 * self._aij
def calcmatrices(self):
a = self.a
b = self.b
c = self.c
alpha = np.radians(self.alpha)
beta = np.radians(self.beta)
gamma = np.radians(self.gamma)
ca = np.cos(alpha)
cb = np.cos(beta)
cg = np.cos(gamma)
sa = np.sin(alpha)
sb = np.sin(beta)
sg = np.sin(gamma)
tg = np.tan(gamma)
'''
direct metric tensor
'''
self._dmt = np.array([[a**2, a*b*cg, a*c*cb],
[a*b*cg, b**2, b*c*ca],
[a*c*cb, b*c*ca, c**2]])
self._vol = np.sqrt(np.linalg.det(self.dmt))
if(self.vol < 1e-5):
warnings.warn('unitcell volume is suspiciously small')
'''
reciprocal metric tensor
'''
self._rmt = np.linalg.inv(self.dmt)
'''
direct structure matrix
'''
self._dsm = np.array([[a, b*cg, c*cb],
[0., b*sg, -c*(cb*cg - ca)/sg],
[0., 0., self.vol/(a*b*sg)]])
self._dsm[np.abs(self._dsm) < eps] = 0.
'''
reciprocal structure matrix
'''
self._rsm = np.array([[1./a, 0., 0.],
[-1./(a*tg), 1./(b*sg), 0.],
[b*c*(cg*ca - cb)/(self.vol*sg),
a*c*(cb*cg - ca)/(self.vol*sg),
a*b*sg/self.vol]])
self._rsm[np.abs(self._rsm) < eps] = 0.
ast = self.CalcLength([1, 0, 0], 'r')
bst = self.CalcLength([0, 1, 0], 'r')
cst = self.CalcLength([0, 0, 1], 'r')
self._aij = np.array([[ast**2, ast*bst, ast*cst],
[bst*ast, bst**2, bst*cst],
[cst*ast, cst*bst, cst**2]])
''' transform between any crystal space to any other space.
choices are 'd' (direct), 'r' (reciprocal) and 'c' (cartesian)'''
def TransSpace(self, v_in, inspace, outspace):
if(inspace == 'd'):
if(outspace == 'r'):
v_out = np.dot(v_in, self.dmt)
elif(outspace == 'c'):
v_out = np.dot(self.dsm, v_in)
else:
raise ValueError(
'inspace in ''d'' but outspace can''t be identified')
elif(inspace == 'r'):
if(outspace == 'd'):
v_out = np.dot(v_in, self.rmt)
elif(outspace == 'c'):
v_out = np.dot(self.rsm, v_in)
else:
raise ValueError(
'inspace in ''r'' but outspace can''t be identified')
elif(inspace == 'c'):
if(outspace == 'r'):
v_out = np.dot(v_in, self.rsm)
elif(outspace == 'd'):
v_out = np.dot(v_in, self.dsm)
else:
raise ValueError(
'inspace in ''c'' but outspace can''t be identified')
else:
raise ValueError('incorrect inspace argument')
return v_out
''' calculate dot product of two vectors in any space 'd' 'r' or 'c' '''
def CalcDot(self, u, v, space):
if(space == 'd'):
dot = np.dot(u, np.dot(self.dmt, v))
elif(space == 'r'):
dot = np.dot(u, np.dot(self.rmt, v))
elif(space == 'c'):
dot = np.dot(u, v)
else:
raise ValueError('space is unidentified')
return dot
''' calculate dot product of two vectors in any space 'd' 'r' or 'c' '''
def CalcLength(self, u, space):
if(space == 'd'):
vlen = np.sqrt(np.dot(u, np.dot(self.dmt, u)))
elif(space == 'r'):
vlen = np.sqrt(np.dot(u, np.dot(self.rmt, u)))
elif(space == 'c'):
vlen = np.linalg.norm(u)
else:
raise ValueError('incorrect space argument')
return vlen
''' normalize vector in any space 'd' 'r' or 'c' '''
def NormVec(self, u, space):
ulen = self.CalcLength(u, space)
return u/ulen
''' calculate angle between two vectors in any space'''
def CalcAngle(self, u, v, space):
ulen = self.CalcLength(u, space)
vlen = self.CalcLength(v, space)
dot = self.CalcDot(u, v, space)/ulen/vlen
angle = np.arccos(dot)
return angle
''' calculate cross product between two vectors in any space.
cross product of two vectors in direct space is a vector in
reciprocal space
cross product of two vectors in reciprocal space is a vector in
direct space
the outspace specifies if a conversion needs to be made
@NOTE: iv is the switch (0/1) which will either turn division
by volume of the unit cell on or off.'''
def CalcCross(self, p, q, inspace, outspace, vol_divide=False):
iv = 0
if(vol_divide):
vol = self.vol
else:
vol = 1.0
pxq = np.array([p[1]*q[2]-p[2]*q[1],
p[2]*q[0]-p[0]*q[2],
p[0]*q[1]-p[1]*q[0]])
if(inspace == 'd'):
'''
cross product vector is in reciprocal space
and can be converted to direct or cartesian space
'''
pxq *= vol
if(outspace == 'r'):
pass
elif(outspace == 'd'):
pxq = self.TransSpace(pxq, 'r', 'd')
elif(outspace == 'c'):
pxq = self.TransSpace(pxq, 'r', 'c')
else:
raise ValueError(
'inspace is ''d'' but outspace is unidentified')
elif(inspace == 'r'):
'''
cross product vector is in direct space and
can be converted to any other space
'''
pxq /= vol
if(outspace == 'r'):
pxq = self.TransSpace(pxq, 'd', 'r')
elif(outspace == 'd'):
pass
elif(outspace == 'c'):
pxq = self.TransSpace(pxq, 'd', 'c')
else:
raise ValueError(
'inspace is ''r'' but outspace is unidentified')
elif(inspace == 'c'):
'''
cross product is already in cartesian space so no
volume factor is involved. can be converted to any
other space too
'''
if(outspace == 'r'):
pxq = self.TransSpace(pxq, 'c', 'r')
elif(outspace == 'd'):
pxq = self.TransSpace(pxq, 'c', 'd')
elif(outspace == 'c'):
pass
else:
raise ValueError(
'inspace is ''c'' but outspace is unidentified')
else:
raise ValueError('inspace is unidentified')
return pxq
def GenerateRecipPGSym(self):
self.SYM_PG_r = self.SYM_PG_d[0, :, :]
self.SYM_PG_r = np.broadcast_to(self.SYM_PG_r, [1, 3, 3])
self.SYM_PG_r_laue = self.SYM_PG_d[0, :, :]
self.SYM_PG_r_laue = np.broadcast_to(self.SYM_PG_r_laue, [1, 3, 3])
for i in range(1, self.npgsym):
g = self.SYM_PG_d[i, :, :]
g = np.dot(self.dmt, np.dot(g, self.rmt))
g = np.round(np.broadcast_to(g, [1, 3, 3]))
self.SYM_PG_r = np.concatenate((self.SYM_PG_r, g))
for i in range(1, self.SYM_PG_d_laue.shape[0]):
g = self.SYM_PG_d_laue[i, :, :]
g = np.dot(self.dmt, np.dot(g, self.rmt))
g = np.round(np.broadcast_to(g, [1, 3, 3]))
self.SYM_PG_r_laue = np.concatenate((self.SYM_PG_r_laue, g))
self.SYM_PG_r = self.SYM_PG_r.astype(np.int32)
self.SYM_PG_r_laue = self.SYM_PG_r_laue.astype(np.int32)
def GenerateCartesianPGSym(self):
'''
use the direct point group symmetries to generate the
symmetry operations in the cartesian frame. this is used
to reduce directions to the standard stereographi tringle
'''
self.SYM_PG_c = []
self.SYM_PG_c_laue = []
for sop in self.SYM_PG_d:
self.SYM_PG_c.append(np.dot(self.dsm, np.dot(sop, self.rsm.T)))
self.SYM_PG_c = np.array(self.SYM_PG_c)
self.SYM_PG_c[np.abs(self.SYM_PG_c) < eps] = 0.
if(self._pointGroup == self._laueGroup):
self.SYM_PG_c_laue = self.SYM_PG_c
else:
for sop in self.SYM_PG_d_laue:
self.SYM_PG_c_laue.append(
np.dot(self.dsm, np.dot(sop, self.rsm.T)))
self.SYM_PG_c_laue = np.array(self.SYM_PG_c_laue)
self.SYM_PG_c_laue[np.abs(self.SYM_PG_c_laue) < eps] = 0.
'''
use the point group symmetry of the supergroup
to generate the equivalent operations in the
cartesian reference frame
SS 11/23/2020 added supergroup symmetry operations
SS 11/24/2020 fix monoclinic groups separately since
the supergroup for monoclinic is orthorhombic
'''
supergroup = self._supergroup
sym_supergroup = symmetry.GeneratePGSYM(supergroup)
supergroup_laue = self._supergroup_laue
sym_supergroup_laue = symmetry.GeneratePGSYM(supergroup_laue)
if((self.latticeType == 'monoclinic' or
self.latticeType == 'triclinic')):
'''
for monoclinic groups c2 and c2h, the supergroups are
orthorhombic, so no need to convert from direct to
cartesian as they are identical
'''
self.SYM_PG_supergroup = sym_supergroup
self.SYM_PG_supergroup_laue = sym_supergroup_laue
else:
self.SYM_PG_supergroup = []
self.SYM_PG_supergroup_laue = []
for sop in sym_supergroup:
self.SYM_PG_supergroup.append(
np.dot(self.dsm, np.dot(sop, self.rsm.T)))
self.SYM_PG_supergroup = np.array(self.SYM_PG_supergroup)
self.SYM_PG_supergroup[np.abs(self.SYM_PG_supergroup) < eps] = 0.
for sop in sym_supergroup_laue:
self.SYM_PG_supergroup_laue.append(
np.dot(self.dsm, np.dot(sop, self.rsm.T)))
self.SYM_PG_supergroup_laue = np.array(self.SYM_PG_supergroup_laue)
self.SYM_PG_supergroup_laue[np.abs(
self.SYM_PG_supergroup_laue) < eps] = 0.
'''
the standard setting for the monoclinic system has the b-axis aligned
with the 2-fold axis. this needs to be accounted for when reduction to
the standard stereographic triangle is performed. the siplest way is to
rotate all symmetry elements by 90 about the x-axis
the supergroups for the monoclinic groups are orthorhombic so they need
not be rotated as they have the c* axis already aligned with the z-axis
SS 12/10/2020
'''
if(self.latticeType == 'monoclinic'):
om = np.array([[1., 0., 0.], [0., 0., 1.], [0., -1., 0.]])
for i, s in enumerate(self.SYM_PG_c):
ss = np.dot(om, np.dot(s, om.T))
self.SYM_PG_c[i, :, :] = ss
for i, s in enumerate(self.SYM_PG_c_laue):
ss = np.dot(om, np.dot(s, om.T))
self.SYM_PG_c_laue[i, :, :] = ss
'''
for the triclinic group c1, the supergroups are the monoclinic group m
therefore we need to rotate the mirror to be perpendicular to the z-axis
same shouldn't be done for the group ci, since the supergroup is just the
triclinic group c1!!
SS 12/10/2020
'''
if(self._pointGroup == 'c1'):
om = np.array([[1., 0., 0.], [0., 0., 1.], [0., -1., 0.]])
for i, s in enumerate(self.SYM_PG_supergroup):
ss = np.dot(om, np.dot(s, om.T))
self.SYM_PG_supergroup[i, :, :] = ss
for i, s in enumerate(self.SYM_PG_supergroup_laue):
ss = np.dot(om, np.dot(s, om.T))
self.SYM_PG_supergroup_laue[i, :, :] = ss
def CalcOrbit(self, v, reduceToUC=True):
"""
@date 03/04/2021 SS 1.0 original
@details calculate the equivalent position for the
space group symmetry. this function will replace the
code in the CalcPositions subroutine.
@params v is the factional coordinates in direct space
reduceToUC reduces the position to the
fundamental fractional unit cell (0-1)
"""
asym_pos = []
n = 1
if v.shape[0] != 3:
raise RuntimeError("fractional coordinate in not 3-d")
r = v
# using wigner-sietz notation
r = np.hstack((r, 1.))
asym_pos = np.broadcast_to(r[0:3], [1, 3])
for symmat in self.SYM_SG:
# get new position
rnew = np.dot(symmat, r)
rr = rnew[0:3]
if reduceToUC:
# reduce to fundamental unitcell with fractional
# coordinates between 0-1
rr = np.modf(rr)[0]
rr[rr < 0.] += 1.
rr[np.abs(rr) < 1.0E-6] = 0.
# check if this is new
isnew = True
for j in range(n):
v = rr - asym_pos[j]
dist = self.CalcLength(v, 'd')
if dist < 1E-3:
isnew = False
break
# if its new add this to the list
if(isnew):
asym_pos = np.vstack((asym_pos, rr))
n += 1
numat = n
return asym_pos, numat
def CalcStar(self, v, space, applyLaue=False):
'''
this function calculates the symmetrically equivalent hkls (or uvws)
for the reciprocal (or direct) point group symmetry.
'''
if(space == 'd'):
if(applyLaue):
sym = self.SYM_PG_d_laue
else:
sym = self.SYM_PG_d
elif(space == 'r'):
if(applyLaue):
sym = self.SYM_PG_r_laue
else:
sym = self.SYM_PG_r
else:
raise ValueError('CalcStar: unrecognized space.')
vsym = np.atleast_2d(v)
for s in sym:
vp = np.dot(s, v)
# check if this is new
isnew = True
for vec in vsym:
vv = vp - vec
dist = self.CalcLength(vv, space)
if dist < 1E-3:
isnew = False
break
if(isnew):
vsym = np.vstack((vsym, vp))
return vsym
def CalcPositions(self):
'''
calculate the asymmetric positions in the fundamental unitcell
used for structure factor calculations
'''
numat = []
asym_pos = []
for i in range(self.atom_ntype):
v = self.atom_pos[i, 0:3]
apos, n = self.CalcOrbit(v)
asym_pos.append(apos)
numat.append(n)
self.numat = np.array(numat)
self.asym_pos = asym_pos
def remove_duplicate_atoms(self,
atom_pos=None,
tol=1e-3):
"""
@date 03/04/2021 SS 1.0 original
@details it was requested that a functionality be
added which can remove duplicate atoms from the
atom_pos field such that no two atoms are closer that
the distance specified by "tol" (lets assume its in A)
steps involved are as follows:
1. get the star (or orbit) oe each point in atom_pos
2. if any points in the orbits are within tol, then
remove the second point (the first point will be
preserved by convention)
3. update the densities, interptables for structure factors
etc.
@params tol tolerance of distance between points specified
in A
"""
if atom_pos is None:
atom_pos = self.atom_pos
atom_pos_fixed = []
"""
go through the atom_pos and remove the atoms that are duplicate
"""
for i in range(atom_pos.shape[0]):
pos = atom_pos[i, 0:3]
occ = atom_pos[i, 3]
v1, n1 = self.CalcOrbit(pos)
for j in range(i+1, atom_pos.shape[0]):
isclose = False
atom_pos_fixed.append(np.hstack([pos, occ]))
pos = atom_pos[j, 0:3]
occ = atom_pos[j, 3]
v2, n2 = self.CalcOrbit(pos)
for v in v2:
vv = np.tile(v, [v1.shape[0], 1])
vv = vv - v1
for vvv in vv:
# check if distance less than tol
# the factor of 10 is for A --> nm
if self.CalcLength(vvv, 'd') < tol/10.:
# if true then its a repeated atom
isclose = True
break
if isclose:
break
if isclose:
break
else:
atom_pos_fixed.append(np.hstack([pos, occ]))
return np.array(atom_pos_fixed)
def CalcDensity(self):
'''
calculate density, average atomic weight (avA)
and average atomic number(avZ)
'''
self.avA = 0.0
self.avZ = 0.0
for i in range(self.atom_ntype):
'''
atype is atom type i.e. atomic number
numat is the number of atoms of atype
atom_pos(i,3) has the occupation factor
'''
atype = self.atom_type[i]
numat = self.numat[i]
occ = self.atom_pos[i, 3]
# -1 due to 0 indexing in python
self.avA += numat * constants.atom_weights[atype-1] * occ
self.avZ += numat * atype
self.density = self.avA / (self.vol * 1.0E-21 * constants.cAvogadro)
av_natom = np.dot(self.numat, self.atom_pos[:, 3])
self.avA /= av_natom
self.avZ /= np.sum(self.numat)
''' calculate the maximum index of diffraction vector along
each of the three reciprocal
basis vectors '''
def init_max_g_index(self):
"""
added 03/17/2021 SS
"""
self.ih = 1
self.ik = 1
self.il = 1
def CalcMaxGIndex(self):
self.init_max_g_index()
while (1.0 / self.CalcLength(
np.array([self.ih, 0, 0],
dtype=np.float64), 'r') > self.dmin):
self.ih = self.ih + 1
while (1.0 / self.CalcLength(
np.array([0, self.ik, 0],
dtype=np.float64), 'r') > self.dmin):
self.ik = self.ik + 1
while (1.0 / self.CalcLength(
np.array([0, 0, self.il],
dtype=np.float64), 'r') > self.dmin):
self.il = self.il + 1
def InitializeInterpTable(self):
self.f1 = {}
self.f2 = {}
self.f_anam = {}
data = importlib.resources.open_binary(hexrd.resources, 'Anomalous.h5')
with h5py.File(data, 'r') as fid:
for i in range(0, self.atom_ntype):
Z = self.atom_type[i]
elem = constants.ptableinverse[Z]
gid = fid.get('/'+elem)
data = gid.get('data')
self.f1[elem] = interp1d(data[:, 7], data[:, 1])
self.f2[elem] = interp1d(data[:, 7], data[:, 2])
def CalcAnomalous(self):
for i in range(self.atom_ntype):
Z = self.atom_type[i]
elem = constants.ptableinverse[Z]
f1 = self.f1[elem](self.wavelength)
f2 = self.f2[elem](self.wavelength)
frel = constants.frel[elem]
Z = constants.ptable[elem]
self.f_anam[elem] = np.complex(f1+frel-Z, f2)
def CalcXRFormFactor(self, Z, charge, s):
'''
we are using the following form factors for x-aray scattering:
1. coherent x-ray scattering, f0 tabulated in Acta Cryst. (1995). A51,416-431
2. Anomalous x-ray scattering (complex (f'+if")) tabulated in J. Phys. Chem. Ref. Data, 24, 71 (1995)
and J. Phys. Chem. Ref. Data, 29, 597 (2000).
3. Thompson nuclear scattering, fNT tabulated in Phys. Lett. B, 69, 281 (1977).
the anomalous scattering is a complex number (f' + if"), where the two terms are given by
f' = f1 + frel - Z
f" = f2
f1 and f2 have been tabulated as a function of energy in Anomalous.h5 in hexrd folder
overall f = (f0 + f' + if" +fNT)
'''
elem = constants.ptableinverse[Z]
if charge == '0':
sfact = constants.scatfac[elem]
else:
sfact = constants.scatfac[f"{elem}{charge}"]
fe = sfact[5]
fNT = constants.fNT[elem]
frel = constants.frel[elem]
f_anomalous = self.f_anam[elem]
for i in range(5):
fe += sfact[i] * np.exp(-sfact[i+6]*s)
return (fe+fNT+f_anomalous)
def CalcXRSF(self, hkl):
'''
the 1E-2 is to convert to A^-2
since the fitting is done in those units
'''
s = 0.25 * self.CalcLength(hkl, 'r')**2 * 1E-2
sf = np.complex(0., 0.)
for i in range(0, self.atom_ntype):
Z = self.atom_type[i]
charge = self.chargestates[i]
ff = self.CalcXRFormFactor(Z, charge, s)
if(self.aniU):
T = np.exp(-np.dot(hkl, np.dot(self.betaij[i, :, :], hkl)))
else:
T = np.exp(-8.0*np.pi**2 * self.U[i]*s)
ff *= self.atom_pos[i, 3] * T
for j in range(self.asym_pos[i].shape[0]):
arg = 2.0 * np.pi * np.sum(hkl * self.asym_pos[i][j, :])
sf = sf + ff * np.complex(np.cos(arg), -np.sin(arg))
return np.abs(sf)**2
''' calculate bragg angle for a reflection. returns Nan if
the reflections is not possible for the voltage/wavelength
'''
def CalcBraggAngle(self, hkl):
glen = self.CalcLength(hkl, 'r')
sth = self.wavelength * glen * 0.5
return np.arcsin(sth)
def ChooseSymmetric(self, hkllist, InversionSymmetry=True):
'''
this function takes a list of hkl vectors and
picks out a subset of the list picking only one
of the symmetrically equivalent one. The convention
is to choose the hkl with the most positive components.
'''
mask = np.ones(hkllist.shape[0], dtype=np.bool)
laue = InversionSymmetry
for i, g in enumerate(hkllist):
if(mask[i]):
geqv = self.CalcStar(g, 'r', applyLaue=laue)
for r in geqv[1:, ]:
rid = np.where(np.all(r == hkllist, axis=1))
mask[rid] = False
hkl = hkllist[mask, :].astype(np.int32)
hkl_max = []
for g in hkl:
geqv = self.CalcStar(g, 'r', applyLaue=laue)
loc = np.argmax(np.sum(geqv, axis=1))
gmax = geqv[loc, :]
hkl_max.append(gmax)
return np.array(hkl_max).astype(np.int32)
def SortHKL(self, hkllist):
'''
this function sorts the hkllist by increasing |g|
i.e. decreasing d-spacing. If two vectors are same
length, then they are ordered with increasing
priority to l, k and h
'''
glen = []
for g in hkllist:
glen.append(np.round(self.CalcLength(g, 'r'), 8))
# glen = np.atleast_2d(np.array(glen,dtype=np.float)).T
dtype = [('glen', float), ('max', int), ('sum', int),
('h', int), ('k', int), ('l', int)]
a = []
for i, gl in enumerate(glen):
g = hkllist[i, :]
a.append((gl, np.max(g), np.sum(g), g[0], g[1], g[2]))
a = np.array(a, dtype=dtype)
isort = | np.argsort(a, order=['glen', 'max', 'sum', 'l', 'k', 'h']) | numpy.argsort |
#!/usr/bin/env python3
"""
@author: <NAME>
This script contains all functions used for text pre-processing and
for computing Jensen-Shannon Divergence (JSD), Random JSD, and Coherence.
"""
from textblob import TextBlob, Word
from nltk.util import ngrams
from nltk.probability import FreqDist
from scipy.spatial import distance
from sklearn.feature_extraction.text import CountVectorizer
import sklearn
import numpy as np
import swifter
import pandas as pd
from ast import literal_eval
from scipy import sparse
# ------------------------------------------------------------------------------------ #
f = open('stop_words.txt', 'r')
stop_words = [word.rstrip('\n') for word in f]
def preprocess_text(doc, n_grams='one'):
"""
Pre-processing using TextBlob:
tokenizing, converting to lower-case, and lemmatization based on POS tagging,
removing stop-words, and retaining tokens greater than length 2
We can also choose to include n_grams (n = 1,2,3) in the final output
Argument(s): 'doc' - a string of words or sentences.
'n_grams' - one: only unigrams (tokens consisting of one word each)
- two: only bigrams
- two_plus: unigrams + bigrams
- three: only trigrams
- three_plus: unigrams + bigrams + trigrams
Output: 'reuslt_singles' - a list of pre-processed tokens (individual words) of each sentence in 'doc'
'result_ngrams' - a list of pre-processed tokens (including n-grams) of each sentence in 'doc'
"""
blob = TextBlob(doc).lower()
# lang = blob.detect_language()
# print(lang)
# if lang != 'en':
# blob = blob.translate(to = 'en')
result_singles = []
tag_dict = {"J": 'a', # Adjective
"N": 'n', # Noun
"V": 'v', # Verb
"R": 'r'} # Adverb
# For all other types of parts of speech (including those not classified at all)
# the tag_dict object maps to 'None'
# the method w.lemmatize() defaults to 'Noun' as POS for those classified as 'None'
for sent in blob.sentences:
words_and_tags = [(w, tag_dict.get(pos[0])) for w, pos in sent.tags]
lemmatized_list = [w.lemmatize(tag) for w, tag in words_and_tags]
for i in range(len(lemmatized_list)):
if lemmatized_list[i] not in stop_words and len(lemmatized_list[i].lower()) > 2 and not lemmatized_list[i].isdigit():
result_singles.append(lemmatized_list[i].lower())
result_bigrams = ['_'.join(x) for x in ngrams(result_singles, 2)]
# result_bigrams = [
# token for token in result_bigrams if token != 'psychological_association']
result_trigrams = ['_'.join(x) for x in ngrams(result_singles, 3)]
result_two_plus = result_singles + result_bigrams
result_three_plus = result_singles + result_bigrams + result_trigrams
if n_grams == 'one':
result = result_singles
elif n_grams == 'two':
result = result_bigrams
elif n_grams == 'three':
result = result_trigrams
elif n_grams == 'two_plus':
result = result_two_plus
elif n_grams == 'three_plus':
result = result_three_plus
return result
# ------------------------------------------------------------------------------------ #
def get_frequency(processed_text_list):
"""
Using a built-in NLTK function that generates tuples
We get the frequency distribution of all words/n-grams in a tokenized list
We can get the proportion of the the token as a fraction of the total corpus size ----> N/A
We can also sort these frequencies and proportions in descending order in a dictionary object ----> N/A
Argument(s): 'processed_text_list' - A list of pre-processed tokens
Output(s): freq_dict - A dictionary of tokens and their respective
frequencies in descending order
"""
# prop_dict - A dictionary of tokens and their respective proportions as a fraction of the total corpus
# combined_dict - A dictionary whose values are both frequencies and proportions combined within a list
# """
word_frequency = FreqDist(word for word in processed_text_list)
# sorted_counts = sorted(word_frequency.items(), key = lambda x: x[1], reverse = True)
# freq_dict = dict(sorted_counts)
freq_dict = dict(word_frequency)
# prop_dict = {key : freq_dict[key] * 1.0 / sum(freq_dict.values()) for key, value in freq_dict.items()}
# combined_dict = {key : [freq_dict[key], freq_dict[key] * 1.0 / sum(freq_dict.values())] for key, value in freq_dict.items()}
return freq_dict # , prop_dict, combined_dict
# ------------------------------------------------------------------------------------ #
def merge_vocab_dictionary(vocab_column):
"""
Takes any number of token frequency dictionaries and merges them while summing
the respective frequencies and then calculates the proportion of the the tokens
as a fraction of the total corpus size and saves to text and CSV files
Argument(s): vocab_column - A list/pandas column of dictionary objects
Output(s): merged_freq_dict - A list object containing the frequencies of all
merged dictionary tokens
"""
merged_freq_dict = {}
for dictionary in vocab_column:
for key, value in dictionary.items(): # d.items() in Python 3+
merged_freq_dict.setdefault(key, []).append(1)
for key, value in merged_freq_dict.items():
merged_freq_dict[key] = sum(value)
# # In case we also want proportion of frequency along with counts
# total_sum = sum(merged_freq_dict.values())
# merged_prop_dict = {key : merged_freq_dict[key] * 1.0 / total_sum for key, value in merged_freq_dict.items()}
# merged_combined_dict = {key : [merged_freq_dict[key], (merged_freq_dict[key] * 1.0 / total_sum)] for key, value in merged_freq_dict.items()}
return merged_freq_dict
# ------------------------------------------------------------------------------------ #
def remove_less_than(frequency_dict, min_threshold = 1):
"""
Remove any tokens that appear fewer than the min_threshold number of
times in a token-frequency dictionary
Argument(s): 'frequency_dict' - a dictionary of token-frequency pairs
'min_threshold' - Minimum threshold of token frequency to be retained
Output: 'retained' - a dictionary of all token-frequency pairs after removing
tokens with frequency less than min_threshold
"""
retained_dict = {key : value for key, value in frequency_dict.items() if (value > min_threshold)}
return retained_dict
# ------------------------------------------------------------------------------------ #
def filter_after_preprocess(processed_tokens, retained_dict):
"""
Removes any tokens not in the retained_dict from a list of processed tokens
Argument(s): processed_tokens - a list of pre-processed token
retained_dict - a token-frequency dictionary of tokens retained
after removing tokens up to min_threshold frequency
Output: filtered - a list of tokens remaining after filtering out those that
are absent from retained_dict
"""
filtered = []
for token in processed_tokens:
if token in retained_dict.keys():
filtered.append(token)
return filtered
# ------------------------------------------------------------------------------------ #
def vectorize(text, corpus_by_cluster, count_vectorizer):
"""
Takes a list and converts it into a vector of document-term probability
based on the given corpus
Argument(s): text - a list of pre-processed tokens
corpus_by_cluster - a list of the corpus tokens
count_vectorizer - scikit-learn's Countvectorizer()
Output: article_prob_vec - a list of document-term probabilities
"""
article_count_mat = count_vectorizer.transform([' '.join(text)])
article_sum = sparse.diags(1/article_count_mat.sum(axis=1).A.ravel())
article_prob_vec = (article_sum @ article_count_mat).toarray()
return article_prob_vec
# ------------------------------------------------------------------------------------ #
def calculate_jsd(doc_prob_vec, cluster_prob_vec):
"""
Computes the Jensen-Shannon Distance (square root of Jensen-Shannon Divergence)
Argument(s): doc_prob_vec - a list of document-term probabilites
cluster_prob_vec - a list of corpus-term probabilites
Output: jsd - Jensen-Shannon Distance between the doc_prob_vec and cluster_prob_vec
"""
jsd = distance.jensenshannon(doc_prob_vec.tolist()[0], cluster_prob_vec)
return jsd
# ------------------------------------------------------------------------------------ #
def compute_jsd(data_text, name, val, cluster_num):
"""
Computes the JSD for a cluster dataframe where each row is an article
Argument(s): data_text - an article cluster dataframe
name - type of edge-weight used
(no-weight, scopus frequency weight, normalized cluster frequency)
val - inflation value used (for MCL)
cluster_num - cluster number to compute JSD for
Output: result_dict - a dictionary of JSD output for one cluster
"""
original_cluster_size = len(data_text)
data_text = data_text.dropna()
final_cluster_size = len(data_text)
if final_cluster_size < 10:
result_dict = {
'weight': name,
'inflation': val,
'cluster': cluster_num,
'total_size': original_cluster_size,
'pre_jsd_size': final_cluster_size,
'missing_values': (original_cluster_size-final_cluster_size),
'post_jsd_size': None,
'jsd_nans': None,
'mean_jsd': None,
'min_jsd': None,
'percentile_25_jsd': None,
'median_jsd': None,
'percentile_75_jsd': None,
'max_jsd': None,
'std_dev_jsd': None,
'total_unique_unigrams': None,
'final_unique_unigrams': None,
'size_1_unigram_prop': None}
else:
# data_text['all_text'] = data_text["title"] + " " + data_text["abstract_text"]
# data_text['processed_all_text'] = data_text["all_text"].swifter.progress_bar(False).apply(preprocess_text)
# If pre-processing is already done:
data_text['processed_all_text'] = data_text['processed_all_text'].str.split()
data_text['processed_all_text_frequencies'] = data_text['processed_all_text'].swifter.progress_bar(False).apply(get_frequency)
data_all_text_frequency = merge_vocab_dictionary(data_text['processed_all_text_frequencies'])
retained_dict = remove_less_than(data_all_text_frequency)
data_text['filtered_text'] = data_text['processed_all_text'].swifter.progress_bar(False).apply(filter_after_preprocess, args = (retained_dict,))
mcl_all_text = data_text.filtered_text.tolist()
corpus_by_article = [' '.join(text) for text in mcl_all_text]
corpus_by_cluster = [' '.join(corpus_by_article)]
count_vectorizer = CountVectorizer(lowercase=False, vocabulary=list(set(corpus_by_cluster[0].split())))
cluster_count_mat = count_vectorizer.fit_transform(corpus_by_cluster)
data_text['probability_vector'] = data_text['filtered_text'].swifter.progress_bar(False).apply(vectorize, args=(corpus_by_cluster, count_vectorizer,))
cluster_sum = sparse.diags(1/cluster_count_mat.sum(axis=1).A.ravel())
cluster_prob_vec = (cluster_sum @ cluster_count_mat).toarray().tolist()[0]
data_text['JS_distance'] = data_text['probability_vector'].swifter.progress_bar(False).apply(calculate_jsd, args = (cluster_prob_vec,))
data_text = data_text.dropna()
data_text['JS_divergence'] = np.square(data_text['JS_distance'])
jsd_cluster_size = len(data_text)
jsd_min = min(data_text['JS_divergence'])
jsd_25_percentile = | np.percentile(data_text['JS_divergence'], 25) | numpy.percentile |
# -*- coding: utf-8 -*-
"""
Copyright 2018 NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import tensorflow as tf
import numpy as np
import time
import math
from kin_kor_char_parser import decompose_str_as_one_hot
LOCAL_DATASET_PATH = '../sample_data/kin/'
from soy.soy.nlp.tokenizer import CohesionTokenizer, RegexTokenizer
from gensim.models import Word2Vec
class KinQueryDataset:
"""
지식인 데이터를 읽어서, tuple (데이터, 레이블)의 형태로 리턴하는 파이썬 오브젝트 입니다.
"""
def __init__(self, dataset_path: str, max_length: int):
"""
:param dataset_path: 데이터셋 root path
:param max_length: 문자열의 최대 길이 400
"""
# 데이터, 레이블 각각의 경로
queries_path = os.path.join(dataset_path, 'train', 'train_data')
labels_path = os.path.join(dataset_path, 'train', 'train_label')
# 지식인 데이터를 읽고 preprocess까지 진행합니다
self.test_idx = -1
with open(queries_path, 'rt', encoding='utf8') as f:
#self.queries1, self.queries2,self.queries1_test,self.queries2_test,self.test_idx = preprocess2(f.readlines(), max_length,test_data=True)
self.queries1, self.queries2= preprocess2(f.readlines(), max_length,test_data=False)
#self.queries,self.queries_test,self.test_idx = preprocess_origin(f.readlines(),max_length,test_data=True)
# 지식인 레이블을 읽고 preprocess까지 진행합니다.
with open(labels_path) as f:
self.labels = np.array([[np.float32(x)] for x in f.readlines()])
if self.test_idx != -1:
self.labels_test = self.labels[self.test_idx:]
self.labels = self.labels[:self.test_idx]
print("test data splited size %d" % self.test_idx)
def __len__(self):
"""
:return: 전체 데이터의 수를 리턴합니다
"""
return len(self.labels)
def __getitem__(self, idx):
"""
:param idx: 필요한 데이터의 인덱스
:return: 인덱스에 맞는 데이터, 레이블 pair를 리턴합니다
"""
return self.queries1[idx], self.queries2[idx] ,self.labels[idx]
def add_noise(query):
query = query + (query * (0.001) * ((np.random.rand(1) - 0.5)))
query = np.rint(query)
query = query.astype(np.int32)
return query
def data_augmentation(queries1,queries2,labels):
# Add noise in query data
def get_noised_queries(queries):
# Expand query numpy array size
q_expand = np.zeros((len(queries) * 2, len(queries[0])), dtype=np.int32)
np.random.seed(int(time.time()))
for i in range(len(q_expand)):
if i < len(queries):
q_expand[i] = queries[i]
else:
noised_val = add_noise(queries[i - len(queries)])
q_expand[i] = noised_val
return q_expand
def get_double_labels(labels):
l_expand = np.zeros((len(labels) * 2,1), dtype=np.int32)
for i in range(len(l_expand)):
if i < len(labels):
l_expand[i] = labels[i]
else:
l_expand[i] = labels[i - len(labels)]
return l_expand
q1_expand = get_noised_queries(queries1)
q2_expand = get_noised_queries(queries2)
l_expand = get_double_labels(labels)
return q1_expand, q2_expand, l_expand
def preprocess2(data: list, max_length: int, test_data: bool):
"""
입력을 받아서 딥러닝 모델이 학습 가능한 포맷으로 변경하는 함수입니다.
기본 제공 알고리즘은 char2vec이며, 기본 모델이 MLP이기 때문에, 입력 값의 크기를 모두 고정한 벡터를 리턴합니다.
문자열의 길이가 고정값보다 길면 긴 부분을 제거하고, 짧으면 0으로 채웁니다.
:param data: 문자열 리스트 ([문자열1, 문자열2, ...])
:param max_length: 문자열의 최대 길이
:return: 벡터 리스트 ([[0, 1, 5, 6], [5, 4, 10, 200], ...]) max_length가 4일 때
"""
query1 =[]
query2 =[]
for d in data:
q1,q2 = d.split('\t')
query1.append(q1)
query2.append(q2.replace('\n',''))
vectorized_data1 = [decompose_str_as_one_hot(datum, warning=False) for datum in query1]
vectorized_data2 = [decompose_str_as_one_hot(datum, warning=False) for datum in query2]
if test_data :
data_size = (len(data))
test_size = (int)(data_size * 0.03)
train_size = data_size - test_size
zero_padding1 = np.zeros((train_size, max_length), dtype=np.int32)
zero_padding2 = np.zeros((train_size, max_length), dtype=np.int32)
zero_padding1_test = np.zeros((test_size, max_length), dtype=np.int32)
zero_padding2_test = np.zeros((test_size, max_length), dtype=np.int32)
for idx, seq in enumerate(vectorized_data1):
if idx < train_size:
length = len(seq)
if length >= max_length:
length = max_length
zero_padding1[idx, :length] = np.array(seq)[:length]
else:
zero_padding1[idx, :length] = np.array(seq)
else:
length = len(seq)
if length >= max_length:
length = max_length
zero_padding1_test[idx - train_size, :length] = np.array(seq)[:length]
else:
zero_padding1_test[idx - train_size, :length] = np.array(seq)
for idx, seq in enumerate(vectorized_data2):
if idx < train_size:
length = len(seq)
if length >= max_length:
length = max_length
zero_padding2[idx, :length] = np.array(seq)[:length]
else:
zero_padding2[idx, :length] = np.array(seq)
else:
length = len(seq)
if length >= max_length:
length = max_length
zero_padding2_test[idx - train_size, :length] = np.array(seq)[:length]
else:
zero_padding2_test[idx - train_size, :length] = np.array(seq)
return zero_padding1,zero_padding2, zero_padding1_test,zero_padding2_test, train_size
else:
data_size = (len(data))
test_size = (int)(data_size * 0.03)
train_size = data_size - test_size
zero_padding1 = np.zeros((data_size, max_length), dtype=np.int32)
zero_padding2 = np.zeros((data_size, max_length), dtype=np.int32)
for idx, seq in enumerate(vectorized_data1):
length = len(seq)
if length >= max_length:
length = max_length
zero_padding1[idx, :length] = np.array(seq)[:length]
else:
zero_padding1[idx, :length] = | np.array(seq) | numpy.array |
__license__ = """
Copyright (c) 2012 mpldatacursor developers
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import numpy as np
import matplotlib.transforms as mtransforms
from mpl_toolkits import mplot3d
#-- Artist-specific pick info functions --------------------------------------
def _coords2index(im, x, y, inverted=False):
"""
Converts data coordinates to index coordinates of the array.
Parameters
-----------
im : An AxesImage instance
The image artist to operation on
x : number
The x-coordinate in data coordinates.
y : number
The y-coordinate in data coordinates.
inverted : bool, optional
If True, convert index to data coordinates instead of data coordinates
to index.
Returns
--------
i, j : Index coordinates of the array associated with the image.
"""
xmin, xmax, ymin, ymax = im.get_extent()
if im.origin == 'upper':
ymin, ymax = ymax, ymin
data_extent = mtransforms.Bbox([[ymin, xmin], [ymax, xmax]])
array_extent = mtransforms.Bbox([[0, 0], im.get_array().shape[:2]])
trans = mtransforms.BboxTransformFrom(data_extent) +\
mtransforms.BboxTransformTo(array_extent)
if inverted:
trans = trans.inverted()
return trans.transform_point([y,x]).astype(int)
def image_props(event):
"""
Get information for a pick event on an ``AxesImage`` artist. Returns a dict
of "i" & "j" index values of the image for the point clicked, and "z": the
(uninterpolated) value of the image at i,j.
Parameters
-----------
event : PickEvent
The pick event to process
Returns
--------
props : dict
A dict with keys: z, i, j
"""
x, y = event.mouseevent.xdata, event.mouseevent.ydata
i, j = _coords2index(event.artist, x, y)
z = event.artist.get_array()[i,j]
if z.size > 1:
# Override default numpy formatting for this specific case. Bad idea?
z = ', '.join('{:0.3g}'.format(item) for item in z)
return dict(z=z, i=i, j=j)
def line_props(event):
"""
Get information for a pick event on a Line2D artist (as created with
``plot``.)
This will yield x and y values that are interpolated between vertices
(instead of just being the position of the mouse) or snapped to the nearest
vertex if only the vertices are drawn.
Parameters
-----------
event : PickEvent
The pick event to process
Returns
--------
props : dict
A dict with keys: x & y
"""
xclick, yclick = event.mouseevent.xdata, event.mouseevent.ydata
i = event.ind[0]
xorig, yorig = event.artist.get_xydata().T
# For points-only lines, snap to the nearest point.
linestyle = event.artist.get_linestyle()
if linestyle in ['none', ' ', '', None, 'None']:
return dict(x=xorig[i], y=yorig[i])
# ax.step is actually implemented as a Line2D with a different drawstyle...
xs_data = xorig[max(i - 1, 0) : i + 2]
ys_data = yorig[max(i - 1, 0) : i + 2]
drawstyle = event.artist.drawStyles[event.artist.get_drawstyle()]
if drawstyle == "_draw_lines":
pass
elif drawstyle == "_draw_steps_pre":
xs_data = _interleave(xs_data, xs_data[:-1])
ys_data = _interleave(ys_data, ys_data[1:])
elif drawstyle == "_draw_steps_post":
xs_data = _interleave(xs_data, xs_data[1:])
ys_data = _interleave(ys_data, ys_data[:-1])
elif drawstyle == "_draw_steps_mid":
mid_xs = (xs_data[:-1] + xs_data[1:]) / 2
xs_data = _interleave(xs_data, np.column_stack([mid_xs, mid_xs]))
ys_data = _interleave(
ys_data, np.column_stack([ys_data[:-1], ys_data[1:]]))
else:
raise ValueError(
"Unknown drawstyle: {}".format(event.artist.get_drawstyle()))
# The artist transform may be different from the axes transform (e.g.,
# axvline/axhline)
artist_transform = event.artist.get_transform()
axes_transform = event.artist.axes.transData
xs_screen, ys_screen = (
artist_transform.transform(
np.column_stack([xs_data, ys_data]))).T
xclick_screen, yclick_screen = (
axes_transform.transform([xclick, yclick]))
x_screen, y_screen = _interpolate_line(xs_screen, ys_screen,
xclick_screen, yclick_screen)
x, y = axes_transform.inverted().transform([x_screen, y_screen])
return dict(x=x, y=y)
def _interleave(a, b):
"""Interleave arrays a and b; b may have multiple columns and must be
shorter by 1.
"""
b = np.column_stack([b]) # Turn b into a column array.
nx, ny = b.shape
c = np.zeros((nx + 1, ny + 1))
c[:, 0] = a
c[:-1, 1:] = b
return c.ravel()[:-(c.shape[1] - 1)]
def _interpolate_line(xorig, yorig, xclick, yclick):
"""Find the nearest point on a polyline segment to the point *xclick*
*yclick*."""
candidates = []
# The closest point may be a vertex.
for x, y in zip(xorig, yorig):
candidates.append((np.hypot(xclick - x, yclick - y), (x, y)))
# Or it may be a projection on a segment.
for (x0, x1), (y0, y1) in zip(zip(xorig, xorig[1:]), zip(yorig, yorig[1:])):
vec1 = | np.array([x1 - x0, y1 - y0]) | numpy.array |
import numpy as np
import pandas as pd
import vectorbt as vbt
from scipy.signal import argrelextrema
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.metrics import classification_report
class Historian:
def buy_and_hold(self, close):
# returns a portfolio based on buy and hold strategy
portfolio = vbt.Portfolio.from_holding(
close, init_cash=1000, freq='D')
return portfolio
def create_portfolio(self, close, signals):
# returns a portfolio based on signals
portfolio = vbt.Portfolio.from_signals(
close, signals, ~signals, init_cash=1000, freq='D'
)
return portfolio
def fill(self, arr, method='ffill', type='bool'):
# forward fills or nearest fills an array
df = pd.DataFrame(arr)
s = df.iloc[:, 0]
if method == 'ffill':
s = s.fillna(method='ffill')
s = pd.to_numeric(s)
s = s.interpolate(method='nearest').astype(type)
out = s.to_numpy().flatten()
return out
def get_optimal_signals(self, close, n=10, method='ffill'):
# finds the optimal signals for an array of prices
close = np.array(close)
mins = argrelextrema(close, np.less_equal,
order=n)[0]
maxs = argrelextrema(close, np.greater_equal,
order=n)[0]
signals = np.empty_like(close, dtype='object')
signals[:] = np.nan
signals[mins] = True
signals[maxs] = False
return self.fill(signals, method=method)
def generate_random(self, close, num=10**4):
# generate random strategies
good_signals = []
portfolios = []
sortinos = []
calmars = []
num_strats = num
top_n = 25
prob = self.get_optimal_signals(close).mean()
for _ in range(num_strats):
signals = pd.DataFrame.vbt.signals.generate_random(
(len(close), 1), prob=prob)[0]
portfolio = vbt.Portfolio.from_signals(
close, signals, ~signals, init_cash=1000, freq='D')
sortinos.append(portfolio.sortino_ratio())
calmars.append(portfolio.calmar_ratio())
good_signals.append(signals)
portfolios.append(portfolio)
top_s = set(np.argpartition(sortinos, -top_n)[-top_n:])
top_c = set(np.argpartition(calmars, -top_n)[-top_n:])
top_idxs = top_s.intersection(top_c)
portfolios = [portfolio for idx, portfolio in enumerate(
portfolios) if idx in top_idxs]
good_signals = [signal for idx, signal in enumerate(
good_signals) if idx in top_idxs]
return good_signals
def undersample(self, X, y, n=2):
# undersample, split train / test data, and standardize
df = pd.DataFrame(X)
df['y'] = y
df = df.dropna()
y = df['y'].to_numpy()
X = df.drop('y', axis=1).to_numpy()
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=.2)
train_true = 0
train_false = 0
X_train_new = []
y_train_new = []
train_num = len(y_train) - sum(y_train)
# use arr[mask]all[:num] instead to get
for idx, signal in enumerate(y_train):
if signal and train_true < train_num:
train_true += 1
elif not signal and train_false < train_num:
train_false += 1
else:
continue
X_train_new.append(X_train[idx])
y_train_new.append(y_train[idx])
X_train = | np.array(X_train_new) | numpy.array |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(221, 'P m -3 m', transformations)
space_groups[221] = sg
space_groups['P m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(222, 'P n -3 n :2', transformations)
space_groups[222] = sg
space_groups['P n -3 n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(223, 'P m -3 n', transformations)
space_groups[223] = sg
space_groups['P m -3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(224, 'P n -3 m :2', transformations)
space_groups[224] = sg
space_groups['P n -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(225, 'F m -3 m', transformations)
space_groups[225] = sg
space_groups['F m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(226, 'F m -3 c', transformations)
space_groups[226] = sg
space_groups['F m -3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = | N.array([1,1,0]) | numpy.array |
"""Generate a single discrete time SIR model.
"""
from . import data_model
import numpy as np
from scipy import stats
import xarray as xr
# Generate Betas
# Beta, or the growth rate of the infection, depends on the covariates.
# Here we implement three different functional forms for the dependency.
SPLIT_TIME = 100
def generate_betas_from_single_random_covariate(num_locations):
"""Beta depend on a single covariate that is randomly generated.
Args:
num_locations: an int representing the number of locations to simulate
Returns:
beta: an xr.DataArray consisting of the growth rate
for each epidemic
v: an xr.DataArray consisting of the randomly generated covariate for each
location
alpha: an xr.DataArray consisting of the weights for each covariate
"""
v = xr.DataArray(
np.random.uniform(0.0, 1.0, (num_locations, 1)),
dims=['location', 'static_covariate'])
alpha = xr.DataArray(np.ones(1), dims=['static_covariate'])
beta = 0.4 * np.exp(alpha @ v)
return beta, v, alpha
def generate_betas_effect_mod(num_locations):
"""Betas depend on 2 discrete, randomly generated effects.
Args:
num_locations: an int representing the number of locations to simulate
Returns:
beta: an xr.DataArray consisting of the growth rate
for each epidemic
v: an xr.DataArray consisting of the randomly generated covariate for each
location
alpha: an xr.DataArray consisting of the weights for each covariate
"""
v = xr.DataArray(np.random.binomial(1, 0.5, size=(num_locations, 2)),
dims={'location': num_locations, 'static_covariate': 2})
hd = v.values[:, 0]
ws = v.values[:, 1]
beta_np = np.exp(np.log(1.5) + np.log(2.0) * (hd == 1) * (ws == 0))
beta = xr.DataArray(beta_np, dims={'location': num_locations})
return beta, v, xr.DataArray(np.array([1, 1]), dims={'static_covariate': 2})
def generate_betas_many_cov2(num_locations, num_pred=1, num_not_pred=2):
"""Betas depend on real valued vector of covariates.
Args:
num_locations: an int representing the number of locations to simulate.
num_pred: an int representing the number of covariates that affect beta.
num_not_pred: an int representing the number of covariates that do not
affect beta.
Returns:
beta: an xr.DataArray consisting of the growth rate
for each epidemic
v: an xr.DataArray consisting of the randomly generated covariate for each
location
alpha: an xr.DataArray consisting of the weights for each covariate
"""
# generate random covariates
# sample from range -1, 1 uniformly
v = xr.DataArray(np.random.uniform(
low=-1.0, high=1.0, size=(num_locations, num_pred + num_not_pred)),
dims={'location': num_locations,
'static_covariate': num_pred+num_not_pred})
# construct weights for each covariate
alpha_1 = np.ones(num_pred)
alpha_0 = np.zeros(num_not_pred)
alpha = xr.DataArray(np.concatenate((alpha_1, alpha_0), axis=0),
dims={'static_covariate': num_pred+num_not_pred})
# this has a different functional form than we've seen before
beta_np = 1 + np.exp(np.matmul(alpha.values, v.values.T))
beta = xr.DataArray(beta_np, dims={'location': num_locations})
return beta, v, alpha
def gen_dynamic_beta_random_time(num_locations, num_time_steps):
"""Betas change at a random time between 1 and num_time_steps-1.
Args:
num_locations: an int representing the number of locations to simulate
num_time_steps: an int representing the number of time steps to simulate
Returns:
beta: an xr.DataArray consisting of the growth rate
for each epidemic with dimensions (location, time)
v: an xr.DataArray consisting of the randomly generated covariate for each
location with dimensions (location, time, 1)
alpha: an xr.DataArray consisting of the weights for each covariate with
dimension 1.
"""
time = np.random.randint(1, num_time_steps-1, num_locations)
cov = np.zeros((num_locations, num_time_steps, 1))
for i in range(num_locations):
cov[i][time[i]:] = 1
v = xr.DataArray(cov, dims=['location', 'time', 'dynamic_covariate'])
alpha = np.random.uniform(-1., 0.)*xr.DataArray(np.ones(1), dims=['dynamic_covariate'])
beta = 0.4 * np.exp(alpha @ v)
return beta, v, alpha
def gen_social_distancing_weight(num_locations):
alpha = np.random.uniform(-1., 0., 1)
return alpha
def new_sir_simulation_model(num_locations, num_time_steps,
num_static_covariates, num_dynamic_covariates=0):
"""Return a zero data_model.new_model with extra simulation parameters.
Args:
num_locations: int representing the number of locations to model epidemics
for
num_time_steps: int representing the maximum number of time steps the
epidemic can have
num_static_covariates: int representing the number of static covariates for
each location
num_dynamic_covariates: int representing the number of dynamic covariates
for each location.
Returns:
ds: an xr.Dataset representing the new infections and
covariates for each location and representing the simulation parameters.
All datavalues are initialized to 0.
"""
if num_time_steps < SPLIT_TIME:
raise ValueError('num_time_steps must be at least %d' % (SPLIT_TIME,))
ds = data_model.new_model(num_locations, num_time_steps,
num_static_covariates, num_dynamic_covariates)
ds['canonical_split_time'] = SPLIT_TIME
ds['canonical_split_time'].attrs['description'] = (
'Int representing the canonical time at which to split the data.')
ds['static_weights'] = data_model.new_dataarray(
{'static_covariate': num_static_covariates})
# TODO(edklein) should population_size be a covariate?
ds['population_size'] = data_model.new_dataarray({'location': num_locations})
ds['population_size'].attrs[
'description'] = 'Int representing the population size in each location.'
ds['fraction_infected'] = data_model.new_dataarray({
'location': num_locations
})
ds['fraction_infected'].attrs['description'] = (
'Float representing the fraction of the population '
'infected at the day %d.' % (SPLIT_TIME,))
ds['start_time'] = data_model.new_dataarray({
'location': num_locations
})
ds['start_time'].attrs['description'] = (
'Int representing the infection start time at each location')
ds['recovery_rate'] = data_model.new_dataarray({'location': num_locations})
ds['recovery_rate'].attrs[
'description'] = ('Float representing the recovery rate in each location.'
' This is used in the SIR simulation of the epidemic.')
if num_dynamic_covariates > 0:
ds['dynamic_weights'] = data_model.new_dataarray(
{'time': num_time_steps,
'dynamic_covariate': num_dynamic_covariates})
ds['growth_rate'] = data_model.new_dataarray({'location': num_locations,
'time': num_time_steps})
ds['growth_rate'].attrs[
'description'] = ('Float representing the growth rate in each location'
' at each point in time.'
'This is used in the SIR simulation of the epidemic.')
else:
ds['growth_rate'] = data_model.new_dataarray({'location': num_locations})
ds['growth_rate'].attrs[
'description'] = ('Float representing the growth rate in each location.'
'This is used in the SIR simulation of the epidemic.')
return ds
def _helper_ground_truth_setup(population_size,
num_time_steps):
"""A helper function that sets up time0 of an SIR simulation.
This helper function calculates the number of susceptible, infected, and
recovered individuals at the begining of a simulation. It returns these
values to be used as initial values in _helper_ground_truth_loop.
Args:
population_size: a xr.DataArray representing the population size in each
location
num_time_steps: an int representing the number of simulation 'days' to run
at each location.
Returns:
new_infections: a DataArray with shape (location, time).
The infections at time 0 are initialized to 1 in all locations.
num_susceptible: a DataArray with shape (location,) containing the
number of susceptible individuals in each location at time 0.
num_infected: a DataArray with shape (location,) containing the
number of infected individuals (1) in each location at time 0.
num_recovered: a DataArray with shape (location,) containing the
number of recovered individuals in each location at time 0.
"""
num_locations = population_size.sizes['location']
num_recovered = data_model.new_dataarray({
'location': num_locations,
}).astype(int)
new_infections = data_model.new_dataarray({
'location': num_locations,
'time': num_time_steps
}).astype(int)
# at each start time, we have 1 infection
new_infections[dict(time=0)] = 1
# setup for t-0
num_infected = new_infections.sel(time=0).copy()
num_susceptible = population_size.copy()
num_susceptible -= num_infected
return new_infections, num_susceptible, num_infected, num_recovered
def _helper_ground_truth_loop(num_susceptible, num_recovered, num_infected,
beta_time_t, gamma, population_size,
prob_infection_constant):
"""A helper function to calculate SIR for one time step of an SIR simulation.
This helper function calculates the number of susceptible, infected, and
recovered individuals at one time step. It returns these values to be used as
initial values in the next call.
Args:
num_susceptible: a DataArray with shape (location,) containing the
number of susceptible individuals in each location at time t.
num_infected: a DataArray with shape (location,) containing the
number of infected individuals (1) in each location at time t.
num_recovered: a DataArray with shape (location,) containing the
number of recovered individuals in each location at time t.
beta_time_t: a xr.DataArray representing the growth rate of the disease in
each location at time t.
gamma: a xr.DataArray representing the recovery rate of the disease in each
location
population_size: a xr.DataArray representing the population size in each
location
prob_infection_constant: a float representing a constant that we multiply
the probability of becoming infected by. We noticed that a value of 1. led
to curves that were short in time and clustered in time. By changing this
to less than 1., our models fit better.
Returns:
num_new_infections: a DataArray with shape (location,) containing the
number of *new* infections that occured at thime t+1.
num_susceptible: a DataArray with shape (location,) containing the
number of susceptible individuals in each location at time t+1.
num_infected: a DataArray with shape (location,) containing the
number of infected individuals (1) in each location at time t+1.
num_recovered: a DataArray with shape (location,) containing the
number of recovered individuals in each location at time t+1.
"""
# Calculate the probability that a person becomes infected
# Python3 doesn't seem to work, so force a float
frac_pop_infected = num_infected.astype(float) / population_size
prob_infected = prob_infection_constant * (
1 - np.exp(-frac_pop_infected * beta_time_t))
# Make sure prob_infected is between 0 and 1
prob_infected = prob_infected.where(prob_infected > 0, 0)
prob_infected = prob_infected.where(prob_infected < 1, 1)
# Determine the number of new infections
# By drawing from a binomial distribution
# Record the number of infections that occured at this time point
num_new_infections = stats.binom.rvs(
num_susceptible.astype(int), prob_infected)
# Calculate the probability that a person recovers
prob_recover = 1 - | np.exp(-gamma) | numpy.exp |
import itertools
import cmath
from pauxy.systems.hubbard import Hubbard
from pauxy.trial_wavefunction.free_electron import FreeElectron
from pauxy.trial_wavefunction.harmonic_oscillator import HarmonicOscillator
from pauxy.estimators.ci import simple_fci_bose_fermi, simple_fci
from pauxy.estimators.hubbard import local_energy_hubbard_holstein, local_energy_hubbard
from pauxy.systems.hubbard_holstein import HubbardHolstein
from pauxy.utils.linalg import reortho
from pauxy.estimators.greens_function import gab_spin
import scipy
import numpy
import scipy.sparse.linalg
from scipy.linalg import expm
from scipy.optimize import minimize
import time
from pauxy.utils.io import read_fortran_complex_numbers
from pauxy.utils.linalg import diagonalise_sorted
from pauxy.estimators.mixed import local_energy
try:
from jax.config import config
config.update("jax_enable_x64", True)
import jax
from jax import grad, jit
import jax.numpy as np
import jax.scipy.linalg as LA
import numpy
from pauxy.trial_wavefunction.coherent_state import gab, compute_exp
except ModuleNotFoundError:
from pauxy.estimators.greens_function import gab
import numpy
np = numpy
def gradient(x, nbasis, nup, ndown, T, U, g, m, w0, c0,restricted, relax_gamma):
grad = numpy.array(jax.grad(objective_function)(x, nbasis, nup, ndown, T, U, g, m, w0, c0,restricted, relax_gamma))
return grad
def hessian(x, nbasis, nup, ndown, T, U, g, m, w0, c0, restricted, relax_gamma):
H = numpy.array(jax.hessian(objective_function)(x, nbasis, nup, ndown, T, U, g, m, w0, c0,restricted,relax_gamma))
return H
def objective_function (x, nbasis, nup, ndown, T, U, g, m, w0, c0, restricted,relax_gamma):
nbasis = int(round(nbasis))
nup = int(round(nup))
ndown = int(round(ndown))
nbsf = nbasis
nocca = nup
noccb = ndown
nvira = nbasis - nocca
nvirb = nbasis - noccb
nova = nocca*nvira
novb = noccb*nvirb
daia = np.array(x[:nova],dtype=np.float64)
daib = np.array(x[nova:nova+novb],dtype=np.float64)
daia = daia.reshape((nvira, nocca))
daib = daib.reshape((nvirb, noccb))
if (restricted):
daib = jax.ops.index_update(daib, jax.ops.index[:,:], daia)
theta_a = np.zeros((nbsf, nbsf),dtype=np.float64)
theta_b = np.zeros((nbsf, nbsf),dtype=np.float64)
theta_a = jax.ops.index_update(theta_a, jax.ops.index[nocca:nbsf,:nocca], daia)
theta_a = jax.ops.index_update(theta_a, jax.ops.index[:nocca, nocca:nbsf], -np.transpose(daia))
theta_b = jax.ops.index_update(theta_b, jax.ops.index[noccb:nbsf,:noccb], daib)
theta_b = jax.ops.index_update(theta_b, jax.ops.index[:noccb, noccb:nbsf], -np.transpose(daib))
Ua = np.eye(nbsf,dtype=np.float64)
tmp = np.eye(nbsf,dtype=np.float64)
Ua = compute_exp(Ua, tmp, theta_a)
C0a = np.array(c0[:nbsf*nbsf].reshape((nbsf,nbsf)),dtype=np.float64)
Ca = C0a.dot(Ua)
Ga = gab(Ca[:,:nocca], Ca[:,:nocca])
if (noccb > 0):
C0b = np.array(c0[nbsf*nbsf:].reshape((nbsf,nbsf)),dtype=np.float64)
Ub = np.eye(nbsf)
tmp = np.eye(nbsf)
Ub = compute_exp(Ub, tmp, theta_b)
Cb = C0b.dot(Ub)
Gb = gab(Cb[:,:noccb], Cb[:,:noccb])
else:
Gb = np.zeros_like(Ga)
G = np.array([Ga, Gb],dtype=np.float64)
ni = np.diag(G[0]+G[1])
nia = np.diag(G[0])
nib = np.diag(G[1])
sqrttwomw = np.sqrt(m * w0*2.0)
phi = np.zeros(nbsf)
gamma = np.array(x[nova+novb:], dtype=np.float64)
if (not relax_gamma):
gamma = g * np.sqrt(2.0 /(m *w0**3)) * np.ones(nbsf)
Eph = w0 * np.sum(phi*phi)
Eeph = np.sum ((gamma * m * w0**2 - g * sqrttwomw) * 2.0 * phi / sqrttwomw * ni)
Eeph += np.sum((gamma**2 * m*w0**2 / 2.0 - g * gamma * sqrttwomw) * ni)
Eee = np.sum((U*np.ones(nbsf) + gamma**2 * m*w0**2 - 2.0 * g * gamma * sqrttwomw) * nia * nib)
alpha = gamma * numpy.sqrt(m * w0 / 2.0)
const = np.exp(-alpha**2/2.)
const_mat = np.array((nbsf,nbsf),dtype=np.float64)
const_mat = np.einsum("i,j->ij",const,const)
Ekin = np.sum(const_mat* T[0] * G[0] + const_mat*T[1] * G[1])
etot = Eph + Eeph + Eee + Ekin
return etot.real
class LangFirsov(object):
def __init__(self, system, trial, verbose=False):
self.verbose = verbose
if verbose:
print ("# Parsing free electron input options.")
init_time = time.time()
self.name = "lang_firsov"
self.type = "lang_firsov"
self.trial_type = complex
self.initial_wavefunction = trial.get('initial_wavefunction',
'lang_firsov')
if verbose:
print ("# Diagonalising one-body Hamiltonian.")
(self.eigs_up, self.eigv_up) = diagonalise_sorted(system.T[0])
(self.eigs_dn, self.eigv_dn) = diagonalise_sorted(system.T[1])
self.restricted = trial.get('restricted', False)
self.reference = trial.get('reference', None)
self.read_in = trial.get('read_in', None)
self.psi = numpy.zeros(shape=(system.nbasis, system.nup+system.ndown),
dtype=self.trial_type)
assert (system.name == "HubbardHolstein")
self.m = system.m
self.w0 = system.w0
self.nocca = system.nup
self.noccb = system.ndown
if self.read_in is not None:
if verbose:
print ("# Reading trial wavefunction from %s"%(self.read_in))
try:
self.psi = numpy.load(self.read_in)
self.psi = self.psi.astype(self.trial_type)
except OSError:
if verbose:
print("# Trial wavefunction is not in native numpy form.")
print("# Assuming Fortran GHF format.")
orbitals = read_fortran_complex_numbers(self.read_in)
tmp = orbitals.reshape((2*system.nbasis, system.ne),
order='F')
ups = []
downs = []
# deal with potential inconsistency in ghf format...
for (i, c) in enumerate(tmp.T):
if all(abs(c[:system.nbasis]) > 1e-10):
ups.append(i)
else:
downs.append(i)
self.psi[:, :system.nup] = tmp[:system.nbasis, ups]
self.psi[:, system.nup:] = tmp[system.nbasis:, downs]
else:
# I think this is slightly cleaner than using two separate
# matrices.
if self.reference is not None:
self.psi[:, :system.nup] = self.eigv_up[:, self.reference]
self.psi[:, system.nup:] = self.eigv_dn[:, self.reference]
else:
self.psi[:, :system.nup] = self.eigv_up[:, :system.nup]
self.psi[:, system.nup:] = self.eigv_dn[:, :system.ndown]
nocca = system.nup
noccb = system.ndown
nvira = system.nbasis-system.nup
nvirb = system.nbasis-system.ndown
self.virt = numpy.zeros((system.nbasis, nvira+nvirb))
self.virt[:, :nvira] = self.eigv_up[:,nocca:nocca+nvira]
self.virt[:, nvira:nvira+nvirb] = self.eigv_dn[:,noccb:noccb+nvirb]
gup = gab(self.psi[:, :system.nup],
self.psi[:, :system.nup]).T
if (system.ndown > 0):
gdown = gab(self.psi[:, system.nup:],
self.psi[:, system.nup:]).T
else:
gdown = numpy.zeros_like(gup)
self.G = numpy.array([gup, gdown])
self.relax_gamma = trial.get('relax_gamma',False)
# For interface compatability
self.coeffs = 1.0
self.ndets = 1
self.bp_wfn = trial.get('bp_wfn', None)
self.error = False
self.eigs = numpy.append(self.eigs_up, self.eigs_dn)
self.eigs.sort()
self.gamma = system.g * numpy.sqrt(2.0 / (system.m*system.w0**3)) * numpy.ones(system.nbasis)
print("# Initial gamma = {}".format(self.gamma))
self.run_variational(system)
print("# Variational Lang-Firsov Energy = {}".format(self.energy))
self.initialisation_time = time.time() - init_time
self.init = self.psi.copy()
self.shift = numpy.zeros(system.nbasis)
self.calculate_energy(system)
self._rchol = None
self._eri = None
self._UVT = None
print("# Lang-Firsov optimized gamma = {}".format(self.gamma))
print("# Lang-Firsov optimized shift = {}".format(self.shift))
print("# Lang-Firsov optimized energy = {}".format(self.energy))
if verbose:
print ("# Updated lang_firsov.")
if verbose:
print ("# Finished initialising Lang-Firsov trial wavefunction.")
def run_variational(self, system):
nbsf = system.nbasis
nocca = system.nup
noccb = system.ndown
nvira = system.nbasis - nocca
nvirb = system.nbasis - noccb
#
nova = nocca*nvira
novb = noccb*nvirb
#
x = numpy.zeros(nova+novb)
Ca = numpy.zeros((nbsf,nbsf))
Ca[:,:nocca] = self.psi[:,:nocca]
Ca[:,nocca:] = self.virt[:,:nvira]
Cb = numpy.zeros((nbsf,nbsf))
Cb[:,:noccb] = self.psi[:,nocca:]
Cb[:,noccb:] = self.virt[:,nvira:]
#
if (system.ndown > 0):
c0 = numpy.zeros(nbsf*nbsf*2)
c0[:nbsf*nbsf] = Ca.ravel()
c0[nbsf*nbsf:] = Cb.ravel()
else:
c0 = numpy.zeros(nbsf*nbsf)
c0[:nbsf*nbsf] = Ca.ravel()
if self.relax_gamma:
xtmp = numpy.zeros(nova+novb+nbsf)
xtmp[:nova+novb] = x
xtmp[nova+novb:nova+novb+nbsf] = self.gamma
x = xtmp.copy()
#
self.shift = numpy.zeros(nbsf)
self.energy = 1e6
for i in range (5): # Try 10 times
res = minimize(objective_function, x, args=(float(system.nbasis), float(system.nup), float(system.ndown), system.T, system.U, system.g, system.m, system.w0, c0, self.restricted, self.relax_gamma), method='L-BFGS-B', jac=gradient, options={'disp':False})
e = res.fun
if (self.verbose):
print("# macro iter {} energy is {}".format(i, e))
if (e < self.energy and | numpy.abs(self.energy - e) | numpy.abs |
import os
import cv2
import sys
import pdb
import math
import json
import torch
import random
import argparse
import numpy as np
import torchvision
import tensorboardX
import torch.optim as optim
import torchvision.utils as vutils
from envs import *
from PIL import Image
from base.common import *
def norm_angles(ags):
# ags - angles in radians (batch_size, ) array
return np.arctan2(np.sin(ags), np.cos(ags))
def evaluate_pose_transfer(loader, agent, split, opts):
"""
Evaluation of reconstruction agent on pose task
Evaluation function - evaluates the agent over fixed grid locations as
starting points and returns the overall average reconstruction error.
"""
# ---- Initial setup ----
depleted = False
agent.policy.eval()
azim_errors_all = []
elev_errors_all = []
while not depleted:
# ---- Sample batch of data ----
if opts.actorType == 'demo_sidekick' or opts.actorType == 'saved_trajectories' or opts.actorType == 'peek_saliency':
pano, pano_maps, depleted = loader.next_batch(split)
pano_rewards = None
elif opts.expert_rewards:
pano, pano_rewards, depleted = loader.next_batch(split)
pano_maps = None
else:
pano, depleted = loader.next_batch(split)
pano_rewards, pano_maps = None, None
# Initial setup for evaluating over a grid of views
curr_err = 0
curr_count = 0
curr_err_batch = 0
batch_size = pano.shape[0]
# Compute the performance with the initial state
# starting at fixed grid locations
if opts.start_view == 0:
# Randomly sample one location from grid
elevations = [random.randint(0, opts.N-1)]
azimuths = [random.randint(0, opts.M-1)]
elif opts.start_view == 1:
# Sample only the center location from grid
elevations = [opts.N//2]
azimuths = [opts.M//2-1]
elif opts.start_view == 2:
elevations = range(0, opts.N, 2)
azimuths = range(0, opts.M, 2)
valid_out_elevations = np.array(range(0, opts.N))
valid_out_azimuths = np.array(range(0, opts.M))
for i in elevations:
for j in azimuths:
start_idx = [[i, j] for _ in range(batch_size)]
state = State(pano, pano_rewards, start_idx, opts)
# Enable view memorization for testing by default
if opts.actorType == 'demo_sidekick' or opts.actorType == 'saved_trajectories' or opts.actorType == 'peek_saliency':
_, rec_errs, _, _, _, visited_idxes, decoded_all, _, _, _ = agent.gather_trajectory(state, eval_opts={'greedy': opts.greedy, 'memorize_views': True}, pano_maps=pano_maps, opts=opts)
else:
_, rec_errs, _, _, _, visited_idxes, decoded_all, _, _, _ = agent.gather_trajectory(state, eval_opts={'greedy': opts.greedy, 'memorize_views': True})
# sampled_target_idx
stix = [np.random.choice(valid_out_elevations, size=batch_size),
np.random.choice( valid_out_azimuths, size=batch_size)]
target_views = state.views_prepro_shifted[range(batch_size), stix[0], stix[1]] # (batch_size, C, 32, 32)
belief_viewgrid = decoded_all[-1].cpu().data.numpy() # (batch_size, N, M, C, 32, 32)
target_views_unsq = target_views[:, np.newaxis, np.newaxis, :, :, :]
per_view_scores = -((belief_viewgrid - target_views_unsq)**2)
per_view_scores = per_view_scores.reshape(batch_size, opts.N, opts.M, -1).mean(axis=3)
# (batch_size, N, M)
predicted_target_locs = np.unravel_index(np.argmax(per_view_scores.reshape(batch_size, -1), axis=1), (opts.N, opts.M))
predicted_target_angles = []
gt_target_angles = []
for b in range(batch_size):
e, a = predicted_target_locs[0][b], predicted_target_locs[1][b]
predicted_target_angles.append(opts.idx_to_angles[(e, a)])
e, a = stix[0][b], stix[1][b]
gt_target_angles.append(opts.idx_to_angles[(e, a)])
predicted_target_angles = np.array(predicted_target_angles)
gt_target_angles = np.array(gt_target_angles)
azim_err = norm_angles(predicted_target_angles[:, 1] - gt_target_angles[:, 1])
elev_err = norm_angles(predicted_target_angles[:, 0] - gt_target_angles[:, 0])
azim_errors_all.append(np.abs(azim_err))
elev_errors_all.append(np.abs(elev_err))
agent.policy.train()
azim_errors_all = np.concatenate(azim_errors_all, axis=0)
elev_errors_all = np.concatenate(elev_errors_all, axis=0)
avg_azim_err = math.degrees(np.mean(azim_errors_all))
avg_elev_err = math.degrees(np.mean(elev_errors_all))
return avg_azim_err, avg_elev_err
def evaluate_pose(loader, agent, split, opts):
"""
Evaluation of the Pose agent itself
Evaluation function - evaluates the agent over fixed grid locations as
starting points and returns the overall average reconstruction error.
"""
# ---- Initial setup ----
depleted = False
agent.policy.eval()
azim_errors_all = []
elev_errors_all = []
decoded_images = []
while not depleted:
# ---- Sample batch of data ----
if opts.actorType == 'demo_sidekick' or opts.actorType == 'saved_trajectories' or opts.actorType == 'peek_saliency':
pano, pano_maps, depleted = loader.next_batch(split)
pano_rewards = None
elif opts.expert_rewards:
pano, pano_rewards, depleted = loader.next_batch(split)
pano_maps = None
else:
pano, depleted = loader.next_batch(split)
pano_rewards, pano_maps = None, None
# Initial setup for evaluating over a grid of views
batch_size = pano.shape[0]
# Compute the performance with the initial state
# starting at fixed grid locations
if opts.start_view == 0:
# Randomly sample one location from grid
elevations = [random.randint(0, opts.N-1)]
azimuths = [random.randint(0, opts.M-1)]
elif opts.start_view == 1:
# Sample only the center location from grid
elevations = [opts.N//2]
azimuths = [opts.M//2-1]
elif opts.start_view == 2:
elevations = range(0, opts.N, 2)
azimuths = range(0, opts.M, 2)
valid_out_elevations = np.array(range(0, opts.N))
valid_out_azimuths = np.array(range(0, opts.M))
elev_to_vis = elevations[random.randint(0, len(elevations)-1)]
azim_to_vis = azimuths[random.randint(0, len(azimuths)-1)]
for i in elevations:
for j in azimuths:
start_idx = [[i, j] for _ in range(batch_size)]
state = State(pano, pano_rewards, start_idx, opts)
# Enable view memorization for testing by default
if opts.actorType == 'demo_sidekick' or opts.actorType == 'saved_trajectories' or opts.actorType == 'peek_saliency':
_, _, _, _, _, visited_idxes, decoded_all, _, _, _ = agent.gather_trajectory(state, eval_opts={'greedy': opts.greedy, 'memorize_views': True}, pano_maps=pano_maps, opts=opts)
else:
_, _, _, _, _, visited_idxes, decoded_all, _, _, _ = agent.gather_trajectory(state, eval_opts={'greedy': opts.greedy, 'memorize_views': True}, pano_maps=pano_maps, opts=opts)
# sampled_target_idx
stix = [np.random.choice(valid_out_elevations, size=batch_size),
np.random.choice( valid_out_azimuths, size=batch_size)]
target_views = state.views_prepro_shifted[range(batch_size), stix[0], stix[1]] # (batch_size, C, 32, 32)
belief_viewgrid = decoded_all[-1].cpu().data.numpy() # (batch_size, N, M, C, 32, 32)
target_views_unsq = target_views[:, np.newaxis, np.newaxis, :, :, :]
per_view_scores = -((belief_viewgrid - target_views_unsq)**2)
per_view_scores = per_view_scores.reshape(batch_size, opts.N, opts.M, -1).mean(axis=3)
# (batch_size, N, M)
predicted_target_locs = np.unravel_index(np.argmax(per_view_scores.reshape(batch_size, -1), axis=1), (opts.N, opts.M))
predicted_target_angles = []
gt_target_angles = []
for b in range(batch_size):
e, a = predicted_target_locs[0][b], predicted_target_locs[1][b]
predicted_target_angles.append(opts.idx_to_angles[(e, a)])
e, a = stix[0][b], stix[1][b]
gt_target_angles.append(opts.idx_to_angles[(e, a)])
predicted_target_angles = np.array(predicted_target_angles)
gt_target_angles = np.array(gt_target_angles)
azim_err = norm_angles(predicted_target_angles[:, 1] - gt_target_angles[:, 1])
elev_err = norm_angles(predicted_target_angles[:, 0] - gt_target_angles[:, 0])
azim_errors_all.append(np.abs(azim_err))
elev_errors_all.append(np.abs(elev_err))
# For some random initial state, print the decoded images at all time steps
if i == elev_to_vis and j == azim_to_vis:
curr_decoded_plus_true = None
for dec_idx in range(len(decoded_all)):
decoded = decoded_all[dec_idx].data.cpu()
curr_decoded = decoded.numpy()
# Rotate it forward by the start index
# Shifting all the images by equal amount since the start idx is same for all
elev_start = start_idx[0][0]
azim_start = start_idx[0][1]
if not opts.knownAzim:
curr_decoded = np.roll(curr_decoded, azim_start, axis=2)
if not opts.knownElev:
curr_decoded = np.roll(curr_decoded, elev_start, axis=1)
# Fill in the true views here
for jdx, jdx_v in enumerate(visited_idxes):
if jdx > dec_idx:
break
for idx in range(batch_size):
elev_curr = jdx_v[idx][0]
azim_curr = jdx_v[idx][1]
curr_decoded[idx, elev_curr, azim_curr, :, :, :] = state.views_prepro[idx, elev_curr, azim_curr, :, :, :]
curr_decoded = curr_decoded * 255
for c in range(opts.num_channels):
curr_decoded[:, :, :, c, :, :] += opts.mean[c]
if opts.num_channels == 1:
# convert to 3 channeled image by repeating grayscale
curr_decoded = np.repeat(curr_decoded, 3, axis=3)
jdx_v = visited_idxes[dec_idx]
for idx in range(batch_size):
# fill in some red margin
elev_curr = jdx_v[idx][0]
azim_curr = jdx_v[idx][1]
curr_decoded[idx, elev_curr, azim_curr, :, 0:3, :] = 0
curr_decoded[idx, elev_curr, azim_curr, :, -3:, :] = 0
curr_decoded[idx, elev_curr, azim_curr, :, :, 0:3] = 0
curr_decoded[idx, elev_curr, azim_curr, :, :, -3:] = 0
curr_decoded[idx, elev_curr, azim_curr, 0, 0:3, :] = 255
curr_decoded[idx, elev_curr, azim_curr, 0, -3:, :] = 255
curr_decoded[idx, elev_curr, azim_curr, 0, :, 0:3] = 255
curr_decoded[idx, elev_curr, azim_curr, 0, :, -3:] = 255
# Need to convert from B x N x M x C x 32 x 32 to B x 1 x C x N*32 x M*32
# Convert from B x N x M x C x 32 x 32 to B x C x N x 32 x M x 32 and then reshape
curr_decoded = curr_decoded.transpose((0, 3, 1, 4, 2, 5)).reshape(batch_size, 1, 3, opts.N*32, opts.M*32)
true_state = np.array(state.views)
start_idx = state.start_idx
if opts.num_channels == 1:
# convert to 3 channeled image by repeating grayscale
true_state = np.repeat(true_state, 3, axis=3)
# Fill in red margin for starting states of each true panorama
for idx in range(batch_size):
true_state[idx, start_idx[idx][0], start_idx[idx][1], :, 0:3, :] = 0
true_state[idx, start_idx[idx][0], start_idx[idx][1], :, -3:, :] = 0
true_state[idx, start_idx[idx][0], start_idx[idx][1], :, :, 0:3] = 0
true_state[idx, start_idx[idx][0], start_idx[idx][1], :, :, -3:] = 0
true_state[idx, start_idx[idx][0], start_idx[idx][1], 0, 0:3, :] = 255
true_state[idx, start_idx[idx][0], start_idx[idx][1], 0, -3:, :] = 255
true_state[idx, start_idx[idx][0], start_idx[idx][1], 0, :, 0:3] = 255
true_state[idx, start_idx[idx][0], start_idx[idx][1], 0, :, -3:] = 255
# Fill in blue margin for the GT view whose pose needs to be estimated
for idx in range(batch_size):
elev_idx = stix[0][idx]
# Assumes that the azimuth is unknown initially
azim_idx = (start_idx[idx][1] + stix[1][idx]) % (opts.M)
true_state[idx, elev_idx, azim_idx, :, 0:3, :] = 0
true_state[idx, elev_idx, azim_idx, :, -3:, :] = 0
true_state[idx, elev_idx, azim_idx, :, :, 0:3] = 0
true_state[idx, elev_idx, azim_idx, :, :, -3:] = 0
true_state[idx, elev_idx, azim_idx, 2, 0:3, :] = 255
true_state[idx, elev_idx, azim_idx, 2, -3:, :] = 255
true_state[idx, elev_idx, azim_idx, 2, :, 0:3] = 255
true_state[idx, elev_idx, azim_idx, 2, :, -3:] = 255
# Fill in green margin for the view corresponding to the predicted pose
for idx in range(batch_size):
elev_idx = predicted_target_locs[0][idx]
# Assumes that the azimuth is unknown initially
azim_idx = (start_idx[idx][1] + predicted_target_locs[1][idx]) % (opts.M)
true_state[idx, elev_idx, azim_idx, :, 0:3, :] = 0
true_state[idx, elev_idx, azim_idx, :, -3:, :] = 0
true_state[idx, elev_idx, azim_idx, :, :, 0:3] = 0
true_state[idx, elev_idx, azim_idx, :, :, -3:] = 0
true_state[idx, elev_idx, azim_idx, 1, 0:3, :] = 255
true_state[idx, elev_idx, azim_idx, 1, -3:, :] = 255
true_state[idx, elev_idx, azim_idx, 1, :, 0:3] = 255
true_state[idx, elev_idx, azim_idx, 1, :, -3:] = 255
true_state = true_state.transpose((0, 3, 1, 4, 2, 5)).reshape(batch_size, 1, 3, opts.N*32, opts.M*32)
# Draw arrows representing the actions on the true_state
for idx in range(batch_size):
true_state_curr = true_state[idx, 0].transpose(1, 2, 0).copy()
for jdx in range(1, len(visited_idxes)):
elev_curr = visited_idxes[jdx][idx][0]
azim_curr = visited_idxes[jdx][idx][1]
elev_prev = visited_idxes[jdx-1][idx][0]
azim_prev = visited_idxes[jdx-1][idx][1]
arrow_start = (azim_prev * 32 + 16, elev_prev * 32 + 16)
arrow_end = (azim_curr * 32 + 16, elev_curr * 32 + 16)
draw_arrow(true_state_curr, arrow_start, arrow_end, (255, 0, 0))
true_state[idx, 0] = true_state_curr.transpose(2, 0, 1)
if curr_decoded_plus_true is None:
curr_decoded_plus_true = curr_decoded
else:
curr_decoded_plus_true = np.concatenate([curr_decoded_plus_true, curr_decoded], axis=1)
curr_decoded_plus_true = | np.concatenate([true_state, curr_decoded_plus_true], axis=1) | numpy.concatenate |
import collections
from abc import ABC
from typing import Tuple, List, Dict
import numpy as np
class StepInformationProvider(ABC):
"""
This class calculates certain values which are used frequently in reward generators.
A single instance of this class can be shared between a set of (sub)generators
to prevent multiple calculations of costly intermediate results.
:param maze: (np.ndarray) two dimensional array defining the maze where 0 indicates passable terrain and 1 indicates an obstacle
:param goal: (list) A point coordinate in form [x, y] ([column, row]) defining the goal.
:param goal_range: (int) Range around the goal position which should be treated as 'goal reached'.
:param n_particles: (int) Total number of robots.
:param action_map: (dict) Map containing allowed actions.
"""
def __init__(
self,
maze: np.ndarray,
goal: Tuple[int, int],
goal_range: int,
n_particles: int,
action_map: Dict[int, Tuple[int, int]],
relative: bool = False,
):
self.goal_range = goal_range
self.n_particles = n_particles
self.initial_robot_locations = None
self.action_map = action_map
self.maze = maze
self.goal = goal
self.relative = relative
self.last_locations = None
self.last_action = None
self._cost = None
self._max_start_cost = None
self._max_cost = None
self._particle_cost = None
self._total_start_cost = None
self._total_cost = None
self._unique_particles = None
self._done = False
self._step_reward = 0.0
self._mean_cost = None
self._ep_len_estimate = None
self._convex_corners = None
def reset(self, locations):
self.initial_robot_locations = np.copy(locations)
self.last_locations = locations
self._done = False
if self.relative:
self._ep_len_estimate = None
self._total_start_cost = None
self._max_start_cost = None
def step(self, action, locations):
self._step_reward = 0.0
self.last_locations = locations
self.last_action = action
self._step_reset()
def stepped_generator(self, done, reward):
self._step_reward += reward
if done:
self._done = True
def _step_reset(self):
self._max_cost = None
self._particle_cost = None
self._total_cost = None
self._unique_particles = None
def _calculate_cost_map(self, maze, goal) -> np.ndarray:
"""
Calculates the cost map based on a given goal position via bfs
"""
queue = collections.deque([goal]) # [x, y] pairs in point notation order!
seen = np.zeros(maze.shape, dtype=int)
seen[goal[1], goal[0]] = 1
cost = np.zeros(maze.shape, dtype=int)
height, width = maze.shape
while queue:
x, y = queue.popleft()
for action in self.action_map.values():
x2, y2 = x + action[1], y + action[0]
if (
0 <= x2 < width
and 0 <= y2 < height
and maze[y2, x2] != 1
and seen[y2, x2] != 1
):
queue.append([x2, y2])
seen[y2, x2] = 1
cost[y2, x2] = cost[y, x] + 1
return cost
def _count_convex_corners(self) -> Tuple[int, int, int, int]:
"""
Calculates the number of convex corners
:return: (Tuple[int, int, int, int]) Tuple containing the number of convex corners for nw, ne, sw and se convex corners.
"""
nw = ne = sw = se = 0
for ix, iy in np.ndindex(self.maze.shape):
if self.maze[ix, iy] == 0:
if self.maze[ix + 1, iy] == 1 and self.maze[ix, iy + 1] == 1:
sw += 1
elif self.maze[ix + 1, iy] == 1 and self.maze[ix, iy - 1] == 1:
se += 1
elif self.maze[ix - 1, iy] == 1 and self.maze[ix, iy + 1] == 1:
nw += 1
elif self.maze[ix - 1, iy] == 1 and self.maze[ix, iy - 1] == 1:
ne += 1
return (nw, ne, sw, se)
def _count_freespace(self):
free = 0
idxes = np.argwhere(self.maze == 0)
for iy, ix in idxes:
if (self.maze[iy - 1 : iy + 1, ix - 1 : ix + 1] == 0).all():
free += 1
return free
def set_particle_count(self, n_particles):
self.n_particles = n_particles
self._total_start_cost = None
@property
def convex_corners(self) -> Tuple[int, int, int, int]:
if self._convex_corners is None:
self._convex_corners = self._count_convex_corners()
return self._convex_corners
@property
def costmap(self) -> np.ndarray:
if self._cost is None:
self._cost = self._calculate_cost_map(self.maze, self.goal)
return self._cost
@property
def max_start_cost(self) -> float:
if self._max_start_cost is None:
if self.relative:
self._max_start_cost = np.max(self.particle_cost)
else:
self._max_start_cost = np.max(self.costmap)
return self._max_start_cost
@property
def particle_cost(self) -> np.ndarray:
if self._particle_cost is None:
self._particle_cost = self.costmap.ravel()[
(
self.last_locations[:, 1]
+ self.last_locations[:, 0] * self.costmap.shape[1]
)
]
return self._particle_cost
@property
def episode_length_estimate(self) -> int:
if self._ep_len_estimate is None:
points = np.argwhere(self.maze == 0)
extremes = np.argmax(points, axis=0)
if np.sum(points[extremes[0]]) > np.sum(points[extremes[1]]):
extreme = points[extremes[0]]
else:
extreme = points[extremes[1]]
costmap = self._calculate_cost_map(self.maze, (extreme[1], extreme[0]))
self._ep_len_estimate = int(
0.75
* np.max(costmap)
* np.log(self.mean_cost * np.min(self.convex_corners))
)
return self._ep_len_estimate
@property
def mean_cost(self) -> int:
if self._mean_cost is None:
self._mean_cost = | np.ma.masked_equal(self.costmap, 0) | numpy.ma.masked_equal |
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
# 创建3d图形的两种方式
# ax = Axes3D(fig)
ax = fig.add_subplot(111, projection='3d')
# X, Y value
X = np.arange(-5, 5, 0.2)
Y = np.arange(-5, 5, 0.2)
X, Y = | np.meshgrid(X, Y) | numpy.meshgrid |
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 3 15:10:24 2020
@author: Nicolai
----------------
"""
import numpy as np
import time
from scipy.stats import cauchy
import testFunctions as tf
def L_SHADE(population, p, H, function, minError, maxGeneration):
'''
implementation of L-SHADE based on: \n
Improving the Search Performance of SHADE Using Linear Population Size Reduction\n
by Tanabe and Fukunaga\n
adaptions:
* no constraint handling implemented
* population size reduction based on generation insteas of function evaluation
Parameters
----------
population: numpy array
2D numpy array where lines are candidates and colums is the dimension
p: float ]0,1]
percentage of best individuals for current-to-p-best mutation
H: int
size of the memory
function: function
fitness function that is optimised
minError: float
stopping condition on function value
maxGeneration: int
stopping condition on max number of generation
Returns
-------
history: tuple
tupel[0] - popDynamic\n
tupel[1] - FEDynamic\n
tupel[2] - FDynamic\n
tupel[3] - CRDynamic\n
Examples
--------
>>> import numpy as np
>>> def sphere(x):
return np.dot(x,x)
>>> maxError = -1*np.inf
>>> maxGen = 10**3
>>> H = 50
>>> population = 100*np.random.rand(50,2)
>>> p = 0.1
>>> (popDynamic, FEDynamic, FDynamic, CRDynamic) =
L_SHADE(population, p, H, sphere, maxError, maxGen)
'''
# initialisation of variables
populationSize, dimension = population.shape
functionValue = np.asarray([function(candidate) for candidate in population])
genCount = 1
F = 0.5
CR = 0.5
archive = np.array([population[0]])
# temorary arrays for holding the population and its function values
# during a generation
trailPopulation = np.copy(population)
trailFunctionValue = np.copy(functionValue)
# memory for control parameters
mCR = 0.5*np.ones(H)
mF = 0.5*np.ones(H)
# k is the running memory index
k = 0
# population size reduction parameter
NGmin = int(np.ceil(1/p))
NGinit = populationSize
popDynamic = []
FEDynamic = []
FDynamic = []
CRDynamic = []
popDynamic.append(np.copy(population))
FEDynamic.append(np.copy(functionValue))
FDynamic.append(np.copy(mF))
CRDynamic.append(np.copy(mCR))
while(genCount < maxGeneration and np.min(functionValue) > minError):
# success history S for control parameters
sCR = []
sF = []
sCRtemp = []
sFtemp = []
for i in range(populationSize):
F = selectF(mF)
sFtemp.append(F)
vi = mutationCurrentToPBest1(population, archive, i, functionValue, F, p)
CR = selectCR(mCR)
sCRtemp.append(CR)
ui = crossoverBIN( | np.array([population[i]]) | numpy.array |
"""MIT License
Copyright (c) 2019 schellekensv
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""
"""Contains tools to compute the sketch the dataset."""
# Main imports
import numpy as np
import matplotlib.pyplot as plt # For verbose
import scipy.optimize
import sys # For error handling
from copy import copy
#######################################
### 1: Frequency sampling functions ###
#######################################
# 1.0: dithering
def drawDithering(m,bounds = None):
'''Draws m samples a <= x < b, with bounds=(a,b) (default: (0,2*pi)).'''
if bounds is None:
(lowb,highb) = (0,2*np.pi)
else:
(lowb,highb) = bounds
return np.random.uniform(low=lowb,high=highb,size=m)
# 1.1: frequency sampling functions
# 1.1.1: gaussian sampling
def drawFrequencies_Gaussian(d,m,Sigma = None):
'''draws frequencies according to some sampling pattern'''
if Sigma is None:
Sigma = np.identity(d)
Om = np.random.multivariate_normal(np.zeros(d), np.linalg.inv(Sigma), m).T # inverse of sigma
return Om
# 1.1.2: folded gaussian sampling
def drawFrequencies_FoldedGaussian(d,m,Sigma = None):
'''draws frequencies according to some sampling pattern
omega = R*Sigma^{-1/2}*phi, for R from folded Gaussian with variance 1, phi uniform'''
if Sigma is None:
Sigma = np.identity(d)
R = np.abs(np.random.randn(m)) # folded standard normal distribution radii
phi = np.random.randn(d,m)
phi = phi / np.linalg.norm(phi,axis=0) # normalize -> randomly sampled from unit sphere
SigFact = np.linalg.inv(np.linalg.cholesky(Sigma))
Om = SigFact@phi*R
return Om
# 1.1.3: adapted radius sampling
def sampleFromPDF(pdf,x,nsamples=1):
'''x is a vector (the support of the pdf), pdf is the values of pdf eval at x'''
# Note that this can be more general than just the adapted radius distribution
pdf = pdf/np.sum(pdf) # ensure pdf is normalized
cdf = np.cumsum(pdf)
# necessary?
cdf[-1] = 1.
sampleCdf = np.random.uniform(0,1,nsamples)
sampleX = np.interp(sampleCdf, cdf, x)
return sampleX
def pdfAdaptedRadius(r,KMeans=False):
'''up to a constant'''
if KMeans:
return r*np.exp(-(r**2)/2) # Dont take the gradient according to sigma into account
else:
return np.sqrt(r**2 + (r**4)/4)*np.exp(-(r**2)/2)
def drawFrequencies_AdaptedRadius(d,m,Sigma = None,KMeans=False):
'''draws frequencies according to some sampling pattern
omega = R*Sigma^{-1/2}*phi, for R from adapted with variance 1, phi uniform'''
if Sigma is None:
Sigma = np.identity(d)
# Sample the radii
r = np.linspace(0,5,2001)
R = sampleFromPDF(pdfAdaptedRadius(r,KMeans),r,nsamples=m)
phi = np.random.randn(d,m)
phi = phi / np.linalg.norm(phi,axis=0) # normalize -> randomly sampled from unit sphere
SigFact = np.linalg.inv(np.linalg.cholesky(Sigma))
Om = SigFact@phi*R
return Om
def pdf_diffOfGaussians(r,GMM_upper=None,GMM_lower=None):
"""Here, GMM is given in terms of SD and not variance"""
if isinstance(GMM_upper,tuple):
(weights_upper,sigmas_upper) = GMM_upper
elif GMM_upper is None:
weights_upper = np.array([]) # Empty array
else:
(weights_upper,sigmas_upper) = (np.array([1.]),np.array([GMM_upper]))
if isinstance(GMM_lower,tuple):
(weights_lower,sigmas_lower) = GMM_lower
elif GMM_lower is None:
weights_lower = np.array([])
else:
(weights_lower,sigmas_lower) = (np.array([1.]),np.array([GMM_lower]))
res = np.zeros(r.shape)
# Add
for k in range(weights_upper.size):
res += weights_upper[k]*np.exp(-0.5*(r**2)/(sigmas_upper[k]**2))
# Substract
for k in range(weights_lower.size):
res -= weights_lower[k]*np.exp(-0.5*(r**2)/(sigmas_lower[k]**2))
# Ensure pdf is positive
pdf_is_negative = res < 0
if any(pdf_is_negative):
print(res[:5])
# Print a warning if the negative pdf values are significant (not due to rounding errors)
tol = 1e-8
if np.max(np.abs(res[np.where(pdf_is_negative)[0]])) > tol:
print("WARNING: negative pdf values detected and replaced by zero, check the validity of your input")
# Correct the negative values
res[np.where(pdf_is_negative)[0]] = 0.
return res
def drawFrequencies_diffOfGaussians(d,m,GMM_upper,GMM_lower=None,verbose=0):
'''draws frequencies according to some sampling pattern
omega = R*Sigma^{-1/2}*phi, TODO, phi uniform'''
# reasonable sampling
n_Rs = 1001
if isinstance(GMM_upper,tuple):
R_max = 4*np.max(GMM_upper[1]) # GMM_upper is (weights, cov)-type tuple
else:
R_max = 4*GMM_upper
r = np.linspace(0,R_max,n_Rs)
if verbose > 0:
plt.plot(r,pdf_diffOfGaussians(r,GMM_upper,GMM_lower))
plt.xlabel('frequency norm r')
plt.ylabel('pdf(r)')
plt.show()
# sample from the diff of gaussians pdf
R = sampleFromPDF(pdf_diffOfGaussians(r,GMM_upper,GMM_lower),r,nsamples=m)
phi = np.random.randn(d,m)
phi = phi / np.linalg.norm(phi,axis=0) # normalize -> randomly sampled from unit sphere
Om = phi*R
return Om
# General function for convenience
def drawFrequencies(drawType,d,m,Sigma = None,nb_cat_per_dim=None):
"""Draw the 'frequencies' or projection matrix Omega for sketching.
Arguments:
- drawType: a string indicating the sampling pattern (Lambda) to use, one of the following:
-- "gaussian" or "G" : Gaussian sampling > Lambda = N(0,Sigma^{-1})
-- "foldedGaussian" or "FG" : Folded Gaussian sampling (i.e., the radius is Gaussian)
-- "adaptedRadius" or "AR" : Adapted Radius heuristic
- d: int, dimension of the data to sketch
- m: int, number of 'frequencies' to draw (the target sketch dimension)
- Sigma: is either:
-- (d,d)-numpy array, the covariance of the data (note that we typically use Sigma^{-1} in the frequency domain).
-- a tuple (w,cov) describing a scale mixture of Gaussians where,
-- w: (K,)-numpy array, the weights of the scale mixture
-- cov: (K,d,d)-numpy array, the K different covariances in the mixture
-- None: same as Sigma = identity matrix (belongs to (d,d)-numpy array case)
If Sigma is None (default), we assume that data was normalized s.t. Sigma = identity.
- nb_cat_per_dim: (d,)-array of ints, the number of categories per dimension for integer data,
if its i-th entry = 0 (resp. > 0), dimension i is assumed to be continuous (resp. int.).
By default all entries are assumed to be continuous. Frequencies for int data is drawn as follows:
1. Chose one dimension among the categorical ones, set Omega along all others to zero
2. For the chosen dimension with C categories, we draw its component omega ~ U({0,...,C-1}) * 2*pi/C
Returns:
- Omega: (d,m)-numpy array containing the 'frequency' projection matrix
"""
# Parse drawType input
if drawType.lower() in ["drawfrequencies_gaussian","gaussian","g"]:
drawFunc = drawFrequencies_Gaussian
elif drawType.lower() in ["drawfrequencies_foldedgaussian","foldedgaussian","folded_gaussian","fg"]:
drawFunc = drawFrequencies_FoldedGaussian
elif drawType.lower() in ["drawfrequencies_adapted","adaptedradius","adapted_radius","ar"]:
drawFunc = drawFrequencies_AdaptedRadius
elif drawType.lower() in ["drawfrequencies_adapted_kmeans","adaptedradius_kmeans","adapted_radius_kmeans","arkm","ar-km"]:
drawFunc = lambda _a,_b,_c : drawFrequencies_AdaptedRadius(_a,_b,_c,KMeans=True)
else:
raise ValueError("drawType not recognized")
# Handle no input
if Sigma is None:
Sigma = np.identity(d)
# Handle
if isinstance(Sigma,np.ndarray):
Omega = drawFunc(d,m,Sigma)
# Handle mixture-type input
elif isinstance(Sigma,tuple):
(w,cov) = Sigma # unpack
K = w.size
# Assign the frequencies to the mixture components
assignations = np.random.choice(K,m,p=w)
Omega = np.zeros((d,m))
for k in range(K):
active_index = (assignations == k)
if any(active_index):
Omega[:,np.where(active_index)[0]] = drawFunc(d,active_index.sum(),cov[k])
elif (isinstance(Sigma,float) or isinstance(Sigma,int)) and Sigma > 0:
Omega = drawFunc(d,m,Sigma*np.eye(d))
else:
raise ValueError("Sigma not recognized")
# If needed, overwrite the integer entries
if nb_cat_per_dim is not None:
intg_index = np.nonzero(nb_cat_per_dim)[0]
d_intg = np.size(intg_index)
Omega_intg = np.zeros((d_intg,m))
for intgdim_localindex,intg_globalindex in enumerate(intg_index):
C = nb_cat_per_dim[intg_globalindex]
Omega_intg[intgdim_localindex,:] = (2*np.pi/C)*np.random.randint(0,C,(1,m))
# Mask
masks_pool = np.eye(d_intg)
masks = masks_pool[np.random.choice(d_intg,m)].T
Omega_intg = Omega_intg*masks
Omega[intg_index] = Omega_intg
return Omega
# The following funtions allows to estimate Sigma (some utils first, main function is "estimate_Sigma")
# Optimization problem to fit a GMM curve to the data
def _fun_grad_fit_sigmas(p,R,z):
"""
Function and gradient to solve the optimization problem
min_{w,sigs2} sum_{i = 1}^n ( z[i] - sum_{k=1}^K w[k]*exp(-R[i]^2*sig2[k]/2) )^2
Arguments:
- p, a (2K,) numpy array obtained by stacking
- w : (K,) numpy array
- sigs2 : (K,) numpy array
- R: (n,) numpy array, data to fit (x label)
- z: (n,) numpy array, data to fit (y label)
Returns:
- The function evaluation
- The gradient
"""
K = p.size//2
w = p[:K]
sigs2 = p[K:]
n = R.size
# Naive implementation, TODO better?
fun = 0
grad = np.zeros(2*K)
for i in range(n):
fun += (z[i] - [email protected](-(sigs2*R[i]**2)/2.))**2
grad[:K] += (z[i] - [email protected](-(sigs2*R[i]**2)/2.)) * (- np.exp(-(sigs2*R[i]**2)/2.)) # grad of w
grad[K:] += (z[i] - [email protected](-(sigs2*R[i]**2)/2.)) * (- w * np.exp(-(sigs2*R[i]**2)/2.)) * (-0.5*R[i]**2) # grad of sigma2
return (fun,grad)
# For normalization in the optimization problem
def _callback_fit_sigmas(p):
K = p.size//2
p[:K] /= np.sum(p[:K])
def estimate_Sigma_from_sketch(z,Phi,K=1,c=20,mode='max',sigma2_bar=None,weights_bar=None,should_plot=False):
# Parse
if mode == 'max':
mode_criterion = np.argmax
elif mode == 'min':
mode_criterion = np.argmin
else:
raise ValueError("Unrecocgnized mode ({})".format(mode))
# sort the freqs by norm
Rs = np.linalg.norm(Phi.Omega,axis=0)
i_sort = np.argsort(Rs)
Rs = Rs[i_sort]
z_sort = z[i_sort]/Phi.c_norm # sort and normalize individual entries to 1
# Initialization
# number of freqs per box
s = Phi.m//c
# init point
if sigma2_bar is None:
sigma2_bar = np.random.uniform(0.3,1.6,K)
if weights_bar is None:
weights_bar = np.ones(K)/K
# find the indices of the max of each block
jqs = np.empty(c)
for ic in range(c):
j_max = mode_criterion(np.abs(z_sort)[ic*s:(ic+1)*s]) + ic*s
jqs[ic] = j_max
jqs = jqs.astype(int)
R_tofit = Rs[jqs]
z_tofit = np.abs(z_sort)[jqs]
# Set up the fitting opt. problem
f = lambda p: _fun_grad_fit_sigmas(p,R_tofit,z_tofit) # cost
p0 = np.zeros(2*K) # initial point
p0[:K] = weights_bar # w
p0[K:] = sigma2_bar
# Bounds of the optimization problem
bounds = []
for k in range(K): bounds.append([1e-5,1]) # bounds for the weigths
for k in range(K): bounds.append([5e-4*sigma2_bar[k],2e3*sigma2_bar[k]]) # bounds for the sigmas -> cant cange too much
# Solve the sigma^2 optimization problem
sol = scipy.optimize.minimize(f, p0,jac = True, bounds = bounds,callback=_callback_fit_sigmas)
p = sol.x
weights_bar = np.array(p[:K])/np.sum(p[:K])
sigma2_bar = np.array(p[K:])
# Plot if required
if should_plot:
plt.figure(figsize=(10,5))
rfit = np.linspace(0,Rs.max(),100)
zfit = np.zeros(rfit.shape)
for k in range(K):
zfit += weights_bar[k]*np.exp(-(sigma2_bar[k]*rfit**2)/2.)
plt.plot(Rs,np.abs(z_sort),'.')
plt.plot(R_tofit,z_tofit,'.')
plt.plot(rfit,zfit)
plt.xlabel('R')
plt.ylabel('|z|')
plt.show()
return sigma2_bar
def estimate_Sigma(dataset,m0,K=None,c=20,n0=None,drawFreq_type = "AR",nIterations=5,mode='max',verbose=0):
"""Automatically estimates the "Sigma" parameter(s) (the scale of data clusters) for generating the sketch operator.
We assume here that Sigma = sigma2_bar * identity matrix.
To estimate sigma2_bar, lightweight sketches of size m0 are generated from (a small subset of) the dataset
with candidate values for sigma2_bar. Then, sigma2_bar is updated by fitting a Gaussian
to the absolute values of the obtained sketch. Cfr. https://arxiv.org/pdf/1606.02838.pdf, sec 3.3.3.
Arguments:
- dataset: (n,d) numpy array, the dataset X: n examples in dimension d
- m0: int, number of candidate 'frequencies' to draw (can be typically smaller than m).
- K: int (default 1), number of scales to fit (if > 1 we fit a scale mixture)
- c: int (default 20), number of 'boxes' (i.e. number of maxima of sketch absolute values to fit)
- n0: int or None, if given, n0 samples from the dataset are subsampled to be used for Sigma estimation
- drawType: a string indicating the sampling pattern (Lambda) to use in the pre-sketches, either:
-- "gaussian" or "G" : Gaussian sampling > Lambda = N(0,Sigma^{-1})
-- "foldedGaussian" or "FG" : Folded Gaussian sampling (i.e., the radius is Gaussian)
-- "adaptedRadius" or "AR" : Adapted Radius heuristic
- nIterations: int (default 5), the maximum number of iteration (typically stable after 2 iterations)
- mode: 'max' (default) or 'min', describe which sketch entries per block to fit
- verbose: 0,1 or 2, amount of information to print (default: 0, no info printed). Useful for debugging.
Returns: If K = 1:
- Sigma: (d,d)-numpy array, the (diagonal) estimated covariance of the clusters in the dataset;
If K > 1: a tuple (w,Sigma) representing the scale mixture model, where:
- w: (K,)-numpy array, the weigths of the scale mixture (sum to 1)
- Sigma: (K,d,d)-numpy array, the dxd covariances in the scale mixture
"""
return_format_is_matrix = K is None
K = 1 if K is None else K
(n,d) = dataset.shape
# X is the subsampled dataset containing only n0 examples
if n0 is not None and n0<n:
X = dataset[np.random.choice(n,n0,replace=False)]
else:
X = dataset
# Check if we dont overfit the empirical Fourier measurements
if (m0 < (K * 2)*c):
print("WARNING: overfitting regime detected for frequency sampling fitting")
# Initialization
#maxNorm = np.max(np.linalg.norm(X,axis=1))
sigma2_bar = np.random.uniform(0.3,1.6,K)
weights_bar = np.ones(K)/K
# Actual algorithm
for i in range(nIterations):
# Draw frequencies according to current estimate
sigma2_bar_matrix = np.outer(sigma2_bar,np.eye(d)).reshape(K,d,d) # covariances in (K,d,d) format
Omega0 = drawFrequencies(drawFreq_type,d,m0,Sigma = (weights_bar,sigma2_bar_matrix))
# Compute unnormalized complex exponential sketch
Phi0 = SimpleFeatureMap("ComplexExponential",Omega0)
z0 = computeSketch(X,Phi0)
should_plot = verbose > 1 or (verbose > 0 and i >= nIterations - 1)
sigma2_bar = estimate_Sigma_from_sketch(z0,Phi0,K,c,mode,sigma2_bar,weights_bar,should_plot)
if return_format_is_matrix:
Sigma = sigma2_bar[0]*np.eye(d)
else:
sigma2_bar_matrix = np.outer(sigma2_bar,np.eye(d)).reshape(K,d,d) # covariances in (K,d,d) format
Sigma = (weights_bar,sigma2_bar_matrix)
return Sigma
#######################################
### 2: Feature map functions ###
#######################################
# 2.1: Common sketch nonlinearities and derivatives
def _complexExponential(t,T=2*np.pi):
return np.exp(1j*(2*np.pi)*t/T)
def _complexExponential_grad(t,T=2*np.pi):
return ((1j*2*np.pi)/T)*np.exp(1j*(2*np.pi)*t/T)
def _universalQuantization(t,Delta=np.pi,centering=True):
if centering:
return ( (t // Delta) % 2 )*2-1 # // stands for "int division
else:
return ( (t // Delta) % 2 ) # centering=false => quantization is between 0 and +1
def _universalQuantization_complex(t,Delta=np.pi,centering=True):
return _universalQuantization(t-Delta/2,Delta=Delta,centering=centering) + 1j*_universalQuantization(t-Delta,Delta=Delta,centering=centering)
def _sawtoothWave(t,T=2*np.pi,centering=True):
if centering:
return ( t % T )/T*2-1
else:
return ( t % T )/T # centering=false => output is between 0 and +1
def _sawtoothWave_complex(t,T=2*np.pi,centering=True):
return _sawtoothWave(t-T/4,T=T,centering=centering) + 1j*_sawtoothWave(t-T/2,T=T,centering=centering)
def _triangleWave(t,T=2*np.pi):
return (2*(t % T)/T ) - (4*(t % T)/T - 2)*( (t // T) % 2 ) - 1
def _fourierSeriesEvaluate(t,coefficients,T=2*np.pi):
"""T = period
coefficients = F_{-K}, ... , F_{-1}, F_{0}, F_{1}, ... F_{+K}"""
K = (coefficients.shape[0]-1)/2
ks = np.arange(-K,K+1)
# Pre-alloc
ft = np.zeros(t.shape) + 0j
for i in range(2*int(K)+1):
ft += coefficients[i]*np.exp(1j*(2*np.pi)*ks[i]*t/T)
return ft
# dict of nonlinearities and their gradient returned as a tuple
_dico_nonlinearities = {
"complexexponential":(_complexExponential,_complexExponential_grad),
"universalquantization":(_universalQuantization,None),
"universalquantization_complex":(_universalQuantization_complex,None),
"sawtooth":(_sawtoothWave,None),
"sawtooth_complex":(_sawtoothWave_complex,None),
"cosine": (lambda x: np.cos(x),lambda x: -np.sin(x))
}
# 2.2 FeatureMap objects
# Abstract feature map class
class FeatureMap:
"""Template for a generic Feature Map. Useful to check if an object is an instance of FeatureMap."""
def __init__(self):
pass
def __call__(self):
raise NotImplementedError("The way to compute the feature map is not specified.")
def grad(self):
raise NotImplementedError("The way to compute the gradient of the feature map is not specified.")
# TODO find a better name
class SimpleFeatureMap(FeatureMap):
"""Feature map the type Phi(x) = c_norm*f(Omega^T*x + xi)."""
def __init__(self, f, Omega, xi = None, c_norm = 1.):
"""
- f can be one of the following:
-- a string for one of the predefined feature maps:
-- "complexExponential"
-- "universalQuantization"
-- "cosine"
-- a callable function
-- a tuple of function (specify the derivative too)
"""
# 1) extract the feature map
self.name = None
if isinstance(f, str):
try:
(self.f,self.f_grad) = _dico_nonlinearities[f.lower()]
self.name = f # Keep the feature function name in memory so that we know we have a specific fct
except KeyError:
raise NotImplementedError("The provided feature map name f is not implemented.")
elif callable(f):
(self.f,self.f_grad) = (f,None)
elif (isinstance(f,tuple)) and (len(f) == 2) and (callable(f[0]) and callable(f[1])):
(self.f,self.f_grad) = f
else:
raise ValueError("The provided feature map f does not match any of the supported types.")
# 2) extract Omega the projection matrix TODO allow callable Omega for fast transform
if (isinstance(Omega,np.ndarray) and Omega.ndim == 2):
self.Omega = Omega
(self.d,self.m) = Omega.shape
else:
raise ValueError("The provided projection matrix Omega should be a (d,m) numpy array.")
# 3) extract the dithering
if xi is None:
self.xi = np.zeros(self.m)
else:
self.xi = xi
# 4) extract the normalization constant
if isinstance(c_norm, str):
if c_norm.lower() in ['unit','normalized']:
self.c_norm = 1./np.sqrt(self.m)
else:
raise NotImplementedError("The provided c_norm name is not implemented.")
else:
self.c_norm = c_norm
# magic operator to be able to call the FeatureMap object as a function
def __call__(self,x):
return self.c_norm*self.f(np.matmul(self.Omega.T,x.T).T + self.xi) # Evaluate the feature map at x
def grad(self,x):
"""Gradient (Jacobian matrix) of Phi, as a (d,m)-numpy array"""
return self.c_norm*self.f_grad(np.matmul(self.Omega.T,x.T).T + self.xi)*self.Omega
#######################################
### 3: Actual sketching functions ###
#######################################
#################################
# 3.1 GENERAL SKETCHING ROUTINE #
#################################
def computeSketch(dataset, featureMap, datasetWeights = None, batch_size = None):
"""
Computes the sketch of a dataset given a generic feature map.
More precisely, evaluates
z = sum_{x_i in X} w_i * Phi(x_i)
where X is the dataset, Phi is the sketch feature map, w_i are weights assigned to the samples (typically 1/n).
Arguments:
- dataset : (n,d) numpy array, the dataset X: n examples in dimension d
- featureMap : the feature map Phi, given as one of the following:
-- a function, z_x_i = featureMap(x_i), where x_i and z_x_i are (n,)- and (m,)-numpy arrays, respectively
-- a FeatureMap instance (e.g., constructed as featureMap = SimpleFeatureMap("complexExponential",Omega) )
- datasetWeights : (n,) numpy array, optional weigths w_i in the sketch (default: None, corresponds to w_i = 1/n)
Returns:
- sketch : (m,) numpy array, the sketch as defined above
"""
# TODOs:
# - add possibility to specify classes and return one sketch per class
# - defensive programming
# - efficient implementation, take advantage of parallelism
(n,d) = dataset.shape # number of samples, dimension
# Determine the sketch dimension and sanity check: the dataset is nonempty and the map works
if isinstance(featureMap,FeatureMap): # featureMap is the argument, FeatureMap is the class
m = featureMap.m
else:
try:
m = featureMap(dataset[0]).shape[0]
except:
raise ValueError("Unexpected error while calling the sketch feature map:", sys.exc_info()[0])
sketch = np.zeros(m)
# Split the batches
if batch_size is None:
batch_size = int(1e6/m) # Rough heuristic, best batch size will vary on different machines
nb_batches = int(np.ceil(n/batch_size))
if datasetWeights is None:
for b in range(nb_batches):
sketch = sketch + featureMap(dataset[b*batch_size:(b+1)*batch_size]).sum(axis=0)
sketch /= n
else:
sketch = datasetWeights@featureMap(X)
return sketch
#################################
# 3.2 PRIVATE SKETCHING METHODS #
#################################
def sensisitivty_sketch(featureMap,n = 1,DPdef = 'UDP',sensitivity_type = 1):
"""
Computes the sensitity of a provided sketching function.
The noisy sketch operator A(X) is given by
A(X) := (1/n)*[sum_{x_i in X} featureMap(x_i)] + w
where w is Laplacian or Gaussian noise.
Arguments:
- featureMap, the sketch the sketch featureMap (Phi), provided as either:
-- a FeatureMap object with a known sensitivity (i.e., complex exponential or universal quantization periodic map)
-- (m,featureMapName,c_normalization): tuple (deprectated, only useful for code not supporting FeatureMap objects),
that should contain:
-- m: int, the sketch dimension
-- featureMapName: string, name of sketch feature function f, values supported:
-- 'complexExponential' (f(t) = exp(i*t))
-- 'universalQuantization_complex' (f(t) = sign(exp(i*t)))
-- c_normalization: real, the constant before the sketch feature function (e.g., 1. (default), 1./sqrt(m),...)
- n: int, number of sketch contributions being averaged (default = 1, useful to add noise on n independently)
- DPdef: string, name of the Differential Privacy variant considered, i.e. the neighbouring relation ~:
-- 'remove', 'add', 'remove/add', 'UDP' or 'standard': D~D' iff D' = D U {x'} (or vice versa)
-- 'replace', 'BDP': D~D' iff D' = D \ {x} U {x'} (or vice versa)
- sensitivity_type: int, 1 (default) for L1 sensitivity, 2 for L2 sensitivity.
Returns: a positive real, the L1 or L2 sensitivity of the sketching operator defined above.
Cfr: Differentially Private Compressive K-means, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8682829.
"""
# TODO include real cases (cosine, real universal quantization)
# The sensitivity is of the type: c_feat*c_
if isinstance(featureMap,FeatureMap):
m = featureMap.m
featureMapName = featureMap.name
c_normalization = featureMap.c_norm
elif (isinstance(featureMap,tuple)) and (len(featureMap) == 3):
(m,featureMapName,c_normalization) = featureMap
else:
raise ValueError('The featureMap argument does not match one of the supported formats.')
# Sensitivity is given by S = c_featureMap * c_sensitivity_type * c_DPdef, check all three conditions (ughh)
if featureMapName.lower() == 'complexexponential':
if sensitivity_type == 1:
if DPdef.lower() in ['remove','add','remove/add','standard','udp']:
return m*np.sqrt(2)*(c_normalization/n)
elif DPdef.lower() in ['replace','bdp']:
return 2*m*np.sqrt(2)*(c_normalization/n)
elif sensitivity_type == 2:
if DPdef.lower() in ['remove','add','remove/add','standard','udp']:
return np.sqrt(m)*(c_normalization/n)
elif DPdef.lower() in ['replace','bdp']:
return np.sqrt(m)*np.sqrt(2)*(c_normalization/n)
elif featureMapName.lower() == 'universalquantization_complex': # Assuming normalized in [-1,+1], TODO check real/complex case?
if sensitivity_type == 1:
if DPdef.lower() in ['remove','add','remove/add','standard','udp']:
return m*2*(c_normalization/n)
elif DPdef.lower() in ['replace','bdp']:
return 2*m*2*(c_normalization/n)
elif sensitivity_type == 2:
if DPdef.lower() in ['remove','add','remove/add','standard','udp']:
return np.sqrt(m)*np.sqrt(2)*(c_normalization/n)
elif DPdef.lower() in ['replace','bdp']:
return np.sqrt(2)*np.sqrt(m)*np.sqrt(2)*(c_normalization/n)
print(sensitivity_type)
raise Exception('You provided ({},{});\nThe sensitivity for this (feature map,DP definition) combination is not implemented.'.format(featureMapName.lower(),DPdef.lower()))
return None
def computeSketch_DP(dataset, featureMap, epsilon, delta = 0,DPdef = 'UDP',useImproveGaussMechanism=True,budget_split_num = None):
"""
Computes the Differentially Private sketch of a dataset given a generic feature map.
More precisely, evaluates the DP sketching mechanism:
z = ( sum_{x_i in X} Phi(x_i) + w_num )/( |X| + w_den )
where X is the dataset, Phi is the sketch feature map, w_num and w_den are Laplacian or Gaussian random noise.
Arguments:
- dataset : (n,d) numpy array, the dataset X: n examples in dimension d
- featureMap, the sketch the sketch featureMap (Phi), provided as either:
-- a FeatureMap object with a known sensitivity (i.e., complex exponential or universal quantization periodic map)
-- (featureMap(x_i),m,featureMapName,c_normalization): tuple (deprectated, only useful for old code),
that should contain:
-- featMap: a function, z_x_i = featMap(x_i), where x_i and z_x_i are (n,)- and (m,)-numpy arrays, respectively
-- m: int, the sketch dimension
-- featureMapName: string, name of sketch feature function f, values supported:
-- 'complexExponential' (f(t) = exp(i*t))
-- 'universalQuantization' (f(t) = sign(exp(i*t)))
-- c_normalization: real, the constant before the sketch feature function (e.g., 1. (default), 1./sqrt(m),...)
- epsilon: real > 0, the privacy parameter epsilon
- delta: real >= 0, the privacy parameter delta in approximate DP; if delta=0 (default), we have "pure" DP.
- DPdef: string, name of the Differential Privacy variant considered, i.e. the neighbouring relation ~:
-- 'remove', 'add', 'remove/add', 'UDP' or 'standard' (default): D~D' iff D' = D U {x'} (or vice versa)
-- 'replace', 'BDP': D~D' iff D' = D \ {x} U {x'} (or vice versa)
- useImproveGaussMechanism: bool, if True (default) use the improved Gaussian mechanism[1] rather than usual bounds[2].
- budget_split_num: 0 < real < 1, fraction of epsilon budget to allocate to the numerator (ignored in BDP).
By default, we assign a fraction of (2*m)/(2*m+1) on the numerator.
Returns:
- sketch : (m,) numpy array, the differentially private sketch as defined above
"""
# Extract dataset size
(n,d) = dataset.shape
# Compute the nonprivate, usual sketch
if isinstance(featureMap,FeatureMap):
z_clean = computeSketch(dataset, featureMap)
elif (isinstance(featureMap,tuple)) and (callable(featureMap[0])):
featMap = featureMap[0]
featureMap = featureMap[1:]
z_clean = computeSketch(dataset, featMap)
if epsilon == np.inf: # Non-private
return z_clean
useBDP = DPdef.lower() in ['replace','bdp'] # otherwise assume UDP, TODO DEFENSIVE
# We will need the sketch size
m = z_clean.size
# Split privacy budget
if useBDP: # Then no noise on the denom
budget_split_num = 1.
elif budget_split_num is None:
budget_split_num = (2*m)/(2*m + 1)
# TODO defensive programming to block budget split > 1?
epsilon_num = budget_split_num*epsilon
# Compute numerator noise
if delta > 0:
# Gaussian mechanism
S = sensisitivty_sketch(featureMap,DPdef = DPdef,sensitivity_type = 2) # L2
if useImproveGaussMechanism: # Use the sharpened bounds
from .third_party import calibrateAnalyticGaussianMechanism
sigma = calibrateAnalyticGaussianMechanism(epsilon_num, delta, S)
else: # use usual bounds
if epsilon >= 1: raise Exception('WARNING: with epsilon >= 1 the sigma bound doesn\'t hold! Privacy is NOT ensured!')
sigma = np.sqrt(2*np.log(1.25/delta))*S/epsilon_num
noise_num = np.random.normal(scale = sigma, size=m) + 1j*np.random.normal(scale = sigma, size=m) # TODO real
else:
# Laplacian mechanism
S = sensisitivty_sketch(featureMap,DPdef = DPdef,sensitivity_type = 1) # L1
beta = S/epsilon_num # L1 sensitivity/espilon
noise_num = np.random.laplace(scale = beta, size=m) + 1j*np.random.laplace(scale = beta, size=m)
# Add denominator noise if needed
if useBDP: # Then no noise on the denom
return z_clean + (noise_num/n)
else:
num = (z_clean*n) + noise_num
beta_den = 1/(epsilon - epsilon_num) # rest of the privacy budget
den = n + np.random.laplace(scale = beta_den)
return num/den
## Useful: compute the sketch of a GMM
def fourierSketchOfGaussian(mu,Sigma,Omega,xi=None,scst=None):
res = np.exp(1j*(mu@Omega) -np.einsum('ij,ij->i', np.dot(Omega.T, Sigma), Omega.T)/2.)
if xi is not None:
res = res*np.exp(1j*xi)
if scst is not None: # Sketch constant, eg 1/sqrt(m)
res = scst*res
return res
def fourierSketchOfGMM(GMM,featureMap):
'''Returns the complex exponential sketch of a Gaussian Mixture Model
Parameters
----------
GMM: (weigths,means,covariances) tuple, the Gaussian Mixture Model, with
- weigths: (K,)-numpy array containing the weigthing factors of the Gaussians
- means: (K,d)-numpy array containing the means of the Gaussians
- covariances: (K,d,d)-numpy array containing the covariance matrices of the Gaussians
featureMap: the sketch the sketch featureMap (Phi), provided as either:
- a SimpleFeatureMap object (i.e., complex exponential or universal quantization periodic map)
- (Omega,xi): tuple with the (d,m) Fourier projection matrix and the (m,) dither (see above)
Returns
-------
z: (m,)-numpy array containing the sketch of the provided GMM
'''
# Parse GMM input
(w,mus,Sigmas) = GMM
K = w.size
# Parse featureMap input
if isinstance(featureMap,SimpleFeatureMap):
Omega = featureMap.Omega
xi = featureMap.xi
d = featureMap.d
m = featureMap.m
scst = featureMap.c_norm # Sketch normalization constant, e.g. 1/sqrt(m)
elif isinstance(featureMap,tuple):
(Omega,xi) = featureMap
(d,m) = Omega.shape
scst = 1. # This type of argument passing does't support different normalizations
else:
raise ValueError('The featureMap argument does not match one of the supported formats.')
z = 1j*np.zeros(m)
for k in range(K):
z += fourierSketchOfGaussian(mus[k],Sigmas[k],Omega,xi,scst)
return z
def fourierSketchOfBox(box,featureMap,nb_cat_per_dim=None, dimensions_to_consider=None):
'''Returns the complex exponential sketch of the indicator function on a parallellipiped (box).
For dimensions that flagged as integer, considers the indicator on a set of integers instead.
Parameters
----------
box: (d,2)-numpy array, the boundaries of the box (x in R^d is in the box iff box[i,0] <= x_i <= box[i,1])
featureMap: the sketch the sketch featureMap (Phi), provided as either:
- a SimpleFeatureMap object (is assumed to use the complex exponential map)
- (Omega,xi): tuple with the (d,m) Fourier projection matrix and the (m,) dither (see above)
Additional Parameters
---------------------
nb_cat_per_dim: (d,)-array of ints, the number of categories per dimension for integer data,
if its i-th entry = 0 (resp. > 0), dimension i is assumed to be continuous (resp. int.).
By default all entries are assumed to be continuous.
dimensions_to_consider: array of ints (between 0 and d-1), [0,1,...d-1] by default.
The box is restricted to the prescribed dimensions.
This is helpful to solve problems on a subsets of all dimensions.
Returns
-------
z: (m,)-numpy array containing the sketch of the indicator function on the provided box
'''
## Parse input
# Parse box input
(d,_) = box.shape
c_box = (box[:,1]+box[:,0])/2 # Center of the box in each dimension
l_box = (box[:,1]-box[:,0])/2 # Length (well, half of the length) of the box in each dimension
# Parse featureMap input
if isinstance(featureMap,SimpleFeatureMap):
Omega = featureMap.Omega
xi = featureMap.xi
d = featureMap.d
m = featureMap.m
scst = featureMap.c_norm # Sketch normalization constant, e.g. 1/sqrt(m)
elif isinstance(featureMap,tuple):
(Omega,xi) = featureMap
(d,m) = Omega.shape
scst = 1. # This type of argument passing does't support different normalizations
else:
raise ValueError('The featureMap argument does not match one of the supported formats.')
# Parse nb_cat_per_dim
if nb_cat_per_dim is None:
nb_cat_per_dim = np.zeros(d)
# Parse dimensions to consider
if dimensions_to_consider is None:
dimensions_to_consider = np.arange(d)
## Compute sketch
z = scst*np.exp(1j*xi)
for i in dimensions_to_consider:
mask_valid = np.abs(Omega[i]) > 1e-15
# CHECK IF INTEGER OR CONTINUOUS
if nb_cat_per_dim[i] > 0:
low_int = box[i,0]
high_int = box[i,1] + 1 # python counting convention
C = high_int - low_int
newTerm = np.ones(m) + 1j* | np.zeros(m) | numpy.zeros |
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-5,5,100)
def relu(x):
x=np.copy(x)
x[x<0] = 0
return x
def sign(x):
y=np.copy(x)
y[x<0]=-1
y[x>=0]=1
return y
def step(x):
y=np.copy(x)
y[x<0]=0
#y[x==0]=0.5
y[x>=0]=1
return y
def tanh(x):
return (np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x))
def sigmoid(x):
return (1 / (1 + | np.exp(-x) | numpy.exp |
import math
import gc
import os
import pickle
from math import pi
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from omegaconf import DictConfig
from scipy.fft import fft
from scipy.signal import blackman
from scipy.signal import hilbert
from sklearn.model_selection import GroupKFold
from sklearn.preprocessing import RobustScaler
from torch.utils.data import DataLoader
from src.utils.technical_utils import load_obj
class VentilatorDataModule(pl.LightningDataModule):
def __init__(self, cfg: DictConfig):
super().__init__()
self.cfg = cfg
def prepare_data(self):
pass
def make_features(self, data):
if "pressure" not in data.columns:
data['pressure'] = 0
data['RC_sum'] = data['R'] + data['C']
data['RC_div'] = data['R'] / data['C']
data['R'] = data['R'].astype(str)
data['C'] = data['C'].astype(str)
data['RC'] = data['R'] + data['C']
data = pd.get_dummies(data)
data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum()
# data['time_step_lag'] = data.groupby('breath_id')['time_step'].shift(1)
data['time_step_lag'] = data.groupby('breath_id')['time_step'].shift(2)
data['u_in_lag'] = data.groupby('breath_id')['u_in'].shift(1)
data['u_out_lag'] = data.groupby('u_out')['u_in'].shift(1)
return data.fillna(0)
def make_features1(self, data):
data['area'] = data['time_step'] * data['u_in']
data['area'] = data.groupby('breath_id')['area'].cumsum()
data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum()
data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1)
data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1)
data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1)
data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1)
data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2)
data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2)
data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2)
data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2)
data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3)
data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3)
data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3)
data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3)
data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4)
data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4)
data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4)
data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4)
data = data.fillna(0)
data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max')
data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max')
data['u_in_diff1'] = data['u_in'] - data['u_in_lag1']
data['u_out_diff1'] = data['u_out'] - data['u_out_lag1']
data['u_in_diff2'] = data['u_in'] - data['u_in_lag2']
data['u_out_diff2'] = data['u_out'] - data['u_out_lag2']
data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in']
data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in']
data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in']
data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in']
data['u_in_diff3'] = data['u_in'] - data['u_in_lag3']
data['u_out_diff3'] = data['u_out'] - data['u_out_lag3']
data['u_in_diff4'] = data['u_in'] - data['u_in_lag4']
data['u_out_diff4'] = data['u_out'] - data['u_out_lag4']
data['cross'] = data['u_in'] * data['u_out']
data['cross2'] = data['time_step'] * data['u_out']
data['R'] = data['R'].astype(str)
data['C'] = data['C'].astype(str)
data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str)
data = pd.get_dummies(data)
data.drop(['id', 'breath_id'], axis=1, inplace=True)
if 'pressure' in data.columns:
data.drop('pressure', axis=1, inplace=True)
return data
def make_features2(self, data):
data['area'] = data['time_step'] * data['u_in']
data['area'] = data.groupby('breath_id')['area'].cumsum()
data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum()
data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1)
data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1)
data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1)
data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1)
data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2)
data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2)
data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2)
data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2)
data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3)
data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3)
data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3)
data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3)
data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4)
data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4)
data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4)
data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4)
data = data.fillna(0)
data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max')
data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max')
data['u_in_diff1'] = data['u_in'] - data['u_in_lag1']
data['u_out_diff1'] = data['u_out'] - data['u_out_lag1']
data['u_in_diff2'] = data['u_in'] - data['u_in_lag2']
data['u_out_diff2'] = data['u_out'] - data['u_out_lag2']
data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in']
data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in']
data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in']
data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in']
data['u_in_diff1'] = data['u_in'] - data['u_in_lag1']
data['u_out_diff1'] = data['u_out'] - data['u_out_lag1']
data['u_in_diff2'] = data['u_in'] - data['u_in_lag2']
data['u_out_diff2'] = data['u_out'] - data['u_out_lag2']
data['u_in_diff3'] = data['u_in'] - data['u_in_lag3']
data['u_out_diff3'] = data['u_out'] - data['u_out_lag3']
data['u_in_diff4'] = data['u_in'] - data['u_in_lag4']
data['u_out_diff4'] = data['u_out'] - data['u_out_lag4']
data['cross'] = data['u_in'] * data['u_out']
data['cross2'] = data['time_step'] * data['u_out']
data['one'] = 1
data['count'] = (data['one']).groupby(data['breath_id']).cumsum()
data['u_in_cummean'] = data['u_in_cumsum'] / data['count']
data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0)
data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0)
data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0)
data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0)
data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0)
data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame']
data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0)
data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same']
data['R'] = data['R'].astype(str)
data['C'] = data['C'].astype(str)
data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str)
data = pd.get_dummies(data)
data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame',
'breath_id_lag2same'], axis=1, inplace=True)
if 'pressure' in data.columns:
data.drop('pressure', axis=1, inplace=True)
return data
def make_features3(self, data):
data['area'] = data['time_step'] * data['u_in']
data['area'] = data.groupby('breath_id')['area'].cumsum()
data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum()
data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1)
data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1)
data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1)
data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1)
data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2)
data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2)
data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2)
data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2)
data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3)
data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3)
data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3)
data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3)
data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4)
data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4)
data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4)
data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4)
data = data.fillna(0)
data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max')
data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max')
data['u_in_diff1'] = data['u_in'] - data['u_in_lag1']
data['u_out_diff1'] = data['u_out'] - data['u_out_lag1']
data['u_in_diff2'] = data['u_in'] - data['u_in_lag2']
data['u_out_diff2'] = data['u_out'] - data['u_out_lag2']
data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in']
data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in']
data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in']
data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in']
data['u_in_diff1'] = data['u_in'] - data['u_in_lag1']
data['u_out_diff1'] = data['u_out'] - data['u_out_lag1']
data['u_in_diff2'] = data['u_in'] - data['u_in_lag2']
data['u_out_diff2'] = data['u_out'] - data['u_out_lag2']
data['u_in_diff3'] = data['u_in'] - data['u_in_lag3']
data['u_out_diff3'] = data['u_out'] - data['u_out_lag3']
data['u_in_diff4'] = data['u_in'] - data['u_in_lag4']
data['u_out_diff4'] = data['u_out'] - data['u_out_lag4']
data['cross'] = data['u_in'] * data['u_out']
data['cross2'] = data['time_step'] * data['u_out']
data['one'] = 1
data['count'] = (data['one']).groupby(data['breath_id']).cumsum()
data['u_in_cummean'] = data['u_in_cumsum'] / data['count']
data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0)
data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0)
data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0)
data['breath_id_lag2same'] = | np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) | numpy.select |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.