prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """Tests of GLSAR and diagnostics against Gretl Created on Thu Feb 02 21:15:47 2012 Author: <NAME> License: BSD-3 """ import os import numpy as np from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose, assert_array_less) from statsmodels.regression.linear_model import OLS, GLSAR from statsmodels.tools.tools import add_constant from statsmodels.datasets import macrodata import statsmodels.stats.sandwich_covariance as sw import statsmodels.stats.diagnostic as smsdia import statsmodels.stats.outliers_influence as oi def compare_ftest(contrast_res, other, decimal=(5,4)): assert_almost_equal(contrast_res.fvalue, other[0], decimal=decimal[0]) assert_almost_equal(contrast_res.pvalue, other[1], decimal=decimal[1]) assert_equal(contrast_res.df_num, other[2]) assert_equal(contrast_res.df_denom, other[3]) assert_equal("f", other[4]) class TestGLSARGretl: def test_all(self): d = macrodata.load_pandas().data #import datasetswsm.greene as g #d = g.load('5-1') #growth rates gs_l_realinv = 400 * np.diff(
np.log(d['realinv'].values)
numpy.log
""" Created on Thu Oct. 10 2019 Recent changes for the version 0.1.1: 1) Insead of giving the input optical penetration depth only give the input of the complex refractive index "n". This is a material parameter, so the input is given in the simulation --> add_layer(.) command. Now "LB" and "TMM" source are initialized almost in the same way 2) One of the Outputs of sim.run() is T. But now we change it to be a 3 dimensional array, with dim0 = time; dim1 = space; dim2 = subsystem 3) The input for the visual class in the v.contour() function should not be a string but just numbers corresponding to different systems. @author: <NAME> <EMAIL> """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from bspline import Bspline from bspline.splinelab import aptknt import time from matplotlib.animation import FuncAnimation as movie from tqdm import tqdm #Progressbar #============================================================================== class temperature(object): def __init__(self): self.plt_points = 30 #number of points in x grid self.length = np.array([0,0]) #length of x space,starting from 0 self.Left_BC_Type = 1 #Boundary conditions Default is Neumann self.Right_BC_Type = 1 #1=> Neumann; 0=> Dirichlet self.init = lambda x: 300+0*x # initial temperature of probe self.n = np.array([1,1],dtype=complex) # Initial refractive index air|...|air self.conductivity = [1] #This gets deleted after initialisation self.heatCapacity = [1] #those values are just here to make space self.rho = [1] #Actual values are given, when 'addLayer(length, conductivity,heatCapacity,rho)' is executed self.collocpts = 12 self.setup = False #first time setup to not double calculated def getProperties(self): #to depict the properties of the object for i in (self.__dict__): name = str(i) value = str(self.__dict__[i]) print('{:<20}{:>10}'.format( name,value )) def __repr__(self): return('Temperature') #for every layer, a function to calculate the derivative of k(T) def diff_conductivity(self,phi,num_of_material): eps =1e-9 dc = (self.conductivity[num_of_material](phi+eps)-self.conductivity[num_of_material](phi))/eps return(dc) #Creating the key matrices for B-splines. Those are A0,A1,A2 #A0 => Zero derivative; A1 => 1st order derivative.... #We create the matices for every layer, with respective length ect #then we put them together to Abig => Boundary and interface conditions are applied here. def Msetup(self): #Deleting the ifrst element of the default initialization #After creating the element with 'addLayer' we dont need them! if not self.setup: self.length = self.length[1:] self.conductivity = self.conductivity[1:] self.heatCapacity = self.heatCapacity[1:] self.rho = self.rho[1:] self.setup = True #Length and numper of grid points for each respective layer length = self.length plt_points = self.plt_points num_of_points = self.collocpts #Number of points per layer used in the spline for collocation order = 5 #order of the spline x = np.array(np.zeros([np.size(length)-1,num_of_points])) x_plt = np.array(np.zeros([np.size(length)-1,plt_points])) knot_vector = np.array(np.zeros([np.size(length)-1,num_of_points+order+1])) basis = np.array(np.zeros(np.size(length)-1)) A0h = []; A1h = []; A2h = []; Ch = []; LayerMat = np.array([np.zeros((num_of_points,num_of_points))]) #Create all the big matices A0,A1,A2 & C. C is used to map on a fine mesh in x- space. #For every layer we set up splines between the boundaries for i in range(0,np.size(length)-1): x[i,:] = np.linspace(length[i], length[i+1] , num_of_points) x_plt[i,:] = np.linspace(length[i], length[i+1] , plt_points) knot_vector[i,:] = aptknt(x[i,:], order) #prepare for Spline matrix basis = Bspline(knot_vector[i,:],order) A0hinter = basis.collmat(x[i,:], deriv_order = 0); A0hinter[-1,-1] = 1 A1hinter = basis.collmat(x[i,:], deriv_order = 1); A1hinter[-1] = -np.flip(A1hinter[0],0) A2hinter = basis.collmat(x[i,:], deriv_order = 2); A2hinter[-1,-1] = 1 Chinter = basis.collmat(x_plt[i,:], deriv_order = 0); Chinter[-1,-1] = 1 LayerMat = np.append(LayerMat,np.array([np.dot(A2hinter,np.linalg.inv(A0hinter))]),axis = 0) A0h = np.append(A0h,A0hinter) A1h = np.append(A1h,A1hinter) A2h = np.append(A2h,A2hinter) Ch = np.append(Ch,Chinter) #Reshape the long string of appended Matrix, such that #rows: x-points; colums: i´th basis spline LayerMat = LayerMat[1:,:,:] A0h = np.reshape(A0h, (-1,num_of_points)) A1h = np.reshape(A1h, (-1,num_of_points)) A2h = np.reshape(A2h, (-1,num_of_points)) Ch = np.reshape(Ch,(-1,num_of_points)) #Ch => More points in x, but same number of basis splines #Clearing the interface points, to not double count N = num_of_points plp = plt_points interfaces = np.shape(x)[0]-1 sizeA = np.shape(x)[0]*N-interfaces sizeCb = np.shape(x)[0]*plp-interfaces Abig = np.zeros([sizeA,sizeA]) A1b = np.zeros([sizeA,sizeA]) A2b = np.zeros([sizeA,sizeA]) Cb = np.zeros([sizeCb,sizeA]) #Clearing the double counts from the space grid xflat = x.flatten() x_plt_flat = x_plt.flatten() #index of double counts doublec = np.array([np.arange(1,len(length)-1)])*N doublec_plt = np.array([np.arange(1,len(length)-1)])*plp xflat = np.delete(xflat,doublec) x_plt_flat = np.delete(x_plt_flat,doublec_plt) #Filling the big matrices. startA = 0; endA = N-1 startC = 0; endC = plp-1 for i in range(0,interfaces+1): Abig[startA:endA,startA:endA+1] = A0h[startA+i:endA+i,:] A1b[startA:endA+1,startA:endA+1] = A1h[startA+i:endA+i+1,:] A2b[startA:endA+1,startA:endA+1] = A2h[startA+i:endA+i+1,:] Cb[startC:endC+1,startA:endA+1] = Ch[startC+i:endC+i+1,:] startA += N-1; endA += N-1 startC += plp-1; endC += plp-1 #Create A00 with no interface condition to correctly compute phi in loop #The copy needs to be done befor interface conditions are applied in Abig A00 = Abig.copy() A00[-1,-1] = 1; #Here we make init, conductivity & capacity all functions, in case they are # given as integeres or floats. Also thorw warinings if not every layer has a # conducitvity or capacity ============================================ #Making init a function, in case it is given as a scalar if np.size(self.init) == 1 and isinstance(self.init,(int,float)): dummy = self.init self.init = lambda x: dummy + 0*x if len(length) > 2: #multilayer case if len(length)-1 !=( len(self.heatCapacity) & len(self.conductivity) ): print('--------------------------------------------------------') print('The number of different layers must match the number of number of' \ 'inputs for Conductivity, heatCapacity, rho.') print('--------------------------------------------------------') if np.size(self.conductivity) is not interfaces+1: print('--------------------------------------------------------') print('Not every Layer has been given a conductivity function' \ 'Adjust your input of the conductivity functions with respect to the layers.') print('--------------------------------------------------------') if np.size(self.heatCapacity) is not interfaces+1: print('--------------------------------------------------------') print('Not every Layer has been given a heatCapacity function value.'\ 'Adjust your input of the heatCapacity functions with respect to the layers.') print('--------------------------------------------------------') #Make Functions in case heat capacity/conductivity are given as variables if (all(self.conductivity) or all(self.heatCapacity) or all(self.init)) == False: print('No heatCapacity, conductivity or initial function given.') print('--------------------------------------------------------') #make the conductivity always a function if len(length) >2 or np.size(self.conductivity)>=2: for j in list(range (0,np.size(self.conductivity))): if isinstance(self.conductivity[j],(int,float,list)) : dummy3 = self.conductivity[j] self.conductivity[j] = (lambda b: lambda a: b+0*a)(dummy3) #make the conductivity always a function for j in list(range (0,np.size(self.heatCapacity))): if isinstance(self.heatCapacity[j],(int, float,list)) : dummy4 = self.heatCapacity[j] self.heatCapacity[j] = (lambda b: lambda a: b+0*a)(dummy4) else : if isinstance(self.conductivity[0],(int,float)): dummy1 = self.conductivity self.conductivity = [lambda phi: dummy1 + 0*phi] if isinstance(self.heatCapacity[0],(int,float)): dummy2 = self.heatCapacity self.heatCapacity = lambda phi: dummy2 + 0*phi self.heatCapacity = [self.heatCapacity] #End of function creation for init(x), conductivity[l](phi), heatCapacity[l](phi) # with respect to every layer 'l' ===================================== def interconditions(phi,interfaces): N = num_of_points end_i = N-1 intercondiL = np.zeros((interfaces,N)) intercondiR = np.zeros((interfaces,N)) for i in range(interfaces): intercondiL[i] = self.conductivity[i](phi[end_i])*A1h[end_i+i] intercondiR[i] = self.conductivity[i+1](phi[end_i])*A1h[end_i+i+1] end_i += N-1 return(intercondiL,intercondiR) #Initial Electron temperature initphi = self.init(xflat) initphi_large = self.init(x_plt_flat) intercon = interconditions(initphi,interfaces) #filling up Abig wiht the interface condition in the middle of the grid start_i = 0; end_i = N-1 for i in range(0,interfaces): Abig[end_i,start_i:end_i] = intercon[0][i][:-1]#Lhs interface flow Abig[end_i,end_i+1:end_i+N] = -intercon[1][i][1:]#Rhs interface flow Abig[end_i,end_i] = intercon[0][i][-1] -intercon[1][i][0] start_i += N-1; end_i += N-1 Abig[-1,-1] = 1 #to correct Cox algorithm #Now Matrix Abig is completed and interface condition is applied. #Treating 2 types of boundary conditions: 0=> Dirichlet; 1=> Neumann, # where 0´th and -1´th row need to be first order derivatives for flux. neumannBL = A1b[0].copy(); neumannBR = A1b[-1].copy(); if self.Left_BC_Type == 1: Abig[0] = -neumannBL if self.Right_BC_Type == 1: Abig[-1] = neumannBR #Clear for BC! (first and last row need to be cleared to correctly apply BC) A1b[0] = 0; A2b[0] = 0; A1b[-1] = 0; A2b[-1] = 0; #Get inital c coefficients for splines using init (=phi_init) c = np.dot(np.linalg.inv(A00),self.init(xflat)) #Passed on properties to the simulation class return(c,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h) def addLayer(self,L,refind,conductivity,heatCapacity,rho): """ Add parameters of every layer: (length,conductivity[electron,lattice,spin],heatCapacity[electron, lattice, spin],density, coupling[E-L,L-S,S-E]) The units in SI are: [length] = m [n] = complex refractive index [conductivity] = W/(mK) [heatCapacity] = J/(m^3K^2) [density] = kg/m^3 [Coupling] = W/(m^3K) """ self.length = np.append(self.length,self.length[-1]+L) #Squeez in the refracitve index between two layers of air: air|...|...|air self.n = np.concatenate((self.n[:-1],[refind],[self.n[-1]])) self.conductivity.append(conductivity) self.heatCapacity.append(heatCapacity) self.rho = np.append(self.rho,rho) #============================================================================== class simulation(object): def __init__(self,num_of_temp,source): self.temp_data = temperature() #import the temperatuer object self.num_of_temp = num_of_temp #1 if only electron temp. 2 if electron and lattice temp. self.start_time = 0 #starting time (can be negative) self.final_time = 10 #time when simulation stops self.time_step = [] #can either be given or is automatically calculated in stability self.left_BC = 0 #function or constant what the boundary condition self.right_BC = 0 #on the left or right side of the problem is. self.stability_lim = [270,3000] self.temp_data_Lat = [] #Default case is without lattice temperature self.temp_data_Spin = [] if num_of_temp >= 2: #if Lattice temp is considered self.temp_data_Lat = temperature() #in case also a lattice module is given self.coupling = [] #Coupling between Electron and Lattice system self.left_BC_L = 0 #Setting the default to zero flux self.right_BC_L = 0 #The BC type is indicated in the temperature class if num_of_temp == 3: #In case spin coupling is also considered self.temp_data_Spin = temperature() self.coupling_LS = [] #Coupling between Lattice and Spin system self.coupling_SE = [] #Coupling between Electron and Spin system self.left_BC_S = 0 #Default zero flux Neumann boundary conditions self.right_BC_S = 0 #On both sides self.source = source #object source can be passed on #to depict the properties of the object def getProperties(self): for i in (self.__dict__): name = str(i) value = str(self.__dict__[i]) print('{:<20}{:>10}'.format( name,value )) def __repr__(self): return('Simulation') def changeInit(self,system,function): """ Change the initial condition of every system. .changeInit(system,function) has 2 input arguments system --> string "electron" or "lattice" or "spin" function --> a function handle or a number defining the value of the system at t=0 over the entire domain x. """ if (system == "electron") or (system == "Electron") or (system == 1): self.temp_data.init = function if (system == "lattice") or (system == "Lattice") or (system == 2): self.temp_data_Lat.init = function if (system == "spin") or (system == "Spin") or (system == 3): self.temp_data_Spin = function def changeBC_Type(self,system,side,BCType): """ Function to change the type of the boundary condition on the left and right side of the material, for every system, "electron", "lattice", "spin" respectively. .changeBC_Type(system,side,BCType) has 3 inputs, all of them are strings. system --> "electron" or "lattice" or "spin". Altenatively: "1", "2", "3" side --> "left" or "right" BCType --> "dirichlet" fixing the value/ "neumann" fixing the flux. """ if (system == "electron") or (system == "Electron") or (system == 1): if side == "left": if (BCType == "dirichlet") or (BCType == 0): self.temp_data.Left_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data.Left_BC_Type = 1 if side == "right": if (BCType == "dirichlet") or (BCType == 0): self.temp_data.Right_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data.Right_BC_Type = 1 if (system == "lattice") or (system == "Lattice") or (system == 2): if side == "left": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Lat.Left_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Lat.Left_BC_Type = 1 if side == "right": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Lat.Right_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Lat.Right_BC_Type = 1 if (system == "spin") or (system == "Spin") or (system == 3): print("Line 326 Spinsystem") if side == "left": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Spin.Left_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Spin.Left_BC_Type = 1 if side == "right": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Spin.Right_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Spin.Right_BC_Type = 1 def changeBC_Value(self,system,side,function): """ Function to change the value of the boundary condition on the left and right side of the material, for every system, "electron", "lattice", "spin" respectively. .changeBC_Value(system,side,function) the first two are strings, the last one is a function handle or a number. system --> "electron" or "lattice" or "spin"| Altenatively: "1", "2", "3" side --> "left" or "right" function--> function or number fixing the value on the boundaries for all times. """ if (system == "electron") or (system == "Electron") or (system == 1): if side == "left": self.left_BC = function if side == "right": self.right_BC = function if (system == "lattice") or (system == "Lattice") or (system == 2): if side == "left": self.left_BC_L = function if side == "right": self.right_BC_L = function if (system == "spin") or (system == "Spin") or (system == 3): if side == "left": self.left_BC_S = function if side == "right": self.right_BC_S = function def addSubstrate(self,name = "silicon"): """ Automatically create in the silicon substrate using input parameters, mostly taken from: Contribution of the electron-phonon interaction to Lindhard energy partition at low energy in Ge and Si detectors for astroparticle physics applications, by <NAME> and <NAME> Note: Refractive index for 400 nm light! """ if (name == "Silicon") or (name =="silicon") or (name =="Si"): k_el_Si = 130#W/(m*K); k_lat_Si = lambda T: np.piecewise(T,[T<=120.7,T>120.7],\ [lambda T: 100*(0.09*T**3*(0.016*np.exp(-0.05*T)+np.exp(-0.14*T))), lambda T: 100*(13*1e3*T**(-1.6))]) rho_Si = 2.32e3#kg/(m**3) C_el_Si = lambda Te: 150/rho_Si *Te C_lat_Si = 1.6e6/rho_Si G_Si = 1e17*18#W/(m**3*K) #Set three layers of Silicon after each other. #The space resolution on the Film|Substrate edge is high #and decreases as one moves in bulk direction if self.num_of_temp == 2:#Lattice only in the 2T self.temp_data_Lat.addLayer(20e-9,5.5674+0.38612j,k_lat_Si,C_lat_Si,rho_Si) self.coupling = np.append(self.coupling,G_Si) self.temp_data_Lat.addLayer(100e-9,5.5674+0.38612j,k_lat_Si,C_lat_Si,rho_Si) self.coupling = np.append(self.coupling,G_Si) self.temp_data_Lat.addLayer(100000e-9,5.5674+0.38612j,k_lat_Si,C_lat_Si,rho_Si) self.coupling = np.append(self.coupling,G_Si) #In the 1 and 2 temperature case electron always gets appended self.temp_data.addLayer(20e-9,5.5674+0.38612j,k_el_Si,C_el_Si,rho_Si) self.temp_data.addLayer(100e-9,5.5674+0.38612j,k_el_Si,C_el_Si,rho_Si) self.temp_data.addLayer(100000e-9,5.5674+0.38612j,k_el_Si,C_el_Si,rho_Si) def addLayer(self,L,n,conductivity,heatCapacity,rho,coupling=0,*args): """ Add parameters of every layer: (length,conductivity[electron,lattice,spin],heatCapacity[electron, lattice, spin],density, coupling[E-L,L-S,S-E]) The units in SI are: [length] = m [n] = complex refractive index [conductivity] = W/(mK) [heatCapacity] = J/(m^3K^2) [density] = kg/m^3 [Coupling] = W/(m^3K) """ #check all input arguments and make them to lists, for the multi layer case #make list when given as int or float typecheck = np.array([]) if type(conductivity) is not (list or type(typecheck)): conductivity = [conductivity] if type(heatCapacity) is not (list or type(typecheck)): heatCapacity = [heatCapacity] #do typecheck only for the lattice system in the 2TM-case if self.num_of_temp == 2: if (np.size(conductivity) or np.size(heatCapacity))<2: print('Lattice parameters are missing.\n Add parameters for Lattice system.') return(128) self.temp_data_Lat.addLayer(L,n,conductivity[1],heatCapacity[1],rho) #Only electron spin coupling is under consideration self.coupling = np.append(self.coupling,coupling) #do typecheck for the Lattice and the Spin system if self.num_of_temp == 3: if (np.size(conductivity) or np.size(heatCapacity) or np.size(coupling))<3: print('Input parameters are missing.\n Add parameters for '\ 'conductivity/heatCapacity or coupling for Lattice/Spin system.') return(128) self.temp_data_Lat.addLayer(L,n,conductivity[1],heatCapacity[1],rho) self.temp_data_Spin.addLayer(L,n,conductivity[2],heatCapacity[2],rho) #In the 3Tm case the coupling input arg is a vector of len 3. Unwrap them: self.coupling = np.append(self.coupling,coupling[0]) self.coupling_LS = np.append(self.coupling_LS,coupling[1]) self.coupling_SE = np.append(self.coupling_SE,coupling[2]) #For the electronic system always add the parameters! self.temp_data.addLayer(L,n,conductivity[0],heatCapacity[0],rho) def interconditions(self,phi,interfaces,conductivity,N,A1h): """ A function which gives back an array where the intereface condition is returned for the left and right side of the interface. Gets called in the E.E.-loop. """ end_i = N-1 intercondiL = np.zeros((interfaces,N)) intercondiR = np.zeros((interfaces,N)) for i in range(interfaces): intercondiL[i] = conductivity[i](phi[end_i])*A1h[end_i+i] intercondiR[i] = conductivity[i+1](phi[end_i])*A1h[end_i+i+1] end_i += N-1 return(intercondiL,intercondiR) def sourceprofile(self,absorptionprofile,timeprofile,xflat,x0,t,N): #Consider Lambert Beers law in space and different types in time if (absorptionprofile == "LB") and (self.source.fluence is not 0): optical_penetration_depth = self.source.ref2delta(self.temp_data.n,self.source.lambda_vac) if (timeprofile == "Gaussian"): print('-----------------------------------------------------------') print('Lambert Beer´s absorption law and a Gaussian time profile is applied as source.') print('-----------------------------------------------------------') sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian) if (timeprofile == "repGaussian") or (timeprofile == "RepGaussian"): print('-----------------------------------------------------------') print('Lambert Beer absorption profile and a repeated Gaussian time profile is taken into account for the source.'\ 'The frequency of the pulse repetition has to be indicated via s.frequency = number (in 1/seconds).') print('-----------------------------------------------------------') self.source.multipulse = True xmg, tmg = np.meshgrid(xflat,t) if (self.source.frequency is not False): time_range = tmg[-1,-1]-self.source.t0 pulses = int(round(time_range * self.source.frequency)) #Add up Gaussian pulses with different t0, according to the frequency given #from t0 onwards, until the end of the time grid customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 + i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian,customtime) if(self.source.frequency is not False) and (self.source.num_of_pulses is not False): #Creating a certain number of pulses according to self.num_of_pulses time_range = tmg[-1,-1]-self.source.t0 pulses = self.source.num_of_pulses #If num_of_pulses is bigger too big to fit in the timerange [t0,t_end] throw warning if (pulses > int(round(time_range * self.source.frequency))): pulses = int(round(time_range * self.source.frequency)) print('Number of pulses is too big to fit in the timerange under consideration. \n'\ 'Adjust t_end or consider a smaller number of pulses.') customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 +i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian,customtime) if(self.source.frequency is False) and (self.source.num_of_pulses is False): print('-----------------------------------------------------------') print('Assign the propertiy s.frequncy, to consider a certain pulse frequency.\n'\ 'If only a certain number of pulses should be considered, assign the value s.num_of_pulses = integer.') print('-----------------------------------------------------------') if (timeprofile == "custom") or (timeprofile == "Custom"): [ttime,amplitude] = self.source.loadData #To extract the custom time profile and the scaling factor [sourcemat,customtime,scaling] = self.source.custom(t,xflat,ttime,amplitude,optical_penetration_depth[0]) #To get the space profile: Source with different optical penetration depth defined on the xflat gird sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian,customtime,scaling) #Consider Transfer Matrix in space and different types in time if (absorptionprofile == "TMM") and (self.source.fluence is not 0): """ This will implement a transfer matrix approach to local absorption instead as using the Lambert Beer´s law considered in the Gaussian source type. """ #Multiplying with 1e9, since the absorption()-function. In the source module only works if length is in units of nm! x0m = x0*1e9#converte the lentgh into nm if len(x0) is not (len(self.temp_data.n)-1): print('-----------------------------------------------------------') print('Number of considered layers does not match with given refractive indices.\n'\ 'in ´temperature.n(Air|Film layer1|Film layer2|...|Air)´ anly consider the film layers. \n'\ 'The refractive index of the substrate gets added automatically later when \n'\ '`simulation.addSubstrate(\'name\')` gets called.') print('-----------------------------------------------------------') if (timeprofile == "Gaussian"): sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m) print('-----------------------------------------------------------') print('Transfer matrix absorption profile and a Gaussian time profile is taken into account for the source.\n'\ 'Length of every layer has to be given in units of meter.') print('-----------------------------------------------------------') if (timeprofile == "custom") or (timeprofile == "Custom"): print('-----------------------------------------------------------') print('Transfer matrix absorption profile of and a custom time profile is taken into account for the source.\n'\ 'Length of every layer has to be given in units of meter.') print('-----------------------------------------------------------') if self.source.loadData is False: print('-----------------------------------------------------------') print('Import an array, containing the data of the custom pulse.'\ 'arr[0,:] = time; arr[1,:] = amplitude') print('-----------------------------------------------------------') [ttime,amplitude] = self.source.loadData lam = 1#Lamda does not matter here since the spacial absorption is calculated via TMM [sourceM,customtime,scaling] = self.source.custom(t,xflat,ttime,amplitude,lam) #The cfeateTMM(xgrid,timegrid,length,*args) has customtime as an optional argument sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m,customtime,scaling) if (timeprofile == "RepGaussian") or (timeprofile== "repGaussian"): print('-----------------------------------------------------------') print('Transfer matrix absorption profile and a repeated Gaussian time profile is taken into account for the source.'\ 'Length of every layer has to be given in units of meter.') print('-----------------------------------------------------------') self.source.multipulse = True xmg, tmg = np.meshgrid(xflat,t) if (self.source.frequency is not False): time_range = tmg[-1,-1]-self.source.t0 pulses = int(round(time_range * self.source.frequency)) #Add up Gaussian pulses with different t0, according to the frequency given #from t0 onwards, until the end of the time grid customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 + i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m,customtime) if(self.source.frequency is not False) and (self.source.num_of_pulses is not False): #Creating a certain number of pulses according to self.num_of_pulses time_range = tmg[-1,-1]-self.source.t0 pulses = self.source.num_of_pulses #If num_of_pulses is bigger too big to fit in the timerange [t0,t_end] throw warning if (pulses > int(round(time_range * self.source.frequency))): pulses = int(round(time_range * self.source.frequency)) print('Number of pulses is too big to fit in the timerange under consideration. \n'\ 'Adjust t_end or consider a smaller number of pulses.') customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 +i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m,customtime) if(self.source.frequency is False) and (self.source.num_of_pulses is False): print('-----------------------------------------------------------') print('Assign the propertiy s.frequncy, to consider a certain pulse frequency.\n'\ 'If only a certain number of pulses should be considered, assign the value s.num_of_pulses = integer.') print('-----------------------------------------------------------') return(sourceM) # This is the main Explicit Euler loop where the solution to T(x,t) is calculated. def run(self): idealtimestep = self.stability() if not self.time_step: self.time_step = idealtimestep print('-----------------------------------------------------------') print(' No specific time constant has been indicated. \n '\ 'The stability region has been calculated and an appropriate timestep has been chosen.\n '\ 'Timestep = {idealtimestep:.2e} s'.format(idealtimestep=idealtimestep)) print('-----------------------------------------------------------') if (self.time_step-idealtimestep)/idealtimestep > 0.1: print('-----------------------------------------------------------') print('The manually chosen time step of {time_step:.2e} is eventually too big and could cause instabilities in the simulation.\n '\ 'We suggest a timestep of {idealtimestep:.2e} s'.format(time_step=self.time_step,idealtimestep=idealtimestep)) print('-----------------------------------------------------------') if(self.time_step-idealtimestep)/idealtimestep < -0.2: print('-----------------------------------------------------------') print('The maunually chosen time step of {time_step:.2e} is very small and will eventually cause a long simulation time.\n'\ 'We suggest a timestep of {idealtimestep:.2e} s'.format(time_step=self.time_step,idealtimestep=idealtimestep)) print('-----------------------------------------------------------') #loading simulation relevant properties from the structural tmeperature object [c_E,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h] = self.temp_data.Msetup() t = np.arange(self.start_time,self.final_time,self.time_step) #only if the injection would make the time grid smaller, to not move into instable regime if self.source.FWHM: if (6*self.source.FWHM/200 < idealtimestep): #inject 200 extra points around pulse to fully capture the shape of the pulse tinj = np.linspace(self.source.t0 - 3*self.source.FWHM,self.source.t0 + 3*self.source.FWHM,200) smaller = np.where(t<self.source.t0 - 3*self.source.FWHM)[0] bigger = np.where(t>self.source.t0 + 3*self.source.FWHM)[0] #new time grid with higher resolution t = np.concatenate((t[smaller],tinj,t[bigger]),axis=0) tstep = np.ones(len(t)) tstep[:-1] = np.diff(t); tstep[-1] = np.diff(t)[-1] #If a more refined grid is choosen around t0. We inject a fine time grid around t0, to correctly capture the pulse shape if self.source.adjusted_grid is not False: if self.source.dt0 == False: print('-----------------------------------------------------------') print('The option for an adjusted grid is True, but no interval for a more refined grid has been given.'/ 'Indicate dt0 (around which values the time grid should have higher resolution) in the source object') print('-----------------------------------------------------------') if 2*self.source.dt0/self.source.extra_points < idealtimestep: print('-----------------------------------------------------------') print('A refined Grid around t0 has been applied') print('-----------------------------------------------------------') tinj = np.linspace(self.source.t0-self.source.dt0,self.source.t0+self.source.dt0,self.source.extra_points) smaller = np.where(t<self.source.t0 - self.source.dt0)[0] bigger = np.where(t>self.source.t0 + self.source.dt0)[0] #new time grid with higher resolution t = np.concatenate((t[smaller],tinj,t[bigger]),axis=0) tstep = np.ones(len(t)) tstep[:-1] = np.diff(t); tstep[-1] = np.diff(t)[-1] else: print('-----------------------------------------------------------') print('No refined time grid is applied. The timestep is alerady very small.' \ 'You can use the simulation class with the property self.time_step and '\ 'assign it to a smaller value as the current time step.') print('-----------------------------------------------------------') #Initialize the systems and load the matrices if self.temp_data_Lat: if self.temp_data.plt_points is not self.temp_data_Lat.plt_points: self.temp_data_Lat.plt_points = self.temp_data.plt_points print('-----------------------------------------------------------') print('The number of plotting points in the electron system \n'\ 'is not the same as in the lattice system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') if self.temp_data.collocpts is not self.temp_data_Lat.collocpts: self.temp_data_Lat.collocpts = self.temp_data.collocpts print(self.temp_data_Lat.collocpts) print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the lattice system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') [c_L,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large_L,interfaces,LayerMat,A1h] = self.temp_data_Lat.Msetup() if self.temp_data_Spin: print("Line 728 Spinsystem") if self.temp_data.plt_points is not self.temp_data_Spin.plt_points: self.temp_data_Spin.plt_points = self.temp_data.plt_points print('-----------------------------------------------------------') print('The number of plotting points in the electron system \n'\ 'is not the same as in the spin system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') if self.temp_data.collocpts is not self.temp_data_Spin.collocpts: self.temp_data_Spin.collocpts = self.temp_data.collocpts print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the spin system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') [c_S,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large_S,interfaces,LayerMat,A1h] = self.temp_data_Spin.Msetup() if (self.source.fluence == 0): print('-----------------------------------------------------------') print('No source is applied.\n'\ 'source.fluence = 0') print('-----------------------------------------------------------') xmg, tmg = np.meshgrid(xflat,t) sourceM = np.zeros_like(xmg) else: sourceM = self.sourceprofile(self.source.spaceprofile,self.source.timeprofile,xflat,self.temp_data.length,t,N) #Making the boundary conditions a function of t, in case they are given as scalars if isinstance(self.left_BC,(int,float)): dummy = self.left_BC self.left_BC = lambda t: dummy + 0*t if isinstance(self.right_BC,(int,float)): dummy1 = self.right_BC self.right_BC = lambda t: dummy1 + 0*t #Makint the boundary conditions a matrix for the electron case BC_E = np.zeros((len(c_E),len(t))) BC_E[0] = self.left_BC(t) BC_E[-1] = self.right_BC(t) #Checking the Lattice system boundary conditions if self.temp_data_Lat: if isinstance(self.left_BC_L,(int,float)): dummy2 = self.left_BC_L self.left_BC_L = lambda t: dummy2 + 0*t if isinstance(self.right_BC_L,(int,float)): dummy3 = self.right_BC_L self.right_BC_L = lambda t: dummy3 + 0*t #Makint the boundary conditions a matrix for the lattice case BC_L = np.zeros((len(c_L),len(t))) BC_L[0] = self.left_BC_L(t) BC_L[-1] = self.right_BC_L(t) #Checking the Spine system boundary conditions #It impies that we at least consider 2 temperatures -> under this "if-tree" if self.temp_data_Spin: if isinstance(self.left_BC_S,(int,float)): dummy4 = self.left_BC_S self.left_BC_S = lambda t: dummy4 + 0*t if isinstance(self.right_BC_S,(int,float)): dummy5 = self.right_BC_S self.right_BC_S = lambda t: dummy5 + 0*t #Makint the boundary conditions a matrix for the Spin case BC_S = np.zeros((len(c_S),len(t))) BC_S[0] = self.left_BC_S(t) BC_S[-1] = self.right_BC_S(t) #Check if the Lattice/Spin and Spin/Electron coupling constants have the right size if np.size(self.coupling_LS)<np.size(length)-1: self.coupling_LS = self.coupling_LS*np.ones(np.size(self.temp_data.length)-1) print('-----------------------------------------------------------') print('Not every layer has a unique Lattice-Spin coupling constant \'G_LS \'.\n')\ ('=> G_LS will be set to the value of the first layer = {coupling_LS[0]:.2e}\n for all other layers.'.format(coupling_LS=self.coupling_LS)) print('-----------------------------------------------------------') if np.size(self.coupling_SE)<np.size(length)-1: self.coupling_SE = self.coupling_SE*np.ones(np.size(self.temp_data.length)-1) print('-----------------------------------------------------------') print('Not every layer has a unique Spin-Electron coupling constant \'G_SE \'.\n')\ ('=> G_SE will be set to the value of the first layer = {coupling_SE[0]:.2e}\n for all other layers.'.format(coupling_SE=self.coupling_SE)) print('-----------------------------------------------------------') #If only the two temperature model is considered I only need to check one coupling constant if np.size(self.coupling)<np.size(length)-1: self.coupling = self.coupling*np.ones(np.size(self.temp_data.length)-1) print('-----------------------------------------------------------') print('Not every layer has a unique coupling constant \'G \'.\n')\ ('=> G will be set to the value of the first layer = {coupling[0]:.2e}\n for all other layers.'.format(coupling=self.coupling)) print('-----------------------------------------------------------') # The 3 Temperature Case is being considered if self.temp_data_Spin: #Setup arrays for electron temperature phi_E = np.zeros((len(t),len(x_plt_flat))); phi_E[0] = initphi_large Flow_1E = np.zeros(len(c_E)) Flow_2E = np.zeros(len(c_E)) dphi_E = np.zeros(len(c_E)) intphi_E = np.zeros(len(c_E)) #Setup arrays for lattice temperature phi_L = np.zeros((len(t),len(x_plt_flat))); phi_L[0] = initphi_large_L #300*np.ones(len(phi_L[0])) Flow_1L = np.zeros(len(c_L)) Flow_2L = np.zeros(len(c_L)) dphi_L = np.zeros(len(c_L)) intphi_L = np.zeros(len(c_L)) #Setup arrays for the spin temperature phi_S = np.zeros((len(t),len(x_plt_flat))); phi_S[0] = initphi_large_S #300*np.ones(len(phi_L[0])) Flow_1S = np.zeros(len(c_S)) Flow_2S = np.zeros(len(c_S)) dphi_S = np.zeros(len(c_S)) intphi_S = np.zeros(len(c_S)) #General setup for E.E. loop condi = np.array([np.arange(1,len(length)-1)])*(N-1) #Index to apply interface condition cnfill = np.array([np.arange(1,len(length)-1)])*(plp-1)#correct interface condition with real value for phi A00[0] = 1; A00[-1] = 1 #Avoide devide through 0 in dphi_L! Clar for BC before intphi calc. Abig_E = np.copy(Abig) #Since Abig can change due to interconditions we split it here Abig_L = np.copy(Abig) #The interface conditions are applied on every time step Abig_S = np.copy(Abig) #Every system gets individual matrix start_EL = time.time() for i in tqdm(range(1,len(t)),position = 0): #Calculate Solution at every time step and respective derivatives phi0_E = np.dot(A00,c_E); phi1_E = np.dot(A1b,c_E); phi2_E = np.dot(A2b,c_E) phi0_L = np.dot(A00,c_L); phi1_L = np.dot(A1b,c_L); phi2_L = np.dot(A2b,c_L) phi0_S = np.dot(A00,c_S); phi1_S = np.dot(A1b,c_S); phi2_S = np.dot(A2b,c_S) #Calculating interface conditions which are applied later intercon_E = self.interconditions(phi_E[i-1],interfaces,self.temp_data.conductivity,N,A1h) intercon_L = self.interconditions(phi_L[i-1],interfaces,self.temp_data_Lat.conductivity,N,A1h) intercon_S = self.interconditions(phi_S[i-1],interfaces,self.temp_data_Spin.conductivity,N,A1h) startf = 0;endf = N-1 #Construct all picewise flows and piecewise dphi. Iterate over layers for j in range(0,interfaces+1): #electron: d/dx[k(phi) * d/dx(phi)] Flow_1E[startf:endf] = self.temp_data.diff_conductivity(phi0_E[startf:endf],j) Flow_2E[startf:endf] = self.temp_data.conductivity[j](phi0_E[startf:endf]) Flow_1E[startf:endf] *=phi1_E[startf:endf]**2 Flow_2E[startf:endf] *= phi2_E[startf:endf] #lattice Flow_1L[startf:endf] = self.temp_data_Lat.diff_conductivity(phi0_L[startf:endf],j) Flow_2L[startf:endf] = self.temp_data_Lat.conductivity[j](phi0_L[startf:endf]) Flow_1L[startf:endf] *=phi1_L[startf:endf]**2 Flow_2L[startf:endf] *= phi2_L[startf:endf] #Spin Flow_1S[startf:endf] = self.temp_data_Spin.diff_conductivity(phi0_S[startf:endf],j) Flow_2S[startf:endf] = self.temp_data_Spin.conductivity[j](phi0_S[startf:endf]) Flow_1S[startf:endf] *=phi1_S[startf:endf]**2 Flow_2S[startf:endf] *= phi2_S[startf:endf] #calculate delta phi for electron, lattice and spin #This is the core of the problem dphi_E[startf:endf] = 1/(self.temp_data.heatCapacity[j](phi0_E)[startf:endf]*self.temp_data.rho[j])*\ (Flow_1E[startf:endf]+Flow_2E[startf:endf]+sourceM[i,startf:endf] +\ self.coupling[j]*(phi0_L[startf:endf]-phi0_E[startf:endf])+self.coupling_SE[j]*(phi0_S[startf:endf]-phi0_E[startf:endf])) #Lattice time derivative dphi_L[startf:endf] = 1/(self.temp_data_Lat.heatCapacity[j](phi0_L)[startf:endf]*self.temp_data_Lat.rho[j])*\ (Flow_1L[startf:endf]+Flow_2L[startf:endf] +\ self.coupling[j]*(phi0_E[startf:endf]-phi0_L[startf:endf])+self.coupling_LS[j]*(phi0_S[startf:endf]-phi0_L[startf:endf])) #Spin system time derivative dphi_S[startf:endf] = 1/(self.temp_data_Spin.heatCapacity[j](phi0_S)[startf:endf]*self.temp_data_Spin.rho[j])*\ (Flow_1S[startf:endf]+Flow_2S[startf:endf] +\ self.coupling_LS[j]*(phi0_L[startf:endf]-phi0_S[startf:endf])+self.coupling_SE[j]*(phi0_E[startf:endf]-phi0_S[startf:endf])) startf += N-1; endf +=N-1 #Move one layer further start_i = 0; end_i = N-1 #Apply interface conditions for all layers in every time step, i.e.: #filling up Abig wiht the interface condition in the middle of the grid for k in range(0,interfaces): #for the electron system Abig_E[end_i,start_i:end_i] = intercon_E[0][k][:-1]#Lhs interface flow Abig_E[end_i,end_i+1:end_i+N] = -intercon_E[1][k][1:]#Rhs interface flow Abig_E[end_i,end_i] = intercon_E[0][k][-1] -intercon_E[1][k][0] #for the lattice system Abig_L[end_i,start_i:end_i] = intercon_L[0][k][:-1]#Lhs interface flow Abig_L[end_i,end_i+1:end_i+N] = -intercon_L[1][k][1:]#Rhs interface flow Abig_L[end_i,end_i] = intercon_L[0][k][-1] -intercon_L[1][k][0] #for the Spin system Abig_S[end_i,start_i:end_i] = intercon_S[0][k][:-1]#Lhs interface flow Abig_S[end_i,end_i+1:end_i+N] = -intercon_S[1][k][1:]#Rhs interface flow Abig_S[end_i,end_i] = intercon_S[0][k][-1] -intercon_S[1][k][0] start_i += N-1; end_i += N-1 #computing the flux for every time step at the boundaries #If Neumann BC-> devide over k(T) since BC_Type = 1 #If Dirichlet BC -> devide over 1 since BC_Type = 0 Flux_E = BC_E[:,i]#Avoidint 0 in denominator Flux_E[0] /= self.temp_data.conductivity[0](c_E[0])**self.temp_data.Left_BC_Type + 1e-12 Flux_E[-1] /= self.temp_data.conductivity[-1](c_E[-1])**self.temp_data.Right_BC_Type + 1e-12 Flux_L = BC_L[:,i] Flux_L[0] /= self.temp_data_Lat.conductivity[0](c_L[0])**self.temp_data_Lat.Left_BC_Type + 1e-12 Flux_L[-1] /= self.temp_data_Lat.conductivity[-1](c_L[-1])**self.temp_data_Lat.Right_BC_Type + 1e-12 Flux_S = BC_S[:,i] Flux_S[0] /= self.temp_data_Spin.conductivity[0](c_S[0])**self.temp_data_Spin.Left_BC_Type + 1e-12 Flux_S[-1] /= self.temp_data_Spin.conductivity[-1](c_S[-1])**self.temp_data_Spin.Right_BC_Type + 1e-12 #Clear for boundary conditions at the edgeds of the grid dphi_E[0] = 0; dphi_E[-1] = 0; phi0_E[0] = 0; phi0_E[-1] = 0; dphi_L[0] = 0; dphi_L[-1] = 0; phi0_L[0] = 0; phi0_L[-1] = 0; dphi_S[0] = 0; dphi_S[-1] = 0; phi0_S[0] = 0; phi0_S[-1] = 0; #intermediate phi with low resolution in space according to explicit euler intphi_E = phi0_E + tstep[i] * dphi_E + Flux_E intphi_L = phi0_L + tstep[i] * dphi_L + Flux_L intphi_S = phi0_S + tstep[i] * dphi_S + Flux_S #Interface condition: Setting the rhs to 0, such that the heat transported (flux = Q = k*d/dx phi) #from left is what comes out at the right hand side Q_1 -> Q_2 intphi_E[condi] = 0 #Interface condition: Q_1 -Q_2 = 0 intphi_L[condi] = 0 intphi_S[condi] = 0 #electron: use c to map on high resolution x-grid #since in Abig, k(T(t)) is inserted we have to solve the system for every step c_E = np.linalg.solve(Abig_E,intphi_E) # c(t) for every timestep phi_E[i] = np.dot(Cb,c_E) # map spline coefficients to fine Cb grid phi_E[i,cnfill] = c_E[condi] #correct the values for phi at interface #lattice c_L = np.linalg.solve(Abig_L,intphi_L) phi_L[i] = np.dot(Cb,c_L) phi_L[i,cnfill] = c_L[condi] #spin c_S = np.linalg.solve(Abig_S,intphi_S) phi_S[i] = np.dot(Cb,c_S) phi_S[i,cnfill] = c_S[condi] end_EL = time.time() print('-----------------------------------------------------------') print('Heat diffusion in a coupled electron-latticelspin system has been simulated') print('Eleapsed time in E.E.- loop:', end_EL-start_EL) print('-----------------------------------------------------------') T = [] T.append(phi_E); T.append(phi_L); T.append(phi_S) return(x_plt_flat,t,T) #=======End 3 temp Case ================================= #The two temperature model is considered if self.temp_data_Lat: #Setup arrays for electron temperature phi_E = np.zeros((len(t),len(x_plt_flat))); phi_E[0] = initphi_large Flow_1E = np.zeros(len(c_E)) Flow_2E = np.zeros(len(c_E)) dphi_E = np.zeros(len(c_E)) intphi_E = np.zeros(len(c_E)) #Setup arrays for lattice temperature phi_L = np.zeros((len(t),len(x_plt_flat))); phi_L[0] = initphi_large_L Flow_1L = np.zeros(len(c_L)) Flow_2L = np.zeros(len(c_L)) dphi_L = np.zeros(len(c_L)) intphi_L = np.zeros(len(c_L)) #General setup for E.E. loop condi = np.array([np.arange(1,len(length)-1)])*(N-1) #Index to apply interface condition cnfill = np.array([np.arange(1,len(length)-1)])*(plp-1)#correct interface condition with real value for phi A00[0] = 1; A00[-1] = 1 #Avoide devide through 0 in dphi_L! Clar for BC before intphi calc. Abig_E = np.copy(Abig) #Since Abig can change due to interconditions we split it here Abig_L = np.copy(Abig) #The interface conditions are applied on every time step start_EL = time.time() for i in tqdm(range(1,len(t)),position = 0): #Calculate Solution at every time step and respective derivatives phi0_E = np.dot(A00,c_E); phi1_E = np.dot(A1b,c_E); phi2_E = np.dot(A2b,c_E) phi0_L = np.dot(A00,c_L); phi1_L = np.dot(A1b,c_L); phi2_L = np.dot(A2b,c_L) #Calculating interface conditions which are applied later intercon_E = self.interconditions(phi_E[i-1],interfaces,self.temp_data.conductivity,N,A1h) intercon_L = self.interconditions(phi_L[i-1],interfaces,self.temp_data_Lat.conductivity,N,A1h) startf = 0;endf = N-1 #Construct all picewise flows and piecewise dphi Iterate over layers for j in range(0,interfaces+1): #electron Flow_1E[startf:endf] = self.temp_data.diff_conductivity(phi0_E[startf:endf],j) Flow_2E[startf:endf] = self.temp_data.conductivity[j](phi0_E[startf:endf]) Flow_1E[startf:endf] *=phi1_E[startf:endf]**2 Flow_2E[startf:endf] *= phi2_E[startf:endf] #lattice Flow_1L[startf:endf] = self.temp_data_Lat.diff_conductivity(phi0_L[startf:endf],j) Flow_2L[startf:endf] = self.temp_data_Lat.conductivity[j](phi0_L[startf:endf]) Flow_1L[startf:endf] *=phi1_L[startf:endf]**2 Flow_2L[startf:endf] *= phi2_L[startf:endf] #calculate delta phi for electron and lattice #This is the core of the problem dphi_E[startf:endf] = 1/(self.temp_data.heatCapacity[j](phi0_E)[startf:endf]*self.temp_data.rho[j])*\ (Flow_1E[startf:endf]+Flow_2E[startf:endf]+sourceM[i,startf:endf] + self.coupling[j]*(phi0_L[startf:endf]-phi0_E[startf:endf])) dphi_L[startf:endf] = 1/(self.temp_data_Lat.heatCapacity[j](phi0_L)[startf:endf]*self.temp_data_Lat.rho[j])*\ (Flow_1L[startf:endf]+Flow_2L[startf:endf] + self.coupling[j]*(phi0_E[startf:endf]-phi0_L[startf:endf])) startf += N-1; endf +=N-1 #filling up Abig wiht the interface condition in the middle of the grid start_i = 0; end_i = N-1 for k in range(0,interfaces): #Apply interface conditions for all layers in every time step #for the electron system Abig_E[end_i,start_i:end_i] = intercon_E[0][k][:-1]#Lhs interface flow Abig_E[end_i,end_i+1:end_i+N] = -intercon_E[1][k][1:]#Rhs interface flow Abig_E[end_i,end_i] = intercon_E[0][k][-1] -intercon_E[1][k][0] #for the lattice system Abig_L[end_i,start_i:end_i] = intercon_L[0][k][:-1]#Lhs interface flow Abig_L[end_i,end_i+1:end_i+N] = -intercon_L[1][k][1:]#Rhs interface flow Abig_L[end_i,end_i] = intercon_L[0][k][-1] -intercon_L[1][k][0] start_i += N-1; end_i += N-1 #computing the flux for every time step for the boundaries Flux_E = BC_E[:,i] Flux_E[0] /= self.temp_data.conductivity[0](c_E[0])**self.temp_data.Left_BC_Type + 1e-12 Flux_E[-1] /= self.temp_data.conductivity[-1](c_E[-1])**self.temp_data.Right_BC_Type + 1e-12 Flux_L = BC_L[:,i] Flux_L[0] /= self.temp_data_Lat.conductivity[0](c_L[0])**self.temp_data_Lat.Left_BC_Type + 1e-12 Flux_L[-1] /= self.temp_data_Lat.conductivity[-1](c_L[-1])**self.temp_data_Lat.Right_BC_Type + 1e-12 #Clear for boundary conditions at the edgeds of the grid dphi_E[0] = 0; dphi_E[-1] = 0; dphi_L[0] = 0; dphi_L[-1] = 0 phi0_E[0] = 0; phi0_E[-1] = 0; phi0_L[0] = 0; phi0_L[-1] = 0; #intermediate phi with low resolution in space according to explicit euler intphi_E = phi0_E + tstep[i] * dphi_E + Flux_E intphi_E[condi] = 0 intphi_L = phi0_L + tstep[i] * dphi_L + Flux_L intphi_L[condi] = 0 #Interface condition: Q_1 -Q_2 = 0 #electron: use c to map on high resolution x-grid #since in Abig, k(T(t)) is inserted we have to solve the system for every step c_E = np.linalg.solve(Abig_E,intphi_E) # c(t) for every timestep phi_E[i] = np.dot(Cb,c_E) # map spline coefficients to fine Cb grid phi_E[i,cnfill] = c_E[condi] #correct the values for phi at interface #lattice c_L = np.linalg.solve(Abig_L,intphi_L) phi_L[i] = np.dot(Cb,c_L) phi_L[i,cnfill] = c_L[condi] end_EL = time.time() print('-----------------------------------------------------------') print('Heat diffusion in a coupled electron-lattice system has been simulated') print('Eleapsed time in E.E.- loop:', end_EL-start_EL) print('-----------------------------------------------------------') T = [] T.append(phi_E); T.append(phi_L) return(x_plt_flat,t,T) #=============End 2Temp Case ======================== else: #this is the single temperature case. (Only electron temperature) #prepare space to store phi solution on fine plt grid. And Flow_1,2 vectors phi = np.zeros((len(t),len(x_plt_flat))); phi[0] = initphi_large Flow_1 = np.zeros(len(c_E)) Flow_2 = np.zeros(len(c_E)) dphi = np.zeros(len(c_E)) intphi = np.zeros(len(c_E)) condi = np.array([np.arange(1,len(length)-1)])*(N-1) #Index to apply interface condition cnfill = np.array([np.arange(1,len(length)-1)])*(plp-1) #correct interface condition with real value for phi A00[0] = 1; A00[-1] = 1 #Avoid 1/0 division in dphi calculation. See E.E. loop startE = time.time() for i in tqdm(range(1,len(t)),position = 0): phi0 = np.dot(A00,c_E); phi1 = np.dot(A1b,c_E); phi2 = np.dot(A2b,c_E) intercon_E = self.interconditions(phi[i-1],interfaces,self.temp_data.conductivity,N,A1h) #get interface conditions for every time step startf = 0;endf = N-1 #construct all picewise flows and piecewise dphi for j in range(0,interfaces+1): Flow_1[startf:endf] = self.temp_data.diff_conductivity(phi0[startf:endf],j) Flow_2[startf:endf] = self.temp_data.conductivity[j](phi0[startf:endf]) Flow_1[startf:endf] *=phi1[startf:endf]**2 Flow_2[startf:endf] *= phi2[startf:endf] dphi[startf:endf] = 1/(self.temp_data.heatCapacity[j](phi0)[startf:endf]*self.temp_data.rho[j])*\ (Flow_1[startf:endf]+Flow_2[startf:endf]+sourceM[i,startf:endf]) startf += N-1; endf +=N-1 #filling up Abig wiht the interface condition in the middle of the grid start_i = 0; end_i = N-1 for k in range(0,interfaces): #Apply interface conditions for all layers in every time step Abig[end_i,start_i:end_i] = intercon_E[0][k][:-1]#Lhs interface flow Abig[end_i,end_i+1:end_i+N] = -intercon_E[1][k][1:]#Rhs interface flow Abig[end_i,end_i] = intercon_E[0][k][-1] -intercon_E[1][k][0] start_i += N-1; end_i += N-1 #computing the flux for every time step for the boundaries Flux_E = BC_E[:,i] Flux_E[0] /= self.temp_data.conductivity[0](c_E[0])**self.temp_data.Left_BC_Type + 1e-12 Flux_E[-1] /= self.temp_data.conductivity[-1](c_E[-1])**self.temp_data.Right_BC_Type + 1e-12 #Make space for BC dphi[0] = 0; dphi[-1] = 0 phi0[0] = 0; phi0[-1] = 0 intphi = phi0 + tstep[i] * dphi + Flux_E intphi[condi] = 0 #Interface condition: Q_1 -Q_2 = 0 # c(t) for every timestep #since in Abig k(T(t)) is inserted we have to solve the system for every step c_E = np.linalg.solve(Abig,intphi) #this system has to be solved in every time step phi[i] = np.dot(Cb,c_E) # map spline coefficients to fine Cb grid phi[i,cnfill] = c_E[condi] #correct the values for phi at interface endE = time.time() print('-----------------------------------------------------------') print('Electron temperature heat diffusion has been simulated.') print('Eleapsed time in E.E.- loop:', endE-startE) print('-----------------------------------------------------------') return(x_plt_flat,t,phi) def stability(self): """ If only the electron temperature system is under consideration, we only compute the eigenvalues of lambda_i = k/(C*rho)*A00^-1*A2b. This is we consider the minimum Eigenvalue for each layer to represent the time konstant. The time constant for E.E. is then given by -2/min(lambda_i), which is the criterion for stability for E.E. loops, to obtain convergence. """ [c,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h] = self.temp_data.Msetup() A00[0,0] = 1; A00[-1,-1] = 1 rho_E = self.temp_data.rho conductivity_E = self.temp_data.conductivity conductivity_E = np.asarray(conductivity_E) typecheck = np.array([1])[0] for i in range(0,len(conductivity_E)): #In case conductivity is a function k(T) we compute a worst case scenario #this is because we can only compare integers. if not isinstance(conductivity_E[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) conductivity_E[i] = max(conductivity_E[i](testT)) heatCapacity_E = self.temp_data.heatCapacity heatCapacity_E = np.asarray(heatCapacity_E) for i in range(0,len(heatCapacity_E)): #In case heatCapacity is a function C(T) we compute a worst case scenario #and take an integer value to compare if not isinstance(heatCapacity_E[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) heatCapacity_E[i] = min(heatCapacity_E[i](testT)) Eval = np.zeros(interfaces+1) #for each layer there will be an eigenvalue koeff1 = conductivity_E/(heatCapacity_E*rho_E) for i in range(0,interfaces+1): Lambda = koeff1[i]*LayerMat[i] Eval[i] = min(np.real(np.linalg.eig(Lambda)[0])) tkonst_E = -1.9/Eval if self.num_of_temp == 2: """ In the multy temperature case, we also consider the lattice dynamics, with respective k_L/(C_L*rho_L) dynamics. In addition, we also have to consider, the coupling between those two layers. I.e. G_mat. with coefficients koeff_2 = G/(heatCapacity*rho) Therefor we compute eigenvalues of the combined system: lambda_i = eval(Lambda + G_mat) for each layer. The time constant is again -2/min(lambda_i) """ if self.temp_data.collocpts is not self.temp_data_Lat.collocpts: self.temp_data_Lat.collocpts = self.temp_data.collocpts print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the lattice system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') [c,A00_L,Abig,A1b,A2b_L,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h] = self.temp_data_Lat.Msetup() A00_L[0,0] = 1; A00_L[-1,-1] = 1 rho_L = self.temp_data_Lat.rho G = self.coupling G = np.asarray(G) conductivity_L = self.temp_data_Lat.conductivity conductivity_L = np.asarray(conductivity_L) #In case conductivity is a function k(T) we compute a worst case scenario for i in range(0,len(conductivity_L)): if not isinstance(conductivity_L[i],(int ,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) conductivity_L[i] = max(conductivity_L[i](testT)) heatCapacity_L = self.temp_data_Lat.heatCapacity heatCapacity_L = np.asarray(heatCapacity_L) #In case heatCapacity is a function C(T) we compute a worst case scenario for i in range(0,len(heatCapacity_L)): if not isinstance(heatCapacity_L[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) heatCapacity_L[i] = min(heatCapacity_L[i](testT)) #M: for every layer we load the respective matrix from the temperature class M = np.shape(LayerMat)[1] Lambda = np.zeros((2*M,2*M)) Eval = np.zeros(interfaces+1) G_mat = np.zeros((2*M,2*M)) koeff1_E = conductivity_E/(heatCapacity_E*rho_E) koeff1_L = conductivity_L/(heatCapacity_L*rho_L) koeff2_E = G/(heatCapacity_E*rho_E) koeff2_L = G/(heatCapacity_L*rho_L) for i in range(0,interfaces+1): Lambda[0:M,0:M] = koeff1_E[i]*LayerMat[i] Lambda[M:,M:] = koeff1_L[i]*LayerMat[i] G_mat[0:M,0:M] = -koeff2_E[i]*np.eye(M) G_mat[0:M,M:] = koeff2_E[i]*np.eye(M) G_mat[M:,0:M] = koeff2_L[i]*np.eye(M) G_mat[M:,M:] = -koeff2_L[i]*np.eye(M) Eval[i] = min(np.real(np.linalg.eig(Lambda+G_mat)[0])) tkonst = -1.9/Eval return(min(tkonst)) if self.num_of_temp == 3: """ Consider the case of a three temperature odel and follow the same procedure as in the two TM case, except for now take all the coupling constants int consideration! """ if self.temp_data.collocpts is not self.temp_data_Lat.collocpts: self.temp_data_Lat.collocpts = self.temp_data.collocpts print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the lattice system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') if self.temp_data.collocpts is not self.temp_data_Spin.collocpts: self.temp_data_Spin.collocpts = self.temp_data.collocpts print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the spin system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') [c,A00_L,Abig,A1b,A2b_L,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h] = self.temp_data_Lat.Msetup() A00_L[0,0] = 1; A00_L[-1,-1] = 1 rho = self.temp_data_Lat.rho #Load different coupling constants and make them arrays G_EL = self.coupling; G_EL = np.asarray(G_EL) G_LS = self.coupling_LS; G_LS = np.asarray(G_LS) G_SE = self.coupling_SE; G_SE = np.asarray(G_SE) conductivity_L = self.temp_data_Lat.conductivity conductivity_L = np.asarray(conductivity_L) conductivity_S = self.temp_data_Spin.conductivity conductivity_S = np.asarray(conductivity_S) heatCapacity_L = self.temp_data_Lat.heatCapacity heatCapacity_L = np.asarray(heatCapacity_L) heatCapacity_S = self.temp_data_Spin.heatCapacity heatCapacity_S = np.asarray(heatCapacity_S) #In case heatCapacity is a function C(T) we compute a worst case scenario #That is we reduce the problem into a constant coefficient case for i in range(0,len(conductivity_L)): if not isinstance(conductivity_L[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) conductivity_L[i] = max(conductivity_L[i](testT)) for i in range(0,len(conductivity_S)): if not isinstance(conductivity_S[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) conductivity_S[i] = max(conductivity_S[i](testT)) for i in range(0,len(heatCapacity_L)): if not isinstance(heatCapacity_L[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) heatCapacity_L[i] = min(heatCapacity_L[i](testT)) for i in range(0,len(heatCapacity_S)): if not isinstance(heatCapacity_S[i],(int,float,type(typecheck))): testT = np.linspace(self.stability_lim[0],self.stability_lim[1],50) heatCapacity_S[i] = min(heatCapacity_S[i](testT)) #construct Matrices for the Kronecker product K11 = np.array([[1,0,0],[0,0,0],[0,0,0]]) K12 = np.array([[0,1,0],[0,0,0],[0,0,0]]) K13 = np.array([[0,0,1],[0,0,0],[0,0,0]]) K21 = np.array([[0,0,0],[1,0,0],[0,0,0]]) K22 = np.array([[0,0,0],[0,1,0],[0,0,0]]) K23 = np.array([[0,0,0],[0,0,1],[0,0,0]]) K31 = np.array([[0,0,0],[0,0,0],[1,0,0]]) K32 = np.array([[0,0,0],[0,0,0],[0,1,0]]) K33 = np.array([[0,0,0],[0,0,0],[0,0,1]]) #Unity matrix for kronecker product on the RHS and palce to store Eval unity = np.eye(np.shape(LayerMat)[1]) Eval = np.zeros(interfaces+1) #Compute the minimum eigenvalue for every layer for i in range(0,interfaces+1): coeff_E = conductivity_E[i]/(heatCapacity_E[i]*rho[i]) coeff_L = conductivity_L[i]/(heatCapacity_L[i]*rho[i]) coeff_S = conductivity_S[i]/(heatCapacity_S[i]*rho[i]) Lambda = np.kron(K11,coeff_E*LayerMat[i]) Lambda += np.kron(K22,coeff_L*LayerMat[i]) Lambda += np.kron(K33,coeff_S*LayerMat[i]) G_mat = np.kron(K11,-unity*coeff_E*(G_EL[i]+G_SE[i])) G_mat += np.kron(K12,unity*coeff_E*G_EL[i]) G_mat += np.kron(K13,unity*coeff_E*G_SE[i]) G_mat += np.kron(K21,unity*coeff_L*G_EL[i]) G_mat += np.kron(K22,-unity*coeff_L*(G_EL[i]+G_LS[i])) G_mat += np.kron(K23,unity*coeff_L*G_LS[i]) G_mat += np.kron(K31,unity*coeff_S*G_SE[i]) G_mat += np.kron(K32,unity*coeff_S*G_LS[i]) G_mat += np.kron(K33,-unity*coeff_S*(G_SE[i]+G_LS[i])) #Compute the minimum eigenvalue for each layer Eval[i] = min(np.real(np.linalg.eig(Lambda+G_mat)[0])) tkonst = -1.9/Eval #The global time constant will be guided by the fastest dynamics #of all the layers! return(min(tkonst)) else: #if there is only electron temperature, only those dynamics will be #considered, when time step for the E.E. loop is calculated. return(min(tkonst_E)) class source(object): def __init__(self): self.spaceprofile = 'TMM' self.timeprofile = 'Gaussian' self.fluence = 0 self.t0 = 0 self.FWHM = False self.loadData = False self.multipulse = False self.frequency = False self.num_of_pulses = False self.adjusted_grid = False self.dt0 = False self.extra_points = 200 self.theta_in = 0# 0 is perpendicular to surface/ pi/2 is grazing self.lambda_vac = False self.polarization = 'p' def getProperties(self): # to depict the properties of the object for i in (self.__dict__): name = str(i) value = str(self.__dict__[i]) print('{:<20}{:>10}'.format( name,value )) def __repr__(self): return('Source') def ref2delta(self,refindex,lambdavac): """ Use the refractive index and compute the optical penetration depth This is used for Lambert Beer´s absorption law. """ lambdavac_m = lambdavac*1e-9 #corp away the two layers of air and only consider target film layers refindex = refindex[1:-1] #If there is no imaginary part we avoid dividing over 0 for i in range(0,len(refindex)): if np.imag(refindex[i]) == 0: refindex[i] = refindex[i] + 1e-9j deltap = (4*np.pi/lambdavac_m*np.imag(refindex))**(-1) return(deltap) def Gaussian(self,xmg,tmg,lam,A,sigma2,x0,customtime = None): if not (self.fluence or self.FWHM): print('------------------------------------------------------------') print('Create a pulse with defining pulse properties. \n ' +\ '.fluence, .optical_penetration_depth, .FWHM') print('------------------------------------------------------------') if np.any(customtime) == None: #Create a source with respect to each lam of every layer. Use the init_G_source function Gauss = A*np.exp(-(tmg-self.t0)**2/(2*sigma2)) #Gaussian in time else: Gauss = A*customtime#custom in time Gauss *= lam*np.exp(-lam*(xmg-x0))#space profile: LB decay return(Gauss) def init_G_source(self,xflat,x0,t,opt_pen,N,func,customtime = None,scaling = 0): """ First an empty array 'sourceM' is created. Then we iterate over the different layers and call func --> Gaussian. This will create a 2D (time, space) Gaussian source grid with different lam[i]. For each layer, the problem is receted, i.e. we have new Amplitude, new scope of the x-grid, new lambda. Only sigma stays the same. """ lam = 1/opt_pen #create space for solution of source in matrix form xmg, tmg = np.meshgrid(xflat,t) sourceM = np.zeros(np.shape(xmg)) if np.any(customtime) == None: #Convert the input, fluence & FWHM given in 'source' class to Amplitude and sigma sigma2 = self.FWHM**2/(2*np.log(2)) A = self.fluence/np.sqrt(2*np.pi*sigma2) #loop over all layers and change lambda, Amplitude and scope of the x-grid startL = 0; endL = N-1 for i in range(2,len(opt_pen)+2): sourceM[:,startL:endL] = func(xmg[:,startL:endL],tmg[:,startL:endL],lam[i-2],A,sigma2,x0[i-2]) #at the end of each loop: the intensity of the end of previous layer #will be the starting intensity of the next layer A = A*np.exp(-(x0[i-1]-x0[i-2])*lam[i-2]) startL = endL; endL = i*N-i+1 else:#In the case of LB in space and custom in time if (self.timeprofile== "RepGaussian") or (self.timeprofile=="repGaussian"): sigma2 = self.FWHM**2/(2*np.log(2)) A = self.fluence/np.sqrt(2*np.pi*sigma2) startL = 0; endL = N-1 for i in range(2,len(opt_pen)+2): sourceM[:,startL:endL] = func(xmg[:,startL:endL],tmg[:,startL:endL],lam[i-2],A,sigma2,x0[i-2],customtime[:,startL:endL]) #at the end of each loop: the intensity of the end of previous layer #will be the starting intensity of the next layer A = A*np.exp(-(x0[i-1]-x0[i-2])*lam[i-2]) startL = endL; endL = i*N-i+1 if (self.timeprofile== "custom") or (self.timeprofile == "Custom"): A = scaling#calculated in the custom() function sigma2 = 0#It is not needed startL = 0; endL = N-1 for i in range(2,len(opt_pen)+2): sourceM[:,startL:endL] = func(xmg[:,startL:endL],tmg[:,startL:endL],lam[i-2],A,sigma2,x0[i-2],customtime[:,startL:endL]) #at the end of each loop: the intensity of the end of previous layer #will be the starting intensity of the next layer A = A*np.exp(-(x0[i-1]-x0[i-2])*lam[i-2]) startL = endL; endL = i*N-i+1 return(sourceM) #mytime is the timegrid of the simulation #time, amplitude are the timegrids of the inputdata collected from the lab def custom(self,mytime,myspace,ttime,amplitude,opt_pen): lam = 1/opt_pen #Mapping the obtained data to the simulation time grid via interpolation ampl1D = np.interp(mytime,ttime,amplitude**2) #Compute the right amplitude. using the area under the curve integr = np.trapz(ampl1D,mytime,np.diff(mytime)) #scling factore to get the amplitude right scaling = self.fluence/integr xmg,tmg = np.meshgrid(myspace,mytime) ampltime= np.interp(tmg,ttime,amplitude**2) #ampltime *= scaling ampl2D = ampltime*lam*np.exp(-lam*xmg) return(ampl2D,ampltime,scaling) def fresnel(self,theta_in,n_in,n_out,pol): n_in = complex(n_in); n_out = complex(n_out) theta_out = np.arcsin(n_in*np.sin(theta_in)/n_out) if pol == 's': rs = (n_in*np.cos(theta_in) - n_out*np.cos(theta_out))/\ (n_in*np.cos(theta_in) + n_out*np.cos(theta_out)) ts = 2*n_in*np.cos(theta_in)/(n_in*np.cos(theta_in)+n_out*np.cos(theta_out)) return(theta_out,rs,ts) if pol == 'p': rp = (n_out*np.cos(theta_in)-n_in*np.cos(theta_out))/\ (n_out*np.cos(theta_in)+n_in*np.cos(theta_out)) tp = 2* n_in*np.cos(theta_in)/(n_out*np.cos(theta_in)+n_in*np.cos(theta_out)) return(theta_out,rp,tp) def TM(self,theta_in,lambda0,n_vec,d_vec,pol): #create complex arrays for variables theta = np.zeros(len(n_vec), dtype = complex); theta[0] = theta_in phi = np.zeros(len(n_vec),dtype = complex) rn = np.zeros(len(n_vec)-1, dtype = complex) tn = np.zeros_like(rn,dtype = complex) M_n = np.zeros((len(n_vec),2,2), dtype = complex) M = np.eye(2,dtype = complex) for i in range(len(n_vec)-1): # to obtian all angels/rn/tn for each layer [theta[i+1],rn[i],tn[i]] = self.fresnel(theta[i],n_vec[i],n_vec[i+1],pol) #M = M0*M1*M2*M4*.... for k in range(1,len(n_vec)-1):#loop over all interfaces except 1st phi[k] = 2*np.pi*n_vec[k]*np.cos(theta[k])*d_vec[k]/lambda0 Tn = np.array([[np.exp(-1j*phi[k]),0],[0,np.exp(1j*phi[k])]],dtype = complex)/tn[k] Pn = np.array([[1,rn[k]],[rn[k],1]],dtype = complex) M_n[k] = np.dot(Tn,Pn) M = np.dot(M,M_n[k]) #compute for the first interface: trans0 = np.array([[1,rn[0]],[rn[0],1]],dtype= complex)/tn[0] M = np.dot(trans0,M) #Complex transmission/reflection amplitude t = 1/M[0,0] r = M[1,0]/M[0,0] #Fraction of power transmitted if pol == 's': #s-polarized T = np.abs(t)**2*np.real(n_vec[-1]*np.cos(theta[-1]))/\ np.real(n_vec[0]*np.cos(theta[0])) elif pol == 'p': #p-polarized T = np.abs(t)**2*np.real(n_vec[-1]*np.cos(np.conj(theta[-1])))/\ np.real(n_vec[0]*np.cos(np.conj(theta[0]))) #Fraction of power reflected R = np.abs(r)**2 A = 1.-T-R return(M,M_n,t,r,T,R,A,theta) def layerAmpl(self,theta_in,lambda0,n_vec,d_vec,pol): """ After r & t have been calculated and all the respective matrices M_n for each layer are known, we can go 'backwards', i.e. from the last to the first layer, and compute all the amplituedes for the forward v_n and backward w_n traveling wave. -> [v_n,w_n].T = M_n @ [v_{n+1},w_{n+1}].T """ [M,M_n,t,r,T,R,A,theta] = self.TM(theta_in,lambda0,n_vec,d_vec,pol) vw_list = np.zeros((len(n_vec),2),dtype = complex) vw =np.array([[t],[0]]) vw_list[-1,:] = vw.T for i in range(len(n_vec)-2,0,-1): vw = np.dot(M_n[i],vw) vw_list[i,:] = vw.T return(vw_list,theta) def absorption(self,theta_in,lambda0,n_vec,d_vec,pol,points): #reload the forward and backward wave coefficients for every layer [vw_n,theta] = self.layerAmpl(theta_in,lambda0,n_vec,d_vec,pol) total_len = np.sum(d_vec[1:-1]) pointcount = 0 #a is an array where the normalized absorbtion for the entire grid is stored a = [] for i in range(1,len(n_vec)-1): kz = 2*np.pi*n_vec[i]*np.cos(theta[i])/lambda0 #How many points, out of the total 'points' does each layer get, with respect to #the length of the layer if i == 1: points_per_layer = int(np.floor(points/(len(d_vec)-2)))+1 if len(n_vec)-1 == 2: #only one layer is considered points_per_layer = points else: #All other layers get 11 points because of interface cutting points_per_layer = int(np.floor(points/(len(d_vec)-2))) #for every layer, the space grid is reset. I.e. every layer starts at 0 layer = np.linspace(0,d_vec[i],points_per_layer) v = vw_n[i,0]; w = vw_n[i,1];#complex wave amplitudes for every layer Ef = v * np.exp(1j * kz * layer)#forward traveling wave Eb = w * np.exp(-1j * kz *layer)#backward traveling wave if pol == 'p':#p-polarized a_layer = (n_vec[i]*np.conj(np.cos(theta[i]))*(kz*np.abs(Ef-Eb)**2-np.conj(kz)*np.abs(Ef+Eb)**2)).imag /\ (n_vec[0]*np.conj(np.cos(theta[0]))).real if pol == 's': a_layer = (np.abs(Ef+Eb)**2 *np.imag(kz*n_vec[i]*np.cos(theta[i])))/\ (np.real(n_vec[0]*np.cos(theta[0]))) #for every layer calculate the absorbtion grid and append it to the total a = np.append(a,a_layer) #to get the right amount of points considered in the grid, since we round. pointcount += points_per_layer a = np.real(a) grid = np.linspace(0,total_len,pointcount) return(a,grid) def createTMM(self,nvec,xflat,t,x0,timeprof = False,scaling=0): #The distances and hence x0 have to be given in units of nm! xmg, tmg = np.meshgrid(xflat,t) #Adding infinite layer at the beginning and at the end of the distance vector d_vec = np.diff(x0); d_vec = np.insert(d_vec,(0,len(d_vec)),np.inf) #Calculating the 1D absorption profile according to TMM [absorption,grid] = self.absorption(self.theta_in,self.lambda_vac,nvec,d_vec,self.polarization,np.shape(xflat)[0]) #Evaluate the Gaussian time profile if np.any(timeprof) == False: #Convert the input, fluence & FWHM given in 'source' class to Amplitude and sigma sigma2 = self.FWHM**2/(2*np.log(2)) A = self.fluence/np.sqrt(2*np.pi*sigma2) sourceM = A*np.exp(-(tmg-self.t0)**2/(2*sigma2)) if (self.timeprofile == "repGaussian") or (self.timeprofile == "RepGaussian"): sigma2 = self.FWHM**2/(2*np.log(2)) A = self.fluence/np.sqrt(2*np.pi*sigma2) sourceM = A*timeprof if (self.timeprofile == "Custom") or (self.timeprofile == "custom"): #Check the custom function in this class! It is already multiplied with a scaling factor sourceM = scaling*timeprof #Multiplying it with the absorption profile to obtain 2D (space-time source map) sourceM *= absorption/1e-9 return(sourceM) class visual(object): def __init__(self,*args): self.data = False typecheck =
np.array([])
numpy.array
""" A collection of utility functions not yet categorized. """ import os from collections import OrderedDict import json import numpy as np import scipy import sympy import qutip import theano import theano.tensor as T def complexrandn(dim1, dim2): """Generates an array of pseudorandom, normally chosen, complex numbers.""" big_matrix = np.random.randn(dim1, dim2, 2) return big_matrix[:, :, 0] + 1.j * big_matrix[:, :, 1] def isvector(arr): """Check if a numpy array is a vector-like object.""" # we are not using `arr.ndims` in case the input is a qutip object ndims = len(arr.shape) return (ndims == 1 or (ndims == 2 and (arr.shape[0] == 1 or arr.shape[1] == 1))) def _complex2bigreal_vector(vector): """Convert a complex vector to big real notation.""" vector = vector.reshape((vector.shape[0], 1)) return np.concatenate((np.real(vector), np.imag(vector)), axis=0) def _complex2bigreal_matrix(matrix): """Convert complex matrix to big real notation.""" first_row = np.concatenate((np.real(matrix), -np.imag(matrix)), axis=1) second_row = np.concatenate((np.imag(matrix), np.real(matrix)), axis=1) return np.concatenate((first_row, second_row), axis=0) def complex2bigreal(arr): """Convert from complex to big real representation. To avoid the problem of theano and similar libraries not properly supporting the gradient of complex objects, we map every complex nxn matrix U to a bigger 2nx2n real matrix defined as [[Ur, -Ui], [Ui, Ur]], where Ur and Ui are the real and imaginary parts of U. The input argument can be either a qutip object representing a ket, or a qutip object representing an operator (a density matrix). """ # if qutip object, extract numpy arrays from it if isinstance(arr, qutip.Qobj): arr = arr.data.toarray() arr = np.asarray(arr).astype(np.complex) # if `arr` is a vector (possibly of shape Nx1 or 1xN) if isvector(arr): outarr = _complex2bigreal_vector(arr) else: outarr = _complex2bigreal_matrix(arr) return outarr def bigreal2complex(arr): """Convert numpy array back into regular complex form. NOTE: The output will always be a numpy.ndarray of complex dtype """ arr = np.asarray(arr) if isvector(arr): # `arr` may be a Nx1 or 1xN dimensional vector, or a flat vector try: arr_len = arr.shape[0] * arr.shape[1] except IndexError: arr_len = len(arr) # make `arr` an Nx1 vector arr = arr.reshape((arr_len, 1)) real_part = arr[:arr.shape[0] // 2] imag_part = arr[arr.shape[0] // 2:] return real_part + 1j * imag_part else: real_part = arr[:arr.shape[0] // 2, :arr.shape[1] // 2] imag_part = arr[arr.shape[0] // 2:, :arr.shape[1] // 2] return real_part + 1j * imag_part def bigreal2qobj(arr): """Convert big real vector into corresponding qutip object.""" if arr.ndim == 1 or arr.shape[0] != arr.shape[1]: arr = bigreal2complex(arr) num_qubits = scipy.log2(arr.shape[0]).astype(int) return qutip.Qobj(arr, dims=[[2] * num_qubits, [1] * num_qubits]) elif arr.shape[0] == arr.shape[1]: arr = bigreal2complex(arr) num_qubits = scipy.log2(arr.shape[0]).astype(int) return qutip.Qobj(arr, dims=[[2] * num_qubits] * 2) else: raise ValueError('Not sure what to do with this here.') def theano_matrix_grad(matrix, parameters): """Compute the gradient of every elementr of a theano matrix.""" shape = matrix.shape num_elements = shape[0] * shape[1] flattened_matrix = T.flatten(matrix) def grad_element(i, arr): return T.grad(arr[i], parameters) flattened_grads, _ = theano.scan(fn=grad_element, sequences=T.arange(num_elements), non_sequences=flattened_matrix) try: # if `parameters` is a theano vector, flattened_grads results to # be a matrix of shape Nx2 num_gradients = parameters.shape[0] newshape = (num_gradients, shape[0], shape[1]) return T.reshape(flattened_grads.T, newshape) except AttributeError: # if `parameters` is a list of theano scalars, flattened_grads # becomes a list of the corresponding gradients if isinstance(flattened_grads, (list, tuple)): return [T.reshape(grads_mat, shape) for grads_mat in flattened_grads] else: return T.reshape(flattened_grads, shape) def get_sigmas_index(indices): """Takes a tuple and gives back a length-16 array with a single 1. Parameters ---------- indices: a tuple of two integers, each one between 0 and 3. Examples -------- >>> get_sigmas_index((1, 0)) array([ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> get_sigmas_index((0, 3)) array([ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) """ all_zeros = np.zeros(4 * 4) all_zeros[indices[0] * 4 + indices[1]] = 1. return all_zeros def generate_ss_terms(): """Returns the tensor products of every combination of two sigmas. Generates a list in which each element is the tensor product of two Pauli matrices, multiplied by the imaginary unit 1j and converted into big real form using complex2bigreal. The matrices are sorted in natural order, so that for example the 3th element is the tensor product of sigma_0 and sigma_3 and the 4th element is the tensor product of sigma_1 and sigma_0. """ sigmas = [qutip.qeye(2), qutip.sigmax(), qutip.sigmay(), qutip.sigmaz()] sigma_pairs = [] for idx1 in range(4): for idx2 in range(4): term = qutip.tensor(sigmas[idx1], sigmas[idx2]) term = 1j * term.data.toarray() sigma_pairs.append(complex2bigreal(term)) return np.asarray(sigma_pairs) def pauli_matrix(n_modes, position, which_pauli): sigmas = [qutip.qeye(2), qutip.sigmax(), qutip.sigmay(), qutip.sigmaz()] indices = [0] * n_modes indices[position] = which_pauli return qutip.tensor(*tuple(sigmas[index] for index in indices)) def pauli_product(*pauli_indices): n_modes = len(pauli_indices) partial_product = qutip.tensor(*([qutip.qeye(2)] * n_modes)) for pos, pauli_index in enumerate(pauli_indices): partial_product *= pauli_matrix(n_modes, pos, pauli_index) return partial_product def chars2pair(chars): out_pair = [] for idx in range(len(chars)): if chars[idx] == 'x': out_pair.append(1) elif chars[idx] == 'y': out_pair.append(2) elif chars[idx] == 'z': out_pair.append(3) else: raise ValueError('chars must contain 2 characters, each of' 'which equal to either x, y, or z') return tuple(out_pair) def dm2ket(dm): """Converts density matrix to ket form, assuming it to be pure.""" outket = dm[:, 0] / dm[0, 0] * np.sqrt(np.abs(dm[0, 0])) try: return qutip.Qobj(outket, dims=[dm.dims[0], [1] * len(dm.dims[0])]) except AttributeError: # `dm` could be a simple matrix, not a qutip.Qobj object. In # this case just return the numpy array return outket def ket_normalize(ket): return ket * np.exp(-1j * np.angle(ket[0, 0])) def detensorize(bigm): """Assumes second matrix is 2x2.""" out =
np.zeros((bigm.shape[0] * bigm.shape[1], 2, 2), dtype=np.complex)
numpy.zeros
import pytest from numpy import array, append, empty, zeros, int64 from numpy.testing import assert_allclose from touvlo.supv.nn_clsf import (feed_forward, init_nn_weights, back_propagation, cost_function, grad, unravel_params, h) class TestNeuralNetwork: @pytest.fixture(scope="module") def omicron(self): return array([[0.35, 0.78, 0.13, 0.90], [0.27, 0.66, 0.62, 0.20], [0.64, 0.36, 0.76, 0.33], [0.00, 0.70, 0.78, 0.85], [0.55, 0.72, 0.24, 0.43]]) @pytest.fixture(scope="module") def omega(self): return array([[0.86, 0.77, 0.63, 0.35, 0.99, 0.11], [0.84, 0.74, 0.11, 0.30, 0.49, 0.14], [0.04, 0.31, 0.17, 0.65, 0.28, 0.99]]) @pytest.fixture(scope="module") def kappa(self): return array([[0.98, 0.6, 0.18, 0.47, 0.07, 1], [0.9, 0.38, 0.38, 0.36, 0.52, 0.85], [0.57, 0.23, 0.41, 0.45, 0.04, 0.24], [0.46, 0.94, 0.03, 0.06, 0.19, 0.63], [0.87, 0.4, 0.85, 0.07, 0.81, 0.76]]) @pytest.fixture(scope="module") def upsilon(self): return array([[0.9, 0.95, 0.05, 0.05, 0.65, 0.11], [0.84, 0.57, 0.17, 0.62, 0.06, 0.36], [0.36, 0.6, 0.54, 0.49, 0.3, 0.03], [0.11, 0.49, 0.71, 0.43, 0.01, 0.92], [0.02, 0.01, 0.94, 0.35, 0.69, 0.88]]) @pytest.fixture(scope="module") def zeta(self): return array([[0.91672, 0.85806, 0.81484], [0.89115, 0.83518, 0.78010], [0.93880, 0.88464, 0.84335]]) @pytest.fixture(scope="module") def iota(self): return array([[0.017, 0.422, 0.739, -0.121, 0.479], [-0.346, 0.018, 0.37, -0.65, 0.148], [0.781, 0.484, 0.9405, 0.5385, 0.7915]]) def test_cost_function1(self, omicron, omega): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) n_hidden_layers = 1 num_labels = 3 _lambda = 0 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega assert_allclose(cost_function(X, y, theta, _lambda, num_labels, n_hidden_layers), 4.2549, rtol=0, atol=0.001, equal_nan=False) def test_cost_function2(self, omicron, omega): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) n_hidden_layers = 1 num_labels = 3 _lambda = 1 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega assert_allclose(cost_function(X, y, theta, _lambda, num_labels, n_hidden_layers), 5.9738, rtol=0, atol=0.001, equal_nan=False) def test_cost_function3(self, omicron, omega): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) n_hidden_layers = 1 num_labels = 3 _lambda = 10 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega assert_allclose(cost_function(X, y, theta, _lambda, num_labels, n_hidden_layers), 21.443, rtol=0, atol=0.001, equal_nan=False) def test_cost_function4(self, omicron, omega, kappa, upsilon): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) n_hidden_layers = 3 num_labels = 3 _lambda = 0 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = kappa theta[2] = upsilon theta[3] = omega assert_allclose(cost_function(X, y, theta, _lambda, num_labels, n_hidden_layers), 5.6617, rtol=0, atol=0.001, equal_nan=False) def test_cost_function5(self, omicron, omega, kappa, upsilon): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) n_hidden_layers = 3 num_labels = 3 _lambda = 1 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = kappa theta[2] = upsilon theta[3] = omega assert_allclose(cost_function(X, y, theta, _lambda, num_labels, n_hidden_layers), 9.7443, rtol=0, atol=0.001, equal_nan=False) def test_cost_function6(self, omicron, omega, kappa, upsilon): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) n_hidden_layers = 3 num_labels = 3 _lambda = 10 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = kappa theta[2] = upsilon theta[3] = omega assert_allclose(cost_function(X, y, theta, _lambda, num_labels, n_hidden_layers), 46.488, rtol=0, atol=0.001, equal_nan=False) def test_feed_forward1(self, omicron, omega): n_hidden_layers = 1 X = array([[1, 0.10, 0.30, -0.50]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega z, a = feed_forward(X, theta, n_hidden_layers) assert_allclose(a[0], array([[1, 0.10, 0.30, -0.50]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[1], array([[1, 0.50425, 0.60396, 0.67678, 0.46979, 0.61751]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[2], array([[0.91672, 0.85806, 0.81484]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[1], array([[0.017, 0.422, 0.739, -0.121, 0.479]]), rtol=0, atol=0.001, equal_nan=False) def test_feed_forward2(self, omicron, omega): n_hidden_layers = 1 X = array([[1, -0.2, 0, -0.6]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega z, a = feed_forward(X, theta, n_hidden_layers) assert_allclose(a[0], array([[1, -0.2, 0, -0.6]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[1], array([[1, 0.41435, 0.5045, 0.59146, 0.34299, 0.53693]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[2], array([[0.89115, 0.83518, 0.78010]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[1], array([[-0.346, 0.018, 0.37, -0.65, 0.148]]), rtol=0, atol=0.001, equal_nan=False) def test_feed_forward3(self, omicron, omega): n_hidden_layers = 1 X = array([[1, 0, 0.2, 0.45]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega z, a = feed_forward(X, theta, n_hidden_layers) assert_allclose(a[0], array([[1, 0, 0.2, 0.45]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[1], array([[1, 0.6859, 0.61869, 0.7192, 0.63146, 0.68815]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[2], array([[0.9388, 0.88464, 0.84335]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[1], array([[0.781, 0.484, 0.9405, 0.5385, 0.7915]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[2], array([[2.73048142, 2.03713759, 1.68336723]]), rtol=0, atol=0.001, equal_nan=False) def test_feed_forward4(self, omicron, omega, kappa, upsilon): n_hidden_layers = 3 X = array([[1, 0, 0.2, 0.45]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = kappa theta[2] = upsilon theta[3] = omega z, a = feed_forward(X, theta, n_hidden_layers) assert_allclose(a[0], array([[1, 0, 0.2, 0.45]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[1], array([[1, 0.6859, 0.61869, 0.7192, 0.63146, 0.68815]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[2], array([[1, 0.92912, 0.92877, 0.8169, 0.84812, 0.9402]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[3], array([[1, 0.92585, 0.91859, 0.89109, 0.92052, 0.93092]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(a[4], array([[0.97003, 0.92236, 0.90394]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[1], array([[0.781, 0.484, 0.9405, 0.5385, 0.7915]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[2], array([[2.5733, 2.5679, 1.4955, 1.72, 2.7551]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[3], array([[2.5247, 2.4233, 2.1019, 2.4494, 2.6008]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(z[4], array([[3.4772, 2.4749, 2.2417]]), rtol=0, atol=0.001, equal_nan=False) def test_hypothesis1(self, omicron, omega): n_hidden_layers = 1 X = array([[1, 0.10, 0.30, -0.50]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega _h = h(X, theta, n_hidden_layers) assert_allclose(_h, array([[0.91672, 0.85806, 0.81484]]), rtol=0, atol=0.001, equal_nan=False) def test_hypothesis2(self, omicron, omega): n_hidden_layers = 1 X = array([[1, -0.2, 0, -0.6]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega _h = h(X, theta, n_hidden_layers) assert_allclose(_h, array([[0.89115, 0.83518, 0.78010]]), rtol=0, atol=0.001, equal_nan=False) def test_hypothesis3(self, omicron, omega): n_hidden_layers = 1 X = array([[1, 0, 0.2, 0.45]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega _h = h(X, theta, n_hidden_layers) assert_allclose(_h, array([[0.9388, 0.88464, 0.84335]]), rtol=0, atol=0.001, equal_nan=False) def test_hypothesis4(self, omicron, omega, kappa, upsilon): n_hidden_layers = 3 X = array([[1, 0, 0.2, 0.45]]) theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = kappa theta[2] = upsilon theta[3] = omega _h = h(X, theta, n_hidden_layers) assert_allclose(_h, array([[0.97003, 0.92236, 0.90394]]), rtol=0, atol=0.001, equal_nan=False) def test_grad(self, omicron, omega): X = array([[0.10, 0.30, -0.50], [-0.20, 0, -0.60], [0, 0.20, 0.45]]) y = array([[0], [2], [1]]) _lambda = 0 num_labels = 3 n_hidden_layers = 1 input_layer_size = 3 hidden_layer_size = 5 theta = empty((n_hidden_layers + 1), dtype=object) theta[0] = omicron theta[1] = omega nn_params = append(theta[0].flatten(), theta[1].flatten()) for i in range(2, len(theta)): nn_params = append(nn_params, theta[i].flatten()) theta_grad = grad(X, y, nn_params, _lambda, input_layer_size, hidden_layer_size, num_labels, n_hidden_layers) theta_grad = unravel_params(theta_grad, input_layer_size, hidden_layer_size, num_labels, n_hidden_layers) assert_allclose(theta_grad[0], array([[0.2331544, -0.0131348, 0.0334961, -0.0652458], [0.1224948, -0.0088256, 0.0156733, -0.0124328], [0.1457463, -0.0012316, 0.0279176, -0.0223957], [0.2254230, -0.0137763, 0.0313083, -0.0402217], [0.1379756, 0.0072703, 0.0348654, -0.0063072]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(theta_grad[1], array([ [0.58222, 0.32373, 0.32671, 0.38197, 0.28645, 0.35770], [0.52596, 0.23320, 0.28940, 0.33057, 0.20557, 0.29964], [0.47943, 0.29941, 0.30099, 0.34265, 0.27997, 0.32182]]), rtol=0, atol=0.001, equal_nan=False) def test_back_prop_1(self, omega, zeta, iota): num_labels = 3 y = array([[0]]) n_hidden_layers = 1 L = n_hidden_layers + 1 # last layer theta = empty((n_hidden_layers + 1), dtype=object) a = empty((n_hidden_layers + 2), dtype=object) z = empty((n_hidden_layers + 2), dtype=object) theta[1] = omega a[2] = zeta z[1] = iota delta = back_propagation(y, theta, a, z, num_labels, n_hidden_layers) assert_allclose(delta[L - 1], array([[0.205846, 0.043161, 0.165794, 0.141024, 0.216743], [0.188319, 0.038974, 0.173862, 0.117159, 0.218117], [0.187209, 0.047684, 0.159976, 0.141731, 0.204305]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(delta[L], array([[-0.083275, 0.858059, 0.814840], [-0.108852, 0.835179, 0.780102], [-0.061198, 0.884641, 0.843350]]), rtol=0, atol=0.001, equal_nan=False) def test_back_prop_2(self, omega, zeta, iota): num_labels = 3 y = array([[2]]) n_hidden_layers = 1 L = n_hidden_layers + 1 # last layer theta = empty((n_hidden_layers + 1), dtype=object) a = empty((n_hidden_layers + 2), dtype=object) z = empty((n_hidden_layers + 2), dtype=object) theta[1] = omega a[2] = zeta z[1] = iota delta = back_propagation(y, theta, a, z, num_labels, n_hidden_layers) assert_allclose(delta[L - 1], array([[0.32083735, 0.15318951, 0.10016938, 0.31787549, 0.00889491], [0.29994511, 0.15396509, 0.10137133, 0.27715581, -0.00068307], [0.28631281, 0.15620337, 0.09939030, 0.30696021, 0.01545845]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(delta[L], array([[0.91672, 0.85806, -0.18516], [0.89115, 0.83518, -0.21990], [0.93880, 0.88464, -0.15665]]), rtol=0, atol=0.001, equal_nan=False) def test_back_prop_3(self, omega, zeta, iota): num_labels = 3 y = array([[1]]) n_hidden_layers = 1 L = n_hidden_layers + 1 # last layer theta = empty((n_hidden_layers + 1), dtype=object) a = empty((n_hidden_layers + 2), dtype=object) z = empty((n_hidden_layers + 2), dtype=object) theta[1] = omega a[2] = zeta z[1] = iota delta = back_propagation(y, theta, a, z, num_labels, n_hidden_layers) assert_allclose(delta[L - 1], array([[0.21335, 0.16754, 0.17673, 0.26557, 0.20966], [0.19560, 0.16896, 0.18594, 0.22983, 0.21066], [0.19367, 0.17036, 0.17007, 0.25809, 0.19787]]), rtol=0, atol=0.001, equal_nan=False) assert_allclose(delta[L], array([[0.91672, -0.14194, 0.81484], [0.89115, -0.16482, 0.78010], [0.93880, -0.11536, 0.84335]]), rtol=0, atol=0.001, equal_nan=False) def test_back_prop_4(self, omicron, omega, kappa, upsilon): num_labels = 3 y = array([[1]]) n_hidden_layers = 3 L = n_hidden_layers + 1 # last layer theta = empty((n_hidden_layers + 1), dtype=object) z = empty((n_hidden_layers + 2), dtype=object) a = empty((n_hidden_layers + 2), dtype=object) theta[0] = omicron theta[1] = kappa theta[2] = upsilon theta[3] = omega a[0] = array([[1, 0, 0.2, 0.45]]) a[1] = array([[1, 0.6859, 0.61869, 0.7192, 0.63146, 0.68815]]) a[2] = array([[1, 0.92912, 0.92877, 0.8169, 0.84812, 0.9402]]) a[3] = array([[1, 0.92585, 0.91859, 0.89109, 0.92052, 0.93092]]) a[4] = array([[0.97003, 0.92236, 0.90394]]) z[1] = array([[0.781, 0.484, 0.9405, 0.5385, 0.7915]]) z[2] = array([[2.5733, 2.5679, 1.4955, 1.72, 2.7551]]) z[3] =
array([[2.5247, 2.4233, 2.1019, 2.4494, 2.6008]])
numpy.array
import numpy as np from torchvision import datasets, transforms import random from torch.utils.data import Subset, RandomSampler def randomSplit(M, N, minV, maxV): res = [] while N > 0: l = max(minV, M - (N-1)*maxV) r = min(maxV, M - (N-1)*minV) num = random.randint(l, r) N -= 1 M -= num res.append(num) print(res) return res def uniform(N, k): """Uniform distribution of 'N' items into 'k' groups.""" dist = [] avg = N / k # Make distribution for i in range(k): dist.append(int((i + 1) * avg) - int(i * avg)) # Return shuffled distribution random.shuffle(dist) return dist def normal(N, k): """Normal distribution of 'N' items into 'k' groups.""" dist = [] # Make distribution for i in range(k): x = i - (k - 1) / 2 dist.append(int(N * (np.exp(-x) / (np.exp(-x) + 1)**2))) # Add remainders remainder = N - sum(dist) dist = list(np.add(dist, uniform(remainder, k))) # Return non-shuffled distribution return dist def data_organize(idxs_labels, labels): data_dict = {} labels = np.unique(labels, axis=0) for one in labels: data_dict[one] = [] for i in range(len(idxs_labels[1, :])): data_dict[idxs_labels[1, i]].append(idxs_labels[0, i]) return data_dict def data_partition(training_data, number_of_clients, non_iid_level): idxs = np.arange(len(training_data)) if type(training_data.targets).__name__ == 'list': labels = np.array(training_data.targets) else: # type is Tensor labels = training_data.train_labels.numpy() # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] labels = np.unique(labels, axis=0) idxs = idxs_labels[0, :] data_dict = data_organize(idxs_labels, labels) if non_iid_level == 0: num_items = int(len(training_data)/number_of_clients) data_partition_profile, all_idxs = {}, [i for i in range(len(training_data))] for i in range(number_of_clients): data_partition_profile[i] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - data_partition_profile[i]) else: client_dict = {} pref_dist = uniform(number_of_clients, len(labels)) print(pref_dist) data_dist = randomSplit(len(training_data), number_of_clients, 500, 7000) data_dist.sort(reverse=True) print(data_dist) client_list = list(range(number_of_clients)) for i in range(len(pref_dist)): while pref_dist[i]>0: client = np.random.choice(client_list, 1, replace=False)[0] client_dict[client] = labels[i] pref_dist[i] -= 1 client_list = list(set(client_list) - set([client])) # for 6 users # client_dict = {0: [1, 2], 1: [3, 4], 2: [5, 6], 3: [3, 4], 4: [1, 2], 5: [5, 6]} # for 7 users # client_dict = {0: [1, 2], 1: [3, 4], 2: [5, 6], 3: [1, 2], 4: [5, 6], 5: [3, 4], 6: [7, 8]} # for 15 users client_dict = {0: [1, 2], 1: [3, 4], 2: [1, 2], 3: [5, 6], 4: [1, 2], 5: [7, 8], 6: [3, 4], 7: [9, 0], 8: [5, 6], 9: [1, 2], 10: [9, 0], 11: [5, 6], 12: [3, 4], 13: [7, 8], 14: [3, 4]} data_partition_profile, all_idxs = {}, [i for i in range(len(training_data))] for i in range(number_of_clients): pref_number1 = int(round(data_dist[i] * non_iid_level * 0.5)) pref_number2 = int(round(data_dist[i] * non_iid_level * 0.5)) if pref_number1 > len(data_dict[client_dict[i][0]]): pref_number1 = len(data_dict[client_dict[i][0]]) if pref_number2 > len(data_dict[client_dict[i][1]]): pref_number2 = len(data_dict[client_dict[i][1]]) data_dist[i] -= pref_number1 data_dist[i] -= pref_number2 tep1 = set(np.random.choice(data_dict[client_dict[i][0]], pref_number1, replace=False)) tep2 = set(np.random.choice(data_dict[client_dict[i][1]], pref_number2, replace=False)) data_partition_profile[i] = tep1.union(tep2) all_idxs = list(set(all_idxs) - data_partition_profile[i]) data_dict[client_dict[i][0]] = list(set(data_dict[client_dict[i][0]]) - tep1) data_dict[client_dict[i][1]] = list(set(data_dict[client_dict[i][1]]) - tep2) for i in range(number_of_clients): rest_idxs = set(
np.random.choice(all_idxs, data_dist[i], replace=False)
numpy.random.choice
import tqdm import numpy as np from numpy import sin, cos import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation class DoublePendulum: def __init__(self, m1=1.0, m2=1.0, l1=1.0, l2=1.0, g=9.81): self.m1 = m1 self.m2 = m2 self.l1 = l1 self.l2 = l2 self.g = g def q_prime(self, q, r, u, v, t): val = u return val def r_prime(self, q, r, u, v, t): val = v return val def u_prime(self, q, r, u, v, t): m1, m2, l1, l2, g = self.m1, self.m2, self.l1, self.l2, self.g num = 2 * g * m1 * sin(q) + g * m2 * sin(q) + g * m2 * sin(q - 2 * r) num += l1 * m2 * u ** 2 * sin(2 * (q - r)) + 2 * l2 * m2 * v ** 2 * sin(q - r) den = -2 * l1 * (m1 - m2 * cos(q - r) ** 2 + m2) val = num / den return val def v_prime(self, q, r, u, v, t): m1, m2, l1, l2, g = self.m1, self.m2, self.l1, self.l2, self.g num = -(m1 + m2) * (g * sin(r) - l1 * u ** 2 * sin(q - r)) num += (cos(q - r)) * (g * m1 * sin(q) + g * m2 * sin(q) + l2 * m2 * v ** 2 * sin(q - r)) den = l2 * (m1 - m2 * cos(q - r) ** 2 + m2) val = num / den return val def derivatives(self, q, r, u, v, t): args = (q, r, u, v, t) qruv_prime = np.array([ self.q_prime(*args), self.r_prime(*args), self.u_prime(*args), self.v_prime(*args), ]) return qruv_prime def x1(self, q, r): val = +self.l1 * sin(q) return val def y1(self, q, r): val = -self.l1 *
cos(q)
numpy.cos
# -*- coding: utf-8 -*- # @Organization : insightface.ai # @Author : <NAME> # @Time : 2021-05-04 # @Function : from __future__ import division import datetime import numpy as np import onnx import onnxruntime import os import os.path as osp import cv2 import sys def softmax(z): assert len(z.shape) == 2 s = np.max(z, axis=1) s = s[:, np.newaxis] # necessary step to do broadcasting e_x = np.exp(z - s) div = np.sum(e_x, axis=1) div = div[:, np.newaxis] # dito return e_x / div def distance2bbox(points, distance, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). max_shape (tuple): Shape of the image. Returns: Tensor: Decoded bboxes. """ x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] if max_shape is not None: x1 = x1.clamp(min=0, max=max_shape[1]) y1 = y1.clamp(min=0, max=max_shape[0]) x2 = x2.clamp(min=0, max=max_shape[1]) y2 = y2.clamp(min=0, max=max_shape[0]) return np.stack([x1, y1, x2, y2], axis=-1) def distance2kps(points, distance, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). max_shape (tuple): Shape of the image. Returns: Tensor: Decoded bboxes. """ preds = [] for i in range(0, distance.shape[1], 2): px = points[:, i%2] + distance[:, i] py = points[:, i%2+1] + distance[:, i+1] if max_shape is not None: px = px.clamp(min=0, max=max_shape[1]) py = py.clamp(min=0, max=max_shape[0]) preds.append(px) preds.append(py) return np.stack(preds, axis=-1) class SCRFD: def __init__(self, model_file=None, session=None): import onnxruntime self.model_file = model_file self.session = session self.taskname = 'detection' if self.session is None: assert self.model_file is not None assert osp.exists(self.model_file) self.session = onnxruntime.InferenceSession(self.model_file, None) self.center_cache = {} self.nms_thresh = 0.4 self.det_thresh = 0.5 self._init_vars() def _init_vars(self): input_cfg = self.session.get_inputs()[0] input_shape = input_cfg.shape #print(input_shape) if isinstance(input_shape[2], str): self.input_size = None else: self.input_size = tuple(input_shape[2:4][::-1]) #print('image_size:', self.image_size) input_name = input_cfg.name self.input_shape = input_shape outputs = self.session.get_outputs() output_names = [] for o in outputs: output_names.append(o.name) self.input_name = input_name self.output_names = output_names self.input_mean = 127.5 self.input_std = 128.0 #print(self.output_names) #assert len(outputs)==10 or len(outputs)==15 self.use_kps = False self._anchor_ratio = 1.0 self._num_anchors = 1 if len(outputs)==6: self.fmc = 3 self._feat_stride_fpn = [8, 16, 32] self._num_anchors = 2 elif len(outputs)==9: self.fmc = 3 self._feat_stride_fpn = [8, 16, 32] self._num_anchors = 2 self.use_kps = True elif len(outputs)==10: self.fmc = 5 self._feat_stride_fpn = [8, 16, 32, 64, 128] self._num_anchors = 1 elif len(outputs)==15: self.fmc = 5 self._feat_stride_fpn = [8, 16, 32, 64, 128] self._num_anchors = 1 self.use_kps = True def prepare(self, ctx_id, **kwargs): if ctx_id<0: self.session.set_providers(['CPUExecutionProvider']) nms_thresh = kwargs.get('nms_thresh', None) if nms_thresh is not None: self.nms_thresh = nms_thresh det_thresh = kwargs.get('det_thresh', None) if det_thresh is not None: self.det_thresh = det_thresh input_size = kwargs.get('input_size', None) if input_size is not None: if self.input_size is not None: print('warning: det_size is already set in scrfd model, ignore') else: self.input_size = input_size def forward(self, img, threshold): scores_list = [] bboxes_list = [] kpss_list = [] input_size = tuple(img.shape[0:2][::-1]) blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) net_outs = self.session.run(self.output_names, {self.input_name : blob}) input_height = blob.shape[2] input_width = blob.shape[3] fmc = self.fmc for idx, stride in enumerate(self._feat_stride_fpn): scores = net_outs[idx] bbox_preds = net_outs[idx+fmc] bbox_preds = bbox_preds * stride if self.use_kps: kps_preds = net_outs[idx+fmc*2] * stride height = input_height // stride width = input_width // stride K = height * width key = (height, width, stride) if key in self.center_cache: anchor_centers = self.center_cache[key] else: #solution-1, c style: #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) #for i in range(height): # anchor_centers[i, :, 1] = i #for i in range(width): # anchor_centers[:, i, 0] = i #solution-2: #ax = np.arange(width, dtype=np.float32) #ay = np.arange(height, dtype=np.float32) #xv, yv = np.meshgrid(np.arange(width), np.arange(height)) #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) #solution-3: anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) #print(anchor_centers.shape) anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) if self._num_anchors>1: anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) ) if len(self.center_cache)<100: self.center_cache[key] = anchor_centers pos_inds = np.where(scores>=threshold)[0] bboxes = distance2bbox(anchor_centers, bbox_preds) pos_scores = scores[pos_inds] pos_bboxes = bboxes[pos_inds] scores_list.append(pos_scores) bboxes_list.append(pos_bboxes) if self.use_kps: kpss = distance2kps(anchor_centers, kps_preds) #kpss = kps_preds kpss = kpss.reshape( (kpss.shape[0], -1, 2) ) pos_kpss = kpss[pos_inds] kpss_list.append(pos_kpss) return scores_list, bboxes_list, kpss_list def detect(self, img, input_size = None, max_num=0, metric='default'): assert input_size is not None or self.input_size is not None input_size = self.input_size if input_size is None else input_size im_ratio = float(img.shape[0]) / img.shape[1] model_ratio = float(input_size[1]) / input_size[0] if im_ratio>model_ratio: new_height = input_size[1] new_width = int(new_height / im_ratio) else: new_width = input_size[0] new_height = int(new_width * im_ratio) det_scale = float(new_height) / img.shape[0] resized_img = cv2.resize(img, (new_width, new_height)) det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 ) det_img[:new_height, :new_width, :] = resized_img scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh) scores = np.vstack(scores_list) scores_ravel = scores.ravel() order = scores_ravel.argsort()[::-1] bboxes =
np.vstack(bboxes_list)
numpy.vstack
import numpy as np from scipy.stats import norm from itertools import product from wzk.numpy2 import shape_wrapper, axis_wrapper, insert from wzk.dicts_lists_tuples import atleast_tuple # a/b = (a+b) / a -> a / b = golden_ratio = (np.sqrt(5.0) + 1) / 2 def number2digits(num): return [int(x) for x in str(num)] def sin_cos(x): # https: // github.com / numpy / numpy / issues / 2626 return np.sin(x), np.cos(x) # Normalize def normalize_01(x, low=None, high=None, axis=None): if low is None: low = np.min(x, axis=axis, keepdims=True) if high is None: high = np.max(x, axis=axis, keepdims=True) return (x-low) / (high-low) def denormalize_01(x, low, high): return x * (high - low) + low def normalize_11(x, low, high): """ Normalize [low, high] to [-1, 1] low and high should either be scalars or have the same dimension as the last dimension of x """ return 2 * (x - low) / (high - low) - 1 def denormalize_11(x, low, high): """ Denormalize [-1, 1] to [low, high] low and high should either be scalars or have the same dimension as the last dimension of x """ return (x + 1) * (high - low)/2 + low def euclidean_norm(arr, axis=-1, squared=False): if squared: return (arr**2).sum(axis=axis) else: return np.sqrt((arr**2).sum(axis=axis)) def discretize(x, step): if np.isinf(step) or np.isnan(step): return x difference = x % step # distance to the next discrete value if isinstance(x, (int, float)): if difference > step / 2: return x - (difference - step) else: return x - difference else: difference[difference > step / 2] -= step # round correctly return x - difference def d_linalg_norm__d_x(x, return_norm=False): """ Last dimension is normalized. Calculate Jacobian xn = x * (x^2 + y^2 + z^2)^(-1/2) d xn / d x = (y^2 + z^2) * (x^2 + y^2 + z^2)^(-3/2) d yn / d y = (x^2 + y^2) * (x^2 + y^2 + z^2)^(-3/2) d zn / d z= (x^2 + z^2) * (x^2 + y^2 + z^2)^(-3/2) Pattern of numerator X123 0X23 01X3 012X d xn / d y = -(x*y) * (x^2 + y^2 + z^2)^(-3/2) d xn / d z = -(x*z) * (x^2 + y^2 + z^2)^(-3/2) jac = [[dxn/dx, dxn/dy, dxn/dz] [dyn/dx, dyn/dy, dyn/dz] [dzn/dx, dzn/dy, dzn/dz] """ n = x.shape[-1] off_diag_idx = [[j for j in range(n) if i != j] for i in range(n)] jac = np.empty(x.shape + x.shape[-1:]) x_squared = x**2 # Diagonal jac[:, np.arange(n), np.arange(n)] = x_squared[..., off_diag_idx].sum(axis=-1) # Off-Diagonal jac[:, np.arange(n)[:, np.newaxis], off_diag_idx] = -x[..., np.newaxis] * x[:, off_diag_idx] jac *= (x_squared.sum(axis=-1, keepdims=True)**(-3/2))[..., np.newaxis] if return_norm: x /= np.sqrt(x_squared.sum(axis=-1, keepdims=True)) return x, jac else: return jac # Smooth def smooth_step(x): """https://en.wikipedia.org/wiki/Smoothstep Interpolation which has zero 1st-order derivatives at x = 0 and x = 1, ~ cubic Hermite interpolation with clamping. """ res = -2 * x**3 + 3 * x**2 return np.clip(res, 0, 1) def smoother_step(x): """https://en.wikipedia.org/wiki/Smoothstep+ <NAME> suggests an improved version of the smooth step function, which has zero 1st- and 2nd-order derivatives at x = 0 and x = 1""" res = +6 * x**5 - 15 * x**4 + 10 * x**3 return np.clip(res, 0, 1) # Divisors def divisors(n, with_1_and_n=False): """ https://stackoverflow.com/questions/171765/what-is-the-best-way-to-get-all-the-divisors-of-a-number#171784 """ # Get factors and their counts factors = {} nn = n i = 2 while i*i <= nn: while nn % i == 0: if i not in factors: factors[i] = 0 factors[i] += 1 nn //= i i += 1 if nn > 1: factors[nn] = 1 primes = list(factors.keys()) # Generates factors from primes[k:] subset def generate(k): if k == len(primes): yield 1 else: rest = generate(k+1) prime = primes[k] for _factor in rest: prime_to_i = 1 # Prime_to_i iterates prime**o values, o being all possible exponents for _ in range(factors[prime] + 1): yield _factor * prime_to_i prime_to_i *= prime if with_1_and_n: return list(generate(0)) else: return list(generate(0))[1:-1] def get_mean_divisor_pair(n): """ Calculate the 'mean' pair of divisors. The two divisors should be as close as possible to the sqrt(n). The smaller divisor is the first value of the output pair 10 -> 2, 5 20 -> 4, 5 24 -> 4, 6 25 -> 5, 5 30 -> 5, 6 40 -> 5, 8 """ assert isinstance(n, int) assert n >= 1 div = divisors(n) if n >= 3 and len(div) == 0: # Prime number -> make at least even return 1, n div.sort() # if numbers of divisors is odd -> n = o * o : power number if len(div) % 2 == 1: idx_center = len(div) // 2 return div[idx_center], div[idx_center] # else get the two numbers at the center else: idx_center_plus1 = len(div) // 2 idx_center_minus1 = idx_center_plus1 - 1 return div[idx_center_minus1], div[idx_center_plus1] def get_divisor_safe(numerator, denominator): divisor = numerator / denominator divisor_int = int(divisor) assert divisor_int == divisor return divisor_int def doubling_factor(small, big): return np.log2(big / small) def modulo(x, low, high): return (x - low) % (high - low) + low def angle2minuspi_pluspi(x): return modulo(x=x, low=-np.pi, high=+np.pi) # modulo is faster for larger arrays, for small ones they are similar but arctan is faster in this region # -> as always you have to make an trade-off # return np.arctan2(np.sin(x), np.cos(x)) # Derivative def numeric_derivative(*, fun, x, eps=1e-5, axis=-1, **kwargs_fun): """ Use central difference scheme to calculate the numeric derivative of fun at point x. Axis indicates the dimensions of the free variables. The result has the shape f(x).shape + (x.shape)[axis] """ axis = axis_wrapper(axis=axis, n_dim=x.ndim) fun_shape = np.shape(fun(x, **kwargs_fun)) var_shape = atleast_tuple(np.array(np.shape(x))[axis]) derv = np.empty(fun_shape + var_shape) eps_mat = np.empty_like(x, dtype=float) def update_eps_mat(_idx): eps_mat[:] = 0 insert(eps_mat, val=eps, idx=_idx, axis=axis) for idx in product(*(range(s) for s in var_shape)): update_eps_mat(_idx=idx) derv[(Ellipsis,) + idx] = (fun(x + eps_mat, **kwargs_fun) - fun(x - eps_mat, **kwargs_fun)) / (2 * eps) return derv # Statistics for distribution of number of obstacles def p_normal_skew(x, loc=0.0, scale=1.0, a=0.0): t = (x - loc) / scale return 2 * norm.pdf(t) * norm.cdf(a*t) def normal_skew_int(loc=0.0, scale=1.0, a=0.0, low=None, high=None, size=1): if low is None: low = loc-10*scale if high is None: high = loc+10*scale+1 p_max = p_normal_skew(x=loc, loc=loc, scale=scale, a=a) samples = np.zeros(np.prod(size)) for i in range(int(np.prod(size))): while True: x = np.random.randint(low=low, high=high) if np.random.rand() <= p_normal_skew(x, loc=loc, scale=scale, a=a) / p_max: samples[i] = x break samples = samples.astype(int) if size == 1: samples = samples[0] return samples def random_uniform_ndim(*, low, high, shape=None): n_dim = np.shape(low)[0] x = np.zeros(shape_wrapper(shape) + (n_dim,)) for i in range(n_dim): x[..., i] = np.random.uniform(low=low[i], high=high[i], size=shape) return x def get_stats(x, axis=None, return_array=False): stats = {'mean': np.mean(x, axis=axis), 'std': np.std(x, axis=axis), 'median': np.median(x, axis=axis), 'min': np.min(x, axis=axis), 'max': np.max(x, axis=axis)} if return_array: return np.array([stats['mean'], stats['std'], stats['median'], stats['min'], stats['max']]) return stats # Magic def magic(n): """ Equivalent of the MATLAB function: M = magic(n) returns an n-by-n matrix constructed from the integers 1 through n2 with equal row and column sums. https://stackoverflow.com/questions/47834140/numpy-equivalent-of-matlabs-magic """ n = int(n) if n < 1: raise ValueError('Size must be at least 1') if n == 1: return np.array([[1]]) elif n == 2: return np.array([[1, 3], [4, 2]]) elif n % 2 == 1: p = np.arange(1, n+1) return n*np.mod(p[:, None] + p - (n+3)//2, n) + np.mod(p[:, None] + 2*p-2, n) + 1 elif n % 4 == 0: j = np.mod(np.arange(1, n+1), 4) // 2 k = j[:, None] == j m = np.arange(1, n*n+1, n)[:, None] + np.arange(n) m[k] = n*n + 1 - m[k] else: p = n//2 m = magic(p) m = np.block([[m, m+2*p*p], [m+3*p*p, m+p*p]]) i = np.arange(p) k = (n-2)//4 j = np.concatenate((np.arange(k), np.arange(n-k+1, n))) m[np.ix_(np.concatenate((i, i+p)), j)] = m[np.ix_(
np.concatenate((i+p, i))
numpy.concatenate
import lmfit import numpy as np from numpy.linalg import inv import scipy as sp import itertools import matplotlib as mpl from collections import OrderedDict, defaultdict from pycqed.utilities import timer as tm_mod from sklearn.mixture import GaussianMixture as GM from sklearn.tree import DecisionTreeClassifier as DTC from pycqed.analysis import fitting_models as fit_mods from pycqed.analysis import analysis_toolbox as a_tools import pycqed.analysis_v2.base_analysis as ba import pycqed.analysis_v2.readout_analysis as roa from pycqed.analysis_v2.readout_analysis import \ Singleshot_Readout_Analysis_Qutrit as SSROQutrit import pycqed.analysis_v2.tomography_qudev as tomo from pycqed.analysis.tools.plotting import SI_val_to_msg_str from copy import deepcopy from pycqed.measurement.sweep_points import SweepPoints from pycqed.measurement.calibration.calibration_points import CalibrationPoints import matplotlib.pyplot as plt from pycqed.analysis.three_state_rotation import predict_proba_avg_ro import logging from pycqed.utilities import math from pycqed.utilities.general import find_symmetry_index import pycqed.measurement.waveform_control.segment as seg_mod import datetime as dt log = logging.getLogger(__name__) try: import qutip as qtp except ImportError as e: log.warning('Could not import qutip, tomography code will not work') class AveragedTimedomainAnalysis(ba.BaseDataAnalysis): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.single_timestamp = True self.params_dict = { 'value_names': 'value_names', 'measured_values': 'measured_values', 'measurementstring': 'measurementstring', 'exp_metadata': 'exp_metadata'} self.numeric_params = [] if kwargs.get('auto', True): self.run_analysis() def process_data(self): self.metadata = self.raw_data_dict.get('exp_metadata', {}) if self.metadata is None: self.metadata = {} cal_points = self.metadata.get('cal_points', None) cal_points = self.options_dict.get('cal_points', cal_points) cal_points_list = roa.convert_channel_names_to_index( cal_points, len(self.raw_data_dict['measured_values'][0]), self.raw_data_dict['value_names']) self.proc_data_dict['cal_points_list'] = cal_points_list measured_values = self.raw_data_dict['measured_values'] cal_idxs = self._find_calibration_indices() scales = [np.std(x[cal_idxs]) for x in measured_values] observable_vectors = np.zeros((len(cal_points_list), len(measured_values))) observable_vector_stds = np.ones_like(observable_vectors) for i, observable in enumerate(cal_points_list): for ch_idx, seg_idxs in enumerate(observable): x = measured_values[ch_idx][seg_idxs] / scales[ch_idx] if len(x) > 0: observable_vectors[i][ch_idx] = np.mean(x) if len(x) > 1: observable_vector_stds[i][ch_idx] = np.std(x) Omtx = (observable_vectors[1:] - observable_vectors[0]).T d0 = observable_vectors[0] corr_values = np.zeros( (len(cal_points_list) - 1, len(measured_values[0]))) for i in range(len(measured_values[0])): d = np.array([x[i] / scale for x, scale in zip(measured_values, scales)]) corr_values[:, i] = inv(Omtx.T.dot(Omtx)).dot(Omtx.T).dot(d - d0) self.proc_data_dict['corr_values'] = corr_values def measurement_operators_and_results(self): """ Converts the calibration points to measurement operators. Assumes that the calibration points are ordered the same as the basis states for the tomography calculation (e.g. for two qubits |gg>, |ge>, |eg>, |ee>). Also assumes that each calibration in the passed cal_points uses different segments. Returns: A tuple of the measured values with outthe calibration points; the measurement operators corresponding to each channel; and the expected covariation matrix between the operators. """ d = len(self.proc_data_dict['cal_points_list']) cal_point_idxs = [set() for _ in range(d)] for i, idxs_lists in enumerate(self.proc_data_dict['cal_points_list']): for idxs in idxs_lists: cal_point_idxs[i].update(idxs) cal_point_idxs = [sorted(list(idxs)) for idxs in cal_point_idxs] cal_point_idxs = np.array(cal_point_idxs) raw_data = self.raw_data_dict['measured_values'] means = [None] * d residuals = [list() for _ in raw_data] for i, cal_point_idx in enumerate(cal_point_idxs): means[i] = [np.mean(ch_data[cal_point_idx]) for ch_data in raw_data] for j, ch_residuals in enumerate(residuals): ch_residuals += list(raw_data[j][cal_point_idx] - means[i][j]) means = np.array(means) residuals = np.array(residuals) Fs = [np.diag(ms) for ms in means.T] Omega = residuals.dot(residuals.T) / len(residuals.T) data_idxs = np.setdiff1d(np.arange(len(raw_data[0])), cal_point_idxs.flatten()) data = np.array([ch_data[data_idxs] for ch_data in raw_data]) return data, Fs, Omega def _find_calibration_indices(self): cal_indices = set() cal_points = self.options_dict['cal_points'] nr_segments = self.raw_data_dict['measured_values'].shape[-1] for observable in cal_points: if isinstance(observable, (list, np.ndarray)): for idxs in observable: cal_indices.update({idx % nr_segments for idx in idxs}) else: # assume dictionaries for idxs in observable.values(): cal_indices.update({idx % nr_segments for idx in idxs}) return list(cal_indices) def all_cal_points(d, nr_ch, reps=1): """ Generates a list of calibration points for a Hilbert space of dimension d, with nr_ch channels and reps reprtitions of each calibration point. """ return [[list(range(-reps*i, -reps*(i-1)))]*nr_ch for i in range(d, 0, -1)] class Single_Qubit_TimeDomainAnalysis(ba.BaseDataAnalysis): def process_data(self): """ This takes care of rotating and normalizing the data if required. this should work for several input types. - I/Q values (2 quadratures + cal points) - weight functions (1 quadrature + cal points) - counts (no cal points) There are several options possible to specify the normalization using the options dict. cal_points (tuple) of indices of the calibrati on points zero_coord, one_coord """ cal_points = self.options_dict.get('cal_points', None) zero_coord = self.options_dict.get('zero_coord', None) one_coord = self.options_dict.get('one_coord', None) if cal_points is None: # default for all standard Timedomain experiments cal_points = [list(range(-4, -2)), list(range(-2, 0))] if len(self.raw_data_dict['measured_values']) == 1: # if only one weight function is used rotation is not required self.proc_data_dict['corr_data'] = a_tools.rotate_and_normalize_data_1ch( self.raw_data_dict['measured_values'][0], cal_zero_points=cal_points[0], cal_one_points=cal_points[1]) else: self.proc_data_dict['corr_data'], zero_coord, one_coord = \ a_tools.rotate_and_normalize_data( data=self.raw_data_dict['measured_values'][0:2], zero_coord=zero_coord, one_coord=one_coord, cal_zero_points=cal_points[0], cal_one_points=cal_points[1]) # This should be added to the hdf5 datafile but cannot because of the # way that the "new" analysis works. # self.add_dataset_to_analysisgroup('Corrected data', # self.proc_data_dict['corr_data']) class MultiQubit_TimeDomain_Analysis(ba.BaseDataAnalysis): """ Base class for multi-qubit time-domain analyses. Parameters that can be specified in the options dict: - rotation_type: type of rotation to be done on the raw data. Types of rotations supported by this class: - 'cal_states' (default, no need to specify): rotation based on CalibrationPoints for 1D and TwoD data. Supports 2 and 3 cal states per qubit - 'fixed_cal_points' (only for TwoD, with 2 cal states): does PCA on the columns corresponding to the highest cal state to find the indices of that cal state in the columns, then uses those to get the data points for the other cal state. Does rotation using the mean of the data points corresponding to the two cal states as the zero and one coordinates to rotate the data. - 'PCA': ignores cal points and does pca; in the case of TwoD data it does PCA row by row - 'column_PCA': cal points and does pca; in the case of TwoD data it does PCA column by column - 'global_PCA' (only for TwoD): does PCA on the whole 2D array - main_sp (default: None): dict with keys qb_name used to specify which sweep parameter should be used as axis label in plot - functionality to split measurements with tiled sweep_points: - split_params (default: None): list of strings with sweep parameters names expected to be found in SweepPoints. Groups data by these parameters and stores it in proc_data_dict['split_data_dict']. - select_split (default: None): dict with keys qb_names and values a tuple (sweep_param_name, value) or (sweep_param_name, index). Stored in self.measurement_strings which specify the plot title. The selected parameter must also be part of the split_params for that qubit. """ def __init__(self, qb_names: list=None, label: str='', t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True, params_dict=None, numeric_params=None, **kwargs): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting, **kwargs) self.qb_names = qb_names self.params_dict = params_dict if self.params_dict is None: self.params_dict = {} self.numeric_params = numeric_params self.measurement_strings = {} if self.numeric_params is None: self.numeric_params = [] if not hasattr(self, "job"): self.create_job(qb_names=qb_names, t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, do_fitting=do_fitting, options_dict=options_dict, extract_only=extract_only, params_dict=params_dict, numeric_params=numeric_params, **kwargs) if auto: self.run_analysis() def extract_data(self): super().extract_data() if self.qb_names is None: self.qb_names = self.get_param_value('ro_qubits') if self.qb_names is None: raise ValueError('Provide the "qb_names."') self.measurement_strings = { qbn: self.raw_data_dict['measurementstring'] for qbn in self.qb_names} self.channel_map = self.get_param_value('meas_obj_value_names_map') if self.channel_map is None: # if the new name meas_obj_value_names_map is not found, try with # the old name channel_map self.channel_map = self.get_param_value('channel_map') if self.channel_map is None: value_names = self.raw_data_dict['value_names'] if np.ndim(value_names) > 0: value_names = value_names if 'w' in value_names[0]: self.channel_map = a_tools.get_qb_channel_map_from_hdf( self.qb_names, value_names=value_names, file_path=self.raw_data_dict['folder']) else: self.channel_map = {} for qbn in self.qb_names: self.channel_map[qbn] = value_names if len(self.channel_map) == 0: raise ValueError('No qubit RO channels have been found.') # creates self.sp self.get_sweep_points() def get_sweep_points(self): self.sp = self.get_param_value('sweep_points') if self.sp is not None: self.sp = SweepPoints(self.sp) def create_sweep_points_dict(self): sweep_points_dict = self.get_param_value('sweep_points_dict') hard_sweep_params = self.get_param_value('hard_sweep_params') if self.sp is not None: self.mospm = self.get_param_value('meas_obj_sweep_points_map') main_sp = self.get_param_value('main_sp') if self.mospm is None: raise ValueError('When providing "sweep_points", ' '"meas_obj_sweep_points_map" has to be ' 'provided in addition.') if main_sp is not None: self.proc_data_dict['sweep_points_dict'] = {} for qbn, p in main_sp.items(): dim = self.sp.find_parameter(p) if dim == 1: log.warning(f"main_sp is only implemented for sweep " f"dimension 0, but {p} is in dimension 1.") self.proc_data_dict['sweep_points_dict'][qbn] = \ {'sweep_points': self.sp.get_sweep_params_property( 'values', dim, p)} else: self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': self.sp.get_sweep_params_property( 'values', 0, self.mospm[qbn])[0]} for qbn in self.qb_names} elif sweep_points_dict is not None: # assumed to be of the form {qbn1: swpts_array1, qbn2: swpts_array2} self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': sweep_points_dict[qbn]} for qbn in self.qb_names} elif hard_sweep_params is not None: self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': list(hard_sweep_params.values())[0][ 'values']} for qbn in self.qb_names} else: self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': self.data_filter( self.raw_data_dict['hard_sweep_points'])} for qbn in self.qb_names} def create_sweep_points_2D_dict(self): soft_sweep_params = self.get_param_value('soft_sweep_params') if self.sp is not None: self.proc_data_dict['sweep_points_2D_dict'] = OrderedDict() for qbn in self.qb_names: self.proc_data_dict['sweep_points_2D_dict'][qbn] = \ OrderedDict() for pn in self.mospm[qbn]: if pn in self.sp[1]: self.proc_data_dict['sweep_points_2D_dict'][qbn][ pn] = self.sp[1][pn][0] elif soft_sweep_params is not None: self.proc_data_dict['sweep_points_2D_dict'] = \ {qbn: {pn: soft_sweep_params[pn]['values'] for pn in soft_sweep_params} for qbn in self.qb_names} else: if len(self.raw_data_dict['soft_sweep_points'].shape) == 1: self.proc_data_dict['sweep_points_2D_dict'] = \ {qbn: {self.raw_data_dict['sweep_parameter_names'][1]: self.raw_data_dict['soft_sweep_points']} for qbn in self.qb_names} else: sspn = self.raw_data_dict['sweep_parameter_names'][1:] self.proc_data_dict['sweep_points_2D_dict'] = \ {qbn: {sspn[i]: self.raw_data_dict['soft_sweep_points'][i] for i in range(len(sspn))} for qbn in self.qb_names} if self.get_param_value('percentage_done', 100) < 100: # This indicated an interrupted measurement. # Remove non-measured sweep points in that case. # raw_data_dict['soft_sweep_points'] is obtained in # BaseDataAnalysis.add_measured_data(), and its length should # always correspond to the actual number of measured soft sweep # points. ssl = len(self.raw_data_dict['soft_sweep_points']) for sps in self.proc_data_dict['sweep_points_2D_dict'].values(): for k, v in sps.items(): sps[k] = v[:ssl] def create_meas_results_per_qb(self): measured_RO_channels = list(self.raw_data_dict['measured_data']) meas_results_per_qb_raw = {} meas_results_per_qb = {} for qb_name, RO_channels in self.channel_map.items(): meas_results_per_qb_raw[qb_name] = {} meas_results_per_qb[qb_name] = {} if isinstance(RO_channels, str): meas_ROs_per_qb = [RO_ch for RO_ch in measured_RO_channels if RO_channels in RO_ch] for meas_RO in meas_ROs_per_qb: meas_results_per_qb_raw[qb_name][meas_RO] = \ self.raw_data_dict[ 'measured_data'][meas_RO] meas_results_per_qb[qb_name][meas_RO] = \ self.data_filter( meas_results_per_qb_raw[qb_name][meas_RO]) elif isinstance(RO_channels, list): for qb_RO_ch in RO_channels: meas_ROs_per_qb = [RO_ch for RO_ch in measured_RO_channels if qb_RO_ch in RO_ch] for meas_RO in meas_ROs_per_qb: meas_results_per_qb_raw[qb_name][meas_RO] = \ self.raw_data_dict[ 'measured_data'][meas_RO] meas_results_per_qb[qb_name][meas_RO] = \ self.data_filter( meas_results_per_qb_raw[qb_name][meas_RO]) else: raise TypeError('The RO channels for {} must either be a list ' 'or a string.'.format(qb_name)) self.proc_data_dict['meas_results_per_qb_raw'] = \ meas_results_per_qb_raw self.proc_data_dict['meas_results_per_qb'] = \ meas_results_per_qb def process_data(self): super().process_data() self.data_filter = self.get_param_value('data_filter') prep_params = self.get_param_value('preparation_params', default_value=dict()) self.data_with_reset = False if self.data_filter is None: if 'active' in prep_params.get('preparation_type', 'wait'): reset_reps = prep_params.get('reset_reps', 1) self.data_filter = lambda x: x[reset_reps::reset_reps+1] self.data_with_reset = True elif "preselection" in prep_params.get('preparation_type', 'wait'): self.data_filter = lambda x: x[1::2] # filter preselection RO if self.data_filter is None: self.data_filter = lambda x: x self.create_sweep_points_dict() self.create_meas_results_per_qb() # temporary fix for appending calibration points to x values but # without breaking sequences not yet using this interface. self.rotate = self.get_param_value('rotate', default_value=False) cal_points = self.get_param_value('cal_points') last_ge_pulses = self.get_param_value('last_ge_pulses', default_value=False) try: self.cp = CalibrationPoints.from_string(cal_points) # for now assuming the same for all qubits. self.cal_states_dict = self.cp.get_indices( self.qb_names, prep_params)[self.qb_names[0]] cal_states_rots = self.cp.get_rotations(last_ge_pulses, self.qb_names[0])[self.qb_names[0]] if self.rotate \ else None self.cal_states_rotations = self.get_param_value( 'cal_states_rotations', default_value=cal_states_rots) sweep_points_w_calpts = \ {qbn: {'sweep_points': self.cp.extend_sweep_points( self.proc_data_dict['sweep_points_dict'][qbn][ 'sweep_points'], qbn)} for qbn in self.qb_names} self.proc_data_dict['sweep_points_dict'] = sweep_points_w_calpts except TypeError as e: log.error(e) log.warning("Failed retrieving cal point objects or states. " "Please update measurement to provide cal point object " "in metadata. Trying to get them using the old way ...") self.cal_states_rotations = self.get_param_value( 'cal_states_rotations', default_value=None) \ if self.rotate else None self.cal_states_dict = self.get_param_value('cal_states_dict', default_value={}) if self.get_param_value('global_PCA') is not None: log.warning('Parameter "global_PCA" is deprecated. Please set ' 'rotation_type="global_PCA" instead.') self.rotation_type = self.get_param_value( 'rotation_type', default_value='cal_states' if self.rotate else 'no_rotation') # create projected_data_dict self.data_to_fit = deepcopy(self.get_param_value('data_to_fit')) if self.data_to_fit is None: # If we have cal points, but data_to_fit is not specified, # choose a reasonable default value. In cases with only two cal # points, this decides which projected plot is generated. (In # cases with three cal points, we will anyways get all three # projected plots.) if 'e' in self.cal_states_dict.keys(): self.data_to_fit = {qbn: 'pe' for qbn in self.qb_names} elif 'g' in self.cal_states_dict.keys(): self.data_to_fit = {qbn: 'pg' for qbn in self.qb_names} else: self.data_to_fit = {} # TODO: Steph 15.09.2020 # This is a hack to allow list inside data_to_fit. These lists are # currently only supported by MultiCZgate_CalibAnalysis for qbn in self.data_to_fit: if isinstance(self.data_to_fit[qbn], (list, tuple)): self.data_to_fit[qbn] = self.data_to_fit[qbn][0] if self.rotate or self.rotation_type == 'global_PCA': self.cal_states_analysis() else: # this assumes data obtained with classifier detector! # ie pg, pe, pf are expected to be in the value_names self.proc_data_dict['projected_data_dict'] = OrderedDict() for qbn, data_dict in self.proc_data_dict[ 'meas_results_per_qb'].items(): self.proc_data_dict['projected_data_dict'][qbn] = OrderedDict() for state_prob in ['pg', 'pe', 'pf']: self.proc_data_dict['projected_data_dict'][qbn].update( {state_prob: data for key, data in data_dict.items() if state_prob in key}) if self.cal_states_dict is None: self.cal_states_dict = {} self.num_cal_points = np.array(list( self.cal_states_dict.values())).flatten().size # correct probabilities given calibration matrix if self.get_param_value("correction_matrix") is not None: self.proc_data_dict['projected_data_dict_corrected'] = OrderedDict() for qbn, data_dict in self.proc_data_dict[ 'meas_results_per_qb'].items(): self.proc_data_dict['projected_data_dict'][qbn] = OrderedDict() probas_raw = np.asarray([data_dict[k] for k in data_dict for state_prob in ['pg', 'pe', 'pf'] if state_prob in k]) corr_mtx = self.get_param_value("correction_matrix")[qbn] probas_corrected = np.linalg.inv(corr_mtx).T @ probas_raw for state_prob in ['pg', 'pe', 'pf']: self.proc_data_dict['projected_data_dict_corrected'][qbn].update( {state_prob: data for key, data in zip(["pg", "pe", "pf"], probas_corrected)}) # get data_to_fit self.proc_data_dict['data_to_fit'] = OrderedDict() for qbn, prob_data in self.proc_data_dict[ 'projected_data_dict'].items(): if qbn in self.data_to_fit: self.proc_data_dict['data_to_fit'][qbn] = prob_data[ self.data_to_fit[qbn]] # create msmt_sweep_points, sweep_points, cal_points_sweep_points for qbn in self.qb_names: if self.num_cal_points > 0: self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] = \ self.proc_data_dict['sweep_points_dict'][qbn][ 'sweep_points'][:-self.num_cal_points] self.proc_data_dict['sweep_points_dict'][qbn][ 'cal_points_sweep_points'] = \ self.proc_data_dict['sweep_points_dict'][qbn][ 'sweep_points'][-self.num_cal_points::] else: self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] = self.proc_data_dict[ 'sweep_points_dict'][qbn]['sweep_points'] self.proc_data_dict['sweep_points_dict'][qbn][ 'cal_points_sweep_points'] = [] if self.options_dict.get('TwoD', False): self.create_sweep_points_2D_dict() # handle data splitting if needed self.split_data() def split_data(self): def unique(l): try: return np.unique(l, return_inverse=True) except Exception: h = [repr(a) for a in l] _, i, j = np.unique(h, return_index=True, return_inverse=True) return l[i], j split_params = self.get_param_value('split_params', []) if not len(split_params): return pdd = self.proc_data_dict pdd['split_data_dict'] = {} for qbn in self.qb_names: pdd['split_data_dict'][qbn] = {} for p in split_params: dim = self.sp.find_parameter(p) sv = self.sp.get_sweep_params_property( 'values', param_names=p, dimension=dim) usp, ind = unique(sv) if len(usp) <= 1: continue svs = [self.sp.subset(ind == i, dim) for i in range(len(usp))] [s.remove_sweep_parameter(p) for s in svs] sdd = {} pdd['split_data_dict'][qbn][p] = sdd for i in range(len(usp)): subset = (np.concatenate( [ind == i, [True] * len(pdd['sweep_points_dict'][qbn][ 'cal_points_sweep_points'])])) sdd[i] = {} sdd[i]['value'] = usp[i] sdd[i]['sweep_points'] = svs[i] d = pdd['sweep_points_dict'][qbn] if dim == 0: sdd[i]['sweep_points_dict'] = { 'sweep_points': d['sweep_points'][subset], 'msmt_sweep_points': d['msmt_sweep_points'][ind == i], 'cal_points_sweep_points': d['cal_points_sweep_points'], } sdd[i]['sweep_points_2D_dict'] = pdd[ 'sweep_points_2D_dict'][qbn] else: sdd[i]['sweep_points_dict'] = \ pdd['sweep_points_dict'][qbn] sdd[i]['sweep_points_2D_dict'] = { k: v[ind == i] for k, v in pdd[ 'sweep_points_2D_dict'][qbn].items()} for d in ['projected_data_dict', 'data_to_fit']: if isinstance(pdd[d][qbn], dict): if dim == 0: sdd[i][d] = {k: v[:, subset] for k, v in pdd[d][qbn].items()} else: sdd[i][d] = {k: v[ind == i, :] for k, v in pdd[d][qbn].items()} else: if dim == 0: sdd[i][d] = pdd[d][qbn][:, subset] else: sdd[i][d] = pdd[d][qbn][ind == i, :] select_split = self.get_param_value('select_split') if select_split is not None: for qbn, select in select_split.items(): p, v = select if p not in pdd['split_data_dict'][qbn]: log.warning(f"Split parameter {p} for {qbn} not " f"found. Ignoring this selection.") try: ind = [a['value'] for a in pdd['split_data_dict'][ qbn][p].values()].index(v) except ValueError: ind = v try: pdd['split_data_dict'][qbn][p][ind] except ValueError: log.warning(f"Value {v} for split parameter {p} " f"of {qbn} not found. Ignoring this " f"selection.") continue for d in ['projected_data_dict', 'data_to_fit', 'sweep_points_dict', 'sweep_points_2D_dict']: pdd[d][qbn] = pdd['split_data_dict'][qbn][p][ind][d] self.measurement_strings[qbn] += f' ({p}: {v})' def get_cal_data_points(self): self.num_cal_points = np.array(list( self.cal_states_dict.values())).flatten().size do_PCA = self.rotation_type == 'PCA' or \ self.rotation_type == 'column_PCA' self.cal_states_dict_for_rotation = OrderedDict() states = False cal_states_rotations = self.cal_states_rotations for key in cal_states_rotations.keys(): if key == 'g' or key == 'e' or key == 'f': states = True for qbn in self.qb_names: self.cal_states_dict_for_rotation[qbn] = OrderedDict() if states: cal_states_rot_qb = cal_states_rotations else: cal_states_rot_qb = cal_states_rotations[qbn] for i in range(len(cal_states_rot_qb)): cal_state = \ [k for k, idx in cal_states_rot_qb.items() if idx == i][0] self.cal_states_dict_for_rotation[qbn][cal_state] = \ None if do_PCA and self.num_cal_points != 3 else \ self.cal_states_dict[cal_state] def cal_states_analysis(self): self.get_cal_data_points() self.proc_data_dict['projected_data_dict'] = OrderedDict( {qbn: '' for qbn in self.qb_names}) for qbn in self.qb_names: cal_states_dict = self.cal_states_dict_for_rotation[qbn] if len(cal_states_dict) not in [0, 2, 3]: raise NotImplementedError('Calibration states rotation is ' 'currently only implemented for 0, ' '2, or 3 cal states per qubit.') data_mostly_g = self.get_param_value('data_mostly_g', default_value=True) if self.get_param_value('TwoD', default_value=False): if self.rotation_type == 'global_PCA': self.proc_data_dict['projected_data_dict'].update( self.global_pca_TwoD( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.data_to_fit, data_mostly_g=data_mostly_g)) elif len(cal_states_dict) == 3: self.proc_data_dict['projected_data_dict'].update( self.rotate_data_3_cal_states_TwoD( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation)) elif self.rotation_type == 'fixed_cal_points': rotated_data_dict, zero_coord, one_coord = \ self.rotate_data_TwoD_same_fixed_cal_idxs( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation, self.data_to_fit) self.proc_data_dict['projected_data_dict'].update( rotated_data_dict) self.proc_data_dict['rotation_coordinates'] = \ [zero_coord, one_coord] else: self.proc_data_dict['projected_data_dict'].update( self.rotate_data_TwoD( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation, self.data_to_fit, data_mostly_g=data_mostly_g, column_PCA=self.rotation_type == 'column_PCA')) else: if len(cal_states_dict) == 3: self.proc_data_dict['projected_data_dict'].update( self.rotate_data_3_cal_states( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation)) else: self.proc_data_dict['projected_data_dict'].update( self.rotate_data( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation, self.data_to_fit, data_mostly_g=data_mostly_g)) @staticmethod def rotate_data_3_cal_states(qb_name, meas_results_per_qb, channel_map, cal_states_dict): # FOR 3 CAL STATES rotated_data_dict = OrderedDict() meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict[qb_name] = OrderedDict() cal_pts_idxs = list(cal_states_dict[qb_name].values()) cal_points_data = np.zeros((len(cal_pts_idxs), 2)) if list(meas_res_dict) == channel_map[qb_name]: raw_data = np.array([v for v in meas_res_dict.values()]).T for i, cal_idx in enumerate(cal_pts_idxs): cal_points_data[i, :] = np.mean(raw_data[cal_idx, :], axis=0) rotated_data = predict_proba_avg_ro(raw_data, cal_points_data) for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'] = rotated_data[:, i] else: raise NotImplementedError('Calibration states rotation with 3 ' 'cal states only implemented for ' '2 readout channels per qubit.') return rotated_data_dict @staticmethod def rotate_data(qb_name, meas_results_per_qb, channel_map, cal_states_dict, data_to_fit, data_mostly_g=True): # ONLY WORKS FOR 2 CAL STATES meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict = OrderedDict() if len(cal_states_dict[qb_name]) == 0: cal_zero_points = None cal_one_points = None else: cal_zero_points = list(cal_states_dict[qb_name].values())[0] cal_one_points = list(cal_states_dict[qb_name].values())[1] rotated_data_dict[qb_name] = OrderedDict() if len(meas_res_dict) == 1: # one RO channel per qubit if cal_zero_points is None and cal_one_points is None: data = meas_res_dict[list(meas_res_dict)[0]] data = (data - np.min(data))/(np.max(data) - np.min(data)) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]] = data else: rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ a_tools.rotate_and_normalize_data_1ch( data=meas_res_dict[list(meas_res_dict)[0]], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) elif list(meas_res_dict) == channel_map[qb_name]: # two RO channels per qubit data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=np.array([v for v in meas_res_dict.values()]), cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]] = data else: # multiple readouts per qubit per channel if isinstance(channel_map[qb_name], str): qb_ro_ch0 = channel_map[qb_name] else: qb_ro_ch0 = channel_map[qb_name][0] ro_suffixes = [s[len(qb_ro_ch0)+1::] for s in list(meas_res_dict) if qb_ro_ch0 in s] for i, ro_suf in enumerate(ro_suffixes): if len(ro_suffixes) == len(meas_res_dict): # one RO ch per qubit if cal_zero_points is None and cal_one_points is None: data = meas_res_dict[list(meas_res_dict)[i]] data = (data - np.min(data))/(np.max(data) - np.min(data)) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf] = data else: rotated_data_dict[qb_name][ro_suf] = \ a_tools.rotate_and_normalize_data_1ch( data=meas_res_dict[list(meas_res_dict)[i]], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) else: # two RO ch per qubit keys = [k for k in meas_res_dict if ro_suf in k] correct_keys = [k for k in keys if k[len(qb_ro_ch0)+1::] == ro_suf] data_array = np.array([meas_res_dict[k] for k in correct_keys]) data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf] = data return rotated_data_dict @staticmethod def rotate_data_3_cal_states_TwoD(qb_name, meas_results_per_qb, channel_map, cal_states_dict): # FOR 3 CAL STATES meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict = OrderedDict() rotated_data_dict[qb_name] = OrderedDict() cal_pts_idxs = list(cal_states_dict[qb_name].values()) cal_points_data = np.zeros((len(cal_pts_idxs), 2)) if list(meas_res_dict) == channel_map[qb_name]: # two RO channels per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'] = np.zeros( raw_data_arr.shape) for col in range(raw_data_arr.shape[1]): raw_data = np.concatenate([ v[:, col].reshape(len(v[:, col]), 1) for v in meas_res_dict.values()], axis=1) for i, cal_idx in enumerate(cal_pts_idxs): cal_points_data[i, :] = np.mean(raw_data[cal_idx, :], axis=0) # rotated data is (raw_data_arr.shape[0], 3) rotated_data = predict_proba_avg_ro( raw_data, cal_points_data) for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'][:, col] = \ rotated_data[:, i] else: raise NotImplementedError('Calibration states rotation with 3 ' 'cal states only implemented for ' '2 readout channels per qubit.') # transpose data for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'] = \ rotated_data_dict[qb_name][f'p{state}'].T return rotated_data_dict @staticmethod def global_pca_TwoD(qb_name, meas_results_per_qb, channel_map, data_to_fit, data_mostly_g=True): meas_res_dict = meas_results_per_qb[qb_name] if list(meas_res_dict) != channel_map[qb_name]: raise NotImplementedError('Global PCA is only implemented ' 'for two-channel RO!') raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rotated_data_dict = OrderedDict({qb_name: OrderedDict()}) rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) data_array = np.array( [v.T.flatten() for v in meas_res_dict.values()]) rot_flat_data, _, _ = \ a_tools.rotate_and_normalize_data_IQ( data=data_array) data = np.reshape(rot_flat_data, raw_data_arr.T.shape) data = a_tools.set_majority_sign(data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]] = data return rotated_data_dict @staticmethod def rotate_data_TwoD(qb_name, meas_results_per_qb, channel_map, cal_states_dict, data_to_fit, column_PCA=False, data_mostly_g=True): meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict = OrderedDict() if len(cal_states_dict[qb_name]) == 0: cal_zero_points = None cal_one_points = None else: cal_zero_points = list(cal_states_dict[qb_name].values())[0] cal_one_points = list(cal_states_dict[qb_name].values())[1] rotated_data_dict[qb_name] = OrderedDict() if len(meas_res_dict) == 1: # one RO channel per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) if column_PCA: for row in range(raw_data_arr.shape[0]): data = a_tools.rotate_and_normalize_data_1ch( data=raw_data_arr[row, :], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]][ :, row] = data else: for col in range(raw_data_arr.shape[1]): data = a_tools.rotate_and_normalize_data_1ch( data=raw_data_arr[:, col], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]][col] = data elif list(meas_res_dict) == channel_map[qb_name]: # two RO channels per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) if column_PCA: for row in range(raw_data_arr.shape[0]): data_array = np.array( [v[row, :] for v in meas_res_dict.values()]) data, _, _ = \ a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]][ :, row] = data else: for col in range(raw_data_arr.shape[1]): data_array = np.array( [v[:, col] for v in meas_res_dict.values()]) data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ data_to_fit[qb_name]][col] = data else: # multiple readouts per qubit per channel if isinstance(channel_map[qb_name], str): qb_ro_ch0 = channel_map[qb_name] else: qb_ro_ch0 = channel_map[qb_name][0] ro_suffixes = [s[len(qb_ro_ch0)+1::] for s in list(meas_res_dict) if qb_ro_ch0 in s] for i, ro_suf in enumerate(ro_suffixes): if len(ro_suffixes) == len(meas_res_dict): # one RO ch per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[i]] rotated_data_dict[qb_name][ro_suf] = \ deepcopy(raw_data_arr.transpose()) for col in range(raw_data_arr.shape[1]): data = a_tools.rotate_and_normalize_data_1ch( data=raw_data_arr[:, col], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf][col] = data else: # two RO ch per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[i]] rotated_data_dict[qb_name][ro_suf] = \ deepcopy(raw_data_arr.transpose()) for col in range(raw_data_arr.shape[1]): data_array = np.array( [v[:, col] for k, v in meas_res_dict.items() if ro_suf in k]) data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf][col] = data return rotated_data_dict @staticmethod def rotate_data_TwoD_same_fixed_cal_idxs(qb_name, meas_results_per_qb, channel_map, cal_states_dict, data_to_fit): meas_res_dict = meas_results_per_qb[qb_name] if list(meas_res_dict) != channel_map[qb_name]: raise NotImplementedError('rotate_data_TwoD_same_fixed_cal_idxs ' 'only implemented for two-channel RO!') if len(cal_states_dict[qb_name]) == 0: cal_zero_points = None cal_one_points = None else: cal_zero_points = list(cal_states_dict[qb_name].values())[0] cal_one_points = list(cal_states_dict[qb_name].values())[1] # do pca on the one cal states raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rot_dat_e = np.zeros(raw_data_arr.shape[1]) for row in cal_one_points: rot_dat_e += a_tools.rotate_and_normalize_data_IQ( data=np.array([v[row, :] for v in meas_res_dict.values()]), cal_zero_points=None, cal_one_points=None)[0] rot_dat_e /= len(cal_one_points) # find the values of the zero and one cal points col_idx = np.argmax(np.abs(rot_dat_e)) zero_coord = [np.mean([v[r, col_idx] for r in cal_zero_points]) for v in meas_res_dict.values()] one_coord = [np.mean([v[r, col_idx] for r in cal_one_points]) for v in meas_res_dict.values()] # rotate all data based on the fixed zero_coord and one_coord rotated_data_dict = OrderedDict({qb_name: OrderedDict()}) rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) for col in range(raw_data_arr.shape[1]): data_array = np.array( [v[:, col] for v in meas_res_dict.values()]) rotated_data_dict[qb_name][ data_to_fit[qb_name]][col], _, _ = \ a_tools.rotate_and_normalize_data_IQ( data=data_array, zero_coord=zero_coord, one_coord=one_coord) return rotated_data_dict, zero_coord, one_coord def get_xaxis_label_unit(self, qb_name): hard_sweep_params = self.get_param_value('hard_sweep_params') sweep_name = self.get_param_value('sweep_name') sweep_unit = self.get_param_value('sweep_unit') if self.sp is not None: main_sp = self.get_param_value('main_sp', None) if main_sp is not None and qb_name in main_sp: param_names = [main_sp[qb_name]] else: param_names = self.mospm[qb_name] _, xunit, xlabel = self.sp.get_sweep_params_description( param_names=param_names, dimension=0)[0] elif hard_sweep_params is not None: xlabel = list(hard_sweep_params)[0] xunit = list(hard_sweep_params.values())[0][ 'unit'] elif (sweep_name is not None) and (sweep_unit is not None): xlabel = sweep_name xunit = sweep_unit else: xlabel = self.raw_data_dict['sweep_parameter_names'] xunit = self.raw_data_dict['sweep_parameter_units'] if np.ndim(xlabel) > 0: xlabel = xlabel[0] if np.ndim(xunit) > 0: xunit = xunit[0] return xlabel, xunit @staticmethod def get_cal_state_color(cal_state_label): if cal_state_label == 'g' or cal_state_label == r'$|g\rangle$': return 'k' elif cal_state_label == 'e' or cal_state_label == r'$|e\rangle$': return 'gray' elif cal_state_label == 'f' or cal_state_label == r'$|f\rangle$': return 'C8' else: return 'C4' @staticmethod def get_latex_prob_label(prob_label): if '$' in prob_label: return prob_label elif 'p' in prob_label.lower(): return r'$|{}\rangle$'.format(prob_label[-1]) else: return r'$|{}\rangle$'.format(prob_label) def prepare_plots(self): if self.get_param_value('plot_proj_data', default_value=True): select_split = self.get_param_value('select_split') fig_name_suffix = self.get_param_value('fig_name_suffix', '') title_suffix = self.get_param_value('title_suffix', '') for qb_name, corr_data in self.proc_data_dict[ 'projected_data_dict'].items(): fig_name = f'projected_plot_{qb_name}' title_suf = title_suffix if select_split is not None: param, idx = select_split[qb_name] # remove qb_name from param p = '_'.join([e for e in param.split('_') if e != qb_name]) # create suffix suf = f'({p}, {str(np.round(idx, 3))})' # add suffix fig_name += f'_{suf}' title_suf = f'{suf}_{title_suf}' if \ len(title_suf) else suf if isinstance(corr_data, dict): for data_key, data in corr_data.items(): if not self.rotate: data_label = data_key plot_name_suffix = data_key plot_cal_points = False data_axis_label = 'Population' else: fn = f'{fig_name}_{data_key}' data_label = 'Data' plot_name_suffix = '' tf = f'{data_key}_{title_suf}' if \ len(title_suf) else data_key plot_cal_points = ( not self.options_dict.get('TwoD', False)) data_axis_label = \ 'Strongest principal component (arb.)' if \ 'pca' in self.rotation_type.lower() else \ '{} state population'.format( self.get_latex_prob_label(data_key)) self.prepare_projected_data_plot( fn, data, qb_name=qb_name, data_label=data_label, title_suffix=tf, plot_name_suffix=plot_name_suffix, fig_name_suffix=fig_name_suffix, data_axis_label=data_axis_label, plot_cal_points=plot_cal_points) else: fig_name = 'projected_plot_' + qb_name self.prepare_projected_data_plot( fig_name, corr_data, qb_name=qb_name, plot_cal_points=( not self.options_dict.get('TwoD', False))) if self.get_param_value('plot_raw_data', default_value=True): self.prepare_raw_data_plots(plot_filtered=False) if 'preparation_params' in self.metadata: if 'active' in self.metadata['preparation_params'].get( 'preparation_type', 'wait'): self.prepare_raw_data_plots(plot_filtered=True) def prepare_raw_data_plots(self, plot_filtered=False): if plot_filtered or not self.data_with_reset: key = 'meas_results_per_qb' suffix = 'filtered' if self.data_with_reset else '' func_for_swpts = lambda qb_name: self.proc_data_dict[ 'sweep_points_dict'][qb_name]['sweep_points'] else: key = 'meas_results_per_qb_raw' suffix = '' func_for_swpts = lambda qb_name: self.raw_data_dict[ 'hard_sweep_points'] for qb_name, raw_data_dict in self.proc_data_dict[key].items(): if qb_name not in self.qb_names: continue sweep_points = func_for_swpts(qb_name) if len(raw_data_dict) == 1: numplotsx = 1 numplotsy = 1 elif len(raw_data_dict) == 2: numplotsx = 1 numplotsy = 2 else: numplotsx = 2 numplotsy = len(raw_data_dict) // 2 + len(raw_data_dict) % 2 plotsize = self.get_default_plot_params(set=False)['figure.figsize'] fig_title = (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring'] + '\nRaw data ' + suffix + ' ' + qb_name) plot_name = 'raw_plot_' + qb_name + suffix xlabel, xunit = self.get_xaxis_label_unit(qb_name) for ax_id, ro_channel in enumerate(raw_data_dict): if self.get_param_value('TwoD', default_value=False): if self.sp is None: soft_sweep_params = self.get_param_value( 'soft_sweep_params') if soft_sweep_params is not None: yunit = list(soft_sweep_params.values())[0]['unit'] else: yunit = self.raw_data_dict[ 'sweep_parameter_units'][1] if np.ndim(yunit) > 0: yunit = yunit[0] for pn, ssp in self.proc_data_dict['sweep_points_2D_dict'][ qb_name].items(): ylabel = pn if self.sp is not None: yunit = self.sp.get_sweep_params_property( 'unit', dimension=1, param_names=pn) ylabel = self.sp.get_sweep_params_property( 'label', dimension=1, param_names=pn) self.plot_dicts[f'{plot_name}_{ro_channel}_{pn}'] = { 'fig_id': plot_name + '_' + pn, 'ax_id': ax_id, 'plotfn': self.plot_colorxy, 'xvals': sweep_points, 'yvals': ssp, 'zvals': raw_data_dict[ro_channel].T, 'xlabel': xlabel, 'xunit': xunit, 'ylabel': ylabel, 'yunit': yunit, 'numplotsx': numplotsx, 'numplotsy': numplotsy, 'plotsize': (plotsize[0]*numplotsx, plotsize[1]*numplotsy), 'title': fig_title, 'clabel': '{} (Vpeak)'.format(ro_channel)} else: self.plot_dicts[plot_name + '_' + ro_channel] = { 'fig_id': plot_name, 'ax_id': ax_id, 'plotfn': self.plot_line, 'xvals': sweep_points, 'xlabel': xlabel, 'xunit': xunit, 'yvals': raw_data_dict[ro_channel], 'ylabel': '{} (Vpeak)'.format(ro_channel), 'yunit': '', 'numplotsx': numplotsx, 'numplotsy': numplotsy, 'plotsize': (plotsize[0]*numplotsx, plotsize[1]*numplotsy), 'title': fig_title} if len(raw_data_dict) == 1: self.plot_dicts[ plot_name + '_' + list(raw_data_dict)[0]]['ax_id'] = None def prepare_projected_data_plot( self, fig_name, data, qb_name, title_suffix='', sweep_points=None, plot_cal_points=True, plot_name_suffix='', fig_name_suffix='', data_label='Data', data_axis_label='', do_legend_data=True, do_legend_cal_states=True): if len(fig_name_suffix): fig_name = f'{fig_name}_{fig_name_suffix}' if data_axis_label == '': data_axis_label = 'Strongest principal component (arb.)' if \ 'pca' in self.rotation_type.lower() else \ '{} state population'.format(self.get_latex_prob_label( self.data_to_fit[qb_name])) plotsize = self.get_default_plot_params(set=False)['figure.figsize'] plotsize = (plotsize[0], plotsize[0]/1.25) if sweep_points is None: sweep_points = self.proc_data_dict['sweep_points_dict'][qb_name][ 'sweep_points'] plot_names_cal = [] if plot_cal_points and self.num_cal_points != 0: yvals = data[:-self.num_cal_points] xvals = sweep_points[:-self.num_cal_points] # plot cal points for i, cal_pts_idxs in enumerate( self.cal_states_dict.values()): plot_dict_name_cal = fig_name + '_' + \ list(self.cal_states_dict)[i] + '_' + \ plot_name_suffix plot_names_cal += [plot_dict_name_cal] self.plot_dicts[plot_dict_name_cal] = { 'fig_id': fig_name, 'plotfn': self.plot_line, 'plotsize': plotsize, 'xvals': self.proc_data_dict['sweep_points_dict'][qb_name][ 'cal_points_sweep_points'][cal_pts_idxs], 'yvals': data[cal_pts_idxs], 'setlabel': list(self.cal_states_dict)[i], 'do_legend': do_legend_cal_states, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left', 'linestyle': 'none', 'line_kws': {'color': self.get_cal_state_color( list(self.cal_states_dict)[i])}} self.plot_dicts[plot_dict_name_cal+'_line'] = { 'fig_id': fig_name, 'plotsize': plotsize, 'plotfn': self.plot_hlines, 'y': np.mean(data[cal_pts_idxs]), 'xmin': self.proc_data_dict['sweep_points_dict'][qb_name][ 'sweep_points'][0], 'xmax': self.proc_data_dict['sweep_points_dict'][qb_name][ 'sweep_points'][-1], 'colors': 'gray'} else: yvals = data xvals = sweep_points title = (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring']) title += '\n' + f'{qb_name}_{title_suffix}' if len(title_suffix) else \ ' ' + qb_name plot_dict_name = f'{fig_name}_{plot_name_suffix}' xlabel, xunit = self.get_xaxis_label_unit(qb_name) if self.get_param_value('TwoD', default_value=False): if self.sp is None: soft_sweep_params = self.get_param_value( 'soft_sweep_params') if soft_sweep_params is not None: yunit = list(soft_sweep_params.values())[0]['unit'] else: yunit = self.raw_data_dict['sweep_parameter_units'][1] if np.ndim(yunit) > 0: yunit = yunit[0] for pn, ssp in self.proc_data_dict['sweep_points_2D_dict'][ qb_name].items(): ylabel = pn if self.sp is not None: yunit = self.sp.get_sweep_params_property( 'unit', dimension=1, param_names=pn) ylabel = self.sp.get_sweep_params_property( 'label', dimension=1, param_names=pn) self.plot_dicts[f'{plot_dict_name}_{pn}'] = { 'plotfn': self.plot_colorxy, 'fig_id': fig_name + '_' + pn, 'xvals': xvals, 'yvals': ssp, 'zvals': yvals, 'xlabel': xlabel, 'xunit': xunit, 'ylabel': ylabel, 'yunit': yunit, 'zrange': self.get_param_value('zrange', None), 'title': title, 'clabel': data_axis_label} else: self.plot_dicts[plot_dict_name] = { 'plotfn': self.plot_line, 'fig_id': fig_name, 'plotsize': plotsize, 'xvals': xvals, 'xlabel': xlabel, 'xunit': xunit, 'yvals': yvals, 'ylabel': data_axis_label, 'yunit': '', 'setlabel': data_label, 'title': title, 'linestyle': 'none', 'do_legend': do_legend_data, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} # add plot_params to each plot dict plot_params = self.get_param_value('plot_params', default_value={}) for plt_name in self.plot_dicts: self.plot_dicts[plt_name].update(plot_params) if len(plot_names_cal) > 0: if do_legend_data and not do_legend_cal_states: for plot_name in plot_names_cal: plot_dict_cal = self.plot_dicts.pop(plot_name) self.plot_dicts[plot_name] = plot_dict_cal class Idling_Error_Rate_Analyisis(ba.BaseDataAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): post_sel_th = self.options_dict.get('post_sel_th', 0.5) raw_shots = self.raw_data_dict['measured_values'][0][0] post_sel_shots = raw_shots[::2] data_shots = raw_shots[1::2] data_shots[np.where(post_sel_shots > post_sel_th)] = np.nan states = ['0', '1', '+'] self.proc_data_dict['xvals'] = np.unique(self.raw_data_dict['xvals']) for i, state in enumerate(states): self.proc_data_dict['shots_{}'.format(state)] =data_shots[i::3] self.proc_data_dict['yvals_{}'.format(state)] = \ np.nanmean(np.reshape(self.proc_data_dict['shots_{}'.format(state)], (len(self.proc_data_dict['xvals']), -1), order='F'), axis=1) def prepare_plots(self): # assumes that value names are unique in an experiment states = ['0', '1', '+'] for i, state in enumerate(states): yvals = self.proc_data_dict['yvals_{}'.format(state)] xvals = self.proc_data_dict['xvals'] self.plot_dicts['Prepare in {}'.format(state)] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': xvals, 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': yvals, 'ylabel': 'Counts', 'yrange': [0, 1], 'xrange': self.options_dict.get('xrange', None), 'yunit': 'frac', 'setlabel': 'Prepare in {}'.format(state), 'do_legend':True, 'title': (self.raw_data_dict['timestamps'][0]+' - ' + self.raw_data_dict['timestamps'][-1] + '\n' + self.raw_data_dict['measurementstring'][0]), 'legend_pos': 'upper right'} if self.do_fitting: for state in ['0', '1', '+']: self.plot_dicts['fit_{}'.format(state)] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['fit {}'.format(state)]['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'fit |{}>'.format(state), 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['fit_text']={ 'ax_id':'main', 'box_props': 'fancy', 'xpos':1.05, 'horizontalalignment':'left', 'plotfn': self.plot_text, 'text_string': self.proc_data_dict['fit_msg']} def analyze_fit_results(self): fit_msg ='' states = ['0', '1', '+'] for state in states: fr = self.fit_res['fit {}'.format(state)] N1 = fr.params['N1'].value, fr.params['N1'].stderr N2 = fr.params['N2'].value, fr.params['N2'].stderr fit_msg += ('Prep |{}> : \n\tN_1 = {:.2g} $\pm$ {:.2g}' '\n\tN_2 = {:.2g} $\pm$ {:.2g}\n').format( state, N1[0], N1[1], N2[0], N2[1]) self.proc_data_dict['fit_msg'] = fit_msg def prepare_fitting(self): self.fit_dicts = OrderedDict() states = ['0', '1', '+'] for i, state in enumerate(states): yvals = self.proc_data_dict['yvals_{}'.format(state)] xvals = self.proc_data_dict['xvals'] mod = lmfit.Model(fit_mods.idle_error_rate_exp_decay) mod.guess = fit_mods.idle_err_rate_guess.__get__(mod, mod.__class__) # Done here explicitly so that I can overwrite a specific guess guess_pars = mod.guess(N=xvals, data=yvals) vary_N2 = self.options_dict.get('vary_N2', True) if not vary_N2: guess_pars['N2'].value = 1e21 guess_pars['N2'].vary = False self.fit_dicts['fit {}'.format(states[i])] = { 'model': mod, 'fit_xvals': {'N': xvals}, 'fit_yvals': {'data': yvals}, 'guess_pars': guess_pars} # Allows fixing the double exponential coefficient class Grovers_TwoQubitAllStates_Analysis(ba.BaseDataAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() normalize_to_cal_points = self.options_dict.get('normalize_to_cal_points', True) cal_points = [ [[-4, -3], [-2, -1]], [[-4, -2], [-3, -1]], ] for idx in [0,1]: yvals = list(self.raw_data_dict['measured_data'].values())[idx][0] self.proc_data_dict['ylabel_{}'.format(idx)] = \ self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] if normalize_to_cal_points: yvals = a_tools.rotate_and_normalize_data_1ch(yvals, cal_zero_points=cal_points[idx][0], cal_one_points=cal_points[idx][1]) self.proc_data_dict['yvals_{}'.format(idx)] = yvals y0 = self.proc_data_dict['yvals_0'] y1 = self.proc_data_dict['yvals_1'] p_success = ((y0[0]*y1[0]) + (1-y0[1])*y1[1] + (y0[2])*(1-y1[2]) + (1-y0[3])*(1-y1[3]) )/4 self.proc_data_dict['p_success'] = p_success def prepare_plots(self): # assumes that value names are unique in an experiment for i in [0, 1]: yvals = self.proc_data_dict['yvals_{}'.format(i)] xvals = self.raw_data_dict['xvals'][0] ylabel = self.proc_data_dict['ylabel_{}'.format(i)] self.plot_dicts['main_{}'.format(ylabel)] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['xvals'][0], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_{}'.format(i)], 'ylabel': ylabel, 'yunit': self.proc_data_dict['yunit'], 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': False, 'legend_pos': 'upper right'} self.plot_dicts['limit_text']={ 'ax_id':'main_{}'.format(ylabel), 'box_props': 'fancy', 'xpos':1.05, 'horizontalalignment':'left', 'plotfn': self.plot_text, 'text_string': 'P succes = {:.3f}'.format(self.proc_data_dict['p_success'])} class FlippingAnalysis(Single_Qubit_TimeDomainAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = True self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'measurementstring': 'measurementstring', 'sweep_points': 'sweep_points', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} # This analysis makes a hardcoded assumption on the calibration points self.options_dict['cal_points'] = [list(range(-4, -2)), list(range(-2, 0))] self.numeric_params = [] if auto: self.run_analysis() def prepare_fitting(self): self.fit_dicts = OrderedDict() # Even though we expect an exponentially damped oscillation we use # a simple cosine as this gives more reliable fitting and we are only # interested in extracting the frequency of the oscillation cos_mod = lmfit.Model(fit_mods.CosFunc) guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.raw_data_dict['sweep_points'][:-4], data=self.proc_data_dict['corr_data'][:-4]) # This enforces the oscillation to start at the equator # and ensures that any over/under rotation is absorbed in the # frequency guess_pars['amplitude'].value = 0.5 guess_pars['amplitude'].vary = False guess_pars['offset'].value = 0.5 guess_pars['offset'].vary = False self.fit_dicts['cos_fit'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.raw_data_dict['sweep_points'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['corr_data'][:-4]}, 'guess_pars': guess_pars} # In the case there are very few periods we fall back on a small # angle approximation to extract the drive detuning poly_mod = lmfit.models.PolynomialModel(degree=1) # the detuning can be estimated using on a small angle approximation # c1 = d/dN (cos(2*pi*f N) ) evaluated at N = 0 -> c1 = -2*pi*f poly_mod.set_param_hint('frequency', expr='-c1/(2*pi)') guess_pars = poly_mod.guess(x=self.raw_data_dict['sweep_points'][:-4], data=self.proc_data_dict['corr_data'][:-4]) # Constraining the line ensures that it will only give a good fit # if the small angle approximation holds guess_pars['c0'].vary = False guess_pars['c0'].value = 0.5 self.fit_dicts['line_fit'] = { 'model': poly_mod, 'fit_xvals': {'x': self.raw_data_dict['sweep_points'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['corr_data'][:-4]}, 'guess_pars': guess_pars} def analyze_fit_results(self): sf_line = self._get_scale_factor_line() sf_cos = self._get_scale_factor_cos() self.proc_data_dict['scale_factor'] = self.get_scale_factor() msg = 'Scale fact. based on ' if self.proc_data_dict['scale_factor'] == sf_cos: msg += 'cos fit\n' else: msg += 'line fit\n' msg += 'cos fit: {:.4f}\n'.format(sf_cos) msg += 'line fit: {:.4f}'.format(sf_line) self.raw_data_dict['scale_factor_msg'] = msg # TODO: save scale factor to file def get_scale_factor(self): """ Returns the scale factor that should correct for the error in the pulse amplitude. """ # Model selection based on the Bayesian Information Criterion (BIC) # as calculated by lmfit if (self.fit_dicts['line_fit']['fit_res'].bic < self.fit_dicts['cos_fit']['fit_res'].bic): scale_factor = self._get_scale_factor_line() else: scale_factor = self._get_scale_factor_cos() return scale_factor def _get_scale_factor_cos(self): # 1/period of the oscillation corresponds to the (fractional) # over/under rotation error per gate frequency = self.fit_dicts['cos_fit']['fit_res'].params['frequency'] # the square is needed to account for the difference between # power and amplitude scale_factor = (1+frequency)**2 phase = np.rad2deg(self.fit_dicts['cos_fit']['fit_res'].params['phase']) % 360 # phase ~90 indicates an under rotation so the scale factor # has to be larger than 1. A phase ~270 indicates an over # rotation so then the scale factor has to be smaller than one. if phase > 180: scale_factor = 1/scale_factor return scale_factor def _get_scale_factor_line(self): # 1/period of the oscillation corresponds to the (fractional) # over/under rotation error per gate frequency = self.fit_dicts['line_fit']['fit_res'].params['frequency'] scale_factor = (1+frequency)**2 # no phase sign check is needed here as this is contained in the # sign of the coefficient return scale_factor def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['sweep_points'], 'xlabel': self.raw_data_dict['xlabel'], 'xunit': self.raw_data_dict['xunit'], # does not do anything yet 'yvals': self.proc_data_dict['corr_data'], 'ylabel': 'Excited state population', 'yunit': '', 'setlabel': 'data', 'title': (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring']), 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'line fit', 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['cos_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['text_msg'] = { 'ax_id': 'main', 'ypos': 0.15, 'plotfn': self.plot_text, 'box_props': 'fancy', 'text_string': self.raw_data_dict['scale_factor_msg']} class Intersect_Analysis(Single_Qubit_TimeDomainAnalysis): """ Analysis to extract the intercept of two parameters. relevant options_dict parameters ch_idx_A (int) specifies first channel for intercept ch_idx_B (int) specifies second channel for intercept if same as first it will assume data was taken interleaved. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xvals': 'sweep_points', 'xunit': 'sweep_unit', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx_A" and "ch_idx_B" specified in the options dict. If ch_idx_A and ch_idx_B are the same it will unzip the data. """ self.proc_data_dict = deepcopy(self.raw_data_dict) # The channel containing the data must be specified in the options dict ch_idx_A = self.options_dict.get('ch_idx_A', 0) ch_idx_B = self.options_dict.get('ch_idx_B', 0) self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][ch_idx_A] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][ch_idx_A] if ch_idx_A == ch_idx_B: yvals = list(self.raw_data_dict['measured_data'].values())[ch_idx_A][0] self.proc_data_dict['xvals_A'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_B'] = self.raw_data_dict['xvals'][0][1::2] self.proc_data_dict['yvals_A'] = yvals[::2] self.proc_data_dict['yvals_B'] = yvals[1::2] else: self.proc_data_dict['xvals_A'] = self.raw_data_dict['xvals'][0] self.proc_data_dict['xvals_B'] = self.raw_data_dict['xvals'][0] self.proc_data_dict['yvals_A'] = list(self.raw_data_dict ['measured_data'].values())[ch_idx_A][0] self.proc_data_dict['yvals_B'] = list(self.raw_data_dict ['measured_data'].values())[ch_idx_B][0] def prepare_fitting(self): self.fit_dicts = OrderedDict() self.fit_dicts['line_fit_A'] = { 'model': lmfit.models.PolynomialModel(degree=2), 'fit_xvals': {'x': self.proc_data_dict['xvals_A']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_A']}} self.fit_dicts['line_fit_B'] = { 'model': lmfit.models.PolynomialModel(degree=2), 'fit_xvals': {'x': self.proc_data_dict['xvals_B']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_B']}} def analyze_fit_results(self): fr_0 = self.fit_res['line_fit_A'].best_values fr_1 = self.fit_res['line_fit_B'].best_values c0 = (fr_0['c0'] - fr_1['c0']) c1 = (fr_0['c1'] - fr_1['c1']) c2 = (fr_0['c2'] - fr_1['c2']) poly_coeff = [c0, c1, c2] poly = np.polynomial.polynomial.Polynomial([fr_0['c0'], fr_0['c1'], fr_0['c2']]) ic = np.polynomial.polynomial.polyroots(poly_coeff) self.proc_data_dict['intersect_L'] = ic[0], poly(ic[0]) self.proc_data_dict['intersect_R'] = ic[1], poly(ic[1]) if (((np.min(self.proc_data_dict['xvals']))< ic[0]) and ( ic[0] < (np.max(self.proc_data_dict['xvals'])))): self.proc_data_dict['intersect'] =self.proc_data_dict['intersect_L'] else: self.proc_data_dict['intersect'] =self.proc_data_dict['intersect_R'] def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_A'], 'xlabel': self.proc_data_dict['xlabel'][0], 'xunit': self.proc_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_A'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'A', 'title': (self.proc_data_dict['timestamps'][0] + ' \n' + self.proc_data_dict['measurementstring'][0]), 'do_legend': True, 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_B'], 'xlabel': self.proc_data_dict['xlabel'][0], 'xunit': self.proc_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_B'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'B', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit_A'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_A']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit A', 'do_legend': True} self.plot_dicts['line_fit_B'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_B']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit B', 'do_legend': True} ic, ic_unit = SI_val_to_msg_str( self.proc_data_dict['intersect'][0], self.proc_data_dict['xunit'][0][0], return_type=float) self.plot_dicts['intercept_message'] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': [self.proc_data_dict['intersect'][0]], 'yvals': [self.proc_data_dict['intersect'][1]], 'line_kws': {'alpha': .5, 'color':'gray', 'markersize':15}, 'marker': 'o', 'setlabel': 'Intercept: {:.1f} {}'.format(ic, ic_unit), 'do_legend': True} def get_intersect(self): return self.proc_data_dict['intersect'] class CZ_1QPhaseCal_Analysis(ba.BaseDataAnalysis): """ Analysis to extract the intercept for a single qubit phase calibration experiment N.B. this is a less generic version of "Intersect_Analysis" and should be deprecated (MAR Dec 2017) """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx" in options dict and then splits the data for th """ self.proc_data_dict = OrderedDict() # The channel containing the data must be specified in the options dict ch_idx = self.options_dict['ch_idx'] yvals = list(self.raw_data_dict['measured_data'].values())[ch_idx][0] self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][ch_idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][ch_idx] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] self.proc_data_dict['yvals_off'] = yvals[::2] self.proc_data_dict['yvals_on'] = yvals[1::2] def prepare_fitting(self): self.fit_dicts = OrderedDict() self.fit_dicts['line_fit_off'] = { 'model': lmfit.models.PolynomialModel(degree=1), 'fit_xvals': {'x': self.proc_data_dict['xvals_off']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_off']}} self.fit_dicts['line_fit_on'] = { 'model': lmfit.models.PolynomialModel(degree=1), 'fit_xvals': {'x': self.proc_data_dict['xvals_on']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_on']}} def analyze_fit_results(self): fr_0 = self.fit_res['line_fit_off'].best_values fr_1 = self.fit_res['line_fit_on'].best_values ic = -(fr_0['c0'] - fr_1['c0'])/(fr_0['c1'] - fr_1['c1']) self.proc_data_dict['zero_phase_diff_intersect'] = ic def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_off'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_on'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit_off'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_off']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ off', 'do_legend': True} self.plot_dicts['line_fit_on'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_on']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ on', 'do_legend': True} ic, ic_unit = SI_val_to_msg_str( self.proc_data_dict['zero_phase_diff_intersect'], self.raw_data_dict['xunit'][0][0], return_type=float) self.plot_dicts['intercept_message'] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': [self.proc_data_dict['zero_phase_diff_intersect']], 'yvals': [np.mean(self.proc_data_dict['xvals_on'])], 'line_kws': {'alpha': 0}, 'setlabel': 'Intercept: {:.1f} {}'.format(ic, ic_unit), 'do_legend': True} def get_zero_phase_diff_intersect(self): return self.proc_data_dict['zero_phase_diff_intersect'] class Oscillation_Analysis(ba.BaseDataAnalysis): """ Very basic analysis to determine the phase of a single oscillation that has an assumed period of 360 degrees. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, label: str='', options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() idx = 1 self.proc_data_dict['yvals'] = list(self.raw_data_dict['measured_data'].values())[idx][0] self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] def prepare_fitting(self): self.fit_dicts = OrderedDict() cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.raw_data_dict['xvals'][0], data=self.proc_data_dict['yvals'], freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts['cos_fit'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.raw_data_dict['xvals'][0]}, 'fit_yvals': {'data': self.proc_data_dict['yvals']}, 'guess_pars': guess_pars} def analyze_fit_results(self): fr = self.fit_res['cos_fit'].best_values self.proc_data_dict['phi'] = np.rad2deg(fr['phase']) def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['xvals'][0], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['cos_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit', 'do_legend': True} class Conditional_Oscillation_Analysis(ba.BaseDataAnalysis): """ Analysis to extract quantities from a conditional oscillation. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, label: str='', options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx_osc" and "ch_idx_spec" in the options dict and then splits the data for the off and on cases """ self.proc_data_dict = OrderedDict() # The channel containing the data must be specified in the options dict ch_idx_spec = self.options_dict.get('ch_idx_spec', 0) ch_idx_osc = self.options_dict.get('ch_idx_osc', 1) normalize_to_cal_points = self.options_dict.get('normalize_to_cal_points', True) cal_points = [ [[-4, -3], [-2, -1]], [[-4, -2], [-3, -1]], ] i = 0 for idx, type_str in zip([ch_idx_osc, ch_idx_spec], ['osc', 'spec']): yvals = list(self.raw_data_dict['measured_data'].values())[idx][0] self.proc_data_dict['ylabel_{}'.format(type_str)] = self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] if normalize_to_cal_points: yvals = a_tools.rotate_and_normalize_data_1ch(yvals, cal_zero_points=cal_points[i][0], cal_one_points=cal_points[i][1]) i +=1 self.proc_data_dict['yvals_{}_off'.format(type_str)] = yvals[::2] self.proc_data_dict['yvals_{}_on'.format(type_str)] = yvals[1::2] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] else: self.proc_data_dict['yvals_{}_off'.format(type_str)] = yvals[::2] self.proc_data_dict['yvals_{}_on'.format(type_str)] = yvals[1::2] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] def prepare_fitting(self): self.fit_dicts = OrderedDict() cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.proc_data_dict['xvals_off'][:-2], data=self.proc_data_dict['yvals_osc_off'][:-2], freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts['cos_fit_off'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.proc_data_dict['xvals_off'][:-2]}, 'fit_yvals': {'data': self.proc_data_dict['yvals_osc_off'][:-2]}, 'guess_pars': guess_pars} cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.proc_data_dict['xvals_on'][:-2], data=self.proc_data_dict['yvals_osc_on'][:-2], freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts['cos_fit_on'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.proc_data_dict['xvals_on'][:-2]}, 'fit_yvals': {'data': self.proc_data_dict['yvals_osc_on'][:-2]}, 'guess_pars': guess_pars} def analyze_fit_results(self): fr_0 = self.fit_res['cos_fit_off'].params fr_1 = self.fit_res['cos_fit_on'].params phi0 = np.rad2deg(fr_0['phase'].value) phi1 = np.rad2deg(fr_1['phase'].value) phi0_stderr = np.rad2deg(fr_0['phase'].stderr) phi1_stderr = np.rad2deg(fr_1['phase'].stderr) self.proc_data_dict['phi_0'] = phi0, phi0_stderr self.proc_data_dict['phi_1'] = phi1, phi1_stderr phi_cond_stderr = (phi0_stderr**2+phi1_stderr**2)**.5 self.proc_data_dict['phi_cond'] = (phi1 -phi0), phi_cond_stderr osc_amp = np.mean([fr_0['amplitude'], fr_1['amplitude']]) osc_amp_stderr = np.sqrt(fr_0['amplitude'].stderr**2 + fr_1['amplitude']**2)/2 self.proc_data_dict['osc_amp_0'] = (fr_0['amplitude'].value, fr_0['amplitude'].stderr) self.proc_data_dict['osc_amp_1'] = (fr_1['amplitude'].value, fr_1['amplitude'].stderr) self.proc_data_dict['osc_offs_0'] = (fr_0['offset'].value, fr_0['offset'].stderr) self.proc_data_dict['osc_offs_1'] = (fr_1['offset'].value, fr_1['offset'].stderr) offs_stderr = (fr_0['offset'].stderr**2+fr_1['offset'].stderr**2)**.5 self.proc_data_dict['offs_diff'] = ( fr_1['offset'].value - fr_0['offset'].value, offs_stderr) # self.proc_data_dict['osc_amp'] = (osc_amp, osc_amp_stderr) self.proc_data_dict['missing_fraction'] = ( np.mean(self.proc_data_dict['yvals_spec_on'][:-2]) - np.mean(self.proc_data_dict['yvals_spec_off'][:-2])) def prepare_plots(self): self._prepare_main_oscillation_figure() self._prepare_spectator_qubit_figure() def _prepare_main_oscillation_figure(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_osc_off'], 'ylabel': self.proc_data_dict['ylabel_osc'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_osc_on'], 'ylabel': self.proc_data_dict['ylabel_osc'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['cos_fit_off'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_off']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ off', 'do_legend': True} self.plot_dicts['cos_fit_on'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_on']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ on', 'do_legend': True} # offset as a guide for the eye y = self.fit_res['cos_fit_off'].params['offset'].value self.plot_dicts['cos_off_offset'] ={ 'plotfn': self.plot_matplot_ax_method, 'ax_id':'main', 'func': 'axhline', 'plot_kws': { 'y': y, 'color': 'C0', 'linestyle': 'dotted'} } phase_message = ( 'Phase diff.: {:.1f} $\pm$ {:.1f} deg\n' 'Phase off: {:.1f} $\pm$ {:.1f}deg\n' 'Phase on: {:.1f} $\pm$ {:.1f}deg\n' 'Osc. amp. off: {:.4f} $\pm$ {:.4f}\n' 'Osc. amp. on: {:.4f} $\pm$ {:.4f}\n' 'Offs. diff.: {:.4f} $\pm$ {:.4f}\n' 'Osc. offs. off: {:.4f} $\pm$ {:.4f}\n' 'Osc. offs. on: {:.4f} $\pm$ {:.4f}'.format( self.proc_data_dict['phi_cond'][0], self.proc_data_dict['phi_cond'][1], self.proc_data_dict['phi_0'][0], self.proc_data_dict['phi_0'][1], self.proc_data_dict['phi_1'][0], self.proc_data_dict['phi_1'][1], self.proc_data_dict['osc_amp_0'][0], self.proc_data_dict['osc_amp_0'][1], self.proc_data_dict['osc_amp_1'][0], self.proc_data_dict['osc_amp_1'][1], self.proc_data_dict['offs_diff'][0], self.proc_data_dict['offs_diff'][1], self.proc_data_dict['osc_offs_0'][0], self.proc_data_dict['osc_offs_0'][1], self.proc_data_dict['osc_offs_1'][0], self.proc_data_dict['osc_offs_1'][1])) self.plot_dicts['phase_message'] = { 'ax_id': 'main', 'ypos': 0.9, 'xpos': 1.45, 'plotfn': self.plot_text, 'box_props': 'fancy', 'line_kws': {'alpha': 0}, 'text_string': phase_message} def _prepare_spectator_qubit_figure(self): self.plot_dicts['spectator_qubit'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_spec_off'], 'ylabel': self.proc_data_dict['ylabel_spec'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['spec_on'] = { 'plotfn': self.plot_line, 'ax_id': 'spectator_qubit', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_spec_on'], 'ylabel': self.proc_data_dict['ylabel_spec'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: leak_msg = ( 'Missing fraction: {:.2f} % '.format( self.proc_data_dict['missing_fraction']*100)) self.plot_dicts['leak_msg'] = { 'ax_id': 'spectator_qubit', 'ypos': 0.7, 'plotfn': self.plot_text, 'box_props': 'fancy', 'line_kws': {'alpha': 0}, 'text_string': leak_msg} # offset as a guide for the eye y = self.fit_res['cos_fit_on'].params['offset'].value self.plot_dicts['cos_on_offset'] ={ 'plotfn': self.plot_matplot_ax_method, 'ax_id':'main', 'func': 'axhline', 'plot_kws': { 'y': y, 'color': 'C1', 'linestyle': 'dotted'} } class StateTomographyAnalysis(ba.BaseDataAnalysis): """ Analyses the results of the state tomography experiment and calculates the corresponding quantum state. Possible options that can be passed in the options_dict parameter: cal_points: A data structure specifying the indices of the calibration points. See the AveragedTimedomainAnalysis for format. The calibration points need to be in the same order as the used basis for the result. data_type: 'averaged' or 'singleshot'. For singleshot data each measurement outcome is saved and arbitrary order correlations between the states can be calculated. meas_operators: (optional) A list of qutip operators or numpy 2d arrays. This overrides the measurement operators otherwise found from the calibration points. covar_matrix: (optional) The covariance matrix of the measurement operators as a 2d numpy array. Overrides the one found from the calibration points. use_covariance_matrix (bool): Flag to define whether to use the covariance matrix basis_rots_str: A list of standard PycQED pulse names that were applied to qubits before measurement basis_rots: As an alternative to single_qubit_pulses, the basis rotations applied to the system as qutip operators or numpy matrices can be given. mle: True/False, whether to do maximum likelihood fit. If False, only least squares fit will be done, which could give negative eigenvalues for the density matrix. imle: True/False, whether to do iterative maximum likelihood fit. If True, it takes preference over maximum likelihood method. Otherwise least squares fit will be done, then 'mle' option will be checked. pauli_raw: True/False, extracts Pauli expected values from a measurement without assignment correction based on calibration data. If True, takes preference over other methods except pauli_corr. pauli_values: True/False, extracts Pauli expected values from a measurement with assignment correction based on calibration data. If True, takes preference over other methods. iterations (optional): maximum number of iterations allowed in imle. Tomographies with more qubits require more iterations to converge. tolerance (optional): minimum change across iterations allowed in imle. The iteration will stop if it goes under this value. Tomographies with more qubits require smaller tolerance to converge. rho_target (optional): A qutip density matrix that the result will be compared to when calculating fidelity. """ def __init__(self, *args, **kwargs): auto = kwargs.pop('auto', True) super().__init__(*args, **kwargs) kwargs['auto'] = auto self.single_timestamp = True self.params_dict = {'exp_metadata': 'exp_metadata'} self.numeric_params = [] self.data_type = self.options_dict['data_type'] if self.data_type == 'averaged': self.base_analysis = AveragedTimedomainAnalysis(*args, **kwargs) elif self.data_type == 'singleshot': self.base_analysis = roa.MultiQubit_SingleShot_Analysis( *args, **kwargs) else: raise KeyError("Invalid tomography data mode: '" + self.data_type + "'. Valid modes are 'averaged' and 'singleshot'.") if kwargs.get('auto', True): self.run_analysis() def process_data(self): tomography_qubits = self.options_dict.get('tomography_qubits', None) data, Fs, Omega = self.base_analysis.measurement_operators_and_results( tomography_qubits) if 'data_filter' in self.options_dict: data = self.options_dict['data_filter'](data.T).T data = data.T for i, v in enumerate(data): data[i] = v / v.sum() data = data.T Fs = self.options_dict.get('meas_operators', Fs) Fs = [qtp.Qobj(F) for F in Fs] d = Fs[0].shape[0] self.proc_data_dict['d'] = d Omega = self.options_dict.get('covar_matrix', Omega) if Omega is None: Omega = np.diag(np.ones(len(Fs))) elif len(Omega.shape) == 1: Omega = np.diag(Omega) metadata = self.raw_data_dict.get('exp_metadata', self.options_dict.get( 'exp_metadata', {})) if metadata is None: metadata = {} self.raw_data_dict['exp_metadata'] = metadata basis_rots_str = metadata.get('basis_rots_str', None) basis_rots_str = self.options_dict.get('basis_rots_str', basis_rots_str) if basis_rots_str is not None: nr_qubits = int(np.round(np.log2(d))) pulse_list = list(itertools.product(basis_rots_str, repeat=nr_qubits)) rotations = tomo.standard_qubit_pulses_to_rotations(pulse_list) else: rotations = metadata.get('basis_rots', None) rotations = self.options_dict.get('basis_rots', rotations) if rotations is None: raise KeyError("Either 'basis_rots_str' or 'basis_rots' " "parameter must be passed in the options " "dictionary or in the experimental metadata.") rotations = [qtp.Qobj(U) for U in rotations] all_Fs = tomo.rotated_measurement_operators(rotations, Fs) all_Fs = list(itertools.chain(*np.array(all_Fs, dtype=np.object).T)) all_mus = np.array(list(itertools.chain(*data.T))) all_Omegas = sp.linalg.block_diag(*[Omega] * len(data[0])) self.proc_data_dict['meas_operators'] = all_Fs self.proc_data_dict['covar_matrix'] = all_Omegas self.proc_data_dict['meas_results'] = all_mus if self.options_dict.get('pauli_values', False): rho_pauli = tomo.pauli_values_tomography(all_mus,Fs,basis_rots_str) self.proc_data_dict['rho_raw'] = rho_pauli self.proc_data_dict['rho'] = rho_pauli elif self.options_dict.get('pauli_raw', False): pauli_raw = self.generate_raw_pauli_set() rho_raw = tomo.pauli_set_to_density_matrix(pauli_raw) self.proc_data_dict['rho_raw'] = rho_raw self.proc_data_dict['rho'] = rho_raw elif self.options_dict.get('imle', False): it = metadata.get('iterations', None) it = self.options_dict.get('iterations', it) tol = metadata.get('tolerance', None) tol = self.options_dict.get('tolerance', tol) rho_imle = tomo.imle_tomography( all_mus, all_Fs, it, tol) self.proc_data_dict['rho_imle'] = rho_imle self.proc_data_dict['rho'] = rho_imle else: rho_ls = tomo.least_squares_tomography( all_mus, all_Fs, all_Omegas if self.get_param_value('use_covariance_matrix', False) else None ) self.proc_data_dict['rho_ls'] = rho_ls self.proc_data_dict['rho'] = rho_ls if self.options_dict.get('mle', False): rho_mle = tomo.mle_tomography( all_mus, all_Fs, all_Omegas if self.get_param_value('use_covariance_matrix', False) else None, rho_guess=rho_ls) self.proc_data_dict['rho_mle'] = rho_mle self.proc_data_dict['rho'] = rho_mle rho = self.proc_data_dict['rho'] self.proc_data_dict['purity'] = (rho * rho).tr().real rho_target = metadata.get('rho_target', None) rho_target = self.options_dict.get('rho_target', rho_target) if rho_target is not None: self.proc_data_dict['fidelity'] = tomo.fidelity(rho, rho_target) if d == 4: self.proc_data_dict['concurrence'] = tomo.concurrence(rho) else: self.proc_data_dict['concurrence'] = 0 def prepare_plots(self): self.prepare_density_matrix_plot() d = self.proc_data_dict['d'] if 2 ** (d.bit_length() - 1) == d: # dimension is power of two, plot expectation values of pauli # operators self.prepare_pauli_basis_plot() def prepare_density_matrix_plot(self): self.tight_fig = self.options_dict.get('tight_fig', False) rho_target = self.raw_data_dict['exp_metadata'].get('rho_target', None) rho_target = self.options_dict.get('rho_target', rho_target) d = self.proc_data_dict['d'] xtick_labels = self.options_dict.get('rho_ticklabels', None) ytick_labels = self.options_dict.get('rho_ticklabels', None) if 2 ** (d.bit_length() - 1) == d: nr_qubits = d.bit_length() - 1 fmt_string = '{{:0{}b}}'.format(nr_qubits) labels = [fmt_string.format(i) for i in range(2 ** nr_qubits)] if xtick_labels is None: xtick_labels = ['$|' + lbl + r'\rangle$' for lbl in labels] if ytick_labels is None: ytick_labels = [r'$\langle' + lbl + '|$' for lbl in labels] color = (0.5 * np.angle(self.proc_data_dict['rho'].full()) / np.pi) % 1. cmap = self.options_dict.get('rho_colormap', self.default_phase_cmap()) if self.options_dict.get('pauli_raw', False): title = 'Density matrix reconstructed from the Pauli (raw) set\n' elif self.options_dict.get('pauli_values', False): title = 'Density matrix reconstructed from the Pauli set\n' elif self.options_dict.get('mle', False): title = 'Maximum likelihood fit of the density matrix\n' elif self.options_dict.get('it_mle', False): title = 'Iterative maximum likelihood fit of the density matrix\n' else: title = 'Least squares fit of the density matrix\n' empty_artist = mpl.patches.Rectangle((0, 0), 0, 0, visible=False) legend_entries = [(empty_artist, r'Purity, $Tr(\rho^2) = {:.1f}\%$'.format( 100 * self.proc_data_dict['purity']))] if rho_target is not None: legend_entries += [ (empty_artist, r'Fidelity, $F = {:.1f}\%$'.format( 100 * self.proc_data_dict['fidelity']))] if d == 4: legend_entries += [ (empty_artist, r'Concurrence, $C = {:.2f}$'.format( self.proc_data_dict['concurrence']))] meas_string = self.base_analysis.\ raw_data_dict['measurementstring'] if isinstance(meas_string, list): if len(meas_string) > 1: meas_string = meas_string[0] + ' to ' + meas_string[-1] else: meas_string = meas_string[0] self.plot_dicts['density_matrix'] = { 'plotfn': self.plot_bar3D, '3d': True, '3d_azim': -35, '3d_elev': 35, 'xvals': np.arange(d), 'yvals': np.arange(d), 'zvals': np.abs(self.proc_data_dict['rho'].full()), 'zrange': (0, 1), 'color': color, 'colormap': cmap, 'bar_widthx': 0.5, 'bar_widthy': 0.5, 'xtick_loc': np.arange(d), 'xtick_labels': xtick_labels, 'ytick_loc': np.arange(d), 'ytick_labels': ytick_labels, 'ctick_loc': np.linspace(0, 1, 5), 'ctick_labels': ['$0$', r'$\frac{1}{2}\pi$', r'$\pi$', r'$\frac{3}{2}\pi$', r'$2\pi$'], 'clabel': 'Phase (rad)', 'title': (title + self.raw_data_dict['timestamp'] + ' ' + meas_string), 'do_legend': True, 'legend_entries': legend_entries, 'legend_kws': dict(loc='upper left', bbox_to_anchor=(0, 0.94)) } if rho_target is not None: rho_target = qtp.Qobj(rho_target) if rho_target.type == 'ket': rho_target = rho_target * rho_target.dag() elif rho_target.type == 'bra': rho_target = rho_target.dag() * rho_target self.plot_dicts['density_matrix_target'] = { 'plotfn': self.plot_bar3D, '3d': True, '3d_azim': -35, '3d_elev': 35, 'xvals': np.arange(d), 'yvals': np.arange(d), 'zvals': np.abs(rho_target.full()), 'zrange': (0, 1), 'color': (0.5 * np.angle(rho_target.full()) / np.pi) % 1., 'colormap': cmap, 'bar_widthx': 0.5, 'bar_widthy': 0.5, 'xtick_loc': np.arange(d), 'xtick_labels': xtick_labels, 'ytick_loc': np.arange(d), 'ytick_labels': ytick_labels, 'ctick_loc': np.linspace(0, 1, 5), 'ctick_labels': ['$0$', r'$\frac{1}{2}\pi$', r'$\pi$', r'$\frac{3}{2}\pi$', r'$2\pi$'], 'clabel': 'Phase (rad)', 'title': ('Target density matrix\n' + self.raw_data_dict['timestamp'] + ' ' + meas_string), 'bar_kws': dict(zorder=1), } def generate_raw_pauli_set(self): nr_qubits = self.proc_data_dict['d'].bit_length() - 1 pauli_raw_values = [] for op in tomo.generate_pauli_set(nr_qubits)[1]: nr_terms = 0 sum_terms = 0. for meas_op, meas_res in zip(self.proc_data_dict['meas_operators'], self.proc_data_dict['meas_results']): trace = (meas_op*op).tr().real clss = int(trace*2) if clss < 0: sum_terms -= meas_res nr_terms += 1 elif clss > 0: sum_terms += meas_res nr_terms += 1 pauli_raw_values.append(2**nr_qubits*sum_terms/nr_terms) return pauli_raw_values def generate_corr_pauli_set(self,Fs,rotations): nr_qubits = self.proc_data_dict['d'].bit_length() - 1 Fs_corr = [] assign_corr = [] for i,F in enumerate(Fs): new_op = np.zeros(2**nr_qubits) new_op[i] = 1 Fs_corr.append(qtp.Qobj(np.diag(new_op))) assign_corr.append(np.diag(F.full())) pauli_Fs = tomo.rotated_measurement_operators(rotations, Fs_corr) pauli_Fs = list(itertools.chain(*np.array(pauli_Fs, dtype=np.object).T)) mus = self.proc_data_dict['meas_results'] pauli_mus = np.reshape(mus,[-1,2**nr_qubits]) for i,raw_mus in enumerate(pauli_mus): pauli_mus[i] = np.matmul(np.linalg.inv(assign_corr),np.array(raw_mus)) pauli_mus = pauli_mus.flatten() pauli_values = [] for op in tomo.generate_pauli_set(nr_qubits)[1]: nr_terms = 0 sum_terms = 0. for meas_op, meas_res in zip(pauli_Fs,pauli_mus): trace = (meas_op*op).tr().real clss = int(trace*2) if clss < 0: sum_terms -= meas_res nr_terms += 1 elif clss > 0: sum_terms += meas_res nr_terms += 1 pauli_values.append(2**nr_qubits*sum_terms/nr_terms) return pauli_values def prepare_pauli_basis_plot(self): yexp = tomo.density_matrix_to_pauli_basis(self.proc_data_dict['rho']) nr_qubits = self.proc_data_dict['d'].bit_length() - 1 labels = list(itertools.product(*[['I', 'X', 'Y', 'Z']]*nr_qubits)) labels = [''.join(label_list) for label_list in labels] if nr_qubits == 1: order = [1, 2, 3] elif nr_qubits == 2: order = [1, 2, 3, 4, 8, 12, 5, 6, 7, 9, 10, 11, 13, 14, 15] elif nr_qubits == 3: order = [1, 2, 3, 4, 8, 12, 16, 32, 48] + \ [5, 6, 7, 9, 10, 11, 13, 14, 15] + \ [17, 18, 19, 33, 34, 35, 49, 50, 51] + \ [20, 24, 28, 36, 40, 44, 52, 56, 60] + \ [21, 22, 23, 25, 26, 27, 29, 30, 31] + \ [37, 38, 39, 41, 42, 43, 45, 46, 47] + \ [53, 54, 55, 57, 58, 59, 61, 62, 63] else: order = np.arange(4**nr_qubits)[1:] if self.options_dict.get('pauli_raw', False): fit_type = 'raw counts' elif self.options_dict.get('pauli_values', False): fit_type = 'corrected counts' elif self.options_dict.get('mle', False): fit_type = 'maximum likelihood estimation' elif self.options_dict.get('imle', False): fit_type = 'iterative maximum likelihood estimation' else: fit_type = 'least squares fit' meas_string = self.base_analysis. \ raw_data_dict['measurementstring'] if np.ndim(meas_string) > 0: if len(meas_string) > 1: meas_string = meas_string[0] + ' to ' + meas_string[-1] else: meas_string = meas_string[0] self.plot_dicts['pauli_basis'] = { 'plotfn': self.plot_bar, 'xcenters': np.arange(len(order)), 'xwidth': 0.4, 'xrange': (-1, len(order)), 'yvals': np.array(yexp)[order], 'xlabel': r'Pauli operator, $\hat{O}$', 'ylabel': r'Expectation value, $\mathrm{Tr}(\hat{O} \hat{\rho})$', 'title': 'Pauli operators, ' + fit_type + '\n' + self.raw_data_dict['timestamp'] + ' ' + meas_string, 'yrange': (-1.1, 1.1), 'xtick_loc': np.arange(4**nr_qubits - 1), 'xtick_rotation': 90, 'xtick_labels': np.array(labels)[order], 'bar_kws': dict(zorder=10), 'setlabel': 'Fit to experiment', 'do_legend': True } if nr_qubits > 2: self.plot_dicts['pauli_basis']['plotsize'] = (10, 5) rho_target = self.raw_data_dict['exp_metadata'].get('rho_target', None) rho_target = self.options_dict.get('rho_target', rho_target) if rho_target is not None: rho_target = qtp.Qobj(rho_target) ytar = tomo.density_matrix_to_pauli_basis(rho_target) self.plot_dicts['pauli_basis_target'] = { 'plotfn': self.plot_bar, 'ax_id': 'pauli_basis', 'xcenters': np.arange(len(order)), 'xwidth': 0.8, 'yvals': np.array(ytar)[order], 'xtick_loc': np.arange(len(order)), 'xtick_labels': np.array(labels)[order], 'bar_kws': dict(color='0.8', zorder=0), 'setlabel': 'Target values', 'do_legend': True } purity_str = r'Purity, $Tr(\rho^2) = {:.1f}\%$'.format( 100 * self.proc_data_dict['purity']) if rho_target is not None: fidelity_str = '\n' + r'Fidelity, $F = {:.1f}\%$'.format( 100 * self.proc_data_dict['fidelity']) else: fidelity_str = '' if self.proc_data_dict['d'] == 4: concurrence_str = '\n' + r'Concurrence, $C = {:.1f}\%$'.format( 100 * self.proc_data_dict['concurrence']) else: concurrence_str = '' self.plot_dicts['pauli_info_labels'] = { 'ax_id': 'pauli_basis', 'plotfn': self.plot_line, 'xvals': [0], 'yvals': [0], 'line_kws': {'alpha': 0}, 'setlabel': purity_str + fidelity_str, 'do_legend': True } def default_phase_cmap(self): cols = np.array(((41, 39, 231), (61, 130, 163), (208, 170, 39), (209, 126, 4), (181, 28, 20), (238, 76, 152), (251, 130, 242), (162, 112, 251))) / 255 n = len(cols) cdict = { 'red': [[i/n, cols[i%n][0], cols[i%n][0]] for i in range(n+1)], 'green': [[i/n, cols[i%n][1], cols[i%n][1]] for i in range(n+1)], 'blue': [[i/n, cols[i%n][2], cols[i%n][2]] for i in range(n+1)], } return mpl.colors.LinearSegmentedColormap('DMDefault', cdict) class ReadoutROPhotonsAnalysis(Single_Qubit_TimeDomainAnalysis): """ Analyses the photon number in the RO based on the readout_photons_in_resonator function function specific options for options dict: f_qubit chi artif_detuning print_fit_results """ def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, close_figs: bool=False, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=False, auto: bool=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, close_figs=close_figs, label=label, extract_only=extract_only, do_fitting=do_fitting) if self.options_dict.get('TwoD', None) is None: self.options_dict['TwoD'] = True self.label = label self.params_dict = { 'measurementstring': 'measurementstring', 'sweep_points': 'sweep_points', 'sweep_points_2D': 'sweep_points_2D', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = self.options_dict.get('numeric_params', OrderedDict()) self.kappa = self.options_dict.get('kappa_effective', None) self.chi = self.options_dict.get('chi', None) self.T2 = self.options_dict.get('T2echo', None) self.artif_detuning = self.options_dict.get('artif_detuning', 0) if (self.kappa is None) or (self.chi is None) or (self.T2 is None): raise ValueError('kappa_effective, chi and T2echo must be passed to ' 'the options_dict.') if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() self.proc_data_dict['qubit_state'] = [[],[]] self.proc_data_dict['delay_to_relax'] = self.raw_data_dict[ 'sweep_points_2D'][0] self.proc_data_dict['ramsey_times'] = [] for i,x in enumerate(np.transpose(self.raw_data_dict[ 'measured_data']['raw w0 _measure'][0])): self.proc_data_dict['qubit_state'][0].append([]) self.proc_data_dict['qubit_state'][1].append([]) for j,y in enumerate(np.transpose(self.raw_data_dict[ 'measured_data']['raw w0 _measure'][0])[i]): if j%2 == 0: self.proc_data_dict['qubit_state'][0][i].append(y) else: self.proc_data_dict['qubit_state'][1][i].append(y) for i,x in enumerate( self.raw_data_dict['sweep_points'][0]): if i % 2 == 0: self.proc_data_dict['ramsey_times'].append(x) #I STILL NEED to pass Chi def prepare_fitting(self): self.proc_data_dict['photon_number'] = [[],[]] self.proc_data_dict['fit_results'] = [] self.proc_data_dict['ramsey_fit_results'] = [[],[]] for i,tau in enumerate(self.proc_data_dict['delay_to_relax']): self.proc_data_dict['ramsey_fit_results'][0].append(self.fit_Ramsey( self.proc_data_dict['ramsey_times'][:-4], self.proc_data_dict['qubit_state'][0][i][:-4]/ max(self.proc_data_dict['qubit_state'][0][i][:-4]), state=0, kw=self.options_dict)) self.proc_data_dict['ramsey_fit_results'][1].append(self.fit_Ramsey( self.proc_data_dict['ramsey_times'][:-4], self.proc_data_dict['qubit_state'][1][i][:-4]/ max(self.proc_data_dict['qubit_state'][1][i][:-4]), state=1, kw=self.options_dict)) n01 = self.proc_data_dict['ramsey_fit_results' ][0][i][0].params['n0'].value n02 = self.proc_data_dict['ramsey_fit_results' ][1][i][0].params['n0'].value self.proc_data_dict['photon_number'][0].append(n01) self.proc_data_dict['photon_number'][1].append(n02) def run_fitting(self): print_fit_results = self.params_dict.pop('print_fit_results',False) exp_dec_mod = lmfit.Model(fit_mods.ExpDecayFunc) exp_dec_mod.set_param_hint('n', value=1, vary=False) exp_dec_mod.set_param_hint('offset', value=0, min=0, vary=True) exp_dec_mod.set_param_hint('tau', value=self.proc_data_dict[ 'delay_to_relax'][-1], min=1e-11, vary=True) exp_dec_mod.set_param_hint('amplitude', value=1, min=0, vary=True) params = exp_dec_mod.make_params() self.fit_res = OrderedDict() self.fit_res['ground_state'] = exp_dec_mod.fit( data=self.proc_data_dict['photon_number'][0], params=params, t=self.proc_data_dict['delay_to_relax']) self.fit_res['excited_state'] = exp_dec_mod.fit( data=self.proc_data_dict['photon_number'][1], params=params, t=self.proc_data_dict['delay_to_relax']) if print_fit_results: print(self.fit_res['ground_state'].fit_report()) print(self.fit_res['excited_state'].fit_report()) def fit_Ramsey(self, x, y, state, **kw): x = np.array(x) y = np.array(y) exp_dec_p_mod = lmfit.Model(fit_mods.ExpDecayPmod) comb_exp_dec_mod = lmfit.Model(fit_mods.CombinedOszExpDecayFunc) average = np.mean(y) ft_of_data = np.fft.fft(y) index_of_fourier_maximum = np.argmax(np.abs( ft_of_data[1:len(ft_of_data) // 2])) + 1 max_ramsey_delay = x[-1] - x[0] fft_axis_scaling = 1 / max_ramsey_delay freq_est = fft_axis_scaling * index_of_fourier_maximum n_est = (freq_est-self.artif_detuning)/(2 * self.chi) exp_dec_p_mod.set_param_hint('T2echo', value=self.T2, vary=False) exp_dec_p_mod.set_param_hint('offset', value=average, min=0, vary=True) exp_dec_p_mod.set_param_hint('delta', value=self.artif_detuning, vary=False) exp_dec_p_mod.set_param_hint('amplitude', value=1, min=0, vary=True) exp_dec_p_mod.set_param_hint('kappa', value=self.kappa[state], vary=False) exp_dec_p_mod.set_param_hint('chi', value=self.chi, vary=False) exp_dec_p_mod.set_param_hint('n0', value=n_est, min=0, vary=True) exp_dec_p_mod.set_param_hint('phase', value=0, vary=True) comb_exp_dec_mod.set_param_hint('tau', value=self.T2, vary=True) comb_exp_dec_mod.set_param_hint('offset', value=average, min=0, vary=True) comb_exp_dec_mod.set_param_hint('oscillation_offset', value=average, min=0, vary=True) comb_exp_dec_mod.set_param_hint('amplitude', value=1, min=0, vary=True) comb_exp_dec_mod.set_param_hint('tau_gauss', value=self.kappa[state], vary=True) comb_exp_dec_mod.set_param_hint('n0', value=n_est, min=0, vary=True) comb_exp_dec_mod.set_param_hint('phase', value=0, vary=True) comb_exp_dec_mod.set_param_hint('delta', value=self.artif_detuning, vary=False) comb_exp_dec_mod.set_param_hint('chi', value=self.chi, vary=False) if (np.average(y[:4]) > np.average(y[4:8])): phase_estimate = 0 else: phase_estimate = np.pi exp_dec_p_mod.set_param_hint('phase', value=phase_estimate, vary=True) comb_exp_dec_mod.set_param_hint('phase', value=phase_estimate, vary=True) amplitude_guess = 0.5 if np.all(np.logical_and(y >= 0, y <= 1)): exp_dec_p_mod.set_param_hint('amplitude', value=amplitude_guess, min=0.00, max=4.0, vary=True) comb_exp_dec_mod.set_param_hint('amplitude', value=amplitude_guess, min=0.00, max=4.0, vary=True) else: print('data is not normalized, varying amplitude') exp_dec_p_mod.set_param_hint('amplitude', value=max(y), min=0.00, max=4.0, vary=True) comb_exp_dec_mod.set_param_hint('amplitude', value=max(y), min=0.00, max=4.0, vary=True) fit_res_1 = exp_dec_p_mod.fit(data=y, t=x, params= exp_dec_p_mod.make_params()) fit_res_2 = comb_exp_dec_mod.fit(data=y, t=x, params= comb_exp_dec_mod.make_params()) if fit_res_1.chisqr > .35: log.warning('Fit did not converge, varying phase') fit_res_lst = [] for phase_estimate in np.linspace(0, 2*np.pi, 10): for i, del_amp in enumerate(np.linspace( -max(y)/10, max(y)/10, 10)): exp_dec_p_mod.set_param_hint('phase', value=phase_estimate, vary=False) exp_dec_p_mod.set_param_hint('amplitude', value=max(y)+ del_amp) fit_res_lst += [exp_dec_p_mod.fit( data=y, t=x, params= exp_dec_p_mod.make_params())] chisqr_lst = [fit_res_1.chisqr for fit_res_1 in fit_res_lst] fit_res_1 = fit_res_lst[np.argmin(chisqr_lst)] if fit_res_2.chisqr > .35: log.warning('Fit did not converge, varying phase') fit_res_lst = [] for phase_estimate in np.linspace(0, 2*np.pi, 10): for i, del_amp in enumerate(np.linspace( -max(y)/10, max(y)/10, 10)): comb_exp_dec_mod.set_param_hint('phase', value=phase_estimate, vary=False) comb_exp_dec_mod.set_param_hint('amplitude', value=max(y)+ del_amp) fit_res_lst += [comb_exp_dec_mod.fit( data=y, t=x, params= comb_exp_dec_mod.make_params())] chisqr_lst = [fit_res_2.chisqr for fit_res_2 in fit_res_lst] fit_res_2 = fit_res_lst[np.argmin(chisqr_lst)] if fit_res_1.chisqr < fit_res_2.chisqr: self.proc_data_dict['params'] = exp_dec_p_mod.make_params() return [fit_res_1,fit_res_1,fit_res_2] else: self.proc_data_dict['params'] = comb_exp_dec_mod.make_params() return [fit_res_2,fit_res_1,fit_res_2] def prepare_plots(self): self.prepare_2D_sweep_plot() self.prepare_photon_number_plot() self.prepare_ramsey_plots() def prepare_2D_sweep_plot(self): self.plot_dicts['off_full_data_'+self.label] = { 'title': 'Raw data |g>', 'plotfn': self.plot_colorxy, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': self.proc_data_dict['delay_to_relax'], 'ylabel': 'Delay after first RO-pulse', 'yunit': 's', 'zvals': np.array(self.proc_data_dict['qubit_state'][0]) } self.plot_dicts['on_full_data_'+self.label] = { 'title': 'Raw data |e>', 'plotfn': self.plot_colorxy, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': self.proc_data_dict['delay_to_relax'], 'ylabel': 'Delay after first RO-pulse', 'yunit': 's', 'zvals': np.array(self.proc_data_dict['qubit_state'][1]) } def prepare_ramsey_plots(self): x_fit = np.linspace(self.proc_data_dict['ramsey_times'][0], max(self.proc_data_dict['ramsey_times']),101) for i in range(len(self.proc_data_dict['ramsey_fit_results'][0])): self.plot_dicts['off_'+str(i)] = { 'title': 'Ramsey w t_delay = '+\ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |g> state', 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': np.array(self.proc_data_dict['qubit_state'][0][i]/ max(self.proc_data_dict['qubit_state'][0][i][:-4])), 'ylabel': 'Measured qubit state', 'yunit': '', 'marker': 'o', 'setlabel': '|g> data_'+str(i), 'do_legend': True } self.plot_dicts['off_fit_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |g> state', 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][0][i][1].eval( self.proc_data_dict['ramsey_fit_results'][0][i][1].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|g> fit_model'+str(i), 'do_legend': True } self.plot_dicts['off_fit_2_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |g> state', 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][0][i][2].eval( self.proc_data_dict['ramsey_fit_results'][0][i][2].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|g> fit_simpel_model'+str(i), 'do_legend': True } self.plot_dicts['hidden_g_'+str(i)] = { 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'Residual photon count = ' ''+str(self.proc_data_dict['photon_number'][0][i]), 'do_legend': True } self.plot_dicts['on_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |e> state', 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': np.array(self.proc_data_dict['qubit_state'][1][i]/ max(self.proc_data_dict['qubit_state'][1][i][:-4])), 'ylabel': 'Measured qubit state', 'yunit': '', 'marker': 'o', 'setlabel': '|e> data_'+str(i), 'do_legend': True } self.plot_dicts['on_fit_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |e> state', 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][1][i][1].eval( self.proc_data_dict['ramsey_fit_results'][1][i][1].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|e> fit_model'+str(i), 'do_legend': True } self.plot_dicts['on_fit_2_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |e> state', 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][1][i][2].eval( self.proc_data_dict['ramsey_fit_results'][1][i][2].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|e> fit_simpel_model'+str(i), 'do_legend': True } self.plot_dicts['hidden_e_'+str(i)] = { 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'Residual photon count = ' ''+str(self.proc_data_dict['photon_number'][1][i]), 'do_legend': True } def prepare_photon_number_plot(self): ylabel = 'Average photon number' yunit = '' x_fit = np.linspace(min(self.proc_data_dict['delay_to_relax']), max(self.proc_data_dict['delay_to_relax']),101) minmax_data = [min(min(self.proc_data_dict['photon_number'][0]), min(self.proc_data_dict['photon_number'][1])), max(max(self.proc_data_dict['photon_number'][0]), max(self.proc_data_dict['photon_number'][1]))] minmax_data[0] -= minmax_data[0]/5 minmax_data[1] += minmax_data[1]/5 self.proc_data_dict['photon_number'][1], self.fit_res['excited_state'].eval( self.fit_res['excited_state'].params, t=x_fit) self.plot_dicts['Photon number count'] = { 'plotfn': self.plot_line, 'xlabel': 'Delay after first RO-pulse', 'ax_id': 'Photon number count ', 'xunit': 's', 'xvals': self.proc_data_dict['delay_to_relax'], 'yvals': self.proc_data_dict['photon_number'][0], 'ylabel': ylabel, 'yunit': yunit, 'yrange': minmax_data, 'title': 'Residual photon number', 'color': 'b', 'linestyle': '', 'marker': 'o', 'setlabel': '|g> data', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['main2'] = { 'plotfn': self.plot_line, 'xunit': 's', 'xvals': x_fit, 'yvals': self.fit_res['ground_state'].eval( self.fit_res['ground_state'].params, t=x_fit), 'yrange': minmax_data, 'ax_id': 'Photon number count ', 'color': 'b', 'linestyle': '-', 'marker': '', 'setlabel': '|g> fit', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['main3'] = { 'plotfn': self.plot_line, 'xunit': 's', 'xvals': self.proc_data_dict['delay_to_relax'], 'yvals': self.proc_data_dict['photon_number'][1], 'yrange': minmax_data, 'ax_id': 'Photon number count ', 'color': 'r', 'linestyle': '', 'marker': 'o', 'setlabel': '|e> data', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['main4'] = { 'plotfn': self.plot_line, 'xunit': 's', 'ax_id': 'Photon number count ', 'xvals': x_fit, 'yvals': self.fit_res['excited_state'].eval( self.fit_res['excited_state'].params, t=x_fit), 'yrange': minmax_data, 'ylabel': ylabel, 'color': 'r', 'linestyle': '-', 'marker': '', 'setlabel': '|e> fit', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['hidden_1'] = { 'ax_id': 'Photon number count ', 'plotfn': self.plot_line, 'yrange': minmax_data, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'tau_g = ' ''+str("%.3f" % (self.fit_res['ground_state'].params['tau'].value*1e9))+'' ' ns', 'do_legend': True } self.plot_dicts['hidden_2'] = { 'ax_id': 'Photon number count ', 'plotfn': self.plot_line, 'yrange': minmax_data, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'tau_e = ' ''+str("%.3f" % (self.fit_res['excited_state'].params['tau'].value*1e9))+'' ' ns', 'do_legend': True} class RODynamicPhaseAnalysis(MultiQubit_TimeDomain_Analysis): def __init__(self, qb_names: list=None, t_start: str=None, t_stop: str=None, data_file_path: str=None, single_timestamp: bool=False, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(qb_names=qb_names, t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting, auto=False) if auto: self.run_analysis() def process_data(self): super().process_data() if 'qbp_name' in self.metadata: self.pulsed_qbname = self.metadata['qbp_name'] else: self.pulsed_qbname = self.options_dict.get('pulsed_qbname') self.measured_qubits = [qbn for qbn in self.channel_map if qbn != self.pulsed_qbname] def prepare_fitting(self): self.fit_dicts = OrderedDict() for qbn in self.measured_qubits: ro_dict = self.proc_data_dict['projected_data_dict'][qbn] sweep_points = self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] for ro_suff, data in ro_dict.items(): cos_mod = lmfit.Model(fit_mods.CosFunc) if self.num_cal_points != 0: data = data[:-self.num_cal_points] guess_pars = fit_mods.Cos_guess( model=cos_mod, t=sweep_points, data=data) guess_pars['amplitude'].vary = True guess_pars['offset'].vary = True guess_pars['frequency'].vary = True guess_pars['phase'].vary = True key = 'cos_fit_{}{}'.format(qbn, ro_suff) self.fit_dicts[key] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': sweep_points}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): self.dynamic_phases = OrderedDict() for meas_qbn in self.measured_qubits: self.dynamic_phases[meas_qbn] = \ (self.fit_dicts['cos_fit_{}_measure'.format(meas_qbn)][ 'fit_res'].best_values['phase'] - self.fit_dicts['cos_fit_{}_ref_measure'.format(meas_qbn)][ 'fit_res'].best_values['phase'])*180/np.pi def prepare_plots(self): super().prepare_plots() if self.do_fitting: for meas_qbn in self.measured_qubits: sweep_points_dict = self.proc_data_dict['sweep_points_dict'][ meas_qbn] if self.num_cal_points != 0: yvals = [self.proc_data_dict['projected_data_dict'][meas_qbn][ '_ref_measure'][:-self.num_cal_points], self.proc_data_dict['projected_data_dict'][meas_qbn][ '_measure'][:-self.num_cal_points]] sweep_points = sweep_points_dict['msmt_sweep_points'] # plot cal points for i, cal_pts_idxs in enumerate( self.cal_states_dict.values()): key = list(self.cal_states_dict)[i] + meas_qbn self.plot_dicts[key] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'plotfn': self.plot_line, 'xvals': np.mean([ sweep_points_dict['cal_points_sweep_points'][ cal_pts_idxs], sweep_points_dict['cal_points_sweep_points'][ cal_pts_idxs]], axis=0), 'yvals': np.mean([ self.proc_data_dict['projected_data_dict'][meas_qbn][ '_ref_measure'][cal_pts_idxs], self.proc_data_dict['projected_data_dict'][meas_qbn][ '_measure'][cal_pts_idxs]], axis=0), 'setlabel': list(self.cal_states_dict)[i], 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left', 'linestyle': 'none', 'line_kws': {'color': self.get_cal_state_color( list(self.cal_states_dict)[i])}} else: yvals = [self.proc_data_dict['projected_data_dict'][meas_qbn][ '_ref_measure'], self.proc_data_dict['projected_data_dict'][meas_qbn][ '_measure']] sweep_points = sweep_points_dict['sweep_points'] self.plot_dicts['dyn_phase_plot_' + meas_qbn] = { 'plotfn': self.plot_line, 'xvals': [sweep_points, sweep_points], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': yvals, 'ylabel': 'Excited state population', 'yunit': '', 'setlabel': ['with measurement', 'no measurement'], 'title': (self.raw_data_dict['timestamps'][0] + ' ' + self.raw_data_dict['measurementstring'][0]), 'linestyle': 'none', 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} self.plot_dicts['cos_fit_' + meas_qbn + '_ref_measure'] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_{}_ref_measure'.format( meas_qbn)]['fit_res'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} self.plot_dicts['cos_fit_' + meas_qbn + '_measure'] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_{}_measure'.format( meas_qbn)]['fit_res'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} textstr = 'Dynamic phase = {:.2f}'.format( self.dynamic_phases[meas_qbn]) + r'$^{\circ}$' self.plot_dicts['text_msg_' + meas_qbn] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'ypos': -0.175, 'xpos': 0.5, 'horizontalalignment': 'center', 'verticalalignment': 'top', 'plotfn': self.plot_text, 'text_string': textstr} class FluxAmplitudeSweepAnalysis(MultiQubit_TimeDomain_Analysis): def __init__(self, qb_names, *args, **kwargs): self.mask_freq = kwargs.pop('mask_freq', None) self.mask_amp = kwargs.pop('mask_amp', None) super().__init__(qb_names, *args, **kwargs) def extract_data(self): super().extract_data() # Set some default values specific to FluxPulseScopeAnalysis if the # respective options have not been set by the user or in the metadata. # (We do not do this in the init since we have to wait until # metadata has been extracted.) if self.get_param_value('rotation_type', default_value=None) is None: self.options_dict['rotation_type'] = 'global_PCA' if self.get_param_value('TwoD', default_value=None) is None: self.options_dict['TwoD'] = True def process_data(self): super().process_data() pdd = self.proc_data_dict nr_sp = {qb: len(pdd['sweep_points_dict'][qb]['sweep_points']) for qb in self.qb_names} nr_sp2d = {qb: len(list(pdd['sweep_points_2D_dict'][qb].values())[0]) for qb in self.qb_names} nr_cp = self.num_cal_points # make matrix out of vector data_reshaped = {qb: np.reshape(deepcopy( pdd['data_to_fit'][qb]).T.flatten(), (nr_sp[qb], nr_sp2d[qb])) for qb in self.qb_names} pdd['data_reshaped'] = data_reshaped # remove calibration points from data to fit data_no_cp = {qb: np.array([pdd['data_reshaped'][qb][i, :] for i in range(nr_sp[qb]-nr_cp)]) for qb in self.qb_names} # apply mask for qb in self.qb_names: if self.mask_freq is None: self.mask_freq = [True]*nr_sp2d[qb] # by default, no point is masked if self.mask_amp is None: self.mask_amp = [True]*(nr_sp[qb]-nr_cp) pdd['freqs_masked'] = {} pdd['amps_masked'] = {} pdd['data_masked'] = {} for qb in self.qb_names: sp_param = [k for k in self.mospm[qb] if 'freq' in k][0] pdd['freqs_masked'][qb] = \ pdd['sweep_points_2D_dict'][qb][sp_param][self.mask_freq] pdd['amps_masked'][qb] = \ pdd['sweep_points_dict'][qb]['sweep_points'][ :-self.num_cal_points][self.mask_amp] data_masked = data_no_cp[qb][self.mask_amp,:] pdd['data_masked'][qb] = data_masked[:, self.mask_freq] def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() # Gaussian fit of amplitude slices gauss_mod = fit_mods.GaussianModel_v2() for qb in self.qb_names: for i in range(len(pdd['amps_masked'][qb])): data = pdd['data_masked'][qb][i,:] self.fit_dicts[f'gauss_fit_{qb}_{i}'] = { 'model': gauss_mod, 'fit_xvals': {'x': pdd['freqs_masked'][qb]}, 'fit_yvals': {'data': data} } def analyze_fit_results(self): pdd = self.proc_data_dict pdd['gauss_center'] = {} pdd['gauss_center_err'] = {} pdd['filtered_center'] = {} pdd['filtered_amps'] = {} for qb in self.qb_names: pdd['gauss_center'][qb] = np.array([ self.fit_res[f'gauss_fit_{qb}_{i}'].best_values['center'] for i in range(len(pdd['amps_masked'][qb]))]) pdd['gauss_center_err'][qb] = np.array([ self.fit_res[f'gauss_fit_{qb}_{i}'].params['center'].stderr for i in range(len(pdd['amps_masked'][qb]))]) # filter out points with stderr > 1e6 Hz pdd['filtered_center'][qb] = np.array([]) pdd['filtered_amps'][qb] = np.array([]) for i, stderr in enumerate(pdd['gauss_center_err'][qb]): try: if stderr < 1e6: pdd['filtered_center'][qb] = \ np.append(pdd['filtered_center'][qb], pdd['gauss_center'][qb][i]) pdd['filtered_amps'][qb] = \ np.append(pdd['filtered_amps'][qb], pdd['sweep_points_dict'][qb]\ ['sweep_points'][:-self.num_cal_points][i]) except: continue # if gaussian fitting does not work (i.e. all points were filtered # out above) use max value of data to get an estimate of freq if len(pdd['filtered_amps'][qb]) == 0: for qb in self.qb_names: freqs = np.array([]) for i in range(pdd['data_masked'][qb].shape[0]): freqs = np.append(freqs, pdd['freqs_masked'][qb]\ [np.argmax(pdd['data_masked'][qb][i,:])]) pdd['filtered_center'][qb] = freqs pdd['filtered_amps'][qb] = pdd['amps_masked'][qb] # fit the freqs to the qubit model self.fit_func = self.get_param_value('fit_func', fit_mods.Qubit_dac_to_freq) if self.fit_func == fit_mods.Qubit_dac_to_freq_precise: fit_guess_func = fit_mods.Qubit_dac_arch_guess_precise else: fit_guess_func = fit_mods.Qubit_dac_arch_guess freq_mod = lmfit.Model(self.fit_func) fixed_params = \ self.get_param_value("fixed_params_for_fit", {}).get(qb, None) if fixed_params is None: fixed_params = dict(E_c=0) freq_mod.guess = fit_guess_func.__get__( freq_mod, freq_mod.__class__) self.fit_dicts[f'freq_fit_{qb}'] = { 'model': freq_mod, 'fit_xvals': {'dac_voltage': pdd['filtered_amps'][qb]}, 'fit_yvals': {'data': pdd['filtered_center'][qb]}, "guessfn_pars": {"fixed_params": fixed_params}} self.run_fitting() def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: sp_param = [k for k in self.mospm[qb] if 'freq' in k][0] self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'data_2d_{qb}', 'plotfn': self.plot_colorxy, 'xvals': pdd['sweep_points_dict'][qb]['sweep_points'], 'yvals': pdd['sweep_points_2D_dict'][qb][sp_param], 'zvals': np.transpose(pdd['data_reshaped'][qb]), 'xlabel': r'Flux pulse amplitude', 'xunit': 'V', 'ylabel': r'Qubit drive frequency', 'yunit': 'Hz', 'zlabel': 'Excited state population', } if self.do_fitting: if self.options_dict.get('scatter', True): label = f'freq_scatter_{qb}_scatter' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'data_2d_{qb}', 'plotfn': self.plot_line, 'linestyle': '', 'marker': 'o', 'xvals': pdd['filtered_amps'][qb], 'yvals': pdd['filtered_center'][qb], 'xlabel': r'Flux pulse amplitude', 'xunit': 'V', 'ylabel': r'Qubit drive frequency', 'yunit': 'Hz', 'color': 'white', } amps = pdd['sweep_points_dict'][qb]['sweep_points'][ :-self.num_cal_points] label = f'freq_scatter_{qb}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'data_2d_{qb}', 'plotfn': self.plot_line, 'linestyle': '-', 'marker': '', 'xvals': amps, 'yvals': self.fit_func(amps, **self.fit_res[f'freq_fit_{qb}'].best_values), 'color': 'red', } class T1FrequencySweepAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() pdd = self.proc_data_dict nr_cp = self.num_cal_points self.lengths = OrderedDict() self.amps = OrderedDict() self.freqs = OrderedDict() for qbn in self.qb_names: len_key = [pn for pn in self.mospm[qbn] if 'length' in pn] if len(len_key) == 0: raise KeyError('Couldn"t find sweep points corresponding to ' 'flux pulse length.') self.lengths[qbn] = self.sp.get_sweep_params_property( 'values', 0, len_key[0]) amp_key = [pn for pn in self.mospm[qbn] if 'amp' in pn] if len(len_key) == 0: raise KeyError('Couldn"t find sweep points corresponding to ' 'flux pulse amplitude.') self.amps[qbn] = self.sp.get_sweep_params_property( 'values', 1, amp_key[0]) freq_key = [pn for pn in self.mospm[qbn] if 'freq' in pn] if len(freq_key) == 0: self.freqs[qbn] = None else: self.freqs[qbn] =self.sp.get_sweep_params_property( 'values', 1, freq_key[0]) nr_amps = len(self.amps[self.qb_names[0]]) nr_lengths = len(self.lengths[self.qb_names[0]]) # make matrix out of vector data_reshaped_no_cp = {qb: np.reshape(deepcopy( pdd['data_to_fit'][qb][ :, :pdd['data_to_fit'][qb].shape[1]-nr_cp]).flatten(), (nr_amps, nr_lengths)) for qb in self.qb_names} pdd['data_reshaped_no_cp'] = data_reshaped_no_cp pdd['mask'] = {qb: np.ones(nr_amps, dtype=np.bool) for qb in self.qb_names} def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() exp_mod = fit_mods.ExponentialModel() for qb in self.qb_names: for i, data in enumerate(pdd['data_reshaped_no_cp'][qb]): self.fit_dicts[f'exp_fit_{qb}_amp_{i}'] = { 'model': exp_mod, 'fit_xvals': {'x': self.lengths[qb]}, 'fit_yvals': {'data': data}} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['T1'] = {} pdd['T1_err'] = {} for qb in self.qb_names: pdd['T1'][qb] = np.array([ abs(self.fit_res[f'exp_fit_{qb}_amp_{i}'].best_values['decay']) for i in range(len(self.amps[qb]))]) pdd['T1_err'][qb] = np.array([ self.fit_res[f'exp_fit_{qb}_amp_{i}'].params['decay'].stderr for i in range(len(self.amps[qb]))]) for i in range(len(self.amps[qb])): try: if pdd['T1_err'][qb][i] >= 10 * pdd['T1'][qb][i]: pdd['mask'][qb][i] = False except TypeError: pdd['mask'][qb][i] = False def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: for p, param_values in enumerate([self.amps, self.freqs]): if param_values is None: continue suffix = '_amp' if p == 0 else '_freq' mask = pdd['mask'][qb] xlabel = r'Flux pulse amplitude' if p == 0 else \ r'Derived qubit frequency' if self.do_fitting: # Plot T1 vs flux pulse amplitude label = f'T1_fit_{qb}{suffix}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_line, 'linestyle': '-', 'xvals': param_values[qb][mask], 'yvals': pdd['T1'][qb][mask], 'yerr': pdd['T1_err'][qb][mask], 'xlabel': xlabel, 'xunit': 'V' if p == 0 else 'Hz', 'ylabel': r'T1', 'yunit': 's', 'color': 'blue', } # Plot rotated integrated average in dependece of flux pulse # amplitude and length label = f'T1_color_plot_{qb}{suffix}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_colorxy, 'linestyle': '-', 'xvals': param_values[qb][mask], 'yvals': self.lengths[qb], 'zvals': np.transpose(pdd['data_reshaped_no_cp'][qb][mask]), 'xlabel': xlabel, 'xunit': 'V' if p == 0 else 'Hz', 'ylabel': r'Flux pulse length', 'yunit': 's', 'zlabel': r'Excited state population' } # Plot population loss for the first flux pulse length as a # function of flux pulse amplitude label = f'Pop_loss_{qb}{suffix}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_line, 'linestyle': '-', 'xvals': param_values[qb][mask], 'yvals': 1 - pdd['data_reshaped_no_cp'][qb][:, 0][mask], 'xlabel': xlabel, 'xunit': 'V' if p == 0 else 'Hz', 'ylabel': r'Pop. loss @ {:.0f} ns'.format( self.lengths[qb][0]/1e-9 ), 'yunit': '', } # Plot all fits in single figure if self.options_dict.get('all_fits', False) and self.do_fitting: colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i in range(len(self.amps[qb])): color = colormap(i/(len(self.amps[qb])-1)) label = f'exp_fit_{qb}_amp_{i}' fitid = param_values[qb][i] self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'fig_id': f'T1_fits_{qb}', 'xlabel': r'Flux pulse length', 'xunit': 's', 'ylabel': r'Excited state population', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': f'freq={fitid:.4f}' if p == 1 else f'amp={fitid:.4f}', 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } label = f'freq_scatter_{qb}_{i}' self.plot_dicts[label] = { 'fig_id': f'T1_fits_{qb}', 'plotfn': self.plot_line, 'xvals': self.lengths[qb], 'linestyle': '', 'yvals': pdd['data_reshaped_no_cp'][qb][i, :], 'color': color, 'setlabel': f'freq={fitid:.4f}' if p == 1 else f'amp={fitid:.4f}', } class T2FrequencySweepAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() pdd = self.proc_data_dict nr_cp = self.num_cal_points nr_amps = len(self.metadata['amplitudes']) nr_lengths = len(self.metadata['flux_lengths']) nr_phases = len(self.metadata['phases']) # make matrix out of vector data_reshaped_no_cp = {qb: np.reshape( deepcopy(pdd['data_to_fit'][qb][ :, :pdd['data_to_fit'][qb].shape[1]-nr_cp]).flatten(), (nr_amps, nr_lengths, nr_phases)) for qb in self.qb_names} pdd['data_reshaped_no_cp'] = data_reshaped_no_cp if self.metadata['use_cal_points']: pdd['cal_point_data'] = {qb: deepcopy( pdd['data_to_fit'][qb][ len(pdd['data_to_fit'][qb])-nr_cp:]) for qb in self.qb_names} pdd['mask'] = {qb: np.ones(nr_amps, dtype=np.bool) for qb in self.qb_names} def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() nr_amps = len(self.metadata['amplitudes']) for qb in self.qb_names: for i in range(nr_amps): for j, data in enumerate(pdd['data_reshaped_no_cp'][qb][i]): cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.metadata['phases'], data=data, freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts[f'cos_fit_{qb}_{i}_{j}'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.metadata['phases']}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['T2'] = {} pdd['T2_err'] = {} pdd['phase_contrast'] = {} nr_lengths = len(self.metadata['flux_lengths']) nr_amps = len(self.metadata['amplitudes']) for qb in self.qb_names: pdd['phase_contrast'][qb] = {} exp_mod = fit_mods.ExponentialModel() for i in range(nr_amps): pdd['phase_contrast'][qb][f'amp_{i}'] = np.array([self.fit_res[ f'cos_fit_{qb}_{i}_{j}' ].best_values['amplitude'] for j in range(nr_lengths)]) self.fit_dicts[f'exp_fit_{qb}_{i}'] = { 'model': exp_mod, 'fit_xvals': {'x': self.metadata['flux_lengths']}, 'fit_yvals': {'data': np.array([self.fit_res[ f'cos_fit_{qb}_{i}_{j}' ].best_values['amplitude'] for j in range(nr_lengths)])}} self.run_fitting() pdd['T2'][qb] = np.array([ abs(self.fit_res[f'exp_fit_{qb}_{i}'].best_values['decay']) for i in range(len(self.metadata['amplitudes']))]) pdd['mask'][qb] = [] for i in range(len(self.metadata['amplitudes'])): try: if self.fit_res[f'exp_fit_{qb}_{i}']\ .params['decay'].stderr >= 1e-5: pdd['mask'][qb][i] = False except TypeError: pdd['mask'][qb][i] = False def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: mask = pdd['mask'][qb] label = f'T2_fit_{qb}' xvals = self.metadata['amplitudes'][mask] if \ self.metadata['frequencies'] is None else \ self.metadata['frequencies'][mask] xlabel = r'Flux pulse amplitude' if \ self.metadata['frequencies'] is None else \ r'Derived qubit frequency' self.plot_dicts[label] = { 'plotfn': self.plot_line, 'linestyle': '-', 'xvals': xvals, 'yvals': pdd['T2'][qb][mask], 'xlabel': xlabel, 'xunit': 'V' if self.metadata['frequencies'] is None else 'Hz', 'ylabel': r'T2', 'yunit': 's', 'color': 'blue', } # Plot all fits in single figure if not self.options_dict.get('all_fits', False): continue colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i in range(len(self.metadata['amplitudes'])): color = colormap(i/(len(self.metadata['frequencies'])-1)) label = f'exp_fit_{qb}_amp_{i}' freqs = self.metadata['frequencies'] is not None fitid = self.metadata.get('frequencies', self.metadata['amplitudes'])[i] self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'T2_fits_{qb}', 'xlabel': r'Flux pulse length', 'xunit': 's', 'ylabel': r'Excited state population', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': f'freq={fitid:.4f}' if freqs else f'amp={fitid:.4f}', 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } label = f'freq_scatter_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'T2_fits_{qb}', 'plotfn': self.plot_line, 'xvals': self.metadata['phases'], 'linestyle': '', 'yvals': pdd['data_reshaped_no_cp'][qb][i,:], 'color': color, 'setlabel': f'freq={fitid:.4f}' if freqs else f'amp={fitid:.4f}', } class MeasurementInducedDephasingAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() rdd = self.raw_data_dict pdd = self.proc_data_dict pdd['data_reshaped'] = {qb: [] for qb in pdd['data_to_fit']} pdd['amps_reshaped'] = np.unique(self.metadata['hard_sweep_params']['ro_amp_scale']['values']) pdd['phases_reshaped'] = [] for amp in pdd['amps_reshaped']: mask = self.metadata['hard_sweep_params']['ro_amp_scale']['values'] == amp pdd['phases_reshaped'].append(self.metadata['hard_sweep_params']['phase']['values'][mask]) for qb in self.qb_names: pdd['data_reshaped'][qb].append(pdd['data_to_fit'][qb][:len(mask)][mask]) def prepare_fitting(self): pdd = self.proc_data_dict rdd = self.raw_data_dict self.fit_dicts = OrderedDict() for qb in self.qb_names: for i, data in enumerate(pdd['data_reshaped'][qb]): cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=pdd['phases_reshaped'][i], data=data, freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts[f'cos_fit_{qb}_{i}'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': pdd['phases_reshaped'][i]}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['phase_contrast'] = {} pdd['phase_offset'] = {} pdd['sigma'] = {} pdd['sigma_err'] = {} pdd['a'] = {} pdd['a_err'] = {} pdd['c'] = {} pdd['c_err'] = {} for qb in self.qb_names: pdd['phase_contrast'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['amplitude'] for i, _ in enumerate(pdd['data_reshaped'][qb])]) pdd['phase_offset'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['phase'] for i, _ in enumerate(pdd['data_reshaped'][qb])]) pdd['phase_offset'][qb] += np.pi * (pdd['phase_contrast'][qb] < 0) pdd['phase_offset'][qb] = (pdd['phase_offset'][qb] + np.pi) % (2 * np.pi) - np.pi pdd['phase_offset'][qb] = 180*np.unwrap(pdd['phase_offset'][qb])/np.pi pdd['phase_contrast'][qb] = np.abs(pdd['phase_contrast'][qb]) gauss_mod = lmfit.models.GaussianModel() self.fit_dicts[f'phase_contrast_fit_{qb}'] = { 'model': gauss_mod, 'guess_dict': {'center': {'value': 0, 'vary': False}}, 'fit_xvals': {'x': pdd['amps_reshaped']}, 'fit_yvals': {'data': pdd['phase_contrast'][qb]}} quadratic_mod = lmfit.models.QuadraticModel() self.fit_dicts[f'phase_offset_fit_{qb}'] = { 'model': quadratic_mod, 'guess_dict': {'b': {'value': 0, 'vary': False}}, 'fit_xvals': {'x': pdd['amps_reshaped']}, 'fit_yvals': {'data': pdd['phase_offset'][qb]}} self.run_fitting() self.save_fit_results() pdd['sigma'][qb] = self.fit_res[f'phase_contrast_fit_{qb}'].best_values['sigma'] pdd['sigma_err'][qb] = self.fit_res[f'phase_contrast_fit_{qb}'].params['sigma']. \ stderr pdd['a'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].best_values['a'] pdd['a_err'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].params['a'].stderr pdd['c'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].best_values['c'] pdd['c_err'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].params['c'].stderr pdd['sigma_err'][qb] = float('nan') if pdd['sigma_err'][qb] is None \ else pdd['sigma_err'][qb] pdd['a_err'][qb] = float('nan') if pdd['a_err'][qb] is None else pdd['a_err'][qb] pdd['c_err'][qb] = float('nan') if pdd['c_err'][qb] is None else pdd['c_err'][qb] def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict phases_equal = True for phases in pdd['phases_reshaped'][1:]: if not np.all(phases == pdd['phases_reshaped'][0]): phases_equal = False break for qb in self.qb_names: if phases_equal: self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_colorxy, 'xvals': pdd['phases_reshaped'][0], 'yvals': pdd['amps_reshaped'], 'zvals': pdd['data_reshaped'][qb], 'xlabel': r'Pulse phase, $\phi$', 'xunit': 'deg', 'ylabel': r'Readout pulse amplitude scale, $V_{RO}/V_{ref}$', 'yunit': '', 'zlabel': 'Excited state population', } colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i, amp in enumerate(pdd['amps_reshaped']): color = colormap(i/(len(pdd['amps_reshaped'])-1)) label = f'cos_data_{qb}_{i}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'amplitude_crossections_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['phases_reshaped'][i], 'yvals': pdd['data_reshaped'][qb][i], 'xlabel': r'Pulse phase, $\phi$', 'xunit': 'deg', 'ylabel': 'Excited state population', 'linestyle': '', 'color': color, 'setlabel': f'amp={amp:.4f}', 'do_legend': True, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } if self.do_fitting: for i, amp in enumerate(pdd['amps_reshaped']): color = colormap(i/(len(pdd['amps_reshaped'])-1)) label = f'cos_fit_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'amplitude_crossections_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': f'fit, amp={amp:.4f}', } # Phase contrast self.plot_dicts[f'phase_contrast_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': 200*pdd['phase_contrast'][qb], 'xlabel': r'Readout pulse amplitude scale, $V_{RO}/V_{ref}$', 'xunit': '', 'ylabel': 'Phase contrast', 'yunit': '%', 'linestyle': '', 'color': 'k', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_contrast_fit_{qb}'] = { 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': 200*self.fit_res[f'phase_contrast_fit_{qb}'].best_fit, 'color': 'r', 'marker': '', 'setlabel': 'fit', 'do_legend': True, } self.plot_dicts[f'phase_contrast_labels_{qb}'] = { 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': 200*pdd['phase_contrast'][qb], 'marker': '', 'linestyle': '', 'setlabel': r'$\sigma = ({:.5f} \pm {:.5f})$ V'. format(pdd['sigma'][qb], pdd['sigma_err'][qb]), 'do_legend': True, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } # Phase offset self.plot_dicts[f'phase_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': pdd['phase_offset'][qb], 'xlabel': r'Readout pulse amplitude scale, $V_{RO}/V_{ref}$', 'xunit': '', 'ylabel': 'Phase offset', 'yunit': 'deg', 'linestyle': '', 'color': 'k', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_offset_fit_{qb}'] = { 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': self.fit_res[f'phase_offset_fit_{qb}'].best_fit, 'color': 'r', 'marker': '', 'setlabel': 'fit', 'do_legend': True, } self.plot_dicts[f'phase_offset_labels_{qb}'] = { 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': pdd['phase_offset'][qb], 'marker': '', 'linestyle': '', 'setlabel': r'$a = {:.0f} \pm {:.0f}$ deg/V${{}}^2$'. format(pdd['a'][qb], pdd['a_err'][qb]) + '\n' + r'$c = {:.1f} \pm {:.1f}$ deg'. format(pdd['c'][qb], pdd['c_err'][qb]), 'do_legend': True, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } class DriveCrosstalkCancellationAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() if self.sp is None: raise ValueError('This analysis needs a SweepPoints ' 'class instance.') pdd = self.proc_data_dict # get the ramsey phases as the values of the first sweep parameter # in the 2nd sweep dimension. # !!! This assumes all qubits have the same ramsey phases !!! pdd['ramsey_phases'] = self.sp.get_sweep_params_property('values', 1) pdd['qb_sweep_points'] = {} pdd['qb_sweep_param'] = {} for k, v in self.sp.get_sweep_dimension(0).items(): if k == 'phase': continue qb, param = k.split('.') pdd['qb_sweep_points'][qb] = v[0] pdd['qb_sweep_param'][qb] = (param, v[1], v[2]) pdd['qb_msmt_vals'] = {} pdd['qb_cal_vals'] = {} for qb, data in pdd['data_to_fit'].items(): pdd['qb_msmt_vals'][qb] = data[:, :-self.num_cal_points].reshape( len(pdd['qb_sweep_points'][qb]), len(pdd['ramsey_phases'])) pdd['qb_cal_vals'][qb] = data[0, -self.num_cal_points:] def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() for qb in self.qb_names: for i, data in enumerate(pdd['qb_msmt_vals'][qb]): cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=pdd['ramsey_phases'], data=data, freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts[f'cos_fit_{qb}_{i}'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': pdd['ramsey_phases']}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['phase_contrast'] = {} pdd['phase_offset'] = {} for qb in self.qb_names: pdd['phase_contrast'][qb] = np.array([ 2*self.fit_res[f'cos_fit_{qb}_{i}'].best_values['amplitude'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['phase'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] *= 180/np.pi pdd['phase_offset'][qb] += 180 * (pdd['phase_contrast'][qb] < 0) pdd['phase_offset'][qb] = (pdd['phase_offset'][qb] + 180) % 360 - 180 pdd['phase_contrast'][qb] = np.abs(pdd['phase_contrast'][qb]) def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'plotfn': self.plot_colorxy, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['qb_sweep_points'][qb], 'zvals': pdd['qb_msmt_vals'][qb], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': pdd['qb_sweep_param'][qb][2], 'yunit': pdd['qb_sweep_param'][qb][1], 'zlabel': 'Excited state population', } colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i, pval in enumerate(pdd['qb_sweep_points'][qb]): if i == len(pdd['qb_sweep_points'][qb]) - 1: legendlabel='data, ref.' else: legendlabel = f'data, {pdd["qb_sweep_param"][qb][0]}='\ f'{pval:.4f}{pdd["qb_sweep_param"][qb][1]}' color = colormap(i/(len(pdd['qb_sweep_points'][qb])-1)) label = f'cos_data_{qb}_{i}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['qb_msmt_vals'][qb][i], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': 'Excited state population', 'linestyle': '', 'color': color, 'setlabel': legendlabel, 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } if self.do_fitting: for i, pval in enumerate(pdd['qb_sweep_points'][qb]): if i == len(pdd['qb_sweep_points'][qb]) - 1: legendlabel = 'fit, ref.' else: legendlabel = f'fit, {pdd["qb_sweep_param"][qb][0]}='\ f'{pval:.4f}{pdd["qb_sweep_param"][qb][1]}' color = colormap(i/(len(pdd['qb_sweep_points'][qb])-1)) label = f'cos_fit_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'do_legend': False, # 'setlabel': legendlabel } # Phase contrast self.plot_dicts[f'phase_contrast_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['qb_sweep_points'][qb][:-1], 'yvals': pdd['phase_contrast'][qb][:-1] * 100, 'xlabel': pdd['qb_sweep_param'][qb][2], 'xunit': pdd['qb_sweep_param'][qb][1], 'ylabel': 'Phase contrast', 'yunit': '%', 'linestyle': '-', 'marker': 'o', 'color': 'C0', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_contrast_ref_{qb}'] = { 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_hlines, 'xmin': pdd['qb_sweep_points'][qb][:-1].min(), 'xmax': pdd['qb_sweep_points'][qb][:-1].max(), 'y': pdd['phase_contrast'][qb][-1] * 100, 'linestyle': '--', 'colors': '0.6', 'setlabel': 'ref', 'do_legend': True, } # Phase offset self.plot_dicts[f'phase_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['qb_sweep_points'][qb][:-1], 'yvals': pdd['phase_offset'][qb][:-1], 'xlabel': pdd['qb_sweep_param'][qb][2], 'xunit': pdd['qb_sweep_param'][qb][1], 'ylabel': 'Phase offset', 'yunit': 'deg', 'linestyle': '-', 'marker': 'o', 'color': 'C0', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_offset_ref_{qb}'] = { 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_hlines, 'xmin': pdd['qb_sweep_points'][qb][:-1].min(), 'xmax': pdd['qb_sweep_points'][qb][:-1].max(), 'y': pdd['phase_offset'][qb][-1], 'linestyle': '--', 'colors': '0.6', 'setlabel': 'ref', 'do_legend': True, } class FluxlineCrosstalkAnalysis(MultiQubit_TimeDomain_Analysis): """Analysis for the measure_fluxline_crosstalk measurement. The measurement involves Ramsey measurements on a set of crosstalk qubits, which have been brought to a flux-sensitive position with a flux pulse. The first dimension is the ramsey-phase of these qubits. In the second sweep dimension, the amplitude of a flux pulse on another (target) qubit is swept. The analysis extracts the change in Ramsey phase offset, which gets converted to a frequency offset due to the flux pulse on the target qubit. The frequency offset is then converted to a flux offset, which is a measure of the crosstalk between the target fluxline and the crosstalk qubit. The measurement is hard-compressed, meaning the raw data is inherently 1d, with one set of calibration points as the final segments. The experiment part of the measured values are reshaped to the correct 2d shape for the analysis. The sweep points passed into the analysis should still reflect the 2d nature of the measurement, meaning the ramsey phase values should be passed in the first dimension and the target fluxpulse amplitudes in the second sweep dimension. """ def __init__(self, qb_names, *args, **kwargs): params_dict = {f'{qbn}.amp_to_freq_model': f'Instrument settings.{qbn}.fit_ge_freq_from_flux_pulse_amp' for qbn in qb_names} kwargs['params_dict'] = kwargs.get('params_dict', {}) kwargs['params_dict'].update(params_dict) super().__init__(qb_names, *args, **kwargs) def process_data(self): super().process_data() if self.sp is None: raise ValueError('This analysis needs a SweepPoints ' 'class instance.') pdd = self.proc_data_dict pdd['ramsey_phases'] = self.sp.get_sweep_params_property('values', 0) pdd['target_amps'] = self.sp.get_sweep_params_property('values', 1) pdd['target_fluxpulse_length'] = \ self.get_param_value('target_fluxpulse_length') pdd['crosstalk_qubits_amplitudes'] = \ self.get_param_value('crosstalk_qubits_amplitudes') pdd['qb_msmt_vals'] = {qb: pdd['data_to_fit'][qb][:, :-self.num_cal_points].reshape( len(pdd['target_amps']), len(pdd['ramsey_phases'])) for qb in self.qb_names} pdd['qb_cal_vals'] = { qb: pdd['data_to_fit'][qb][0, -self.num_cal_points:] for qb in self.qb_names} def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() cos_mod = lmfit.Model(fit_mods.CosFunc) cos_mod.guess = fit_mods.Cos_guess.__get__(cos_mod, cos_mod.__class__) for qb in self.qb_names: for i, data in enumerate(pdd['qb_msmt_vals'][qb]): self.fit_dicts[f'cos_fit_{qb}_{i}'] = { 'model': cos_mod, 'guess_dict': {'frequency': {'value': 1 / 360, 'vary': False}}, 'fit_xvals': {'t': pdd['ramsey_phases']}, 'fit_yvals': {'data': data}} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['phase_contrast'] = {} pdd['phase_offset'] = {} pdd['freq_offset'] = {} pdd['freq'] = {} self.skip_qb_freq_fits = self.get_param_value('skip_qb_freq_fits', False) if not self.skip_qb_freq_fits: pdd['flux'] = {} for qb in self.qb_names: pdd['phase_contrast'][qb] = np.array([ 2 * self.fit_res[f'cos_fit_{qb}_{i}'].best_values['amplitude'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['phase'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] *= 180 / np.pi pdd['phase_offset'][qb] += 180 * (pdd['phase_contrast'][qb] < 0) pdd['phase_offset'][qb] = (pdd['phase_offset'][qb] + 180) % 360 - 180 pdd['phase_offset'][qb] = \ np.unwrap(pdd['phase_offset'][qb] / 180 * np.pi) * 180 / np.pi pdd['phase_contrast'][qb] = np.abs(pdd['phase_contrast'][qb]) pdd['freq_offset'][qb] = pdd['phase_offset'][qb] / 360 / pdd[ 'target_fluxpulse_length'] fr = lmfit.Model(lambda a, f_a=1, f0=0: a * f_a + f0).fit( data=pdd['freq_offset'][qb], a=pdd['target_amps']) pdd['freq_offset'][qb] -= fr.best_values['f0'] if not self.skip_qb_freq_fits: mpars = eval(self.raw_data_dict[f'{qb}.amp_to_freq_model']) freq_idle = fit_mods.Qubit_dac_to_freq( pdd['crosstalk_qubits_amplitudes'].get(qb, 0), **mpars) pdd['freq'][qb] = pdd['freq_offset'][qb] + freq_idle mpars.update({'V_per_phi0': 1, 'dac_sweet_spot': 0}) pdd['flux'][qb] = fit_mods.Qubit_freq_to_dac( pdd['freq'][qb], **mpars) # fit fitted results to linear models lin_mod = lmfit.Model(lambda x, a=1, b=0: a*x + b) def guess(model, data, x, **kwargs): a_guess = (data[-1] - data[0])/(x[-1] - x[0]) b_guess = data[0] - x[0]*a_guess return model.make_params(a=a_guess, b=b_guess) lin_mod.guess = guess.__get__(lin_mod, lin_mod.__class__) keys_to_fit = [] for qb in self.qb_names: for param in ['phase_offset', 'freq_offset', 'flux']: if param == 'flux' and self.skip_qb_freq_fits: continue key = f'{param}_fit_{qb}' self.fit_dicts[key] = { 'model': lin_mod, 'fit_xvals': {'x': pdd['target_amps']}, 'fit_yvals': {'data': pdd[param][qb]}} keys_to_fit.append(key) self.run_fitting(keys_to_fit=keys_to_fit) def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'plotfn': self.plot_colorxy, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['target_amps'], 'zvals': pdd['qb_msmt_vals'][qb], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'yunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'zlabel': 'Excited state population', } colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i, pval in enumerate(pdd['target_amps']): legendlabel = f'data, amp. = {pval:.4f} V' color = colormap(i / (len(pdd['target_amps']) - 1)) label = f'cos_data_{qb}_{i}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['qb_msmt_vals'][qb][i], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': 'Excited state population', 'linestyle': '', 'color': color, 'setlabel': legendlabel, 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } if self.do_fitting: for i, pval in enumerate(pdd['target_amps']): legendlabel = f'fit, amp. = {pval:.4f} V' color = colormap(i / (len(pdd['target_amps']) - 1)) label = f'cos_fit_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': legendlabel, 'do_legend': False, } # Phase contrast self.plot_dicts[f'phase_contrast_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['phase_contrast'][qb] * 100, 'xlabel':self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'xunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'ylabel': 'Phase contrast', 'yunit': '%', 'linestyle': '-', 'marker': 'o', 'color': 'C0', } # Phase offset self.plot_dicts[f'phase_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['phase_offset'][qb], 'xlabel':self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'xunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'ylabel': 'Phase offset', 'yunit': 'deg', 'linestyle': 'none', 'marker': 'o', 'color': 'C0', } # Frequency offset self.plot_dicts[f'freq_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'freq_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['freq_offset'][qb], 'xlabel':self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'xunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'ylabel': 'Freq. offset, $\\Delta f$', 'yunit': 'Hz', 'linestyle': 'none', 'marker': 'o', 'color': 'C0', } if not self.skip_qb_freq_fits: # Flux self.plot_dicts[f'flux_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'flux_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['flux'][qb], 'xlabel': self.sp[1]['target_amp'][2], 'xunit': self.sp[1]['target_amp'][1], 'ylabel': 'Flux, $\\Phi$', 'yunit': '$\\Phi_0$', 'linestyle': 'none', 'marker': 'o', 'color': 'C0', } for param in ['phase_offset', 'freq_offset', 'flux']: if param == 'flux' and self.skip_qb_freq_fits: continue self.plot_dicts[f'{param}_fit_{qb}'] = { 'ax_id': f'{param}_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[f'{param}_fit_{qb}'], 'plot_init': self.options_dict.get('plot_init', False), 'linestyle': '-', 'marker': '', 'color': 'C1', } class RabiAnalysis(MultiQubit_TimeDomain_Analysis): def __init__(self, qb_names, *args, **kwargs): params_dict = {} for qbn in qb_names: s = 'Instrument settings.'+qbn for trans_name in ['ge', 'ef']: params_dict[f'{trans_name}_amp180_'+qbn] = \ s+f'.{trans_name}_amp180' params_dict[f'{trans_name}_amp90scale_'+qbn] = \ s+f'.{trans_name}_amp90_scale' kwargs['params_dict'] = params_dict kwargs['numeric_params'] = list(params_dict) super().__init__(qb_names, *args, **kwargs) def prepare_fitting(self): self.fit_dicts = OrderedDict() for qbn in self.qb_names: data = self.proc_data_dict['data_to_fit'][qbn] sweep_points = self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] if self.num_cal_points != 0: data = data[:-self.num_cal_points] cos_mod = lmfit.Model(fit_mods.CosFunc) guess_pars = fit_mods.Cos_guess( model=cos_mod, t=sweep_points, data=data) guess_pars['amplitude'].vary = True guess_pars['amplitude'].min = -10 guess_pars['offset'].vary = True guess_pars['frequency'].vary = True guess_pars['phase'].vary = True self.set_user_guess_pars(guess_pars) key = 'cos_fit_' + qbn self.fit_dicts[key] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': sweep_points}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): self.proc_data_dict['analysis_params_dict'] = OrderedDict() for qbn in self.qb_names: fit_res = self.fit_dicts['cos_fit_' + qbn]['fit_res'] sweep_points = self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] self.proc_data_dict['analysis_params_dict'][qbn] = \ self.get_amplitudes(fit_res=fit_res, sweep_points=sweep_points) self.save_processed_data(key='analysis_params_dict') def get_amplitudes(self, fit_res, sweep_points): # Extract the best fitted frequency and phase. freq_fit = fit_res.best_values['frequency'] phase_fit = fit_res.best_values['phase'] freq_std = fit_res.params['frequency'].stderr phase_std = fit_res.params['phase'].stderr # If fitted_phase<0, shift fitted_phase by 4. This corresponds to a # shift of 2pi in the argument of cos. if np.abs(phase_fit) < 0.1: phase_fit = 0 # If phase_fit<1, the piHalf amplitude<0. if phase_fit < 1: log.info('The data could not be fitted correctly. ' 'The fitted phase "%s" <1, which gives ' 'negative piHalf ' 'amplitude.' % phase_fit) stepsize = sweep_points[1] - sweep_points[0] if freq_fit > 2 * stepsize: log.info('The data could not be fitted correctly. The ' 'frequency "%s" is too high.' % freq_fit) n = np.arange(-2, 10) piPulse_vals = (n*np.pi - phase_fit)/(2*np.pi*freq_fit) piHalfPulse_vals = (n*np.pi + np.pi/2 - phase_fit)/(2*np.pi*freq_fit) # find piHalfPulse try: piHalfPulse = \ np.min(piHalfPulse_vals[piHalfPulse_vals >= sweep_points[1]]) n_piHalf_pulse = n[piHalfPulse_vals==piHalfPulse] except ValueError: piHalfPulse = np.asarray([]) if piHalfPulse.size == 0 or piHalfPulse > max(sweep_points): i = 0 while (piHalfPulse_vals[i] < min(sweep_points) and i<piHalfPulse_vals.size): i+=1 piHalfPulse = piHalfPulse_vals[i] n_piHalf_pulse = n[i] # find piPulse try: if piHalfPulse.size != 0: piPulse = \
np.min(piPulse_vals[piPulse_vals >= piHalfPulse])
numpy.min
import numpy as np import rllab.misc.logger as logger from rllab.sampler import parallel_sampler from rllab.sampler.base import Sampler from rllab.misc import ext from rllab.misc import special from rllab.misc import tensor_utils from rllab.algos import util def local_truncate_paths(paths, max_samples): """ Truncate the list of paths so that the total number of samples is almost equal to max_samples. This is done by removing extra paths at the end of the list. But here, we do NOT make the last path shorter. :param paths: a list of paths :param max_samples: the absolute maximum number of samples :return: a list of paths, truncated so that the number of samples adds up to max-samples """ # chop samples collected by extra paths # make a copy paths = list(paths) total_n_samples = sum(len(path["rewards"]) for path in paths) while len(paths) > 0 and total_n_samples - len(paths[-1]["rewards"]) >= max_samples: total_n_samples -= len(paths.pop(-1)["rewards"]) return paths class BatchSamplerPlus(Sampler): def __init__(self, algo, **kwargs): """ :type algo: BatchPolopt """ self.algo = algo self.experience_replay = [] self.env_interacts_memory = [] self.env_interacts = 0 self.total_env_interacts = 0 self.mean_path_len = 0 def start_worker(self): parallel_sampler.populate_task(self.algo.env, self.algo.policy, scope=self.algo.scope) def shutdown_worker(self): parallel_sampler.terminate_task(scope=self.algo.scope) def obtain_samples(self, itr): cur_params = self.algo.policy.get_param_values() paths = parallel_sampler.sample_paths( policy_params=cur_params, max_samples=self.algo.batch_size, max_path_length=self.algo.max_path_length, scope=self.algo.scope, ) """log_likelihoods for importance sampling""" for path in paths: logli = self.algo.policy.distribution.log_likelihood(path["actions"],path["agent_infos"]) path["log_likelihood"] = logli """keep data use per iteration approximately fixed""" if not(self.algo.all_paths): paths = local_truncate_paths(paths, self.algo.batch_size) """keep track of path length""" self.env_interacts = sum([len(path["rewards"]) for path in paths]) self.total_env_interacts += self.env_interacts self.mean_path_len = float(self.env_interacts)/len(paths) """manage experience replay for old batch reuse""" self.experience_replay.append(paths) self.env_interacts_memory.append(self.env_interacts) if len(self.experience_replay) > self.algo.batch_aggregate_n: self.experience_replay.pop(0) self.env_interacts_memory.pop(0) return paths def process_samples(self, itr, paths): """ we will ignore paths argument and only use experience replay. note: if algo.batch_aggregate_n = 1, then the experience replay will only contain the most recent batch, and so len(all_paths) == 1. """ if self.algo.exploration_bonus: self.compute_exploration_bonuses_and_statistics() self.compute_epoch_weights() all_paths = [] all_baselines = [] all_returns = [] self.IS_coeffs = [[] for paths in self.experience_replay] for paths, weight, age in zip(self.experience_replay,self.weights,self.age): b_paths, b_baselines, b_returns = self.process_single_batch(paths, weight, age) all_paths += b_paths all_baselines += [b_baselines] all_returns += [b_returns] samples_data = self.create_samples_dict(all_paths) """log all useful info""" self.record_statistics(itr, all_paths, all_baselines, all_returns) """update vf and exploration bonus model""" self.update_parametrized_models() return samples_data def compute_exploration_bonuses_and_statistics(self): for paths in self.experience_replay: for path in paths: path["bonuses"] = self.algo.exploration_bonus.get_bonus(path) self.bonus_total = sum([ sum([ sum(path["bonuses"]) for path in paths]) for paths in self.experience_replay]) self.bonus_mean = self.bonus_total / sum(self.env_interacts_memory) self.new_bonus_total = sum([sum(path["bonuses"]) for path in self.experience_replay[-1]]) self.new_bonus_mean = self.new_bonus_total / self.env_interacts_memory[-1] self.bonus_baseline = self.algo.exploration_lambda * \ min(0,self.bonus_mean / max(1,np.abs(self.bonus_mean))) def compute_epoch_weights(self): """create weights, with highest weight on most recent batch""" self.raw_weights = np.array( [self.algo.batch_aggregate_coeff**j for j in range(len(self.experience_replay))], dtype='float' ) self.raw_weights /= sum(self.raw_weights) self.raw_weights = self.raw_weights[::-1] self.weights = self.raw_weights.copy() """reweight the weights by how many paths are in that batch """ if self.algo.relative_weights: total_paths = sum([len(paths) for paths in self.experience_replay]) for j in range(len(self.weights)): self.weights[j] *= total_paths / len(self.experience_replay[j]) self.age = np.arange(len(self.experience_replay))[::-1] def process_single_batch(self, paths, weight, age): baselines = [] returns = [] if hasattr(self.algo.baseline, "predict_n"): all_path_baselines = self.algo.baseline.predict_n(paths) else: all_path_baselines = [self.algo.baseline.predict(path) for path in paths] for idx, path in enumerate(paths): path_baselines = np.append(all_path_baselines[idx], 0) deltas = path["rewards"] + \ self.algo.discount * path_baselines[1:] - \ path_baselines[:-1] """exploration bonuses""" if self.algo.exploration_bonus: path["bonuses"] *= self.algo.exploration_lambda if self.algo.normalize_bonus: path["bonuses"] /= max(1,np.abs(self.bonus_mean)) if self.algo.nonnegative_bonus_mean: path["bonuses"] -= self.bonus_baseline deltas += path["bonuses"] """recompute agent infos for old data""" """(necessary for correct reuse of old data)""" if age > 0: self.update_agent_infos(path) """importance sampling and batch aggregation""" path["weights"] = weight * np.ones_like(path["rewards"]) if age > 0 and self.algo.importance_sampling: self.compute_and_apply_importance_weights(path,age) path["advantages"] = special.discount_cumsum( deltas, self.algo.discount * self.algo.gae_lambda) path["returns"] = special.discount_cumsum(path["rewards"], self.algo.discount) baselines.append(path_baselines[:-1]) returns.append(path["returns"]) return paths, baselines, returns def update_agent_infos(self,path): """ this updates the agent dist infos (i.e, mean & variance of Gaussian policy dist) so that it can compute the probability of taking these actions on the most recent policy is. meanwhile, the log likelihood of taking the actions on the original behavior policy can still be found in path["log_likelihood"]. """ state_info_list = [path["agent_infos"][k] for k in self.algo.policy.state_info_keys] input_list = tuple([path["observations"]] + state_info_list) cur_dist_info = self.algo.dist_info_vars_func(*input_list) for k in self.algo.policy.distribution.dist_info_keys: path["agent_infos"][k] = cur_dist_info[k] def compute_and_apply_importance_weights(self,path,age): new_logli = self.algo.policy.distribution.log_likelihood(path["actions"],path["agent_infos"]) logli_diff = new_logli - path["log_likelihood"] if self.algo.decision_weight_mode=='pd': logli_diff = logli_diff[::-1] log_decision_weighted_IS_coeffs = special.discount_cumsum(logli_diff,1) IS_coeff = np.exp(log_decision_weighted_IS_coeffs[::-1]) elif self.algo.decision_weight_mode=='pt': IS_coeff = np.exp(np.sum(logli_diff)) if self.algo.clip_IS_coeff_above: IS_coeff =
np.minimum(IS_coeff,self.algo.IS_coeff_upper_bound)
numpy.minimum
import tempfile, os, glob from scipy.stats import norm as ndist from traitlets import (HasTraits, Integer, Unicode, Float, Integer, Instance, Dict, Bool, default) import numpy as np import regreg.api as rr from selection.algorithms.lasso import lasso, lasso_full, lasso_full_modelQ from selection.algorithms.sqrt_lasso import choose_lambda from selection.truncated.gaussian import truncated_gaussian_old as TG from selection.randomized.lasso import lasso as random_lasso_method, form_targets from selection.randomized.modelQ import modelQ as randomized_modelQ from utils import BHfilter from selection.randomized.base import restricted_estimator # Rpy import rpy2.robjects as rpy from rpy2.robjects import numpy2ri methods = {} class generic_method(HasTraits): need_CV = False selectiveR_method = False wide_ok = True # ok for p>= n? # Traits q = Float(0.2) method_name = Unicode('Generic method') model_target = Unicode() @classmethod def setup(cls, feature_cov): cls.feature_cov = feature_cov def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): (self.X, self.Y, self.l_theory, self.l_min, self.l_1se, self.sigma_reid) = (X, Y, l_theory, l_min, l_1se, sigma_reid) def select(self): raise NotImplementedError('abstract method') @classmethod def register(cls): methods[cls.__name__] = cls def selected_target(self, active, beta): C = self.feature_cov[active] Q = C[:,active] return np.linalg.inv(Q).dot(C.dot(beta)) def full_target(self, active, beta): return beta[active] def get_target(self, active, beta): if self.model_target not in ['selected', 'full']: raise ValueError('Gaussian methods only have selected or full targets') if self.model_target == 'full': return self.full_target(active, beta) else: return self.selected_target(active, beta) # Knockoff selection class knockoffs_mf(generic_method): method_name = Unicode('Knockoffs') knockoff_method = Unicode('Second order') model_target = Unicode("full") def select(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, fdr=q)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() return np.asarray(V, np.int), np.asarray(V, np.int) except: return [], [] knockoffs_mf.register() class knockoffs_sigma(generic_method): factor_method = 'asdp' method_name = Unicode('Knockoffs') knockoff_method = Unicode("ModelX (asdp)") model_target = Unicode("full") @classmethod def setup(cls, feature_cov): cls.feature_cov = feature_cov numpy2ri.activate() # see if we've factored this before have_factorization = False if not os.path.exists('.knockoff_factorizations'): os.mkdir('.knockoff_factorizations') factors = glob.glob('.knockoff_factorizations/*npz') for factor_file in factors: factor = np.load(factor_file) feature_cov_f = factor['feature_cov'] if ((feature_cov_f.shape == feature_cov.shape) and (factor['method'] == cls.factor_method) and np.allclose(feature_cov_f, feature_cov)): have_factorization = True print('found factorization: %s' % factor_file) cls.knockoff_chol = factor['knockoff_chol'] if not have_factorization: print('doing factorization') cls.knockoff_chol = factor_knockoffs(feature_cov, cls.factor_method) numpy2ri.deactivate() def select(self): numpy2ri.activate() rpy.r.assign('chol_k', self.knockoff_chol) rpy.r(''' knockoffs = function(X) { mu = rep(0, ncol(X)) mu_k = X # sweep(X, 2, mu, "-") %*% SigmaInv_s X_k = mu_k + matrix(rnorm(ncol(X) * nrow(X)), nrow(X)) %*% chol_k return(X_k) } ''') numpy2ri.deactivate() try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, fdr=q, knockoffs=knockoffs)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() return np.asarray(V, np.int), np.asarray(V, np.int) except: return [], [] knockoffs_sigma.register() def factor_knockoffs(feature_cov, method='asdp'): numpy2ri.activate() rpy.r.assign('Sigma', feature_cov) rpy.r.assign('method', method) rpy.r(''' # Compute the Cholesky -- from create.gaussian diag_s = diag(switch(method, equi = create.solve_equi(Sigma), sdp = create.solve_sdp(Sigma), asdp = create.solve_asdp(Sigma))) if (is.null(dim(diag_s))) { diag_s = diag(diag_s, length(diag_s)) } SigmaInv_s = solve(Sigma, diag_s) Sigma_k = 2 * diag_s - diag_s %*% SigmaInv_s chol_k = chol(Sigma_k) ''') knockoff_chol = np.asarray(rpy.r('chol_k')) SigmaInv_s = np.asarray(rpy.r('SigmaInv_s')) diag_s = np.asarray(rpy.r('diag_s')) np.savez('.knockoff_factorizations/%s.npz' % (os.path.split(tempfile.mkstemp()[1])[1],), method=method, feature_cov=feature_cov, knockoff_chol=knockoff_chol) return knockoff_chol class knockoffs_sigma_equi(knockoffs_sigma): knockoff_method = Unicode('ModelX (equi)') factor_method = 'equi' knockoffs_sigma_equi.register() class knockoffs_orig(generic_method): wide_OK = False # requires at least n>p method_name = Unicode("Knockoffs") knockoff_method = Unicode('Candes & Barber') model_target = Unicode('full') def select(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, statistic=stat.glmnet_lambdadiff, fdr=q, knockoffs=create.fixed)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() V = np.asarray(V, np.int) return V, V except: return [], [] knockoffs_orig.register() class knockoffs_fixed(generic_method): wide_OK = False # requires at least n>p method_name = Unicode("Knockoffs") knockoff_method = Unicode('Fixed') model_target = Unicode('full') def select(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, fdr=q, knockoffs=create.fixed)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() return np.asarray(V, np.int), np.asarray(V, np.int) except: return [], [] knockoffs_fixed.register() # Liu, Markovic, Tibs selection class parametric_method(generic_method): confidence = Float(0.95) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): generic_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self._fit = False def select(self): if not self._fit: self.method_instance.fit() self._fit = True active_set, pvalues = self.generate_pvalues() if len(pvalues) > 0: selected = [active_set[i] for i in BHfilter(pvalues, q=self.q)] return selected, active_set else: return [], active_set class liu_theory(parametric_method): sigma_estimator = Unicode('relaxed') method_name = Unicode("Liu") lambda_choice = Unicode("theory") model_target = Unicode("full") dispersion = Float(0.) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): parametric_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) n, p = X.shape if n < p: self.method_name = 'ROSI' self.lagrange = l_theory * np.ones(X.shape[1]) @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full.gaussian(self.X, self.Y, self.lagrange * np.sqrt(n)) return self._method_instance def generate_summary(self, compute_intervals=False): if not self._fit: self.method_instance.fit() self._fit = True X, Y, lagrange, L = self.X, self.Y, self.lagrange, self.method_instance n, p = X.shape if len(L.active) > 0: if self.sigma_estimator == 'reid' and n < p: dispersion = self.sigma_reid**2 elif self.dispersion != 0: dispersion = self.dispersion else: dispersion = None S = L.summary(compute_intervals=compute_intervals, dispersion=dispersion) return S def generate_pvalues(self): S = self.generate_summary(compute_intervals=False) if S is not None: active_set = np.array(S['variable']) pvalues = np.asarray(S['pval']) return active_set, pvalues else: return [], [] def generate_intervals(self): S = self.generate_summary(compute_intervals=True) if S is not None: active_set = np.array(S['variable']) lower, upper = np.asarray(S['lower_confidence']), np.asarray(S['upper_confidence']) return active_set, lower, upper else: return [], [], [] liu_theory.register() class liu_aggressive(liu_theory): lambda_choice = Unicode("aggressive") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): liu_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 liu_aggressive.register() class liu_modelQ_pop_aggressive(liu_aggressive): method_name = Unicode("Liu (ModelQ population)") @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full_modelQ(self.feature_cov * n, self.X, self.Y, self.lagrange * np.sqrt(n)) return self._method_instance liu_modelQ_pop_aggressive.register() class liu_modelQ_semi_aggressive(liu_aggressive): method_name = Unicode("Liu (ModelQ semi-supervised)") B = 10000 # how many samples to use to estimate E[XX^T] @classmethod def setup(cls, feature_cov): cls.feature_cov = feature_cov cls._chol = np.linalg.cholesky(feature_cov) @property def method_instance(self): if not hasattr(self, "_method_instance"): # draw sample of X for semi-supervised method _chol = self._chol p = _chol.shape[0] Q = 0 batch_size = int(self.B/10) for _ in range(10): X_semi = np.random.standard_normal((batch_size, p)).dot(_chol.T) Q += X_semi.T.dot(X_semi) Q += self.X.T.dot(self.X) Q /= (10 * batch_size + self.X.shape[0]) n, p = self.X.shape self._method_instance = lasso_full_modelQ(Q * self.X.shape[0], self.X, self.Y, self.lagrange * np.sqrt(n)) return self._method_instance liu_modelQ_semi_aggressive.register() class liu_sparseinv_aggressive(liu_aggressive): method_name = Unicode("ROSI") """ Force the use of the debiasing matrix. """ @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full.gaussian(self.X, self.Y, self.lagrange * np.sqrt(n)) self._method_instance.sparse_inverse = True return self._method_instance liu_sparseinv_aggressive.register() class liu_aggressive_reid(liu_aggressive): sigma_estimator = Unicode('Reid') pass liu_aggressive_reid.register() class liu_CV(liu_theory): need_CV = True lambda_choice = Unicode("CV") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): liu_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_min * np.ones(X.shape[1]) liu_CV.register() class liu_1se(liu_theory): need_CV = True lambda_choice = Unicode("1se") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): liu_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_1se * np.ones(X.shape[1]) liu_1se.register() class liu_sparseinv_1se(liu_1se): method_name = Unicode("ROSI") """ Force the use of the debiasing matrix. """ @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full.gaussian(self.X, self.Y, self.lagrange * np.sqrt(n)) self._method_instance.sparse_inverse = True return self._method_instance liu_sparseinv_1se.register() class liu_sparseinv_1se_known(liu_1se): method_name = Unicode("ROSI - known") dispersion = Float(1.) """ Force the use of the debiasing matrix. """ @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full.gaussian(self.X, self.Y, self.lagrange * np.sqrt(n)) self._method_instance.sparse_inverse = True return self._method_instance liu_sparseinv_1se_known.register() class liu_R_theory(liu_theory): selectiveR_method = True method_name = Unicode("Liu (R code)") def generate_pvalues(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('y', self.Y) rpy.r.assign('sigma_reid', self.sigma_reid) rpy.r('y = as.numeric(y)') rpy.r.assign('lam', self.lagrange[0]) rpy.r(''' p = ncol(X); n = nrow(X); sigma_est = 1. if (p >= n) { sigma_est = sigma_reid } else { sigma_est = sigma(lm(y ~ X - 1)) } penalty_factor = rep(1, p); lam = lam / sqrt(n); # lambdas are passed a sqrt(n) free from python code soln = selectiveInference:::solve_problem_glmnet(X, y, lam, penalty_factor=penalty_factor, loss="ls") PVS = selectiveInference:::inference_group_lasso(X, y, soln, groups=1:ncol(X), lambda=lam, penalty_factor=penalty_factor, sigma_est, loss="ls", algo="Q", construct_ci=FALSE) active_vars=PVS$active_vars - 1 # for 0-based pvalues = PVS$pvalues ''') pvalues = np.asarray(rpy.r('pvalues')) active_set = np.asarray(rpy.r('active_vars')) numpy2ri.deactivate() if len(active_set) > 0: return active_set, pvalues else: return [], [] except: return [np.nan], [np.nan] # some R failure occurred liu_R_theory.register() class liu_R_aggressive(liu_R_theory): lambda_choice = Unicode('aggressive') def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): liu_R_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 liu_R_aggressive.register() class lee_full_R_theory(liu_theory): wide_OK = False # requires at least n>p method_name = Unicode("Lee (R code)") selectiveR_method = True def generate_pvalues(self): numpy2ri.activate() rpy.r.assign('x', self.X) rpy.r.assign('y', self.Y) rpy.r('y = as.numeric(y)') rpy.r.assign('sigma_reid', self.sigma_reid) rpy.r.assign('lam', self.lagrange[0]) rpy.r(''' sigma_est=sigma_reid n = nrow(x); gfit = glmnet(x, y, standardize=FALSE, intercept=FALSE) lam = lam / sqrt(n); # lambdas are passed a sqrt(n) free from python code if (lam < max(abs(t(x) %*% y) / n)) { beta = coef(gfit, x=x, y=y, s=lam, exact=TRUE)[-1] out = fixedLassoInf(x, y, beta, lam*n, sigma=sigma_est, type='full', intercept=FALSE) active_vars=out$vars - 1 # for 0-based pvalues = out$pv } else { pvalues = NULL active_vars = numeric(0) } ''') pvalues = np.asarray(rpy.r('pvalues')) active_set = np.asarray(rpy.r('active_vars')) numpy2ri.deactivate() if len(active_set) > 0: return active_set, pvalues else: return [], [] lee_full_R_theory.register() class lee_full_R_aggressive(lee_full_R_theory): lambda_choice = Unicode("aggressive") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): lee_full_R_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 lee_full_R_aggressive.register() # Unrandomized selected class lee_theory(parametric_method): model_target = Unicode("selected") method_name = Unicode("Lee") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): parametric_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso.gaussian(self.X, self.Y, self.lagrange * np.sqrt(n)) return self._method_instance def generate_summary(self, compute_intervals=False): if not self._fit: self.method_instance.fit() self._fit = True X, Y, lagrange, L = self.X, self.Y, self.lagrange, self.method_instance if len(L.active) > 0: S = L.summary(compute_intervals=compute_intervals, alternative='onesided') return S def generate_pvalues(self): S = self.generate_summary(compute_intervals=False) if S is not None: active_set = np.array(S['variable']) pvalues = np.asarray(S['pval']) return active_set, pvalues else: return [], [] def generate_intervals(self): S = self.generate_summary(compute_intervals=True) if S is not None: active_set = np.array(S['variable']) lower, upper = np.asarray(S['lower_confidence']), np.asarray(S['upper_confidence']) return active_set, lower, upper else: return [], [], [] def point_estimator(self): X, Y, lagrange, L = self.X, self.Y, self.lagrange, self.method_instance n, p = X.shape beta_full = np.zeros(p) if self.estimator == "LASSO": beta_full[L.active] = L.soln else: beta_full[L.active] = L.onestep_estimator return L.active, beta_full lee_theory.register() class lee_CV(lee_theory): need_CV = True lambda_choice = Unicode("CV") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): lee_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_min * np.ones(X.shape[1]) lee_CV.register() class lee_1se(lee_theory): need_CV = True lambda_choice = Unicode("1se") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): lee_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_1se * np.ones(X.shape[1]) lee_1se.register() class lee_aggressive(lee_theory): lambda_choice = Unicode("aggressive") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): lee_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = 0.8 * l_theory * np.ones(X.shape[1]) lee_aggressive.register() class lee_weak(lee_theory): lambda_choice = Unicode("weak") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): lee_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = 2 * l_theory * np.ones(X.shape[1]) lee_weak.register() class sqrt_lasso(parametric_method): method_name = Unicode('SqrtLASSO') kappa = Float(0.7) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): parametric_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = self.kappa * choose_lambda(X) @property def method_instance(self): if not hasattr(self, "_method_instance"): self._method_instance = lasso.sqrt_lasso(self.X, self.Y, self.lagrange) return self._method_instance def generate_summary(self, compute_intervals=False): X, Y, lagrange, L = self.X, self.Y, self.lagrange, self.method_instance n, p = X.shape X = X / np.sqrt(n) if len(L.active) > 0: S = L.summary(compute_intervals=compute_intervals, alternative='onesided') return S def generate_pvalues(self): S = self.generate_summary(compute_intervals=False) if S is not None: active_set = np.array(S['variable']) pvalues = np.asarray(S['pval']) return active_set, pvalues else: return [], [] def generate_intervals(self): S = self.generate_summary(compute_intervals=True) if S is not None: active_set = np.array(S['variable']) lower, upper = np.asarray(S['lower_confidence']), np.asarray(S['upper_confidence']) return active_set, lower, upper else: return [], [], [] sqrt_lasso.register() # Randomized selected class randomized_lasso(parametric_method): method_name = Unicode("Randomized LASSO") model_target = Unicode("selected") lambda_choice = Unicode("theory") randomizer_scale = Float(1) ndraw = 10000 burnin = 1000 def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): parametric_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape mean_diag = np.mean((self.X ** 2).sum(0)) self._method_instance = random_lasso_method.gaussian(self.X, self.Y, feature_weights = self.lagrange * np.sqrt(n), ridge_term=np.std(self.Y) * np.sqrt(mean_diag) / np.sqrt(n), randomizer_scale=self.randomizer_scale * np.std(self.Y) * np.sqrt(n)) return self._method_instance def generate_summary(self, compute_intervals=False): X, Y, lagrange, rand_lasso = self.X, self.Y, self.lagrange, self.method_instance n, p = X.shape if not self._fit: signs = self.method_instance.fit() self._fit = True signs = rand_lasso.fit() active_set = np.nonzero(signs)[0] active = signs != 0 # estimates sigma # JM: for transparency it's better not to have this digged down in the code X_active = X[:,active_set] rpy.r.assign('X_active', X_active) rpy.r.assign('Y', Y) rpy.r('X_active=as.matrix(X_active)') rpy.r('Y=as.numeric(Y)') rpy.r('sigma_est = sigma(lm(Y~ X_active - 1))') dispersion = rpy.r('sigma_est') print("dispersion (sigma est for Python)", dispersion) (observed_target, cov_target, cov_target_score, alternatives) = form_targets(self.model_target, rand_lasso.loglike, rand_lasso._W, active, **{'dispersion': dispersion}) if active.sum() > 0: _, pvalues, intervals = rand_lasso.summary(observed_target, cov_target, cov_target_score, alternatives, level=0.9, ndraw=self.ndraw, burnin=self.burnin, compute_intervals=compute_intervals) return active_set, pvalues, intervals else: return [], [], [] def generate_pvalues(self, compute_intervals=False): active_set, pvalues, _ = self.generate_summary(compute_intervals=compute_intervals) if len(active_set) > 0: return active_set, pvalues else: return [], [] def generate_intervals(self): active_set, _, intervals = self.generate_summary(compute_intervals=True) if len(active_set) > 0: return active_set, intervals[:,0], intervals[:,1] else: return [], [], [] class randomized_lasso_CV(randomized_lasso): need_CV = True lambda_choice = Unicode("CV") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): randomized_lasso.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_min * np.ones(X.shape[1]) class randomized_lasso_1se(randomized_lasso): need_CV = True lambda_choice = Unicode("1se") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): randomized_lasso.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_1se * np.ones(X.shape[1]) randomized_lasso.register(), randomized_lasso_CV.register(), randomized_lasso_1se.register() # More aggressive lambda choice class randomized_lasso_aggressive(randomized_lasso): lambda_choice = Unicode("aggressive") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): randomized_lasso.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 class randomized_lasso_aggressive_half(randomized_lasso): lambda_choice = Unicode('aggressive') randomizer_scale = Float(0.5) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): randomized_lasso.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 class randomized_lasso_weak_half(randomized_lasso): lambda_choice = Unicode('weak') randomizer_scale = Float(0.5) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): randomized_lasso.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 2. randomized_lasso_weak_half.register() class randomized_lasso_aggressive_quarter(randomized_lasso): randomizer_scale = Float(0.25) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): randomized_lasso.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 randomized_lasso_aggressive.register(), randomized_lasso_aggressive_half.register(), randomized_lasso_aggressive_quarter.register() # Randomized selected smaller randomization class randomized_lasso_half(randomized_lasso): randomizer_scale = Float(0.5) pass class randomized_lasso_half_CV(randomized_lasso_CV): need_CV = True randomizer_scale = Float(0.5) pass class randomized_lasso_half_1se(randomized_lasso_1se): need_CV = True randomizer_scale = Float(0.5) pass randomized_lasso_half.register(), randomized_lasso_half_CV.register(), randomized_lasso_half_1se.register() # selective mle class randomized_lasso_mle(randomized_lasso_aggressive_half): method_name = Unicode("Randomized MLE") randomizer_scale = Float(0.5) model_target = Unicode("selected") @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = randomized_modelQ(self.feature_cov * n, self.X, self.Y, self.lagrange * np.sqrt(n), randomizer_scale=self.randomizer_scale * np.std(self.Y) *
np.sqrt(n)
numpy.sqrt
""" Approximation of the medial axis in a voxel model by propagating normals. The general idea is described in the paper. It estimates the normals on the outer crust and then propagates normals into voxels that are not yet occupied. The normal field then grows inwards the model. """ from typing import Optional, Tuple, Dict import numba import numpy as np from scipy import ndimage import plotly.graph_objects as go from reconstruction.data.chunks import ChunkGrid from reconstruction.filters.dilate import dilate from reconstruction.mathlib import Vec3f, normalize_vec from reconstruction.render.cloud_render import CloudRender from reconstruction.render.voxel_render import VoxelRender from reconstruction.utils import timed _CONST_NORMAL_DIRECTIONS = np.array([ normalize_vec(np.array(p, dtype=np.float32) - 1) if p != (1, 1, 1) else (0, 0, 0) for p in np.ndindex(3, 3, 3) ], dtype=np.float32) @numba.njit(parallel=True, fastmath=True) def normal_cone_angles(normals: np.ndarray, mask: np.ndarray, threshold=0.5 * np.pi, min_norm: float = 1e-15): assert normals.ndim == 4 size = normals.shape[0] assert normals.shape == (size, size, size, 3) assert mask.shape == (size, size, size) result = np.zeros((size - 2, size - 2, size - 2), dtype=np.bool8) for i in numba.pndindex((size - 2, size - 2, size - 2)): # Collect normals for position i current = np.empty((26, 3), dtype=np.float32) # 26 possible neighbors ci: numba.uint32 = 0 for n_o, o in enumerate(np.ndindex((3, 3, 3))): if o != (1, 1, 1): x, y, z = i[0] + o[0], i[1] + o[1], i[2] + o[2] if mask[x, y, z]: value = normals[x, y, z] norm = np.linalg.norm(value) if norm > min_norm: # Only add if norm is valid current[ci] = value / norm ci += 1 if ci > 3: valid = current[:ci] # Check angle between all valid normals result[i[0], i[1], i[2]] = np.any(
np.arccos(valid @ valid.T)
numpy.arccos
"""Script that calculates the parameters for a log normal distribution given the input To use: python calculate_parameters file1.csv file2.csv ... fileN.csv [optional output_dir=output] The details of the calculations in this script are in the appendix of the docs. """ import sys, csv from scipy.optimize import minimize, Bounds, NonlinearConstraint from scipy.stats import norm, lognorm import numpy as np def main(files, output_dir): to_ignore = 0 for file in files: company_sizes = read_file(file) parameters = {} options = [] for key, size_dist in company_sizes.items(): option_1 = max_likelihood(size_dist) option_2 = match_expectation(size_dist) options.append((option_1, option_2)) if option_1 is not None: var = lognorm.var(option_1[1],scale=np.exp(option_1[0])) elif option_2 is not None: option_1 = option_2 var = lognorm.var(option_2[1],scale=
np.exp(option_2[0])
numpy.exp
''' This code is based on https://github.com/ekwebb/fNRI which in turn is based on https://github.com/ethanfetaya/NRI (MIT licence) ''' import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap import matplotlib.collections as mcoll import torch as torch from matplotlib.patches import Ellipse def gaussian(x, y, xmean, ymean, sigma): # gaussian to used as fit. return np.exp(-((x-xmean) ** 2 + (y-ymean) ** 2) / (2 * sigma ** 2)) def draw_lines(output,output_i,linestyle='-',alpha=1,darker=False,linewidth=2): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ loc = np.array(output[output_i,:,:,0:2]) loc = np.transpose( loc, [1,2,0] ) x = loc[:,0,:] y = loc[:,1,:] x_min = np.min(x) x_max = np.max(x) y_min = np.min(y) y_max = np.max(y) max_range = max( y_max-y_min, x_max-x_min ) xmin = (x_min+x_max)/2-max_range/2-0.1 xmax = (x_min+x_max)/2+max_range/2+0.1 ymin = (y_min+y_max)/2-max_range/2-0.1 ymax = (y_min+y_max)/2+max_range/2+0.1 cmaps = [ 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds', 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds' ] cmaps = [ matplotlib.cm.get_cmap(cmap, 512) for cmap in cmaps ] cmaps = [ ListedColormap(cmap(np.linspace(0., 0.8, 256))) for cmap in cmaps ] if darker: cmaps = [ ListedColormap(cmap(np.linspace(0.2, 0.8, 256))) for cmap in cmaps ] for i in range(loc.shape[-1]): lc = colorline(loc[:,0,i], loc[:,1,i], cmap=cmaps[i],linestyle=linestyle,alpha=alpha,linewidth=linewidth) return xmin, ymin, xmax, ymax def draw_lines_animation(output,linestyle='-',alpha=1,darker=False,linewidth=2, animationtype = 'default'): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ # animation for output used to show how physical and computational errors propagate through system global xmin, xmax, ymin, ymax # output here is of form [perturbation, particles, timestep,(x,y)] import matplotlib.pyplot as plt from matplotlib import animation Writer = animation.writers['ffmpeg'] writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) # scaling of variables. loc_new =
np.array(output)
numpy.array
# -*- coding: utf-8 -*- """ Module for mathematical analysis of voltage traces from electrophysiology. AUTHOR: <NAME> """ import scipy.stats import numpy as np import math import logging import sys from scipy import interpolate import operator import pprint pp = pprint.PrettyPrinter(indent=4) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def print_comment_v(text, warning=False): print_comment(text, True, warning) def print_comment(text, print_it=False, warning=False): prefix = "pyelectro >>> " if warning: prefix += "WARNING " if not isinstance(text, str): text = text.decode("ascii") if print_it: print("%s%s" % (prefix, text.replace("\n", "\n" + prefix))) def voltage_plot(t, v, title=None): """ Plot electrophysiology recording. """ from matplotlib import pyplot as plt plt.xlabel("Time (ms)") plt.ylabel("Voltage (mV)") plt.title(title) plt.grid() plt.plot(t, v) plt.show() def smooth(x, window_len=11, window="hanning"): """Smooth the data using a window with requested size. This function is useful for smoothing out experimental data. This method utilises the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. :param x: the input signal :param window_len: the dimension of the smoothing window; should be an odd integer :param window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman', flat window will produce a moving average smoothing. :return: smoothed signal example: .. code-block:: python t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) .. seealso:: numpy.hanning numpy.hamming numpy.bartlett numpy.blackman numpy.convolve scipy.signal.lfilter """ if x.ndim != 1: raise (ValueError, "smooth only accepts 1 dimension arrays.") if x.size < window_len: raise (ValueError, "Input vector needs to be bigger than window size.") if window_len < 3: return x if window not in ["flat", "hanning", "hamming", "bartlett", "blackman"]: raise ( ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'", ) s = np.r_[x[(window_len - 1):0:-1], x, x[-1:-window_len:-1]] if window == "flat": # moving average w = np.ones(window_len, "d") else: w = eval("np." + window + "(window_len)") y = np.convolve(w / w.sum(), s, mode="valid") edge = int(window_len / 2) return y[edge:-edge] def linear_fit(t, y): """Fits data to a line :param t: time vector :param y: variable which varies with time (such as voltage) :returns: Gradient M for a formula of the type y=C+M*x """ vals = np.array(y) m, C = np.polyfit(t, vals, 1) return m def three_spike_adaptation(t, y): """Linear fit of amplitude vs time of first three AP spikes Initial action potential amplitudes may very substaintially in amplitude and then settle down. :param t: time vector (AP times) :param y: corresponding AP amplitude :returns: Gradient M for a formula of the type y=C+M*x for first three action potentials """ t =
np.array(t)
numpy.array
import numpy as np import scipy.sparse class vert_grid: def __init__(self,AP=None,BP=None,p_sfc=1013.25): if (AP.size != BP.size) or (AP is None): # Throw error? print('Inconsistent vertical grid specification') self.AP = np.array(AP) self.BP =
np.array(BP)
numpy.array
import subprocess import numpy as np import lmfit as lm import scipy.special as sp import scipy.constants as cs from astropy.stats import jackknife_resampling import nmrglue as ng import ast import pandas as pd from more_itertools import pairwise import statistics as st def tedor_ideal(t_mix, a, dist, t2, j_cc, obs='C13', pulsed='N15', vr=14000, return_t=False): """ Makes a SpinEvolution input file from template file "tedor_ideal_template", calls SpinEvolution, parses the output, and applies phenomenological scaling and exponential relaxation. The tedor_ideal is a calculation for interpreting and ultimately fitting ZF-TEDOR build-up curves Parameters ---------- a: float, scaling factor dist: float, distance between 13C-15N t2: float, $T_2$ relaxations time vr: float, MAS speed in HZ j_cc: float, carbon carbon J coupling in Hz return_t: bool, should the function return t=np.arange(0, n)*tr t_mix: array of mixing experimental mixing times in ms obs: string, the observed nucleus for the TEDOR experiment pulsed: string, the nucleus with the REDOR pulses on it Returns ------- signal: array, len(t_mix) or time; signal: array, len(n); array, len(t_mix) """ # Build the simulation program from the template sim_params = {'dist': dist, 'vr': vr / 1000, 'tr': 1 / vr, 'obs': obs, 'pulsed': pulsed} with open('templates/tedor_ideal_template', 'r') as fid: template = fid.read() with open('templates/tedor_ideal_step', 'w') as fid: fid.write(template.format(**sim_params)) cmd = ['/opt/spinev/spinev', 'templates/tedor_ideal_step'] # Run the simulation subprocess.call(cmd) # Parse the results output_file = 'templates/tedor_ideal_step_re.dat' results = np.loadtxt(output_file) time = results[:, 0] signal = results[:, 1] # Apply phenomenological corrections signal = a * signal * (np.cos(np.pi * (j_cc * 1000 / 2))**2) * np.exp(-time / t2) time_points = [] signal_points = [] for i in t_mix: ind = (np.where((np.trunc(time * 100) / 100) == i)[0][0]) time_points.append(time[ind]) signal_points.append(signal[ind]) if return_t: return time_points, signal_points else: return signal_points def tedor_ideal_2n(t_mix, a, dist, t2, x, y, z, j_cc, obs='C13', pulsed='N15', vr=14000, return_t=False): """ Makes a SpinEvolution input file from template file "tedor_ideal_template_2N" using the CNN.cor coordinates file, calls SpinEvolution, parses the output, and applies phenomenological scaling and exponential relaxation. Parameters ---------- a: float, scaling factor dist: float, distance between 13C-15N t2: float, $T_2$ relaxations time vr: float, MAS speed in HZ j_cc: float, carbon carbon J coupling in Hz return_t: bool, should the function return t=np.arange(0, n)*tr t_mix: array of mixing experimental mixing times in ms x: float, distance of second N from C y: float, distance of second N from C z: float, distance of second N from C obs: string, the observed nucleus for the TEDOR experiment pulsed: string, the nucleus with the REDOR pulses on it Returns ------- signal: array, len(t_mix) or time; signal: array, len(n); array, len(t_mix) """ # Build the simulation program from the template sim_params = {'dist': dist, 'x': x, 'y': y, 'z': z, 'vr': vr / 1000, 'tr': 1 / vr, 'j_cc': j_cc, 'obs': obs, 'pulsed': pulsed} with open('templates/CNN.cor', 'r') as fid: template = fid.read() with open('templates/CNN_step.cor', 'w') as fid: fid.write(template.format(**sim_params)) with open('templates/tedor_ideal_template_2N', 'r') as fid: template = fid.read() with open('templates/tedor_ideal_step_2N', 'w') as fid: fid.write(template.format(**sim_params)) cmd = ['/opt/spinev/spinev', 'templates/tedor_ideal_step_2N'] # Run the simulation subprocess.call(cmd) # Parse the results output_file = 'templates/tedor_ideal_step_2N_re.dat' results = np.loadtxt(output_file) time = results[:, 0] signal = results[:, 1] # Apply phenomenological corrections signal = a * signal * (np.cos(np.pi * (j_cc * 1000 / 2))**2) * np.exp(-time / t2) time_points = [] signal_points = [] for i in t_mix: ind = np.where((np.trunc(time * 100)/100) == i)[0][0] time_points.append(time[ind]) signal_points.append(signal[ind]) if return_t: return time_points, signal_points else: return signal_points def tedor_fitting_spinev(data, err, t_mix, p0, p1, obs, pulsed, vr=14000, spins=2, method='nelder'): """ :param data: array, transfer efficiency values for fitting :param err: array, error for each data point :param t_mix: array, mixing times in ms :param p0: array, initial guesses for [dist, j_cc, t2, and a] :param p1: bool array len(3) -- allows you to turn on/off varying j_cc, t2, and a :param obs: string, observed nucleus :param pulsed: string, other nucleus :param vr: MAS frequency :param spins: float, total number of spins in system, either 2 or 3 :param method: fitting method -- for lmfit :return: result - fitting result structure """ if spins == 2: spin_model = tedor_ideal else: spin_model = tedor_ideal_2n kws = {"obs": obs, "pulsed": pulsed} # Build a model to fit the data - SPINEV function tedor_model = lm.Model(spin_model, **kws) params = tedor_model.make_params() params['dist'].set(value=p0[0], min=2, max=8) params['j_cc'].set(value=p0[1], min=0, max=75, vary=p1[0]) params['t2'].set(value=p0[2], min=2, max=30, vary=p1[1]) params['a'].set(value=p0[3], min=0, max=1, vary=p1[2]) params['vr'].set(value=vr, min=10000, max=20000, vary=False) if spins == 3: params['x'].set(value=2.0, min=1.5, max=7) params['y'].set(value=2.0, min=1.5, max=7) params['z'].set(value=2.0, min=1.5, max=7) # Fit the data result = tedor_model.fit(data, t_mix=t_mix, **params, weights=err, method=method) return result def tedor_analytical(t_mix, a, d_active, t2, j_cc, d_p1): """ Analytical equations for TEDOR fitting from Helmus et al 2008 and Jaroniec et al 2002 Uses Bessel function of first kind order 0 to simulate TEDOR behavior Parameters ---------- a: float, scaling factor d_active: float, dipolar coupling between 13C and 15N in Hz d_p1: float, passive dipolar coupling between 13C and additional 15N in Hz t2: float, $T_2$ relaxations time in ms j_cc: float, carbon carbon J coupling in Hz t_mix: array of mixing experimental mixing times in ms Returns ------- signal: array, len(t_mix) KMM 11 May 2021 """ t2_s = t2 / 1000 # puts t2 in terms of s, must be entered in ms time = t_mix / 1000 signal = a * 0.5 * (1 - (sp.j0(np.sqrt(2) * d_active * time)) ** 2) * (np.cos(np.pi * (j_cc / 2)) ** 2) * \ (1 + (sp.j0(
np.sqrt(2)
numpy.sqrt
import kfp.components as comp def test( # noqa: C901 dataset_path: comp.InputPath(str), feature_frames, feature_hop_length, feature_n_fft, feature_n_mels, feature_power, fit_batch_size, fit_compile_loss, fit_compile_optimizer, fit_epochs, fit_shuffle, fit_validation_split, fit_verbose, max_fpr, models_dir: comp.InputPath(), anomaly_dir: comp.OutputPath(str), results_dir: comp.OutputPath(str), mlpipelinemetrics_path: comp.OutputPath(), labels_dir: comp.OutputPath(), ): import csv import glob import itertools import json import os import re import sys import librosa import librosa.core import librosa.feature import numpy import tensorflow as tf from sklearn import metrics # Parse pipeline parameters feature_frames = int(feature_frames) feature_hop_length = int(feature_hop_length) feature_n_fft = int(feature_n_fft) feature_n_mels = int(feature_n_mels) feature_power = float(feature_power) fit_batch_size = int(fit_batch_size) fit_epochs = int(fit_epochs) fit_validation_split = float(fit_validation_split) fit_verbose = int(fit_verbose) max_fpr = float(max_fpr) def select_dirs(dataset_path): """ return : dirs : list [ str ] load base directory list of data """ print("load_directory <- data") dir_path = os.path.abspath(dataset_path + "{base}/*".format(base="/data")) dirs = sorted(glob.glob(dir_path)) return dirs def file_to_vector_array( file_name, n_mels=64, frames=5, n_fft=1024, hop_length=512, power=2.0 ): """ convert file_name to a vector array. file_name : str target .wav file return : numpy.array( numpy.array( float ) ) vector array * dataset.shape = (dataset_size, feature_vector_length) """ dims = n_mels * frames y, sr = file_load(file_name) mel_spectrogram = librosa.feature.melspectrogram( y=y, sr=sr, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, power=power ) log_mel_spectrogram = ( 20.0 / power * numpy.log10(mel_spectrogram + sys.float_info.epsilon) ) vector_array_size = len(log_mel_spectrogram[0, :]) - frames + 1 if vector_array_size < 1: return numpy.empty((0, dims)) vector_array = numpy.zeros((vector_array_size, dims)) for t in range(frames): vector_array[:, n_mels * t : n_mels * (t + 1)] = log_mel_spectrogram[ :, t : t + vector_array_size ].T return vector_array def file_load(wav_name, mono=False): """ load .wav file. wav_name : str target .wav file sampling_rate : int audio file sampling_rate mono : boolean When load a multi channels file and this param True, the returned data will be merged for mono data return : numpy.array( float ) """ try: return librosa.load(wav_name, sr=None, mono=mono) except Exception: print("Error: file_broken or not exists!! : {}".format(wav_name)) def load_model(file_path): """ return: model loaded from file_path """ return tf.keras.models.load_model(file_path) def get_machine_id_list_for_test(target_dir, dir_name="test", ext="wav"): """ target_dir : str base directory path of "dev_data" or "eval_data" test_dir_name : str (default="test") directory containing test data ext : str (default="wav) file extension of audio files return : machine_id_list : list [ str ] list of machine IDs extracted from the names of test files """ # create test files dir_path = os.path.abspath( "{dir}/{dir_name}/*.{ext}".format( dir=target_dir, dir_name=dir_name, ext=ext ) ) file_paths = sorted(glob.glob(dir_path)) machine_id_list = sorted( list( set( itertools.chain.from_iterable( [re.findall("id_[0-9][0-9]", ext_id) for ext_id in file_paths] ) ) ) ) return machine_id_list def test_file_list_generator( target_dir, id_name, dir_name="test", prefix_normal="normal", prefix_anomaly="anomaly", ext="wav", ): """ target_dir : str base directory path of the dev_data or eval_data id_name : str id of wav file in <<test_dir_name>> directory dir_name : str (default="test") directory containing test data prefix_normal : str (default="normal") normal directory name prefix_anomaly : str (default="anomaly") anomaly directory name ext : str (default="wav") file extension of audio files return : if the mode is "development": test_files : list [ str ] file list for test test_labels : list [ boolean ] label info. list for test * normal/anomaly = 0/1 if the mode is "evaluation": test_files : list [ str ] file list for test """ print("target_dir : {}".format(target_dir + "_" + id_name)) normal_files = sorted( glob.glob( "{dir}/{dir_name}/{prefix_normal}_{id_name}*.{ext}".format( dir=target_dir, dir_name=dir_name, prefix_normal=prefix_normal, id_name=id_name, ext=ext, ) ) ) normal_labels = numpy.zeros(len(normal_files)) anomaly_files = sorted( glob.glob( "{dir}/{dir_name}/{prefix_anomaly}_{id_name}*.{ext}".format( dir=target_dir, dir_name=dir_name, prefix_anomaly=prefix_anomaly, id_name=id_name, ext=ext, ) ) ) anomaly_labels = numpy.ones(len(anomaly_files)) files = numpy.concatenate((normal_files, anomaly_files), axis=0) labels = numpy.concatenate((normal_labels, anomaly_labels), axis=0) print("test_file num : {num}".format(num=len(files))) if len(files) == 0: print("Exception: no_wav_file!!") print("\n========================================") return files, labels def save_csv(save_file_path, save_data): """ Write csv data to specified path """ with open(save_file_path, "w", newline="") as f: writer = csv.writer(f, lineterminator="\n") writer.writerows(save_data) dirs = select_dirs(dataset_path) csv_lines = [] metrics_list = [] for idx, target_dir in enumerate(dirs): print("\n===========================") print( "[{idx}/{total}] {dirname}".format( dirname=target_dir, idx=idx + 1, total=len(dirs) ) ) machine_type = os.path.split(target_dir)[1] model_file_path = "{model}/model_{machine_type}.hdf5".format( model=models_dir + "/model", machine_type=machine_type ) # load model file print("============== MODEL LOAD ==============") if not os.path.exists(model_file_path): print("{} model not found ".format(machine_type)) sys.exit(-1) model = load_model(model_file_path) model.summary() # results by type csv_lines.append([machine_type]) csv_lines.append(["id", "AUC", "pAUC"]) performance = [] machine_id_list = get_machine_id_list_for_test(target_dir) print("Machine_id_list: " + str(machine_id_list)) for id_str in machine_id_list: # load test file test_files, y_true = test_file_list_generator(target_dir, id_str) anomaly_score_list = [] print("\n============== BEGIN TEST FOR A MACHINE ID ==============") y_scores = [0.0 for k in test_files] for file_idx, file_path in enumerate(test_files): try: data = file_to_vector_array( file_path, n_mels=feature_n_mels, frames=feature_frames, n_fft=feature_n_fft, hop_length=feature_hop_length, power=feature_power, ) errors = numpy.mean( numpy.square(data - model.predict(data)), axis=1 ) y_scores[file_idx] =
numpy.mean(errors)
numpy.mean
import cv2 import numpy as np from styx_msgs.msg import TrafficLight class TLClassifier(object): def __init__(self): pass def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ # Transform to HSV and simply count the number of color within the range hsv_img = cv2.cvtColor(image,cv2.COLOR_BGR2HSV) # red has hue 0 - 10 & 160 - 180 add another filter # TODO use Guassian mask lower_red1 = np.array([0, 100, 100]) upper_red1 = np.array([10, 255, 255]) lower_red2 = np.array([160, 100, 100]) upper_red2 = np.array([179, 255, 255]) mask_red_lower = cv2.inRange(hsv_img, lower_red1, upper_red1) mask_red_upper = cv2.inRange(hsv_img, lower_red2, upper_red2) if cv2.countNonZero(mask_red_lower) + cv2.countNonZero(mask_red_upper) > 70: return TrafficLight.RED lower_yellow = np.array([40.0/360*255, 100, 100]) upper_yellow = np.array([66.0/360*255, 255, 255]) mask_yellow = cv2.inRange(hsv_img, lower_yellow, upper_yellow) if cv2.countNonZero(mask_yellow) > 70: return TrafficLight.YELLOW lower_green =
np.array([90.0/360*255, 100, 100])
numpy.array
import h5py import numpy as np import os from PIL import Image import nibabel as nib from sklearn.preprocessing import MinMaxScaler from numpy import save sample_counter = 0 for j in range(100, 1000): img_path = '/scratch-second/arismu/Master_Thesis_Codes/My_TransUNet/synapse_train/DET0000%s_avg.nii' % (j) if os.path.isfile(img_path): print('image size: %d bytes'%os.path.getsize(img_path)) img = nib.load(img_path) img_np= np.array(img.dataobj) print(img_np) img_np_clipped = np.ndarray.clip(img_np, -125, 275) img_np_norm = (img_np_clipped - np.min(img_np_clipped))/(np.max(img_np_clipped)- np.min(img_np_clipped)) shape = np.shape(img_np_norm) list_2D_pil = [] list_2D_np = [] sample_counter = sample_counter + 1 for i in range(shape[2]): img_2D = Image.fromarray(img_np_norm[:, :, i]) #obtain 2D PIL Images list_2D_pil.append(img_2D) list_2D_np = np.array(list_2D_pil[i]) #convert pil image to numpy array np.savez('/scratch-second/arismu/Master_Thesis_Codes/My_TransUNet/data/Synapse/train_npz/case%s_slice%s' % (sample_counter, i), list_2D_np[i]) else: pass for j in range(1000, 10000): img_path = '/scratch-second/arismu/Master_Thesis_Codes/My_TransUNet/synapse_train/DET000%s_avg.nii' % (j) if os.path.isfile(img_path): print('image size: %d bytes'%os.path.getsize(img_path)) img = nib.load(img_path) img_np=
np.array(img.dataobj)
numpy.array
"""Test module for MFE class errors and warnings.""" import pytest import numpy as np from pymfe.mfe import MFE from pymfe import _internal from tests.utils import load_xy GNAME = "errors-warnings" class TestErrorsWarnings: """TestClass dedicated to test General metafeatures.""" def test_error_empty_data_1(self): with pytest.raises(TypeError): MFE().fit(X=None, y=None) def test_error_sample_size(self): with pytest.raises(ValueError): MFE(lm_sample_frac=-1) def test_error_empty_data_2(self): with pytest.raises(TypeError): X, y = load_xy(0) model = MFE().fit(X=X.values, y=y.values) model.X = None model.extract() def test_error_empty_data_3(self): with pytest.raises(ValueError): MFE().fit(X=[], y=[]) def test_error_empty_data_4(self): with pytest.raises(TypeError): X, y = load_xy(0) model = MFE().fit(X=X.values, y=y.values) model.y = None model.extract() def test_error_data_wrong_shape(self): with pytest.raises(ValueError): X, y = load_xy(0) MFE().fit(X=X.values, y=y.values[:-1]) @pytest.mark.parametrize( "group_name", [ "land-marking", "infotheo", "generalgeneral", "generalstatistical", ("general", "statistical", "invalid"), ("invalid", ), 0, None, [], set(), tuple(), ]) def test_error_invalid_groups_1(self, group_name): with pytest.raises(ValueError): MFE(groups=group_name) @pytest.mark.parametrize( "group_name", [ 1, lambda x: x, range(1, 5), ]) def test_error_invalid_groups_2(self, group_name): with pytest.raises(TypeError): MFE(groups=group_name) def test_error_random_state(self): with pytest.raises(ValueError): MFE(random_state=1.5) def test_error_folds(self): with pytest.raises(ValueError): MFE(num_cv_folds=1.5) def test_error_cat_cols_1(self): with pytest.raises(ValueError): X, y = load_xy(0) MFE().fit(X=X.values, y=y.values, cat_cols=1) def test_error_cat_cols_2(self): with pytest.raises(ValueError): X, y = load_xy(0) MFE().fit(X=X.values, y=y.values, cat_cols="all") def test_error_invalid_timeopt(self): with pytest.raises(ValueError): X, y = load_xy(0) MFE(measure_time="invalid").fit(X=X.values, y=y.values) @pytest.mark.parametrize( "value, group_name, allow_none, allow_empty", [ (None, "groups", False, True), (None, "groups", False, False), ("", "group", False, False), ("", "group", True, False), ("invalid", "groups", False, False), ("all", "invalid", False, False), ("invalid", "groups", False, True), ("invalid", "groups", True, False), ("invalid", "groups", True, True), ("mean", "summary", True, True), ("all", "summary", True, True), ("num_inst", "features", True, True), ("all", "features", True, True), ]) def test_error_process_generic_option_1(self, value, group_name, allow_none, allow_empty): with pytest.raises(ValueError): _internal.process_generic_option( value=value, group_name=group_name, allow_none=allow_none, allow_empty=allow_empty) def test_error_process_generic_option_2(self): with pytest.raises(TypeError): _internal.process_generic_option( values=[1, 2, 3], group_name=None) def test_error_process_generic_option_3(self): with pytest.raises(TypeError): _internal.process_generic_option( values=[1, 2, 3], group_name="timeopt") @pytest.mark.parametrize( "values, group_name, allow_none, allow_empty", [ (None, "groups", False, True), (None, "groups", False, False), ("", "group", False, False), ([], "groups", True, False), ([], "groups", False, False), ("invalid", "groups", False, False), ("all", "invalid", False, False), ("invalid", "groups", False, True), ("invalid", "groups", True, False), ("invalid", "groups", True, True), ("mean", "summary", True, True), ("all", "summary", True, True), ("num_inst", "features", True, True), ("all", "features", True, True), ]) def test_error_process_generic_set_1(self, values, group_name, allow_none, allow_empty): with pytest.raises(ValueError): _internal.process_generic_set( values=values, group_name=group_name, allow_none=allow_none, allow_empty=allow_empty) def test_error_process_generic_set_2(self): with pytest.raises(TypeError): _internal.process_generic_set( values=[1, 2, 3], group_name=None) @pytest.mark.parametrize( "summary", [ "meanmean", "invalid", ]) def test_error_unknown_summary(self, summary): with pytest.raises(ValueError): MFE(summary=summary) @pytest.mark.parametrize( "features", [ None, [], "", ]) def test_error_invalid_features(self, features): with pytest.raises(ValueError): MFE(features=features) @pytest.mark.parametrize( "score", [ None, [], "", "invalid", "accuracyaccuracy", ]) def test_error_invalid_score(self, score): with pytest.raises(ValueError): MFE(score=score) @pytest.mark.parametrize( "rescale", [ "", "invalid", "minmax", ]) def test_error_invalid_rescale_1(self, rescale): with pytest.raises(ValueError): X, y = load_xy(0) MFE().fit(X=X.values, y=y.values, rescale=rescale) def test_error_invalid_rescale_2(self): with pytest.raises(TypeError): X, y = load_xy(0) MFE().fit(X=X.values, y=y.values, rescale=[]) @pytest.mark.parametrize( "features, groups", [ ("invalid", "all"), ("invalid", "general"), ("mean", "info-theory"), ("nr_instt", "general"), ]) def test_warning_invalid_features(self, features, groups): with pytest.warns(UserWarning): X, y = load_xy(0) model = MFE(features=features, groups=groups).fit(X=X.values, y=y.values) model.extract() @pytest.mark.parametrize( "groups, precomp_groups", [ ("all", "invalid"), ("general", "statistical"), ("info-theory", "general"), (["general", "statistical"], ["general", "info-theory"]), ]) def test_warning_invalid_precomp(self, groups, precomp_groups): with pytest.warns(UserWarning): X, y = load_xy(0) MFE(groups=groups).fit(X=X.values, y=y.values, precomp_groups=precomp_groups) def test_warning_invalid_argument(self): with pytest.warns(UserWarning): X, y = load_xy(0) model = MFE(features="sd").fit(X=X.values, y=y.values) model.extract(sd={"ddof": 1, "invalid": "value?"}) def test_error_rescale_data(self): X, y = load_xy(0) with pytest.raises(ValueError): _internal.rescale_data(X, option="42") def test_error_transform_num(self): X, y = load_xy(0) with pytest.raises(TypeError): _internal.transform_num(X, num_bins='') with pytest.raises(ValueError): _internal.transform_num(X, num_bins=-1) def test_isnumeric_check(self): assert _internal.isnumeric([]) is False def test_error_check_data(self): X, y = load_xy(0) with pytest.raises(TypeError): _internal.check_data(X, y='') def test_errors__fill_col_ind_by_type(self): X, y = load_xy(0) with pytest.raises(TypeError): mfe = MFE() mfe._fill_col_ind_by_type() X = [[1, 2, 'a', 'b']]*10 + [[3, 4, 'c', 'd']]*10 y = [0]*10 + [1]*10 mfe = MFE() mfe.X, mfe.y = np.array(X), np.array(y) mfe._fill_col_ind_by_type(cat_cols=None) assert mfe._attr_indexes_cat == () mfe = MFE() mfe.X, mfe.y = np.array(X),
np.array(y)
numpy.array
''' The Caffe data layer for training label classifier. This layer will parse pixel values and actionness labels to the network. ''' import sys sys.path.insert(0, '/home/rhou/caffe/python') import caffe from dataset.ucf_sports import UcfSports import numpy as np from utils.cython_bbox import bbox_overlaps class RecDataLayer(): def __init__(self, net, model): self._batch_size = 1 self._depth = 8 self._height = 300 self._width = 400 self.dataset = UcfSports('test', [self._height, self._width], '/home/rhou/ucf_sports') self.anchors = self.dataset.get_anchors() caffe.set_mode_gpu() self._net = caffe.Net(net, model, caffe.TEST) def forward(self): self._net.blobs['data'].reshape(self._batch_size, 3, self._depth, self._height, self._width) self._net.blobs['tois'].reshape(self._batch_size * 3714, 5) [clip, labels, gt_bboxes, is_last] = self.dataset.next_val_video(random=False) n = int(np.floor(clip.shape[0] / 8.0)) result = np.empty((n, 3714, 22)) for i in xrange(n): batch_clip = clip[i * 8 : i * 8 + 8].transpose([3, 0, 1, 2]) batch_clip = np.expand_dims(batch_clip, axis=0) batch_tois = np.hstack((
np.zeros((3714, 1))
numpy.zeros
"""Module containing core functionality of ``astrowidgets``.""" # STDLIB import functools import warnings # THIRD-PARTY import numpy as np from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.table import Table, vstack # Jupyter widgets import ipywidgets as ipyw # Ginga from ginga.AstroImage import AstroImage from ginga.canvas.CanvasObject import drawCatalog from ginga.web.jupyterw.ImageViewJpw import EnhancedCanvasView from ginga.util.wcs import raDegToString, decDegToString __all__ = ['ImageWidget'] # Allowed locations for cursor display ALLOWED_CURSOR_LOCATIONS = ['top', 'bottom', None] # List of marker names that are for internal use only RESERVED_MARKER_SET_NAMES = ['all'] class ImageWidget(ipyw.VBox): """ Image widget for Jupyter notebook using Ginga viewer. .. todo:: Any property passed to constructor has to be valid keyword. Parameters ---------- logger : obj or ``None`` Ginga logger. For example:: from ginga.misc.log import get_logger logger = get_logger('my_viewer', log_stderr=False, log_file='ginga.log', level=40) image_width, image_height : int Dimension of Jupyter notebook's image widget. use_opencv : bool Let Ginga use ``opencv`` to speed up image transformation; e.g., rotation and mosaic. If this is enabled and you do not have ``opencv``, you will get a warning. pixel_coords_offset : int, optional An offset, typically either 0 or 1, to add/subtract to all pixel values when going to/from the displayed image. *In almost all situations the default value, ``0``, is the correct value to use.* """ def __init__(self, logger=None, image_width=500, image_height=500, use_opencv=True, pixel_coords_offset=0): super().__init__() # TODO: Is this the best place for this? if use_opencv: try: from ginga import trcalc trcalc.use('opencv') except ImportError: warnings.warn('install opencv or set use_opencv=False') self._viewer = EnhancedCanvasView(logger=logger) self._pixel_offset = pixel_coords_offset self._jup_img = ipyw.Image(format='jpeg') # Set the image margin to over the widgets default of 2px on # all sides. self._jup_img.layout.margin = '0' # Set both of those to ensure consistent display in notebook # and jupyterlab when the image is put into a container smaller # than the image. self._jup_img.max_width = '100%' self._jup_img.height = 'auto' # Set the width of the box containing the image to the desired width self.layout.width = str(image_width) # Note we are NOT setting the height. That is because the height # is automatically set by the image aspect ratio. # These need to also be set for now; ginga uses them to figure # out what size image to make. self._jup_img.width = image_width self._jup_img.height = image_height self._viewer.set_widget(self._jup_img) # enable all possible keyboard and pointer operations self._viewer.get_bindings().enable_all(True) # enable draw self.dc = drawCatalog self.canvas = self.dc.DrawingCanvas() self.canvas.enable_draw(True) self.canvas.enable_edit(True) # Make sure all of the internal state trackers have a value # and start in a state which is definitely allowed: all are # False. self._is_marking = False self._click_center = False self._click_drag = False self._scroll_pan = False # Set a couple of things to match the ginga defaults self.scroll_pan = True self.click_drag = False bind_map = self._viewer.get_bindmap() # Set up right-click and drag adjusts the contrast bind_map.map_event(None, (), 'ms_right', 'contrast') # Shift-right-click restores the default contrast bind_map.map_event(None, ('shift',), 'ms_right', 'contrast_restore') # Marker self.marker = {'type': 'circle', 'color': 'cyan', 'radius': 20} # Maintain marker tags as a set because we do not want # duplicate names. self._marktags = set() # Let's have a default name for the tag too: self._default_mark_tag_name = 'default-marker-name' self._interactive_marker_set_name_default = 'interactive-markers' self._interactive_marker_set_name = self._interactive_marker_set_name_default # coordinates display self._jup_coord = ipyw.HTML('Coordinates show up here') # This needs ipyevents 0.3.1 to work self._viewer.add_callback('cursor-changed', self._mouse_move_cb) self._viewer.add_callback('cursor-down', self._mouse_click_cb) # Define a callback that shows the output of a print self.print_out = ipyw.Output() self._cursor = 'bottom' self.children = [self._jup_img, self._jup_coord] @property def logger(self): """Logger for this widget.""" return self._viewer.logger @property def image_width(self): return int(self._jup_img.width) @image_width.setter def image_width(self, value): # widgets expect width/height as strings, but most users will not, so # do the conversion. self._jup_img.width = str(value) self._viewer.set_window_size(self.image_width, self.image_height) @property def image_height(self): return int(self._jup_img.height) @image_height.setter def image_height(self, value): # widgets expect width/height as strings, but most users will not, so # do the conversion. self._jup_img.height = str(value) self._viewer.set_window_size(self.image_width, self.image_height) @property def pixel_offset(self): """ An offset, typically either 0 or 1, to add/subtract to all pixel values when going to/from the displayed image. *In almost all situations the default value, ``0``, is the correct value to use.* This value cannot be modified after initialization. """ return self._pixel_offset def _mouse_move_cb(self, viewer, button, data_x, data_y): """ Callback to display position in RA/DEC deg. """ if self.cursor is None: # no-op return image = viewer.get_image() if image is not None: ix = int(data_x + 0.5) iy = int(data_y + 0.5) try: imval = viewer.get_data(ix, iy) imval = '{:8.3f}'.format(imval) except Exception: imval = 'N/A' val = 'X: {:.2f}, Y: {:.2f}'.format(data_x + self._pixel_offset, data_y + self._pixel_offset) if image.wcs.wcs is not None: ra, dec = image.pixtoradec(data_x, data_y) val += ' (RA: {}, DEC: {})'.format( raDegToString(ra), decDegToString(dec)) val += ', value: {}'.format(imval) self._jup_coord.value = val def _mouse_click_cb(self, viewer, event, data_x, data_y): """ Callback to handle mouse clicks. """ if self.is_marking: marker_name = self._interactive_marker_set_name objs = [] try: c_mark = viewer.canvas.get_object_by_tag(marker_name) except Exception: # Nothing drawn yet pass else: # Add to existing marks objs = c_mark.objects viewer.canvas.delete_object_by_tag(marker_name) # NOTE: By always using CompoundObject, marker handling logic # is simplified. obj = self._marker(x=data_x, y=data_y) objs.append(obj) viewer.canvas.add(self.dc.CompoundObject(*objs), tag=marker_name) self._marktags.add(marker_name) with self.print_out: print('Selected {} {}'.format(obj.x, obj.y)) elif self.click_center: self.center_on((data_x, data_y)) with self.print_out: print('Centered on X={} Y={}'.format(data_x + self._pixel_offset, data_y + self._pixel_offset)) # def _repr_html_(self): # """ # Show widget in Jupyter notebook. # """ # from IPython.display import display # return display(self._widget) def load_fits(self, fitsorfn, numhdu=None, memmap=None): """ Load a FITS file into the viewer. Parameters ---------- fitsorfn : str or HDU Either a file name or an HDU (*not* an HDUList). If file name is given, WCS in primary header is automatically inherited. If a single HDU is given, WCS must be in the HDU header. numhdu : int or ``None`` Extension number of the desired HDU. If ``None``, it is determined automatically. memmap : bool or ``None`` Memory mapping. If ``None``, it is determined automatically. """ if isinstance(fitsorfn, str): image = AstroImage(logger=self.logger, inherit_primary_header=True) image.load_file(fitsorfn, numhdu=numhdu, memmap=memmap) self._viewer.set_image(image) elif isinstance(fitsorfn, (fits.ImageHDU, fits.CompImageHDU, fits.PrimaryHDU)): self._viewer.load_hdu(fitsorfn) def load_nddata(self, nddata): """ Load an ``NDData`` object into the viewer. .. todo:: Add flag/masking support, etc. Parameters ---------- nddata : `~astropy.nddata.NDData` ``NDData`` with image data and WCS. """ from ginga.util.wcsmod.wcs_astropy import AstropyWCS image = AstroImage(logger=self.logger) image.set_data(nddata.data) _wcs = AstropyWCS(self.logger) if nddata.wcs: _wcs.load_header(nddata.wcs.to_header()) try: image.set_wcs(_wcs) except Exception as e: print('Unable to set WCS from NDData: {}'.format(str(e))) self._viewer.set_image(image) def load_array(self, arr): """ Load a 2D array into the viewer. .. note:: Use :meth:`load_nddata` for WCS support. Parameters ---------- arr : array-like 2D array. """ self._viewer.load_data(arr) def center_on(self, point): """ Centers the view on a particular point. Parameters ---------- point : tuple or `~astropy.coordinates.SkyCoord` If tuple of ``(X, Y)`` is given, it is assumed to be in data coordinates. """ if isinstance(point, SkyCoord): self._viewer.set_pan(point.ra.deg, point.dec.deg, coord='wcs') else: self._viewer.set_pan(*(np.asarray(point) - self._pixel_offset)) def offset_to(self, dx, dy, skycoord_offset=False): """ Move the center to a point that is given offset away from the current center. Parameters ---------- dx, dy : float Offset value. Unit is assumed based on ``skycoord_offset``. skycoord_offset : bool If `True`, offset must be given in degrees. Otherwise, they are in pixel values. """ if skycoord_offset: coord = 'wcs' else: coord = 'data' pan_x, pan_y = self._viewer.get_pan(coord=coord) self._viewer.set_pan(pan_x + dx, pan_y + dy, coord=coord) @property def zoom_level(self): """ Zoom level: * 1 means real-pixel-size. * 2 means zoomed in by a factor of 2. * 0.5 means zoomed out by a factor of 2. """ return self._viewer.get_scale() @zoom_level.setter def zoom_level(self, val): if val == 'fit': self._viewer.zoom_fit() else: self._viewer.scale_to(val, val) def zoom(self, val): """ Zoom in or out by the given factor. Parameters ---------- val : int The zoom level to zoom the image. See `zoom_level`. """ self.zoom_level = self.zoom_level * val @property def is_marking(self): """ `True` if in marking mode, `False` otherwise. Marking mode means a mouse click adds a new marker. This does not affect :meth:`add_markers`. """ return self._is_marking def start_marking(self, marker_name=None, marker=None): """ Start marking, with option to name this set of markers or to specify the marker style. """ self._cached_state = dict(click_center=self.click_center, click_drag=self.click_drag, scroll_pan=self.scroll_pan) self.click_center = False self.click_drag = False # Set scroll_pan to ensure there is a mouse way to pan self.scroll_pan = True self._is_marking = True if marker_name is not None: self._validate_marker_name(marker_name) self._interactive_marker_set_name = marker_name self._marktags.add(marker_name) else: self._interactive_marker_set_name = \ self._interactive_marker_set_name_default if marker is not None: self.marker = marker def stop_marking(self, clear_markers=False): """ Stop marking mode, with option to clear markers, if desired. Parameters ---------- clear_markers : bool, optional If ``clear_markers`` is `False`, existing markers are retained until :meth:`reset_markers` is called. Otherwise, they are erased. """ if self.is_marking: self._is_marking = False self.click_center = self._cached_state['click_center'] self.click_drag = self._cached_state['click_drag'] self.scroll_pan = self._cached_state['scroll_pan'] self._cached_state = {} if clear_markers: self.reset_markers() @property def marker(self): """ Marker to use. .. todo:: Add more examples. Marker can be set as follows:: {'type': 'circle', 'color': 'cyan', 'radius': 20} {'type': 'cross', 'color': 'green', 'radius': 20} {'type': 'plus', 'color': 'red', 'radius': 20} """ # Change the marker from a very ginga-specific type (a partial # of a ginga drawing canvas type) to a generic dict, which is # what we expect the user to provide. # # That makes things like self.marker = self.marker work. return self._marker_dict @marker.setter def marker(self, val): # Make a new copy to avoid modifying the dict that the user passed in. _marker = val.copy() marker_type = _marker.pop('type') if marker_type == 'circle': self._marker = functools.partial(self.dc.Circle, **_marker) elif marker_type == 'plus': _marker['type'] = 'point' _marker['style'] = 'plus' self._marker = functools.partial(self.dc.Point, **_marker) elif marker_type == 'cross': _marker['type'] = 'point' _marker['style'] = 'cross' self._marker = functools.partial(self.dc.Point, **_marker) else: # TODO: Implement more shapes raise NotImplementedError( 'Marker type "{}" not supported'.format(marker_type)) # Only set this once we have successfully created a marker self._marker_dict = val def get_markers(self, x_colname='x', y_colname='y', skycoord_colname='coord', marker_name=None): """ Return the locations of existing markers. Parameters ---------- x_colname, y_colname : str Column names for X and Y data coordinates. Coordinates returned are 0- or 1-indexed, depending on ``self.pixel_offset``. skycoord_colname : str Column name for ``SkyCoord``, which contains sky coordinates associated with the active image. This is ignored if image has no WCS. Returns ------- markers_table : `~astropy.table.Table` or ``None`` Table of markers, if any, or ``None``. """ if marker_name is None: marker_name = self._default_mark_tag_name if marker_name == 'all': # If it wasn't for the fact that SKyCoord columns can't # be stacked this would all fit nicely into a list # comprehension. But they can't, so we delete the # SkyCoord column if it is present, then add it # back after we have stacked. coordinates = [] tables = [] for name in self._marktags: table = self.get_markers(x_colname=x_colname, y_colname=y_colname, skycoord_colname=skycoord_colname, marker_name=name) if table is None: # No markers by this name, skip it continue try: coordinates.extend(c for c in table[skycoord_colname]) except KeyError: pass else: del table[skycoord_colname] tables.append(table) stacked = vstack(tables, join_type='exact') if coordinates: stacked[skycoord_colname] = SkyCoord(coordinates) return stacked # We should always allow the default name. The case # where that table is empty will be handled in a moment. if (marker_name not in self._marktags and marker_name != self._default_mark_tag_name): raise ValueError(f"No markers named '{marker_name}' found.") try: c_mark = self._viewer.canvas.get_object_by_tag(marker_name) except Exception: # No markers in this table. Issue a warning and continue warnings.warn(f"Marker set named '{marker_name}' is empty", category=UserWarning) return None image = self._viewer.get_image() xy_col = [] if (image is None) or (image.wcs.wcs is None): # Do not include SkyCoord column include_skycoord = False else: include_skycoord = True radec_col = [] # Extract coordinates from markers for obj in c_mark.objects: if obj.coord == 'data': xy_col.append([obj.x, obj.y]) if include_skycoord: radec_col.append([np.nan, np.nan]) elif not include_skycoord: # marker in WCS but image has none self.logger.warning( 'Skipping ({},{}); image has no WCS'.format(obj.x, obj.y)) else: # wcs xy_col.append([np.nan, np.nan]) radec_col.append([obj.x, obj.y]) # Convert to numpy arrays xy_col = np.asarray(xy_col) # [[x0, y0], [x1, y1], ...] if include_skycoord: # [[ra0, dec0], [ra1, dec1], ...] radec_col = np.asarray(radec_col) # Fill in X,Y from RA,DEC mask = np.isnan(xy_col[:, 0]) # One bool per row if np.any(mask): xy_col[mask] = image.wcs.wcspt_to_datapt(radec_col[mask]) # Fill in RA,DEC from X,Y mask =
np.isnan(radec_col[:, 0])
numpy.isnan
import os import numpy as np import pytest from autolens import exc from autolens.data.array import mask from autolens.data.array.util import mask_util test_data_dir = "{}/../test_files/array/".format(os.path.dirname(os.path.realpath(__file__))) class TestTotalPixels: def test__total_image_pixels_from_mask(self): mask = np.array([[True, False, True], [False, False, False], [True, False, True]]) assert mask_util.total_regular_pixels_from_mask(mask) == 5 def test__total_sub_pixels_from_mask(self): mask = np.array([[True, False, True], [False, False, False], [True, False, True]]) assert mask_util.total_sub_pixels_from_mask_and_sub_grid_size(mask, sub_grid_size=2) == 20 def test__total_edge_pixels_from_mask(self): mask = np.array([[True, True, True, True, True], [True, False, False, False, True], [True, False, False, False, True], [True, False, False, False, True], [True, True, True, True, True]]) assert mask_util.total_edge_pixels_from_mask(mask) == 8 class TestTotalSparsePixels: def test__mask_full_false__full_pixelization_grid_pixels_in_mask(self): ma = mask.Mask(array=np.array([[False, False, False], [False, False, False], [False, False, False]]), pixel_scale=1.0) full_pix_grid_pixel_centres = np.array([[0 ,0], [0 ,1], [0 ,2], [1 ,0]]) total_masked_pixels = mask_util.total_sparse_pixels_from_mask(mask=ma, unmasked_sparse_grid_pixel_centres=full_pix_grid_pixel_centres) assert total_masked_pixels == 4 full_pix_grid_pixel_centres = np.array([[0 ,0], [0 ,1], [0 ,2], [1 ,0], [1 ,1], [2 ,1]]) total_masked_pixels = mask_util.total_sparse_pixels_from_mask(mask=ma, unmasked_sparse_grid_pixel_centres=full_pix_grid_pixel_centres) assert total_masked_pixels == 6 def test__mask_is_cross__only_pixelization_grid_pixels_in_mask_are_counted(self): ma = mask.Mask(array=np.array([[True, False, True], [False, False, False], [True, False, True]]), pixel_scale=1.0) full_pix_grid_pixel_centres =
np.array([[0 ,0], [0 ,1], [0 ,2], [1 ,0]])
numpy.array
import matplotlib.pyplot as plt import numpy as np import torch from info_nce import InfoNCE # Numpy helper functions def dot(x, y): x = x /
np.linalg.norm(x)
numpy.linalg.norm
from keras.models import Sequential from keras.layers import Dense import numpy as np def vec_from_labels(X, xlab, Ydb): Y = np.zeros((X.shape[0], Ydb.shape[1])) for i, lab in enumerate(xlab): Y[i] = Ydb[lab] return Y def norm_mat(mat): return mat/np.linalg.norm(mat, axis=1)[:, None] def pick_rnd_sample(X): rnd_idx = np.random.randint(len(X[0])) return X[0][rnd_idx], X[1][rnd_idx], X[2][rnd_idx] def project_data(X, d=2000): proj_mat = np.random.normal(size=(X.shape[1], d)) return np.dot(X, proj_mat) def create_train_test(X, xlab, Y, nr_samp): return (X[:nr_samp], Y[:nr_samp], xlab[:nr_samp]), ( X[nr_samp:], Y[nr_samp:], xlab[nr_samp:]) ## TODO, this custom metric doesn't work def closest_vec(y_true, y_pred): print(y_true) true_label = np.argmin(np.linalg.norm(y_true - X_wrd, axis=1)) pred_label = np.argmin(np.linalg.norm(y_pred - X_wrd, axis=1)) return np.int(true_label==pred_label) path_to_embeddings = './data/cifar10_w2v_embeddings.npz' path_to_cifar_fts = './data/output.npz' # load w2v vectors and labels wrd_fts = np.load(path_to_embeddings)['embeddings'] wrd_fts = norm_mat(wrd_fts) wrd_lab = np.load(path_to_embeddings)['words'] # load visual vectors and labels vis_fts =
np.load(path_to_cifar_fts)
numpy.load
import os import uproot import numpy as np import matplotlib.pyplot as plt from cycler import cycler import copy from collections import defaultdict from astropy.coordinates.angle_utilities import angular_separation from astropy.coordinates import Angle from astropy import units as u import pandas as pd import seaborn as sns from pathlib import Path from joblib import dump, load from sklearn.metrics import confusion_matrix, f1_score from scipy.stats import mstats from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.linear_model import ( LinearRegression, Ridge, RidgeClassifier, RidgeClassifierCV, SGDClassifier, SGDRegressor, ) from sklearn.ensemble import ( AdaBoostClassifier, AdaBoostRegressor, BaggingClassifier, GradientBoostingClassifier, RandomForestClassifier, RandomForestRegressor, ) from sklearn.neural_network import MLPRegressor, MLPClassifier from sklearn.svm import SVR, LinearSVR, SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.multiclass import OneVsRestClassifier from sklearn import model_selection, preprocessing, feature_selection, metrics from sklearn.pipeline import make_pipeline def setStyle(palette='default', bigPlot=False): ''' A function to set the plotting style. The function receives the colour palette name and whether it is a big plot or not. The latter sets the fonts and marker to be bigger in case it is a big plot. The available colour palettes are as follows: - classic (default): A classic colourful palette with strong colours and contrast. - modified classic: Similar to the classic, with slightly different colours. - autumn: A slightly darker autumn style colour palette. - purples: A pseudo sequential purple colour palette (not great for contrast). - greens: A pseudo sequential green colour palette (not great for contrast). To use the function, simply call it before plotting anything. Parameters ---------- palette: str bigPlot: bool Raises ------ KeyError if provided palette does not exist. ''' COLORS = dict() COLORS['classic'] = ['#ba2c54', '#5B90DC', '#FFAB44', '#0C9FB3', '#57271B', '#3B507D', '#794D88', '#FD6989', '#8A978E', '#3B507D', '#D8153C', '#cc9214'] COLORS['modified classic'] = ['#D6088F', '#424D9C', '#178084', '#AF99DA', '#F58D46', '#634B5B', '#0C9FB3', '#7C438A', '#328cd6', '#8D0F25', '#8A978E', '#ffcb3d'] COLORS['autumn'] = ['#A9434D', '#4E615D', '#3C8DAB', '#A4657A', '#424D9C', '#DC575A', '#1D2D38', '#634B5B', '#56276D', '#577580', '#134663', '#196096'] COLORS['purples'] = ['#a57bb7', '#343D80', '#EA60BF', '#B7308E', '#E099C3', '#7C438A', '#AF99DA', '#4D428E', '#56276D', '#CC4B93', '#DC4E76', '#5C4AE4'] COLORS['greens'] = ['#268F92', '#abc14d', '#8A978E', '#0C9FB3', '#BDA962', '#B0CB9E', '#769168', '#5E93A5', '#178084', '#B7BBAD', '#163317', '#76A63F'] COLORS['default'] = COLORS['classic'] MARKERS = ['o', 's', 'v', '^', '*', 'P', 'd', 'X', 'p', '<', '>', 'h'] LINES = [(0, ()), # solid (0, (1, 1)), # densely dotted (0, (3, 1, 1, 1)), # densely dashdotted (0, (5, 5)), # dashed (0, (3, 1, 1, 1, 1, 1)), # densely dashdotdotted (0, (5, 1)), # desnely dashed (0, (1, 5)), # dotted (0, (3, 5, 1, 5)), # dashdotted (0, (3, 5, 1, 5, 1, 5)), # dashdotdotted (0, (5, 10)), # loosely dashed (0, (1, 10)), # loosely dotted (0, (3, 10, 1, 10)), # loosely dashdotted ] if palette not in COLORS.keys(): raise KeyError('palette must be one of {}'.format(', '.join(COLORS))) fontsize = {'default': 15, 'bigPlot': 30} markersize = {'default': 8, 'bigPlot': 18} plotSize = 'default' if bigPlot: plotSize = 'bigPlot' plt.rc('lines', linewidth=2, markersize=markersize[plotSize]) plt.rc('axes', prop_cycle=( cycler(color=COLORS[palette]) + cycler(linestyle=LINES) + cycler(marker=MARKERS)) ) plt.rc( 'axes', titlesize=fontsize[plotSize], labelsize=fontsize[plotSize], labelpad=5, grid=True, axisbelow=True ) plt.rc('xtick', labelsize=fontsize[plotSize]) plt.rc('ytick', labelsize=fontsize[plotSize]) plt.rc('legend', loc='best', shadow=False, fontsize='medium') plt.rc('font', family='serif', size=fontsize[plotSize]) return def branches_to_read(): ''' Define a list of branches to read from the ROOT file (faster than reading all branches). Returns ------- A list of branches names. ''' branches = [ 'runNumber', 'eventNumber', 'MCe0', 'MCxoff', 'MCyoff', 'size', 'ErecS', 'NImages', 'Xcore', 'Ycore', 'Xoff', 'Yoff', 'img2_ang', 'EChi2S', 'SizeSecondMax', 'NTelPairs', 'MSCW', 'MSCL', 'EmissionHeight', 'EmissionHeightChi2', 'dist', 'DispDiff', 'dESabs', 'loss', 'NTrig', 'meanPedvar_Image', 'fui', 'cross', 'R', 'ES', 'asym', 'tgrad_x', ] return branches def nominal_labels_train_features(): ''' Define the nominal labels variable and training features to train with. Returns ------- label: str, train_features: list of str Two variables are returned: 1. the name of the variable to use as the labels in the training. 2. list of names of variables to used as the training features. ''' labels = 'log_ang_diff' train_features = [ 'log_reco_energy', 'log_NTels_reco', 'array_distance', 'img2_ang', 'log_SizeSecondMax', 'MSCW', 'MSCL', 'log_EChi2S', 'log_EmissionHeight', 'log_EmissionHeightChi2', 'log_DispDiff', 'log_dESabs', 'NTrig', 'meanPedvar_Image', 'MSWOL', 'log_av_size', 'log_me_size', 'log_std_size', 'av_dist', 'me_dist', 'std_dist', 'av_fui', 'me_fui', 'std_fui', 'av_cross', 'me_cross', 'std_cross', 'av_R', 'me_R', 'std_R', 'av_ES', 'me_ES', 'std_ES', 'sum_loss', 'av_loss', 'me_loss', 'std_loss', 'av_asym', 'me_asym', 'std_asym', 'av_tgrad_x', 'me_tgrad_x', 'std_tgrad_x', 'camera_offset', ] return labels, train_features def extract_df_from_dl2(root_filename): ''' Extract a Pandas DataFrame from a ROOT DL2 file. Selects all events surviving gamma/hadron cuts from the DL2 file. No direction cut is applied on the sample. TODO: should this be an option or studied further? The list of variables included in the DataFrame is subject to change. TODO: Study further possible variables to use. Parameters ---------- root_filename: str or Path The location of the DL2 root file name from which to extract the DF. TODO: Allow using several DL2 files (in a higher level function?) Returns ------- A pandas DataFrame with variables to use in the regression/classification, after cuts. ''' branches = branches_to_read() particle_file = uproot.open(root_filename) cuts = particle_file['DL2EventTree'] cuts_arrays = cuts.arrays(expressions='CutClass', library='np') # Cut 1: Events surviving gamma/hadron separation and direction cuts: mask_gamma_like_and_direction = cuts_arrays['CutClass'] == 5 # Cut 2: Events surviving gamma/hadron separation cut and not direction cut mask_gamma_like_no_direction = cuts_arrays['CutClass'] == 0 # Cut 0: Events before gamma/hadron and direction cuts (classes 0, 5 and 7) gamma_like_events_all = mask_gamma_like_no_direction | mask_gamma_like_and_direction gamma_like_events_all = gamma_like_events_all | (cuts_arrays['CutClass'] == 7) step_size = 5000 # slightly optimized on my laptop data_dict = defaultdict(list) for i_event, data_arrays in enumerate(uproot.iterate( '{}:data'.format(root_filename), step_size=step_size, expressions=branches, library='np') ): if i_event > 0: if (i_event * step_size) % 100000 == 0: print('Extracted {} events'.format(i_event * step_size)) gamma_like_events = gamma_like_events_all[i_event * step_size:(i_event + 1) * step_size] cut_class = cuts_arrays['CutClass'][i_event * step_size:(i_event + 1) * step_size] cut_class = cut_class[gamma_like_events] # Label to train with: x_off = data_arrays['Xoff'][gamma_like_events] y_off = data_arrays['Yoff'][gamma_like_events] x_off_mc = data_arrays['MCxoff'][gamma_like_events] y_off_mc = data_arrays['MCyoff'][gamma_like_events] ang_diff = np.sqrt((x_off - x_off_mc)**2. + (y_off - y_off_mc)**2.) # Variables for training: runNumber = data_arrays['runNumber'][gamma_like_events] eventNumber = data_arrays['eventNumber'][gamma_like_events] reco_energy = data_arrays['ErecS'][gamma_like_events] true_energy = data_arrays['MCe0'][gamma_like_events] camera_offset = np.sqrt(x_off**2. + y_off**2.) NTels_reco = data_arrays['NImages'][gamma_like_events] x_cores = data_arrays['Xcore'][gamma_like_events] y_cores = data_arrays['Ycore'][gamma_like_events] array_distance = np.sqrt(x_cores**2. + y_cores**2.) img2_ang = data_arrays['img2_ang'][gamma_like_events] EChi2S = data_arrays['EChi2S'][gamma_like_events] SizeSecondMax = data_arrays['SizeSecondMax'][gamma_like_events] NTelPairs = data_arrays['NTelPairs'][gamma_like_events] MSCW = data_arrays['MSCW'][gamma_like_events] MSCL = data_arrays['MSCL'][gamma_like_events] EmissionHeight = data_arrays['EmissionHeight'][gamma_like_events] EmissionHeightChi2 = data_arrays['EmissionHeightChi2'][gamma_like_events] DispDiff = data_arrays['DispDiff'][gamma_like_events] dESabs = data_arrays['dESabs'][gamma_like_events] NTrig = data_arrays['NTrig'][gamma_like_events] meanPedvar_Image = data_arrays['meanPedvar_Image'][gamma_like_events] av_size = [np.average(sizes) for sizes in data_arrays['size'][gamma_like_events]] me_size = [np.median(sizes) for sizes in data_arrays['size'][gamma_like_events]] std_size = [np.std(sizes) for sizes in data_arrays['size'][gamma_like_events]] av_dist = [np.average(dists) for dists in data_arrays['dist'][gamma_like_events]] me_dist = [np.median(dists) for dists in data_arrays['dist'][gamma_like_events]] std_dist = [np.std(dists) for dists in data_arrays['dist'][gamma_like_events]] av_fui = [np.average(fui) for fui in data_arrays['fui'][gamma_like_events]] me_fui = [np.median(fui) for fui in data_arrays['fui'][gamma_like_events]] std_fui = [np.std(fui) for fui in data_arrays['fui'][gamma_like_events]] av_cross = [np.average(cross) for cross in data_arrays['cross'][gamma_like_events]] me_cross = [np.median(cross) for cross in data_arrays['cross'][gamma_like_events]] std_cross = [np.std(cross) for cross in data_arrays['cross'][gamma_like_events]] av_R = [np.average(R) for R in data_arrays['R'][gamma_like_events]] me_R = [np.median(R) for R in data_arrays['R'][gamma_like_events]] std_R = [np.std(R) for R in data_arrays['R'][gamma_like_events]] av_ES = [np.average(ES) for ES in data_arrays['ES'][gamma_like_events]] me_ES = [np.median(ES) for ES in data_arrays['ES'][gamma_like_events]] std_ES = [np.std(ES) for ES in data_arrays['ES'][gamma_like_events]] sum_loss = [np.sum(losses) for losses in data_arrays['loss'][gamma_like_events]] av_loss = [np.average(losses) for losses in data_arrays['loss'][gamma_like_events]] me_loss = [np.median(losses) for losses in data_arrays['loss'][gamma_like_events]] std_loss = [np.std(losses) for losses in data_arrays['loss'][gamma_like_events]] av_asym = [np.average(asym) for asym in data_arrays['asym'][gamma_like_events]] me_asym = [np.median(asym) for asym in data_arrays['asym'][gamma_like_events]] std_asym = [np.std(asym) for asym in data_arrays['asym'][gamma_like_events]] av_tgrad_x = [np.average(tgrad_x) for tgrad_x in data_arrays['tgrad_x'][gamma_like_events]] me_tgrad_x = [np.median(tgrad_x) for tgrad_x in data_arrays['tgrad_x'][gamma_like_events]] std_tgrad_x = [np.std(tgrad_x) for tgrad_x in data_arrays['tgrad_x'][gamma_like_events]] data_dict['runNumber'].extend(tuple(runNumber)) data_dict['eventNumber'].extend(tuple(eventNumber)) data_dict['cut_class'].extend(tuple(cut_class)) data_dict['log_ang_diff'].extend(tuple(np.log10(ang_diff))) data_dict['log_true_energy'].extend(tuple(np.log10(true_energy))) data_dict['log_reco_energy'].extend(tuple(np.log10(reco_energy))) data_dict['camera_offset'].extend(tuple(camera_offset)) data_dict['log_NTels_reco'].extend(tuple(np.log10(NTels_reco))) data_dict['array_distance'].extend(tuple(array_distance)) data_dict['img2_ang'].extend(tuple(img2_ang)) data_dict['log_EChi2S'].extend(tuple(np.log10(EChi2S))) data_dict['log_SizeSecondMax'].extend(tuple(np.log10(SizeSecondMax))) data_dict['log_NTelPairs'].extend(tuple(np.log10(NTelPairs))) data_dict['MSCW'].extend(tuple(MSCW)) data_dict['MSCL'].extend(tuple(MSCL)) data_dict['log_EmissionHeight'].extend(tuple(np.log10(EmissionHeight))) data_dict['log_EmissionHeightChi2'].extend(tuple(np.log10(EmissionHeightChi2))) data_dict['log_DispDiff'].extend(tuple(np.log10(DispDiff))) data_dict['log_dESabs'].extend(tuple(np.log10(dESabs))) data_dict['NTrig'].extend(tuple(NTrig)) data_dict['meanPedvar_Image'].extend(tuple(meanPedvar_Image)) data_dict['MSWOL'].extend(tuple(MSCW/MSCL)) data_dict['log_av_size'].extend(tuple(np.log10(av_size))) data_dict['log_me_size'].extend(tuple(np.log10(me_size))) data_dict['log_std_size'].extend(tuple(np.log10(std_size))) data_dict['av_dist'].extend(tuple(av_dist)) data_dict['me_dist'].extend(tuple(me_dist)) data_dict['std_dist'].extend(tuple(std_dist)) data_dict['av_fui'].extend(tuple(av_fui)) data_dict['me_fui'].extend(tuple(me_fui)) data_dict['std_fui'].extend(tuple(std_fui)) data_dict['av_cross'].extend(tuple(av_cross)) data_dict['me_cross'].extend(tuple(me_cross)) data_dict['std_cross'].extend(tuple(std_cross)) data_dict['av_R'].extend(tuple(av_R)) data_dict['me_R'].extend(tuple(me_R)) data_dict['std_R'].extend(tuple(std_R)) data_dict['av_ES'].extend(tuple(av_ES)) data_dict['me_ES'].extend(tuple(me_ES)) data_dict['std_ES'].extend(tuple(std_ES)) data_dict['sum_loss'].extend(tuple(sum_loss)) data_dict['av_loss'].extend(tuple(av_loss)) data_dict['me_loss'].extend(tuple(me_loss)) data_dict['std_loss'].extend(tuple(std_loss)) data_dict['av_asym'].extend(tuple(av_asym)) data_dict['me_asym'].extend(tuple(me_asym)) data_dict['std_asym'].extend(tuple(std_asym)) data_dict['av_tgrad_x'].extend(tuple(av_tgrad_x)) data_dict['me_tgrad_x'].extend(tuple(me_tgrad_x)) data_dict['std_tgrad_x'].extend(tuple(std_tgrad_x)) return pd.DataFrame(data=data_dict) def save_dtf(dtf, suffix=''): ''' Save the test dataset to disk as it is much quicker to read the reduced pickled data than the ROOT file. Parameters ---------- dtf: pandas DataFrames suffix: str The suffix to add to the file name ''' this_dir = Path('reduced_data').mkdir(parents=True, exist_ok=True) if suffix != '': if not suffix.startswith('_'): suffix = '_{}'.format(suffix) data_file_name = Path('reduced_data').joinpath( 'dtf{}.joblib'.format(suffix) ) dump(dtf, data_file_name, compress=3) return def load_dtf(suffix=''): ''' Load the reduced data from reduced_data/. Parameters ---------- suffix: str The suffix added to the file name (the nominal is dtf.joblib) Returns ------- dtf: pandas DataFrames of the reduced data ''' if suffix != '': if not suffix.startswith('_'): suffix = '_{}'.format(suffix) data_file_name = Path('reduced_data').joinpath( 'dtf{}.joblib'.format(suffix) ) return load(data_file_name) def bin_data_in_energy(dtf, n_bins=20, log_e_reco_bins=None, return_bins=False): ''' Bin the data in dtf to n_bins with equal statistics. Parameters ---------- dtf: pandas DataFrame The DataFrame containing the data. Must contain a 'log_reco_energy' column (used to calculate the bins). n_bins: int, default=20 The number of reconstructed energy bins to divide the data in. log_e_reco_bins: array-like, None In case it is not none, it will be used as the energy bins to divide the data sample return_bins: bool If true, the function will return the log_e_reco_bins used to bin the data. Returns ------- A dictionary of DataFrames (keys=energy ranges, values=separated DataFrames). ''' dtf_e = dict() if log_e_reco_bins is None: log_e_reco_bins = mstats.mquantiles( dtf['log_reco_energy'].values, np.linspace(0, 1, n_bins) ) for i_e_bin, log_e_high in enumerate(log_e_reco_bins): if i_e_bin == 0: continue mask = np.logical_and( dtf['log_reco_energy'] > log_e_reco_bins[i_e_bin - 1], dtf['log_reco_energy'] < log_e_high ) this_dtf = dtf[mask] this_e_range = '{:3.3f} < E < {:3.3f} TeV'.format( 10**log_e_reco_bins[i_e_bin - 1], 10**log_e_high ) if len(this_dtf) < 1: raise RuntimeError('The range {} is empty'.format(this_e_range)) dtf_e[this_e_range] = this_dtf if return_bins: return dtf_e, log_e_reco_bins else: return dtf_e def extract_energy_bins(e_ranges): ''' Extract the energy bins from the list of energy ranges. This is a little weird function which can probably be avoided if we use a class instead of a namespace. However, it is useful for now so... Parameters ---------- e_ranges: list of str A list of energy ranges in string form as '{:3.3f} < E < {:3.3f} TeV'. Returns ------- energy_bins: list of floats List of energy bin edges given in e_ranges. ''' energy_bins = list() for this_range in e_ranges: low_e = float(this_range.split()[0]) energy_bins.append(low_e) energy_bins.append(float(list(e_ranges)[-1].split()[4])) # Add also the upper bin edge return energy_bins def extract_energy_bins_centers(e_ranges): ''' Extract the energy bins from the list of energy ranges. This is a little weird function which can probably be avoided if we use a class instead of a namespace. However, it is useful for now so... Parameters ---------- e_ranges: list of str A list of energy ranges in string form as '{:3.3f} < E < {:3.3f} TeV'. Returns ------- energy_bin_centers: list of floats Energy bins calculated as the averages of the energy ranges in e_ranges. ''' energy_bin_centers = list() for this_range in e_ranges: low_e = float(this_range.split()[0]) high_e = float(this_range.split()[4]) energy_bin_centers.append((high_e + low_e)/2.) return energy_bin_centers def split_data_train_test(dtf_e, test_size=0.75, random_state=75): ''' Split the data into training and testing datasets. The data is split in each energy range separately with 'test_size' setting the fraction of the test sample. Parameters ---------- dtf_e: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to split. The keys of the dict are the energy ranges of the data. test_size: float or int, default=0.75 If float, should be between 0.0 and 1.0 and represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None it will be set to 0.25. random_state: int Returns ------- Two dictionaries of DataFrames, one for training and one for testing (keys=energy ranges, values=separated DataFrames). ''' dtf_e_train = dict() dtf_e_test = dict() for this_e_range, this_dtf in dtf_e.items(): dtf_e_train[this_e_range], dtf_e_test[this_e_range] = model_selection.train_test_split( this_dtf, test_size=test_size, random_state=random_state ) return dtf_e_train, dtf_e_test def add_event_type_column(dtf, labels, n_types=2): ''' Add an event type column by dividing the data into n_types bins with equal statistics based on the labels column in dtf. Unlike in most cases in this code, dtf is the DataFrame itself, not a dict of energy ranges. This function should be called per energy bin. Parameters ---------- dtf: pandas DataFrames A DataFrame to add event types to. labels: str Name of the variable used as the labels in the training. n_types: int The number of types to divide the data in. Returns ------- A DataFrame with an additional event_type column. ''' event_type_quantiles = np.linspace(0, 1, n_types + 1) event_types_bins = mstats.mquantiles(dtf[labels].values, event_type_quantiles) event_types = list() for this_value in dtf[labels].values: this_event_type = np.searchsorted(event_types_bins, this_value) if this_event_type < 1: this_event_type = 1 if this_event_type > n_types: this_event_type = n_types event_types.append(this_event_type) dtf.loc[:, 'event_type'] = event_types return dtf def define_regressors(): ''' Define regressors to train the data with. All possible regressors should be added here. Regressors can be simple ones or pipelines that include standardisation or anything else. The parameters for the regressors are hard coded since they are expected to more or less stay constant once tuned. TODO: Include a feature selection method in the pipeline? That way it can be done automatically separately in each energy bin. (see https://scikit-learn.org/stable/modules/feature_selection.html). Returns ------- A dictionary of regressors to train. ''' regressors = dict() regressors['random_forest'] = RandomForestRegressor(n_estimators=300, random_state=0, n_jobs=8) regressors['MLP_relu'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPRegressor( hidden_layer_sizes=(100, 50), solver='adam', max_iter=20000, activation='relu', tol=1e-5, # early_stopping=True, random_state=0 ) ) regressors['MLP_logistic'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPRegressor( hidden_layer_sizes=(80, 45), solver='adam', max_iter=20000, activation='logistic', tol=1e-5, # early_stopping=True, random_state=0 ) ) regressors['MLP_uniform'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='uniform', random_state=0), MLPRegressor( hidden_layer_sizes=(80, 45), solver='adam', max_iter=20000, activation='tanh', tol=1e-5, # early_stopping=True, random_state=0 ) ) regressors['MLP_tanh'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPRegressor( hidden_layer_sizes=(36, 6), solver='adam', max_iter=20000, activation='tanh', tol=1e-5, # early_stopping=True, random_state=0 ) ) regressors['MLP_lbfgs'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPRegressor( hidden_layer_sizes=(36, 6), solver='lbfgs', max_iter=20000, activation='logistic', tol=1e-5, # early_stopping=True, random_state=0 ) ) regressors['BDT'] = AdaBoostRegressor( DecisionTreeRegressor(max_depth=30, random_state=0), n_estimators=100, random_state=0 ) regressors['BDT_small'] = AdaBoostRegressor( DecisionTreeRegressor(max_depth=30, random_state=0), n_estimators=30, random_state=0 ) regressors['linear_regression'] = LinearRegression(n_jobs=4) regressors['ridge'] = Ridge(alpha=1.0) regressors['SVR'] = SVR(C=10.0, epsilon=0.2) regressors['linear_SVR'] = make_pipeline( preprocessing.StandardScaler(), LinearSVR(random_state=0, tol=1e-5, C=10.0, epsilon=0.2, max_iter=100000) ) regressors['SGD'] = make_pipeline( preprocessing.StandardScaler(), SGDRegressor(loss='epsilon_insensitive', max_iter=20000, tol=1e-5) ) return regressors def define_classifiers(): ''' Define classifiers to train the data with. All possible classifiers should be added here. Classifiers can be simple ones or pipelines that include standardisation or anything else. The parameters for the classifiers are hard coded since they are expected to more or less stay constant once tuned. TODO: Include a feature selection method in the pipeline? That way it can be done automatically separately in each energy bin. (see https://scikit-learn.org/stable/modules/feature_selection.html). Returns ------- A dictionary of classifiers to train. ''' classifiers = dict() classifiers['random_forest_classifier'] = RandomForestClassifier( n_estimators=100, random_state=0, n_jobs=8 ) classifiers['MLP_classifier'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPClassifier( hidden_layer_sizes=(36, 6), solver='adam', max_iter=20000, activation='tanh', tol=1e-5, # early_stopping=True, random_state=0 ) ) classifiers['MLP_relu_classifier'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPClassifier( hidden_layer_sizes=(100, 50), solver='adam', max_iter=20000, activation='relu', tol=1e-5, # early_stopping=True, random_state=0 ) ) classifiers['MLP_logistic_classifier'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='normal', random_state=0), MLPClassifier( hidden_layer_sizes=(80, 45), solver='adam', max_iter=20000, activation='logistic', tol=1e-5, # early_stopping=True, random_state=0 ) ) classifiers['MLP_uniform_classifier'] = make_pipeline( preprocessing.QuantileTransformer(output_distribution='uniform', random_state=0), MLPClassifier( hidden_layer_sizes=(80, 45), solver='adam', max_iter=20000, activation='tanh', tol=1e-5, # early_stopping=True, random_state=0 ) ) classifiers['BDT_classifier'] = AdaBoostClassifier( n_estimators=100, random_state=0 ) classifiers['ridge_classifier'] = RidgeClassifier() classifiers['ridgeCV_classifier'] = RidgeClassifierCV( alphas=[1e-3, 1e-2, 1e-1, 1], normalize=True ) classifiers['SVC_classifier'] = SVC(gamma=2, C=1) classifiers['SGD_classifier'] = make_pipeline( preprocessing.StandardScaler(), SGDClassifier(loss='epsilon_insensitive', max_iter=20000, tol=1e-5) ) classifiers['Gaussian_process_classifier'] = GaussianProcessClassifier(1.0 * RBF(1.0)) classifiers['bagging_svc_classifier'] = BaggingClassifier( base_estimator=SVC(), n_estimators=100, random_state=0 ) classifiers['bagging_dt_classifier'] = BaggingClassifier( base_estimator=DecisionTreeClassifier(random_state=0), n_estimators=100, random_state=0 ) classifiers['oneVsRest_classifier'] = OneVsRestClassifier(SVC(), n_jobs=8) classifiers['gradient_boosting_classifier'] = GradientBoostingClassifier( n_estimators=100, learning_rate=0.1, max_depth=5, random_state=0 ) return classifiers def train_models(dtf_e_train, models_to_train): ''' Train all the models in models, using the data in dtf_e_train. The models are trained per energy range in dtf_e_train. Parameters ---------- dtf_e_train: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to train with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. models: a nested dict of models: 1st dict: keys=model names, values=2nd dict 2nd dict: 'model':dict of sklearn models (as returned from define_regressors/classifiers()). 'train_features': list of variable names to train with. 'labels': Name of the variable used as the labels in the training. Returns ------- A nested dictionary trained models, train_features and labels: 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': trained model for this energy range 'train_features': list of variable names to train with. 'labels': Name of the variable used as the labels in the training. ''' models = dict() for this_model_name, this_model in models_to_train.items(): models[this_model_name] = dict() for this_e_range in dtf_e_train.keys(): print('Training {} in the energy range - {}'.format(this_model_name, this_e_range)) X_train = dtf_e_train[this_e_range][this_model['train_features']].values y_train = dtf_e_train[this_e_range][this_model['labels']].values models[this_model_name][this_e_range] = dict() models[this_model_name][this_e_range]['train_features'] = this_model['train_features'] models[this_model_name][this_e_range]['labels'] = this_model['labels'] models[this_model_name][this_e_range]['test_data_suffix'] = this_model[ 'test_data_suffix' ] models[this_model_name][this_e_range]['model'] = copy.deepcopy( this_model['model'].fit(X_train, y_train) ) return models def save_models(trained_models): ''' Save the trained models to disk. The path for the models is in models/'model name'. All models are saved per energy range for each model in trained_models. Parameters ---------- trained_models: a nested dict of trained sklearn model per energy range. 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': trained model for this energy range. 'train_features': list of variable names trained with. 'labels': name of the variable used as the labels in the training. 'test_data_suffix': suffix of the test dataset saved to disk. ''' for model_name, this_model in trained_models.items(): this_dir = Path('models').joinpath(model_name).mkdir(parents=True, exist_ok=True) for this_e_range, model_now in this_model.items(): e_range_name = this_e_range.replace(' < ', '-').replace(' ', '_') model_file_name = Path('models').joinpath( model_name, '{}.joblib'.format(e_range_name) ) dump(model_now, model_file_name, compress=3) return def save_test_dtf(dtf_e_test, suffix='default'): ''' Save the test data to disk so it can be loaded together with load_models(). The path for the test data is in models/test_data. Parameters ---------- dtf_e_test: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. suffix: str The suffix to add to the file name ''' this_dir = Path('models').joinpath('test_data').mkdir(parents=True, exist_ok=True) if suffix != '': if not suffix.startswith('_'): suffix = '_{}'.format(suffix) test_data_file_name = Path('models').joinpath('test_data').joinpath( 'dtf_e_test{}.joblib'.format(suffix) ) dump(dtf_e_test, test_data_file_name, compress=3) return def save_scores(scores): ''' Save the scores of the trained models to disk. The path for the scores is in scores/'model name'. Parameters ---------- scores: a dict of scores per energy range per trained sklearn model. dict: keys=model names, values=list of scores ''' this_dir = Path('scores').mkdir(parents=True, exist_ok=True) for model_name, these_scores in scores.items(): file_name = Path('scores').joinpath('{}.joblib'.format(model_name)) dump(these_scores, file_name, compress=3) return def load_test_dtf(suffix='default'): ''' Load the test data together with load_models(). The path for the test data is in models/test_data. Parameters ---------- suffix: str The suffix added to the file name (the nominal is dtf_e_test_default.joblib) Returns ------- dtf_e_test: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. ''' if suffix != '': if not suffix.startswith('_'): suffix = '_{}'.format(suffix) test_data_file_name = Path('models').joinpath('test_data').joinpath( 'dtf_e_test{}.joblib'.format(suffix) ) return load(test_data_file_name) def load_multi_test_dtfs(data_names=['default']): ''' Load the test data together with load_models(). The path for the test data is in models/test_data. Parameters ---------- suffix: str The suffix added to the file name (the nominal is dtf_e_test_default.joblib) Returns ------- dtf_e_test: a nested dict of test datasets per trained model 1st dict: keys=test_data_suffix, values=2nd dict 2nd dict: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. ''' dtf_e_test = dict() for this_data_name in data_names: dtf_e_test[this_data_name] = load_test_dtf(this_data_name) return dtf_e_test def load_models(model_names=list()): ''' Read the trained models from disk. The path for the models is in models/'model name'. All models are saved per energy range for each model in trained_models. Parameters ---------- model_names: list of str A list of model names to load from disk Returns ------- trained_models: a nested dict of trained sklearn model per energy range. 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': trained model for this energy range. 'train_features': list of variable names trained with. 'labels': name of the variable used as the labels in the training. 'test_data_suffix': suffix of the test dataset saved to disk. ''' trained_models = defaultdict(dict) for model_name in model_names: print('Loading the {} model'.format(model_name)) models_dir = Path('models').joinpath(model_name) for this_file in sorted(models_dir.iterdir(), key=os.path.getmtime): if this_file.is_file(): e_range_name = this_file.stem.replace('-', ' < ').replace('_', ' ') model_file_name = Path('models').joinpath( model_name, '{}.joblib'.format(e_range_name) ) trained_models[model_name][e_range_name] = load(this_file) return trained_models def partition_event_types(dtf_e_test, trained_models, n_types=2, type_bins='equal statistics', return_partition=False, event_type_bins=None): ''' Divide the events into n_types event types. The bins defining the types are calculated from the predicted label values. Two lists of types are returned per model and per energy range, one true and one predicted. Parameters ---------- dtf_e_test: a nested dict of test datasets per trained model 1st dict: keys=test_data_suffix, values=2nd dict 2nd dict: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. trained_models: a nested dict of trained sklearn model per energy range. 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': trained model for this energy range. 'train_features': list of variable names trained with. 'labels': name of the variable used as the labels in the training. 'test_data_suffix': suffix of the test dataset saved to disk. n_types: int (default=2) The number of types to divide the data in. type_bins: list of floats or str A list defining the bin sizes of each type, e.g., [0, 0.2, 0.8, 1] would divide the reconstructed labels dataset (angular error) into three bins, best 20%, middle 60% and worst 20%. The list must be n_types + 1 long and the first and last values must be zero and one. The default is equal statistics bins, given as the default string. return_partition: Bool If true, a dictionary containing the partition values used for each model and each energy bin will be returned. event_type_bins: a nested dict of partition values per trained model and energy range 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values=partition values array Returns ------- event_types: nested dict 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values=3rddict 3rd dict: keys=true or reco, values=event type ''' event_types = dict() if type_bins == 'equal statistics': type_bins = np.linspace(0, 1, n_types + 1) elif not isinstance(type_bins, list): raise ValueError('type_bins must be a list of floats or equal statistics') elif len(type_bins) != n_types + 1: raise ValueError('type_bins must be n_types + 1 long') elif type_bins[0] != 0 or type_bins[-1] != 1: raise ValueError('the first and last values of type_bins must be zero and one') else: pass if return_partition: event_type_bins = dict() for model_name, model in trained_models.items(): event_types[model_name] = dict() if return_partition: event_type_bins[model_name] = dict() print('Calculating event types for the {} model'.format(model_name)) for this_e_range, this_model in model.items(): event_types[model_name][this_e_range] = defaultdict(list) event_types[model_name][this_e_range] = defaultdict(list) # To keep lines short dtf_this_e = dtf_e_test[this_model['test_data_suffix']][this_e_range] X_test = dtf_this_e[this_model['train_features']].values # Check if any value is inf (found one on a proton file...). # If true, change it to a big negative or positive value. if np.any(np.isinf(X_test)): # Remove positive infs X_test[X_test > 999999] = 999999 # Remove negative infs X_test[X_test < -999999] = -999999 if np.any(np.isnan(X_test)): # Remove nans X_test[np.isnan(X_test)] = 99999 y_pred = this_model['model'].predict(X_test) event_types_bins = mstats.mquantiles( y_pred, type_bins ) # If return_partition == True, then store the event type bins into the container. if return_partition: event_type_bins[model_name][this_e_range] = event_types_bins # If return_partition == False and a event_type_bins container was provided, then use the values from # the container. if not return_partition and event_type_bins is not None: event_types_bins = event_type_bins[model_name][this_e_range] for this_value in y_pred: this_event_type = np.searchsorted(event_types_bins, this_value) if this_event_type < 1: this_event_type = 1 if this_event_type > n_types: this_event_type = n_types event_types[model_name][this_e_range]['reco'].append(this_event_type) for this_value in dtf_this_e[this_model['labels']].values: this_event_type = np.searchsorted(event_types_bins, this_value) if this_event_type < 1: this_event_type = 1 if this_event_type > n_types: this_event_type = n_types event_types[model_name][this_e_range]['true'].append(this_event_type) if return_partition: return event_types, event_type_bins else: return event_types def predicted_event_types(dtf_e_test, trained_models, n_types=2): ''' Get the true and predicted event types for n_types event types. Two lists of types are returned per model and per energy range, one true and one predicted. This function is meant to be used only for the classification case. Parameters ---------- dtf_e_test: a nested dict of test datasets per trained model 1st dict: keys=test_data_suffix, values=2nd dict 2nd dict: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. trained_models: a nested dict of trained sklearn model per energy range. 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': trained model for this energy range, 'train_features': list of variable names trained with. 'labels': name of the variable used as the labels in the training. 'test_data_suffix': suffix of the test dataset saved to disk. n_types: int (default=2) The number of types used in the training. Returns ------- event_types: nested dict 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values=3rddict 3rd dict: keys=true or reco, values=event type ''' event_types = dict() for model_name, model in trained_models.items(): event_types[model_name] = dict() for this_e_range, this_model in model.items(): event_types[model_name][this_e_range] = defaultdict(list) event_types[model_name][this_e_range] = defaultdict(list) # To keep lines short dtf_this_e = dtf_e_test[this_model['test_data_suffix']][this_e_range] event_types[model_name][this_e_range]['true'] = dtf_this_e[ 'event_type_{:d}'.format(n_types) ] X_test = dtf_this_e[this_model['train_features']].values event_types[model_name][this_e_range]['reco'] = this_model['model'].predict(X_test) return event_types def add_event_types_column(dtf_e, labels, n_types=[2, 3, 4]): ''' Divide the events into n_types event types. The bins defining the types are calculated from the label values. The data will be divided to n number of types with equivalent number of events in each type. A column with the type will be added to the DataFrame per entry in the n_types list. Parameters ---------- dtf_e: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data. The keys of the dict are the energy ranges of the data. labels: str The variable to use as a basis on which to divide the data. n_types: list of ints (default=[2, 3, 4]) The data will be divided to n number of types with equivalent number of events in each type. A column with the type will be added to the DataFrame per entry in the n_types list. Returns ------- dtf_e: dict of pandas DataFrames The same DataFrame as the input but with added columns for event types, one column per n_types entry. The column names are event_type_n. ''' pd.options.mode.chained_assignment = None for this_n_type in n_types: for this_e_range, this_dtf in dtf_e.items(): event_types = list() event_types_bins = mstats.mquantiles( this_dtf[labels].values, np.linspace(0, 1, this_n_type + 1) ) for this_value in this_dtf[labels].values: this_event_type = np.searchsorted(event_types_bins, this_value) if this_event_type < 1: this_event_type = 1 if this_event_type > this_n_type: this_event_type = this_n_type event_types.append(this_event_type) this_dtf.loc[:, 'event_type_{:d}'.format(this_n_type)] = event_types return dtf_e def extract_unique_dataset_names(trained_models): ''' Extract all test datasets names necessary for the given trained models. Parameters ---------- trained_models: a nested dict of trained sklearn model per energy range. 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': trained model for this energy range. 'train_features': list of variable names trained with. 'labels': name of the variable used as the labels in the training. 'test_data_suffix': suffix of the test dataset saved to disk. Returns ------- dataset_names: set Set of unique data set names ''' dataset_names = set() for model in trained_models.values(): for this_model in model.values(): dataset_names.add(this_model['test_data_suffix']) return dataset_names def plot_pearson_correlation(dtf, title): ''' Calculate the Pearson correlation between all variables in this DataFrame. Parameters ---------- dtf: pandas DataFrame The DataFrame containing the data. title: str A title to add to the olot (will be added to 'Pearson correlation') Returns ------- A pyplot instance with the Pearson correlation plot. ''' plt.subplots(figsize=[16, 16]) corr_matrix = dtf.corr(method='pearson') sns.heatmap( corr_matrix, vmin=-1., vmax=1., annot=True, fmt='.2f', cmap="YlGnBu", cbar=True, linewidths=0.5 ) plt.title('Pearson correlations {}'.format(title)) plt.tight_layout() return plt def plot_test_vs_predict(dtf_e_test, trained_models, trained_model_name): ''' Plot true values vs. the predictions of the model for all energy bins. Parameters ---------- dtf_e_test: a nested dict of test datasets per trained model 1st dict: keys=test_data_suffix, values=2nd dict 2nd dict: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. trained_models: a nested dict of one trained sklearn model per energy range. 1st dict: keys=energy ranges, values=2nd dict 2nd dict: 'model': trained model for this energy range 'train_features': list of variable names trained with. 'labels': Name of the variable used as the labels in the training. trained_model_name: str Name of the model trained. Returns ------- A pyplot instance with the test vs. prediction plot. ''' nrows = 5 ncols = 4 fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=[14, 18]) for i_plot, (this_e_range, this_model) in enumerate(trained_models.items()): # To keep lines short dtf_this_e = dtf_e_test[this_model['test_data_suffix']][this_e_range] X_test = dtf_this_e[this_model['train_features']].values y_test = dtf_this_e[this_model['labels']].values if np.any(np.isinf(X_test)): # Remove positive infs X_test[X_test > 999999] = 999999 # Remove negative infs X_test[X_test < -999999] = -999999 y_pred = this_model['model'].predict(X_test) ax = axs[int(np.floor(i_plot/ncols)), i_plot % ncols] ax.hist2d(y_pred, y_test, bins=(50, 50), cmap=plt.cm.jet) ax.plot( [min(y_test), max(y_test)], [min(y_test), max(y_test)], linestyle='--', lw=2, color='white' ) ax.set_xlim(np.quantile(y_pred, [0.01, 0.99])) ax.set_ylim(np.quantile(y_test, [0.01, 0.99])) ax.set_title(this_e_range) ax.set_ylabel('True') ax.set_xlabel('Predicted') axs[nrows - 1, ncols - 1].axis('off') axs[nrows - 1, ncols - 1].text( 0.5, 0.5, trained_model_name, horizontalalignment='left', verticalalignment='center', fontsize=18, transform=axs[nrows - 1, ncols - 1].transAxes ) plt.tight_layout() return plt def plot_matrix(dtf, train_features, labels, n_types=2, plot_events=20000): ''' Plot a matrix of each variable in train_features against another (not all combinations). The data is divided to n_types bins of equal statistics based on the labels. Each type is plotted in a different colour. This function produces mutliple plots, where in each plot a maximum of 5 variables are plotted. Unlike in most cases in this code, dtf is the DataFrame itself, not a dict of energy ranges. This function should be called per energy bin. Parameters ---------- dtf: pandas DataFrames A DataFrame to add event types to. train_features: list List of variable names trained with. labels: str Name of the variable used as the labels in the training. n_types: int (default=2) The number of types to divide the data in. plot_events: int (default=20000) For efficiency, limit the number of events that will be used for the plots Returns ------- A list of seaborn.PairGrid instances, each with one matrix plot. ''' setStyle() # Check if event_type column already present within dtf: if "event_type" not in dtf.columns: dtf = add_event_type_column(dtf, labels, n_types) # Mask out the events without a clear event type dtf = dtf[dtf['event_type'] > 0] type_colors = { 1: "#ba2c54", 2: "#5B90DC", 3: '#FFAB44', 4: '#0C9FB3' } vars_to_plot = np.array_split( [labels] + train_features, round(len([labels] + train_features)/5) ) grid_plots = list() for these_vars in vars_to_plot: grid_plots.append( sns.pairplot( dtf.sample(n=plot_events), vars=these_vars, hue='event_type', palette=type_colors, corner=True ) ) return grid_plots def plot_score_comparison(dtf_e_test, trained_models): ''' Plot the score of the model as a function of energy. #TODO add a similar function that plots from saved scores instead of calculating every time. Parameters ---------- dtf_e_test: a nested dict of test datasets per trained model 1st dict: keys=test_data_suffix, values=2nd dict 2nd dict: dict of pandas DataFrames Each entry in the dict is a DataFrame containing the data to test with. The keys of the dict are the energy ranges of the data. Each DataFrame is assumed to contain all 'train_features' and 'labels'. trained_models: a nested dict of trained sklearn model per energy range. 1st dict: keys=model names, values=2nd dict 2nd dict: keys=energy ranges, values 3rd dict 3rd dict: 'model': dict of trained models for this energy range. 'train_features': list of variable names trained with. 'labels': name of the variable used as the labels in the training. 'test_data_suffix': suffix of the test dataset saved to disk. Returns ------- A pyplot instance with the scores plot. ''' setStyle() fig, ax = plt.subplots(figsize=(8, 6)) scores = defaultdict(dict) energy_bins = extract_energy_bins_centers(trained_models[next(iter(trained_models))].keys()) for this_model_name, trained_model in trained_models.items(): print('Calculating scores for {}'.format(this_model_name)) scores_this_model = list() for this_e_range, this_model in trained_model.items(): # To keep lines short dtf_this_e = dtf_e_test[this_model['test_data_suffix']][this_e_range] X_test = dtf_this_e[this_model['train_features']].values y_test = dtf_this_e[this_model['labels']].values if np.any(np.isinf(X_test)): # Remove positive infs X_test[X_test > 999999] = 999999 # Remove negative infs X_test[X_test < -999999] = -999999 y_pred = this_model['model'].predict(X_test) scores_this_model.append(this_model['model'].score(X_test, y_test)) scores[this_model_name]['scores'] = scores_this_model scores[this_model_name]['energy'] = energy_bins ax.plot( scores[this_model_name]['energy'], scores[this_model_name]['scores'], label=this_model_name ) ax.set_xlabel('E [TeV]') ax.set_ylabel('score') ax.set_xscale('log') ax.legend() plt.tight_layout() return plt, scores def plot_confusion_matrix(event_types, trained_model_name, n_types=2): ''' Plot the confusion matrix of the model for all energy bins. Parameters ---------- event_types: nested dict 1st dict: keys=energy ranges, values=2nd dict 2nd dict: keys=true or reco, values=event type trained_model_name: str Name of the model used to obtained the reconstructed event types n_types: int (default=2) The number of types the data was divided in. Returns ------- A pyplot instance with the confusion matrix plot. ''' # setStyle() nrows = 5 ncols = 4 fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=[14, 18]) for i_plot, this_e_range in enumerate(event_types.keys()): ax = axs[int(np.floor((i_plot)/ncols)), (i_plot) % ncols] cm = confusion_matrix( event_types[this_e_range]['true'], event_types[this_e_range]['reco'], normalize='true', ) sns.heatmap( cm, annot=True, fmt='.1%', ax=ax, cmap='Blues', cbar=False, xticklabels=['{}'.format(tick) for tick in np.arange(1, n_types + 1, 1)], yticklabels=['{}'.format(tick) for tick in np.arange(1, n_types + 1, 1)] ) ax.set_xlabel('Prediction') ax.set_ylabel('True') ax.set_title(this_e_range) axs[nrows - 1, ncols - 1].axis('off') axs[nrows - 1, ncols - 1].text( 0.5, 0.5, trained_model_name, horizontalalignment='center', verticalalignment='center', fontsize=18, transform=axs[nrows - 1, ncols - 1].transAxes ) plt.tight_layout() return plt def plot_1d_confusion_matrix(event_types, trained_model_name, n_types=2): ''' Plot a one-dimensional confusion matrix of the model for all energy bins. Parameters ---------- event_types: nested dict 1st dict: keys=energy ranges, values=2nd dict 2nd dict: keys=true or reco, values=event type trained_model_name: str Name of the model used to obtained the reconstructed event types n_types: int (default=2) The number of types the data was divided in. Returns ------- A pyplot instance with the one-dimensional confusion matrix plot. ''' # setStyle() nrows = 5 ncols = 4 fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=[14, 10]) for i_plot, this_e_range in enumerate(event_types.keys()): ax = axs[int(np.floor((i_plot)/ncols)), (i_plot) % ncols] pred_error = np.abs(
np.array(event_types[this_e_range]['true'])
numpy.array
#!/usr/bin/python # -*- coding: utf-8 -*- """ This module contains base implementation of a NN classifier trained using supervised learning. """ import tensorflow as tf from tensorflow.core.framework import summary_pb2 import numpy import time import os import pickle import scipy.io class BaseNetwork(object): """ This defines the basic network structure we use. """ def __init__(self, path_to_logs=os.getcwd()): """ The initializer of the BasicNetwork object. Attributes: + self._tf_graph: the tf graph containing the network structure + self._tf_session: the tf session used to compute operations relative to the object + self._tf_fw: the tf file writer to display the graph in tensorboard + self._net_loss: the tf expression of loss attached to the graph + self._net_optimize: the tf optimization method + self._net_input: the tf input placeholder + self._net_label: the tf labels placeholder + self._net_output: the tf net outuput + self._net_accuracy: the tf accuracy method + self._net_train_dict: the dictionnary added for training + self._net_test_dict: the dictionnary added for testing + self._net_summaries: the tensoroard merged summaries + self._net_history: a list containing training records (arrays [time, train accuracy, test accuracy]) + self._logs_path: the path to tensorboard logs files """ # Initialize super object.__init__(self) # We initialize the variables of the object self._tf_graph = tf.Graph() self._tf_session =None self._tf_fw = None self._net_loss = None self._net_optimize = None self._net_input = None self._net_label = None self._net_output = None self._net_accuracy = None self._net_train_dict = dict() self._net_test_dict = dict() self._net_summaries = None self._net_history = list() self._net_summaries_history = list() self._net_summary_parser = summary_pb2.Summary() self._logs_path = path_to_logs # We construct and initialize everything self._construct_arch() self._initialize_fw() self._initialize_session() self._initialize_weights() def train(self, X_train, y_train, X_test, y_test, iterations=0, criterion=0, train_batch_size=100, test_batch_size=100, callback=None): """ The public training method. A network can be trained for a specified number of iterations using the _iterations_ parameter, or with a stopping criterion over the training accuracy using the _criterion_ argument. Parameters: + X_train: a numpy array containing training input data + y_train: a numpy array containing training output classes + X_test: a numpy array containing testing input data + y_test: a numpy array containing testing output classes + iterations: number of iterations to perform + criterion: stopping criterion over training accuracy + train_batch_size: the batch size for training data + test_batch_size: the batch size for testing data + callback: a method to be called before each printing iteration """ # We check that the number of iterations set is greater than 100 if iterations is used if (criterion == 0 and iterations<100): raise Warning("Number of iterations must be superior to 100") # We initialize history if the network is fresh if len(self._net_history)==0: self._net_history.append([0., 0., 0.]) start_time = 0. else: start_time = max(numpy.asarray(self._net_history)[:,0]) start_tick = time.time() # Training with iterations if iterations != 0 and criterion == 0: for iter in range(iterations): # We get the random indexes to use in the batch train_idx = numpy.random.permutation(X_train.shape[0]) train_idx = train_idx[0:train_batch_size] # We execute the gradient descent step input_dict = {self._net_input: X_train[train_idx], self._net_label: y_train[train_idx]} input_dict.update(self._net_train_dict) self._net_optimize.run(feed_dict=input_dict, session=self._tf_session) # If the iteration is a multiple of 100, we do things if (iter % 100 == 0) and (iter > 0): # We compute the train accuracy over the batch input_dict = {self._net_input: X_train[train_idx], self._net_label: y_train[train_idx]} input_dict.update(self._net_test_dict) train_accuracy = self._net_accuracy.eval(feed_dict=input_dict, session=self._tf_session) # We compute the test accuracy over the batch test_idx = numpy.random.permutation(X_test.shape[0]) test_idx = test_idx[0:test_batch_size] input_dict = {self._net_input: X_test[test_idx], self._net_label: y_test[test_idx]} input_dict.update(self._net_test_dict) test_accuracy = self._net_accuracy.eval(feed_dict=input_dict, session=self._tf_session) # We update tensorboard summaries summary = self._net_summaries.eval(feed_dict=input_dict,session=self._tf_session) self._net_summary_parser.ParseFromString(summary) self._net_summaries_history.append({str(val.tag):val.simple_value for val in self._net_summary_parser.value}) self._tf_fw.add_summary(summary,iter) self._tf_fw.flush() # We write the record to the history self._net_history.append([(time.time() - start_tick) + start_time, train_accuracy, test_accuracy]) # We execute the callback if it exists if callback is not None: callback(self) # Training with criterion elif criterion != 0 and iterations == 0: iter = 0 train_accuracy = 0 while train_accuracy < criterion: iter += 1 # We get the random indexes to use in the batch train_idx =
numpy.random.permutation(X_train.shape[0])
numpy.random.permutation
import imgaug.augmenters as iaa import numpy as np import cv2 import random from os import listdir from os.path import isfile, join truncate_fg=True, change_back_ground_prob=0.5 color_aug_prob=0.8 image_augmentations_lm=( iaa.Sequential([ iaa.Sometimes(0.4, iaa.CoarseDropout( p=0.1, size_percent=0.05) ), iaa.Sometimes(0.5, iaa.GaussianBlur(np.random.rand())), iaa.Sometimes(0.5, iaa.Add((-20, 20), per_channel=0.3)), iaa.Sometimes(0.4, iaa.Invert(0.20, per_channel=True)), iaa.Sometimes(0.5, iaa.Multiply((0.7, 1.4), per_channel=0.8)), iaa.Sometimes(0.5, iaa.Multiply((0.7, 1.4))), iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.0), per_channel=0.3)) ], random_order=False) ) image_augmentations_bop=( iaa.Sequential([ iaa.Sometimes(0.5, iaa.CoarseDropout( p=0.2, size_percent=0.05) ), iaa.Sometimes(0.5, iaa.GaussianBlur(1.2*np.random.rand())), iaa.Sometimes(0.5, iaa.Add((-25, 25), per_channel=0.3)), iaa.Sometimes(0.3, iaa.Invert(0.2, per_channel=True)), iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4), per_channel=0.5)), iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4))), iaa.Sometimes(0.5, iaa.LinearContrast((0.5, 2.2), per_channel=0.3)) ], random_order = False) ) def resize_short_edge(im, target_size, max_size, stride=0, interpolation=cv2.INTER_LINEAR, return_scale=False): """Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge. If `max_size` is reached, then downscale so that the longer edge does not exceed max_size. only resize input image to target size and return scale. :param im: BGR image input by opencv :param target_size: one dimensional size (the short side) :param max_size: one dimensional max size (the long side) :param stride: if given, pad the image to designated stride :param interpolation: if given, using given interpolation method to resize image :return: """ im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=interpolation) if stride == 0: if return_scale: return im, im_scale else: return im else: # pad to product of stride im_height = int(np.ceil(im.shape[0] / float(stride)) * stride) im_width = int(np.ceil(im.shape[1] / float(stride)) * stride) im_channel = im.shape[2] padded_im = np.zeros((im_height, im_width, im_channel)) padded_im[: im.shape[0], : im.shape[1], :] = im if return_scale: return padded_im, im_scale else: return padded_im def get_bg_image(filename, imH, imW, channel=3): """keep aspect ratio of bg during resize target image size: imHximWxchannel. """ target_size = min(imH, imW) max_size = max(imH, imW) real_hw_ratio = float(imH) / float(imW) bg_image = cv2.imread(filename) bg_h, bg_w, bg_c = bg_image.shape bg_image_resize = np.zeros((imH, imW, channel), dtype="uint8") if (float(imH) / float(imW) < 1 and float(bg_h) / float(bg_w) < 1) or ( float(imH) / float(imW) >= 1 and float(bg_h) / float(bg_w) >= 1 ): if bg_h >= bg_w: bg_h_new = int(np.ceil(bg_w * real_hw_ratio)) if bg_h_new < bg_h: bg_image_crop = bg_image[0:bg_h_new, 0:bg_w, :] else: bg_image_crop = bg_image else: bg_w_new = int(np.ceil(bg_h / real_hw_ratio)) if bg_w_new < bg_w: bg_image_crop = bg_image[0:bg_h, 0:bg_w_new, :] else: bg_image_crop = bg_image else: if bg_h >= bg_w: bg_h_new = int(np.ceil(bg_w * real_hw_ratio)) bg_image_crop = bg_image[0:bg_h_new, 0:bg_w, :] else: # bg_h < bg_w bg_w_new = int(
np.ceil(bg_h / real_hw_ratio)
numpy.ceil
# -*- coding: utf-8 -*- """ Created on Tue Nov 3 15:07:16 2017 @author: <NAME> """ from __future__ import division, print_function, unicode_literals, absolute_import import unittest import os import sys import h5py import numpy as np import dask.array as da import matplotlib as mpl # Attempting to get things to work for all versions of python on Travis mpl.use('Agg') from sidpy.hdf.hdf_utils import get_attr sys.path.append("../../pyUSID/") from pyUSID.io import USIDataset from pyUSID.io.hdf_utils.model import reshape_to_n_dims, get_dimensionality from pyUSID.io.write_utils import Dimension from . import data_utils skip_viz_tests = True if sys.version_info.major == 3: unicode = str if sys.version_info.minor > 4: skip_viz_tests = False test_h5_file_path = data_utils.std_beps_path class TestBEPS(unittest.TestCase): def setUp(self): data_utils.make_beps_file() self.orig_labels_order = ['X', 'Y', 'Cycle', 'Bias'] self.h5_file = h5py.File(data_utils.std_beps_path, mode='r') h5_grp = self.h5_file['/Raw_Measurement/'] self.source_nd_s2f = h5_grp['n_dim_form'][()] self.source_nd_f2s = self.source_nd_s2f.transpose(1, 0, 3, 2) self.h5_source = USIDataset(h5_grp['source_main']) self.pos_dims=[] self.spec_dims=[] for dim_name, dim_units in zip(self.h5_source.pos_dim_labels, get_attr(self.h5_source.h5_pos_inds, 'units')): self.pos_dims.append( Dimension(dim_name, dim_units, h5_grp[dim_name][()])) for dim_name, dim_units in zip(self.h5_source.spec_dim_labels, get_attr(self.h5_source.h5_spec_inds, 'units')): self.spec_dims.append( Dimension(dim_name, dim_units, h5_grp[dim_name][()])) res_grp_0 = h5_grp['source_main-Fitter_000'] self.results_0_nd_s2f = res_grp_0['n_dim_form'][()] self.results_0_nd_f2s = self.results_0_nd_s2f.transpose(1, 0, 3, 2) self.h5_compound = USIDataset(res_grp_0['results_main']) res_grp_1 = h5_grp['source_main-Fitter_001'] self.results_1_nd_s2f = res_grp_1['n_dim_form'][()] self.results_1_nd_f2s = self.results_1_nd_s2f.transpose(1, 0, 3, 2) self.h5_complex = USIDataset(res_grp_1['results_main']) def tearDown(self): self.h5_file.close() os.remove(data_utils.std_beps_path) class TestUSIDatasetReal(unittest.TestCase): def setUp(self): self.rev_spec = False data_utils.make_beps_file(rev_spec=self.rev_spec) self.orig_labels_order = ['X', 'Y', 'Cycle', 'Bias'] if self.rev_spec else ['X', 'Y', 'Bias', 'Cycle'] def tearDown(self): os.remove(test_h5_file_path) def get_expected_n_dim(self, h5_f): nd_slow_to_fast = h5_f['/Raw_Measurement/n_dim_form'][()] nd_fast_to_slow = nd_slow_to_fast.transpose(1, 0, 3, 2) if self.rev_spec: nd_fast_to_slow = nd_fast_to_slow.transpose(0, 1, 3, 2) return nd_slow_to_fast, nd_fast_to_slow class TestStringRepr(TestBEPS): def test_string_representation(self): usi_dset = self.h5_source h5_main = self.h5_file[usi_dset.name] actual = usi_dset.__repr__() actual = [line.strip() for line in actual.split("\n")] actual = [actual[line_ind] for line_ind in [0, 2, 4, 7, 8, 10, 11]] expected = list() expected.append(h5_main.__repr__()) expected.append(h5_main.name) expected.append(get_attr(h5_main, "quantity") + " (" + get_attr(h5_main, "units") + ")") for h5_inds in [usi_dset.h5_pos_inds, usi_dset.h5_spec_inds]: for dim_name, dim_size in zip(get_attr(h5_inds, "labels"), get_dimensionality(h5_inds)): expected.append(dim_name + ' - size: ' + str(dim_size)) self.assertTrue(np.all([x == y for x, y in zip(actual, expected)])) class TestEquality(TestBEPS): def test_correct_USIDataset(self): expected = USIDataset(self.h5_source) self.assertTrue(expected == expected) def test_correct_h5_dataset(self): h5_main = self.h5_file[self.h5_source.name] expected = USIDataset(h5_main) self.assertTrue(expected == h5_main) def test_incorrect_USIDataset(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = USIDataset(h5_f['/Raw_Measurement/source_main-Fitter_000/results_main']) self.assertFalse(expected == incorrect) def test_incorrect_h5_dataset(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'] self.assertFalse(expected == incorrect) def test_incorrect_object(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = np.zeros(shape=(1, 2, 3, 4)) self.assertFalse(expected == incorrect) class TestGetNDimFormExistsReal(TestUSIDatasetReal): def test_sorted_and_unsorted(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_dset = USIDataset(h5_f['/Raw_Measurement/source_main']) nd_slow_to_fast, nd_fast_to_slow = self.get_expected_n_dim(h5_f) actual_f2s = usi_dset.get_n_dim_form(lazy=False) self.assertTrue(np.allclose(nd_fast_to_slow, actual_f2s)) nd_form, success = reshape_to_n_dims(usi_dset, sort_dims=True) print(nd_form.shape) usi_dset.toggle_sorting() actual_s2f = usi_dset.get_n_dim_form(lazy=False) self.assertTrue(np.allclose(nd_slow_to_fast, actual_s2f)) class TestPosSpecSlicesReal(TestUSIDatasetReal): def test_empty_dict(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({}) self.assertTrue(np.allclose(np.expand_dims(np.arange(14), axis=1), actual_spec)) self.assertTrue(np.allclose(np.expand_dims(np.arange(15), axis=1), actual_pos)) def test_non_existent_dim(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(KeyError): _ = usi_main._get_pos_spec_slices({'blah': 4, 'X': 3, 'Y': 1}) def test_incorrect_type(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(TypeError): _ = usi_main._get_pos_spec_slices({'X': 'fdfd', 'Y': 1}) def test_negative_index(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(ValueError): _ = usi_main._get_pos_spec_slices({'X': -4, 'Y': 1}) def test_out_of_bounds(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(IndexError): _ = usi_main._get_pos_spec_slices({'X': 15, 'Y': 1}) def test_one_pos_dim_removed(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) # orig_pos = np.vstack([np.tile(np.arange(5), 3), np.repeat(np.arange(3), 5)]).T # orig_spec = np.vstack([np.tile(np.arange(7), 2), np.repeat(np.arange(2), 7)]) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': 3}) # we want every fifth position starting from 3 expected_pos = np.expand_dims(np.arange(3, 15, 5), axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_one_pos_dim_sliced(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': slice(1, 5, 2)}) # we want every fifth position starting from 3 positions = [] for row_ind in range(3): for col_ind in range(1, 5, 2): positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_two_pos_dim_sliced(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': slice(1, 5, 2), 'Y': 1}) # we want every fifth position starting from 3 positions = [] for row_ind in range(1, 2): for col_ind in range(1, 5, 2): positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_two_pos_dim_sliced_list(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': [1, 2, 4], 'Y': 1}) # we want every fifth position starting from 3 positions = [] for row_ind in range(1, 2): for col_ind in [1, 2, 4]: positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_both_pos_removed(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': 3, 'Y': 1}) # we want every fifth position starting from 3 expected_pos = np.expand_dims([1 * 5 + 3], axis=1) expected_spec = np.expand_dims(
np.arange(14)
numpy.arange
''' phase_uncert_thetar simulating Optical Neural Network using Neuroptica and linearly separable datasets Now goes over every topology types with N = 4-32 Author: <NAME> Edit: 2020.03.09 ''' import numpy as np import calculate_accuracy as calc_acc import ONN_Simulation_Class as ONN_Cls import onnClassTraining import digital_NN_main as dnn import create_datasets as cd import random import os import shutil import matplotlib matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' def get_dataset(folder, N, rng, lim=99, SAMPLES=100, EPOCHS=20): while True: print(f'RNG = {rng}, N = {N}') X, y, Xt, yt = cd.gaussian_dataset(targets=int(N), features=int(N), nsamples=SAMPLES*N, rng=rng) random.seed(rng) X = (X - np.min(X))/(np.max(X) - np.min(X)) Xt = (Xt - np.min(Xt))/(np.max(Xt) - np.min(Xt)) Xog, Xtog = X, Xt net, weights = dnn.create_train_dnn(X, y, Xt, yt, folder, EPOCHS) print('Validation Accuracy: {:.1f}%'.format(dnn.get_current_accuracy(Xt, yt, net)*100)) rng += 1 if dnn.get_current_accuracy(Xt, yt, net)*100 > lim: if not os.path.isdir(folder): os.makedirs(folder) np.savetxt(f'{folder}/X.txt', X, delimiter=',', fmt='%.6f') np.savetxt(f'{folder}/Xt.txt', Xt, delimiter=',', fmt='%.6f') np.savetxt(f'{folder}/y.txt', y, delimiter=',', fmt='%.6f') np.savetxt(f'{folder}/yt.txt', yt, delimiter=',', fmt='%.6f') print('This dataset works!\n') return rng def test_onn(folder, ONN, lim=98.5): ONN.get_topology_name() ONN.X = np.loadtxt(folder + f'/X.txt', delimiter=',') ONN.y =
np.loadtxt(folder + f'/y.txt', delimiter=',')
numpy.loadtxt
import os import json import random import torch import torch.utils.data import numpy as np from tasks.data_utils import InputExample from tqdm import tqdm from utils import print_rank_0 from data_utils.corpora import punctuation_standardization def gigaword_detokenize(string, is_target=False): _tok_dict = {"(": "-lrb-", ")": "-rrb-", "[": "-lsb-", "]": "-rsb-", "{": "-lcb-", "}": "-rcb-", '&': '&amp;', '<': '&lt;', '>': '&gt;'} string = string.replace('UNK', '[UNK]') string = string.replace('<unk>', '[UNK]') for key, value in _tok_dict.items(): string = string.replace(value, key) # string = string.replace("''", "\"") # string = string.replace("``", "\"") # string = string.replace("`", "'") # string = string.replace(" n't", "n't") # string = string.replace(" 's", "'s") # string = string.replace(" 'd", "'d") # string = string.replace(" 'll", "'ll") return string def cnndm_detokenize(string, is_target=False): _tok_dict = {"(": "-LRB-", ")": "-RRB-", "[": "-LSB-", "]": "-RSB-", "{": "-LCB-", "}": "-RCB-"} if not is_target: string = string.replace("<S_SEP>", "") else: string = string.replace("<S_SEP>", "[SEP]") for key, value in _tok_dict.items(): string = string.replace(value, key) string = string.replace("''", "\"") string = string.replace("``", "\"") string = string.replace("`", "'") string = string.replace(" n't", "n't") string = string.replace(" 's", "'s") string = string.replace(" 'd", "'d") string = string.replace(" 'll", "'ll") return string def blanklm_detokenize(string, is_target=False): string = string.replace("_UNK", "[UNK]") string = string.replace("<blank>", "[MASK]") return string class SummmaryProcessor: def __init__(self, task, data_dir, tokenizer): self.task = task self.data_dir = data_dir self.tokenizer = tokenizer def create_examples(self, split): if split == "train": filename = "train" elif split == "dev": filename = "val" elif split == "test": filename = "test" else: raise NotImplementedError(split) print_rank_0(f"Creating {self.task}-{split} dataset from {self.data_dir}") if self.task == "gigaword": detokenizer = gigaword_detokenize elif self.task == "cnn_dm": detokenizer = cnndm_detokenize else: detokenizer = None source_texts, target_texts = [], [] with open(os.path.join(self.data_dir, f"{filename}.source"), encoding='utf-8') as file: for line in file: line = line.strip() line = punctuation_standardization(line) line = detokenizer(line) if detokenizer else line source_texts.append(line) with open(os.path.join(self.data_dir, f"{filename}.target"), encoding='utf-8') as file: for line in file: line = line.strip() line = punctuation_standardization(line) line = detokenizer(line, is_target=True) if detokenizer else line target_texts.append(line) assert len(source_texts) == len(target_texts) example_list = [] for idx, (source_text, target_text) in enumerate(zip(source_texts, target_texts)): if (idx + 1) % 20000 == 0: print_rank_0(f"Complete {idx + 1} examples") guid = "%s-%s" % (split, idx) meta = {"ref": self.tokenizer.DecodeIds(self.tokenizer.EncodeAsIds(target_text).tokenization)} example = InputExample(guid=guid, text_a=source_text, text_b=target_text, meta=meta) if idx < 10: print_rank_0((source_text.encode('utf-8'), target_text.encode('utf-8'), meta["ref"].encode('utf-8'))) example_list.append(example) return example_list class SQuADProcessor: def __init__(self, data_dir, tokenizer): self.data_dir = data_dir self.tokenizer = tokenizer def create_examples(self, split): if split == "train": filename = "train.json" elif split == "dev": filename = "dev.json" elif split == "test": filename = "test.json" else: raise NotImplementedError(split) print_rank_0(f"Creating SQuAD-{split} dataset from {self.data_dir}") example_list = [] idx = 0 with open(os.path.join(self.data_dir, filename), encoding='utf-8') as file: dataset = json.load(file) for paragraphs in dataset: for paragraph in paragraphs['paragraphs']: context = paragraph['context'] for qa in paragraph['qas']: question = qa["question"] answers = {answer["text"] for answer in qa["answers"]} answer_starts = {answer["text"]: answer["answer_start"] for answer in qa["answers"]} for answer in answers: guid = "%s-%s" % (split, idx) meta = { "answer_start": answer_starts[answer], "answer": answer, "question": question, "ref": self.tokenizer.DecodeIds(self.tokenizer.EncodeAsIds(question).tokenization)} example = InputExample(guid=guid, text_a=context, meta=meta) if idx < 10: print_rank_0( (context.encode('utf-8'), answer.encode('utf-8'), meta["ref"].encode('utf-8'))) example_list.append(example) idx += 1 print_rank_0(f"Creating {len(example_list)} examples for {split}") return example_list class XSumProcessor: def __init__(self, data_dir, tokenizer): self.data_dir = data_dir self.tokenizer = tokenizer def create_examples(self, split): if split == "train": key = "train" elif split == "dev": key = "validation" elif split == "test": key = "test" else: raise NotImplementedError(split) print_rank_0(f"Creating XSUM-{split} dataset from {self.data_dir}") with open(os.path.join(self.data_dir, "XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json")) as file: id_list = json.load(file) id_list = id_list[key] source_texts, target_texts = [], [] for i, idx in enumerate(id_list): with open(os.path.join(self.data_dir, f"{idx}.summary")) as file: key, sentences = None, [] source_text, target_text = None, None for line in file: line = line.strip() if line.startswith("[SN]"): if key is not None: if key == "RESTBODY": source_text = " ".join(sentences) elif key == "FIRST-SENTENCE": target_text = " ".join(sentences) key = line[4:-4] sentences = [] elif line: sentences.append(line) if key is not None: if key == "RESTBODY": source_text = " ".join(sentences) elif key == "FIRST-SENTENCE": target_text = " ".join(sentences) source_texts.append(source_text) target_texts.append(target_text) if (i + 1) % 1000 == 0: print_rank_0(f"Complete {i + 1} examples") assert len(source_texts) == len(target_texts) example_list = [] for idx, (source_text, target_text) in enumerate(zip(source_texts, target_texts)): if (idx + 1) % 20000 == 0: print_rank_0(f"Complete {idx + 1} examples") guid = "%s-%s" % (split, idx) meta = {"ref": self.tokenizer.DecodeIds(self.tokenizer.EncodeAsIds(target_text).tokenization)} example = InputExample(guid=guid, text_a=source_text, text_b=target_text, meta=meta) if idx < 10: print_rank_0((source_text.encode('utf-8'), target_text.encode('utf-8'), meta["ref"].encode('utf-8'))) example_list.append(example) return example_list class Seq2SeqDataset(torch.utils.data.Dataset): def __init__(self, args, split, tokenizer): self.args = args self.task, self.data_dir = args.task.lower(), args.data_dir self.max_src_length, self.max_tgt_length = args.src_seq_length, args.tgt_seq_length self.split = split self.tokenizer = tokenizer self.dataset_name = split if self.task in ["gigaword", "cnn_dm", "cnn_dm_original"]: self.processor = SummmaryProcessor(self.task, self.data_dir, tokenizer) elif self.task in ["xsum"]: self.processor = XSumProcessor(self.data_dir, tokenizer) elif self.task in ["squad_generation"]: self.processor = SQuADProcessor(self.data_dir, tokenizer) else: raise NotImplementedError example_list = self.processor.create_examples(split) self.example_list = example_list self.examples = {example.guid: example for example in example_list} print_rank_0(f"Return {len(self.examples)} {split} examples") def __len__(self): return len(self.example_list) def __getitem__(self, idx): example = self.example_list[idx] cls_id = self.tokenizer.get_command('ENC').Id mask_token = 'sMASK' if self.args.task_mask else 'MASK' mask_id = self.tokenizer.get_command(mask_token).Id pad_id = self.tokenizer.get_command('pad').Id sop_id = self.tokenizer.get_command('sop').Id eop_id = self.tokenizer.get_command('eop').Id if self.task in ["gigaword", "cnn_dm", "cnn_dm_original", "xsum"]: source_text, target_text = example.text_a, example.text_b source_tokens = self.tokenizer.EncodeAsIds(" " + source_text).tokenization prompt = [cls_id, mask_id] + self.tokenizer.EncodeAsIds(" Content:").tokenization if len(source_tokens) > self.max_src_length - len(prompt): source_tokens = source_tokens[:self.max_src_length - len(prompt)] source_tokens = prompt + source_tokens elif self.task == "squad_generation": source_text = example.text_a target_text, answer = example.meta["question"], example.meta["answer"] source_tokens = self.tokenizer.EncodeAsIds(source_text.rstrip() + " Question:").tokenization answer_tokens = self.tokenizer.EncodeAsIds(" Answer: " + answer).tokenization if len(source_tokens) > self.max_src_length - len(answer_tokens) - 2: max_src_length = self.max_src_length - len(answer_tokens) - 2 answer_pattern = self.tokenizer.EncodeAsIds(" " + answer).tokenization def sub_finder(mylist, pattern): matches = [] for i in range(len(mylist)): if mylist[i] == pattern[0] and mylist[i:i + len(pattern)] == pattern: matches.append(i) return matches answer_indices = sub_finder(source_tokens, answer_pattern) if len(answer_indices) == 0: print(f"Answer {answer} not exists in the source text") source_tokens = source_tokens[:max_src_length] else: start_index = max(answer_indices[0] - max_src_length // 2, 0) source_tokens = source_tokens[start_index: start_index + max_src_length] source_tokens = [cls_id] + source_tokens + [mask_id] + answer_tokens else: raise NotImplementedError if len(source_tokens) < self.max_src_length: source_tokens = source_tokens + [pad_id] * (self.max_src_length - len(source_tokens)) sep = len(source_tokens) position_ids = list(range(len(source_tokens))) block_position_ids = [0] * len(source_tokens) mask_pos = source_tokens.index(mask_id) if self.split == 'train': target_tokens = self.tokenizer.EncodeAsIds(" " + target_text).tokenization target_tokens = target_tokens + [eop_id] if len(target_tokens) > self.max_tgt_length: target_tokens = target_tokens[:self.max_tgt_length] target_truncated = True loss_mask = [1] * len(target_tokens) if len(target_tokens) < self.max_tgt_length: loss_mask += [0] * (self.max_tgt_length - len(target_tokens)) target_tokens += [pad_id] * (self.max_tgt_length - len(target_tokens)) tokens = source_tokens + [sop_id] + target_tokens[:-1] loss_mask = [0] * len(source_tokens) + loss_mask target_ids = [0] * len(source_tokens) + target_tokens position_ids += [mask_pos] * len(target_tokens) if self.args.no_block_position: block_position_ids += [1] * len(target_tokens) else: block_position_ids += list(range(1, len(target_tokens) + 1)) position_ids = [position_ids, block_position_ids] sample = {'text':
np.array(tokens, dtype=np.int64)
numpy.array
import numpy as np from ..util import three_dimensionalize, euclidean, unitize from ..constants import log from ..constants import tol_path as tol from ..constants import res_path as res from .intersections import line_line def arc_center(points): """ Given three points of an arc, find the center, radius, normal, and angle. This uses the fact that the intersection of the perpendicular bisectors of the segments between the control points is the center of the arc. Parameters --------- points: (3,d) list of points where (d in [2,3]) Returns --------- result: dict, with keys: 'center': (d,) float, cartesian center of the arc 'radius': float, radius of the arc 'normal': (3,) float, the plane normal. 'angle': (2,) float, angle of start and end, in radians 'span' : float, angle swept by the arc, in radians """ # it's a lot easier to treat 2D as 3D with a zero Z value is_2D, points = three_dimensionalize(points, return_2D=True) # find the two edge vectors of the triangle edge_direction = np.diff(points, axis=0) edge_midpoints = (edge_direction * .5) + points[0:2] # three points define a plane, so we find its normal vector plane_normal = unitize(np.cross(*edge_direction[::-1])) vector_edge = unitize(edge_direction) vector_perpendicular = unitize(np.cross(vector_edge, plane_normal)) intersects, center = line_line(edge_midpoints, vector_perpendicular) if not intersects: raise ValueError('Segments do not intersect!') radius = euclidean(points[0], center) vector = unitize(points - center) angle = np.arccos(np.clip(np.dot(*vector[[0, 2]]), -1.0, 1.0)) large_arc = (abs(angle) > tol.zero and np.dot(*edge_direction) < 0.0) if large_arc: angle = (np.pi * 2) - angle angles = np.arctan2(*vector[:, 0:2].T[::-1]) + np.pi * 2 angles_sorted = np.sort(angles[[0, 2]]) reverse = angles_sorted[0] < angles[1] < angles_sorted[1] angles_sorted = angles_sorted[::(1 - int(not reverse) * 2)] result = {'center': center[:(3 - is_2D)], 'radius': radius, 'normal': plane_normal, 'span': angle, 'angles': angles_sorted} return result def discretize_arc(points, close=False, scale=1.0): """ Returns a version of a three point arc consisting of line segments Parameters --------- points: (n, d) points on the arc where d in [2,3] close: boolean, if True close the arc (circle) Returns --------- discrete: (m, d) points: either (3,3) or (3,2) of points for arc going from points[0] to points[2], going through control point points[1] """ two_dimensional, points = three_dimensionalize(points, return_2D=True) center_info = arc_center(points) center, R, N, angle = (center_info['center'], center_info['radius'], center_info['normal'], center_info['span']) if close: angle = np.pi * 2 # the number of facets, based on the angle critera count_a = angle / res.seg_angle count_l = ((R * angle)) / (res.seg_frac * scale) count = np.max([count_a, count_l]) # force at LEAST 4 points for the arc, otherwise the endpoints will diverge count = np.clip(count, 4, np.inf) count = int(np.ceil(count)) V1 = unitize(points[0] - center) V2 = unitize(np.cross(-N, V1)) t = np.linspace(0, angle, count) discrete = np.tile(center, (count, 1)) discrete += R * np.cos(t).reshape((-1, 1)) * np.tile(V1, (count, 1)) discrete += R * np.sin(t).reshape((-1, 1)) * np.tile(V2, (count, 1)) if not close: arc_dist = np.linalg.norm(points[[0, -1]] - discrete[[0, -1]], axis=1) arc_ok = (arc_dist < tol.merge).all() if not arc_ok: log.warn( 'Failed to discretize arc (endpoint distance %s)', str(arc_dist)) log.warn('Failed arc points: %s', str(points)) raise ValueError('Arc endpoints diverging!') discrete = discrete[:, 0:(3 - two_dimensional)] return discrete def arc_tangents(points): """ returns tangent vectors for points """ two_dimensional, points = three_dimensionalize(points, return_2D=True) center, R, N, angle = arc_center(points) vectors = points - center tangents = unitize(np.cross(vectors, N)) return tangents[:, 0:(3 - two_dimensional)] def arc_offset(points, distance): two_dimensional, points = three_dimensionalize(points) center, R, N, angle = arc_center(points) vectors = unitize(points - center) new_points = center + vectors * distance return new_points[:, 0:(3 - two_dimensional)] def to_threepoint(center, radius, angles=None): """ For 2D arcs, given a center and radius convert them to three points on the arc. Parameters ----------- center: (2,) float, center point on the plane radius: float, radius of arc angles: (2,) float, angles in radians to make the arc if not specified, will default to (0.0, pi) Returns ---------- three: (3,2) float, arc control points """ # if no angles provided assume we want a half circle if angles is None: angles = [0.0, np.pi] # force angles to float64 angles =
np.asanyarray(angles, dtype=np.float64)
numpy.asanyarray
""" orderparam.py Contains the methods for order parameter calculation and anlyses. """ from collections import defaultdict import numpy as np from memly.metrics import Metric from memly.membrane import unit_vector, angle_between def calculate_orderparam(angle): """ Calculate the order parameter for the provided angle :param angle: :return: """ return 0.5 * (3 * (np.cos(np.radians(angle))) ** 2 - 1) class OrderParam(Metric): def __init__(self, membrane, title="Order parameter", units="unitless"): """ Calculates order parameters for each lipid species in the simulation. :param membrane: memly.membrane.Membrane object :param title: str, optional. The title of the metric. Default is "Order parameter". :param units: str, optional. Units of the metric. Default is "unitless". """ # Run the initialisation of the parent Metric class Metric.__init__(self, membrane, title, units) # Collect bonded pairs, grouped together by residue name self.bonded_catalogue = defaultdict(list) for bond in self.membrane.sim.topology.bonds: catalogue_name = bond.atom1.residue.name + "-" + bond.atom1.name + "-" + bond.atom2.name self.bonded_catalogue[catalogue_name].append((bond.atom1.index, bond.atom2.index)) # Calculate order parameters self.orderparams = {catalogue_name: calculate_orderparam(self.get_ensemble_average_angle(catalogue_name)) for catalogue_name in self.bonded_catalogue.keys()} # Store results for catalogue_name, orderp in self.orderparams.items(): self.add_results(lipid=catalogue_name, value=orderp, leaflet="Both") for leaflet_name in self.membrane.leaflets[0].keys(): self.add_results(lipid=catalogue_name, value=calculate_orderparam(self.get_leaflet_average_angle(catalogue_name, leaflet_name)), leaflet=leaflet_name) def get_ensemble_average_angle(self, catalogue_name): """ Returns the ensemble-averaged angle between all the bonded pairs and the bilayer normal :param catalogue_name: :return: """ angles = [] for particle_pair in self.bonded_catalogue[catalogue_name]: angles.append(np.asarray(self.calculate_angles_to_bilayer_normal(particle_pair))) return np.mean(np.asarray(angles)) def get_leaflet_average_angle(self, catalogue_name, leaflet_name): """ Returns the ensemble-averaged angle between instances of the named bonded pair that are located in the indicated leaflet. :param leaflet_name: str, Label of the leaflet to analyse. :param catalogue_name: :return: """ angles = [] for particle_pair in self.bonded_catalogue[catalogue_name]: # Create a selection mask for frames in which the particles belong to a lipid residue that is located in the chosen leaflet # Have to do this separately for each particle pair, since each particle's leaflet presence changes independantly between frames. #chosen_frames = np.asarray([True if self.membrane.lipid_residues_by_particle[particle_pair[0]] in self.membrane.leaflets[frame][leaflet_name] else False for frame in range(0,len(self.membrane.sim))]) chosen_frames =
np.asarray(self.membrane.leaflet_occupancy_by_resid[self.membrane.lipid_residues_by_particle[particle_pair[0]]])
numpy.asarray
import numpy as np import os from skimage.io import imread, imsave from skimage.transform import estimate_transform, warp from time import time from predictor import PosPrediction class PRN: ''' Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network Args: is_dlib(bool, optional): If true, dlib is used for detecting faces. prefix(str, optional): If run at another folder, the absolute path is needed to load the data. ''' def __init__(self, is_dlib = False, prefix = '.'): # resolution of input and output image size. self.resolution_inp = 256 self.resolution_op = 256 #---- load detectors if is_dlib: import dlib detector_path = os.path.join(prefix, 'Data/net-data/mmod_human_face_detector.dat') self.face_detector = dlib.cnn_face_detection_model_v1( detector_path) #---- load PRN self.pos_predictor = PosPrediction(self.resolution_inp, self.resolution_op) prn_path = os.path.join(prefix, 'Data/net-data/256_256_resfcn256_weight') if not os.path.isfile(prn_path + '.data-00000-of-00001'): print("please download PRN trained model first.") exit() self.pos_predictor.restore(prn_path) # uv file self.uv_kpt_ind = np.loadtxt(prefix + '/Data/uv-data/uv_kpt_ind.txt').astype(np.int32) # 2 x 68 get kpt self.face_ind = np.loadtxt(prefix + '/Data/uv-data/face_ind.txt').astype(np.int32) # get valid vertices in the pos map self.triangles = np.loadtxt(prefix + '/Data/uv-data/triangles.txt').astype(np.int32) # ntri x 3 self.uv_coords = self.generate_uv_coords() def generate_uv_coords(self): resolution = self.resolution_op uv_coords = np.meshgrid(range(resolution),range(resolution)) uv_coords = np.transpose(np.array(uv_coords), [1,2,0]) uv_coords = np.reshape(uv_coords, [resolution**2, -1]); uv_coords = uv_coords[self.face_ind, :] uv_coords = np.hstack((uv_coords[:,:2], np.zeros([uv_coords.shape[0], 1]))) return uv_coords def dlib_detect(self, image): return self.face_detector(image, 1) def net_forward(self, image): ''' The core of out method: regress the position map of a given image. Args: image: (256,256,3) array. value range: 0~1 Returns: pos: the 3D position map. (256, 256, 3) array. ''' return self.pos_predictor.predict(image) def process(self, input, image_info = None): ''' process image with crop operation. Args: input: (h,w,3) array or str(image path). image value range:1~255. image_info(optional): the bounding box information of faces. if None, will use dlib to detect face. Returns: pos: the 3D position map. (256, 256, 3). ''' if isinstance(input, str): try: image = imread(input) except IOError: print("error opening file: ", input) return None else: image = input if image.ndim < 3: image = np.tile(image[:,:,np.newaxis], [1,1,3]) if image_info is not None: if np.max(image_info.shape) > 4: # key points to get bounding box kpt = image_info if kpt.shape[0] > 3: kpt = kpt.T left =
np.min(kpt[0, :])
numpy.min
#Modified from: https://github.com/websitefingerprinting/WebsiteFingerprinting, created by WFDetection. import sys import os import multiprocessing as mp from os import mkdir from os.path import join, abspath, dirname, pardir import numpy as np import pandas as pd import json import argparse import logging import datetime BASE_DIR = abspath(join(dirname(__file__), pardir)) logger = logging.getLogger('glue') def config_logger(args): # Set file log_file = sys.stdout if args.log != 'stdout': log_file = open(args.log, 'w') ch = logging.StreamHandler(log_file) # Set logging format LOG_FORMAT = "%(asctime)s %(name)-12s %(levelname)-8s %(message)s" ch.setFormatter(logging.Formatter(LOG_FORMAT)) logger.addHandler(ch) # Set level format logger.setLevel(logging.INFO) def parse_arguments(): parser = argparse.ArgumentParser(description='It simulates adaptive padding on a set of web traffic traces.') parser.add_argument('traces_path', metavar='<traces path>', help='Path to the directory with the traffic traces to be simulated.') parser.add_argument('-listpath', type=str, metavar='<mergelist>', help='Give an order of traces in a l-traces') parser.add_argument('-noise', type=str, metavar='<pad noise>', default= 'False', help='Simulate whether pad glue noise or not') parser.add_argument('-glue', type=str, metavar='<pad front noise>', default= 'False', help='Simulate whether pad front noise or not') parser.add_argument('-forWFD', type=str, metavar='<only save .npy>', default= 'False', help='Only save .npy of directions, for training data generate WFD') parser.add_argument('-output', type=str, metavar='<output_dir>', help='Output directory for l-traces') parser.add_argument('--log', type=str, dest="log", metavar='<log path>', default='stdout', help='path to the log file. It will print to stdout by default.') args = parser.parse_args() #config = dict(conf_parser._sections[args.section]) config_logger(args) return args # '''used to save single traces''' # global list_names def load_trace(fname, t = 999, noise = False): '''load a trace from fpath/fname up to t time.''' '''return trace''' pkts = [] with open(fname, 'r') as f: for line in f: try: timestamp, length = line.strip().split('\t') pkts.append([float(timestamp), int(length)]) if float(timestamp) >= t+0.5: break except ValueError: logger.warn("Could not split line: %s in %s", line, fname) return np.array(pkts) def weibull(k = 0.75): return np.random.weibull(0.75) def uniform(): return np.random.uniform(1,10) def simulate(trace): # logger.debug("Simulating trace {}".format(fdir)) np.random.seed(datetime.datetime.now().microsecond) front_trace = RP(trace) return front_trace def RP(trace): # format: [[time, pkt],[...]] # trace, cpkt_num, spkt_num, cwnd, swnd client_dummy_pkt_num = 1100 server_dummy_pkt_num = 1100 client_min_dummy_pkt_num = 1 server_min_dummy_pkt_num = 1 start_padding_time = 0 max_wnd = 14 min_wnd = 1 client_wnd = np.random.uniform(min_wnd, max_wnd) server_wnd = np.random.uniform(min_wnd, max_wnd) if client_min_dummy_pkt_num != client_dummy_pkt_num: client_dummy_pkt = np.random.randint(client_min_dummy_pkt_num,client_dummy_pkt_num) else: client_dummy_pkt = client_dummy_pkt_num if server_min_dummy_pkt_num != server_dummy_pkt_num: server_dummy_pkt = np.random.randint(server_min_dummy_pkt_num,server_dummy_pkt_num) else: server_dummy_pkt = server_dummy_pkt_num logger.debug("client_wnd:",client_wnd) logger.debug("server_wnd:",server_wnd) logger.debug("client pkt:", client_dummy_pkt) logger.debug("server pkt:", server_dummy_pkt) first_incoming_pkt_time = trace[np.where(trace[:,1] <0)][0][0] #This is to find the last pkt time of first trace. We cant use last pkt time of the whole trace for MP last_pkt_time = trace[np.where(abs(trace[:,1]) == 1 )][-1][0] # print("last_pkt_time",last_pkt_time) client_timetable = getTimestamps(client_wnd, client_dummy_pkt) client_timetable = client_timetable[
np.where(start_padding_time+client_timetable[:,0] <= last_pkt_time)
numpy.where
import pytest import numpy as np from keras.utils.test_utils import get_test_data from keras.models import Sequential from keras.layers.core import Dense, Activation from keras.wrappers.scikit_learn import KerasClassifier, KerasRegressor input_dim = 5 hidden_dims = 5 num_train = 100 num_test = 50 num_class = 3 batch_size = 32 epochs = 1 verbosity = 0 optim = 'adam' loss = 'categorical_crossentropy' np.random.seed(42) (X_train, y_train), (X_test, y_test) = get_test_data( num_train=num_train, num_test=num_test, input_shape=(input_dim,), classification=True, num_classes=num_class) def build_fn_clf(hidden_dims): model = Sequential() model.add(Dense(input_dim, input_shape=(input_dim,))) model.add(Activation('relu')) model.add(Dense(hidden_dims)) model.add(Activation('relu')) model.add(Dense(num_class)) model.add(Activation('softmax')) model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy']) return model def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf) def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf) def test_classify_inherit_class_build_fn(): class InheritClassBuildFnClf(KerasClassifier): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = InheritClassBuildFnClf( build_fn=None, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf) def assert_classification_works(clf): clf.fit(X_train, y_train, batch_size=batch_size, epochs=epochs) score = clf.score(X_train, y_train, batch_size=batch_size) assert np.isscalar(score) and np.isfinite(score) preds = clf.predict(X_test, batch_size=batch_size) assert preds.shape == (num_test, ) for prediction in np.unique(preds): assert prediction in range(num_class) proba = clf.predict_proba(X_test, batch_size=batch_size) assert proba.shape == (num_test, num_class) assert np.allclose(np.sum(proba, axis=1), np.ones(num_test)) def assert_string_classification_works(clf): string_classes = ['cls{}'.format(x) for x in range(num_class)] str_y_train = np.array(string_classes)[y_train] clf.fit(X_train, str_y_train, batch_size=batch_size, epochs=epochs) score = clf.score(X_train, str_y_train, batch_size=batch_size) assert np.isscalar(score) and np.isfinite(score) preds = clf.predict(X_test, batch_size=batch_size) assert preds.shape == (num_test, ) for prediction in np.unique(preds): assert prediction in string_classes proba = clf.predict_proba(X_test, batch_size=batch_size) assert proba.shape == (num_test, num_class) assert np.allclose(np.sum(proba, axis=1),
np.ones(num_test)
numpy.ones
'''Reinforcement learning (RL) environment for the pegs on disks domain.''' # python import os import fnmatch from copy import copy from time import sleep, time # scipy from scipy.io import loadmat from matplotlib import pyplot from scipy.spatial import cKDTree from numpy.linalg import inv, norm from numpy.random import choice, rand, randint, randn, uniform from numpy import arccos, argmax, argmin, array, arange, cos, dot, eye, hstack, logical_or, mean, \ pi, power, repeat, reshape, sin, sqrt, sum, vstack, zeros # openrave import openravepy # self import point_cloud from rl_environment import RlEnvironment from hand_descriptor import HandDescriptor class RlEnvironmentPegsOnDisks(RlEnvironment): def __init__(self, params): '''Initializes openrave environment, parameters, and first episode. - Input params: System parameters data structure. ''' RlEnvironment.__init__(self, params) # parameters self.nObjects = params["nObjects"] self.nSupportObjects = params["nSupportObjects"] self.objectFolder = params["objectFolder"] self.supportObjectFolder = params["supportObjectFolder"] self.placeOrientTolerance = self.params["placeOrientTolerance"] self.placeHeightTolerance = self.params["placeHeightTolerance"] self.rewardCapGrasps = self.params["rewardCapGrasps"] self.colors = array([ \ (1.0, 0.0, 0.0, 0.5), (0.0, 1.0, 0.0, 0.5), (0.0, 0.0, 1.0, 0.5), (0.0, 1.0, 1.0 ,0.5), (1.0, 0.0, 1.0, 0.5), (1.0, 1.0, 0.0, 0.5), (0.5, 1.0, 0.0, 0.5), (0.5, 0.0, 1.0, 0.5), (0.0, 0.5, 1.0, 0.5), (1.0, 0.5, 0.0, 0.5), (1.0, 0.0, 0.5, 0.5), (0.0, 1.0, 0.5, 0.5) ]) self.pointToRealRadiusError = 0.0001 # initialization self.InitializeHandRegions() self.objectFileNames = os.listdir(self.objectFolder) self.objectFileNames = fnmatch.filter(self.objectFileNames, "*.dae") self.supportObjectFileNames = os.listdir(self.supportObjectFolder) self.supportObjectFileNames = fnmatch.filter(self.supportObjectFileNames, "*.dae") # internal state self.objects = [] self.supportObjects = [] self.ResetEpisode() def GenerateCylinderMesh(self, heightMinMax, radiusMinMax, name): '''Generates a cylinder and saves it into a CAD model file. - Input heightMinMax: Tuple specifying range (min, max) from which to select cylinder height. - Input radiusMinmax: Tuple specifying range (min, max) from which to select cylinder radius. - Input name: String name of object; also determines name of file to save. - Returns body: Handle to the openrave object, added to the environment. ''' # create object height = uniform(heightMinMax[0], heightMinMax[1]) radius = uniform(radiusMinMax[0], radiusMinMax[1]) geomInfo = openravepy.KinBody.Link.GeometryInfo() geomInfo._type = openravepy.KinBody.Link.GeomType.Cylinder geomInfo._vGeomData = [radius, height] geomInfo._vDiffuseColor = self.colors[randint(len(self.colors))] body = openravepy.RaveCreateKinBody(self.env, "") body.InitFromGeometries([geomInfo]) body.SetName(name) body.height = height body.radius = radius self.env.Add(body, True) # save mesh file self.env.Save(name + ".dae", openravepy.Environment.SelectionOptions.Body, name) print("Saved " + name + ".") return body def GetArtificialCloud(self): '''Concatenates point cloud data from all objects and support objects. - Returns cloud: Point cloud in the base/world reference frame. ''' clouds = [] objects = self.supportObjects + self.objects for obj in objects: cloud = point_cloud.Transform(obj.GetTransform(), obj.cloud) clouds.append(cloud) return vstack(clouds) def IsPegGrasp(self, descriptor): '''Checks if, when the hand is placed at the descriptor's pose and closed, a grasp takes place. A grasp must be (1) collision-free (2) contain exactly 1 peg's geometry, (3) contain the cylinder's axis, and (4) not contact the side and cap of the cylinder. - Input descriptor: HandDescriptor object of the target hand pose. - Returns graspedObject: The handle of the grasped object if a cylinder can be grasped from the target hand pose; otherwise None. - Returns isCapGrasp: True if this is a good grasp and each finger contacts the bottom/top of the peg. ''' # check collision collision, objCloudsInHandFrame = self.IsRobotInCollision(descriptor) if collision: return None, False # check intersection of exactly 1 object graspedObject = None; pointsInHand = None for i, obj in enumerate(self.objects): X = point_cloud.FilterWorkspace(self.handClosingRegion, objCloudsInHandFrame[i]) intersect = X.size > 0 if intersect: if graspedObject is None: graspedObject = obj pointsInHand = X else: # intersection of multiple objects return None, False if graspedObject is None: # intersection of no objects return None, False # A cylinder can only be upright or on the side. We handle these two cases separately. bTo = graspedObject.GetTransform() if self.IsPegUpright(graspedObject): # Top-center of cylinder in the hand is necessary and sufficient. bp = copy(bTo[0:3, 3]) bp[2] += graspedObject.height / 2.0 hp = point_cloud.Transform(inv(descriptor.T), array([bp])) hP = point_cloud.FilterWorkspace(self.handClosingRegion, hp) if hP.size == 0: return None, False return graspedObject, False # Cylinder is on its side. # check if finger tips are below cylinder axis cylinderZ = bTo[2, 3] fingerZ = descriptor.center[2] - descriptor.depth / 2.0 if fingerZ > cylinderZ: return None, False # make sure cylinder caps are not in hand contactIdxs = array([argmax(pointsInHand[:, 1]), argmin(pointsInHand[:, 1])]) contacts = pointsInHand[contactIdxs, :] oX = point_cloud.Transform(dot(inv(bTo), descriptor.T), pointsInHand) capIdxs = sum(power(oX[:, 0:2], 2), 1) < (graspedObject.radius - self.pointToRealRadiusError)**2 capIdxs = capIdxs.flatten() nContactsOnCap = sum(capIdxs[contactIdxs]) if nContactsOnCap == 1 or sum(power(contacts[0, 0:2] - contacts[1, 0:2], 2)) < \ (min(2 * graspedObject.radius, graspedObject.height) - 2 * self.pointToRealRadiusError)**2: # 1 finger contacts cap, other finger contacts side return None, False # side grasp is good return graspedObject, nContactsOnCap == 2 def IsRobotInCollision(self, descriptor): '''Checks collision between the robot and the world. - Input descriptor: HandDescriptor object for the current hand pose. - Returns: True if in collision and False otherwise. - Returns objCloudsInHandFrame: List of point clouds, one for each object, in the descriptor reference frame. Or, None if a collision is detected. (This is to avoid performing transforms of all object clouds twice.) ''' # ODE misses several box-cylinder collisions. So we have to implement this ourselves. # check collision with table bX = point_cloud.Transform(descriptor.T, self.externalHandPoints) if (bX[:, 2] < self.GetTableHeight()).any(): return True, None # some preparation hTb = inv(descriptor.T) self.robot.SetTransform(descriptor.T) # for visualization only objects = self.objects + self.supportObjects objCloudsInHandFrame = [] # check if any object points intersect hand collision geometry for i, obj in enumerate(objects): bTo = obj.GetTransform() hX = point_cloud.Transform(dot(hTb, bTo), obj.cloud) X = point_cloud.FilterWorkspace(self.handFingerRegionL, hX) if X.size > 0: return True, None X = point_cloud.FilterWorkspace(self.handFingerRegionR, hX) if X.size > 0: return True, None X = point_cloud.FilterWorkspace(self.handTopRegion, hX) if X.size > 0: return True, None if i < len(self.objects): objCloudsInHandFrame.append(hX) return False, objCloudsInHandFrame def InitializeHandRegions(self): '''Determines hand geometry, in the descriptor reference frame, for collision checking. Should be called once at initialization. ''' # find default descriptor geometry desc = HandDescriptor(eye(4), self.params["imP"], self.params["imD"], self.params["imW"]) # important reference points topUp = desc.top + (desc.height / 2) * desc.axis topDn = desc.top - (desc.height / 2) * desc.axis BtmUp = desc.top + (desc.height / 2) * desc.axis BtmDn = desc.top - (desc.height / 2) * desc.axis # cuboids representing hand regions, in workspace format self.handClosingRegion = [ (-desc.height / 2, desc.height / 2), (-desc.width / 2, desc.width / 2), (-desc.depth / 2, desc.depth / 2)] self.handFingerRegionL = [ (-desc.height / 2, desc.height / 2), (-desc.width / 2 - 0.01, -desc.width / 2), (-desc.depth / 2, desc.depth / 2)] self.handFingerRegionR = [ (-desc.height / 2, desc.height / 2), (desc.width / 2, desc.width / 2 + 0.01), (-desc.depth / 2, desc.depth / 2)] self.handTopRegion = [ (-desc.height / 2, desc.height / 2), (-desc.width / 2 - 0.01, desc.width / 2 + 0.01), (desc.depth / 2, desc.depth / 2 + 0.01)] # find corners of hand collision geometry self.externalHandPoints = array([ \ topUp + ((desc.width / 2) + 0.01) * desc.binormal, topUp - ((desc.width / 2) + 0.01) * desc.binormal, topDn + ((desc.width / 2) + 0.01) * desc.binormal, topDn - ((desc.width / 2) + 0.01) * desc.binormal, BtmUp + ((desc.width / 2) + 0.01) * desc.binormal, BtmUp - ((desc.width / 2) + 0.01) * desc.binormal, BtmDn + ((desc.width / 2) + 0.01) * desc.binormal, BtmDn - ((desc.width / 2) + 0.01) * desc.binormal, ]) def IsPegUpright(self, obj): '''Returns True iff the peg's axis is (nearly) normal to the table plane. In this environment it can be only be normal or orthogonal.''' return abs(obj.GetTransform()[2, 2]) > 0.9 def PerformGrasp(self, descriptor, cloud): '''Tests for and simulates a grasp. If an object is grasped, self.holdingObject is set. - Input descriptor: Pose of the grasp. - Input cloud: Point cloud of the current scene, in the base/world frame (excluding table). - Returns reward: -1 if grasping a placed object, 1 if grasping an unplaced object, and 0 otherwise. ''' self.holdingObject, isCapGrasp = self.IsPegGrasp(descriptor) if not self.holdingObject: if self.params["showSteps"]: raw_input("Grasp failed.") return 0.0 if self.params["showSteps"]: raw_input("Grasp succeeded.") # generate grasp image descriptor.GenerateHeightmap(cloud, self.GetTableHeight()) self.holdingDescriptor = descriptor # simulate object movement when hand closes self.SimulateObjectMovementOnClose(descriptor, self.holdingObject, isCapGrasp) # move to holding pose self.MoveHandToHoldingPose() self.MoveObjectToHandAtGrasp(descriptor.T, self.holdingObject) # compute reward if self.holdingObject in self.placedObjects: del self.placedObjects[self.holdingObject] return -1.0 if not self.rewardCapGrasps and isCapGrasp: return 0.0 return 1.0 def PerformPlace(self, descriptor): '''Places the object and computes the appropriate reward. If place is not good, the object gets removed from the environment, as its resulting state is hard to determine. Assumes robot and object are at the holding pose. - Input descriptor: Location of the hand at place. - Returns reward: 1 if place is on an unoccupied disk and 0 otherwise. ''' # move object to hand at place bTg = self.robot.GetTransform() self.MoveHandToPose(descriptor.T) self.MoveObjectToHandAtGrasp(bTg, self.holdingObject) self.MoveHandToHoldingPose() # no longer holding an object placedObject = self.holdingObject self.holdingObject = None self.holdingDescriptor = None # check if peg is vertical bTo = placedObject.GetTransform() if abs(dot(bTo[0:3, 2], array([0.0, 0.0, 1.0]))) < 1.0 - self.placeOrientTolerance: self.PlaceFailed(placedObject) return 0.0 # check if peg is entirely over a disk supportObject = None for disk in self.supportObjects: diskXY = disk.GetTransform()[0:2, 3] if sum(power(diskXY - bTo[0:2, 3], 2)) < (disk.radius - placedObject.radius)**2: supportObject = disk break # not above any disk if supportObject is None: self.PlaceFailed(placedObject) return 0.0 # support object is already occupied if supportObject in self.placedObjects.values(): self.PlaceFailed(placedObject) return 0.0 # check if height is good supportTopZ = supportObject.GetTransform()[2, 3] + supportObject.height / 2.0 objectBottomZ = placedObject.GetTransform()[2, 3] - placedObject.height / 2.0 if objectBottomZ < supportTopZ - self.placeHeightTolerance[0] or \ objectBottomZ > supportTopZ + self.placeHeightTolerance[1]: self.PlaceFailed(placedObject) return 0.0 # check if hand is in collision collision, cloudsInHandFrame = self.IsRobotInCollision(descriptor) if collision: self.PlaceFailed(placedObject) return 0.0 # place is good if self.params["showSteps"]: raw_input("Placed object successfully.") self.placedObjects[placedObject] = supportObject return 1.0 def PlaceObjects(self, isSupportObjects, maxPlaceAttempts=10, workspace=((-0.18, 0.18), (-0.18, 0.18))): '''Chooses and places objects randomly on the table. - Input isSupportObjects: Are the objects support objects (i.e. disks)? - Input maxPlaceAttempts: Maximum number of times to place an object collision-free. If exceeded, the object will be placed in collision with some already placed object(s). - Input workspace: Area to place objects in, [(minX, maxX), (minY, maxY)]. Center of objects will not be outside of these bounds. - Returns None. ''' # support object / graspable object if isSupportObjects: nObjects = self.nSupportObjects folderName = self.supportObjectFolder fileNames = self.supportObjectFileNames else: nObjects = self.nObjects folderName = self.objectFolder fileNames = self.objectFileNames # select file(s) fileIdxs = choice(len(fileNames), size=nObjects, replace=False) objectHandles = [] # add objects for i in xrange(nObjects): # choose a random object from the folder objectName = fileNames[fileIdxs[i]] # load object self.env.Load(folderName + "/" + objectName) shortObjectName = objectName[:-4] body = self.env.GetKinBody(shortObjectName) # load points, height, and radius data = loadmat(folderName + "/" + shortObjectName + ".mat") body.cloud = data["cloud"] body.height = data["height"] body.radius = data["radius"] # select pose for object for j in xrange(maxPlaceAttempts): # choose orientation r1 = 0.0 if isSupportObjects else choice([pi / 2.0, 0.0], p=[2.0 / 3.0, 1.0 / 3.0]) r2 = uniform(0, 2.0 * pi) R1 = openravepy.matrixFromAxisAngle([1.0, 0.0, 0.0], r1) R2 = openravepy.matrixFromAxisAngle([0.0, 1.0, 0.0], r2) if r1 > 0 else eye(4) # choose xy position xy = array([ \ uniform(workspace[0][0], workspace[0][1]), uniform(workspace[1][0], workspace[1][1])]) # set height z = body.height / 2.0 if r1 == 0 else copy(body.radius) z += self.GetTableHeight() # set transform T = eye(4) T[0:2, 3] = xy T[2, 3] = z T = dot(T, dot(R1, R2)) body.SetTransform(T) if not self.env.CheckCollision(body): break # add to environment objectHandles.append(body) if isSupportObjects: self.supportObjects += objectHandles else: self.objects += objectHandles def PlaceFailed(self, placedObject): '''Helper function to be called if a successful place condition is not met.''' if self.params["showSteps"]: raw_input("Place failed.") self.objects.remove(placedObject) self.env.Remove(placedObject) def ResetEpisode(self): '''Resets all internal variables pertaining to a particular episode, including objects placed.''' self.RemoveObjectSet(self.objects) self.RemoveObjectSet(self.supportObjects) self.objects = [] self.supportObjects = [] self.holdingObject = None self.holdingDescriptor = None self.placedObjects = {} def SimulateObjectMovementOnClose(self, descriptor, obj, isCapGrasp): '''The object can move when the fingers close during a grasp. This sets the object to an approximation to the correct resultant pose. - Input descriptor: Grasp pose. Assumes this is a valid grasp. - Input obj: The object being grasped. - Returns None. ''' # get object pose in hand frame bTo = obj.GetTransform() hTb = inv(descriptor.T) hTo = dot(hTb, bTo) if self.IsPegUpright(obj): # Top grasp. Simply set the y-position to 0. hTo[1, 3] = 0 elif isCapGrasp: # Side grasp where fingers contact peg caps. # Set y = 0 at center point. hTo[1, 3] = 0 # Set the orientation to be horizontal in hand. zAxis = hTo[0:2, 2] if hTo[1, 2] >= 0 else -hTo[0:2, 2] angle = arccos(dot(zAxis, array([0.0, 1.0])) /
norm(zAxis)
numpy.linalg.norm
""" This is the main code for P-CRITICAL on Loihi. The NxPCritical class provides the input and reservoir layers of a liquid state machine­. Output is time-binned on the lakemonts and returned through a snip channel. Usage examples are available on the scripts directory. """ import os import logging from time import sleep from enum import IntEnum import numpy as np import networkx as netx from quantities import ms from scipy.sparse import coo_matrix import nxsdk.api.n2a as nx from nxsdk.arch.n2a.n2board import N2Board from nxsdk.graph.monitor.probes import SpikeProbeCondition, IntervalProbeCondition from tqdm import trange _SCALING_FACTOR = 256 _logger = logging.getLogger(__name__) def rescale(var, dt): """ Rescale variable to fit dt, based on quantities library :param var: Variable to rescale :param dt: Time steps :return: Rescaled integer """ return (var.rescale(dt.units) / dt).magnitude.astype(int).item() def calc_minimum_number_of_cores(nb_of_nodes, nb_of_conn): """Calc an approximate minimum number of loihi neuro cores required""" MAX_NEURONS_PER_CORE = 1024 MAX_CONN_PER_CORE = 10 * MAX_NEURONS_PER_CORE neuron_bounded = nb_of_nodes / MAX_NEURONS_PER_CORE conn_bounded = nb_of_conn / MAX_CONN_PER_CORE return int(np.ceil(max(neuron_bounded, conn_bounded))) class NxPCritical(object): class PairWeightMode(IntEnum): BIN_SIZE_SYNC = 1 << 0 MEAN_VALUE = 1 << 1 HALF_VTH = 1 << 2 def __init__( self, topology: netx.DiGraph, input_dim: int, nb_of_conn_per_input: int = 1, alpha=2, beta=0.25, tau_v=40 * ms, tau_i=5 * ms, v_th=1.0, refractory_period=2 * ms, dt=1 * ms, tau_v_pair=None, tau_i_pair=None, bin_size=60 * ms, pair_weight_mode: PairWeightMode = PairWeightMode.HALF_VTH, network=None, debug=False, get_power_eff=False, power_eff_input_freq=None, ): self.net = nx.NxNet() if network is None else network self.board = None self.topology = topology self.number_of_neurons = topology.number_of_nodes() self.pair_weight_mode = pair_weight_mode self.debug = debug self.get_power_eff = get_power_eff self.input_dim = input_dim if get_power_eff: assert not debug, "Can't get power efficiency in debug mode" assert power_eff_input_freq is not None self.power_eff_input_freq = rescale(power_eff_input_freq, 1 / dt) # Rescale variables for Loihi refractory_period = rescale(refractory_period, dt) v_decay = int(2 ** 12 * (1 - np.exp(-1 / rescale(tau_v, dt)))) c_decay = int(2 ** 12 * (1 - np.exp(-1 / rescale(tau_i, dt)))) v_decay_pair = ( v_decay if tau_v_pair is None else int(2 ** 12 * (1 - np.exp(-1 / rescale(tau_v_pair, dt)))) ) c_decay_pair = ( c_decay if tau_i_pair is None else int(2 ** 12 * (1 - np.exp(-1 / rescale(tau_i_pair, dt)))) ) v_th = int(v_th * _SCALING_FACTOR) self.bin_size = rescale(bin_size, dt) build_neuron_nargs = { "nb_of_neurons": topology.number_of_nodes(), "nb_of_synapses": topology.number_of_edges(), "nb_inputs": nb_of_conn_per_input * input_dim, "v_decay": v_decay, "c_decay": c_decay, "v_decay_pair": v_decay_pair, "c_decay_pair": c_decay_pair, "v_th": v_th, "refractory_period": refractory_period, "alpha": alpha, } build_synapse_nargs = { "topology": topology, "alpha": alpha, "beta": beta, } if get_power_eff: cores_left = 128 # For one full loihi chip self.nb_replicas = 0 while True: self.nb_replicas += 1 build_neuron_nargs["starting_core"] = 128 - cores_left nb_cores_used = self._build_neurons(**build_neuron_nargs) self._build_synapses(**build_synapse_nargs) cores_left -= nb_cores_used if cores_left < nb_cores_used: break else: self._build_neurons(**build_neuron_nargs) self._build_synapses(**build_synapse_nargs) self._build_fake_probes() # For snips bin-counters self._build_input_gen( nb_neurons=topology.number_of_nodes(), input_dim=input_dim, nb_of_conn_per_input=nb_of_conn_per_input, ) self.weight_probe = self.connections.probe( [nx.ProbeParameter.SYNAPSE_WEIGHT], probeConditions=[IntervalProbeCondition(dt=self.bin_size)], ) if debug: (self.spike_probe,) = self.grp.probe([nx.ProbeParameter.SPIKE]) (self.pair_spike_probe,) = self._pair_grp.probe([nx.ProbeParameter.SPIKE]) self.tag_probe = self.connections.probe( [nx.ProbeParameter.SYNAPSE_TAG], probeConditions=[IntervalProbeCondition(dt=self.bin_size)], ) def _build_board(self): if self.board is not None: self.board.disconnect() compiler = nx.N2Compiler() self.board = compiler.compile(self.net) # self.board.sync = True # TODO Validate self._build_snips() def __enter__(self): return self def __exit__(self, *_): if self.board is not None: self.board.disconnect() if self.net is not None: self.net.disconnect() def power_efficiency_run(self, duration: int): """Run a simulation for duration timesteps and return power profile dictionary""" with self: self._build_board() buffer_size = 1024 * 2 # from characterization.py self.energy_probe = self.board.probe( probeType=nx.ProbeParameter.ENERGY, probeCondition=nx.PerformanceProbeCondition( tStart=1, tEnd=duration, bufferSize=buffer_size, binSize=int(np.power(2, np.ceil(np.log2(duration / buffer_size)))), ), ) self.board.run(duration) self.board.finishRun() power_profile_stats = self.board.energyTimeMonitor.powerProfileStats power_profile_stats["nb_replicas"] = self.nb_replicas return power_profile_stats def __call__(self, spike_trains: np.ndarray = None, nb_of_bins=None): current_time = 0 spike_times = [[] for _ in range(self.input_dim)] sample_start_times = [] for spike_train in spike_trains: sample_start_times.append(current_time) # Pad spike_trains to match bin size if (spike_train.shape[-1] % self.bin_size) != 0: padding = self.bin_size - (spike_train.shape[-1] % self.bin_size) spike_train = np.pad( spike_train, ((0, 0), (0, padding)), mode="constant", constant_values=0, ) sample_duration = spike_train.shape[-1] for i, ts in enumerate(spike_train): current_ts = np.flatnonzero(ts) + current_time spike_times[i] += current_ts.tolist() current_time += sample_duration duration = current_time nb_samples = len(spike_trains) self.spike_gen.addSpikes(list(range(self.input_dim)), spikeTimes=spike_times) self._build_board() if self.pair_weight_mode & ( self.PairWeightMode.MEAN_VALUE | self.PairWeightMode.HALF_VTH ): self.board.run(duration * nb_samples, aSync=True) sample_start_times = np.asarray(sample_start_times) next_run = 0 sync_every = 100 all_bins = [] for i, t in enumerate(range(0, duration, self.bin_size)): if self.pair_weight_mode & self.PairWeightMode.BIN_SIZE_SYNC: if i < 10: # For the first 10 bin_size duration, sync every bin self.board.run(self.bin_size) self._update_weights() elif next_run <= i: # After, sync weights less frequently while not self.board.isRunComplete(): sleep(0.1) self._update_weights() self.board.run(sync_every * self.bin_size, aSync=True) next_run = sync_every + i if t + sync_every * self.bin_size >= duration: sync_every = (duration - t) // self.bin_size _logger.info("Reading from channel at bin %i", i) buff = self.spike_cntr_channel.read(1) _logger.info("Channel read success") buff = b"".join( [i.to_bytes(4, "little") for i in buff] ) # Convert int32 to uin8 bins = np.frombuffer(buff, dtype=np.uint8) all_bins.append(bins) # Format bin back to samples binned_output = np.zeros((nb_samples, self.number_of_neurons, nb_of_bins)) prev_id = None current_bin = 0 i = 0 for t in range(self.bin_size, duration, self.bin_size): sample_id = np.max(np.where(t > sample_start_times)) if sample_id != prev_id: current_bin = 0 prev_id = sample_id binned_output[sample_id, :, current_bin] = all_bins[i] current_bin += 1 i += 1 self.board.finishRun() self._update_weights() return binned_output def _build_input_gen(self, nb_neurons, input_dim, nb_of_conn_per_input): if self.get_power_eff: # Create an input neuron for power/time efficiency as spike injector are time costly # That will spike at some specific frequency neuron_spikegen_param = nx.CompartmentPrototype( biasMant=self.power_eff_input_freq, biasExp=6, compartmentVoltageDecay=0, vThMant=1000, ) self.spike_gen = self.net.createCompartmentGroup( size=input_dim, prototype=neuron_spikegen_param ) else: self.spike_gen = self.net.createSpikeGenProcess(numPorts=input_dim) input_proto = nx.ConnectionPrototype(weight=128, weightExponent=6,) pre = np.arange(input_dim * nb_of_conn_per_input) % input_dim post = ( np.random.permutation(max(input_dim, nb_neurons) * nb_of_conn_per_input)[ : input_dim * nb_of_conn_per_input ] % nb_neurons ) connection_mask = np.zeros((input_dim, nb_neurons), dtype=np.int) connection_mask[pre, post] = 1 connection_mask = coo_matrix(connection_mask) self.spike_gen.connect( self.grp, prototype=input_proto, connectionMask=connection_mask.T ) def read_weights(self): weights = [self.weight_probe[i][0].data for i in range(len(self.weight_probe))] weights = np.asarray(weights) return weights def adj_matrix(self): weights = self.read_weights() last_recorded = weights[:, -1] cmask = self.connection_mask_grp_to_pair.todense().T nonzeros = cmask != 0 cmask[nonzeros] = last_recorded return cmask.astype(float) / _SCALING_FACTOR def _update_weights(self): # TODO: Would be faster in snips weights = self.read_weights() last_recorded = weights[:, -1] # Update local weights from probe output self.connections.setSynapseState("weight", last_recorded[:, None].tolist()) if self.pair_weight_mode & self.PairWeightMode.BIN_SIZE_SYNC: # Update pair weights cmask = self.connection_mask_grp_to_pair.todense().T nonzeros = cmask != 0 cmask[nonzeros] = last_recorded cmask = cmask.T self._grp_to_pair.setSynapseState( "weight", cmask[nonzeros][0, :, None].tolist() ) # weights = self.connections.getSynapseState("weight") # synapses = self.board.n2Chips[0].n2Cores[0].synapses # weights = [synapses[i].Wgt for i in range(len(synapses.data))] def _build_neurons( self, nb_of_neurons, nb_of_synapses, nb_inputs, v_decay, c_decay, v_decay_pair, c_decay_pair, v_th, refractory_period, alpha, starting_core=64, # Since we use lmt 0, starting with core 64 reduces barrier sync region ): proto_args = { "biasMant": 0, "biasExp": 0, "vThMant": v_th, "compartmentVoltageDecay": v_decay, "refractoryDelay": refractory_period, "enableSpikeBackprop": 1, "enableSpikeBackpropFromSelf": 1, "compartmentCurrentDecay": c_decay, "thresholdBehavior": nx.COMPARTMENT_THRESHOLD_MODE.SPIKE_AND_RESET, "logicalCoreId": 0, } proto = nx.CompartmentPrototype(**proto_args) self.grp = self.net.createCompartmentGroup(size=nb_of_neurons, prototype=proto) proto_args["vThMant"] = v_th + alpha if self.pair_weight_mode & self.PairWeightMode.HALF_VTH: proto_args["vThMant"] += 0.5 * v_th proto_args["compartmentVoltageDecay"] = v_decay_pair proto_args["compartmentCurrentDecay"] = c_decay_pair proto_args["refractoryDelay"] = max(1, refractory_period - 2) proto_pair = nx.CompartmentPrototype(**proto_args) self._pair_grp = self.net.createCompartmentGroup( size=nb_of_neurons, prototype=proto_pair ) nb_of_cores = calc_minimum_number_of_cores( nb_of_neurons * 2 + nb_inputs, nb_of_synapses * 2 + nb_inputs ) _logger.info("Using %i cores" % nb_of_cores) if nb_of_cores > 64: starting_core = 0 ## TODO: Could be more optimal for nb_of_cores > 16 main_neurons_per_core = int(np.ceil(nb_of_neurons / nb_of_cores)) for i, compartment in enumerate(self.grp): core = i // main_neurons_per_core + starting_core compartment.logicalCoreId = core self._pair_grp[i].logicalCoreId = core return nb_of_cores def _build_synapses(self, topology, alpha, beta): number_of_neurons = topology.number_of_nodes() weight_matrix = ( netx.adjacency_matrix(topology).tocoo() * _SCALING_FACTOR ).astype( int ) # Scale sparse weight matrix _logger.info("number_of_neurons: %i", number_of_neurons) _logger.info("number_of_synapses: %i", topology.number_of_edges()) _logger.info("Average initial weight: %.3f", np.mean(weight_matrix.data)) _logger.info( "Average excitatory weights: %.3f", np.mean(weight_matrix.data[weight_matrix.data > 0]), ) _logger.info( "Average inhibitory weights: %.3f", np.mean(weight_matrix.data[weight_matrix.data < 0]), ) _logger.info("Excitatory connections: %i", np.sum(weight_matrix.data > 0)) _logger.info("Inhibitory connections: %i",
np.sum(weight_matrix.data < 0)
numpy.sum
import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary import sys import ipdb import itertools import warnings import shutil import pickle from pprint import pprint from types import SimpleNamespace from math import floor,ceil from pathlib import Path import tifffile import numpy as np import skimage.io as io import matplotlib.pyplot as plt plt.switch_backend("agg") from scipy.ndimage import zoom, label # from scipy.ndimage.morphology import binary_dilation from skimage.feature import peak_local_max from skimage.segmentation import find_boundaries from skimage.measure import regionprops from skimage.morphology import binary_dilation from segtools.numpy_utils import collapse2, normalize3, plotgrid from segtools import color from segtools.defaults.ipython import moviesave from utils import point_matcher import torch_models ## bash command to run this script on the cluster. replace `00x` with uniqe id. ## copy and paste this command into bash to run a job via the job management queueing system. bashcmd = """ mkdir -p /lustre/projects/project-broaddus/denoise/flower/e01/flower3_11/ cp n2v2_flower.py /lustre/projects/project-broaddus/denoise/flower/e01/flower3_11/ srun -J flw3_10 -n 1 -c 1 --mem=128000 -p gpu --gres=gpu:1 --time=12:00:00 -e std.err.flower3_11 -o std.out.flower3_11 time python3 /lustre/projects/project-broaddus/denoise/flower/e01/flower3_11/n2v2_flower.py & """ bashcmd = """ mkdir -p /lustre/projects/project-broaddus/denoise/flower/e02/flower1_6/ cp n2v2_flower.py /lustre/projects/project-broaddus/denoise/flower/e02/flower1_6/ srun -J flw1_1 -n 1 -c 1 --mem=128000 -p gpu --gres=gpu:1 --time=12:00:00 -e std.err.flower1_6 -o std.out.flower1_6 time python3 /lustre/projects/project-broaddus/denoise/flower/e02/flower1_6/n2v2_flower.py & """ bashcmd = """ mkdir -p /lustre/projects/project-broaddus/denoise/flower/e03/flower1_1/ cp n2v2_flower.py /lustre/projects/project-broaddus/denoise/flower/e03/flower1_1/ srun -J flw1_1 -n 1 -c 1 --mem=128000 -p gpu --gres=gpu:1 --time=12:00:00 -e std.err.flower1_1 -o std.out.flower1_1 time python3 /lustre/projects/project-broaddus/denoise/flower/e03/flower1_1/n2v2_flower.py & """ savedir = Path('/lustre/projects/project-broaddus/denoise/flower/e03/flower1_1') #/flower3_9/') ## lightweight funcs and utils def init_dirs(savedir): savedir.mkdir(exist_ok=True) (savedir/'epochs/').mkdir(exist_ok=True) (savedir/'epochs_npy/').mkdir(exist_ok=True) (savedir/'pimgs/').mkdir(exist_ok=True) (savedir/'pts/').mkdir(exist_ok=True) (savedir/'movie/').mkdir(exist_ok=True) (savedir/'counts/').mkdir(exist_ok=True) (savedir/'models/').mkdir(exist_ok=True) shutil.copy2('/lustre/projects/project-broaddus/devseg_code/detect/n2v2_flower.py', savedir) shutil.copy2('/lustre/projects/project-broaddus/devseg_code/detect/torch_models.py', savedir) def wipe_dirs(savedir): if savedir.exists(): shutil.rmtree(savedir) savedir.mkdir() # for x in (savedir/'epochs/').glob('*.png'): x.unlink() # for x in (savedir/'rgbs/').glob('*.png'): x.unlink() # for x in (savedir/'pimgs/').glob('*.png'): x.unlink() # for x in (savedir/'pts/').glob('*.png'): x.unlink() # for x in (savedir/'movie/').glob('*.png'): x.unlink() # for x in (savedir/'counts/').glob('*.png'): x.unlink() # for x in savedir.glob('*.png'): x.unlink() # for x in savedir.glob('*.pdf'): x.unlink() # for x in savedir.glob('*.pkl'): x.unlink() # for x in savedir.glob('*.py'): x.unlink() # for x in savedir.glob('*.npz'): x.unlink() def cat(*args,axis=0): return np.concatenate(args, axis) def stak(*args,axis=0): return np.stack(args, axis) def imsave(x, name, **kwargs): return tifffile.imsave(str(name), x, **kwargs) def imread(name,**kwargs): return tifffile.imread(str(name), **kwargs) def pklload(name): return pickle.load(open(name,'rb')) def pklsave(obj,name): par = Path(name).parent par.mkdir(exist_ok=True,parents=True) pickle.dump(obj,open(name,'wb')) def i2rgb(img): if img.shape[-1] == 1: img = img[...,[0,0,0]] if img.shape[-1] == 2: img = img[...,[0,1,1]] if img.shape[-1] > 3: img = img[...,None][...,[0,0,0]] img = img.astype(np.float) return img def receptivefield(net): "calculate and show the receptive field or receptive kernel" def rfweights(m): if type(m) == nn.Conv2d: m.weight.data.fill_(1/(5*5)) ## conv kernel 3*5*5 m.bias.data.fill_(0.0) net.apply(rfweights); x0 = np.zeros((256,256)); x0[128,128]=1; xout = net.cuda()(torch.from_numpy(x0)[None,None].float().cuda()).detach().cpu().numpy() io.imsave(savedir/'recfield_xy.png',normalize3(xout[0,128])) io.imsave(savedir/'recfield_xz.png',normalize3(xout[0,:,128])) def init_weights(m): "use as arg in net.apply()" if type(m) == nn.Conv2d: torch.nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('relu')) m.bias.data.fill_(0.05) def std_weights(m): "use as arg in net.apply()" if type(m) == nn.Conv3d: print("{:.5f} {:.5f}".format(float(m.weight.std()), float(m.bias.mean()))) def random_slice(img_size, patch_size): assert len(img_size) == len(patch_size) def f(d,s): if s == -1: return slice(None) start = np.random.randint(0,d-s+1) end = start + s return slice(start,end) return tuple([f(d,s) for d,s in zip(img_size, patch_size)]) ## heavier meaty functions def datagen(savedir=None): # img = imread(f'/lustre/projects/project-broaddus/devseg_data/raw/artifacts/flower.tif')[:10] img = imread(f'/lustre/projects/project-broaddus/denoise/flower/e02/pred_flower.tif')[:10] # img = imread(f'/lustre/projects/project-broaddus/devseg_data/raw/artifacts/shutterclosed.tif')[0] print(img.shape) # pmin, pmax = np.random.uniform(1,3), np.random.uniform(99.5,99.8) pmin, pmax = 2, 99.6 print(f"pmin = {pmin}; pmax = {pmax}") img = normalize3(img,pmin,pmax).astype(np.float32,copy=False) data = img.reshape((-1, 4,256,4,256)).transpose((0,1,3,2,4)).reshape((-1,1,256,256)) # patch_size = (256,256) # slicelist = [] # def random_patch(): # ss = random_slice(img.shape, patch_size) # ## select patches with interesting content. FIXME # while img[ss].mean() < 0.0: # ss = random_slice(img.shape, patch_size) # x = img[ss].copy() # slicelist.append(ss) # ## augment # # noiselevel = 0.2 # # x += np.random.uniform(0,noiselevel,(1,)*3)*np.random.uniform(-1,1,x.shape) # # for d in [0,1,2]: # # if np.random.rand() < 0.5: # # x = np.flip(x,d) # return (x,) # data = np.array([random_patch() for _ in range(24)]) # data = np.load('../../devseg_data/cl_datagen/d003/data.npz') print("data.shape: ", data.shape) #SCZYX if savedir: rgb = collapse2(data[:,:],'scyx','s,y,x,c')[...,[0,0,0]] rgb = normalize3(rgb) rgb = plotgrid([rgb],10) io.imsave(savedir/'data_xy_flower.png',rgb) np.savez_compressed(savedir/'data_flower.npz',data=data,pmin=pmin,pmax=pmax) # pklsave(slicelist, savedir/'slicelist2.pkl') dg = SimpleNamespace() dg.data = data dg.pmin = pmin dg.pmax = pmax return dg def setup(params={}): wipe_dirs(savedir) init_dirs(savedir) # dg = datagen(savedir=savedir); data = dg.data; # data = np.load('/lustre/projects/project-broaddus/devseg_data/cl_datagen/grid/data_shutter.npz')['data'] data = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/data_flower3.npz')['data'] # data = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/data_flower.npz')['data'] d = SimpleNamespace() d.net = torch_models.Unet2_2d(16,[[1],[1]],finallayer=nn.ReLU).cuda() d.net.load_state_dict(torch.load('/lustre/projects/project-broaddus/denoise/flower/models/net_randinit.pt')) # d.net.apply(init_weights); d.net2 = torch_models.Unet2_2d(16,[[1],[1]],finallayer=nn.ReLU).cuda() d.net2.load_state_dict(torch.load('/lustre/projects/project-broaddus/denoise/flower/models/net_randinit.pt')) # d.net2.apply(init_weights); d.savedir = savedir # d.net.load_state_dict(torch.load('/lustre/projects/project-broaddus/devseg_data/cl_datagen/d000/jj000/net250.pt')) # torch.save(d.net.state_dict(), '/lustre/projects/project-broaddus/devseg_data/cl_datagen/rsrc/net_random_init_unet2.pt') d.x1_all = torch.from_numpy(data).float().cuda() return d def init_training_artifacts(): ta = SimpleNamespace() ta.losses = [] ta.lossdists = [] ta.e = 0 return ta def train(d,ta=None,end_epoch=301): if ta is None: ta = init_training_artifacts() batch_size = 4 inds = np.arange(0,d.x1_all.shape[0]) # example_xs = d.x1_all[inds[::floor(np.sqrt(len(inds)))]].clone() example_xs = d.x1_all[[0,3,5,12]].clone() xs_fft = torch.fft((example_xs-example_xs.mean())[...,None][...,[0,0]],2).norm(p=2,dim=-1) xs_fft = torch.from_numpy(np.fft.fftshift(xs_fft.cpu(),axes=(-1,-2))).cuda() opt = torch.optim.Adam(d.net.parameters(), lr = 2e-5) opt2 = torch.optim.Adam(d.net2.parameters(), lr = 2e-5) lossdist = torch.zeros(d.x1_all.shape[0]) - 2 patch_size = d.x1_all.shape[2:] plt.figure() for e in range(ta.e,end_epoch): ta.e = e np.random.shuffle(inds) ta.lossdists.append(lossdist.numpy().copy()) lossdist[...] = -1 print(f"\r epoch {e}", end="") for b in range(ceil(d.x1_all.shape[0]/batch_size)): idxs = inds[b*batch_size:(b+1)*batch_size] x1 = d.x1_all[idxs] #.cuda() def random_pixel_mask(): n = int(np.prod(patch_size) * 0.02) x_inds = np.random.randint(0,patch_size[1],n) y_inds = np.random.randint(0,patch_size[0],n) # z_inds = np.random.randint(0,32,64*64*1) ma = np.zeros(patch_size) ma[y_inds,x_inds] = 2 return ma def sparse_3set_mask(p=0.02, xs=[1,2],ys=[]): "build random mask for small number of central pixels" n = int(np.prod(patch_size) * p) x_inds = np.random.randint(0,patch_size[1],n) y_inds = np.random.randint(0,patch_size[0],n) ma = np.zeros(patch_size) # ma = binary_dilation(ma) for i in xs: m = x_inds-i >= 0; ma[y_inds[m],x_inds[m]-i] = 1 m = x_inds+i < patch_size[1]; ma[y_inds[m],x_inds[m]+i] = 1 for i in ys: m = y_inds-i >= 0; ma[y_inds[m]-i,x_inds[m]] = 1 m = y_inds+i < patch_size[0]; ma[y_inds[m]+i,x_inds[m]] = 1 ma = ma.astype(np.uint8) ma[y_inds,x_inds] = 2 return ma def checkerboard_mask(): ma = np.indices(patch_size).transpose((1,2,0)) ma = np.floor(ma/(1,256)).sum(-1) %2==0 ma = 2*ma if e%2==1: ma = 2-ma return ma ma = sparse_3set_mask(xs=[1,2]).astype(np.float) ma2 = sparse_3set_mask(xs=[1,2]).astype(np.float) # ipdb.set_trace() ## apply mask to input ma = torch.from_numpy(ma).cuda() x1_damaged = x1.clone() x1_damaged[:,:,ma>0] = torch.rand(x1.shape).cuda()[:,:,ma>0] y1p = d.net(x1_damaged) ma2 = torch.from_numpy(ma2).cuda() y1p_damaged = y1p.clone() y1p_damaged[:,:,ma2>0] = torch.rand(y1p.shape).cuda()[:,:,ma2>0] y2p = d.net2(y1p) dims = (1,2,3) ## all dims except batch tm1 = (ma==2).float().repeat(4,1,1,1) ## target mask tm2 = (ma2==2).float().repeat(4,1,1,1) loss_per_patch = (tm1 * torch.abs(y1p-x1)**2).sum(dims) / tm1.sum(dims) loss_per_patch += (tm2 * torch.abs(y2p-y1p)**2).sum(dims) / tm2.sum(dims) lossdist[idxs] = loss_per_patch.detach().cpu() loss = loss_per_patch.mean() ta.losses.append(float(loss)) opt.zero_grad() opt2.zero_grad() loss.backward() opt.step() opt2.step() ## predict on examples and save each epoch with torch.no_grad(): example_yp = d.net(example_xs) example_yp2 = d.net2(example_yp) yp_fft = torch.fft((example_yp2 - example_yp2.mean())[...,None][...,[0,0]],2).norm(p=2,dim=-1) #.cpu().detach().numpy() yp_fft = torch.from_numpy(np.fft.fftshift(yp_fft.cpu(),axes=(-1,-2))).cuda() # yp_fft = yp_fft/yp_fft.max() rgb = torch.stack([example_xs,ma.float().repeat(4,1,1,1)/2,xs_fft,example_yp2,yp_fft],0).cpu().detach().numpy() arr = rgb.copy() # type,samples,channels,y,x rgb = normalize3(rgb,axs=(1,2,3,4)) rgb[[2,4]] = normalize3(rgb[[2,4]],pmin=0,pmax=99.0,axs=(1,2,3,4)) # remove channels and permute rgb = collapse2(rgb[:,:,0],'tsyx','sy,tx') # arr = collapse2(arr[:,:,0],'tsyx','sy,tx') with warnings.catch_warnings(): warnings.simplefilter("ignore") if e%10==0: io.imsave(d.savedir / f'epochs/rgb_{e:03d}.png', rgb) if e%100==0: np.save(d.savedir / f'epochs_npy/arr_{e:03d}.npy', arr) batches_per_epoch = ceil(d.x1_all.shape[0]/batch_size) epochs = np.arange(len(ta.losses)) / batches_per_epoch plt.clf() plt.plot(epochs,ta.losses) # plt.ylim(np.mean(ta.losses)-3*np.std(ta.losses),np.mean(ta.losses)+3*np.std(ta.losses)) plt.yscale('log') plt.xlabel(f'1 epoch = {batches_per_epoch} batches') plt.savefig(d.savedir/f'loss.png',dpi=300) if e%100==0: torch.save(d.net.state_dict(), savedir/f'models/net{e:03d}.pt') pklsave(ta.losses,d.savedir/f'losses.pkl') torch.save(d.net.state_dict(), d.savedir/f'models/net{ta.e:03d}.pt') return ta def multitrain(d): if False: torch.manual_seed(jj) net.apply(init_weights); torch.manual_seed(42) net.load_state_dict(torch.load('/lustre/projects/project-broaddus/devseg_data/cl_datagen/rsrc/net_random_init_unet2.pt')) np.random.seed(jj) torch.cuda.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False lossesjj = [] jj=0 for jj in range(j,6): d.savedir = savedir / f'jj{jj:03d}'; init_dirs(d.savedir) ta = init_training_artifacts() train(d,ta,100) lossesjj.append(ta.losses) predict_movies(d) plt.figure() for loss in lossesjj: plt.plot(np.convolve(loss,np.ones(50)/50,mode='valid'),lw=1) plt.yscale('log') plt.savefig(savedir/'multi_losses.png',dpi=300) ## prediction and analysis def apply_net_tiled(net,img): """ Applies func to image with dims Channels,Z,Y,X """ # borders = [8,20,20] ## border width within each patch that is thrown away after prediction # patchshape_padded = [32,240,240] ## the size of the patch that we feed into the net. must be divisible by 8 or net fails. # patchshape = [16,200,200] ## must be divisible by 8 to avoid artifacts. # stride = [16,200,200] ## same as patchshape in this case def f(n,m): return (ceil(n/m)*m)-n ## f(n,m) gives padding needed for n to be divisible by m def g(n,m): return (floor(n/m)*m)-n ## f(n,m) gives un-padding needed for n to be divisible by m b,c = img.shape[1:] r,s = f(b,8),f(c,8) ## calculate extra border needed for stride % 8 = 0 YPAD,XPAD = 24,24 img_padded = np.pad(img,[(0,0),(YPAD,YPAD+r),(XPAD,XPAD+s)],mode='constant') ## pad for patch borders output = np.zeros(img.shape) # zs = np.r_[:a:16] ys = np.r_[:b:200] xs = np.r_[:c:200] for x,y in itertools.product(xs,ys): re,se = min(y+200,b+r), min(x+200,c+s) be,ce = min(y+200,b), min(x+200,c) patch = img_padded[:,y:re+2*YPAD,x:se+2*XPAD] patch = torch.from_numpy(patch).cuda().float() with torch.no_grad(): patch = net(patch[None])[0,:,YPAD:-YPAD,XPAD:-XPAD].detach().cpu().numpy() output[:,y:be,x:ce] = patch[:,:be-y,:ce-x] return output def analyze_losses(d,ta): plt.figure() plt.plot(ta.losses) plt.ylim(0,ta.losses[0]) plt.savefig(d.savedir/'loss.pdf') ## plot loss distribution trajectories lds = ta.lossdists[1::3] N = len(lds) colors = color.pastel_colors_RGB(N,max_saturation=0.9,brightness=0.8,shuffle=False) # colors = np.arange(N)[:,None][:,[0,0,0]] * (15,-15,15) + (15,240,15) # colors = colors/255 plt.figure() for i in np.arange(N): plt.plot(sorted(lds[i]),'.',color=colors[i]+[0.25]) # plt.ylim(0,np.max(lds)) # plt.scatter(np.r_[0:N],np.ones(N)*1,c=colors) plt.savefig(savedir / 'lossdist.pdf') plt.figure() for i in np.arange(N): plt.plot(lds[i],'.',color=colors[i]+[0.25]) # plt.scatter(np.r_[0:N],np.ones(N)*1,c=colors) plt.savefig(d.savedir / 'lossdist_unsorted.pdf') def e01_fig2_flower(): # img1 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_1/epochs_npy/arr_600.npy') # img2 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_2/epochs_npy/arr_600.npy') # img3 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_3/epochs_npy/arr_600.npy') # img4 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_4/epochs_npy/arr_600.npy') # img5 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_5/epochs_npy/arr_600.npy') img6 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_6/epochs_npy/arr_600.npy') img7 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_7/epochs_npy/arr_600.npy') img8 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_8/epochs_npy/arr_600.npy') img9 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_9/epochs_npy/arr_600.npy') img10 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_10/epochs_npy/arr_600.npy') img11 = np.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_11/epochs_npy/arr_600.npy') ## (N2V, OURS 2class, OURS 3class) , (raw, mask, raw fft, pred, pred fft) , n_samples , channels, y , x # rgb = stak(img1, img2, img3, img4, img5, img6, img7, img8, img9) rgb = stak(img6, img7, img8, img9, img10, img11) # rgb[:,[2,4]] = normalize3(rgb[:,[2,4]], pmin=0, pmax=99.0) # rgb[:,[2,4]] = normalize3(np.log(rgb[:,[2,4]]+1e-7)) rgb[:,[2,4]] = normalize3(np.log(normalize3(rgb[:,[2,4]],0,99)+1e-7)) rgb[:,[0,3]] = normalize3(rgb[:,[0,3]]) rgb[:,1] = normalize3(rgb[:,1]) ## remove channels and pad xy with white rgb = rgb[:,:,:,0] # rgb = np.pad(rgb,[(0,0),(0,0),(0,0),(0,1),(0,1)],mode='constant',constant_values=1) # plt.figure() # d = np.fft.fftshift(np.fft.fftfreq(256)) # for i,m in enumerate("N2V,OURS 2class,OURS 3class".split(',')): # plt.plot(d,rgb[i,-1].mean((0,1)),label=f'{m} : avg s,y') # plt.plot(d,rgb[i,-1].mean((0,2)),label=f'{m} : avg s,x') # plt.legend() ## reshape to (raw, N2V, ours 2 class, ours 3class) , (real, fft, mask), samples, y, x # rgb = rgb.reshape((15, 4, 256, 256))[] rgb = cat(stak(np.zeros(rgb[0,0].shape),rgb[0,0],rgb[0,2])[None],rgb[:,[1,3,4]]) ## models, types, samples, y, x # rgb = collapse2(rgb,'mtsyx','mt,sy,x') # rgb = rgb[[0,1,2,3,4,6,8,9,11,13,14]] # rgb = rgb[[0,1,5,8,3,6,9,2,4,7,10,]] # rgb = collapse2(rgb,'myx','y,mx') # io.imsave(savedir.parent/'shutterclosed_normalized.png',rgb[:64]) np.savez_compressed('/lustre/projects/project-broaddus/denoise/flower/e01/e01_fig2_flower.npz', rgb=rgb) return rgb def e02_fig2_flower(): img1 = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/flower1_1/epochs_npy/arr_400.npy') img2 = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/flower1_2/epochs_npy/arr_400.npy') img3 = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/flower1_3/epochs_npy/arr_400.npy') img4 = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/flower1_4/epochs_npy/arr_400.npy') img5 = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/flower1_5/epochs_npy/arr_400.npy') img6 = np.load('/lustre/projects/project-broaddus/denoise/flower/e02/flower1_6/epochs_npy/arr_400.npy') rgb = stak(img1, img2, img3, img4, img5, img6) ## normalize fft and real space separately rgb[:,[2,4]] = normalize3(np.log(normalize3(rgb[:,[2,4]],0,99)+1e-7)) rgb[:,[0,3]] = normalize3(rgb[:,[0,3]]) rgb[:,1] = normalize3(rgb[:,1]) ## remove channels and pad xy with white rgb = rgb[:,:,:,0] # rgb = np.pad(rgb,[(0,0),(0,0),(0,0),(0,1),(0,1)],mode='constant',constant_values=1) ## reshape to (raw, N2V, ours 2 class, ours 3class) , (real, fft, mask), samples, y, x rgb = cat(stak(np.zeros(rgb[0,0].shape),rgb[0,0],rgb[0,2])[None],rgb[:,[1,3,4]]) np.savez_compressed('/lustre/projects/project-broaddus/denoise/flower/e02/e02_fig2_flower.npz', rgb=rgb) return rgb def predict_full(): "make movies scrolling through z" net = torch_models.Unet2_2d(16,[[1],[1]],finallayer=nn.ReLU).cuda() # <NAME> (Alana) 540 692 0113 net.load_state_dict(torch.load('/lustre/projects/project-broaddus/denoise/flower/e01/flower3_6/models/net600.pt')) img = imread(f'/lustre/projects/project-broaddus/devseg_data/raw/artifacts/flower.tif') # pmin, pmax = np.random.uniform(1,3), np.random.uniform(99.5,99.8) pmin, pmax = 2, 99.6 img = normalize3(img,pmin,pmax,axs=(1,2)).astype(np.float32,copy=False) pimg = [] for x in img: # x = torch.from_numpy(x).cuda() # x = net(x[None]) x = apply_net_tiled(net,x[None]) pimg.append(x) pimg = np.array(pimg) # return img, net, pimg # pimg = apply_net_tiled(net,img[:,None]) imsave(pimg, savedir/f'pred_flower.tif') # rgb = cat(img, pimg[0], axis=1) # rgb = rgb.clip(min=0) # moviesave(normalize3(rgb), savedir/f'movie/vert{ds}_{i:03d}.mp4', rate=4) # imsave(pimg, savedir/f'pimgs/pimg{ds}_{i:03d}.tif') ## make histogram of pimg values at points # for name in sorted((savedir/'pimgs/').glob('*.tif')): # pimg = imread(savedir/f'pimgs/pimg{i:03d}.tif') ## 2d rgb pngs # imsave(pimg, savedir/f'pimg/pimg000.tif',compress=8) # rgb1 = cat(pimg[0,:64].max(0), pimg[0,64:].max(0))[...,None] # rgb2 = cat(img[0,:64].max(0), img[0,64:].max(0))[...,None][...,[0,0,0]] # rgb2[...,[0]] += rgb1 # rgb2 = normalize3(rgb2) # io.imsave(savedir/'rgbs/rgb001.png',rgb2) def histograms(): "cumulative dist of pixel values in img and pimg" plt.figure() x =
np.linspace(0,100,100)
numpy.linspace
import numpy as np from utils import lie_algebra def proj(x): if x.ndim == 1: return x[:-1] / x[-1] elif x.ndim == 2: return np.divide(x[:, :-1].T, x[:, -1]).T # ----------------------------- get transformation functions ----------------------------- def getT_axisangle(x): """ Get the transformation matrix from the minimal representation where the angle parameters are in axis angle form. """ T = np.zeros([4, 4]) T[3, 3] = 1.0 T[0:3, 0:3] = lie_algebra.so3exp(x[3:6]) T[0:3, 3] = x[0:3] return T def getT_qt(x): """ Get the transformation matrix from the camera position and quaternion parameters. """ T = np.zeros([4, 4]) T[3, 3] = 1.0 q = Quaternion(x[3:]) T[0:3, 0:3] = q.rot_matrix() T[0:3, 3] = x[0:3] return T # ---------------------------------- Quaternions ----------------------------------------------- def normalize(v, tolerance=1e-4): mag2 = sum(n * n for n in v) if abs(mag2 - 1.0) > tolerance: mag = np.sqrt(mag2) v = tuple(n / mag for n in v) return np.array(v) class Quaternion: def __init__(self, q=None, axis=None, angle=None): axis = normalize(axis) # Normalize the axis vector so we have a unit quaternion if q is None: self.w = np.cos(angle / 2) self.x = np.sin(angle / 2) * axis[0] self.y = np.sin(angle / 2) * axis[1] self.z = np.sin(angle / 2) * axis[2] self.q = np.array([self.w, self.x, self.y, self.z]) if q is not None: self.q = q def rotate(self, v): point = np.array([0, v[0], v[1], v[2]]) return q_multiply(q_multiply(self.q, point), self.conjugate)[1:] def conjugate(self): return np.array([self.q[0], -self.q[1], -self.q[2], -self.q[3]]) def rot_matrix(self): q = self.q R = [[1 - 2 * (q[2] ** 2 + q[3] ** 2), 2 * (q[1] * q[2] - q[3] * q[0]), 2 * (q[1] * q[3] + q[2] * q[0])], [2 * (q[1] * q[2] + q[3] * q[0]), 1 - 2 * (q[1] ** 2 + q[3] ** 2), 2 * (q[2] * q[3] - q[1] * q[0])], [2 * (q[1] * q[3] - q[2] * q[0]), 2 * (q[2] * q[3] + q[1] * q[0]), 1 - 2 * (q[1] ** 2 + q[2] ** 2)]] return np.array(R) def q_multiply(q1, q2): """ Multiply together two quaternions :return: product of two quaternions """ w1, x1, y1, z1 = q1 w2, x2, y2, z2 = q2 w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2 z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2 return np.array([w, x, y, z]) # ---------------------------------------- Euler ----------------------------------------------- def eulerAnglesToRotationMatrix(theta): """ Calculates Rotation Matrix given euler angles. """ R_x = np.array([[1, 0, 0], [0, np.cos(theta[0]), -np.sin(theta[0])], [0, np.sin(theta[0]), np.cos(theta[0])] ]) R_y = np.array([[np.cos(theta[1]), 0, np.sin(theta[1])], [0, 1, 0], [-np.sin(theta[1]), 0, np.cos(theta[1])] ]) R_z = np.array([[np.cos(theta[2]), -np.sin(theta[2]), 0], [np.sin(theta[2]), np.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z,
np.dot(R_y, R_x)
numpy.dot
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import json import pickle import numpy as np import scipy.sparse as sp from galileo.platform.data_source.data_source import DataSource from galileo.platform.data_source.utils import download_url from galileo.platform.log import log class Planetoid(DataSource): r''' The citation network datasets 'Cora', 'CiteSeer' and 'PubMed' from 'Revisiting Semi-Supervised Learning with Graph Embeddings' <https://arxiv.org/abs/1603.08861> Nodes represent documents and edges represent citation links. ''' url = 'https://github.com/kimiyoung/planetoid/raw/master/data' def __init__(self, root_dir, name, **kwargs): super().__init__(root_dir, name, **kwargs) @property def raw_dir(self): return os.path.join(self.root_dir, self.name, 'raw') @property def raw_file_names(self): names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph', 'test.index'] return ['ind.{}.{}'.format(self.name, name) for name in names] def download(self): for name in self.raw_file_names: download_url('{}/{}'.format(self.url, name), self.raw_dir) log.info(f'download {self.name} done') def read_data(self): ''' files: x: feature vectors of training y: one-hot labels of training tx: feature vectors of test ty: one-hot labels of test allx, ally graph: dict, neighbors of nodes test.index: the indices of test instances in graph ''' data = [] for path in self.raw_paths: if path.endswith('test.index'): data.append([int(line.strip()) for line in open(path)]) else: with open(path, 'rb') as f: data.append(pickle.load(f, encoding='latin1')) x, y, tx, ty, allx, ally, graph, test_idx = tuple(data) test_idx_range = np.sort(test_idx) if self.name == 'citeseer': # There are some isolated nodes in the Citeseer graph, # resulting in none consecutive test indices. # We need to identify them and add them as zero vectors # to `tx` and `ty`. min_test_idx = min(test_idx) len_test_idx = max(test_idx) - min_test_idx + 1 tx_extended = sp.lil_matrix((len_test_idx, tx.shape[1])) ty_extended =
np.zeros((len_test_idx, ty.shape[1]))
numpy.zeros
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from scipy.integrate import simps def transfer_fuction(xplane2dec,control_DATA,flight_data_for_integrate): Phi_sp = control_DATA[1]*180 Theta_sp = control_DATA[0]*180 Psi_sp = control_DATA[2]*180 h_sp = 300 sp_array = np.asarray([Phi_sp,Theta_sp,Psi_sp,h_sp]) T_roll = 1 T_pitch = 1 g = 9.8 #m/s**2 K_i = np.asarray([1e-5,1e-5, 1e-5, 1e-6]) K_p = np.asarray([0.4,0.01, 1e-10, 0.002]) K_ff = np.asarray([0.25, 0.5, 0.1, 0.08]) buffer_a = 1e-10 flight_data_for_integrate = flight_data_for_integrate.as_matrix() difference_flight_data = sp_array - flight_data_for_integrate[:,0:4] flight_time = flight_data_for_integrate[:,4] integrate_roll = simps(difference_flight_data[:,0]) integrate_pitch = simps(difference_flight_data[:,1]) integrate_yaw = simps(difference_flight_data[:,2]) integrate_alt = simps(difference_flight_data[:,3]) diff_roll = np.diff(flight_data_for_integrate[:,0]) diff_pitch = np.diff(flight_data_for_integrate[:,1]) diff_yaw = np.diff(flight_data_for_integrate[:,2]) diff_alt = np.diff(flight_data_for_integrate[:,3]) diff_array = np.asarray([diff_roll[len(diff_roll)-1] , diff_pitch[len(diff_roll)-1] , diff_yaw[len(diff_roll)-1] , diff_alt[len(diff_roll)-1]]) Phi = float(xplane2dec['roll']) + buffer_a # roll Theta = float(xplane2dec['pitch']) + buffer_a #pitch Psi = float(xplane2dec['hding_true']) + buffer_a #yaw u = float(xplane2dec['vX']) + buffer_a #x acxis speed v = float(xplane2dec['vY']) + buffer_a #y acxis speed w = float(xplane2dec['vZ']) + buffer_a #z acxis speed p = float(xplane2dec['Q_rad/s']) + buffer_a #roll moment q = float(xplane2dec['P_rad/s']) + buffer_a #pitch moment r = float(xplane2dec['R_rad/s']) + buffer_a #yaw moment h = float(xplane2dec['alt_ftagl']) + buffer_a #altitude #moment sp p_sp = (Phi_sp - Phi) / T_roll q_sp = (Theta_sp - Theta) / T_pitch r_sp = ((w*q_sp) + (g*np.sin(Phi)*np.cos(Theta)) + (u*q_sp*Phi))/((u*np.cos(Phi)*np.sin(Theta)) + (w*np.sin(Theta))) t_sp = h_sp -h #control delta_a = p_sp * K_p[0] + diff_array[0]*K_ff[0]# + integrate_roll*K_i[0] delta_e = q_sp * K_p[1] + diff_array[1]*K_ff[1]# + ( t_sp * K_p[3] + diff_array[3] * K_ff[3] + integrate_alt*K_i[3]) delta_r = control_DATA[2] #delta_r = q_sp * K_p[2] + diff_array[2]*K_ff[2] delta_th = control_DATA[3]#t_sp * K_p[3] + diff_array[3]*K_ff[3] delta = [delta_e, delta_a, delta_r, delta_th] print(delta) return delta def convet_matrix_posture(): R = create_state_array(Phi,Theta,Psi) R_sp = create_state_array(Phi_sp,Theta_sp,Psi_sp) R_z = np.asarray([R[0,2],R[1,2],R[2,2]]) R_z_sp =np.asarray([R_sp[0,2],R_sp[1,2],R_sp[2,2]]) C = np.cross(R_z,R_z_sp) e_R = np.dot(R.T,C) cos = np.dot(R_z , R_z_sp) sin = np.linalg.norm(e_R) tan = sin / cos angle = np.arctan(tan) axis = np.matrix(e_R) / sin e_R = axis * angle cp1 =np.asarray([0 , 0 , axis[0,1] ]) cp2 =np.asarray([0, 0 , -1*axis[0,0] ]) cp3 =np.asarray([-1*axis[0,1] , axis[0,0] , 0 ]) e_R_cp = np.matrix([cp1,cp2,cp3]) cos_theta = np.cos(angle) sin_theta = np.sin(angle) A = np.matrix([[1,0,0],[0,1,0],[0,0,1]]) R_rp =R *(A + (e_R_cp * sin + (e_R_cp*e_R_cp*(1-cos) ))) #yaw R_x_sp = np.asarray([1,0,0]) R_x_rp = np.asarray([R_rp[0,0],R_rp[1,0],R_rp[2,0]]) sinx = np.dot(np.cross(R_x_rp,R_x_sp),R_z_sp) cosx = np.dot(R_x_rp,R_x_sp) tanx = sinx/cosx yaw_w = A[2,2] * A[2,2] e_R[0,2] = np.arctan(tanx) * yaw_w eP = np.matrix([1,1,1]) rates_sp = [e_R[0,0]*eP[0,0],e_R[0,1]*eP[0,1],e_R[0,2]*eP[0,2]] rates = np.matrix([Phi,Theta,Psi]) rate_err = rates_sp - rates att_control = K_p[0:3]*np.asarray(rate_err) + K_ff[0:3] * diff_array[0:3] #+ integrate_array * K_i[0:3] #delta = [att_control[0,0],att_control[0,1],att_control[0,2], delta_th] #print(e_R) #delta_2 = delta_a - float(att_control[0,1]) #print(delta_2) return delta def create_state_array(Phi,Theta,Psi): F1 = np.asarray([np.cos(Theta)*np.cos(Psi), np.cos(Theta)*np.sin(Psi), -1 * np.sin(Theta)]) F2 = np.asarray([np.sin(Phi)*np.sin(Theta)*np.cos(Psi) - np.cos(Phi)*np.sin(Psi), np.sin(Phi)*np.sin(Theta)*np.sin(Psi) + np.cos(Phi)*np.cos(Psi), np.sin(Phi)*np.cos(Theta)]) F3 = np.asarray([np.cos(Phi)*np.sin(Theta)*np.cos(Psi) + np.sin(Phi)*np.sin(Psi),
np.cos(Phi)
numpy.cos
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np #if "PyPy" not in platform.python_implementation(): # from scipy.io import loadmat, savemat from Kuru.Tensor import unique2d, itemfreq, in2d, makezero #from Florence.Utils import insensitive #from .vtk_writer import write_vtu #try: # import meshpy.triangle as triangle # has_meshpy = True #except ImportError: # has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * #from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None self.element_to_set = None def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetEdgesQuad(self): """Find the all edges of a quadrilateral mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesHex": self.all_edges = edges return edges def GetBoundaryEdgesQuad(self): """Find boundary edges (lines) of a quadrilateral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetBoundaryEdgesHex(self): """Find boundary edges (lines) of hexahedral mesh. """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "quad" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesQuad() @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetElementsEdgeNumberingQuad(self): """Finds edges of elements and their flags saying which edge they are [0,1,2,3]. At most a quad can have all its four edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesQuad() p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) # edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetBoundaryFacesHex(self): """Find boundary faces (surfaces) of a hexahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 4 and p > 1: pass else: return node_arranger = NodeArrangementHex(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetElementsWithBoundaryEdgesQuad(self): """Finds elements which have edges on the boundary. At most a quad can have all its four edges on the boundary. output: boundary_edge_to_element: [2D array] array containing elements which have face on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(self.edges.dtype) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.boundary_edge_to_element = boundary_edge_to_element return self.boundary_edge_to_element def GetElementsWithBoundaryFacesHex(self): """Finds elements which have faces on the boundary. At most a hexahedral can have all its 8 faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None if self.boundary_face_to_element is not None: return self.boundary_face_to_element # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:4],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:4].astype(np.int64) - self.faces[:,:4].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Kuru.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:4],self.faces[:,:4],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetFacesHex(self): """Find all faces (surfaces) in the hexahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 4 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementHex(p-1)[0] fsize = int((p+1)**3) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetHighOrderMesh(self,p=1, silent=True, **kwargs): """Given a linear tri, tet, quad or hex mesh compute high order mesh based on it. This is a static method linked to the HigherOrderMeshing module""" if not isinstance(p,int): raise ValueError("p must be an integer") else: if p < 1: raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p)) if self.degree is None: self.InferPolynomialDegree() C = p-1 if 'C' in kwargs.keys(): if kwargs['C'] != p - 1: raise ValueError("Did not understand the specified interpolation degree of the mesh") del kwargs['C'] # DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER if self.degree == None: self.degree = self.InferPolynomialDegree() if self.degree == p: return # SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH # ORDER MESH ALREADY AVAILABLE if self.degree != 1 and self.degree - 1 != C: dum = self.GetLinearMesh(remap=True) self.__dict__.update(dum.__dict__) if not silent: print('Generating p = '+str(C+1)+' mesh based on the linear mesh...') t_mesh = time() # BUILD A NEW MESH BASED ON THE LINEAR MESH if self.element_type == 'line': nmesh = HighOrderMeshLine(C,self,**kwargs) if self.element_type == 'tri': if self.edges is None: self.GetBoundaryEdgesTri() # nmesh = HighOrderMeshTri(C,self,**kwargs) nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'tet': # nmesh = HighOrderMeshTet(C,self,**kwargs) nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'quad': if self.edges is None: self.GetBoundaryEdgesTri() nmesh = HighOrderMeshQuad(C,self,**kwargs) elif self.element_type == 'hex': nmesh = HighOrderMeshHex(C,self,**kwargs) self.points = nmesh.points self.elements = nmesh.elements.astype(np.uint64) if isinstance(self.corners,np.ndarray): # NOT NECESSARY BUT GENERIC self.corners = nmesh.corners.astype(np.uint64) if isinstance(self.edges,np.ndarray): self.edges = nmesh.edges.astype(np.uint64) if isinstance(self.faces,np.ndarray): if isinstance(nmesh.faces,np.ndarray): self.faces = nmesh.faces.astype(np.uint64) self.nelem = nmesh.nelem self.nnode = self.points.shape[0] self.element_type = nmesh.info self.degree = C+1 self.ChangeType() if not silent: print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec') def Line(self, left_point=0., right_point=1., n=10, p=1): """Creates a mesh of on a line for 1D rods/beams""" self.__reset__() assert p > 0 if not isinstance(left_point,float): if not isinstance(left_point,int): raise ValueError("left_point must be a number") if not isinstance(right_point,float): if not isinstance(right_point,int): raise ValueError("right_point must be a number") left_point = float(left_point) right_point = float(right_point) n = int(n) if n <= 0: raise ValueError("Number of discretisation cannot be zero or negative: n={}".format(n)) self.element_type = "line" self.points = np.linspace(left_point,right_point,p*n+1)[:,None] self.elements = np.zeros((n,p+1),dtype=np.int64) for i in range(p+1): self.elements[:,i] = p*np.arange(0,n)+i self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] def Rectangle(self,lower_left_point=(0,0), upper_right_point=(2,1), nx=5, ny=5, element_type="tri"): """Creates a quad/tri mesh of a rectangle""" if element_type != "tri" and element_type != "quad": raise ValueError("Element type should either be tri or quad") if self.elements is not None and self.points is not None: self.__reset__() if (lower_left_point[0] > upper_right_point[0]) or \ (lower_left_point[1] > upper_right_point[1]): raise ValueError("Incorrect coordinate for lower left and upper right vertices") nx, ny = int(nx), int(ny) if nx <= 0 or ny <= 0: raise ValueError("Number of discretisation cannot be zero or negative: nx={} ny={}".format(nx,ny)) from scipy.spatial import Delaunay x=
np.linspace(lower_left_point[0],upper_right_point[0],nx+1)
numpy.linspace
# Copyright 2016-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch, torch.utils.data import glob, math, os import scipy, scipy.ndimage import sparseconvnet as scn if not os.path.exists('train_val/'): print('Downloading data ...') os.system('bash download_and_split_data.sh') categories=["02691156", "02773838", "02954340", "02958343", "03001627", "03261776", "03467517", "03624134", "03636649", "03642806", "03790512", "03797390", "03948459", "04099429", "04225987", "04379243"] classes=['Airplane', 'Bag', 'Cap', 'Car', 'Chair', 'Earphone', 'Guitar', 'Knife', 'Lamp', 'Laptop', 'Motorbike', 'Mug', 'Pistol', 'Rocket', 'Skateboard', 'Table'] nClasses=[4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3] classOffsets=np.cumsum([0]+nClasses) def init(c,resolution=50,sz=50*8+8,batchSize=16): globals()['categ']=c globals()['resolution']=resolution globals()['batchSize']=batchSize globals()['spatialSize']=torch.LongTensor([sz]*3) if categ==-1: print('All categories: 50 classes') globals()['nClassesTotal']=int(classOffsets[-1]) else: print('categ ',categ,classes[categ]) globals()['nClassesTotal']=int(nClasses[categ]) def load(xF, c, classOffset, nc): xl=np.loadtxt(xF[0]) xl/= ((xl**2).sum(1).max()**0.5) y = np.loadtxt(xF[0][:-9]+'seg').astype('int64')+classOffset-1 return (xF[0], xl, y, c, classOffset, nc, np.random.randint(1e6)) def train(): d=[] if categ==-1: for c in range(16): for x in torch.utils.data.DataLoader( glob.glob('train_val/'+categories[c]+'/*.pts.train'), collate_fn=lambda x: load(x, c, classOffsets[c],nClasses[c]), num_workers=12): d.append(x) else: for x in torch.utils.data.DataLoader( glob.glob('train_val/'+categories[categ]+'/*.pts.train'), collate_fn=lambda x: load(x, categ, 0, nClasses[categ]), num_workers=12): d.append(x) def merge(tbl): xl_=[] xf_=[] y_=[] categ_=[] mask_=[] classOffset_=[] nClasses_=[] nPoints_=[] np_random=np.random.RandomState([x[-1] for x in tbl]) for _, xl, y, categ, classOffset, nClasses, idx in tbl: m=np.eye(3,dtype='float32') m[0,0]*=np_random.randint(0,2)*2-1 m=np.dot(m,np.linalg.qr(np_random.randn(3,3))[0]) xl=np.dot(xl,m) xl+=np_random.uniform(-1,1,(1,3)).astype('float32') xl=np.floor(resolution*(4+xl)).astype('int64') xf=np.ones((xl.shape[0],1)).astype('float32') xl_.append(xl) xf_.append(xf) y_.append(y) categ_.append(np.ones(y.shape[0],dtype='int64')*categ) classOffset_.append(classOffset) nClasses_.append(nClasses) mask=np.zeros((y.shape[0],nClassesTotal),dtype='float32') mask[:,classOffset:classOffset+nClasses]=1 mask_.append(mask) nPoints_.append(y.shape[0]) xl_=[np.hstack([x,idx*np.ones((x.shape[0],1),dtype='int64')]) for idx,x in enumerate(xl_)] return {'x': [torch.from_numpy(np.vstack(xl_)),torch.from_numpy(np.vstack(xf_))], 'y': torch.from_numpy(np.hstack(y_)), 'categ': torch.from_numpy(np.hstack(categ_)), 'classOffset': classOffset_, 'nClasses': nClasses_, 'mask': torch.from_numpy(np.vstack(mask_)), 'xf': [x[0] for x in tbl], 'nPoints': nPoints_} return torch.utils.data.DataLoader(d,batch_size=batchSize, collate_fn=merge, num_workers=10, shuffle=True) def valid(): d=[] if categ==-1: for c in range(16): for x in torch.utils.data.DataLoader( glob.glob('train_val/'+categories[c]+'/*.pts.valid'), collate_fn=lambda x: load(x, c, classOffsets[c],nClasses[c]), num_workers=12): d.append(x) else: for x in torch.utils.data.DataLoader( glob.glob('train_val/'+categories[categ]+'/*.pts.valid'), collate_fn=lambda x: load(x, categ, 0, nClasses[categ]), num_workers=12): d.append(x) print(len(d)) def merge(tbl): xl_=[] xf_=[] y_=[] categ_=[] mask_=[] classOffset_=[] nClasses_=[] nPoints_=[] np_random=np.random.RandomState([x[-1] for x in tbl]) for _, xl, y, categ, classOffset, nClasses, idx in tbl: m=np.eye(3,dtype='float32') m[0,0]*=np_random.randint(0,2)*2-1 m=np.dot(m,np.linalg.qr(np_random.randn(3,3))[0]) xl=np.dot(xl,m) xl+=np_random.uniform(-1,1,(1,3)).astype('float32') xl=
np.floor(resolution*(4+xl))
numpy.floor
import os import glob import numpy as np import pandas as pd from functools import partial from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from ashrae.blenders import load_preds, GeneralizedMeanBlender from ashrae.utils import OUTPUT_PATH, load_data, rmsle, timer MODEL_LIST = [ f"{OUTPUT_PATH}/lgb-split_meter-no_normalization.npy", f"{OUTPUT_PATH}/lgb-split_meter-target_normalization.npy", f"{OUTPUT_PATH}/lgb-split_primary_use-no_normalization.npy", f"{OUTPUT_PATH}/lgb-split_primary_use-target_normalization.npy", f"{OUTPUT_PATH}/lgb-split_site-no_normalization.npy", f"{OUTPUT_PATH}/lgb-split_site-target_normalization.npy", f"{OUTPUT_PATH}/cb-split_meter-no_normalization.npy", f"{OUTPUT_PATH}/cb-split_meter-target_normalization.npy", f"{OUTPUT_PATH}/cb-split_primary_use-no_normalization.npy", f"{OUTPUT_PATH}/cb-split_primary_use-target_normalization.npy", f"{OUTPUT_PATH}/cb-split_site-no_normalization.npy", f"{OUTPUT_PATH}/cb-split_site-target_normalization.npy", f"{OUTPUT_PATH}/mlp-split_meter-no_normalization.npy", f"{OUTPUT_PATH}/submission_cleanup.csv", f"{OUTPUT_PATH}/submission_kfold.csv", f"{OUTPUT_PATH}/submission_meter.csv", ] if __name__ == "__main__": """ python scripts/05_blend_predictions.py """ # load test data with timer("load test data"): test = load_data("test_clean") leak = load_data("is_leak") target = leak["meter_reading"].values # load predictions with timer("load predictions"): preds_matrix = [np.load(x) for x in MODEL_LIST if ".npy" in x] replace_inds = (test.site_id == 0) & (test.meter == 0) if len([x for x in MODEL_LIST if ".csv" in x]) > 0: preds_matrix += [pd.read_csv(x).meter_reading.values for x in MODEL_LIST if ".csv" in x] preds_matrix = np.vstack(preds_matrix).T preds_matrix[preds_matrix < 0] = 0 # blend predictions with timer("blend predictions"): gmb = GeneralizedMeanBlender() gmb.p = 0.11375872112626925 gmb.c = 0.99817730007820798 gmb.weights = [0.01782498, 0.03520153, 0.03286305, 0.00718961, 0.01797213, 0.0004982 , 0.14172883, 0.12587602, 0.08538773, 0.09482115, 0.09476288, 0.10101228, 0.15306998, 0.03358389, 0.00719679, 0.05101097] test_preds = 0.99576627605010293*np.expm1(gmb.transform(np.log1p(preds_matrix))) # create submission with timer("create submission"): subm = load_data("sample_submission") subm["meter_reading"] = test_preds subm.loc[subm.meter_reading < 0, "meter_reading"] = 0 subm.loc[~np.isnan(target), "meter_reading"] = target[~
np.isnan(target)
numpy.isnan
import numpy as np import keras.backend as K import tensorflow as tf ########################################################################################################################## # see: https://ilmonteux.github.io/2019/05/10/segmentation-metrics.html # https://gist.github.com/ilmonteux/8340df952722f3a1030a7d937e701b5a#file-segmentation_metrics-py ########################################################################################################################## def metrics_np(y_true, y_pred, metric_name, metric_type='standard', drop_last = True, mean_per_class=False, verbose=False): """ Compute mean metrics of two segmentation masks, via numpy. IoU(A,B) = |A & B| / (| A U B|) Dice(A,B) = 2*|A & B| / (|A| + |B|) Args: y_true: true masks, one-hot encoded. y_pred: predicted masks, either softmax outputs, or one-hot encoded. metric_name: metric to be computed, either 'iou' or 'dice'. metric_type: one of 'standard' (default), 'soft', 'naive'. In the standard version, y_pred is one-hot encoded and the mean is taken only over classes that are present (in y_true or y_pred). The 'soft' version of the metrics are computed without one-hot encoding y_pred. The 'naive' version return mean metrics where absent classes contribute to the class mean as 1.0 (instead of being dropped from the mean). drop_last = True: boolean flag to drop last class (usually reserved for background class in semantic segmentation) mean_per_class = False: return mean along batch axis for each class. verbose = False: print intermediate results such as intersection, union (as number of pixels). Returns: IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True in which case it returns the per-class metric, averaged over the batch. Inputs are B*W*H*N tensors, with B = batch size, W = width, H = height, N = number of classes """ assert y_true.shape == y_pred.shape, 'Input masks should be same shape, instead are {}, {}'.format(y_true.shape, y_pred.shape) assert len(y_pred.shape) == 4, 'Inputs should be B*W*H*N tensors, instead have shape {}'.format(y_pred.shape) flag_soft = (metric_type == 'soft') flag_naive_mean = (metric_type == 'naive') num_classes = y_pred.shape[-1] # if only 1 class, there is no background class and it should never be dropped drop_last = drop_last and num_classes>1 if not flag_soft: if num_classes>1: # get one-hot encoded masks from y_pred (true masks should already be in correct format, do it anyway) y_pred = np.array([ np.argmax(y_pred, axis=-1)==i for i in range(num_classes) ]).transpose(1,2,3,0) y_true = np.array([ np.argmax(y_true, axis=-1)==i for i in range(num_classes) ]).transpose(1,2,3,0) else: y_pred = (y_pred > 0).astype(int) y_true = (y_true > 0).astype(int) # intersection and union shapes are batch_size * n_classes (values = area in pixels) axes = (1,2) # W,H axes of each image intersection = np.sum(np.abs(y_pred * y_true), axis=axes) # or, np.logical_and(y_pred, y_true) for one-hot mask_sum = np.sum(
np.abs(y_true)
numpy.abs
import numpy as np import cv2 from homography import calcHomographyLinear, calcHomography, stitchPanorama, cylindericlMap def DEBUG(*args): if LVL >= 1: print("[DEBUG]", *args) class Model(object): __slots__ = ('val', 'th', 'd', 'n') def fit(self, X, Y): raise NotImplementedError def fwd(self, X): raise NotImplementedError def dist(self, predY, trueY): raise NotImplementedError class HomoModel(Model): def __init__(self, th=5, d=50, n=4): self.th = th self.d = d self.n = n self.val = np.empty((3,3),dtype=np.float32) def fit(self, X, Y, collective=False): """ @brief fit homography model @param[in] X - observation input 3x4 or 2x4 @param[in] Y - observation output 3x4 or 2x4 """ nx, mx = X.shape ny, my = Y.shape assert ((mx == my) and (mx == self.n)) or ((mx == my) and (mx > self.n) and collective) , "invalid data size should be %d" % self.n assert (nx == ny) and nx in [2, 3], "invalid input dimension for row numbers" """if nx == 2: x = np.ones((3, mx),dtype=np.float32) y = np.ones((3, my),dtype=np.float32) x[:2,:] = X y[:2,:] = Y else: x = X y = Y""" #self.val = calcHomographyLinear(X.T[:,:2], Y.T[:,:2]) if collective: self.val = calcHomographyLinear(X.T[:,:2], Y.T[:,:2], True) else: self.val = calcHomography(X.T[:,:2], Y.T[:,:2], False) return self.val def fwd(self, X): nx, mx = X.shape assert nx in [2, 3], "invalid input dimension for row numbers" if nx == 2: x = np.ones((3, mx),dtype=np.float32) x[:2,:] = X else: x = X y = self.val @ x return y/(y[-1,:] + 1e-10) def reproj(self, Y): ny, my = Y.shape assert ny in [2, 3], "invalid input dimension for row numbers" if ny == 2: y =
np.ones((3, my),dtype=np.float32)
numpy.ones
import numpy as np import tensorflow as tf import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt from mpl_toolkits import mplot3d from tensorflow.python import debug as tf_debug # Returns uniformly generated numpy array with generate [ x | t | random] where x and t are shuffled # Shape of the generated x_arr and generated t_arr should be the same def generateData(x_start, x_end, dx, t_start, t_end, dt): x_arr = np.arange(start=x_start, stop=x_end, step=dx, dtype=np.float32).reshape(-1,1) np.random.shuffle(x_arr) t_arr = np.arange(start=t_start, stop=t_end, step=dt, dtype=np.float32).reshape(-1,1)
np.random.shuffle(t_arr)
numpy.random.shuffle
import matplotlib matplotlib.rcParams['text.usetex'] = True import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import numpy as np import math from matplotlib import rc import sys, os sys.path.append(os.path.dirname(sys.path[0])) from linearSolvers import AMORE from elementLibrary import shapeFunction, invShapeFunction, stiffnessMatrix from plotTools import pM from linearSolvers import AMORE def getGraphDataOFE(coord,coordinates,incidentElements,edge,displacement,DMatrix,nSampling): X=np.zeros((nSampling,nSampling)) Y=np.zeros((nSampling,nSampling)) U=np.zeros((nSampling,nSampling)) V=np.zeros((nSampling,nSampling)) Sxx=np.zeros((nSampling,nSampling)) Syy=np.zeros((nSampling,nSampling)) Sxy=np.zeros((nSampling,nSampling)) r=np.linspace(-1,1,nSampling) s=np.linspace(-1,1,nSampling) if len(coord)==3: newCoord=np.zeros((4,2)) newCoord[0:3,:]=coord newCoord[3,:]=coord[2,:] for i in range(nSampling): for j in range(nSampling): Nmat,_=invShapeFunction.quadShapeFunction([r[i],s[j]]) xy=(Nmat@newCoord).reshape(-1) X[i,j]=xy[0] Y[i,j]=xy[1] isoCoord=invShapeFunction.invTri(coord,xy) for k in range(len(incidentElements)): if incidentElements[k]: numbering=incidentElements[k].numbering fNumbering=getFullNumber(numbering) tempCoord=AMORE.getCoord(coordinates,numbering) rho=AMORE.getRho(edge,k) LCmat=stiffnessMatrix.getLC(coord,rho) rhoValue=isoCoord[0]*rho[0]+isoCoord[1]*rho[1]+(1.0-isoCoord[0]-isoCoord[1])*rho[2] if len(tempCoord)==4: newIsoCoord=invShapeFunction.invQuad(tempCoord,xy) Nmat,Bmat,_=shapeFunction.shapeQuadFE(tempCoord,newIsoCoord[0],newIsoCoord[1]) localDisp=rhoValue*Nmat@displacement[fNumbering] localStress=rhoValue*DMatrix@Bmat@displacement[fNumbering]+DMatrix@LCmat@Nmat@displacement[fNumbering] U[i,j]+=localDisp[0] V[i,j]+=localDisp[1] Sxx[i,j]+=localStress[0] Syy[i,j]+=localStress[1] Sxy[i,j]+=localStress[2] elif len(tempCoord)==9: newIsoCoord=invShapeFunction.invQuadQuad(tempCoord,xy) Nmat,Bmat,_=shapeFunction.shapeQuadQuadFE(tempCoord,newIsoCoord[0],newIsoCoord[1]) localDisp=rhoValue*Nmat@displacement[fNumbering] localStress=rhoValue*DMatrix@Bmat@displacement[fNumbering]+DMatrix@LCmat@Nmat@displacement[fNumbering] U[i,j]+=localDisp[0] V[i,j]+=localDisp[1] Sxx[i,j]+=localStress[0] Syy[i,j]+=localStress[1] Sxy[i,j]+=localStress[2] else: raise ValueError elif len(coord)==6: newCoord=np.zeros((9,2)) newCoord[0:3,:]=coord[0:3,:] newCoord[6,:]=newCoord[3,:]=coord[2,:] newCoord[4,:]=coord[3,:] newCoord[5,:]=coord[4,:] newCoord[7,:]=newCoord[8,:]=coord[5,:] for i in range(nSampling): for j in range(nSampling): Nmat,_=invShapeFunction.quadQuadShapeFunction([r[i],s[j]]) xy=(Nmat@newCoord).reshape(-1) X[i,j]=xy[0] Y[i,j]=xy[1] isoCoord=invShapeFunction.invTriQuad(coord,xy) triNmat,_=invShapeFunction.triQuadShapeFunction(isoCoord) for k in range(len(incidentElements)): if incidentElements[k]: numbering=incidentElements[k].numbering fNumbering=getFullNumber(numbering) tempCoord=AMORE.getCoord(coordinates,numbering) rho=
np.zeros(6)
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2012 <NAME> <<EMAIL>> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html # # HDP inference code is adapted from the onlinehdp.py script by # <NAME> (chongw at cs.princeton.edu). # http://www.cs.princeton.edu/~chongw/software/onlinehdp.tar.gz # """Module for `online Hierarchical Dirichlet Processing <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. The core estimation code is directly adapted from the `blei-lab/online-hdp <https://github.com/blei-lab/online-hdp>`_ from `<NAME>: "Online Variational Inference for the Hierarchical Dirichlet Process", JMLR (2011) <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. Examples -------- Train :class:`~gensim.models.hdpmodel.HdpModel` .. sourcecode:: pycon >>> from gensim.test.utils import common_corpus, common_dictionary >>> from gensim.models import HdpModel >>> >>> hdp = HdpModel(common_corpus, common_dictionary) You can then infer topic distributions on new, unseen documents, with .. sourcecode:: pycon >>> unseen_document = [(1, 3.), (2, 4)] >>> doc_hdp = hdp[unseen_document] To print 20 topics with top 10 most probable words. .. sourcecode:: pycon >>> topic_info = hdp.print_topics(num_topics=20, num_words=10) The model can be updated (trained) with new documents via .. sourcecode:: pycon >>> hdp.update([[(1, 2)], [(1, 1), (4, 5)]]) """ from __future__ import with_statement import logging import time import warnings import numpy as np from scipy.special import gammaln, psi # gamma function utils from six.moves import zip, range from gensim import interfaces, utils, matutils from gensim.matutils import dirichlet_expectation, mean_absolute_difference from gensim.models import basemodel, ldamodel from gensim.utils import deprecated logger = logging.getLogger(__name__) meanchangethresh = 0.00001 rhot_bound = 0.0 def expect_log_sticks(sticks): r"""For stick-breaking hdp, get the :math:`\mathbb{E}[log(sticks)]`. Parameters ---------- sticks : numpy.ndarray Array of values for stick. Returns ------- numpy.ndarray Computed :math:`\mathbb{E}[log(sticks)]`. """ dig_sum = psi(np.sum(sticks, 0)) ElogW = psi(sticks[0]) - dig_sum Elog1_W = psi(sticks[1]) - dig_sum n = len(sticks[0]) + 1 Elogsticks = np.zeros(n) Elogsticks[0: n - 1] = ElogW Elogsticks[1:] = Elogsticks[1:] + np.cumsum(Elog1_W) return Elogsticks def lda_e_step(doc_word_ids, doc_word_counts, alpha, beta, max_iter=100): r"""Performs EM-iteration on a single document for calculation of likelihood for a maximum iteration of `max_iter`. Parameters ---------- doc_word_ids : int Id of corresponding words in a document. doc_word_counts : int Count of words in a single document. alpha : numpy.ndarray Lda equivalent value of alpha. beta : numpy.ndarray Lda equivalent value of beta. max_iter : int, optional Maximum number of times the expectation will be maximised. Returns ------- (numpy.ndarray, numpy.ndarray) Computed (:math:`likelihood`, :math:`\gamma`). """ gamma = np.ones(len(alpha)) expElogtheta = np.exp(dirichlet_expectation(gamma)) betad = beta[:, doc_word_ids] phinorm = np.dot(expElogtheta, betad) + 1e-100 counts =
np.array(doc_word_counts)
numpy.array
#coding:utf-8 import os from PIL import Image import numpy as np #源目录 MyPath = '/media/allen/orange/00第二篇论文实验结果/upernet_swin_base_potsdam_normal_240k/small_img/' #输出目录 OutPath = '/media/allen/orange/00第二篇论文实验结果/upernet_swin_base_potsdam_normal_240k/rgb_img/' width=600 height=600 width1=6000 height1=6000 width_num=width1 // width height_num=height1 // height def splitList(list_all): list_unique = [] list_name_group = [] for i in range(len(list_all)): ss = list_all[i].split('_') if ss[2] not in list_unique: list_unique.append(ss[2]) list_name_group.append([]) list_name_group[-1].append(list_all[i]) else: list_name_group[list_unique.index(ss[2])].append(list_all[i]) for i in range(len(list_name_group)): list_name_group[i].sort() return list_name_group def run(): #切换到源目录,遍历源目录下所有图片 os.chdir(MyPath) listName = os.listdir(os.getcwd()) listNameGroup = splitList(listName) mask_whole = np.zeros((height1,width1,3),dtype=np.uint8) mask_whole1 = np.zeros((height1,width1,3),dtype=np.uint8) for img_num in range(len(listNameGroup)): for i in range(width_num): for j in range(height_num): print('name: %s' % listNameGroup[img_num][i*width_num+j]) img = Image.open(MyPath + listNameGroup[img_num][i*width_num+j]) img_array =
np.asarray(img)
numpy.asarray
""" Module of functions involving great circles (thus assuming spheroid model of the earth) with points given in longitudes and latitudes. """ from __future__ import print_function import math import numpy import numpy.random # Equatorial radius of the earth in kilometers EARTH_ER = 6378.137 # Authalic radius of the earth in kilometers EARTH_AR = 6371.007 # Meridional radius of the earth in kilometers EARTH_MR = 6367.449 # Polar radius of the earth in kilometers EARTH_PR = 6356.752 DEG2RAD = math.pi / 180.0 RAD2DEG = 180.0 / math.pi KM2MI = 0.6213712 MI2KM = 1.609344 def lonlatdistance(pt1lon, pt1lat, pt2lon, pt2lat): """ Compute the great circle distance between two points on a sphere using the haversine formula. Arguments: pt1lon - longitude(s) of the first point pt1lat - latitude(s) of the first point pt2lon - longitude(s) of the second point pt2lat - latitude(s) of the second point Returns: The great circle distance(s) in degrees [0.0, 180.0] """ lon1 = numpy.deg2rad(numpy.asarray(pt1lon, dtype=float)) lat1 = numpy.deg2rad(numpy.asarray(pt1lat, dtype=float)) lon2 = numpy.deg2rad(numpy.asarray(pt2lon, dtype=float)) lat2 = numpy.deg2rad(numpy.asarray(pt2lat, dtype=float)) dellat = numpy.power(numpy.sin(0.5 * (lat2 - lat1)), 2.0) dellon = numpy.cos(lat1) * numpy.cos(lat2) * \ numpy.power(numpy.sin(0.5 * (lon2 - lon1)), 2.0) dist = 2.0 * numpy.arcsin(numpy.power(dellon + dellat, 0.5)) return numpy.rad2deg(dist) def lonlatintersect(gc1lon1, gc1lat1, gc1lon2, gc1lat2, gc2lon1, gc2lat1, gc2lon2, gc2lat2): """ Compute the intersections of two great circles. Uses the line of intersection between the two planes of the great circles. Arguments: gc1lon1 - longitude(s) of the first point on the first great circle gc1lat1 - latitude(s) of the first point on the first great circle gc1lon2 - longitude(s) of the second point on the first great circle gc1lat2 - latitude(s) of the second point on the first great circle gc2lon1 - longitude(s) of the first point on the second great circle gc2lat1 - latitude(s) of the first point on the second great circle gc2lon2 - longitude(s) of the second point on the second great circle gc2lat2 - latitude(s) of the second point on the second great circle Returns: ( (pt1lon, pt1lat), (pt2lon, pt2lat) ) - the longitudes and latitudes of the two intersections of the two great circles. NaN will be returned for both longitudes and latitudes if a great circle is not well-defined, or the two great-circles coincide. """ # Minimum acceptable norm of a cross product # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth MIN_NORM = 1.0E-7 # Convert longitudes and latitudes to points on a unit sphere # The "+ 0.0 * ptlonr" is to broadcast gcz if needed ptlonr = numpy.deg2rad(numpy.asarray(gc1lon1, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc1lat1, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc1xyz1 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc1lon2, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc1lat2, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc1xyz2 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc2lon1, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc2lat1, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc2xyz1 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc2lon2, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc2lat2, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc2xyz2 = numpy.array([gcx, gcy, gcz]) # Get the unit-perpendicular to the plane going through the # origin and the two points on each great circle. If the # norm of the cross product is too small, the great circle # is not well-defined, so zero it out so NaN is produced. gc1pp = numpy.cross(gc1xyz1, gc1xyz2, axis=0) norm = (gc1pp[0]**2 + gc1pp[1]**2 + gc1pp[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 gc1pp /= norm gc2pp = numpy.cross(gc2xyz1, gc2xyz2, axis=0) norm = (gc2pp[0]**2 + gc2pp[1]**2 + gc2pp[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 gc2pp /= norm # The line of intersection of the two planes is perpendicular # to the two plane-perpendiculars and goes through the origin. # Points of intersection are the points on this line one unit # from the origin. If the norm of the cross product is too # small, the two planes are practically indistinguishable from # each other (coincide). pt1xyz = numpy.cross(gc1pp, gc2pp, axis=0) norm = (pt1xyz[0]**2 + pt1xyz[1]**2 + pt1xyz[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 pt1xyz /= norm pt2xyz = -1.0 * pt1xyz # Convert back to longitudes and latitudes pt1lats = numpy.rad2deg(numpy.arcsin(pt1xyz[2])) pt1lons = numpy.rad2deg(numpy.arctan2(pt1xyz[1], pt1xyz[0])) pt2lats = numpy.rad2deg(numpy.arcsin(pt2xyz[2])) pt2lons = numpy.rad2deg(numpy.arctan2(pt2xyz[1], pt2xyz[0])) return ( (pt1lons, pt1lats), (pt2lons, pt2lats) ) def lonlatfwdpt(origlon, origlat, endlon, endlat, fwdfact): """ Find the longitude and latitude of a point that is a given factor times the distance along the great circle from an origination point to an ending point. Note that the shorter great circle arc from the origination point to the ending point is always used. If O is the origination point, E is the ending point, and P is the point returned from this computation, a factor value of: 0.5: P bisects the great circle arc between O and E 2.0: E bisects the great circle arc between O and P -1.0: O bisects the great circle arc between P and E Arguments: origlon - longitude(s) of the origination point origlat - latitude(s) of the origination point endlon - longitude(s) of the ending point endlat - latitude(s) of the ending point fwdfact - forward distance factor(s) Returns: (ptlon, ptlat) - longitude and latitude of the computed point(s). NaN will be returned for both the longitude and latitude if the great circle is not well-defined. """ # Minimum acceptable norm of a cross product # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth MIN_NORM = 1.0E-7 # Convert longitudes and latitudes to points on a unit sphere # The "+ 0.0 * ptlonr" is to broadcast gcz if needed ptlonr = numpy.deg2rad(numpy.asarray(origlon, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(origlat, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) origxyz = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(endlon, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(endlat, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) endxyz = numpy.array([gcx, gcy, gcz]) # Determine the rotation matrix about the origin that takes # origxyz to (1,0,0) (equator and prime meridian) and endxyz # to (x,y,0) with y > 0 (equator in eastern hemisphere). # # The first row of the matrix is origxyz. # # The third row of the matrix is the normalized cross product # of origxyz and endxyz. (The great circle plane perpendicular.) # If the norm of this cross product is too small, the great # circle is not well-defined, so zero it out so NaN is produced. gcpp = numpy.cross(origxyz, endxyz, axis=0) norm = (gcpp[0]**2 + gcpp[1]**2 + gcpp[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 gcpp /= norm # The second row of the matrix is the cross product of the # third row (gcpp) and the first row (origxyz). This will # have norm 1.0 since gcpp and origxyz are perpendicular # unit vectors. fwdax = numpy.cross(gcpp, origxyz, axis=0) # Get the coordinates of the rotated end point. endtrx = origxyz[0] * endxyz[0] + origxyz[1] * endxyz[1] + origxyz[2] * endxyz[2] endtry = fwdax[0] * endxyz[0] + fwdax[1] * endxyz[1] + fwdax[2] * endxyz[2] # Get the angle along the equator of the rotated end point, multiply # by the given factor, and convert this new angle back to coordinates. fwdang = numpy.arctan2(endtry, endtrx) fwdang *= numpy.asarray(fwdfact, dtype=float) fwdtrx = numpy.cos(fwdang) fwdtry = numpy.sin(fwdang) # Rotate the new point back to the original coordinate system # The inverse rotation matrix is the transpose of that matrix. fwdx = origxyz[0] * fwdtrx + fwdax[0] * fwdtry fwdy = origxyz[1] * fwdtrx + fwdax[1] * fwdtry fwdz = origxyz[2] * fwdtrx + fwdax[2] * fwdtry # Convert the point coordinates into longitudes and latitudes ptlat = numpy.rad2deg(numpy.arcsin(fwdz)) ptlon = numpy.rad2deg(numpy.arctan2(fwdy, fwdx)) return (ptlon, ptlat) def equidistscatter(min_lon, min_lat, max_lon, max_lat, min_gcdist, dfactor=5.0): """ Create a roughly equidistant set of points in a specified region. This is done by creating a dense "grid" of points, then repeatedly randomly selecting a point from that collection and eliminating points too close to that selected point. For the special cases where min_lon and max_lon, or min_lat and max_lat, are very close relative to min_gcdist, the maximum number of evenly spaced points that can be put on the line described is computed and assigned. Arguments: min_lon - minimum longitude of the region min_lat - minimum latitude of the region max_lon - maximum longitude of the region max_lat - maximum latitude of the region min_gcdist - minimum distance, in great circle degrees, between returned points dfactor - the number of axis points in the dense "grid" compared to the desired "grid". Larger value will generally increase the uniformity of the returned points but will also increase the time required for the calculation. Returns: (pt_lons, pt_lats) - ptlons is an array of longitudes and ptlats is an array of latitudes of (somewhat random) points in the specified region that are roughly equidistant from each other but not closer than min_gcdist to each other. """ lonmin = float(min_lon) lonmax = float(max_lon) if math.fabs(lonmax - lonmin) > 180.0: raise ValueError("Difference between max_lon and min_lon is more than 180.0") latmin = float(min_lat) if math.fabs(latmin) > 90.0: raise ValueError("min_lat is not in [-90.0,90.0]") latmax = float(max_lat) if math.fabs(latmax) > 90.0: raise ValueError("max_lat is not in [-90.0,90.0]") mindeg = float(min_gcdist) if (mindeg <= 0.0) or (mindeg >= 90.0): raise ValueError("min_gcdist is not in (0.0,90.0)") dfact = float(dfactor) if dfact < 1.0: raise ValueError("dfactor is less than one"); # If lonmin is relatively close to lonmax, directly # compute the points. Distance on a meridian is the # difference in latitudes. if math.fabs(lonmax - lonmin) < (0.05 * mindeg): lon = 0.5 * (lonmax + lonmin) dellat = mindeg numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat ) if latmax < latmin: dellat *= -1.0 hdiff = 0.5 * ( (latmax - latmin) - (numlats - 1) * dellat ) latvals = numpy.linspace(latmin + hdiff, latmax - hdiff, numlats) lonvals =
numpy.ones((numlats,), dtype=float)
numpy.ones
import numpy as np import cv2 def img_clahe(img): clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) img = clahe.apply(img) return img def img_clahe_cm(img): b,g,r = cv2.split(img) clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) b = clahe.apply(b) g = clahe.apply(g) r = clahe.apply(r) output = cv2.merge((b,g,r)) return output def img_normalized(img): std = np.std(img) mean = np.mean(img) img_normalized = (img - mean) / (std + 1e-10) return img_normalized def convert_16to8(img): img = (img - np.mean(img)) / np.std(img) img = (img - np.min(img)) / (np.max(img) -
np.min(img)
numpy.min
import numpy as np from scipy.spatial.transform import Rotation as R import magpylib as magpy from magpylib._src.exceptions import MagpylibBadUserInput from magpylib._src.exceptions import MagpylibMissingInput ########################################################### ########################################################### # OBJECT INPUTS def test_input_objects_position_good(): """good input: magpy.Sensor(position=inp)""" goods = [ (1, 2, 3), (0, 0, 0), ((1, 2, 3), (2, 3, 4)), [(2, 3, 4)], [2, 3, 4], [[2, 3, 4], [3, 4, 5]], [(2, 3, 4), (3, 4, 5)], np.array((1, 2, 3)), np.array(((1, 2, 3), (2, 3, 4))), ] for good in goods: sens = magpy.Sensor(position=good) np.testing.assert_allclose(sens.position, np.squeeze(np.array(good))) def test_input_objects_position_bad(): """bad input: magpy.Sensor(position=inp)""" bads = [ (1, 2), (1, 2, 3, 4), [(1, 2, 3, 4)] * 2, (((1, 2, 3), (1, 2, 3)), ((1, 2, 3), (1, 2, 3))), "x", ["x", "y", "z"], dict(woot=15), True, ] for bad in bads: np.testing.assert_raises(MagpylibBadUserInput, magpy.Sensor, bad) def test_input_objects_pixel_good(): """good input: magpy.Sensor(pixel=inp)""" goods = [ (1, -2, 3), (0, 0, 0), ((1, 2, 3), (2, 3, 4)), (((1, 2, 3), (2, -3, 4)), ((1, 2, 3), (2, 3, 4))), [(2, 3, 4)], [2, 3, 4], [[-2, 3, 4], [3, 4, 5]], [[[2, 3, 4], [3, 4, 5]]] * 4, [(2, 3, 4), (3, 4, 5)], np.array((1, 2, -3)), np.array(((1, -2, 3), (2, 3, 4))), ] for good in goods: sens = magpy.Sensor(pixel=good) np.testing.assert_allclose(sens.pixel, good) def test_input_objects_pixel_bad(): """bad input: magpy.Sensor(pixel=inp)""" bads = [ (1, 2), (1, 2, 3, 4), [(1, 2, 3, 4)] * 2, "x", ["x", "y", "z"], dict(woot=15), True, ] for bad in bads: np.testing.assert_raises(MagpylibBadUserInput, magpy.Sensor, (0, 0, 0), bad) def test_input_objects_orientation_good(): """good input: magpy.Sensor(orientation=inp)""" goods = [ None, (0.1, 0.2, 0.3), (0, 0, 0), [(0.1, 0.2, 0.3)], [(0.1, 0.2, 0.3)] * 5, ] for good in goods: if good is None: sens = magpy.Sensor(orientation=None) np.testing.assert_allclose(sens.orientation.as_rotvec(), (0, 0, 0)) else: sens = magpy.Sensor(orientation=R.from_rotvec(good)) np.testing.assert_allclose( sens.orientation.as_rotvec(), np.squeeze(np.array(good)) ) def test_input_objects_orientation_bad(): """bad input: magpy.Sensor(orientation=inp)""" bads = [ (1, 2), (1, 2, 3, 4), [(1, 2, 3, 4)] * 2, "x", ["x", "y", "z"], dict(woot=15), True, ] for bad in bads: np.testing.assert_raises( MagpylibBadUserInput, magpy.Sensor, (0, 0, 0), (0, 0, 0), bad ) def test_input_objects_current_good(): """good input: magpy.current.Loop(inp)""" goods = [ None, 0, 1, 1.2, np.array([1, 2, 3])[1], -1, -1.123, True, ] for good in goods: src = magpy.current.Loop(good) if good is None: assert src.current is None else: np.testing.assert_allclose(src.current, good) def test_input_objects_current_bad(): """bad input: magpy.current.Loop(inp)""" bads = [ (1, 2), [(1, 2, 3, 4)] * 2, "x", ["x", "y", "z"], dict(woot=15), ] for bad in bads: np.testing.assert_raises(MagpylibBadUserInput, magpy.current.Loop, bad) def test_input_objects_diameter_good(): """good input: magpy.current.Loop(diameter=inp)""" goods = [ None, 0, 1, 1.2, np.array([1, 2, 3])[1], True, ] for good in goods: src = magpy.current.Loop(diameter=good) if good is None: assert src.diameter is None else: np.testing.assert_allclose(src.diameter, good) def test_input_objects_diameter_bad(): """bad input: magpy.current.Loop(diameter=inp)""" bads = [ (1, 2), [(1, 2, 3, 4)] * 2, "x", ["x", "y", "z"], dict(woot=15), -1, -1.123, ] for bad in bads: with np.testing.assert_raises(MagpylibBadUserInput): magpy.current.Loop(diameter=bad) def test_input_objects_vertices_good(): """good input: magpy.current.Line(vertices=inp)""" goods = [ None, ((0, 0, 0), (0, 0, 0)), ((1, 2, 3), (2, 3, 4)), [(2, 3, 4), (-1, -2, -3)] * 2, [[2, 3, 4], [3, 4, 5]], np.array(((1, 2, 3), (2, 3, 4))), ] for good in goods: src = magpy.current.Line(vertices=good) if good is None: assert src.vertices is None else: np.testing.assert_allclose(src.vertices, good) def test_input_objects_vertices_bad(): """bad input: magpy.current.Line(vertices=inp)""" bads = [ (1, 2), [(1, 2, 3, 4)] * 2, [(1, 2, 3)], "x", ["x", "y", "z"], dict(woot=15), 0, -1.123, True, ] for bad in bads: with np.testing.assert_raises(MagpylibBadUserInput): magpy.current.Line(vertices=bad) def test_input_objects_magnetization_moment_good(): """ good input: magpy.magnet.Cuboid(magnetization=inp), magpy.misc.Dipole(moment=inp) """ goods = [ None, (1, 2, 3), (0, 0, 0), [-1, -2, -3], np.array((1, 2, 3)), ] for good in goods: src = magpy.magnet.Cuboid(good) src2 = magpy.misc.Dipole(good) if good is None: assert src.magnetization is None assert src2.moment is None else: np.testing.assert_allclose(src.magnetization, good) np.testing.assert_allclose(src2.moment, good) def test_input_objects_magnetization_moment_bad(): """ bad input: magpy.magnet.Cuboid(magnetization=inp), magpy.misc.Dipole(moment=inp) """ bads = [ (1, 2), [1, 2, 3, 4], [(1, 2, 3)] * 2, np.array([(1, 2, 3)] * 2), "x", ["x", "y", "z"], dict(woot=15), 0, -1.123, True, ] for bad in bads: with np.testing.assert_raises(MagpylibBadUserInput): magpy.magnet.Cuboid(magnetization=bad) with np.testing.assert_raises(MagpylibBadUserInput): magpy.misc.Dipole(moment=bad) def test_input_objects_dimension_cuboid_good(): """good input: magpy.magnet.Cuboid(dimension=inp)""" goods = [ None, (1, 2, 3), [11, 22, 33], np.array((1, 2, 3)), ] for good in goods: src = magpy.magnet.Cuboid(dimension=good) if good is None: assert src.dimension is None else: np.testing.assert_allclose(src.dimension, good) def test_input_objects_dimension_cuboid_bad(): """bad input: magpy.magnet.Cuboid(dimension=inp)""" bads = [ [-1, 2, 3], (0, 1, 2), (1, 2), [1, 2, 3, 4], [(1, 2, 3)] * 2, np.array([(1, 2, 3)] * 2), "x", ["x", "y", "z"], dict(woot=15), 0, True, ] for bad in bads: with np.testing.assert_raises(MagpylibBadUserInput): magpy.magnet.Cuboid(dimension=bad) def test_input_objects_dimension_cylinder_good(): """good input: magpy.magnet.Cylinder(dimension=inp)""" goods = [ None, (1, 2), [11, 22], np.array((1, 2)), ] for good in goods: src = magpy.magnet.Cylinder(dimension=good) if good is None: assert src.dimension is None else: np.testing.assert_allclose(src.dimension, good) def test_input_objects_dimension_cylinder_bad(): """bad input: magpy.magnet.Cylinder(dimension=inp)""" bads = [ [-1, 2], (0, 1), (1,), [1, 2, 3], [(1, 2)] * 2, np.array([(2, 3)] * 2), "x", ["x", "y"], dict(woot=15), 0, True, ] for bad in bads: with np.testing.assert_raises(MagpylibBadUserInput): magpy.magnet.Cylinder(dimension=bad) def test_input_objects_dimension_cylinderSegment_good(): """good input: magpy.magnet.CylinderSegment(dimension=inp)""" goods = [ None, (0, 2, 3, 0, 50), (1, 2, 3, 40, 50), [11, 22, 33, 44, 360], [11, 22, 33, -44, 55], np.array((1, 2, 3, 4, 5)), [11, 22, 33, -44, -33], (0, 2, 3, -10, 0), ] for good in goods: src = magpy.magnet.CylinderSegment(dimension=good) if good is None: assert src.dimension is None else: np.testing.assert_allclose(src.dimension, good) def test_input_objects_dimension_cylinderSegment_bad(): """good input: magpy.magnet.CylinderSegment(dimension=inp)""" bads = [ (1, 2, 3, 4), (1, 2, 3, 4, 5, 6), (0, 0, 3, 4, 5), (2, 1, 3, 4, 5), (-1, 2, 3, 4, 5), (1, 2, 0, 4, 5), (1, 2, -1, 4, 5), (1, 2, 3, 5, 4), [(1, 2, 3, 4, 5)] * 2, np.array([(1, 2, 3, 4, 5)] * 2), "x", ["x", "y", "z", 1, 2], dict(woot=15), 0, True, ] for bad in bads: with np.testing.assert_raises(MagpylibBadUserInput): magpy.magnet.CylinderSegment(dimension=bad) def test_input_objects_field_func_good(): """good input: magpy.misc.CustomSource(field_func=f)""" # pylint: disable=unused-argument # init empty = None src = magpy.misc.CustomSource() np.testing.assert_raises(MagpylibMissingInput, src.getB, (1, 2, 3)) np.testing.assert_raises(MagpylibMissingInput, src.getH, (1, 2, 3)) # None src = magpy.misc.CustomSource(field_func=None) np.testing.assert_raises(MagpylibMissingInput, src.getB, (1, 2, 3)) np.testing.assert_raises(MagpylibMissingInput, src.getH, (1, 2, 3)) # acceptable func with B and H return def f(field, observers): """3 in 3 out""" return observers src = magpy.misc.CustomSource(field_func=f) np.testing.assert_allclose(src.getB((1, 2, 3)), (1, 2, 3)) np.testing.assert_allclose(src.getH((1, 2, 3)), (1, 2, 3)) # acceptable func with only B return def ff(field, observers): """3 in 3 out""" if field == "B": return observers return None src = magpy.misc.CustomSource(field_func=ff) np.testing.assert_allclose(src.getB((1, 2, 3)), (1, 2, 3)) np.testing.assert_raises(MagpylibMissingInput, src.getH, (1, 2, 3)) # acceptable func with only B return def fff(field, observers): """3 in 3 out""" if field == "H": return observers return None src = magpy.misc.CustomSource(field_func=fff) np.testing.assert_raises(MagpylibMissingInput, src.getB, (1, 2, 3)) np.testing.assert_allclose(src.getH((1, 2, 3)), (1, 2, 3)) def test_input_objects_field_func_bad(): """bad input: magpy.misc.CustomSource(field_func=f)""" # pylint: disable=unused-argument # non callable np.testing.assert_raises(MagpylibBadUserInput, magpy.misc.CustomSource, 1) # bad arg names def ff(fieldd, observers, whatever): """ff""" np.testing.assert_raises(MagpylibBadUserInput, magpy.misc.CustomSource, ff) # no ndarray return on B def fff(field, observers): """fff""" if field == "B": return 1 np.testing.assert_raises(MagpylibBadUserInput, magpy.misc.CustomSource, fff) # no ndarray return on H def ffff(field, observers): """ffff""" if field == "H": return 1 return observers np.testing.assert_raises(MagpylibBadUserInput, magpy.misc.CustomSource, ffff) # bad return shape on B def g(field, observers): """g""" if field == "B": return np.array([1, 2, 3]) np.testing.assert_raises(MagpylibBadUserInput, magpy.misc.CustomSource, g) # bad return shape on H def gg(field, observers): """gg""" if field == "H": return np.array([1, 2, 3]) return observers np.testing.assert_raises(MagpylibBadUserInput, magpy.misc.CustomSource, gg) ########################################################### ########################################################### # DISPLAY def test_input_show_zoom_bad(): """bad show zoom inputs""" x = magpy.Sensor() bads = [ (1, 2, 3), -1, ] for bad in bads: np.testing.assert_raises(MagpylibBadUserInput, magpy.show, x, zoom=bad) def test_input_show_animation_bad(): """bad show animation inputs""" x = magpy.Sensor() bads = [ (1, 2, 3), -1, ] for bad in bads: np.testing.assert_raises(MagpylibBadUserInput, magpy.show, x, animation=bad) def test_input_show_backend_bad(): """bad show backend inputs""" x = magpy.Sensor() bads = [ (1, 2, 3), -1, "x", True, ] for bad in bads: np.testing.assert_raises(MagpylibBadUserInput, magpy.show, x, backend=bad) def test_input_show_missing_parameters1(): """missing inputs""" s = magpy.magnet.Cuboid() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.magnet.Cylinder() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.magnet.CylinderSegment() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.magnet.Sphere() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.current.Loop() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.current.Line() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.misc.Dipole() np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) def test_input_show_missing_parameters2(): """missing inputs""" s = magpy.magnet.Cuboid(dimension=(1, 2, 3)) np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.magnet.Cylinder(dimension=(1, 2)) np.testing.assert_raises(MagpylibMissingInput, magpy.show, s) s = magpy.magnet.CylinderSegment(dimension=(1, 2, 3, 4, 5))
np.testing.assert_raises(MagpylibMissingInput, magpy.show, s)
numpy.testing.assert_raises
#!/usr/bin/env python # A Global import to make code python 2 and 3 compatible from __future__ import print_function def make_graphs(graph_dir, mat_dict, centroids, aparc_names, n_rand=1000): #mat_dict comes from make_corr_matrices.py ''' A function that makes all the required graphs from the correlation matrices in mat_dict. These include the full graph with all connections including weights, and binarized graphs at 30 different costs betwen 1% to 30%. These graphs are fully connected because the minimum spanning tree is used before the strongest edges are added up to the required density. If the graphs do not already exist they are saved as gpickle files in graph_dir. If they do exist then they're read in from those files. In addition, files with values for the nodal topological measures and global topological measures are created and saved or loaded as appropriate. The function requires the centroids and aparc_names values in order to calculate the nodal measures. The value n_rand is the number of random graphs to calculate for the global and nodal measure calculations. The function returns a dictionary of graphs, nodal measures and global measures ''' #========================================================================== # IMPORTS #========================================================================== import os import networkx as nx import numpy as np import pickle #========================================================================== # Print to screen what you're up to #========================================================================== print ("--------------------------------------------------") print ("Making or loading graphs") #========================================================================== # Create an empty dictionary #========================================================================== graph_dict = {} #========================================================================== # Loop through all the matrices in mat_dict #========================================================================== for k in mat_dict.keys(): print (' {}'.format(k)) # Read in the matrix M = mat_dict[k] # Get the covars name mat_name, covars_name = k.split('_COVARS_') #------------------------------------------------------------------------- # Make the full graph first #------------------------------------------------------------------------- # Define the graph's file name and its dictionary key g_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'Graph_{}_COST_100.gpickle'.format(mat_name)) g_key = '{}_COST_100'.format(k) print (' Loading COST: 100',) # If it already exists just read it in from the pickled file if os.path.isfile(g_filename): graph_dict[g_key] = nx.read_gpickle(g_filename) # Otherwise you'll have to create it using the graph_at_cost function above else: graph_dict[g_key] = full_graph(M) # Save it as a gpickle file so you don't have to do this next time! dirname = os.path.dirname(g_filename) if not os.path.isdir(dirname): os.makedirs(dirname) nx.write_gpickle(graph_dict[g_key], g_filename) #------------------------------------------------------------------------- # Then for all the different costs between 1% and 30% #------------------------------------------------------------------------- for cost in [2] + range(5,21,5): #------------------------------------------------------------------------- # Define the graph's file name along with those of the the associated # global and nodal dictionaries #------------------------------------------------------------------------- g_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'Graph_{}_COST_{:02.0f}.gpickle'.format(mat_name, cost)) global_dict_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'GlobalDict_{}_COST_{:02.0f}.p'.format(mat_name, cost)) nodal_dict_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'NodalDict_{}_COST_{:02.0f}.p'.format(mat_name, cost)) rich_club_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'RichClub_{}_COST_{:02.0f}.p'.format(mat_name, cost)) g_key = '{}_COST_{:02.0f}'.format(k, cost) #------------------------------------------------------------------------- # Make or load the graph #------------------------------------------------------------------------- # If the graph already exists just read it in from the pickled file if os.path.isfile(g_filename): graph_dict[g_key] = nx.read_gpickle(g_filename) # Otherwise you'll have to create it using the graph_at_cost function else: graph_dict[g_key] = graph_at_cost(M, cost) # Save it as a gpickle file so you don't have to do this next time! nx.write_gpickle(graph_dict[g_key], g_filename) #------------------------------------------------------------------------- # Make or load the global and nodal measures dictionaries #------------------------------------------------------------------------- # If the rich_club measures files already exists just read it # and the nodal and global measures files in if os.path.isfile(rich_club_filename): # Print to screen so you know where you're up to if cost == 20: print ('- {:02.0f}'.format(cost)) else: print ('- {:02.0f}'.format(cost),) graph_dict['{}_GlobalMeasures'.format(g_key)] = pickle.load(open(global_dict_filename)) graph_dict['{}_NodalMeasures'.format(g_key)] = pickle.load(open(nodal_dict_filename)) graph_dict['{}_RichClub'.format(g_key)] = pickle.load(open(rich_club_filename)) # Otherwise you'll have to create them using the calculate_global_measures # and calculate_nodal_measures functions else: G = graph_dict[g_key] print ('\n Calculating COST: {:02.0f}'.format(cost)) # You need to calculate the same nodal partition for the global # and nodal measures nodal_partition = calc_nodal_partition(G) # And you'll also want the same list of random graphs R_list, R_nodal_partition_list = make_random_list(G, n_rand=n_rand) graph_dict['{}_GlobalMeasures'.format(g_key)] = calculate_global_measures(G, R_list=R_list, nodal_partition=nodal_partition, R_nodal_partition_list=R_nodal_partition_list) (graph_dict[g_key], graph_dict['{}_NodalMeasures'.format(g_key)]) = calculate_nodal_measures(G, centroids, aparc_names, nodal_partition=nodal_partition) graph_dict['{}_RichClub'.format(g_key)] = rich_club(G, R_list=R_list) # Save them as pickle files so you don't have to do this next time! pickle.dump(graph_dict['{}_GlobalMeasures'.format(g_key)], open(global_dict_filename, "wb")) pickle.dump(graph_dict['{}_NodalMeasures'.format(g_key)], open(nodal_dict_filename, "wb")) pickle.dump(graph_dict['{}_RichClub'.format(g_key)], open(rich_club_filename, "wb")) nx.write_gpickle(graph_dict[g_key], g_filename) # Return the full graph dictionary return graph_dict def full_graph(M): ''' Very easy, set the diagonals to 0 and then save the graph ''' import numpy as np import networkx as nx # Make a copy of the matrix thr_M = np.copy(M) # Set all diagonal values to 0 thr_M[np.diag_indices_from(thr_M)] = 0 # Read this full matrix into a graph G G = nx.from_numpy_matrix(thr_M) return G def graph_at_cost(M, cost): ''' A function that first creates the minimum spanning tree for the graph, and then adds in edges according to their connection strength up to a particular cost ''' import numpy as np import networkx as nx # Make a copy of the matrix thr_M =
np.copy(M)
numpy.copy
from typing import List, Tuple, Dict import torch import numpy as np from data_loader.dataset.pas_dataset import PASDataset from torch.utils.data import DataLoader class PASDataLoader(DataLoader): def __init__(self, dataset: PASDataset, batch_size: int, shuffle: bool, num_workers: int, pin_memory: bool, ): init_kwargs = { 'dataset': dataset, 'batch_size': batch_size, 'shuffle': shuffle, 'collate_fn': broadcast_collate_fn, 'num_workers': num_workers, 'pin_memory': pin_memory, } super().__init__(**init_kwargs) def broadcast_collate_fn(batch: List[Tuple[np.ndarray, ...]]) -> Dict[str, torch.Tensor]: input_ids, attention_mask, segment_ids, ng_token_mask, target, deps, task, overt_mask = zip(*batch) # Tuple[list] ng_token_mask = np.broadcast_arrays(*ng_token_mask) target = np.broadcast_arrays(*target) deps = np.broadcast_arrays(*deps) inputs = (input_ids, attention_mask, segment_ids, ng_token_mask, target, deps, task, overt_mask) labels = ('input_ids', 'attention_mask', 'segment_ids', 'ng_token_mask', 'target', 'deps', 'task', 'overt_mask') return {label: torch.as_tensor(
np.stack(elem, axis=0)
numpy.stack
import numpy as np import matplotlib.pyplot as plt def gen_perlin(x, y, seed=None): if seed is not None: np.random.seed(seed) p = np.arange(256, dtype=int) np.random.shuffle(p) p = np.stack([p,p]).flatten() x1, y1 = x.astype(int), y.astype(int) xf = x - x1 yf = y - y1 u = fade(xf) v = fade(yf) n00 = gradient(p[p[x1] + y1], xf, yf) n01 = gradient(p[p[x1] + y1 + 1], xf, yf -1) n11 = gradient(p[p[x1 + 1] + y1 + 1], xf -1, yf-1) n10 = gradient(p[p[x1+1] + y1], xf -1, yf) x1 = lerp(n00, n10, u) x2 = lerp(n01, n11, u) return lerp(x1, x2, v) def lerp(a, b, x): return a + x * (b-a) def fade(t): return 6 * t**5 - 15 * t **4 + 10 *t **3 def gradient(h, x, y): vectors =
np.array([[0,1], [0,-1], [1,0], [-1,0]])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([0,0,1])
numpy.array
""" Disctrict Cooling Network Calculations. Calculate which technologies need to be activated to meet the cooling energy demand and determine the cost and emissions that result from the activation of these cooling technologies. """ import numpy as np import pandas as pd from cea.constants import HOURS_IN_YEAR from cea.optimization.constants import VCC_T_COOL_IN, ACH_T_IN_FROM_CHP_K from cea.optimization.master import cost_model from cea.optimization.slave.cooling_resource_activation import calc_vcc_CT_operation, cooling_resource_activator from cea.technologies.storage_tank_pcm import Storage_tank_PCM from cea.technologies.chiller_vapor_compression import VaporCompressionChiller from cea.technologies.cogeneration import calc_cop_CCGT from cea.technologies.chiller_absorption import AbsorptionChiller from cea.technologies.supply_systems_database import SupplySystemsDatabase __author__ = "<NAME>" __copyright__ = "Copyright 2021, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" def district_cooling_network(locator, config, master_to_slave_variables, network_features, weather_features): """ Computes the parameters for the cooling of the complete DCN, including: - cost for cooling energy supply - hourly cooling energy supply - hourly electricity generation (from trigen) and demand (for VCCs) - hourly combustion fuel demand (for trigen) - installed capacity of each cooling technology :param locator: paths to cea input files and results folders :param master_to_slave_variables: all the important information on the energy system configuration of an individual (buildings [connected, non-connected], heating technologies, cooling technologies, storage etc.) :param config: configurations of cea :param network_features: characteristic parameters (pumping energy, mass flow rate, thermal losses & piping cost) of the district cooling/heating network :param weather_features: important environmental parameters (e.g. ambient & ground temperature) :type locator: cea.inputlocator.InputLocator class object :type master_to_slave_variables: cea.optimization.slave_data.SlaveData class object :type config: cea.config.Configuration class object :type network_features: cea.optimization.distribution.network_optimization_features.NetworkOptimizationFeatures class object :type weather_features: cea.optimization.preprocessing.preprocessing_main.WeatherFeatures class object :return district_cooling_costs: costs of all district cooling energy technologies (investment and operational costs of generation, storage and network) :return district_cooling_generation_dispatch: hourly thermal energy supply by each component of the district cooling energy system. :return district_cooling_electricity_requirements_dispatch: hourly electricity demand of each component of the district cooling energy generation system. :return district_cooling_fuel_requirements_dispatch: hourly combustion fuel demand of each component of the district cooling energy system (i.e. in the current setup only natural gas demand of the CCGT of the trigeneration system) :return district_cooling_capacity_installed: capacity of each district-scale cooling technology installed (corresponding to the given individual) :rtype district_cooling_costs: dict (27 x float) :rtype district_cooling_generation_dispatch: dict (15 x 8760-ndarray) :rtype district_cooling_electricity_requirements_dispatch: dict (6 x 8760-ndarray) :rtype district_cooling_fuel_requirements_dispatch: dict (1 x 8760-ndarray) :rtype district_cooling_capacity_installed: dict (9 x float) """ if master_to_slave_variables.DCN_exists: print("DISTRICT COOLING OPERATION") # THERMAL STORAGE + NETWORK # Import Temperatures from Network Summary: Q_thermal_req_W, \ T_district_cooling_return_K, \ T_district_cooling_supply_K, \ mdot_kgpers = calc_network_summary_DCN(master_to_slave_variables) # Initialize daily storage class T_ground_K = weather_features.ground_temp daily_storage = Storage_tank_PCM(activation=master_to_slave_variables.Storage_cooling_on, size_Wh=master_to_slave_variables.Storage_cooling_size_W, database_model_parameters= pd.read_excel(locator.get_database_conversion_systems(), sheet_name="TES"), T_ambient_K = np.average(T_ground_K), type_storage = config.optimization.cold_storage_type, debug = master_to_slave_variables.debug ) # Import Data - cooling energy potential from water bodies if master_to_slave_variables.WS_BaseVCC_on == 1 or master_to_slave_variables.WS_PeakVCC_on == 1: water_body_potential = pd.read_csv(locator.get_water_body_potential()) Q_therm_water_body = np.array(water_body_potential['QLake_kW']) * 1E3 total_WS_VCC_installed = master_to_slave_variables.WS_BaseVCC_size_W + \ master_to_slave_variables.WS_PeakVCC_size_W # TODO: the following line assumes that the thermal energy from the water body is used 1:1 by the VCC. # i.e. thermal_energy_in = thermal_energy_out for the VCC. Check if this assumption is correct. Q_therm_water_body_W = [x if x < total_WS_VCC_installed else total_WS_VCC_installed for x in Q_therm_water_body] T_source_average_water_body_K = np.array(water_body_potential['Ts_C']) + 273 else: Q_therm_water_body_W = np.zeros(HOURS_IN_YEAR) T_source_average_water_body_K = np.zeros(HOURS_IN_YEAR) # get properties of technology used in this script absorption_chiller = AbsorptionChiller( pd.read_excel(locator.get_database_conversion_systems(), sheet_name="Absorption_chiller"), 'double') CCGT_prop = calc_cop_CCGT(master_to_slave_variables.NG_Trigen_ACH_size_W, ACH_T_IN_FROM_CHP_K, "NG") VC_chiller = VaporCompressionChiller(locator, scale='DISTRICT') # initialize variables Q_Trigen_NG_gen_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_WS_gen_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_WS_gen_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_AS_gen_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_AS_gen_W = np.zeros(HOURS_IN_YEAR) Q_DailyStorage_content_W = np.zeros(HOURS_IN_YEAR) Q_DailyStorage_to_storage_W = np.zeros(HOURS_IN_YEAR) Q_DailyStorage_from_storage_W = np.zeros(HOURS_IN_YEAR) E_Trigen_NG_gen_W = np.zeros(HOURS_IN_YEAR) E_BaseVCC_AS_req_W = np.zeros(HOURS_IN_YEAR) E_PeakVCC_AS_req_W = np.zeros(HOURS_IN_YEAR) E_BaseVCC_WS_req_W = np.zeros(HOURS_IN_YEAR) E_PeakVCC_WS_req_W = np.zeros(HOURS_IN_YEAR) NG_Trigen_req_W = np.zeros(HOURS_IN_YEAR) Q_BackupVCC_AS_gen_W = np.zeros(HOURS_IN_YEAR) Q_Trigen_NG_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_WS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_WS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_AS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_AS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_BackupVCC_AS_directload_W = np.zeros(HOURS_IN_YEAR) for hour in range(HOURS_IN_YEAR): # cooling supply for all buildings excluding cooling loads from data centers daily_storage.hour = hour if master_to_slave_variables.debug is True: print("\nHour {:.0f}".format(hour)) if Q_thermal_req_W[hour] > 0.0: # only if there is a cooling load! daily_storage, \ thermal_output, \ electricity_output, \ gas_output = cooling_resource_activator(Q_thermal_req_W[hour], T_district_cooling_supply_K[hour], T_district_cooling_return_K[hour], Q_therm_water_body_W[hour], T_source_average_water_body_K[hour], T_ground_K[hour], daily_storage, absorption_chiller, VC_chiller, CCGT_prop, master_to_slave_variables) Q_DailyStorage_content_W[hour] = thermal_output['Qc_DailyStorage_content_W'] Q_DailyStorage_to_storage_W[hour] = thermal_output['Qc_DailyStorage_to_storage_W'] Q_DailyStorage_from_storage_W[hour] = thermal_output['Qc_DailyStorage_from_storage_W'] Q_Trigen_NG_gen_directload_W[hour] = thermal_output['Qc_Trigen_NG_gen_directload_W'] Q_BaseVCC_WS_gen_directload_W[hour] = thermal_output['Qc_BaseVCC_WS_gen_directload_W'] Q_PeakVCC_WS_gen_directload_W[hour] = thermal_output['Qc_PeakVCC_WS_gen_directload_W'] Q_BaseVCC_AS_gen_directload_W[hour] = thermal_output['Qc_BaseVCC_AS_gen_directload_W'] Q_PeakVCC_AS_gen_directload_W[hour] = thermal_output['Qc_PeakVCC_AS_gen_directload_W'] Q_BackupVCC_AS_directload_W[hour] = thermal_output['Qc_BackupVCC_AS_directload_W'] Q_Trigen_NG_gen_W[hour] = thermal_output['Qc_Trigen_NG_gen_W'] Q_BaseVCC_WS_gen_W[hour] = thermal_output['Qc_BaseVCC_WS_gen_W'] Q_PeakVCC_WS_gen_W[hour] = thermal_output['Qc_PeakVCC_WS_gen_W'] Q_BaseVCC_AS_gen_W[hour] = thermal_output['Qc_BaseVCC_AS_gen_W'] Q_PeakVCC_AS_gen_W[hour] = thermal_output['Qc_PeakVCC_AS_gen_W'] Q_BackupVCC_AS_gen_W[hour] = thermal_output['Qc_BackupVCC_AS_gen_W'] E_BaseVCC_WS_req_W[hour] = electricity_output['E_BaseVCC_WS_req_W'] E_PeakVCC_WS_req_W[hour] = electricity_output['E_PeakVCC_WS_req_W'] E_BaseVCC_AS_req_W[hour] = electricity_output['E_BaseVCC_AS_req_W'] E_PeakVCC_AS_req_W[hour] = electricity_output['E_PeakVCC_AS_req_W'] E_Trigen_NG_gen_W[hour] = electricity_output['E_Trigen_NG_gen_W'] NG_Trigen_req_W[hour] = gas_output['NG_Trigen_req_W'] # calculate the electrical capacity as a function of the peak produced by the turbine master_to_slave_variables.NG_Trigen_CCGT_size_electrical_W = E_Trigen_NG_gen_W.max() # BACK-UPP VCC - AIR SOURCE master_to_slave_variables.AS_BackupVCC_size_W = np.amax(Q_BackupVCC_AS_gen_W) size_chiller_CT = master_to_slave_variables.AS_BackupVCC_size_W if master_to_slave_variables.AS_BackupVCC_size_W != 0.0: master_to_slave_variables.AS_BackupVCC_on = 1 Q_BackupVCC_AS_gen_W, \ E_BackupVCC_AS_req_W = np.vectorize(calc_vcc_CT_operation)(Q_BackupVCC_AS_gen_W, T_district_cooling_return_K, T_district_cooling_supply_K, VCC_T_COOL_IN, size_chiller_CT, VC_chiller) else: E_BackupVCC_AS_req_W = np.zeros(HOURS_IN_YEAR) # CAPEX (ANNUAL, TOTAL) AND OPEX (FIXED, VAR, ANNUAL) GENERATION UNITS supply_systems = SupplySystemsDatabase(locator) mdotnMax_kgpers = np.amax(mdot_kgpers) performance_costs_generation, \ district_cooling_capacity_installed \ = cost_model.calc_generation_costs_capacity_installed_cooling(locator, master_to_slave_variables, supply_systems, mdotnMax_kgpers ) # CAPEX (ANNUAL, TOTAL) AND OPEX (FIXED, VAR, ANNUAL) STORAGE UNITS performance_costs_storage = cost_model.calc_generation_costs_cooling_storage(master_to_slave_variables, daily_storage ) # CAPEX (ANNUAL, TOTAL) AND OPEX (FIXED, VAR, ANNUAL) NETWORK performance_costs_network, \ E_used_district_cooling_network_W = cost_model.calc_network_costs_cooling(locator, master_to_slave_variables, network_features, "DC") # MERGE COSTS AND EMISSIONS IN ONE FILE performance = dict(performance_costs_generation, **performance_costs_storage) district_cooling_costs = dict(performance, **performance_costs_network) else: Q_thermal_req_W = np.zeros(HOURS_IN_YEAR) Q_DailyStorage_from_storage_W = np.zeros(HOURS_IN_YEAR) Q_DailyStorage_content_W = np.zeros(HOURS_IN_YEAR) Q_DailyStorage_to_storage_W = np.zeros(HOURS_IN_YEAR) Q_Trigen_NG_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_WS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_WS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_AS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_AS_gen_directload_W = np.zeros(HOURS_IN_YEAR) Q_BackupVCC_AS_directload_W = np.zeros(HOURS_IN_YEAR) Q_Trigen_NG_gen_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_WS_gen_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_WS_gen_W = np.zeros(HOURS_IN_YEAR) Q_BaseVCC_AS_gen_W = np.zeros(HOURS_IN_YEAR) Q_PeakVCC_AS_gen_W = np.zeros(HOURS_IN_YEAR) Q_BackupVCC_AS_gen_W = np.zeros(HOURS_IN_YEAR) E_Trigen_NG_gen_W = np.zeros(HOURS_IN_YEAR) E_used_district_cooling_network_W = np.zeros(HOURS_IN_YEAR) E_BaseVCC_WS_req_W = np.zeros(HOURS_IN_YEAR) E_PeakVCC_WS_req_W = np.zeros(HOURS_IN_YEAR) E_BaseVCC_AS_req_W = np.zeros(HOURS_IN_YEAR) E_PeakVCC_AS_req_W = np.zeros(HOURS_IN_YEAR) E_BackupVCC_AS_req_W =
np.zeros(HOURS_IN_YEAR)
numpy.zeros
""" Wrappers around qcodes.utils.dataset.doNd functions that live-plot data during the sweep. """ import re import sys import inspect import functools import itertools import numpy as np from typing import Any, Optional, Union, Tuple, List, Mapping from dataclasses import dataclass, field from qcodes import config from qcodes.dataset.data_set import DataSet from qcodes.dataset.descriptions.param_spec import ParamSpecBase from qcodes.instrument.parameter import _BaseParameter import qcodes.utils.dataset.doNd as doNd from ..plot import PlotWindow, PlotItem, PlotDataItem, ImageItem, TableWidget from ..plot.plot_tools import save_figure from ..logging import get_logger # Get access to module level variables this = sys.modules[__name__] this.current = None logger = get_logger("tools.doNd") # Utility functions for parsing parameter names from plot titles _param = r"(\w+)\s+\([^)]+\)" _single_id = r"(\d+)(?:-(\d+))?(?:, (?=\d))?" _id = r"(\(id:\s+(?:\d+(?:-\d+)?(?:, (?=\d))?)+\))" _id_re = re.compile(_single_id, re.IGNORECASE) _plot_title_re = re.compile(r"("+_param+r"\s+v\.(?:<br>|\s)+"+_param+r")\s+"+_id, re.MULTILINE|re.IGNORECASE) _single_param_title_re = re.compile(r"("+_param+r")\s*"+_id, re.MULTILINE) def _get_window(append, size=(1000, 600)): """ Return a handle to a plot window to use for this plot. If append is False, create a new plot window, otherwise return a handle to the given window, or the last created window. Args: append (Union[bool, PlotWindow]): If true, return the last created plot window, if PlotWindow, return that window, otherwise a new window will be created. size (Tuple[int, int]): The size in px of the new plot window. If append is not false, this parameter has no effect. """ # Set up a plotting window if append is None or append is False: win = PlotWindow() win.win_title = 'ID: ' win.resize(*size) elif isinstance(append, PlotWindow): # Append to the given window win = append elif isinstance(append, bool): # Append to the last trace if true win = PlotWindow.getWindows()[-1] else: raise ValueError("Unknown argument to append. Either give a plot window" " or true to append to the last plot") return win def _explode_ids(ids_str: str) -> List[int]: """ Explode a list of ids from a plot title into a list of all ids. """ ids = [] for match in _id_re.finditer(ids_str): start, stop = match.groups() if stop is None: ids.append(int(start)) else: ids.extend(range(int(start), int(stop)+1)) return tuple(ids) def _reduce_ids(ids: List[int]): strings = [] i = 1 r = 0 while i < len(ids): if ids[i] == ids[i-1]+1: i += 1 else: if i-1 == r: strings.append(f"{ids[r]}") else: strings.append(f"{ids[r]}-{ids[i-1]}") r = i i += 1 if i-1 == r: strings.append(f"{ids[r]}") else: strings.append(f"{ids[r]}-{ids[i-1]}") return strings def _parse_title(title) -> Tuple[str, Tuple[str], Tuple[int]]: match = _plot_title_re.fullmatch(title) if not match: # Might be a single title re match = _single_param_title_re.fullmatch(title) if not match: return None paramstr, param_name, ids = match.groups() ids = _explode_ids(ids) return(paramstr, (param_name,), ids) paramstr, param1_name, param2_name, ids = match.groups() ids = _explode_ids(ids) return (paramstr, (param1_name, param2_name), ids) def _compatible_plot_item(win: PlotWindow, p_bot: ParamSpecBase, p_left: Optional[ParamSpecBase] = None) -> Optional[PlotItem]: """ Returns a compatible plot item if found """ if p_left is not None: axes = (p_bot.name, p_left.name) else: axes = (p_bot.name, ) for item in win.items: if isinstance(item, PlotItem): _, params, _ = _parse_title(item.plot_title) if params == axes: return item return None def _register_subscriber(): """ Register live plotting in the qcodes config object. """ if "qcm" not in config.subscription.subscribers: logger.info("Registering qcm as a default subscriber") config.subscription.subscribers["qcm"] = { 'factory': 'qcodes_measurements.tools.doNd.subscriber', 'factory_kwargs': {}, 'subscription_kwargs': { 'min_wait': 10, 'min_count': 0, 'callback_kwargs': {} } } config.subscription.default_subscribers.append("qcm") # Tuple for live plotting @dataclass(frozen=False) class LivePlotWindow: plot_window: Optional[PlotWindow] stack: bool = False append: bool = False dataset: DataSet = None datacount: Mapping[str, int] = field(default_factory=dict) table_items: Mapping[str, Union[int, float]] = None plot_items: Mapping[str, Union[PlotDataItem, ImageItem]] = field(default_factory=dict) plot_params: List[_BaseParameter] = None def do_nothing(new_data, data_len, state): """ Function that does nothing """ return def update_plots(new_data, data_len, state): """ Function that updates plots when live plotting """ write_count = this.current.dataset.cache._write_status # Don't update if we haven't started measuring yet if not write_count or any(wc == 0 for wc in write_count.values()): return run_desc = this.current.dataset.description data_cache = this.current.dataset.cache.data() params = run_desc.interdeps shapes = run_desc.shapes plot_items = this.current.plot_items.items() table_items = this.current.table_items.items() if this.current.table_items is not None else () for param, plotitem in itertools.chain(plot_items, table_items): # Keep track of how much of the plot we've written, and only update # parameters that are being measured. if param not in write_count: continue if param not in this.current.datacount: this.current.datacount[param] = write_count[param] elif write_count[param] == this.current.datacount[param]: continue else: this.current.datacount[param] = write_count[param] # Update plots if shapes[param] == (1,): val = data_cache[param][param][0] if isinstance(val, (float, np.float16, np.float32, np.float64)): val =
np.format_float_scientific(val)
numpy.format_float_scientific
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right'), IntervalIndex.from_tuples([('a', 'd'), ('e', 'j'), ('w', 'z')]), IntervalIndex.from_tuples([(1, 2), ('a', 'z'), (3.14, 6.28)])]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with tm.assert_raises_regex(ValueError, msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with tm.assert_raises_regex(ValueError, msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_unique(self, closed): # unique non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_unique # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique # duplicate idx = IntervalIndex.from_tuples( [(0, 1), (0, 1), (2, 3)], closed=closed) assert not idx.is_unique # unique mixed idx = IntervalIndex.from_tuples([(0, 1), ('a', 'b')], closed=closed) assert idx.is_unique # duplicate mixed idx = IntervalIndex.from_tuples( [(0, 1), ('a', 'b'), (0, 1)], closed=closed) assert not idx.is_unique # empty idx = IntervalIndex([], closed=closed) assert idx.is_unique def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self, closed): expected = IntervalIndex.from_tuples( [(0.0, 1.0), (1.0, 2.0)], closed=closed) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays( [0, 1, np.nan], [1, 2, np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) def test_non_contiguous(self, closed): index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index def test_union(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(13), closed=closed) result = index.union(other) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.union(index), index) tm.assert_index_equal(index.union(index[:1]), index) def test_intersection(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(5, 11), closed=closed) result = index.intersection(other) tm.assert_index_equal(result, expected) result = other.intersection(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.intersection(index), index) def test_difference(self, closed): index = self.create_index(closed=closed) tm.assert_index_equal(index.difference(index[:1]), index[1:]) def test_symmetric_difference(self, closed): idx = self.create_index(closed=closed) result = idx[1:].symmetric_difference(idx[:-1]) expected = IntervalIndex([idx[0], idx[-1]]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('op_name', [ 'union', 'intersection', 'difference', 'symmetric_difference']) def test_set_operation_errors(self, closed, op_name): index = self.create_index(closed=closed) set_op = getattr(index, op_name) # test errors msg = ('can only do set operations between two IntervalIndex objects ' 'that are closed on the same side') with tm.assert_raises_regex(ValueError, msg): set_op(Index([1, 2, 3])) for other_closed in {'right', 'left', 'both', 'neither'} - {closed}: other = self.create_index(closed=other_closed) with tm.assert_raises_regex(ValueError, msg): set_op(other) def test_isin(self, closed): index = self.create_index(closed=closed) expected = np.array([True] + [False] * (len(index) - 1)) result = index.isin(index[:1]) tm.assert_numpy_array_equal(result, expected) result = index.isin([index[0]]) tm.assert_numpy_array_equal(result, expected) other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed) expected = np.array([True] * (len(index) - 1) + [False]) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) for other_closed in {'right', 'left', 'both', 'neither'}: other = self.create_index(closed=other_closed) expected = np.repeat(closed == other_closed, len(index)) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index > 0 with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index <= 0 with pytest.raises(TypeError): self.index > np.arange(2) with pytest.raises(ValueError): self.index > np.arange(3) def test_missing_values(self, closed): idx = Index([np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]) idx2 = IntervalIndex.from_arrays( [np.nan, 0, 1], [np.nan, 1, 2], closed=closed) assert idx.equals(idx2) with pytest.raises(ValueError): IntervalIndex.from_arrays( [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self, closed): index = self.create_index(closed=closed) result = index.sort_values() tm.assert_index_equal(result, index) result = index.sort_values(ascending=False) tm.assert_index_equal(result, index[::-1]) # with nan index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)]) result = index.sort_values() expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan]) tm.assert_index_equal(result, expected) result = index.sort_values(ascending=False) expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)]) tm.assert_index_equal(result, expected) def test_datetime(self): dates = date_range('2000', periods=3) idx = IntervalIndex.from_breaks(dates) tm.assert_index_equal(idx.left, dates[:2]) tm.assert_index_equal(idx.right, dates[-2:]) expected = date_range('2000-01-01T12:00', periods=2) tm.assert_index_equal(idx.mid, expected) assert Timestamp('2000-01-01T12') not in idx assert Timestamp('2000-01-01T12') not in idx target = date_range('1999-12-31T12:00', periods=7, freq='12H') actual = idx.get_indexer(target) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_append(self, closed): index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed) index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed) result = index1.append(index2) expected = IntervalIndex.from_arrays( [0, 1, 1, 2], [1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) result = index1.append([index1, index2]) expected = IntervalIndex.from_arrays( [0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) msg = ('can only append two IntervalIndex objects that are closed ' 'on the same side') for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: index_other_closed = IntervalIndex.from_arrays( [0, 1], [1, 2], closed=other_closed) with tm.assert_raises_regex(ValueError, msg): index1.append(index_other_closed) def test_is_non_overlapping_monotonic(self, closed): # Should be True in all cases tpls = [(0, 1), (2, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is True idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is True # Should be False in all cases (overlapping) tpls = [(0, 2), (1, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False in all cases (non-monotonic) tpls = [(0, 1), (2, 3), (6, 7), (4, 5)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False for closed='both', overwise True (GH16560) if closed == 'both': idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is False else: idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is True class TestIntervalRange(object): def test_construction_from_numeric(self, closed, name): # combinations of start/end/periods without freq expected = IntervalIndex.from_breaks( np.arange(0, 6), name=name, closed=closed) result = interval_range(start=0, end=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=5, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with freq expected = IntervalIndex.from_tuples([(0, 2), (2, 4), (4, 6)], name=name, closed=closed) result = interval_range(start=0, end=6, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=3, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=6, periods=3, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. expected = IntervalIndex.from_tuples([(0.0, 1.5), (1.5, 3.0)], name=name, closed=closed) result = interval_range(start=0, end=4, freq=1.5, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_construction_from_timestamp(self, closed, name): # combinations of start/end/periods without freq start, end = Timestamp('2017-01-01'), Timestamp('2017-01-06') breaks = date_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timestamp('2017-01-01'), Timestamp('2017-01-07') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2017-01-08') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with non-fixed freq freq = 'M' start, end = Timestamp('2017-01-01'), Timestamp('2017-12-31') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=11, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=11, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2018-01-15') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_construction_from_timedelta(self, closed, name): # combinations of start/end/periods without freq start, end = Timedelta('1 day'), Timedelta('6 days') breaks = timedelta_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timedelta('1 day'), Timedelta('7 days') breaks = timedelta_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timedelta('7 days 1 hour') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_constructor_coverage(self): # float value for periods expected = pd.interval_range(start=0, periods=10) result = pd.interval_range(start=0, periods=10.5) tm.assert_index_equal(result, expected) # equivalent timestamp-like start/end start, end = Timestamp('2017-01-01'), Timestamp('2017-01-15') expected = pd.interval_range(start=start, end=end) result = pd.interval_range(start=start.to_pydatetime(), end=end.to_pydatetime()) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.asm8, end=end.asm8) tm.assert_index_equal(result, expected) # equivalent freq with timestamp equiv_freq = ['D', Day(), Timedelta(days=1), timedelta(days=1), DateOffset(days=1)] for freq in equiv_freq: result = pd.interval_range(start=start, end=end, freq=freq) tm.assert_index_equal(result, expected) # equivalent timedelta-like start/end start, end = Timedelta(days=1), Timedelta(days=10) expected = pd.interval_range(start=start, end=end) result = pd.interval_range(start=start.to_pytimedelta(), end=end.to_pytimedelta()) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.asm8, end=end.asm8) tm.assert_index_equal(result, expected) # equivalent freq with timedelta equiv_freq = ['D', Day(), Timedelta(days=1), timedelta(days=1)] for freq in equiv_freq: result = pd.interval_range(start=start, end=end, freq=freq) tm.assert_index_equal(result, expected) def test_errors(self): # not enough params msg = ('Of the three parameters: start, end, and periods, ' 'exactly two must be specified') with tm.assert_raises_regex(ValueError, msg): interval_range(start=0) with tm.assert_raises_regex(ValueError, msg): interval_range(end=5) with tm.assert_raises_regex(ValueError, msg): interval_range(periods=2) with tm.assert_raises_regex(ValueError, msg): interval_range() # too many params with tm.assert_raises_regex(ValueError, msg): interval_range(start=0, end=5, periods=6) # mixed units msg = 'start, end, freq need to be type compatible' with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=Timestamp('20130101'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=Timedelta('1 day'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=Timedelta('1 day'), freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=Timestamp('20130110'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=Timestamp('20130110'), freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=Timedelta('10 days'), freq=2) # invalid periods msg = 'periods must be a number, got foo' with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, periods='foo') # invalid start msg = 'start must be numeric or datetime-like, got foo' with tm.assert_raises_regex(ValueError, msg): interval_range(start='foo', periods=10) # invalid end msg = r'end must be numeric or datetime-like, got \(0, 1\]' with tm.assert_raises_regex(ValueError, msg): interval_range(end=Interval(0, 1), periods=10) # invalid freq for datetime-like msg = 'freq must be numeric or convertible to DateOffset, got foo' with tm.assert_raises_regex(ValueError, msg): interval_range(start=0, end=10, freq='foo') with tm.assert_raises_regex(ValueError, msg): interval_range(start=Timestamp('20130101'), periods=10, freq='foo') with tm.assert_raises_regex(ValueError, msg): interval_range(end=Timedelta('1 day'), periods=10, freq='foo') class TestIntervalTree(object): def setup_method(self, method): gentree = lambda dtype: IntervalTree(np.arange(5, dtype=dtype), np.arange(5, dtype=dtype) + 2) self.tree = gentree('int64') self.trees = {dtype: gentree(dtype) for dtype in ['int32', 'int64', 'float32', 'float64']} def test_get_loc(self): for dtype, tree in self.trees.items(): tm.assert_numpy_array_equal(tree.get_loc(1), np.array([0], dtype='int64')) tm.assert_numpy_array_equal(np.sort(tree.get_loc(2)), np.array([0, 1], dtype='int64')) with pytest.raises(KeyError): tree.get_loc(-1) def test_get_indexer(self): for dtype, tree in self.trees.items(): tm.assert_numpy_array_equal( tree.get_indexer(np.array([1.0, 5.5, 6.5])), np.array([0, 4, -1], dtype='int64')) with pytest.raises(KeyError): tree.get_indexer(np.array([3.0])) def test_get_indexer_non_unique(self): indexer, missing = self.tree.get_indexer_non_unique( np.array([1.0, 2.0, 6.5])) tm.assert_numpy_array_equal(indexer[:1], np.array([0], dtype='int64')) tm.assert_numpy_array_equal(
np.sort(indexer[1:3])
numpy.sort
from __future__ import print_function, division from warnings import warn import pandas as pd import numpy as np import pickle import copy from nilmtk.utils import find_nearest from nilmtk.feature_detectors import cluster from nilmtk.disaggregate import Disaggregator from nilmtk.datastore import HDFDataStore # Fix the seed for repeatability of experiments SEED = 42 np.random.seed(SEED) class CombinatorialOptimisation(Disaggregator): """1 dimensional combinatorial optimisation NILM algorithm. Attributes ---------- model : list of dicts Each dict has these keys: states : list of ints (the power (Watts) used in different states) training_metadata : ElecMeter or MeterGroup object used for training this set of states. We need this information because we need the appliance type (and perhaps some other metadata) for each model. state_combinations : 2D array Each column is an appliance. Each row is a possible combination of power demand values e.g. [[0, 0, 0, 0], [0, 0, 0, 100], [0, 0, 50, 0], [0, 0, 50, 100], ...] MIN_CHUNK_LENGTH : int """ def __init__(self): self.model = [] self.state_combinations = None self.MIN_CHUNK_LENGTH = 100 self.MODEL_NAME = 'CO' def train(self, metergroup, num_states_dict=None, **load_kwargs): """Train using 1D CO. Places the learnt model in the `model` attribute. Parameters ---------- metergroup : a nilmtk.MeterGroup object num_states_dict : dict **load_kwargs : keyword arguments passed to `meter.power_series()` Notes ----- * only uses first chunk for each meter (TODO: handle all chunks). """ if num_states_dict is None: num_states_dict = {} if self.model: raise RuntimeError( "This implementation of Combinatorial Optimisation" " does not support multiple calls to `train`.") num_meters = len(metergroup.meters) if num_meters > 12: max_num_clusters = 2 else: max_num_clusters = 3 for i, meter in enumerate(metergroup.submeters().meters): print("Training model for submeter '{}'".format(meter)) power_series = meter.power_series(**load_kwargs) chunk = next(power_series) num_total_states = num_states_dict.get(meter) if num_total_states is not None: num_on_states = num_total_states - 1 else: num_on_states = None self.train_on_chunk(chunk, meter, max_num_clusters, num_on_states) # Check to see if there are any more chunks. # TODO handle multiple chunks per appliance. try: next(power_series) except StopIteration: pass else: warn("The current implementation of CombinatorialOptimisation" " can only handle a single chunk. But there are multiple" " chunks available. So have only trained on the" " first chunk!") print("Done training!") def train_on_chunk(self, chunk, meter, max_num_clusters, num_on_states): # Check if we've already trained on this meter meters_in_model = [d['training_metadata'] for d in self.model] if meter in meters_in_model: raise RuntimeError( "Meter {} is already in model!" " Can't train twice on the same meter!" .format(meter)) states = cluster(chunk, max_num_clusters, num_on_states) self.model.append({ 'states': states, 'training_metadata': meter}) def _set_state_combinations_if_necessary(self): """Get centroids""" # If we import sklearn at the top of the file then auto doc fails. if (self.state_combinations is None or self.state_combinations.shape[1] != len(self.model)): from sklearn.utils.extmath import cartesian centroids = [model['states'] for model in self.model] self.state_combinations = cartesian(centroids) def disaggregate(self, mains, output_datastore,**load_kwargs): '''Disaggregate mains according to the model learnt previously. Parameters ---------- mains : nilmtk.ElecMeter or nilmtk.MeterGroup output_datastore : instance of nilmtk.DataStore subclass For storing power predictions from disaggregation algorithm. sample_period : number, optional The desired sample period in seconds. Set to 60 by default. sections : TimeFrameGroup, optional Set to mains.good_sections() by default. **load_kwargs : key word arguments Passed to `mains.power_series(**kwargs)` ''' load_kwargs = self._pre_disaggregation_checks(load_kwargs) load_kwargs.setdefault('sample_period', 60) load_kwargs.setdefault('sections', mains.good_sections()) timeframes = [] building_path = '/building{}'.format(mains.building()) mains_data_location = building_path + '/elec/meter1' data_is_available = False for chunk in mains.power_series(**load_kwargs): # Check that chunk is sensible size if len(chunk) < self.MIN_CHUNK_LENGTH: continue # Record metadata timeframes.append(chunk.timeframe) measurement = chunk.name appliance_powers = self.disaggregate_chunk(chunk) for i, model in enumerate(self.model): appliance_power = appliance_powers.iloc[:, i] if len(appliance_power) == 0: continue data_is_available = True cols = pd.MultiIndex.from_tuples([chunk.name]) meter_instance = model['training_metadata'].instance() df = pd.DataFrame( appliance_power.values, index=appliance_power.index, columns=cols) key = '{}/elec/meter{}'.format(building_path, meter_instance) output_datastore.append(key, df) # Copy mains data to disag output mains_df = pd.DataFrame(chunk, columns=cols) output_datastore.append(key=mains_data_location, value=mains_df) if data_is_available: self._save_metadata_for_disaggregation( output_datastore=output_datastore, sample_period=load_kwargs['sample_period'], measurement=measurement, timeframes=timeframes, building=mains.building(), meters=[d['training_metadata'] for d in self.model] ) def disaggregate_chunk(self, mains): """In-memory disaggregation. Parameters ---------- mains : pd.Series Returns ------- appliance_powers : pd.DataFrame where each column represents a disaggregated appliance. Column names are the integer index into `self.model` for the appliance in question. """ if not self.model: raise RuntimeError( "The model needs to be instantiated before" " calling `disaggregate`. The model" " can be instantiated by running `train`.") if len(mains) < self.MIN_CHUNK_LENGTH: raise RuntimeError("Chunk is too short.") # Because CombinatorialOptimisation could have been trained using # either train() or train_on_chunk(), we must # set state_combinations here. self._set_state_combinations_if_necessary() """ # Add vampire power to the model if vampire_power is None: vampire_power = get_vampire_power(mains) if vampire_power > 0: print("Including vampire_power = {} watts to model..." .format(vampire_power)) n_rows = self.state_combinations.shape[0] vampire_power_array = np.zeros((n_rows, 1)) + vampire_power state_combinations = np.hstack( (self.state_combinations, vampire_power_array)) else: state_combinations = self.state_combinations """ state_combinations = self.state_combinations summed_power_of_each_combination =
np.sum(state_combinations, axis=1)
numpy.sum
# !/usr/bin/env python """ JADE.py Description: the implemention of modified JADE Refrence paper: <NAME>, and <NAME>. "JADE: adaptive differential evolution with optional external archive." Member variables: Name: JADE FERuntime: time for fitness evaluation FENum: number of fitness evaluation runtime: time for whole algorithm optimalX: optimal solution for problem optimalY: optimal value for problem convergeCurve: the procedure of convergence convergeCurveInterval: inverval between two saved points muF: the initial mean of F distribution muCR: the initial mean of CR distribution p: top p inidividuals c: postive constant for muCR Member function: setParameters(weight, learningRate): setting parameters optimize(cfp, ap, printLog): the main process of optimization cfp: config for continue function parameters ap: config for algorithm parameters printLog: determine whether to print Log after opitmization (true default) Example: agent = JADE() agent.optimize(cfp, ap, printLog=True) # cfp ap need to config at first """ from function import continueFunction as cF import numpy as np import time import sys import copy __all__ = ['JADE'] class JADE: def __init__(self): self.Name = "JADE" self.FERuntime = 0 self.FENum = 0 self.setParameters() # setting muF, muCR, p, c def setParameters(self, muF=0.5, muCR=0.5, p=0.05, c=0.1): self.muF = muF self.muCR = muCR self.p = p self.c = c def optimize(self, cfp, ap, printLog=True): runtimeStart = time.clock() self.__mainLoop(cfp, ap, printLog) self.runtime = time.clock() - runtimeStart def __mainLoop(self, cfp, ap, printLog): np.random.seed(ap.initialSeed) popSize = ap.populationSize Dim = cfp.funcDim function = getattr(cF, cfp.funcName) lowerBoundX = np.kron(np.ones((popSize, 1)), cfp.funcLowerBound) upperBoundX = np.kron(np.ones((popSize, 1)), cfp.funcUpperBound) lowerInitBoundX = np.kron(
np.ones((popSize, 1))
numpy.ones
from __future__ import absolute_import, division, print_function import os import math import matplotlib.pyplot as plt import numpy as np import random import sys import battleship_utils_py as bscpp from pydrake.all import (AutoDiffXd, GurobiSolver, RigidBodyTree, RigidBody) from pydrake.solvers import ik from pydrake.multibody.joints import PrismaticJoint, RevoluteJoint from pydrake.multibody.shapes import Box, VisualElement from pydrake.multibody.collision import CollisionElement from underactuated import PlanarRigidBodyVisualizer def nullspace(A, atol=1e-13, rtol=0): """Compute an approximate basis for the nullspace of A. The algorithm used by this function is based on the singular value decomposition of `A`. Parameters ---------- A : ndarray A should be at most 2-D. A 1-D array with length k will be treated as a 2-D with shape (1, k) atol : float The absolute tolerance for a zero singular value. Singular values smaller than `atol` are considered to be zero. rtol : float The relative tolerance. Singular values less than rtol*smax are considered to be zero, where smax is the largest singular value. If both `atol` and `rtol` are positive, the combined tolerance is the maximum of the two; that is:: tol = max(atol, rtol * smax) Singular values smaller than `tol` are considered to be zero. Return value ------------ ns : ndarray If `A` is an array with shape (m, k), then `ns` will be an array with shape (k, n), where n is the estimated dimension of the nullspace of `A`. The columns of `ns` are a basis for the nullspace; each element in numpy.dot(A, ns) will be approximately zero. """ A = np.atleast_2d(A) u, s, vh = np.linalg.svd(A) tol = max(atol, rtol * s[0]) nnz = (s >= tol).sum() ns = vh[nnz:].conj().T return ns class BattleshipBoardVisualizer(PlanarRigidBodyVisualizer): def __init__(self, width, height, *args, **kwargs): PlanarRigidBodyVisualizer.__init__(self, *args, **kwargs) self.width = width self.height = height self.ax.autoscale(enable=False, axis='both') self.ax.set_aspect('equal', adjustable='box') self.ax.axis('on') #self.ax.set_aspect('equal', 'datalim') self.ax.set_xticks(range(0, self.width+1)) self.ax.set_xticks(np.arange(-0.5, self.width, 1.0), minor=True) self.ax.set_yticks(range(0, self.height+1)) self.ax.set_yticks(np.arange(-0.5, self.height, 1.0), minor=True) self.ax.grid(which="major", color="b", linestyle="--") self.ax.grid(which="minor", color="b", linestyle="-") self.ax.set_xlim([-1, self.width+1]) self.ax.set_ylim([-1, self.height+1]) def draw(self, context): PlanarRigidBodyVisualizer.draw(self, context) def draw_board_state(ax, rbt, q, board_width, board_height): Tview = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.]]) viz = BattleshipBoardVisualizer( board_width, board_height, rbt, Tview, xlim=[0., board_width], ylim=[0., board_height], ax=ax) viz.draw(q) return viz def spawn_rbt(width, height, max_length, N, random_length=True): rbt = RigidBodyTree() q0 = np.zeros(N*3) world_body = rbt.get_body(0) color_generator = iter(plt.cm.rainbow(np.linspace(0, 1, N+1))) for i in range(N): q0[i*3+0] = np.random.uniform(0., width) # q0[i*3+1] = height / 2. q0[i*3+1] = np.random.uniform(0., height) q0[i*3+2] = np.random.uniform(0., math.pi*2.) color = next(color_generator) if random_length: length = random.randrange(1, max_length + 1) else: length = max_length joint_link_x = RigidBody() joint_link_x.set_name("ship_%d_joint_link_x" % i) joint_link_x.add_joint( world_body, PrismaticJoint("x", np.eye(4), np.array([1., 0., 0.]))) rbt.add_rigid_body(joint_link_x) joint_link_y = RigidBody() joint_link_y.set_name("ship_%d_joint_link_y" % i) joint_link_y.add_joint( joint_link_x, PrismaticJoint("y", np.eye(4), np.array([0., 1., 0.]))) rbt.add_rigid_body(joint_link_y) ship_link = RigidBody() ship_link.set_name("ship_%d_ship_link" % i) ship_link.add_joint( joint_link_y, RevoluteJoint("theta", np.eye(4), np.array([0., 0., 1.]))) boxElement = Box([1.0, length, 1.0]) boxVisualElement = VisualElement(boxElement, np.eye(4), color) ship_link.AddVisualElement(boxVisualElement) # necessary so this last link isn't pruned by the rbt.compile() call ship_link.set_spatial_inertia(np.eye(6)) # get welded rbt.add_rigid_body(ship_link) boxCollisionElement = CollisionElement(boxElement, np.eye(4)) boxCollisionElement.set_body(ship_link) rbt.addCollisionElement(boxCollisionElement, ship_link, "default") # Add wall visual + collision elements wall_color = next(color_generator) wallWidthElement = Box([width+2, 100.0, 1.0]) tf = np.eye(4) tf[0, 3] = width/2. tf[1, 3] = -50 world_body.AddVisualElement(VisualElement( wallWidthElement, tf, wall_color)) wall_ny_collision = CollisionElement(wallWidthElement, tf) wall_ny_collision.set_body(world_body) rbt.addCollisionElement(wall_ny_collision, world_body, "default") tf[0, 3] = width/2. tf[1, 3] = height+50 world_body.AddVisualElement(VisualElement( wallWidthElement, tf, wall_color)) wall_py_collision = CollisionElement(wallWidthElement, tf) wall_py_collision.set_body(world_body) rbt.addCollisionElement(wall_py_collision, world_body, "default") wallHeightElement = Box([100.0, height+2, 1.0]) tf = np.eye(4) tf[0, 3] = -50 tf[1, 3] = height/2. world_body.AddVisualElement(VisualElement( wallHeightElement, tf, wall_color)) wall_nx_collision = CollisionElement(wallHeightElement, tf) wall_nx_collision.set_body(world_body) rbt.addCollisionElement(wall_nx_collision, world_body, "default") tf = np.eye(4) tf[0, 3] = width+50 tf[1, 3] = height/2. world_body.AddVisualElement(VisualElement( wallHeightElement, tf, wall_color)) wall_px_collision = CollisionElement(wallHeightElement, tf) wall_px_collision.set_body(world_body) rbt.addCollisionElement(wall_px_collision, world_body, "default") rbt.compile() return rbt, q0 def projectToFeasibilityWithIK(rbt, q0, board_width, board_height): constraints = [] constraints.append(ik.MinDistanceConstraint( model=rbt, min_distance=0.01, active_bodies_idx=[], active_group_names=set())) for body_i in range(rbt.get_num_bodies()-1): # All corners on body must be inside of the # bounds of the board body = rbt.get_body(body_i+1) visual_elements = body.get_visual_elements() if len(visual_elements) > 0: points = visual_elements[0].getGeometry().getPoints() lb = np.tile(np.array([0., 0., -100.]), (points.shape[1], 1)).T ub = np.tile(np.array([board_width, board_height, 100.]), (points.shape[1], 1)).T constraints.append(ik.WorldPositionConstraint( rbt, body_i+1, points, lb, ub)) options = ik.IKoptions(rbt) options.setDebug(True) options.setMajorIterationsLimit(10000) options.setIterationsLimit(100000) results = ik.InverseKin( rbt, q0, q0, constraints, options) qf = results.q_sol[0] info = results.info[0] dqf_dq0 = np.eye(qf.shape[0]) #if info != 1: # print("Warning: returned info = %d != 1" % info) if True or info == 1 or info == 100: # We've solved an NLP of the form: # qf = argmin_q || q - q_0 || # s.t. phi(q) >= 0 # # which projects q_0 into the feasible set $phi(q) >= 0$. # We want to return the gradient of qf w.r.t. q_0. # We'll tackle an approximation of this (which isn't perfect, # but is a start): # We'll build a linear approximation of the active set at # the optimal value, and project the incremental dq_0 into # the null space of this active set. # These vectors all point in directions that would # bring q off of the constraint surfaces. constraint_violation_directions = [] cache = rbt.doKinematics(qf) for i, constraint in enumerate(constraints): c, dc = constraint.eval(0, cache) lb, ub = constraint.bounds(0) phi_lb = c - lb phi_ub = ub - c for k in range(c.shape[0]): if phi_lb[k] < -1E-6 or phi_ub[k] < -1E-6: print("Bounds violation detected, " "solution wasn't feasible") print("%f <= %f <= %f" % (lb[k], c[k], ub[k])) print("Constraint type ", type(constraint)) return qf, info, dqf_dq0 if phi_lb[k] < 1E-6: # Not allowed to go down constraint_violation_directions.append(-dc[k, :]) # If ub = lb and ub is active, then lb is also active, # and we don't need to double-add this vector. if phi_ub[k] < 1E-6 and phi_ub[k] != phi_lb[k]: # Not allowed to go up constraint_violation_directions.append(dc[k, :]) # Build a full matrix C(q0_new - qstar) = 0 # that approximates the feasible set. if len(constraint_violation_directions) > 0: C = np.vstack(constraint_violation_directions) ns = nullspace(C) dqf_dq0 = np.eye(qf.shape[0]) dqf_dq0 = np.dot(np.dot(dqf_dq0, ns), ns.T) else: # No null space so movements dqf_dq0 = np.eye(qf.shape[0]) return qf, info, dqf_dq0 def projectToFeasibilityWithNLP(rbt, q0, board_width, board_height): # More generic than above... instead of using IK to quickly # assembly the nlp solve that goes to snopt, build it ourselves. # (Gives us lower-level control at the cost of complexity.) print("TODO, I think this requires a few new drake bindings" " for generic nonlinear constraints") if __name__ == "__main__": np.set_printoptions(precision=4, suppress=True) os.system("mkdir -p figs") fig, (ax1, ax2) = plt.subplots(1, 2) scatter_fig, scatter_ax = plt.subplots(1, 1) board_width = 10 board_height = 10 for i in range(20): info_0 = -1 while info_0 != 1: ax1.clear() ax2.clear() rbt, q0 = spawn_rbt(board_width, board_height, 5, 5) draw_board_state(ax1, rbt, q0, board_width, board_height) q_sol_0, info_0, dqf_dq0_0 = \ projectToFeasibilityWithIK(rbt, q0, board_width, board_height) error_pairs = [] for j in range(50): info = -1 while info != 1: noise = np.random.normal(loc=0.0, scale=0.1/(j+1), size=q0.shape) q_sol, info, dqf_dq0 = \ projectToFeasibilityWithIK( rbt, q0+noise, board_width, board_height) # Did our linearization predict this solution very well? expected_q_sol_new = np.dot(dqf_dq0_0, noise) + q_sol_0 est_error = np.linalg.norm(expected_q_sol_new - q_sol) ini_error = np.linalg.norm(noise) print("\nError in estimate: ", est_error) print("Error in initial: ", ini_error) error_pairs.append([ini_error, est_error]) draw_board_state(ax2, rbt, q_sol, board_height, board_width) plt.draw() plt.pause(1e-6) fig.savefig('figs/plot_run_%d_ik.png' % i) all_error_pairs = np.vstack(error_pairs).T scatter_ax.clear() scatter_ax.scatter(all_error_pairs[0, :], all_error_pairs[1, :]) scatter_ax.plot([-10.0, 10.0], [-10.0, 10.0], '--') scatter_ax.set_xlim([0., 1.1*np.max(all_error_pairs[0, :])]) scatter_ax.set_ylim([0., 1.1*
np.max(all_error_pairs[1, :])
numpy.max
# -*- coding: utf-8 -*_ """ fbe.py ========================================================================= FBE module provides several utilities and signal parametrization methods. """ __author__ = '<NAME>' import spectrum import numpy as np from typing import Tuple from scipy.io import wavfile import scipy.signal import os import soundfile as sf class sin2cos2: """ Class for computing signal windowing function with sin(x)^2 and cos(x)^2 tails. :param frame: the frame length in samples :type frame: int :param overlap: the size of the overlaping part of the window (the length of the tails on both sides) :type overlap: int :return: nothing """ def __init__(self, frame : int = 512, overlap : int = 50): self._win = np.zeros((frame,)) self._frame = frame self._overlap = overlap self._compute_window() def _compute_window(self): for i in range(self._overlap): self._win[i] = np.sin(2*np.pi/(4*(self._overlap+2))*(i+1))**2 for i in range(self._overlap,self._frame-self._overlap): self._win[i] = 1 for i in range(self._frame-self._overlap,self._frame): self._win[i] = np.cos(2*np.pi/(4*(self._overlap+2))*(i-self._frame+self._overlap+1))**2 def window(self): """ Method returning the vector of window's values. :return: the window :rtype: numpy array of length frame """ return self._win class fbe: """ Versatile class computing various speech signal representations, mostly based on AR modelling and Mel Frequency Filterbanks. :param frame_zero_adding: required length of the sequence after zero adding operation, defaults to None, which indicates no zero adding :type frame_zero_adding: int :param frame: frame length in samples :type frame: int :param sr: sampling frequency in Hz :type sr: float :param preem_alfa: the preemphasis coefficient :type preem_alfa: float :param freq_range: frequency range in which the mel frequency filterbanks should be computed :type freq_range: np.ndarray two elemements vector of floats :param filts_num: number of mel frequency triangular filters in the filterbank :type filts_num: int :param window: the windowing function :type window: np.ndarray, numpy vector of floats, defaults to None, which causes using of rectangular window :param ar_order: the AR model order :type ar_order: int :param cepstral_lifter: the cepstral lifter in MFCC computation :type cepstral_lifter: int :param num_ceps: number of cepstra :type num_ceps: int :returns: nothing .. note:: PSD is abbreviation for power spectral density in the whole documentation. AR is abbreviation for autoregressive in the whole documentation. """ def __init__(self, frame_zero_adding=None, frame=512, sr=16000, preem_alfa=0.95, overlap=0, freq_range=[20., 8000.], filts_num=23, num_gfs=70, spl_of_max_amplitude=88, window=None, ar_order=16, cepstral_lifter=22, num_ceps=13): if overlap==0 or overlap > frame/2: overlap = frame/2 if window is None: window = np.ones((frame,)) if frame != len(window): print("ERROR in fbe, frame and window lengths do not match, program exits ...") sys.exit(1) self.sr = sr # sampling frequency in Hz self.frame = frame # number of samples in the frame self.num_ceps = num_ceps if not frame_zero_adding is None: self._nfft = frame_zero_adding # fft length, sets the self._nfft atribute else: self._nfft = frame self.preem_alfa = preem_alfa # preemphasis coefficient self.freq_range = freq_range # frequency range in Hz self.filts_num = filts_num # number of triangular filterbank channels self.K = int(self._nfft / 2.) + 1 # length of the unique part of the FFT self.f_min = 0 self.f_max = float(sr) / 2. self.f_low = self.freq_range[0] self.f_high = self.freq_range[1] # matrices self._tfb = self._tfb() # compute the mel-frequency triangular filterbank, sets the H atribute self._pinv_tfb = self._pinv_tfb() self._wgh_mat = self._wgh_mat() self._inv_wgh_mat = self._inv_wgh_mat() # window self._window = window self._ar_order = ar_order # compute cepstral lifter L = cepstral_lifter N = num_ceps self.cepstral_lifter = 1+0.5*L*np.sin(np.pi*np.asarray(range(N))/float(L)) # dct matrix self.dctmat = np.zeros((self.num_ceps,self.filts_num)) for i in range(self.num_ceps): for j in range(self.filts_num): self.dctmat[i,j] = np.sqrt(2./self.filts_num) * np.cos(np.pi*i/self.filts_num*(j+.5)) self.lst_elm = ['fr','frwin','fft','mag','ang','psd','senmatpsd','senpsd','lpc','var_lpc','armag','arpsd','fbe',\ 'fbekaldi','arfbe','wgh','arwgh','sfbe','sarfbe','smag','spsd','sarmag','sarpsd','sfbewgh',\ 'smagwgh','spsdwgh','senmatspsdwgh','senspsdwgh','sarfbewgh','sarpsdwgh','psdspl'] self.results = {} self._reset() def _reset(self): """ Resets the cache. """ for e in self.lst_elm: self.results[e] = None def get_frame_len(self) -> int: """Returns the frame length in samples :return: the frame length :rtype: int """ return self.frame def get_tfb(self) -> np.ndarray: """Gets the triangular mel frequency filterbank. :return: the filter matrix containing in each row a single filter :rtype: np.ndarray, numpy array with filts_num rows """ return self._tfb def get_wgh(self) -> np.ndarray: """Gets the weighting matrix, which is a square of the product of pseudo inverses of the Jacobian of the linear magnitude spectrum filter banks transform. :return: the weighting matrix :rtype: numpy array with dimension filts_num x filts_num """ return self._wgh_mat def get_inv_wgh(self) -> np.ndarray: """ Gets pseudo inverse of the weighting matrix. :returns: the pseudo inverse of the weighting matrix :rtype: np.ndarray, numpy array with dimension filts_num x filts_num """ return self._inv_wgh_mat def get_pinv_tfb(self) -> np.ndarray: """ Gets the pseudoinverse of the filterbanks matrix. :returns: the pseudo inverse of the weighting matrix :rtype: np.ndarray, numpy array with dimension filts_num x filts_num """ return self._pinv_tfb def window(self) -> np.ndarray: """ Gets the signal windowing function. :returns: the windowing function :rtype: np.ndarray, numpy array with dimension 1 x frame """ return self._window def _tfb(self): """ Computes the mel frequency triangular filterbank. """ # filter cutoff frequencies (Hz) for all filters, size 1x(M+2) aux = np.linspace(0, self.filts_num + 1, self.filts_num + 2) c = self._mel2hz( (self._hz2mel(self.f_low) + aux * (self._hz2mel(self.f_high) - self._hz2mel(self.f_low)) / float(self.filts_num + 1))) f = np.linspace(self.f_min, self.f_max, self.K) H = np.zeros((self.filts_num, self.K)) for m in range(self.filts_num): a = list(f >= c[m]) b = list(f <= c[m + 1]) k = np.array([a[i] and b[i] for i in range(len(f))]) H[m, k] = (f[k] - c[m]) / (c[m + 1] - c[m]) a = list(f >= c[m + 1]) b = list(f <= c[m + 2]) k = np.array([a[i] and b[i] for i in range(len(f))]) H[m, k] = (c[m + 2] - f[k]) / (c[m + 2] - c[m + 1]) return H def _proj_symmat_pd(self,A : np.ndarray,rcond : float) -> np.ndarray: """Projecting matrix A onto space of positive definite matrices. :param A: matrix to be projected :type A: np.ndarray :param rcond: reciprocal condition number of the resulting matrix :type rcond: float :return: the projected matrix :rtype: np.ndarray """ A = .5*(A.T+A) w, v = np.linalg.eigh(A) w[w<rcond*np.max(w)] = rcond*np.max(w) f = (np.sqrt(w) * v).T f = f.T.dot(f) return f def _wgh_mat(self): """ The weighting matrix. """ W = np.dot(self._pinv_tfb.T, self._pinv_tfb) W = self._proj_symmat_pd(W,10.e-3) f = np.linalg.cholesky(W).T return f def _inv_wgh_mat(self): """ The inverse of the weighting matrix """ return np.linalg.pinv(self._wgh_mat) def _pinv_tfb(self): """ The pseudoinverse of the mel frequency triangular filter banks matrix """ return np.linalg.pinv(self._tfb) def _nextpow2(self, i): """ The next nearest power of 2. """ n = 1 while n < i: n *= 2 self._nfft = n def _hz2mel(self, hz): """ Hertz to mel frequency scale """ mel = 1127. * np.log(1 + hz / 700.) return mel def _mel2hz(self, mel): """ Mel to frequency scale """ hz = 700. * np.exp(mel / 1127.) - 700. return hz def idx2freq(self, i : int) -> float: """Converts frequency index to frequency in Hz :param i: frequency index :type i: int :return: frequency in Hz :rtype: float """ f = float(i)/self._nfft*self.sr return f def freq2idx(self,f : float) -> int: """Converts frequency in Hz to the frequency index :param f: frequency in Herz :type f: float :return: frequency index :rtype: int """ idx = int(np.round(f*float(self._nfft)/self.sr)) return idx def set_frm(self,fr : np.ndarray): """ Sets the frame of the signal - this is then used to compute the all signal representations :param fr: signal frame :type fr: np.ndarray, numpy vector of floats :return: nothing """ self._reset() self.results['fr'] = fr def set_wgh(self,wgh : np.ndarray): """ Set compact spectrum :param wgh: the compact specturm with filt_num elements :type wgh: numpy vector of floats :returns: nothing """ self._reset() self.results['wgh'] = wgh def set_arwgh(self,arwgh : np.ndarray): """ Set AR compact spectrum :param arwgh: the compact autoregresive specturm with filt_num elements :type arwgh: np.ndarray, numpy vector of floats :returns: nothing """ self._reset() self.results['arwgh'] = arwgh def set_fbe(self,fbe : np.ndarray): """ Set filterbank energies :param fbe: the filter bank energies (vector with filt_num elements) :type fbe: np.ndarray, numpy vector of floats :returns: nothing """ self._reset() self.results['fbe'] = fbe def set_mag(self,mag : np.ndarray): """Set magnitude spectrum :param mag: the magnitude spectrum :type mag: np.ndarray, numpy vector of floats :returns: nothing """ self._reset() self.results['mag'] = mag def set_psd(self,psd : np.ndarray): """ Set power density spectrum :param psd: the power density spectrum :type psd: np.ndarray, numpy vector of floats :returns: nothing """ self._reset() self.results['psd'] = psd def fr(self) -> np.ndarray: """ Gets frame :returns: the frame :rtype: np.ndarray, numpy vector of floats """ if self.results['fr'] is None: print("Frame not given (emtpy vector), program exits ...") sys.exit(1) else: return self.results['fr'] def fr_win(self) -> np.ndarray: """ Gets windowed frame :returns: the windowed frame :rtype: np.ndarray, numpy vector of floats """ if self.results['frwin'] is None: self.results['frwin'] = np.zeros((self._nfft,)) self.results['frwin'][:self.frame] = self.fr() * self.window() else: pass return self.results['frwin'] def fft(self) -> np.ndarray: """ Gets FFT :returns: the fft of the, possibly zero added, signal frame :rtype: np.ndarray, numpy vector of complex floats """ if self.results['fft'] is None: self.results['fft'] = np.fft.fft(self.fr_win()) else: pass return self.results['fft'] def mag(self) -> np.ndarray: """ Gets magnitude spectrum :returns: the magnitude of the, possibly zero added, signal frame :rtype: np.ndarray, numpy vector of floats """ if self.results['mag'] is None: self.results['mag'] = np.abs(self.fft())[ : self.K] else: pass return self.results['mag'] def ang(self) -> np.ndarray: """ Gets angular spectrum. :returns: the angular spectrum of the, possibly zero added, signal frame :rtype: np.ndarray, numpy vector of floats """ if self.results['ang'] is None: self.results['ang'] = np.angle( self.fft() ) else: pass return self.results['ang'] def psd(self) -> np.ndarray: """ Gets power density spectrum :returns: the PSD of the, possibly zero added, signal frame :rtype: np.ndarray, numpy vector of floats """ if self.results['psd'] is None: self.results['psd'] = self.mag()**2. else: pass return self.results['psd'] def lpc(self) -> np.ndarray: """ Gets LPC coefficients aka STP coefficients or AR coefficients :return: LPC with the leading 1 :rtype: np.ndarray """ if self.results['lpc'] is None: _lpc, self.results['var_lpc'], k = spectrum.aryule(self.fr_win(), self._ar_order) self.results['lpc'] = np.concatenate((np.array([1]),_lpc)) else: pass return self.results['lpc'] def var_lpc(self) -> np.ndarray: """ Gets variance of the short term residual spectrum :return: short term residual variance :rtype: np.ndarray """ if self.results['var_lpc'] is None: self.results['lpc'], self.results['var_lpc'], k = spectrum.aryule(self.fr_win(), self._ar_order) else: pass return self.results['var_lpc'] def set_ar(self,a,var): """Setting AR coefficients and STP residual variance :param a: AR coefficients with leading one :param var: variance of the short term residual """ """Sets the AR coefficients""" self._reset() self.results['var_lpc'] = var self.results['lpc'] = a def armag(self) -> np.ndarray: """ Gets AR magnitude spectrum :return: AR magnitude spectrum :rtype: np.ndarray, numpy vector of floats of length _nfft/2+1 """ if self.results['armag'] is None: p = len(self.lpc())-1 aux = np.concatenate([self.lpc(),np.zeros((self._nfft-p-1,))],axis=0) fftaux = np.abs(np.fft.fft(aux)) std = np.sqrt(self.var_lpc()*self._nfft) self.results['armag'] = np.real(std/fftaux[ : self.K]) else: pass return self.results['armag'] def arpsd(self) -> np.ndarray: """ Gets AR power density spectrum :return: the AR PSD :rtype: np.ndarray """ if self.results['arpsd'] is None: self.results['arpsd'] = self.armag() ** 2. else: pass return self.results['arpsd'] def fbe(self) -> np.ndarray: """ Gets filter banks outputs based on magnitude spectrum :return: filter bank filtered magnitude spectrum :rtype: np.ndarray, numpy vector of floats of length filt_num """ if self.results['fbe'] is None: self.results['fbe'] = np.dot(self.get_tfb(),self.mag()) else: pass return self.results['fbe'] def sfbe2mfcc(self) -> np.ndarray: """ Converts smoothed filter banks energies to MFCC coefficients :return: MFCC coefficients :rtype: np.ndarray, numpy vector of floats (size num_cep) """ fbe = self.sfbe() logfbe = np.log(fbe) mfcc = np.dot(self.dctmat,logfbe) #scipy.fftpack.dct(logfbe,n=self.num_ceps,norm='ortho') # liftering cmfcc = self.cepstral_lifter*mfcc return cmfcc def fbe2mfcc(self) -> np.ndarray: """ Converts filter banks energies to MFCC coefficients :return: MFCC coefficients :rtype: np.ndarray, numpy vector of floats (size num_cep) """ fbe = self.fbe() logfbe = np.log(fbe) mfcc = np.dot(self.dctmat,logfbe) #scipy.fftpack.dct(logfbe,n=self.num_ceps,norm='ortho') # here comes liftering cmfcc = self.cepstral_lifter*mfcc return cmfcc def arfbe(self) -> np.ndarray: """ AR magnitude spectrum to filter banks energies :return: filter bank filtered AR magnitude spectrum :rtype: np.ndarray, numpy vector of floats (size num_filt) """ if self.results['arfbe'] is None: self.results['arfbe'] = np.dot(self.get_tfb(),self.armag()) else: pass return self.results['arfbe'] def wgh(self) -> np.ndarray: """ Weighted filter bank energies :return: the magnitude compact spectrum :rtype: np.ndarray, numpy vector of floats (size num_filt) """ if self.results['wgh'] is None: self.results['wgh'] = np.dot(self.get_wgh(),self.fbe()) else: pass return self.results['wgh'] def arwgh(self) -> np.ndarray: """ AR weighted filter bank energies :return: the AR magnitude compact spectrum :rtype: np.ndarray, numpy vector of floats (size num_filt) """ if self.results['arwgh'] is None: self.results['arwgh'] = np.real(np.dot(self.get_wgh(),self.arfbe())) else: pass return self.results['arwgh'] def smag(self) -> np.ndarray: """ Smoothed magnitude spectrum :return: magnitude spectrum computed from filter bank energies :rtype: np.ndarray, numpy vector of floats (size _nfft/2+1) """ if self.results['smag'] is None: self.results['smag'] = np.dot(self.get_pinv_tfb(), self.fbe()) else: pass return self.results['smag'] def spsd(self) -> np.ndarray: """ Smoothed power density spectrum :return: PSD computed from filter bank energies :rtype: np.ndarray, numpy vector of floats(size _nfft/2+1) """ if self.results['spsd'] is None: self.results['spsd'] = self.smag()**2. else: pass return self.results['spsd'] def sarmag(self)->np.ndarray: """ Smoothed AR magnitude spectrum :return: smoothed (from arfbe) AR magnitude spectrum (size _nfft/2+1) :rtype: np.ndarray, numpy vector of floats """ if self.results['sarmag'] is None: self.results['sarmag'] = np.dot(self.get_pinv_tfb(), self.arfbe()) else: pass return self.results['sarmag'] def sarpsd(self) -> np.ndarray: """ Smoothed AR PSD :return: smoothed (from arfbe) AR PSD (size _nfft/2+1) :rtype: np.ndarray, numpy vector of floats """ if self.results['sarpsd'] is None: self.results['sarpsd'] = self.sarmag() ** 2. else: pass return self.results['sarpsd'] def preemphasis(self, signal : np.ndarray) -> np.ndarray: """Perform preemphasis on the input signal. :param signal: The signal to filter. :type signal: np.ndarray, numpy vector of floats :param coeff: The preemphasis coefficient. 0 is no filter, default is 0.95. :type coeff: float :returns: the filtered signal. :rtype: numpy vector of floats """ return np.asarray(np.append(signal[0], signal[1:] - self.preem_alfa * signal[:-1])) def sfbe(self) -> np.ndarray: """ Smoothed filter bank energies :return: smoothed, from compact spectrum, filter bank energies :rtype: np.ndarray, numpy vector of floats (size num_filt) """ if self.results['sfbe'] is None: self.results['sfbe'] = np.dot(self.get_inv_wgh(), self.wgh()) else: pass return self.results['sfbe'] def sarfbe(self) -> np.ndarray: """ Smoothed AR filter bank energies :return smoothed, from compact AR spectrum, filter bank energies :rtype: np.ndarray, numpy vector of floats (size num_filt) """ if self.results['sarfbe'] is None: self.results['sarfbe'] = np.dot(self.get_inv_wgh(), self.arwgh()) else: pass return self.results['sarfbe'] def smagwgh(self) -> np.ndarray: """ Smoothed magnitude spectrum :return: computed from compact spectum magnitude spectrum :rtype: np.ndarray, numpy vector of floats (size _nfft/2+1) """ if self.results['smagwgh'] is None: self.results['smagwgh'] = np.dot(self.get_pinv_tfb(), self.sfbe()) else: pass return self.results['smagwgh'] def sarmagwgh(self) -> np.ndarray: """ Smoothed AR magnitude spectrum :return: computed from AR compact spectrum magnitude spectrum :rtype: np.ndarray, numpy vector of floats (size _nfft/2+1) """ if self.results['sarmagwgh'] is None: self.results['sarmagwgh'] = np.dot(self.get_pinv_tfb(), self.sarfbe()) else: pass return self.results['sarmagwgh'] def spsdwgh(self) -> np.ndarray: """ Smoothed PSD :return: computed from compact spectrum PSD :rtype: np.ndarray, numpy vector of floats (size _nfft/2+1) """ if self.results['spsdwgh'] is None: self.results['spsdwgh'] = self.smagwgh() ** 2. else: pass return self.results['spsdwgh'] def sarpsdwgh(self) -> np.ndarray: """ Smoothed AR PSD :return: PSD computed from AR compact spectra :rtype: np.ndarray, numpy vector of floats (size _nfft/2+1) """ if self.results['sarpsdwgh'] is None: self.results['sarpsdwgh'] = self.sarmagwgh() ** 2. else: pass return self.results['sarpsdwgh'] def psd2wgh(self,psd : np.ndarray) -> np.ndarray: """ PSD -> weighted compact spectrum :param psd: the PSD :type psd: np.ndarray, numpy vector of floats (size _nfft/2+1) :return: compact spectrum based on PSD :rtype: np.ndarray, numpy vector of floats (size num_filt) """ mag = np.sqrt(psd) fbe = np.dot(self.get_tfb(),mag) return np.dot(self.get_wgh(),fbe) def psd2ar(self,psd : np.ndarray,LpcOrder : int) -> Tuple[np.ndarray, float]: """ Converting PSD into LPC coefficients and excitation variance :param psd: left half of the PSD :type psd: numpy vector of floats (size _nfft/2+1) :param LpcOrder: AR model order :type LpcOrder: int :return: * (`vector of floats`) direct form AR coeff. with leading 1 * (`float`) the variance of the short term residual """ D = len(psd) B = np.concatenate([psd,psd[D-2:0:-1]]) xc = np.real(np.fft.ifft(B)) xc = xc[:LpcOrder+1] a, var, k = spectrum.LEVINSON(xc) a = np.concatenate([[1],a]) var = var/(2*D-2) return a, var def synth(mag_enh : np.ndarray, angular_r : np.ndarray, an_win : np.ndarray): """ Signal synthesis based on magnitude and angular spectra :param mag_enh: enhanced speech magnitude spectrum :type psd_enh: np.ndarray, numpy vector of floats :param angular_r: angular noisy signal frame spectrum :type angular_r: np.ndarray, numpy vector of floats :param an_win: windowing function :type an_win: np.ndarray numpy vector of floats :return: time domain enhanced signal frame (windowed) :rtype: numpy vector of floats """ # X = np.sqrt( psd_enh ) X = mag_enh X[-1] = 0 enhDft = np.concatenate( (X, X[-2:0:-1]) ) * np.exp( 1j * angular_r ) an_win = np.sqrt( an_win ) enh_fs = an_win*np.real( np.fft.ifft( enhDft ) ) return enh_fs def enhance_mag( mag_r, psd_n, psd_s): """ The Wiener filter in frequency domain :param mag_r: noisy, unprocessed signal frame magnitude spectrum :type psd_r: numpy vector of floats :param psd_n: noise, estimated noise frame PSD :type psd_n: numpy vector of floats :param psd_s: speech, estimated speech frame PSD :type psd_s: numpy vector of floats :return: enhanced speech PSD :rtype: numpy vector of floats """ psd_r_smag = psd_s + psd_n mag_enh = np.maximum(psd_s, 1.e-6) / np.maximum(psd_r_smag, 1.e-4) * mag_r mag_enh = np.maximum(mag_enh,0.001*mag_r) mag_enh[-1] = 0 # filter out the most high frequency peak return mag_enh def enhance( mag_r, psd_n, psd_s, angular_r, an_win ): """ The Wiener filter returning the time frequency signal frame :param mag_r: noisy, unprocessed signal frame magnitude spectrum :type mag_r: numpy vector of floats :param psd_n: noise, estimated noise frame PSD :type psd_n: numpy vector of floats :param psd_s: speech, estimated speech frame PSD :type psd_s: numpy vector of floats :param angular_r: angular noisy signal frame spectrum :type angular_r: numpy vector of floats :param an_win: windowing function :type an_win: numpy vector of floats :return: time domain enhanced signal frame (windowed) :rtype: numpy vector of floats """ mag_enh = enhance_mag(mag_r, psd_n, psd_s) enh_fs = synth(mag_enh,angular_r,an_win) return enh_fs #, psd_enh def enhance1 ( mag_r, psd_n, psd_s, angular_r, an_win): """ Perceptual enhancement (SETAP p. 245) :param psd_r: noisy, unprocessed signal frame PSD :type psd_r: numpy vector of floats :param psd_n: noise, estimated noise frame PSD :type psd_n: numpy vector of floats :param psd_s: speech, estimated speech frame PSD :type psd_s: numpy vector of floats :param angular_r: angular noisy signal frame spectrum :type angular_r: numpy vector of floats :param an_win: windowing function :type an_win: numpy vector of floats :return: time domain enhanced signal frame (windowed) :rtype: numpy vector of floats """ e = psd_s/np.maximum(psd_n,1.e-4)+1.e-6 g = mag_r**2/np.maximum(psd_n,1.e-4)+1.e-6 v = e*g/(1+e) aux =
np.maximum(.5*v,1.e-2)
numpy.maximum
""" this uses cnn_trainer.py and Dijkstra algorithm to identify a melody in scores in """ import time import math import numpy as np import sklearn.metrics from scipy.sparse import csgraph from sklearn.model_selection import train_test_split import misc_tools import settings try: import cPickle as pickle except Exception: import pickle FINAL_VALUE = -0.5 def compute_prob(note, prob_map, THRESHOLD): """ compute the probability of *note* referred to *prob_map*. If the probability is higher than *THRESHOLD*, than the cost will be > 0, otherwise it will be 0. """ pitch, onset, offset, ismelody = note m = prob_map[pitch, onset: offset] if m.shape[0] > 2 and settings.OUTLIERS_ON_PROB: m = m[modified_z_score(m)] if settings.AVERAGE: p = m.mean() else: p = np.median(m) if p < THRESHOLD: return -0.5 else: return p def build_graph_matrix(notelist, prob_map, THRESHOLD): """ Returns a 2D array containing the matrix relative to the branch costs in the graph. For each note A in *notelist*, it creates branches to the notes N_i so that: 1) onset(N_k) == onset(N_l) for each k, l 2) onset(N_i) == min{onset(Y)} where Y: onset(Y) > offset(A), cost(Y) = 1 - probability(Y) <= *THRESHOLD*} for each i This also adds two new virtual notes representing the first and the last note. """ out = np.full((len(notelist) + 2, len(notelist) + 2), np.inf, dtype=settings.floatX) last_onset = notelist[0][0] # initialize the starting virtual note FOUND_NEXT_NOTE = False for i, note_i in enumerate(notelist, start=1): pitch_i, onset_i, offset_i, melody_i = note_i if onset_i > last_onset and FOUND_NEXT_NOTE: # we have found a note in the previous onset break cost_i = -compute_prob(note_i, prob_map, THRESHOLD) if cost_i > 0: continue else: FOUND_NEXT_NOTE = True out[0, i] = cost_i last_onset = onset_i for i, note_i in enumerate(notelist): pitch_i, onset_i, offset_i, melody_i = note_i FOUND_NEXT_NOTE = False for j, note_j in enumerate(notelist[i + 1:], start=1): pitch_j, onset_j, offset_j, melody_j = note_j if onset_j < offset_i: continue elif FOUND_NEXT_NOTE and notelist[i + j - 1][0] < onset_j: break cost_j = -compute_prob(note_j, prob_map, THRESHOLD) if cost_j > 0: continue else: FOUND_NEXT_NOTE = True # i + 1 because we have added a virtual note out[(i + 1), (i + 1) + j] = cost_j last_onset = onset_j # this is the last note reachable if not FOUND_NEXT_NOTE: # let's jump to the last virtual state out[(i + 1), -1] = FINAL_VALUE # making the last notes pointing to the ending virtual note # is this required?? for i, note_i in enumerate(reversed(notelist), start=2): if note_i[1] < last_onset: break elif note_i[1] > last_onset: continue else: out[-i, -1] = FINAL_VALUE return out def _check(notelist, pianoroll_prob): """ Just for debugging """ WIN_WIDTH = int(settings.ARG_DEFAULT['win_w']) EPS = misc_tools.EPS(0) for j, (onset, offset, pitch) in enumerate(notelist): flag = False if pianoroll_prob[pitch, onset] < EPS: for i in range(WIN_WIDTH): if pianoroll_prob[pitch, onset - i] >= EPS: print("you're wrong of -" + str(i) + " for onset of note " + str(j)) flag = True break if pianoroll_prob[pitch, onset + i] >= EPS: print("you're wrong of +" + str(i) + " for onset of note " + str(j)) flag = True break elif pianoroll_prob[pitch, offset - 1] < EPS: for i in range(WIN_WIDTH): if pianoroll_prob[pitch, offset - 1 - i] >= EPS: print("you're wrong of -" + str(i) + " for offset of note " + str(j)) flag = True break if pianoroll_prob[pitch, offset - 1 + i] >= EPS: print("you're wrong of +" + str(i) + " for offset of note " + str(j)) flag = True break else: for i in range(onset, offset): if pianoroll_prob[pitch, i] < EPS: print("note " + str(j) + " has some internal values set to 0") flag = True break if flag: return 1 # if not flag: # print("note " + str(j) + " is correct") return 0 def modified_z_score(ys): """ PARAMETERS : ------------ list-like object, usually 1D np.array RETURN : -------- a new 1D np.array containing the indices of elements not ouliers stolen from http://colingorrie.github.io/outlier-detection.html """ threshold = 3.5 median_y = np.median(ys) median_absolute_deviation_y = np.median([np.abs(y - median_y) for y in ys]) modified_z_scores = [0.6745 * (y - median_y) / median_absolute_deviation_y for y in ys] return np.where(np.abs(modified_z_scores) < threshold)[0] def iqr(ys): """ PARAMETERS : ------------ list-like object, usually 1D np.array RETURN : -------- a new 1D np.array containing the indices of elements not ouliers stolen from http://colingorrie.github.io/outlier-detection.html """ quartile_1, quartile_3 = np.percentile(ys, [25, 75]) iqr = quartile_3 - quartile_1 lower_bound = quartile_1 - (iqr * 1.5) upper_bound = quartile_3 + (iqr * 1.5) return np.where((ys < upper_bound) | (ys > lower_bound))[0] def set_threshold(arr, CLUSTERING='single'): print("starting clustering") arr = arr.reshape(-1) arr = arr[arr > settings.MIN_TH] N_CLUSTER = 2 target_cluster = 1 print("max, min: ", arr.max(), arr.min()) arr = arr[iqr(arr)] if CLUSTERING == 'kmeans': from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=N_CLUSTER, init=np.array([settings.MIN_TH, arr.max()]).reshape(-1, 1)) labels = kmeans.fit_predict(arr.reshape(-1, 1)) else: import fastcluster from scipy.cluster.hierarchy import fcluster from scipy.spatial.distance import pdist Z = pdist(arr.reshape(-1, 1)) if CLUSTERING == 'single': X = fastcluster.single(Z) elif CLUSTERING == 'average': X = fastcluster.average(Z) elif CLUSTERING == 'centroid': X = fastcluster.centroid(Z) else: return settings.THRESHOLD labels = N_CLUSTER - fcluster(X, N_CLUSTER, 'maxclust') # setting 0 for the minimum cluster # np.ma.masked_array returns only values where the mask is 0 index = {} for i, l in enumerate(labels): index[l] = arr[i] if len(index.keys()) == N_CLUSTER: break index = sorted(index.items(), key=lambda kv: kv[1]) # list of tuples sorted by values target_label = index[target_cluster - 1][0] # the label of the desired cluster th = np.max(arr[np.flatnonzero(labels == target_label)]) # max of the down cluster print("found threshold: " + str(th)) # print(str(np.ma.masked_array(arr, 1 - labels).min())) return th def polyphonic_part(notelist, pianoroll_prob, THRESHOLD): """ Returns a list of int: 1 if the note at that index in *notelist* has a probability > *THRESHOLD*, 0 otherwise. """ predicted_labels = [] for note in notelist: c = compute_prob(note, pianoroll_prob, THRESHOLD) if np.isnan(c): # don't know why this happens, we had already discarded nans... predicted_labels.append(0) else: predicted_labels.append(int(math.ceil(c))) return predicted_labels def monophonic_part(notelist, pianoroll_prob, THRESHOLD): """ Compute a strictly monophonic part by using the shortest path algorithm specified in `settings` RETURNS : a tuple containing : list(int) : the predicted labels list(int) : the melody indices """ # compute the graph matrix graph = build_graph_matrix(notelist, pianoroll_prob, THRESHOLD) # compute the minimum paths dist_matrix, predecessors = csgraph.shortest_path(graph, method=settings.PATH_METHOD, directed=True, indices=[0], return_predecessors=True) # building the predicted array label last = predecessors[0, -1] predicted_labels = [0 for j in range(len(notelist) + 2)] melody_indices = [] while last != -9999: predicted_labels[last] = 1 melody_indices.append(last) last = predecessors[0, last] predicted_labels = predicted_labels[1:-1] return predicted_labels, melody_indices def predict_labels(pianoroll_prob, in_notelist): """ Compute notes in the solo part according to the input notelist and a pianoroll probability distribution. PARAMETERS : pianoroll_prob : 2d np.array the pianoroll distribution in_notelist : 2d np.array the input list of notes as returned by `utils.pianoroll_utils.make_pianorolls` RETURNS : a tuple of 1D arrays : true labels according to `in_notelist` (1 where there is a 'solo part', 0 where there isn't) predicted labels according to `in_notelist` """ # ordering notelist by onset: notelist = in_notelist[in_notelist[:, 1].argsort()] # changing all nan to 2 * EPS(0) for i in np.nditer(pianoroll_prob, op_flags=['readwrite']): if np.isnan(i): i[...] = 2 * misc_tools.EPS(0) # np.nan_to_num(pianoroll_prob, copy=False) # looking for the first non empty column s = pianoroll_prob.sum(axis=0).nonzero()[0] # first column with non zero values minus first onset pad_length = s[0] - in_notelist[0][1] notelist = [(pitch, onset + pad_length, offset + pad_length, ismelody) for pitch, onset, offset, ismelody in in_notelist] # notelist has no more the ground-truth, so we are using in_notelist true_labels = zip(*in_notelist)[-1] THRESHOLD = settings.THRESHOLD if settings.CLUSTERING != 'None': THRESHOLD = set_threshold( pianoroll_prob, CLUSTERING=settings.CLUSTERING) if settings.MONOPHONIC: # compute the graph matrix predicted_labels = monophonic_part( notelist, pianoroll_prob, THRESHOLD)[0] else: predicted_labels = polyphonic_part( notelist, pianoroll_prob, THRESHOLD) return
np.array(true_labels)
numpy.array
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np import cost_estimation from tabulate import tabulate trucks_amount = 16 truck_weight = 124 truck_max_weight = 330 load_time = (33.8 * 5 + 30 + 30 + 75) / 60 * 4 / 3 paths = [] scenario = 'scenario1.xlsx' df = pd.read_excel(scenario,'Excavator01').convert_objects(convert_numeric=True).fillna(0).round(2) paths.append(df.iloc[2:,0:5].values.astype(float)) df = pd.read_excel(scenario,'Excavator02').convert_objects(convert_numeric=True).fillna(0).round(2) paths.append(df.iloc[2:,0:5].values.astype(float)) df = pd.read_excel(scenario,'Excavator03').convert_objects(convert_numeric=True).fillna(0).round(2) paths.append(df.iloc[2:,0:5].values.astype(float)) #%% N = 100 G = 100 T = 20 sigma = 10 fric_coef = 0.02 weight = [1,1,1] hist_cost = np.zeros((N,3)) def fitness(n,paths,loads,assignments): productivity = 0.0 for i in range(0,3): cycle_cost = max(cost_estimation.query(paths[i],loads[i],fric_coef) / assignments[i],load_time) if assignments[i] == 1 : cycle_cost += load_time hist_cost[n,i] = cycle_cost productivity += (loads[i]-124) * (60 / cycle_cost) * weight[i] return productivity def rand_pop(N, mu, sigma): pops = np.zeros((N,6),dtype = int) pops[:,:3] = np.random.normal(mu, sigma, (N,3)).astype(int) assignments = np.zeros((N,3), dtype = int) for i in range(0,N): for j in range(0,trucks_amount): assignments[i,np.random.randint(0,3)] += 1 pops[:,3:] = assignments return pops def mutate(pop, sigma): mutated = pop.copy() mutated[:3] += np.random.normal(0, sigma, 3).astype(int) np.clip(mutated[:3],124,330,mutated[:3]) i = np.random.randint(3,6) j = np.random.randint(3,6) if (mutated[i] != 0): mutated[i] -= 1 mutated[j] += 1 return mutated population = rand_pop(N, 180, 40) for i in range(0,G): print(i) fvalues = np.zeros(N) for j in range(0,N): fvalues[j] = fitness(j,paths,population[j,:3],population[j,3:]) index = np.flip(fvalues.argsort()) hist_cost = hist_cost[index] population = population[index,:] new_pops = np.zeros((N,6),dtype = int) new_pops[0] = population[0] for j in range(1,N): new_pops[j] = mutate(population[np.random.randint(0,T)],sigma) population = new_pops print(tabulate([population[0]], headers=[ 'Trucks to E1','Trucks to E2', 'Trucks to E3', 'Payload at E1','Payload at E2', ' Payload at E3'], tablefmt='orgtbl')) #%% import matplotlib.pyplot as plt max_gross = 710 truck_weight = 124 cycle_time = np.zeros(max_gross-truck_weight) prod = np.zeros(max_gross-truck_weight) payload = range(0,max_gross-truck_weight) for i in range(0,max_gross-truck_weight): cycle_time[i] = cost_estimation.query(paths[2],i + 124,0.02) prod[i] = i * 60 / cycle_time[i] plt.figure() plt.plot(payload,cycle_time) plt.savefig('pvc.png') plt.figure() plt.plot(payload,prod) plt.savefig('pvp.png') #%% prod = np.zeros(100) fric_coef = np.zeros(100) for i in range(0,100): fric_coef[i] = (i + 1) / 1000 prod[i] = 200 * 60 / cost_estimation.query(paths[0],324,fric_coef[i]) plt.figure() plt.plot(fric_coef,prod) plt.savefig('fvp.png') #%% fric_coef = np.zeros(100) cost =
np.zeros(100)
numpy.zeros
# -*- coding: utf-8 -*- # Copyright (c) 2014, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division import numpy as np from ...util import transforms from ...geometry import Rect from ._util import arg_to_vec4, as_vec4 from .base_transform import BaseTransform class NullTransform(BaseTransform): """ Transform having no effect on coordinates (identity transform). """ glsl_map = "vec4 null_transform_map(vec4 pos) {return pos;}" glsl_imap = "vec4 null_transform_imap(vec4 pos) {return pos;}" Linear = True Orthogonal = True NonScaling = True Isometric = True @arg_to_vec4 def map(self, obj): return obj def imap(self, obj): return obj def __mul__(self, tr): return tr def __rmul__(self, tr): return tr class STTransform(BaseTransform): """ Transform performing only scale and translate, in that order. Parameters ---------- scale : array-like Scale factors for X, Y, Z axes. translate : array-like Scale factors for X, Y, Z axes. """ glsl_map = """ vec4 st_transform_map(vec4 pos) { return (pos * $scale) + $translate; } """ glsl_imap = """ vec4 st_transform_imap(vec4 pos) { return (pos - $translate) / $scale; } """ Linear = True Orthogonal = True NonScaling = False Isometric = False def __init__(self, scale=None, translate=None): super(STTransform, self).__init__() self._update_map = True self._update_imap = True self._scale = np.ones(4, dtype=np.float32) self._translate =
np.zeros(4, dtype=np.float32)
numpy.zeros
from __future__ import print_function import pytest import numpy as np import random from numpy.testing import assert_equal, assert_almost_equal from choreo.interlock import compute_feasible_region_from_block_dir from pybullet_planning import Euler, Pose, multiply, tform_point from scipy.optimize import linear_sum_assignment from scipy.linalg import solve_triangular, norm def assert_approx_equal_vectors(vec1, vec2, unitize=False, tol_digit=6, exact_eq=False): assert len(vec1) == len(vec2) assert tol_digit > 0 for i in range(len(vec1)): e1 = vec1[i] / np.linalg.norm(vec1) if unitize else vec1[i] e2 = vec2[i] / np.linalg.norm(vec2) if unitize else vec2[i] assert_almost_equal(e1, e2, tol_digit) if exact_eq: assert_equal(e1, e2) def is_approx_equal_vectors(vec1, vec2, unitize=False, tol_digit=6, exact_eq=False): assert len(vec1) == len(vec2) assert tol_digit > 0 for i in range(len(vec1)): e1 = vec1[i] /
np.linalg.norm(vec1)
numpy.linalg.norm
# #-*- coding: utf-8 -*- # # ------------------------------------------------------------------------- # # ------------------------------------------------------------------------- import math import numpy as np # import matplotlib # matplotlib.use('agg') # import matplotlib.pylab as plt def solveForComponents(fc, pm, kphi, kvco, N, gamma, loop_type='passive2'): """ :Parameters: loop_type (str) - * passive2 - 2nd order passive * passive3 - 3rd order passive * passive4 - 4th order passive * active2 - 2nd order active * active3 - 3rd order active * active4 - 4th order active fc (float) - 0dB crossover frequency in Hz pm (float) - phase margin in degrees kphi (float) - charge pump gain in Amps per radian kvco (float) - vco tuning sensitivity in Hz/V N (int) - loop multiplication ratio gamma (float) - optimization factor (1.024 default) """ if loop_type == 'passive2': pll = PllSecondOrderPassive( fc, pm, kphi, kvco, N, gamma=gamma ) d = pll.calc_components() elif loop_type == 'passive3': pll = PllThirdOrderPassive( fc, pm, kphi, kvco, N, gamma=gamma ) d = pll.calc_components() elif loop_type == 'passive4': pll = PllFourthOrderPassive( fc, pm, kphi, kvco, N, gamma=gamma ) d = pll.calc_components() return d class PllSecondOrderPassive( object ): """ The 2nd order passive phase locked loop object """ def __init__(self, fc, pm, kphi, kvco, N, gamma=1.024): """ :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees kphi (float) - charge pump gain in Amps per radian kvco (float) - vco tuning sensitivity in Hz/V N (int) - loop multiplication ratio gamma (float) - optimization factor (default=1.024) """ self.fc = fc self.pm = pm self.kphi = kphi self.kvco = kvco self.N = N self.gamma = gamma def calc_components(self): """ return a dict with the component values """ d = {} d['t1'] = self.calc_t1(self.fc, self.pm, self.gamma) d['t2'] = self.calc_t2(self.fc, d['t1'], self.gamma) d['a0'] = self.calc_a0(self.kphi, self.kvco, self.N, self.fc, d['t1'], d['t2']) d['c1'] = self.calc_c1(d['a0'], d['t1'], d['t2']) d['c2'] = self.calc_c2(d['a0'], d['c1']) d['r2'] = self.calc_r2(d['c2'], d['t2']) d['a1'] = self.calc_a1(d['c1'], d['c2'], d['r2']) d['a2'] = 0 d['a3'] = 0 d['r3'] = 0 d['r4'] = 0 d['c3'] = 0 d['c4'] = 0 d['t3'] = 0 d['t4'] = 0 return d def calc_t1(self, fc, pm, gamma=1.024): """ :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees gamma (float) - optimization factor (default=1.024) """ omega_c = 2*np.pi*fc phi = np.pi*pm/180 t1 = (np.sqrt(((1+gamma)**2)*(np.tan(phi))**2 + 4*gamma) - (1+gamma)*np.tan(phi)) / (2*omega_c) return t1 def calc_t2(self, fc, t1, gamma=1.024): """ :Parameters: fc (float) - cutoff frequency in Hz t1 (float) - time constant t1 in seconds gamma (float) - optimization factor (default=1.024) """ omega_c = 2*np.pi*fc return gamma/((omega_c**2)*t1) def calc_a0(self, kphi, kvco, N, fc, t1, t2): """ :Parameters: kphi (float) - charge pump gain in Amps per radian kvco (float) - vco tuning sensitivity in Hz/V N (int) - loop multiplication ratio fc (float) - 0dB crossover frequency in Hz t1 (float) - time constant t1 in seconds t2 (float) - time constant t2 in seconds """ omega_c = 2*np.pi*fc x = (kphi*kvco)/(N*omega_c**2) y_num = np.sqrt(1+(omega_c**2)*(t2**2)) y_den = np.sqrt(1+(omega_c**2)*(t1**2)) a0 = x*y_num/y_den return a0 def calc_c1(self, a0, t1, t2): """ :Parameters: a0 (float) - loop filter coefficient t1 (float) - time constant t1 in seconds (t2 (float) - time constant t2 in seconds """ return a0*t1/t2 def calc_c2(self, a0, c1): """ :Parameters: a0 (float) - loop filter coefficient c1 (float) - capacitor in Farads """ return a0-c1 def calc_r2(self, c2, t2): """ :Parameters: c2 (float) - capacitor in Farads t2 (float) - time constant t2 in seconds """ return t2/c2 def calc_a1(self, c1, c2, r2): """ :Parameters: c1 (float) - capacitor in Farads c2 (float) - capacitor in Farads r2 (float) - resistor in Ohms """ return c1*c2*r2 class PllThirdOrderPassive(PllSecondOrderPassive): def __init__(self, fc, pm, kphi, kvco, N, gamma=1.136, t31=0.6): """ :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees kphi (float) - charge pump gain in Amps per radian kvco (float) - vco tuning sensitivity in Hz/V N (int) - loop multiplication ratio gamma (float) - optimization factor (default=1.136) t31 (float) - ratio of T3 to T1 (default=0.6) """ self.fc = fc self.pm = pm self.kphi = kphi self.kvco = kvco self.N = N self.gamma = gamma self.t31 = t31 def calc_components(self): """ return a dict with the component values and coefficients """ d = {} omega_c = 2*np.pi*self.fc # solve for time constants d['t1'] = self.calc_t1(self.fc, self.pm, self.gamma) d['t3'] = d['t1']*self.t31 d['t2'] = self.gamma/( (omega_c**2)*(d['t1'] + d['t3'] ) ) # solve for coefficients d['a0'] = self.calc_a0(self.kphi, self.kvco, self.N, self.fc, d['t1'], d['t2'], d['t3']) d['a1'] = d['a0']*(d['t1'] + d['t3']) d['a2'] = d['a0']*d['t1']*d['t3'] # solve for components d['c1'] = self.calc_c1(d['a0'], d['a1'], d['a2'], d['t2']) d['c3'] = self.calc_c3( d['a0'], d['a1'], d['a2'], d['t2'], d['c1'] ) d['c2'] = d['a0'] - d['c1'] - d['c3'] d['r2'] = d['t2']/d['c2'] d['r3'] = d['a2']/(d['c1']*d['c3']*d['t2']) d['t4'] = 0 d['a3'] = 0 d['r4'] = 0 d['c4'] = 0 return d def calc_c3( self, a0, a1, a2, t2, c1 ): return ( -(t2**2)*(c1**2) + t2*a1*c1 - a2*a0 )/( (t2**2)*c1 - a2 ) def calc_c1( self, a0, a1, a2, t2 ): return (a2/(t2**2))*(1 + np.sqrt(1 + (t2/a2)*(t2*a0 - a1) ) ) def calc_a0( self, kphi, kvco, N, fc, t1, t2, t3 ): omega_c = 2*np.pi*fc k1 = kphi*kvco/((omega_c**2)*(N)) k2 = np.sqrt( (1+(omega_c*t2)**2)/((1+(omega_c*t1)**2)*(1+(omega_c*t3)**2) ) ) return k1*k2 def calc_t1(self, fc, pm, gamma, t31=0.6, num_iters=100): """ numerically solve for t1 using the bisection method see: https://en.wikibooks.org/wiki/Numerical_Methods/Equation_Solving :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees gamma (float) - optimization factor (1.136) num_iters (int) - number of times to loop """ a = 1e-15 # initial guess for a b = 1.0 # initial guess for b fa = self.func_t1(a,fc,pm,t31=t31,gamma=gamma) fb = self.func_t1(b,fc,pm,t31=t31,gamma=gamma) for i in range(num_iters): guess = (a+b)/2 if (self.func_t1(guess,fc,pm,t31=t31,gamma=gamma) < 0): b = guess else: a = guess return guess def func_t1(self, x, fc, pm, t31=0.6, gamma=1.136): """ simulate t1. This function is used to numerically solve for T1. Equation 22.31 in Dean Banerjee's Book :Parameters: x (float) - guess at t1 fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees t31 (float) - ratio of t3 to t1 gamma (float) - optimization factor (1.136) :Returns: updated value for t1 based on guess (float) """ omega_c = 2*np.pi*fc phi = pm*np.pi/180 val = np.arctan( gamma/(omega_c*x*(1+t31)) ) - \ np.arctan( omega_c*x ) - \ np.arctan( omega_c*x*t31 ) - phi return val def test4thOrderPassive( t31=0.4, t43=0.4 ): fc = 10e3 pm = 47.8 kphi = 4e-3 kvco = 20e6 fout = 900e6 fpfd = 200e3 N = float(fout)/fpfd fstart = 10 fstop = 100e6 ptsPerDec = 100 fref = 10e6 R = int(fref/fpfd) # R = 1 pll = PllFourthOrderPassive( fc, pm, kphi, kvco, N, gamma=1.115, t31=t31, t43=t43) d = pll.calc_components() # return d flt = { 'c1':d['c1'], 'c2':d['c2'], 'c3':d['c3'], 'c4':d['c4'], 'r2':d['r2'], 'r3':d['r3'], 'r4':d['r4'], 'flt_type':"passive" } f,g,p,fz,pz,ref_cl,vco_cl = simulatePll( fstart, fstop, ptsPerDec, kphi, kvco, N, R, filt=flt) return d, fz, pz class PllFourthOrderPassive( PllSecondOrderPassive ): def __init__(self, fc, pm, kphi, kvco, N, gamma=1.115, t31=0.107, t43=0.107): """ :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees kphi (float) - charge pump gain in Amps per radian kvco (float) - vco tuning sensitivity in Hz/V N (int) - loop multiplication ratio gamma (float) - optimization factor (default=1.115) t31 (float) - ratio of T3 to T1 (default=0.4) t43 (float) - ratio of T4 to T3 (default=0.4) note: for a realizable solution, t31 + t43 <= 1 """ self.fc = fc self.pm = pm self.kphi = kphi self.kvco = kvco self.N = N self.gamma = gamma self.t31 = t31 self.t43 = t43 def calc_components(self): """ return a dict with the component values """ d = {} omega_c = 2*np.pi*self.fc # solve for time constants d['t1'] = self.calc_t1(self.fc, self.pm, self.gamma, t31=self.t31, t43=self.t43) # d['t1'] = 4.0685e-6 # print( 't1 = ' + str(d['t1']) ) d['t3'] = d['t1']*self.t31 d['t4'] = d['t1']*self.t31*self.t43 d['t2'] = self.gamma/( (omega_c**2)*(d['t1'] + d['t3'] + d['t4'] ) ) # solve for coefficients d['a0'] = self.calc_a0(self.kphi, self.kvco, self.N, self.fc, d['t1'], d['t2'], d['t3'], d['t4']) d['a1'] = d['a0']*(d['t1'] + d['t3'] + d['t4']) d['a2'] = d['a0']*(d['t1']*d['t3'] + d['t1']*d['t4'] + d['t3']*d['t4']) d['a3'] = d['a0']*d['t1']*d['t3']*d['t4'] c1_t3, r3_t3 = self.calc_c1_r3(d['a0'],d['t1'],d['t2'],d['t3']) c1_t4, r3_t4 = self.calc_c1_r3(d['a0'],d['t1'],d['t2'],d['t4']) d['c1'] = (c1_t3 + c1_t4)/2 d['r3'] = (r3_t3 + r3_t4)/2 d['c2'], d['c3'] = self.calc_c2_c3( d['a0'], d['a1'], d['a2'], d['a3'], d['t2'], d['r3'], d['c1'] ) d['c4'] = d['a0']- d['c1']- d['c2'] - d['c3'] d['r2'] = d['t2']/d['c2'] d['r4'] = d['a3']/(d['t2']*d['r3']*d['c1']*d['c3']*d['c4']) return d def calc_c2_c3( self, a0, a1, a2, a3, t2, r3, c1 ): k0 = (a2/a3) - 1.0/t2 - 1.0/(c1*r3) - (a0 - c1)*t2*r3*c1/a3 k1 = a1 - t2*a0 - a3/(t2*r3*c1) - (a0 - c1)*r3*c1 a = a3/((t2*c1)**2) b = t2 + r3*(c1 - a0) + (a3/(t2*c1))*((1.0/t2) - k0) c = k1 - (k0*a3)/t2 c2 = (-b + np.sqrt(b**2 - 4*a*c))/(2*a) c3 = (t2*a3*c1)/(r3*(k0*t2*a3*c1 - c2*(a3 - r3*((t2*c1)**2)))) return c2, c3 def calc_c1_r3( self, a0, t1, t2, tpole): a1_t = a0*(t1+tpole) a2_t = a0*t1*tpole c1_t = (a2_t/(t2**2))*(1 + np.sqrt(1 + (t2/a2_t)*(t2*a0 - a1_t)) ) c3_t = (-1*(t2**2)*(c1_t**2) + t2*a1_t*c1_t - a2_t*a0)/((t2**2)*c1_t - a2_t) r3_t = a2_t/(c1_t*c3_t*t2) return c1_t, r3_t def calc_a0( self, kphi, kvco, N, fc, t1, t2, t3, t4): omega_c = 2*np.pi*fc k1 = kphi*kvco/((omega_c**2)*(N)) k2 = np.sqrt( (1+(omega_c*t2)**2)/((1+(omega_c*t1)**2)*(1+(omega_c*t3)**2)*(1+(omega_c*t4)**2) ) ) return k1*k2 def calc_t1(self, fc, pm, gamma, t31=0.4, t43=0.4, num_iters=100): """ numerically solve for t1 using the bisection method see: https://en.wikibooks.org/wiki/Numerical_Methods/Equation_Solving :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees gamma (float) - optimization factor (1.136) num_iters (int) - number of times to loop """ a = 1e-15 # initial guess for a b = 1.0 # initial guess for b fa = self.func_t1(a,fc,pm,t31=t31,t43=t43,gamma=gamma) fb = self.func_t1(b,fc,pm,t31=t31,t43=t43,gamma=gamma) for i in range(num_iters): guess = (a+b)/2 if (self.func_t1(guess,fc,pm,t31=t31,t43=t43,gamma=gamma) < 0): b = guess else: a = guess return guess def func_t1(self, x, fc, pm, t31=0.4, t43=0.4, gamma=1.136): """ simulate t1. This function is used to numerically solve for T1. Equation 22.31 in Dean Banerjee's Book :Parameters: x (float) - guess at t1 fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees t31 (float) - ratio of t3 to t1 gamma (float) - optimization factor (1.136) :Returns: updated value for t1 based on guess (float) """ omega_c = 2*np.pi*fc phi = pm*np.pi/180 val = np.arctan( gamma/(omega_c*x*(1+t31)) ) - \ np.arctan( omega_c*x ) - \ np.arctan( omega_c*x*t31 ) -\ np.arctan( omega_c*x*t31*t43 ) - phi return val class PllFourthOrderPassive2(PllSecondOrderPassive): def __init__(self, fc, pm, kphi, kvco, N, gamma=1.115): """ :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees kphi (float) - charge pump gain in Amps per radian kvco (float) - vco tuning sensitivity in Hz/V N (int) - loop multiplication ratio gamma (float) - optimization factor (default=1.115) t31 (float) - ratio of T3 to T1 (default=0.4) t43 (float) - ratio of T4 to T3 (default=0.4) note: for a realizable solution, t31 + t43 <= 1 """ self.fc = fc self.pm = pm self.kphi = kphi self.kvco = kvco self.N = N self.gamma = gamma self.pole3 = fc*30 self.pole4 = fc*10 def calc_t1(self, fc, pm, gamma, num_iters=100, plotme=False): """ numerically solve for t1 using the bisection method see: https://en.wikibooks.org/wiki/Numerical_Methods/Equation_Solving :Parameters: fc (float) - cutoff frequency in Hz pm (float) - phase margin in degrees gamma (float) - optimization factor (1.136) num_iters (int) - number of times to loop """ a = 1e-15 # initial guess for a b = 1.0 # initial guess for b fa = self.func_t1(a,fc,pm,gamma=gamma) fb = self.func_t1(b,fc,pm,gamma=gamma) for i in range(num_iters): guess = (a+b)/2 if (self.func_t1(guess,fc,pm,gamma=gamma) < 0): b = guess else: a = guess if plotme: x = np.linspace(a,b,1000) y = [] for xx in x: y.append(self.func_t1(xx,fc,pm,gamma=gamma) ) fig, ax = plt.subplots() ax.plot(x,y,'r',label='func_t1') plt.grid(True) plt.show() return guess def func_t1(self, t1, fc, pm, gamma=1.115): """ simulate t1. This function is used to numerically solve for T1. """ omega_c = 2*np.pi*fc phi = pm*np.pi/180 t3 = 1.0/self.pole3 t4 = 1.0/self.pole4 # val = np.arctan2( 1.0, ( (omega_c)*(t1*t3*t4) )/gamma ) - \ # np.arctan2( 1.0, 1.0/omega_c*t1 ) - \ # np.arctan2( 1.0, 1.0/omega_c*t3 ) - \ # np.croarctan2( 1.0, 1.0/omega_c*t1*t4 ) - phi val =
np.arctan( gamma/( (omega_c)*(t1*t3*t4) ) )
numpy.arctan
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test graph fallback """ import pytest import numpy as np from mindspore import ms_function, context, Tensor context.set_context(mode=context.GRAPH_MODE) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_linspace(): """ Feature: JIT Fallback Description: Test numpy with linspace in graph mode. Expectation: No exception. """ @ms_function def np_linspace(): a = Tensor(np.linspace(1, 10, 10)) b = Tensor(np.linspace(1, 1, 10)) c = Tensor(np.linspace(10, 20, 5, endpoint=False)) d = Tensor(np.linspace(10, 20, 5, endpoint=True)) e = Tensor(np.linspace(1, 10, 10).reshape([10, 1])) return a, b, c, d, e a, b, c, d, e = np_linspace() print("a:", a) print("b:", b) print("c:", c) print("d:", d) print("e:", e) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_arange_slice_1(): """ Feature: JIT Fallback Description: Test numpy with arange slice in graph mode. Expectation: No exception. """ @ms_function def np_arange_slice_1(): x = np.arange(10) index = slice(2, 7, 2) a = Tensor(x[index]) b = Tensor(x[2:7:2]) c = Tensor(x[5]) d = Tensor(x[2:]) e = Tensor(x[2:5]) return a, b, c, d, e a, b, c, d, e = np_arange_slice_1() assert np.all(a.asnumpy() == np.array([2, 4, 6])) assert np.all(b.asnumpy() == np.array([2, 4, 6])) assert np.all(c.asnumpy() == np.array([5])) assert np.all(d.asnumpy() == np.array([2, 3, 4, 5, 6, 7, 8, 9])) assert np.all(e.asnumpy() == np.array([2, 3, 4])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_arange_slice_2(): """ Feature: JIT Fallback Description: Test numpy with arange slice in graph mode. Expectation: No exception. """ @ms_function def np_arange_slice_2(): x = np.array([[1, 2, 3], [3, 4, 5], [4, 5, 6]]) a = Tensor(x[1:]) b = Tensor(x[..., 1]) c = Tensor(x[1, ...]) d = Tensor(x[..., 1:]) return a, b, c, d a, b, c, d = np_arange_slice_2() assert np.all(a.asnumpy() == np.array([[3, 4, 5], [4, 5, 6]])) assert np.all(b.asnumpy() == np.array([2, 4, 5])) assert np.all(c.asnumpy() == np.array([3, 4, 5])) assert np.all(d.asnumpy() == np.array([[2, 3], [4, 5], [5, 6]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_array_advanced_index_1(): """ Feature: JIT Fallback Description: Test numpy with array advanced index in graph mode. Expectation: No exception. """ @ms_function def np_array_advanced_index_1(): x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) a = Tensor(x[[0, 1, 2], [0, 1, 0]]) rows = np.array([[0, 0], [3, 3]]) cols = np.array([[0, 2], [0, 2]]) b = Tensor(x[rows, cols]) c = Tensor(x[1:3, 1:3]) d = Tensor(x[1:3, [1, 2]]) e = Tensor(x[..., 1:]) return a, b, c, d, e a, b, c, d, e = np_array_advanced_index_1() assert np.all(a.asnumpy() == np.array([0, 4, 6])) assert np.all(b.asnumpy() == np.array([[0, 2], [9, 11]])) assert np.all(c.asnumpy() == np.array([[4, 5], [7, 8]])) assert np.all(d.asnumpy() == np.array([[4, 5], [7, 8]])) assert np.all(e.asnumpy() == np.array([[1, 2], [4, 5], [7, 8], [10, 11]])) # Not support <class 'complex'> yet. @pytest.mark.skip(reason='Not support graph fallback feature yet') def test_np_array_advanced_index_2(): """ Feature: JIT Fallback Description: Test numpy with array advanced index in graph mode. Expectation: No exception. """ @ms_function def np_array_advanced_index_2(): x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) y = np.array([np.nan, 1, 2, np.nan, 3, 4, 5]) z = np.array([1, 2 + 6j, 5, 3.5 + 5j]) a = Tensor(x[x > 5]) b = Tensor(y[~np.isnan(y)]) c = Tensor(z[np.iscomplex(z)]) return a, b, c a, b, c = np_array_advanced_index_2() assert np.all(a.asnumpy() == np.array([6, 7, 8, 9, 10, 11])) assert np.all(b.asnumpy() == np.array([1., 2., 3., 4., 5.])) assert np.all(c.asnumpy() == np.array([2. + 6.j, 3.5 + 5.j])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_array_advanced_index_3(): """ Feature: JIT Fallback Description: Test numpy with array advanced index in graph mode. Expectation: No exception. """ @ms_function def np_array_advanced_index_3(): x = np.arange(32).reshape((8, 4)) a = Tensor(x[[4, 2, 1, 7]]) y = np.arange(32).reshape((8, 4)) b = Tensor(y[[-4, -2, -1, -7]]) z = np.arange(32).reshape((8, 4)) c = Tensor(z[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]) return a, b, c a, b, c = np_array_advanced_index_3() print("a:", a) print("b:", b) print("c:", c) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_reshape(): """ Feature: JIT Fallback Description: Test numpy.reshape() method in graph mode. Expectation: No exception. """ @ms_function def np_reshape(): x = np.arange(8) y = x.reshape(2, 4) return Tensor(y) assert np.all(np_reshape().asnumpy() == np.array([[0, 1, 2, 3], [4, 5, 6, 7]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_ndarray_flatten(): """ Feature: JIT Fallback Description: Test numpy.flatten() method in graph mode. Expectation: No exception. """ @ms_function def np_ndarray_flatten(): x = np.arange(8).reshape(2, 4) y = x.flatten() return Tensor(y) assert np.all(np_ndarray_flatten().asnumpy() == np.array([0, 1, 2, 3, 4, 5, 6, 7])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_ravel(): """ Feature: JIT Fallback Description: Test numpy.ravel() method in graph mode. Expectation: No exception. """ @ms_function def np_ravel(): x = np.arange(8).reshape(2, 4) y = x.ravel(order='F') return Tensor(y) assert np.all(np_ravel().asnumpy() == np.array([0, 4, 1, 5, 2, 6, 3, 7])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_transpose(): """ Feature: JIT Fallback Description: Test numpy.transpose() method in graph mode. Expectation: No exception. """ @ms_function def np_transpose(): x = np.arange(4).reshape(4, 1) y = np.transpose(x) return Tensor(y) assert np.all(np_transpose().asnumpy() == np.array([0, 1, 2, 3])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_rollaxis(): """ Feature: JIT Fallback Description: Test numpy.rollaxis() method in graph mode. Expectation: No exception. """ @ms_function def np_rollaxis(): x = np.arange(8).reshape(2, 2, 2) tensor_x = Tensor(x) y = np.rollaxis(x, 2, 0) tensor_y = Tensor(y) return tensor_x[1, 1, 0], tensor_y[1, 1, 0] x, y = np_rollaxis() assert x == 6 and y == 5 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_swapaxes(): """ Feature: JIT Fallback Description: Test numpy.swapaxes() method in graph mode. Expectation: No exception. """ @ms_function def np_swapaxes(): x = np.arange(8).reshape(2, 2, 2) tensor_x = Tensor(x) y = np.swapaxes(x, 2, 0) tensor_y = Tensor(y) return tensor_x[1, 1, 0], tensor_y[1, 1, 0] x, y = np_swapaxes() assert x == 6 and y == 3 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_broadcast(): """ Feature: JIT Fallback Description: Test numpy.broadcast() method in graph mode. Expectation: No exception. """ @ms_function def np_broadcast(): x = np.array([[1], [2], [3]]) y = np.array([4, 5, 6]) z = np.broadcast(x, y) return Tensor(z.shape) assert np.all(np_broadcast().asnumpy() == np.array([3, 3])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_broadcast_to(): """ Feature: JIT Fallback Description: Test numpy.broadcast_to() method in graph mode. Expectation: No exception. """ @ms_function def np_broadcast_to(): x = np.arange(4).reshape(1, 4) y = np.broadcast_to(x, (2, 4)) return Tensor(y) assert np.all(np_broadcast_to().asnumpy() == np.array([[0, 1, 2, 3], [0, 1, 2, 3]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_expand_dims(): """ Feature: JIT Fallback Description: Test numpy.expand_dims() method in graph mode. Expectation: No exception. """ @ms_function def np_expand_dims(): x = np.array(([1, 2], [3, 4])) y = np.expand_dims(x, axis=0) return Tensor(y) assert np.all(np_expand_dims().asnumpy() == np.array([[[1, 2], [3, 4]]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_squeeze(): """ Feature: JIT Fallback Description: Test numpy.squeeze() method in graph mode. Expectation: No exception. """ @ms_function def np_squeeze(): x = np.arange(4).reshape(1, 2, 2) y = np.squeeze(x) return Tensor(y) assert np.all(np_squeeze().asnumpy() == np.array([[0, 1], [2, 3]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_concat(): """ Feature: JIT Fallback Description: Test numpy method in graph mode. Expectation: No exception. """ @ms_function def np_concat(): x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) concatenate = np.concatenate((x, y)) stack = np.stack((x, y), 0) hstack = np.hstack((x, y)) vstack = np.vstack((x, y)) return Tensor(concatenate), Tensor(stack), Tensor(hstack), Tensor(vstack) out_concatenate, out_stack, out_hstack, out_vstack = np_concat() assert np.all(out_concatenate.asnumpy() == np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) assert np.all(out_stack.asnumpy() == np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])) assert np.all(out_hstack.asnumpy() == np.array([[1, 2, 5, 6], [3, 4, 7, 8]])) assert np.all(out_vstack.asnumpy() == np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_split(): """ Feature: JIT Fallback Description: Test numpy split method in graph mode. Expectation: No exception. """ @ms_function def np_split(): x = np.arange(4).reshape(2, 2) split = np.split(x, 2) hsplit = np.hsplit(x, 2) vsplit = np.vsplit(x, 2) return Tensor(split), Tensor(hsplit), Tensor(vsplit) out_split, out_hsplit, out_vsplit = np_split() assert np.all(out_split.asnumpy() == np.array([[[0, 1]], [[2, 3]]])) assert np.all(out_hsplit.asnumpy() == np.array([[[0], [2]], [[1], [3]]])) assert np.all(out_vsplit.asnumpy() == np.array([[[0, 1]], [[2, 3]]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_element(): """ Feature: JIT Fallback Description: Test numpy method in graph mode. Expectation: No exception. """ @ms_function def np_element(): resize = np.resize(np.array([[1, 2, 3], [4, 5, 6]]), (3, 2)) append = np.append(np.array([[1, 2, 3], [4, 5, 6]]), [[7, 8, 9]], axis=0) insert = np.insert(np.array([[1, 2], [3, 4], [5, 6]]), 3, [7, 8], axis=0) delete = np.delete(np.arange(6).reshape(2, 3), 0, axis=0) unique = np.unique(np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])) return Tensor(resize), Tensor(append), Tensor(insert), Tensor(delete), Tensor(unique) out_resize, out_append, out_insert, out_delete, out_unique = np_element() assert np.all(out_resize.asnumpy() ==
np.array([[1, 2], [3, 4], [5, 6]])
numpy.array
# Code from Chapter 18 of Machine Learning: An Algorithmic Perspective (2nd Edition) # by <NAME> (http://stephenmonika.net) # You are free to use, change, or redistribute the code in any way you wish for # non-commercial purposes, but please maintain the name of the original author. # This code comes with no warranty of any kind. # <NAME>, 2014 import pylab as pl import numpy as np import scipy.optimize as so def kernel4(data1, data2, theta, wantderiv=True, measnoise=1.): theta = np.squeeze(theta) # Periodic if np.shape(data1)[0] == len(data1): d1 = np.shape(data1)[0] n = 1 else: (d1, n) = np.shape(data1) d2 = np.shape(data2)[0] sumxy = np.zeros((d1, d2)) for d in range(n): D1 = np.transpose([data1[:, d]]) * np.ones((d1, d2)) D2 = [data2[:, d]] *
np.ones((d1, d2))
numpy.ones
import numpy as np from .dimension import embed from .rotate import rotate_2D __all__ = ["torus", "dsphere", "sphere", "swiss_roll", "infty_sign", "eyeglasses"] # TODO: Make a base class that controls `ambient` and `noise`. class Shape: def __init__(self): pass def dsphere(n=100, d=2, r=1, noise=None, ambient=None, seed=None): """ Sample `n` data points on a d-sphere. Parameters ----------- n : int Number of data points in shape. r : float Radius of sphere. ambient : int, default=None Embed the sphere into a space with ambient dimension equal to `ambient`. The sphere is randomly rotated in this high dimensional space. seed : int, default=None Seed for random state. """ np.random.seed(seed) data = np.random.randn(n, d + 1) # Normalize points to the sphere data = r * data / np.sqrt(np.sum(data ** 2, 1)[:, None]) if noise: data += noise * np.random.randn(*data.shape) if ambient: assert ambient > d, "Must embed in higher dimensions" data = embed(data, ambient) return data def sphere(n=100, r=1, noise=None, ambient=None, seed=None): """ Sample `n` data points on a sphere. Parameters ----------- n : int Number of data points in shape. r : float Radius of sphere. ambient : int, default=None Embed the sphere into a space with ambient dimension equal to `ambient`. The sphere is randomly rotated in this high dimensional space. seed : int, default=None Seed for random state. """ np.random.seed(seed) theta = np.random.random((n,)) * 2.0 * np.pi phi = np.random.random((n,)) * np.pi rad = np.ones((n,)) * r data = np.zeros((n, 3)) data[:, 0] = rad * np.cos(theta) * np.cos(phi) data[:, 1] = rad * np.cos(theta) * np.sin(phi) data[:, 2] = rad * np.sin(theta) if noise: data += noise * np.random.randn(*data.shape) if ambient: data = embed(data, ambient) return data def torus(n=100, c=2, a=1, noise=None, ambient=None, seed=None): """ Sample `n` data points on a torus. Parameters ----------- n : int Number of data points in shape. c : float Distance from center to center of tube. a : float Radius of tube. ambient : int, default=None Embed the torus into a space with ambient dimension equal to `ambient`. The torus is randomly rotated in this high dimensional space. seed : int, default=None Seed for random state. """ assert a <= c, "That's not a torus" np.random.seed(seed) theta = np.random.random((n,)) * 2.0 * np.pi phi = np.random.random((n,)) * 2.0 * np.pi data = np.zeros((n, 3)) data[:, 0] = (c + a * np.cos(theta)) * np.cos(phi) data[:, 1] = (c + a * np.cos(theta)) * np.sin(phi) data[:, 2] = a * np.sin(theta) if noise: data += noise * np.random.randn(*data.shape) if ambient: data = embed(data, ambient) return data def swiss_roll(n=100, r=10, noise=None, ambient=None, seed=None): """Swiss roll implementation Parameters ---------- n : int Number of data points in shape. r : float Length of roll ambient : int, default=None Embed the swiss roll into a space with ambient dimension equal to `ambient`. The swiss roll is randomly rotated in this high dimensional space. seed : int, default=None Seed for random state. References ---------- Equations mimic [Swiss Roll and SNE by jlmelville](https://jlmelville.github.io/smallvis/swisssne.html) """ np.random.seed(seed) phi = (np.random.random((n,)) * 3 + 1.5) * np.pi psi = np.random.random((n,)) * r data = np.zeros((n, 3)) data[:, 0] = phi * np.cos(phi) data[:, 1] = phi * np.sin(phi) data[:, 2] = psi if noise: data += noise * np.random.randn(*data.shape) if ambient: data = embed(data, ambient) return data def infty_sign(n=100, noise=None, angle=None, seed=None): """Construct a figure 8 or infinity sign with :code:`n` points and noise level with :code:`noise` standard deviation. Parameters ============ n: int number of points in returned data set. noise: float standard deviation of normally distributed noise added to data. angle: float angle in radians to rotate the infinity sign. seed : int Seed for random state. """
np.random.seed(seed)
numpy.random.seed
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # import time import ctypes import tempfile import numpy import h5py from pyscf import lib from functools import reduce from pyscf.lib import logger from pyscf import gto from pyscf import ao2mo from pyscf.cc import ccsd from pyscf.cc import _ccsd from pyscf.cc import ccsd_rdm from pyscf.scf import rhf_grad from pyscf.scf import cphf BLKSIZE = 192 def IX_intermediates(mycc, t1, t2, l1, l2, eris=None, d1=None, d2=None): if eris is None: # Note eris are in Chemist's notation eris = ccsd._ERIS(mycc) if d1 is None: d1 = ccsd_rdm.gamma1_intermediates(mycc, t1, t2, l1, l2) doo, dov, dvo, dvv = d1 if d2 is None: _d2tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fd2intermediate = h5py.File(_d2tmpfile.name, 'w') ccsd_rdm.gamma2_outcore(mycc, t1, t2, l1, l2, fd2intermediate) dovov = fd2intermediate['dovov'] dvvvv = fd2intermediate['dvvvv'] doooo = fd2intermediate['doooo'] doovv = fd2intermediate['doovv'] dovvo = fd2intermediate['dovvo'] dovvv = fd2intermediate['dovvv'] dooov = fd2intermediate['dooov'] else: dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov = d2 log = logger.Logger(mycc.stdout, mycc.verbose) nocc, nvir = t1.shape nov = nocc * nvir nvir_pair = nvir * (nvir+1) //2 _tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fswap = h5py.File(_tmpfile.name, 'w') fswap.create_group('e_vvov') fswap.create_group('c_vvov') # Note Ioo, Ivv are not hermitian Ioo = numpy.zeros((nocc,nocc)) Ivv = numpy.zeros((nvir,nvir)) Ivo = numpy.zeros((nvir,nocc)) Xvo = numpy.zeros((nvir,nocc)) eris_oooo = _cp(eris.oooo) eris_ooov = _cp(eris.ooov) d_oooo = _cp(doooo) d_oooo = _cp(d_oooo + d_oooo.transpose(1,0,2,3)) #:Ioo += numpy.einsum('jmlk,imlk->ij', d_oooo, eris_oooo) * 2 Ioo += lib.dot(eris_oooo.reshape(nocc,-1), d_oooo.reshape(nocc,-1).T, 2) d_oooo = _cp(d_oooo.transpose(0,2,3,1)) #:Xvo += numpy.einsum('iljk,ljka->ai', d_oooo, eris_ooov) * 2 Xvo += lib.dot(eris_ooov.reshape(-1,nvir).T, d_oooo.reshape(nocc,-1).T, 2) Xvo +=(numpy.einsum('kj,kjia->ai', doo, eris_ooov) * 4 - numpy.einsum('kj,ikja->ai', doo+doo.T, eris_ooov)) eris_oooo = eris_ooov = d_oooo = None d_ovov = numpy.empty((nocc,nvir,nocc,nvir)) blksize = 8 for p0, p1 in prange(0, nocc, blksize): d_ovov[p0:p1] = _cp(dovov[p0:p1]) d_ovvo = _cp(dovvo[p0:p1]) for i in range(p0,p1): d_ovov[i] += d_ovvo[i-p0].transpose(0,2,1) d_ovvo = None d_ovov = lib.transpose_sum(d_ovov.reshape(nov,nov)).reshape(nocc,nvir,nocc,nvir) #:Ivo += numpy.einsum('jbka,jbki->ai', d_ovov, eris.ovoo) Ivo += lib.dot(d_ovov.reshape(-1,nvir).T, _cp(eris.ovoo).reshape(-1,nocc)) eris_ovov = _cp(eris.ovov) #:Ioo += numpy.einsum('jakb,iakb->ij', d_ovov, eris.ovov) #:Ivv += numpy.einsum('jcib,jcia->ab', d_ovov, eris.ovov) Ioo += lib.dot(eris_ovov.reshape(nocc,-1), d_ovov.reshape(nocc,-1).T) Ivv += lib.dot(eris_ovov.reshape(-1,nvir).T, d_ovov.reshape(-1,nvir)) eris_ovov = None fswap['dovvo'] = d_ovov.transpose(0,1,3,2) d_ovov = None max_memory = mycc.max_memory - lib.current_memory()[0] unit = max(nvir**3*2.5, nvir**3*2+nocc*nvir**2) blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/unit)) iobuflen = int(256e6/8/(blksize*nvir)) log.debug1('IX_intermediates pass 1: block size = %d, nocc = %d in %d blocks', blksize, nocc, int((nocc+blksize-1)/blksize)) for istep, (p0, p1) in enumerate(prange(0, nocc, blksize)): d_ooov = _cp(dooov[p0:p1]) eris_oooo = _cp(eris.oooo[p0:p1]) eris_ooov = _cp(eris.ooov[p0:p1]) #:Ivv += numpy.einsum('ijkb,ijka->ab', d_ooov, eris_ooov) #:Ivo += numpy.einsum('jlka,jlki->ai', d_ooov, eris_oooo) Ivv += lib.dot(eris_ooov.reshape(-1,nvir).T, d_ooov.reshape(-1,nvir)) Ivo += lib.dot(d_ooov.reshape(-1,nvir).T, eris_oooo.reshape(-1,nocc)) #:Ioo += numpy.einsum('klja,klia->ij', d_ooov, eris_ooov) #:Xvo += numpy.einsum('kjib,kjba->ai', d_ooov, eris.oovv) eris_oovv = _cp(eris.oovv[p0:p1]) tmp = _cp(d_ooov.transpose(0,1,3,2).reshape(-1,nocc)) Ioo += lib.dot(_cp(eris_ooov.transpose(0,1,3,2).reshape(-1,nocc)).T, tmp) Xvo += lib.dot(eris_oovv.reshape(-1,nvir).T, tmp) eris_oooo = tmp = None d_ooov = d_ooov + dooov[:,p0:p1].transpose(1,0,2,3) eris_ovov = _cp(eris.ovov[p0:p1]) #:Ioo += numpy.einsum('ljka,lika->ij', d_ooov, eris_ooov) #:Xvo += numpy.einsum('jikb,jakb->ai', d_ooov, eris_ovov) for i in range(p1-p0): lib.dot(eris_ooov[i].reshape(nocc,-1), d_ooov[i].reshape(nocc,-1).T, 1, Ioo, 1) lib.dot(eris_ovov[i].reshape(nvir,-1), d_ooov[i].reshape(nocc,-1).T, 1, Xvo, 1) d_ooov = None #:Ioo += numpy.einsum('kjba,kiba->ij', d_oovv, eris.oovv) #:Ivv += numpy.einsum('ijcb,ijca->ab', d_oovv, eris.oovv) #:Ivo += numpy.einsum('kjba,kjib->ai', d_oovv, eris.ooov) d_oovv = _cp(doovv[p0:p1]) + doovv[:,p0:p1].transpose(1,0,3,2) for i in range(p1-p0): Ioo += lib.dot(eris_oovv[i].reshape(nocc, -1), d_oovv[i].reshape(nocc,-1).T) Ivv += lib.dot(eris_oovv.reshape(-1,nvir).T, d_oovv.reshape(-1,nvir)) Ivo += lib.dot(d_oovv.reshape(-1,nvir).T, _cp(eris_ooov.transpose(0,1,3,2).reshape(-1,nocc))) eris_ooov = None d_oovv = _ccsd.precontract(d_oovv.reshape(-1,nvir,nvir)).reshape(p1-p0,nocc,-1) d_ovvv = numpy.empty((p1-p0,nvir,nvir,nvir)) ao2mo.outcore._load_from_h5g(dovvv, p0*nvir, p1*nvir, d_ovvv.reshape(-1,nvir**2)) #:Ivo += numpy.einsum('jadc,jidc->ai', d_ovvv, eris_oovv) for i in range(p1-p0): Ivo += lib.dot(d_ovvv[i].reshape(nvir,-1), eris_oovv[i].reshape(nocc,-1).T) eris_oovv = None # tril part of (d_ovvv + d_ovvv.transpose(0,1,3,2)) c_ovvv = _ccsd.precontract(d_ovvv.reshape(-1,nvir,nvir)) ao2mo.outcore._transpose_to_h5g(fswap, 'c_vvov/%d'%istep, c_ovvv, iobuflen) c_ovvv = c_ovvv.reshape(-1,nvir,nvir_pair) eris_ovx = _cp(eris.ovvv[p0:p1]) ao2mo.outcore._transpose_to_h5g(fswap, 'e_vvov/%d'%istep, eris_ovx.reshape(-1,nvir_pair), iobuflen) #:Xvo += numpy.einsum('jibc,jabc->ai', d_oovv, eris_ovvv) #:Ivv += numpy.einsum('ibdc,iadc->ab', d_ovvv, eris_ovvv) for i in range(p1-p0): lib.dot(eris_ovx[i].reshape(nvir,-1), d_oovv[i].reshape(nocc,-1).T, 1, Xvo, 1) lib.dot(eris_ovx[i].reshape(nvir,-1), c_ovvv[i].reshape(nvir,-1).T, 1, Ivv, 1) c_ovvv = d_oovv = None eris_ovvo = numpy.empty((p1-p0,nvir,nvir,nocc)) for i in range(p1-p0): d_ovvv[i] = _ccsd.sum021(d_ovvv[i]) eris_ovvo[i] = eris_ovov[i].transpose(0,2,1) #:Ivo += numpy.einsum('abjc,ibjc->ai', d_ovvv, eris_ovov) Ivo += lib.dot(d_ovvv.reshape(-1,nvir).T, eris_ovvo.reshape(-1,nocc)) eris_ovvo = eris_ovov = None eris_ovvv = lib.unpack_tril(eris_ovx.reshape(-1,nvir_pair)) eris_ovx = None eris_ovvv = eris_ovvv.reshape(p1-p0,nvir,nvir,nvir) #:Ivv += numpy.einsum('icdb,icda->ab', d_ovvv, eris_ovvv) #:Xvo += numpy.einsum('jibc,jabc->ai', d_oovv, eris_ovvv) Ivv += lib.dot(eris_ovvv.reshape(-1,nvir).T, d_ovvv.reshape(-1,nvir)) Xvo[:,p0:p1] +=(numpy.einsum('cb,iacb->ai', dvv, eris_ovvv) * 4 - numpy.einsum('cb,icba->ai', dvv+dvv.T, eris_ovvv)) d_ovvo = _cp(fswap['dovvo'][p0:p1]) #:Xvo += numpy.einsum('jbic,jbca->ai', d_ovov, eris_ovvv) lib.dot(eris_ovvv.reshape(-1,nvir).T, d_ovvo.reshape(-1,nocc), 1, Xvo, 1) d_ovvv = d_ovvo = eris_ovvv = None max_memory = mycc.max_memory - lib.current_memory()[0] unit = nocc*nvir**2 + nvir**3*2.5 blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/unit)) log.debug1('IX_intermediates pass 2: block size = %d, nocc = %d in %d blocks', blksize, nocc, int((nocc+blksize-1)/blksize)) for p0, p1 in prange(0, nvir, blksize): off0 = p0*(p0+1)//2 off1 = p1*(p1+1)//2 d_vvvv = _cp(dvvvv[off0:off1]) * 4 for i in range(p0, p1): d_vvvv[i*(i+1)//2+i-off0] *= .5 d_vvvv = lib.unpack_tril(d_vvvv) eris_vvvv = lib.unpack_tril(_cp(eris.vvvv[off0:off1])) #:Ivv += numpy.einsum('decb,deca->ab', d_vvvv, eris_vvvv) * 2 #:Xvo += numpy.einsum('dbic,dbca->ai', d_vvov, eris_vvvv) lib.dot(eris_vvvv.reshape(-1,nvir).T, d_vvvv.reshape(-1,nvir), 2, Ivv, 1) #:d_vvvv = _cp(d_vvvv + d_vvvv.transpose(0,1,3,2)) d_vvov = numpy.empty((off1-off0,nocc,nvir)) ao2mo.outcore._load_from_h5g(fswap['c_vvov'], off0, off1, d_vvov.reshape(-1,nov)) d_vvvo = _cp(d_vvov.transpose(0,2,1)) lib.dot(eris_vvvv.reshape(-1,nvir).T, d_vvvo.reshape(-1,nocc), 1, Xvo, 1) d_vvov = eris_vvvv = None eris_vvov = numpy.empty((off1-off0,nocc,nvir)) ao2mo.outcore._load_from_h5g(fswap['e_vvov'], off0, off1, eris_vvov.reshape(-1,nov)) eris_vvvo = _cp(eris_vvov.transpose(0,2,1)) #:Ioo += numpy.einsum('abjc,abci->ij', d_vvov, eris_vvvo) #:Ivo += numpy.einsum('dbca,dbci->ai', d_vvvv, eris_vvvo) * 2 lib.dot(d_vvvv.reshape(-1,nvir).T, eris_vvvo.reshape(-1,nocc), 2, Ivo, 1) lib.dot(eris_vvvo.reshape(-1,nocc).T, d_vvvo.reshape(-1,nocc), 1, Ioo, 1) eris_vvov = eris_vovv = d_vvvv = None del(fswap['e_vvov']) del(fswap['c_vvov']) del(fswap['dovvo']) fswap.close() _tmpfile = None if d2 is None: for key in fd2intermediate.keys(): del(fd2intermediate[key]) fd2intermediate.close() _d2tmpfile = None Ioo *= -1 Ivv *= -1 Ivo *= -1 Xvo += Ivo return Ioo, Ivv, Ivo, Xvo def response_dm1(mycc, t1, t2, l1, l2, eris=None, IX=None): if eris is None: # Note eris are in Chemist's notation eris = ccsd._ERIS(mycc) if IX is None: Ioo, Ivv, Ivo, Xvo = IX_intermediates(mycc, t1, t2, l1, l2, eris) else: Ioo, Ivv, Ivo, Xvo = IX nocc, nvir = t1.shape nmo = nocc + nvir max_memory = mycc.max_memory - lib.current_memory()[0] blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nocc*nvir**2))) def fvind(x): x = x.reshape(Xvo.shape) if eris is None: mo_coeff = mycc.mo_coeff dm = reduce(numpy.dot, (mo_coeff[:,nocc:], x, mo_coeff[:,:nocc].T)) dm = (dm + dm.T) * 2 v = reduce(numpy.dot, (mo_coeff[:,nocc:].T, mycc._scf.get_veff(mol, dm), mo_coeff[:,:nocc])) else: v = numpy.zeros((nocc,nvir)) for p0, p1 in prange(0, nocc, blksize): eris_ovov = _cp(eris.ovov[p0:p1]) v[p0:p1] += numpy.einsum('iajb,bj->ia', eris_ovov, x) * 4 v[p0:p1] -= numpy.einsum('ibja,bj->ia', eris_ovov, x) eris_ovov = None v[p0:p1] -= numpy.einsum('ijba,bj->ia', _cp(eris.oovv[p0:p1]), x[:,p0:p1]) return v.T mo_energy = eris.fock.diagonal() mo_occ = numpy.zeros_like(mo_energy) mo_occ[:nocc] = 2 dvo = cphf.solve(fvind, mo_energy, mo_occ, Xvo, max_cycle=30)[0] dm1 = numpy.zeros((nmo,nmo)) dm1[nocc:,:nocc] = dvo dm1[:nocc,nocc:] = dvo.T return dm1 # # Note: only works with canonical orbitals # Non-canonical formula refers to JCP, 95, 2639 # def kernel(mycc, t1=None, t2=None, l1=None, l2=None, eris=None, atmlst=None, mf_grad=None, verbose=logger.INFO): if t1 is None: t1 = mycc.t1 if t2 is None: t2 = mycc.t2 if l1 is None: l1 = mycc.l1 if l2 is None: l2 = mycc.l2 if eris is None: eris = ccsd._ERIS(mycc) if mf_grad is None: mf_grad = rhf_grad.Gradients(mycc._scf) log = logger.Logger(mycc.stdout, mycc.verbose) time0 = time.clock(), time.time() mol = mycc.mol moidx = numpy.ones(mycc.mo_coeff.shape[1], dtype=numpy.bool) if isinstance(mycc.frozen, (int, numpy.integer)): raise NotImplementedError('frozen orbital ccsd_grad') moidx[:mycc.frozen] = False else: moidx[mycc.frozen] = False mo_coeff = mycc.mo_coeff[:,moidx] #FIXME: ensure mycc.mo_coeff is canonical orbital mo_energy = eris.fock.diagonal() nocc, nvir = t1.shape nao, nmo = mo_coeff.shape nao_pair = nao * (nao+1) // 2 log.debug('Build ccsd rdm1 intermediates') d1 = ccsd_rdm.gamma1_intermediates(mycc, t1, t2, l1, l2) doo, dov, dvo, dvv = d1 time1 = log.timer('rdm1 intermediates', *time0) log.debug('Build ccsd rdm2 intermediates') _d2tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fd2intermediate = h5py.File(_d2tmpfile.name, 'w') d2 = ccsd_rdm.gamma2_outcore(mycc, t1, t2, l1, l2, fd2intermediate) time1 = log.timer('rdm2 intermediates', *time1) log.debug('Build ccsd response_rdm1') Ioo, Ivv, Ivo, Xvo = IX_intermediates(mycc, t1, t2, l1, l2, eris, d1, d2) time1 = log.timer('response_rdm1 intermediates', *time1) dm1mo = response_dm1(mycc, t1, t2, l1, l2, eris, (Ioo, Ivv, Ivo, Xvo)) dm1mo[:nocc,:nocc] = doo + doo.T dm1mo[nocc:,nocc:] = dvv + dvv.T dm1ao = reduce(numpy.dot, (mo_coeff, dm1mo, mo_coeff.T)) im1 = numpy.zeros_like(dm1mo) im1[:nocc,:nocc] = Ioo im1[nocc:,nocc:] = Ivv im1[nocc:,:nocc] = Ivo im1[:nocc,nocc:] = Ivo.T im1 = reduce(numpy.dot, (mo_coeff, im1, mo_coeff.T)) time1 = log.timer('response_rdm1', *time1) log.debug('symmetrized rdm2 and MO->AO transformation') _dm2file = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) # Basically, 4 times of dm2 is computed. *2 in _rdm2_mo2ao, *2 in _load_block_tril fdm2 = h5py.File(_dm2file.name, 'w') dm1_with_hf = dm1mo.copy() for i in range(nocc): # HF 2pdm ~ 4(ij)(kl)-2(il)(jk), diagonal+1 because of 4*dm2 dm1_with_hf[i,i] += 1 _rdm2_mo2ao(mycc, d2, dm1_with_hf, mo_coeff, fdm2) time1 = log.timer('MO->AO transformation', *time1) for key in fd2intermediate.keys(): del(fd2intermediate[key]) fd2intermediate.close() #TODO: pass hf_grad object to compute h1 and s1 log.debug('h1 and JK1') h1 = mf_grad.get_hcore(mol) s1 = mf_grad.get_ovlp(mol) zeta = lib.direct_sum('i+j->ij', mo_energy, mo_energy) * .5 zeta[nocc:,:nocc] = mo_energy[:nocc] zeta[:nocc,nocc:] = mo_energy[:nocc].reshape(-1,1) zeta = reduce(numpy.dot, (mo_coeff, zeta*dm1mo, mo_coeff.T)) p1 = numpy.dot(mo_coeff[:,:nocc], mo_coeff[:,:nocc].T) vhf4sij = reduce(numpy.dot, (p1, mycc._scf.get_veff(mol, dm1ao+dm1ao.T), p1)) time1 = log.timer('h1 and JK1', *time1) # Hartree-Fock part contribution hf_dm1 = mycc._scf.make_rdm1(mycc._scf.mo_coeff, mycc._scf.mo_occ) dm1ao += hf_dm1 zeta += mf_grad.make_rdm1e(mycc._scf.mo_energy, mycc._scf.mo_coeff, mycc._scf.mo_occ) if atmlst is None: atmlst = range(mol.natm) offsetdic = mol.offset_nr_by_atom() max_memory = mycc.max_memory - lib.current_memory()[0] blksize = max(1, int(max_memory*1e6/8/(nao**3*2.5))) ioblksize = fdm2['dm2/0'].shape[-1] de = numpy.zeros((len(atmlst),3)) for k, ia in enumerate(atmlst): shl0, shl1, p0, p1 = offsetdic[ia] # s[1] dot I, note matrix im1 is not hermitian de[k] =(numpy.einsum('xij,ij->x', s1[:,p0:p1], im1[p0:p1]) + numpy.einsum('xji,ij->x', s1[:,p0:p1], im1[:,p0:p1])) # h[1] \dot DM, *2 for +c.c., contribute to f1 h1ao = mf_grad._grad_rinv(mol, ia) h1ao[:,p0:p1] += h1[:,p0:p1] de[k] +=(numpy.einsum('xij,ij->x', h1ao, dm1ao) + numpy.einsum('xji,ij->x', h1ao, dm1ao)) # -s[1]*e \dot DM, contribute to f1 de[k] -=(numpy.einsum('xij,ij->x', s1[:,p0:p1], zeta[p0:p1] ) + numpy.einsum('xji,ij->x', s1[:,p0:p1], zeta[:,p0:p1])) # -vhf[s_ij[1]], contribute to f1, *2 for s1+s1.T de[k] -= numpy.einsum('xij,ij->x', s1[:,p0:p1], vhf4sij[p0:p1]) * 2 # 2e AO integrals dot 2pdm ip0 = p0 for b0, b1, nf in shell_prange(mol, shl0, shl1, blksize): eri1 = mol.intor('cint2e_ip1_sph', comp=3, aosym='s2kl', shls_slice=(b0,b1,0,mol.nbas,0,mol.nbas,0,mol.nbas)) eri1 = eri1.reshape(3,nf,nao,-1) dm2buf = numpy.empty((nf,nao,nao_pair)) for ic, (i0, i1) in enumerate(prange(0, nao_pair, ioblksize)): _load_block_tril(fdm2['dm2/%d'%ic], ip0, ip0+nf, dm2buf[:,:,i0:i1]) de[k] -= numpy.einsum('xijk,ijk->x', eri1, dm2buf) * 2 eri1 = dm2buf = None ip0 += nf log.debug('grad of atom %d %s = %s', ia, mol.atom_symbol(ia), de[k]) time1 = log.timer('grad of atom %d'%ia, *time1) log.note('CCSD gradinets') log.note('==============') log.note(' x y z') for k, ia in enumerate(atmlst): log.note('%d %s %15.9f %15.9f %15.9f', ia, mol.atom_symbol(ia), de[k,0], de[k,1], de[k,2]) log.timer('CCSD gradients', *time0) for key in fdm2.keys(): del(fdm2[key]) fdm2.close() _d2tmpfile = _dm2file = None return de def shell_prange(mol, start, stop, blksize): nao = 0 ib0 = start for ib in range(start, stop): now = (mol.bas_angular(ib)*2+1) * mol.bas_nctr(ib) nao += now if nao > blksize and nao > now: yield (ib0, ib, nao-now) ib0 = ib nao = now yield (ib0, stop, nao) def _rdm2_mo2ao(mycc, d2, dm1, mo_coeff, fsave=None): log = logger.Logger(mycc.stdout, mycc.verbose) if fsave is None: _dm2file = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fsave = h5py.File(_dm2file.name, 'w') else: _dm2file = None time1 = time.clock(), time.time() dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov = d2 nocc, nvir = dovov.shape[:2] nov = nocc * nvir nao, nmo = mo_coeff.shape nao_pair = nao * (nao+1) // 2 nvir_pair = nvir * (nvir+1) //2 mo_coeff = numpy.asarray(mo_coeff, order='F') def _trans(vin, orbs_slice, out=None): nrow = vin.shape[0] if out is None: out = numpy.empty((nrow,nao_pair)) fdrv = getattr(_ccsd.libcc, 'AO2MOnr_e2_drv') pao_loc = ctypes.POINTER(ctypes.c_void_p)() fdrv(_ccsd.libcc.AO2MOtranse2_nr_s1, _ccsd.libcc.CCmmm_transpose_sum, out.ctypes.data_as(ctypes.c_void_p), vin.ctypes.data_as(ctypes.c_void_p), mo_coeff.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nrow), ctypes.c_int(nao), (ctypes.c_int*4)(*orbs_slice), pao_loc, ctypes.c_int(0)) return out # transform dm2_ij to get lower triangular (dm2+dm2.transpose(0,1,3,2)) _tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fswap = h5py.File(_tmpfile.name) max_memory = mycc.max_memory - lib.current_memory()[0] blksize = max(1, int(max_memory*1e6/8/(nmo*nao_pair+nmo**3+nvir**3))) iobuflen = int(256e6/8/(blksize*nmo)) log.debug1('_rdm2_mo2ao pass 1: blksize = %d, iobuflen = %d', blksize, iobuflen) fswap.create_group('o') # for h5py old version pool1 = numpy.empty((blksize,nmo,nmo,nmo)) pool2 = numpy.empty((blksize,nmo,nao_pair)) bufd_ovvv = numpy.empty((blksize,nvir,nvir,nvir)) for istep, (p0, p1) in enumerate(prange(0, nocc, blksize)): buf1 = pool1[:p1-p0] buf1[:,:nocc,:nocc,:nocc] = doooo[p0:p1] buf1[:,:nocc,:nocc,nocc:] = dooov[p0:p1] buf1[:,:nocc,nocc:,:nocc] = 0 buf1[:,:nocc,nocc:,nocc:] = doovv[p0:p1] buf1[:,nocc:,:nocc,:nocc] = 0 buf1[:,nocc:,:nocc,nocc:] = dovov[p0:p1] buf1[:,nocc:,nocc:,:nocc] = dovvo[p0:p1] d_ovvv = bufd_ovvv[:p1-p0] ao2mo.outcore._load_from_h5g(dovvv, p0*nvir, p1*nvir, d_ovvv.reshape(-1,nvir**2)) buf1[:,nocc:,nocc:,nocc:] = d_ovvv for i in range(p0, p1): buf1[i-p0,i,:,:] += dm1 buf1[i-p0,:,:,i] -= dm1 * .5 buf2 = pool2[:p1-p0].reshape(-1,nao_pair) _trans(buf1.reshape(-1,nmo**2), (0,nmo,0,nmo), buf2) ao2mo.outcore._transpose_to_h5g(fswap, 'o/%d'%istep, buf2, iobuflen) pool1 = pool2 = bufd_ovvv = None time1 = log.timer_debug1('_rdm2_mo2ao pass 1', *time1) fswap.create_group('v') # for h5py old version pool1 = numpy.empty((blksize*nvir,nao_pair)) pool2 = numpy.empty((blksize*nvir,nvir,nvir)) for istep, (p0, p1) in enumerate(prange(0, nvir_pair, blksize*nvir)): buf1 = _cp(dvvvv[p0:p1]) buf2 = lib.unpack_tril(buf1, out=pool2[:p1-p0]) buf1 = _trans(buf2, (nocc,nmo,nocc,nmo), out=pool1[:p1-p0]) ao2mo.outcore._transpose_to_h5g(fswap, 'v/%d'%istep, buf1, iobuflen) pool1 = pool2 = None time1 = log.timer_debug1('_rdm2_mo2ao pass 2', *time1) # transform dm2_kl then dm2 + dm2.transpose(2,3,0,1) max_memory = mycc.max_memory - lib.current_memory()[0] blksize = max(nao, int(max_memory*1e6/8/(nao_pair+nmo**2))) iobuflen = int(256e6/8/blksize) log.debug1('_rdm2_mo2ao pass 3: blksize = %d, iobuflen = %d', blksize, iobuflen) gsave = fsave.create_group('dm2') for istep, (p0, p1) in enumerate(prange(0, nao_pair, blksize)): gsave.create_dataset(str(istep), (nao_pair,p1-p0), 'f8') diagidx = numpy.arange(nao) diagidx = diagidx*(diagidx+1)//2 + diagidx pool1 = numpy.empty((blksize,nmo,nmo)) pool2 = numpy.empty((blksize,nvir_pair)) pool3 = numpy.empty((blksize,nvir,nvir)) pool4 =
numpy.empty((blksize,nao_pair))
numpy.empty
""" Unit tests for crystal class """ __author__ = '<NAME>' import unittest import numpy as np import yaml import onsager.crystal as crystal class UnitCellTests(unittest.TestCase): """Tests to make sure incell and halfcell work as expected.""" def testincell(self): """In cell testing""" a = np.array([4. / 3., -2. / 3., 19. / 9.]) b = np.array([1. / 3., 1. / 3., 1. / 9.]) self.assertTrue(np.allclose(crystal.incell(a), b)) def testhalfcell(self): """Half cell testing""" a = np.array([4. / 3., -2. / 3., 17. / 9.]) b = np.array([1. / 3., 1. / 3., -1. / 9.]) self.assertTrue(np.allclose(crystal.inhalf(a), b)) class GroupOperationTests(unittest.TestCase): """Tests for our group operations.""" def setUp(self): self.rot = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) self.trans = np.zeros(3) self.cartrot = np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., 1.]]) self.indexmap = ((0,),) self.mirrorop = crystal.GroupOp(self.rot, self.trans, self.cartrot, self.indexmap) self.ident = crystal.GroupOp(np.eye(3, dtype=int), np.zeros(3), np.eye(3), ((0,),)) def testEquality(self): """Can we check if two group operations are equal?""" self.assertNotEqual(self.mirrorop, self.rot) self.assertEqual(self.mirrorop.incell(), self.mirrorop) # self.assertEqual(self.mirrorop.__hash__(), (self.mirrorop + np.array([1,0,0])).__hash__()) def testAddition(self): """Can we add a vector to our group operation and get a new one?""" with self.assertRaises(TypeError): self.mirrorop + 0 v1 = np.array([1, 0, 0]) newop = self.mirrorop + v1 mirroroptrans = crystal.GroupOp(self.rot, self.trans + v1, self.cartrot, self.indexmap) self.assertEqual(newop, mirroroptrans) self.assertTrue(np.allclose((self.ident - v1).trans, -v1)) def testMultiplication(self): """Does group operation multiplication work correctly?""" self.assertEqual(self.mirrorop * self.mirrorop, self.ident) v1 = np.array([1, 0, 0]) trans = self.ident + v1 self.assertEqual(trans * trans, self.ident + 2 * v1) rot3 = crystal.GroupOp(
np.eye(3, dtype=int)
numpy.eye
import inspect from abc import ABCMeta, abstractmethod from copy import deepcopy as _deepcopy, copy as _copy import sympy as sp import wrapt import itertools from utils.func_utils import get_cached_func_spec, make_function from structdict import StructDict, OrderedStructDict import numpy as np from numpy.lib.stride_tricks import as_strided as _as_strided import scipy.linalg as scl import scipy.sparse as scs from collections import namedtuple as NamedTuple from utils.decorator_utils import cache_hashable_args import functools def is_scalar_like(val): shape = getattr(val, 'shape', (1,)) return all([d==1 for d in shape]) def matmul(self, other): if any(map(is_scalar_like, (self, other))): return self * other else: return self @ other def atleast_2d_col(arr, dtype=None, order=None) -> np.ndarray: arr = np.asanyarray(arr, dtype=dtype, order=order) if arr.ndim == 0: result = arr.reshape(1, 1) elif arr.ndim == 1: result = arr[:, np.newaxis] else: result = arr return result def _atleast_3d_col(arr, dtype=None, order=None): arr = np.asanyarray(arr, dtype=dtype, order=order) if arr.ndim == 0: result = arr.reshape(1, 1, 1) elif arr.ndim == 1: result = arr[:, np.newaxis, np.newaxis] elif arr.ndim == 2: result = arr[np.newaxis, :] else: result = arr return result def block_diag_dense_same_shape(mats, format=None, dtype=None): arrs = _atleast_3d_col(mats, dtype=dtype) k, n, m = arrs.shape arrs = arrs.reshape(k * n, m) vals = np.zeros(shape=(k * n, k * m), dtype=arrs.dtype) vals[:, :m] = arrs item_size = arrs.itemsize shape = (k, n, k * m) strides = ((k * n - 1) * m * item_size, k * m * item_size, item_size) strided = np.ascontiguousarray(_as_strided(vals, shape=shape, strides=strides)) block_diag = strided.reshape(n * k, m * k) return block_diag def block_diag_dense(mats, format=None, dtype=None): # scl.blockdiag is faster for large matrices or a large number of matrices. a_mats = _atleast_3d_col(mats) if a_mats.dtype != np.object_ and np.prod(a_mats.shape) < 720: block_diag = block_diag_dense_same_shape(a_mats, format=format, dtype=dtype) else: block_diag = scl.block_diag(*a_mats) if dtype is not None: block_diag = block_diag.astype(dtype) return block_diag import timeit def block_diag_test(a, number=1000): def t1(): return block_diag_dense(a) def t2(): return scl.block_diag(*a) tt1 = timeit.timeit("t1()", globals=locals(), number=number) print("block_diag_dense", tt1) tt2 = timeit.timeit("t2()", globals=locals(), number=number) print("scl.block_diag", tt2) t1 = t1() t2 = t2() print("t1", t1.dtype) print("t2", t2.dtype) return np.array_equal(t1, t2) def create_object_array(tup): try: obj_arr = np.empty(len(tup), dtype=np.object_) except TypeError: raise TypeError("tup must be array like.") for ind, item in enumerate(tup): obj_arr[ind] = item return obj_arr def block_toeplitz(c_tup, r_tup=None, sparse=False): """ Based on scipy.linalg.toeplitz method but applied in a block fashion. """ try: c =
np.array(c_tup)
numpy.array
# -*- coding: utf-8 -*- """ Created on Fri Jun 24 13:06:12 2016 @author: mariapanteli """ import numpy as np import matplotlib.pyplot as plt from bokeh.models import HoverTool, TapTool, CustomJS from bokeh.plotting import figure, show, save, output_file, ColumnDataSource from mpl_toolkits.basemap import Basemap from shapely.geometry import Point, Polygon import random from bokeh.models.widgets import Panel, Tabs import os SHAPEFILE = os.path.join(os.path.dirname(__file__), 'util_data', 'shapefiles', 'ne_110m_admin_0_countries') def get_random_point_in_polygon(poly): '''Select at random a point within given polygon boundaries. Parameters ---------- poly : Polygon The polygon boundaries. Returns ------- p : Point A random point (x, y coords) inside the given polygon. ''' (minx, miny, maxx, maxy) = poly.bounds while True: p = Point(random.uniform(minx, maxx), random.uniform(miny, maxy)) if poly.contains(p): return p def get_random_point_in_country_poly(countries_data): '''Load country polygons and selects a point at random within each polygon. Parameters ---------- countries_data : np.array, 1D Names of countries to select random points. Returns ------- data_x : list of float The x-coordinates of random points within each country in countries_data. data_y : list of float The y-coordinates of random points within each country in countries_data. ''' pp_x, pp_y, coords_poly, countries_poly = get_countries_lonlat_poly(SHAPEFILE) data_x = [] data_y = [] for country in countries_data: #print country poly_inds = np.where(countries_poly==country)[0] if len(poly_inds)<1: data_x.append(np.nan) data_y.append(np.nan) continue poly = coords_poly[poly_inds[0]] if len(poly_inds)>1: # if many polys for country choose the largest one (ie most points) len_list = [len(pp_x[poly_ind]) for poly_ind in poly_inds] poly = coords_poly[poly_inds[np.argmax(len_list)]] p = Polygon(poly) point_in_poly = get_random_point_in_polygon(p) data_x.append(point_in_poly.x) data_y.append(point_in_poly.y) return data_x, data_y def get_countries_lonlat_poly(shapefile): '''Load spatial information for each country from shapefiles. Parameters ---------- shapefile : str Path to shapefile. Returns ------- pp_x : list of float The x-coordinates of country polygons. pp_y : list of float The y-coordinates of country polygons. mm.units : list of float tuples. Polygon coordinates for each country. countries_poly : np.arry, 1D Country names for each polygon. ''' mm=Basemap() mm.readshapefile(shapefile, 'units', color='#444444', linewidth=.2) pp_x = [] pp_y = [] for shape in mm.units: pp_x.append([ss[0] for ss in shape]) pp_y.append([ss[1] for ss in shape]) countries_poly = [] for mm_info in mm.units_info: countries_poly.append(mm_info['admin']) countries_poly = np.array(countries_poly, dtype=str) #(-52.55642473001839, 2.504705308437053) for French Guiana countries_poly[102] = 'French Guiana' # manual correction return pp_x, pp_y, mm.units, countries_poly def add_bokeh_interactivity(p, r, hover_outlier=False): '''Add plot interactivity. ''' callback = CustomJS(args=dict(r=r), code=""" var inds = cb_obj.get('selected')['1d'].indices; var d1 = cb_obj.get('data'); url = d1['url'][inds[0]]; if (url){ window.open(url);}""") hover_tooltips = """ <div> <div><span style="font-size: 17px; font-weight: bold;">@name</span></div> <div><span style="font-size: 12px;">@info</span></div> </div>""" hover_tooltips_outlier = """ <div> <div><span style="font-size: 17px; font-weight: bold;">@name</span></div> <div><span style="font-size: 12px;">@info</span></div> <div><span style="font-size: 10px; color: #500;">@outlierMD</span></div> <div><span style="font-size: 12px;">@collection</span></div> </div>""" if hover_outlier: p.add_tools(HoverTool(renderers=[r], tooltips=hover_tooltips_outlier)) else: p.add_tools(HoverTool(renderers=[r], tooltips=hover_tooltips)) p.add_tools(TapTool(renderers=[r], callback = callback)) return p def beautify_bokeh_background(p): '''Remove unnecessary background in plot. ''' p.outline_line_color = None p.grid.grid_line_color=None p.axis.axis_line_color=None p.axis.major_label_text_font_size='0pt' p.axis.major_tick_line_color=None p.axis.minor_tick_line_color=None return p def plot_outliers_world_figure(MD, y_pred, df, out_file=None): '''Visualise outliers on an interactive world map figure. Parameters ---------- MD : np.array, float, 1D Mahalanobis distances for each data point. y_pred : np.array, boolean, 1D Whether data point was detected as an outlier or not. df : pd.DataFrame Additional metadata (country, culture, language, genre, collection) for each data point. out_file : str Path to export html file. Returns ------- p : bokeh The interactive map. ''' pp_x, pp_y, coords_poly, countries_poly = get_countries_lonlat_poly(SHAPEFILE) data_x, data_y = get_random_point_in_country_poly(df['Country'].get_values()) alpha_color = (MD-
np.min(MD)
numpy.min
import copy import math import os import sys import time import gfootball.env as football_env import numpy as np import torch from a2c_ppo_acktr.envs import EpisodeRewardScoreWrapper from a2c_ppo_acktr.envs import GFNoopResetEnv from a2c_ppo_acktr.storage_ma import RolloutStorageMA from gym.spaces.discrete import Discrete from torch.distributions import Categorical from utils import dict2csv def env_step(rank, args, action_logits, values, observations, rollout_storages, wait, done_list, step_dones, please_load_model, please_load_model_actor, shared_cpu_actor_critics, shared_cpu_actor_critics_env_actor, all_episode_scores, vgl_display): """ Environment process grabs action logit from the action buffer and sample an action according to the action logit. Then it executes the action and send the next observation to the observation buffer. The transition tuples are stroed to data storage. Args: rank: environment process id. args: command line argument. action_logits: A shared PyTorch tensor served as an action buffer. values: A shared PyTorch tensor served as a value buffer. observations: A shared PyTorch tensor served as an observation buffer. rollout_storages: A list of two rollout storage. wait: A shared list that indicates if environment processes are waiting for updated model. done_list: A shared list that indicates if environment processes finish all steps. step_dones: A shared list to indicate environment processes finish one environment step. please_load_model: A shared integer. Set to zero when finishing loading the update model from learner. please_load_model_actor: A shared array between actors and the environment process 0. When updated model is available. It is set to one. shared_cpu_actor_critics: A list of shared models. It contains the updated parameters. shared_cpu_actor_critics_env_actor: Shared models between actor and environment processes. Actor processes will load models from environment process 0. all_episode_scores: A shared list that collect all episode score from all environment processes Returns: None """ os.environ['VGL_DISPLAY'] = vgl_display torch.manual_seed(args.seed + rank) env = football_env.create_environment( representation=args.representation, env_name=args.env_name, stacked=('stacked' in args.state), rewards=args.reward_experiment, logdir=args.log_dir, render=args.render and (args.seed == 0), dump_frequency=50 if args.render and args.seed == 0 else 0, other_config_options={'game_engine_random_seed': args.seed + rank}) env = EpisodeRewardScoreWrapper(env, number_of_left_players_agent_controls=1, number_of_right_players_agent_controls=0) env.seed(args.seed + rank) if args.noop > 0: env = GFNoopResetEnv(env, noop_max=args.noop, seed=args.seed + rank) if args.num_agents == 1: from a2c_ppo_acktr.envs import ObsUnsqueezeWrapper env = ObsUnsqueezeWrapper(env) env = EpisodeRewardScoreWrapper(env, number_of_left_players_agent_controls=args.num_left_agents, number_of_right_players_agent_controls=args.num_right_agents) step_dones_np = np.frombuffer(step_dones.get_obj(), dtype=np.int32) step_dones_np = step_dones_np.reshape(args.num_processes) obs = env.reset() aug_feat_dim = 0 # store the rollout by this process. After args.sync_every steps, batch copy to rollouts local_rollouts = RolloutStorageMA(args.sync_every, 1, env.observation_space.shape[1:], env.action_space if args.num_agents == 1 else Discrete( env.action_space.nvec[0]), recurrent_hidden_state_size=1, num_agents=args.num_agents, aug_size=aug_feat_dim) observations[rank] = torch.from_numpy(obs) step_dones_np[rank] = 1 local_rollouts.obs[0].copy_(torch.from_numpy(obs).float().unsqueeze(0)) num_steps = int(math.ceil(args.num_env_steps / args.num_processes)) recurrent_hidden_states = torch.ones(1) print('Num of steps per environment', num_steps) sync_count = 0 target_eval_step = 0 if rank == 0: plot = {'steps': [], 'avg_scores': [], 'time_elapsed': [], 'fps': [], 'avg_rewards': [], 'final_scores': [], 'final_rewards': [], 'fps_one_sync': []} scores = [] episode_rewards = [] start_sync = time.time() start_rollout = time.time() env_step_timer_start = time.time() if args.dump_traj_flag: prev_obs = copy.deepcopy(obs) dump_traj = {'action': [], 'obs': [], 'action_logit': [], 'v': []} for step in range(num_steps): # Observe reward and next observation while True: if step_dones_np[rank] == 0: break value_pred = values[rank].clone() dist = Categorical(logits=copy.deepcopy(action_logits[rank])) action = dist.sample() action_log_prob = dist.log_probs(action) obs, reward, done, infos = env.step(action.numpy().reshape(-1)) if args.dump_traj_flag: dump_traj['action'].append(action) dump_traj['obs'].append(prev_obs) dump_traj['action_logit'].append( copy.deepcopy(action_logits[rank])) dump_traj['v'].append(value_pred) if done: if rank == 0: scores.append(infos['episode_score']) sys.stdout.flush() obs = env.reset() episode_rewards.append(
np.sum(infos['episode_reward'][:args.num_left_agents])
numpy.sum
import gym from gym import spaces import numpy as np import pandas as pd import math import tensorflow as tf N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 def cost_function(prediction, penalties_array, family_size, days, choice_array_num): prediction = np.around(prediction * 100).astype(int) penalty = 0 # We'll use this to count the number of people scheduled each day daily_occupancy = np.zeros((len(days)+1)) N = family_size.shape[0] # Looping over each family; d is the day, n is size of that family, # and choice is their top choices for i in range(N): # add the family member count to the daily occupancy n = family_size[i] d = prediction[i] choice = choice_array_num[i] daily_occupancy[d] += n # Calculate the penalty for not getting top preference penalty += penalties_array[n, choice[d]] # for each date, check total occupancy # (using soft constraints instead of hard constraints) relevant_occupancy = daily_occupancy[1:] incorrect_occupancy = np.any( (relevant_occupancy > MAX_OCCUPANCY) | (relevant_occupancy < MIN_OCCUPANCY) ) if incorrect_occupancy: penalty += 100000000 # Calculate the accounting cost # The first day (day 100) is treated special init_occupancy = daily_occupancy[days[0]] accounting_cost = (init_occupancy - 125.0) / 400.0 * init_occupancy**(0.5) # using the max function because the soft constraints might allow occupancy to dip below 125 accounting_cost = max(0, accounting_cost) # Loop over the rest of the days, keeping track of previous count yesterday_count = init_occupancy for day in days[1:]: today_count = daily_occupancy[day] diff = np.abs(today_count - yesterday_count) accounting_cost += max(0, (today_count - 125.0) / 400.0 * today_count**(0.5 + diff / 50.0)) yesterday_count = today_count penalty += accounting_cost return penalty class Santa_env(gym.Env): metadata = {'render.modes': ['human']} def __init__(self): super(Santa_env, self).__init__() self.state = None self.counter = 0 self.done = 0 self.add = [0, 0] self.reward = 0 self.cnt = 0 # Actions of the format Buy x%, Sell x%, Hold, etc. self.action_space = spaces.Box( low=0, high=1, shape=(2,), dtype=np.float16) # Prices contains the OHCL values for the last five prices self.observation_space = spaces.Box( low=0, high=1, shape=(5000,), dtype=np.float16) self.load_dataset() self.lastScore = cost_function(self.state, self.penalties_array, self.family_size, self.days_array, self.choice_array_num) def load_dataset(self): fpath = './Data/family_data.csv' self.data = pd.read_csv(fpath, index_col='family_id') fpath = './Data/sample_submission.csv' self.sample_submission = pd.read_csv(fpath, index_col='family_id')["assigned_day"].values self.state = self.sample_submission.copy() / 100 self.family_size = self.data.n_people.values self.days_array =
np.arange(N_DAYS, 0, -1)
numpy.arange
import os import numpy as np import matplotlib.pyplot as plt from robotics.estimation import KalmanFilter class Vehicle2DEstimation: def __init__(self) -> None: delta_t = 1 newton_acc = 0.5*delta_t*delta_t # no control inputs # fmt: off F = np.array([ [1 , delta_t , newton_acc , 0 , 0 , 0] , [0 , 1 , delta_t , 0 , 0 , 0] , [0 , 0 , 1 , 0 , 0 , 0] , [0 , 0 , 0 , 1 , delta_t , newton_acc] , [0 , 0 , 0 , 0 , 1 , delta_t] , [0 , 0 , 0 , 0 , 0 , 1] ]) print(F) q_directions = np.array( [ [delta_t**4/4 , delta_t**3/2 , delta_t**2/2] , [delta_t**3/2 , delta_t**2 , delta_t] , [delta_t**2/2 , delta_t , 1] ] ) # fmt: on Q = np.zeros((6, 6)) Q[0:3, 0:3] = q_directions Q[3:, 3:] = q_directions # sigma for the acceleration sigma_a = 0.15 print(Q) Q *= sigma_a*sigma_a init_state = np.zeros(6) # high estimate uncertainty gives a high weight to the measurement init_cov = np.eye(6)*500 # observation matrix self.H = np.array( [ [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0] ] ) self.R = np.eye(2)*9 self.kalman = KalmanFilter(init_state, init_cov, F, Q) self.kalman.state, self.kalman.covariance = self.kalman.predict() print("Initialized filter: \n", self.kalman.state, "\n", self.kalman.covariance) cur_path = os.path.dirname(os.path.abspath(__file__)) data = np.load(cur_path + "/data/linear_kalman_vehicle_data.npz") self.xs = data['x'] self.ys = data['y'] if __name__ == "__main__": vehicle = Vehicle2DEstimation() vehicle.kalman.update( np.array([-393.66, 300.4]).reshape(-1, 1), vehicle.H, vehicle.R ) states = [vehicle.kalman.state.flatten()] vehicle.kalman.predict() # perform simulation over the rest of the measurements for x in range(1, len(vehicle.xs)): point = np.array([vehicle.xs[x], vehicle.ys[x]]).reshape(-1, 1) vehicle.kalman.update(point, vehicle.H, vehicle.R) # update the state cur_state = vehicle.kalman.state states.append(cur_state.flatten()) # prediction step vehicle.kalman.predict() states =
np.array(states)
numpy.array
# <NAME> # 3/18/2019 # General object to run empirical sr actflow process # For group-level/cross-subject analyses import numpy as np import os import multiprocessing as mp import scipy.stats as stats import nibabel as nib import os os.environ['OMP_NUM_THREADS'] = str(1) import sklearn from scipy import signal import h5py import sys sys.path.append('glmScripts/') import glmScripts.taskGLMPipeline_v2 as tgp import sys import pandas as pd import pathlib import calculateFC as fc import tools # Using final partition networkdef = np.loadtxt('/home/ti61/f_mc1689_1/NetworkDiversity/data/network_partition.txt') networkorder = np.asarray(sorted(range(len(networkdef)), key=lambda k: networkdef[k])) networkorder.shape = (len(networkorder),1) # network mappings for final partition set networkmappings = {'fpn':7, 'vis1':1, 'vis2':2, 'smn':3, 'aud':8, 'lan':6, 'dan':5, 'con':4, 'dmn':9, 'pmulti':10, 'none1':11, 'none2':12} networks = networkmappings.keys() ## General parameters/variables nParcels = 360 class Model(): """ Class to perform empirical actflow for a given subject (stimulus-to-response) """ def __init__(self,projectdir='/home/ti61/f_mc1689_1/SRActFlow/',ruletype='12',n_hiddenregions=10,randomize=False,scratchfcdir=None): """ instantiate: indices for condition types indices for specific condition instances betas """ #### Set up basic model parameters self.projectdir = projectdir # Excluding 084 self.subjNums = ['013','014','016','017','018','021','023','024','026','027','028','030','031','032','033', '034','035','037','038','039','040','041','042','043','045','046','047','048','049','050', '053','055','056','057','058','062','063','066','067','068','069','070','072','074','075', '076','077','081','085','086','087','088','090','092','093','094','095','097','098','099', '101','102','103','104','105','106','108','109','110','111','112','114','115','117','119', '120','121','122','123','124','125','126','127','128','129','130','131','132','134','135', '136','137','138','139','140','141'] self.inputtypes = ['RED','VERTICAL','CONSTANT','HIGH'] self.ruletype = ruletype #### Load in atlas glasserfile2 = projectdir + 'data/Q1-Q6_RelatedParcellation210.LR.CorticalAreas_dil_Colors.32k_fs_RL.dlabel.nii' glasser2 = nib.load(glasserfile2).get_data() glasser2 = np.squeeze(glasser2) self.glasser2 = glasser2 #### # Define hidden units if n_hiddenregions!=None: ####################################### #### Select hidden layer regions hiddendir = projectdir + 'data/results/MAIN/RSA/' hiddenregions = np.loadtxt(hiddendir + 'RSA_Similarity_SortedRegions2.txt',delimiter=',') ####################################### #### Output directory if randomize: print("Constructing model with", n_hiddenregions, "randomly selected hidden regions") fcdir = scratchfcdir #### Necessary to optimize amarel pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists hiddenregions = np.random.choice(hiddenregions,size=n_hiddenregions,replace=False) else: print("Constructing model with", n_hiddenregions, "hidden regions") fcdir = projectdir + 'data/results/MAIN/fc/LayerToLayerFC_' + str(n_hiddenregions) + 'Hidden/' pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists # Select hidden layer if n_hiddenregions < 0: hiddenregions = hiddenregions[n_hiddenregions:] else: hiddenregions = hiddenregions[:n_hiddenregions] ## Set object attributes self.n_hiddenregions = n_hiddenregions self.hiddenregions = np.squeeze(hiddenregions) self.fcdir = fcdir self.hidden = True # Set this variable to true - indicates to run sr simulations with a hidden layer #### identify hidden region vertex indices hidden_ind = [] for roi in hiddenregions: hidden_ind.extend(np.where(self.glasser2==roi+1)[0]) self.hidden_ind = hidden_ind else: print("Constructing model with NO hidden layers") fcdir = projectdir + 'data/results/MAIN/fc/LayerToLayerFC_NoHidden/' pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists self.hidden = False # Set this variable to true - indicates to run sr simulations with a hidden layer self.fcdir = fcdir self.hiddenregions = None self.n_hiddenregions = n_hiddenregions #### # Define task rule (input) layer ruledir = self.projectdir + 'data/results/MAIN/RuleDecoding/' if ruletype=='12': rule_regions = np.loadtxt(ruledir + self.ruletype + 'Rule_Regions.csv',delimiter=',') elif ruletype=='fpn': rule_regions = [] rule_regions.extend(np.where(networkdef==networkmappings['fpn'])[0]) rule_regions = np.asarray(rule_regions) elif ruletype=='nounimodal': allrule_regions = np.loadtxt(ruledir + '12Rule_Regions.csv',delimiter=',') unimodal_nets = ['vis1','aud'] unimodal_regions = [] for net in unimodal_nets: unimodal_regions.extend(np.where(networkdef==networkmappings[net])[0]) # only include regions that are in allrule_regions but also NOT in unimodal_regions rule_regions = [] for roi in allrule_regions: if roi in unimodal_regions: continue else: rule_regions.append(roi) rule_regions = np.asarray(rule_regions) rule_ind = [] for roi in rule_regions: rule_ind.extend(np.where(self.glasser2==roi+1)[0]) self.rule_ind = rule_ind #### # Define motor regions # Set indices for layer-by-layer vertices targetdir = projectdir + 'data/results/MAIN/MotorResponseDecoding/' motor_resp_regions_LH = np.loadtxt(targetdir + 'MotorResponseRegions_LH.csv',delimiter=',') motor_resp_regions_RH = np.loadtxt(targetdir + 'MotorResponseRegions_RH.csv',delimiter=',') targetROIs = np.hstack((motor_resp_regions_LH,motor_resp_regions_RH)) # Define all motor_ind motor_ind = [] for roi in targetROIs: roi_ind = np.where(glasser2==roi+1)[0] motor_ind.extend(roi_ind) motor_ind = np.asarray(motor_ind).copy() self.motor_ind = motor_ind #### override -- only pick the motor parcel with the greatest response decoding motor_ind_lh = [] for roi in motor_resp_regions_LH: # only include left hand responses in the right hemisphere if roi>=180: roi_ind = np.where(glasser2==roi+1)[0] motor_ind_lh.extend(roi_ind) motor_ind_rh = [] for roi in motor_resp_regions_RH: # only include left hand responses in the right hemisphere if roi<180: roi_ind = np.where(glasser2==roi+1)[0] motor_ind_rh.extend(roi_ind) # motor_ind_rh = np.asarray(motor_ind_rh).copy() motor_ind_lh = np.asarray(motor_ind_lh).copy() self.motor_ind_rh = motor_ind_rh self.motor_ind_lh = motor_ind_lh #### Load model task set filename= projectdir + 'data/results/MAIN/EmpiricalSRActFlow_AllTrialKeys_15stims_v3.csv' # Great self.trial_metadata = pd.read_csv(filename) def computeGroupFC(self,n_components=500,nproc='max'): """ Function that wraps _computeSubjFC() to compute FC for all subjs, and computes averaged groupFC """ if nproc=='max': nproc=mp.cpu_count() inputs = [] for subj in self.subjNums: inputs.append((subj,n_components)) pool = mp.Pool(processes=nproc) if self.hidden: pool.starmap_async(self._computeSubjFC,inputs) else: pool.starmap_async(self._computeSubjFC_NoHidden,inputs) pool.close() pool.join() #### Compute group FC for inputtype in self.inputtypes: if self.hidden: fc.computeGroupFC(inputtype,self.fcdir) else: fc.computeGroupFC_NoHidden(inputtype,self.fcdir) if self.hidden: fc.computeGroupFC(self.ruletype,self.fcdir) else: fc.computeGroupFC_NoHidden(self.ruletype,self.fcdir) def loadRealMotorResponseActivations(self,vertexmasks=True): #### Load motor response activations localized in output vertices only (for faster loading) if vertexmasks: print('Load real motor responses in output vertices') self.data_task_rh, self.data_task_lh = tools.loadMotorResponsesOutputMask() else: print('Load real motor responses in output parcels -- inefficient since need to load all vertices first') data_task_rh = [] data_task_lh = [] for subj in self.subjNums: tmp_rh = tools.loadMotorResponses(subj,hand='Right') tmp_lh = tools.loadMotorResponses(subj,hand='Left') data_task_rh.append(tmp_rh[self.motor_ind_rh,:].copy().T) data_task_lh.append(tmp_lh[self.motor_ind_lh,:].copy().T) self.data_task_rh = np.asarray(data_task_rh).T self.data_task_lh = np.asarray(data_task_lh).T def loadModelFC(self): if self.hidden: print('Load Model FC weights') fcdir = self.fcdir self.fc_input2hidden = {} self.eig_input2hidden = {} for inputtype in ['VERTICAL','RED','HIGH','CONSTANT']: self.fc_input2hidden[inputtype], self.eig_input2hidden[inputtype] = tools.loadGroupActFlowFC(inputtype,fcdir) # Load rule to hidden self.fc_12rule2hidden, self.eig_12rule2hidden = tools.loadGroupActFlowFC(self.ruletype,fcdir) # Load hidden to motor resp mappings self.fc_hidden2motorresp, self.eig_hidden2motorresp = tools.loadGroupActFlowFC('hidden2out',fcdir) else: print('Load Model FC weights -- No hidden layer') fcdir = self.fcdir self.fc_input2output = {} self.eig_input2output = {} for inputtype in ['VERTICAL','RED','HIGH','CONSTANT']: self.fc_input2output[inputtype], self.eig_input2output[inputtype] = tools.loadGroupActFlowFC_NoHidden(inputtype,fcdir) # Load rule to hidden self.fc_12rule2output, self.eig_12rule2output = tools.loadGroupActFlowFC_NoHidden('12',fcdir) def simulateGroupActFlow(self,thresh=0,nproc='max',vertexmasks=True): """ Simulate group level actflow (all subject simulations) """ if nproc=='max': nproc=mp.cpu_count() inputs = [] for subj in self.subjNums: inputs.append((subj,thresh)) if nproc == 1: results = [] for input1 in inputs: results.append(self._simulateSubjActFlow(input1[0],input1[1])) else: pool = mp.Pool(processes=nproc) results = pool.starmap_async(self._simulateSubjActFlow,inputs).get() pool.close() pool.join() actflow_predictions = np.zeros((len(self.subjNums),len(self.motor_ind),4)) #actflow_predictions_noReLU = np.zeros((len(self.subjNums),len(self.motor_ind),4)) scount = 0 for result in results: # actflow_predictions[scount,:,:] = result[0] # actflow_predictions_noReLU[scount,:,:] = result[1] actflow_predictions[scount,:,:] = result scount += 1 ## Reformat to fit shape of actual data array actflow_rh = np.zeros((len(self.glasser2),2,len(self.subjNums))) actflow_lh = np.zeros((len(self.glasser2),2,len(self.subjNums))) for scount in range(len(self.subjNums)): # RMID actflow_rh[self.motor_ind,0,scount] = actflow_predictions[scount,:,2] # RIND actflow_rh[self.motor_ind,1,scount] = actflow_predictions[scount,:,3] # LMID actflow_lh[self.motor_ind,0,scount] = actflow_predictions[scount,:,0] # LIND actflow_lh[self.motor_ind,1,scount] = actflow_predictions[scount,:,1] #### Now save out only relevant output mask vertices if vertexmasks: tmp = np.squeeze(nib.load(self.projectdir + 'data/results/MAIN/MotorRegionsMasksPerSubj/sractflow_smn_outputRH_mask.dscalar.nii').get_data()) rh_ind = np.where(tmp==True)[0] actflow_rh = actflow_rh[rh_ind,:,:] tmp = np.squeeze(nib.load(self.projectdir + 'data/results/MAIN/MotorRegionsMasksPerSubj/sractflow_smn_outputLH_mask.dscalar.nii').get_data()) lh_ind = np.where(tmp==True)[0] actflow_lh = actflow_lh[lh_ind,:,:].copy() else: actflow_rh = actflow_rh[self.motor_ind_rh,:,:].copy() actflow_lh = actflow_lh[self.motor_ind_lh,:,:].copy() return actflow_rh, actflow_lh def actflowDecoding(self,trainset,testset,outputfile, nbootstraps=1000,featsel=False,nproc='max',null=False,verbose=True): if nproc=='max': nproc=mp.cpu_count() # Decoding for i in range(nbootstraps): distances_baseline = np.zeros((1,len(self.subjNums)*2)) # subjs * nlabels distances_baseline[0,:],rmatch,rmismatch, confusion_mats = tools.actflowDecodings(testset,trainset, effects=True, featsel=featsel,confusion=True,permutation=null, ncvs=1, nproc=nproc) ##### Save out and append file # Open/create file filetxt = open(outputfile,"a+") # Write out to file print(np.mean(distances_baseline),file=filetxt) # Close file filetxt.close() if i%100==0 and verbose==True: print('Permutation', i) print('\tDecoding accuracy:', np.mean(distances_baseline), '| R-match:', np.mean(rmatch), '| R-mismatch:', np.mean(rmismatch)) def extractSubjActivations(self, subj, df_trials): """ extract activations for a sample subject, including motor response """ ## Set up data parameters X = tgp.loadTaskTiming(subj,'ALL') self.stimIndex = np.asarray(X['stimIndex']) self.stimCond = np.asarray(X['stimCond']) datadir = self.projectdir + 'data/postProcessing/hcpPostProcCiric/' h5f = h5py.File(datadir + subj + '_glmOutput_data.h5','r') self.betas = h5f['taskRegression/ALL_24pXaCompCorXVolterra_taskReg_betas_canonical'][:].copy() h5f.close() ## Set up task parameters self.logicRules = ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER'] self.sensoryRules = ['RED', 'VERTICAL', 'HIGH', 'CONSTANT'] self.motorRules = ['LMID', 'LIND', 'RMID', 'RIND'] self.colorStim = ['RED', 'BLUE'] self.oriStim = ['VERTICAL', 'HORIZONTAL'] self.pitchStim = ['HIGH', 'LOW'] self.constantStim = ['CONSTANT','ALARM'] # Begin extraction for specific trials n_trials = len(df_trials) stimData = np.zeros((n_trials,self.betas.shape[0])) logicRuleData = np.zeros((n_trials,self.betas.shape[0])) sensoryRuleData = np.zeros((n_trials,self.betas.shape[0])) motorRuleData = np.zeros((n_trials,self.betas.shape[0])) respData = np.zeros((n_trials,self.betas.shape[0])) sensoryRuleIndices = [] motorRespAll = [] for trial in range(n_trials): logicRule = df_trials.iloc[trial].logicRule sensoryRule = df_trials.iloc[trial].sensoryRule motorRule = df_trials.iloc[trial].motorRule motorResp = df_trials.iloc[trial].motorResp stim1 = df_trials.iloc[trial].stim1 stim2 = df_trials.iloc[trial].stim2 # if verbose: # print 'Running actflow predictions for:', logicRule, sensoryRule, motorRule, 'task' logicKey = 'RuleLogic_' + logicRule sensoryKey = 'RuleSensory_' + sensoryRule motorKey = 'RuleMotor_' + motorRule stimKey = 'Stim_' + stim1 + stim2 motorResp = solveInputs(logicRule, sensoryRule, motorRule, stim1, stim2, printTask=False) respKey = 'Response_' + motorResp stimKey_ind = np.where(self.stimCond==stimKey)[0] logicRule_ind = np.where(self.stimCond==logicKey)[0] sensoryRule_ind = np.where(self.stimCond==sensoryKey)[0] motorRule_ind = np.where(self.stimCond==motorKey)[0] respKey_ind = np.where(self.stimCond==respKey)[0] stimData[trial,:] = np.real(self.betas[:,stimKey_ind].copy()[:,0]) logicRuleData[trial,:] = np.real(self.betas[:,logicRule_ind].copy()[:,0]) sensoryRuleData[trial,:] = np.real(self.betas[:,sensoryRule_ind].copy()[:,0]) motorRuleData[trial,:] = np.real(self.betas[:,motorRule_ind].copy()[:,0]) respData[trial,:] = np.real(self.betas[:,respKey_ind].copy()[:,0]) motorRespAll.append(motorResp) sensoryRuleIndices.append(sensoryRule) self.motorRespAll = motorRespAll self.stimData = stimData self.logicRuleData = logicRuleData self.sensoryRuleData = sensoryRuleData self.motorRuleData = motorRuleData self.respData = respData self.sensoryRuleIndices = sensoryRuleIndices def extractSubjHiddenRSMActivations(self, subj): """ extract activations for a sample subject, including motor response """ ## Set up data parameters X = tgp.loadTaskTiming(subj,'ALL') self.stimIndex = np.asarray(X['stimIndex']) self.stimCond = np.asarray(X['stimCond']) datadir = self.projectdir + 'data/postProcessing/hcpPostProcCiric/' h5f = h5py.File(datadir + subj + '_glmOutput_data.h5','r') self.betas = h5f['taskRegression/ALL_24pXaCompCorXVolterra_taskReg_betas_canonical'][:].copy() h5f.close() ## Set up task parameters self.logicRules = ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER'] self.sensoryRules = ['RED', 'VERTICAL', 'HIGH', 'CONSTANT'] self.motorRules = ['LMID', 'LIND', 'RMID', 'RIND'] self.colorStim = ['RED', 'BLUE'] self.oriStim = ['VERTICAL', 'HORIZONTAL'] self.pitchStim = ['HIGH', 'LOW'] self.constantStim = ['CONSTANT','ALARM'] total_conds = 28 # 12 rules + 16 stimulus pairings rsm_activations = np.zeros((28,self.betas.shape[0])) labels = [] condcount = 0 ## # START for cond in self.logicRules: labels.append(cond) key = 'RuleLogic_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond in self.sensoryRules: labels.append(cond) key = 'RuleSensory_' + cond ind =
np.where(self.stimCond==key)
numpy.where
import csv import json from itertools import tee import numpy as np from Bio import SeqIO import pysam import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def extract_lanl_genome(lanl_input, lanl_id, fasta_output): records = SeqIO.to_dict(SeqIO.parse(lanl_input, 'fasta')) record = records[lanl_id] SeqIO.write(record, fasta_output, 'fasta') def simulate_amplicon_dataset(dataset, gene, output_fastq, output_fasta): simulated_reads = [] true_genes = [] with open('simulations.json') as json_file: simulation_information = json.load(json_file)[dataset] for lanl_information in simulation_information: lanl_id = lanl_information['lanl_id'] lanl_reads_filename = "output/lanl/%s/%s/reads.fastq" % (lanl_id, gene) lanl_reads = list(SeqIO.parse(lanl_reads_filename, 'fastq')) current_frequency = lanl_information['frequency'] number_of_reads_to_extract = int(current_frequency * len(lanl_reads)) simulated_reads.extend(lanl_reads[:number_of_reads_to_extract]) lanl_gene_filename = "output/lanl/%s/%s/sequence.fasta" % (lanl_id, gene) lanl_gene = SeqIO.read(lanl_gene_filename, 'fasta') true_genes.append(lanl_gene) SeqIO.write(simulated_reads, output_fastq, 'fastq') SeqIO.write(true_genes, output_fasta, 'fasta') def create_numeric_fasta(records): for_numeric, for_headers = tee(records, 2) mr = MappedReads() np_arrays = [ mr.get_numeric_representation(record) for record in for_numeric ] numeric = np.vstack(np_arrays) headers = [record.id for record in for_headers] return headers, numeric def evaluate(input_haplotypes, input_truth, output_json): haplotypes = SeqIO.parse(input_haplotypes, 'fasta') truth = SeqIO.parse(input_truth, 'fasta') haplotype_index, numeric_haplotypes = create_numeric_fasta(haplotypes) truth_index, numeric_truth = create_numeric_fasta(truth) full_numeric = np.vstack([numeric_truth, numeric_haplotypes]) counts = np.array([ np.sum(full_numeric == 15, axis=0), np.sum(full_numeric == 0, axis=0), np.sum(full_numeric == 1, axis=0), np.sum(full_numeric == 2, axis=0), np.sum(full_numeric == 3, axis=0) ]) discordant = np.sum(counts == 0, axis=0) != 4 get_headers_as_strings = lambda index: [str(header) for header in index] headers = get_headers_as_strings(truth_index)+get_headers_as_strings(haplotype_index) n_headers = len(headers) discordance_matrix = [n_headers*[0] for i in range(n_headers)] for i in range(n_headers): for j in range(n_headers): discordance = np.sum(full_numeric[i,:] != full_numeric[j,:]) discordance_matrix[i][j] = int(discordance) output = { 'number_of_discordant_sites': int(np.sum(discordant)), 'headers': headers, 'discordance_matrix': discordance_matrix } with open(output_json, 'w') as json_file: json.dump(output, json_file, indent=2) def covarying_sites(input_fasta, output_json): fasta_np = np.array([ list(str(record.seq)) for record in SeqIO.parse(input_fasta, 'fasta') ], dtype='<U1') A_sum = np.sum(fasta_np == 'A', axis=0) C_sum = np.sum(fasta_np == 'C', axis=0) G_sum = np.sum(fasta_np == 'G', axis=0) T_sum = np.sum(fasta_np == 'T', axis=0) max_count = np.max(np.vstack([A_sum, C_sum, G_sum, T_sum]), axis=0) covarying_sites = np.arange(fasta_np.shape[1])[max_count < fasta_np.shape[0]] with open(output_json, 'w') as json_file: json.dump([int(cvs) for cvs in covarying_sites], json_file) def get_sam_info(sam): sam_info = {} for i, read in enumerate(sam): location = (read.reference_start, read.reference_end) if location in sam_info: sam_info[location].append(i) else: sam_info[location] = [i] return sam_info def get_reference_to_alignment_map(lanl_id, aligned_genomes): fasta_np = np.array(list(aligned_genomes[lanl_id].seq), dtype='<U1') indices = np.arange(len(fasta_np))[fasta_np != '-'] return indices def get_alignment_to_reference_map(lanl_id, aligned_genomes): fasta_np = np.array(list(aligned_genomes[lanl_id].seq), dtype='<U1') indices = np.cumsum(fasta_np != '-') - 1 return indices def get_mate( read, left_strain, right_strain, sams, sam_infos, r2a_maps, a2r_maps, stop=25 ): sam = sams[right_strain] sam_info = sam_infos[right_strain] i = 0 left_alignment_start = r2a_maps[left_strain][read.reference_start] left_alignment_end = r2a_maps[left_strain][read.reference_end-1] while True: for j in range(i+1): all_shifts = [(j, i-j), (j, j-i), (-j, i-j), (-j, j-i)] for left_shift, right_shift in all_shifts: right_alignment_start = left_alignment_start + left_shift right_alignment_end = left_alignment_end + right_shift starts_before = right_alignment_start < 0 ends_after = right_alignment_end >= len(a2r_maps[right_strain]) if starts_before or ends_after: continue right_reference_start = a2r_maps[right_strain][right_alignment_start] right_reference_end = a2r_maps[right_strain][right_alignment_end] location = (right_reference_start, right_reference_end) if location in sam_info: n = len(sam_info[location]) i = np.random.randint(n) return sam_info[location][i] i += 1 if i == stop: return None def write_ar_dataset( lanl_ids, frequencies, ar, aligned_genomes, output_fastq, number_of_reads ): sams = [ list(pysam.AlignmentFile('output/lanl/%s/wgs.sam' % lanl_id, "r")) for lanl_id in lanl_ids ] sam_infos = [get_sam_info(sam) for sam in sams] number_of_ar_reads =
np.ceil(ar*number_of_reads)
numpy.ceil
import numpy as np from malib.spaces import Discrete, Box, MASpace, MAEnvSpec from malib.environments.base_game import BaseGame from malib.error import ( EnvironmentNotFound, WrongNumberOfAgent, WrongNumberOfAction, WrongNumberOfState, WrongActionInputLength, ) class StochasticMatrixGame(BaseGame): def __init__( self, game_name, agent_num, action_num, state_num, payoff=None, transition=None ): self.game_name = game_name self.agent_num = agent_num self.action_num = action_num self.state_num = state_num game_list = StochasticMatrixGame.get_game_list() if not self.game_name in game_list: raise EnvironmentNotFound(f"The game {self.game_name} doesn't exists") expt_num_agent = game_list[self.game_name]["agent_num"] if expt_num_agent != self.agent_num: raise WrongNumberOfAgent( f"The number of agent \ required for {self.game_name} is {expt_num_agent}" ) expt_num_action = game_list[self.game_name]["action_num"] if expt_num_agent != self.action_num: raise WrongNumberOfAction( f"The number of action \ required for {self.game_name} is {expt_num_action}" ) expt_num_state = game_list[self.game_name]["state_num"] if expt_num_state != self.state_num: raise WrongNumberOfState( f"The number of state \ required for {self.game_name} is {expt_num_state}" ) self.action_spaces = MASpace( tuple(Box(low=-1.0, high=1.0, shape=(1,)) for _ in range(self.agent_num)) ) self.observation_spaces = MASpace( tuple(Discrete(1) for _ in range(self.agent_num)) ) self.env_specs = MAEnvSpec(self.observation_spaces, self.action_spaces) self.t = 0 if payoff is not None: payoff = np.array(payoff) assert payoff.shape == tuple( [state_num, agent_num] + [action_num] * agent_num ) self.payoff = payoff if payoff is None: self.payoff = np.zeros( tuple([state_num, agent_num] + [action_num] * agent_num) ) if transition is None: self.transition = np.zeros( tuple([state_num] + [action_num] * agent_num + [state_num]) ) if self.game_name == "PollutionTax": self.payoff[0][0] = [[4.0, 3.0], [7.0, 6.0]] self.payoff[0][1] = [[5.0, 8.0], [4.0, 7.0]] self.payoff[1][0] = [[1.0, 0.0], [4.0, 3.0]] self.payoff[1][1] = [[2.0, 5.0], [1.0, 4.0]] self.transition[0] = [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]] self.transition[1] = [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]] elif self.game_name == "three_matrix_games": self.g1 = [[0.0, 3.0], [2.0, -1.0]] self.g2 = [[0.0, 1.0], [4.0, 3.0]] self.g = [["g1", 4.0], [5.0, "g2"]] self.rewards = np.zeros((self.agent_num,)) self.state = 0 def get_three_matrix_games(self, a_n): assert len(a_n) == 2 info = {} reward_n = np.zeros((self.agent_num,)) if self.state == 0: if a_n[0] == a_n[1] == 0: state_prime = 1 state_n = np.array([state_prime] * self.agent_num) self.state = state_prime done_n = np.array([False] * self.agent_num) elif a_n[0] == a_n[1] == 1: state_prime = 2 state_n = np.array([state_prime] * self.agent_num) self.state = state_prime done_n = np.array([False] * self.agent_num) else: reward_n[0] = self.g[a_n[0]][a_n[1]] reward_n[0] = -self.g[a_n[0]][a_n[1]] state_prime = 0 state_n = np.array([state_prime] * self.agent_num) self.state = state_prime done_n = np.array([True] * self.agent_num) if self.state == 1: reward_n[0] = self.g1[a_n[0]][a_n[1]] reward_n[0] = -self.g1[a_n[0]][a_n[1]] state_prime = 0 state_n = np.array([state_prime] * self.agent_num) self.state = state_prime done_n = np.array([True] * self.agent_num) if self.state == 2: reward_n[0] = self.g2[a_n[0]][a_n[1]] reward_n[0] = -self.g2[a_n[0]][a_n[1]] state_prime = 0 state_n = np.array([state_prime] * self.agent_num) self.state = state_prime done_n =
np.array([True] * self.agent_num)
numpy.array
import numpy as np from scipy import sparse import numba def _get_mean_var(X, *, axis=0): if sparse.issparse(X): mean, var = sparse_mean_variance_axis(X, axis=axis) else: mean = np.mean(X, axis=axis, dtype=np.float64) mean_sq =
np.multiply(X, X)
numpy.multiply
# USAGE # python bank_check_ocr.py --image example_check.png --reference micr_e13b_reference.png # import the necessary packages from skimage.segmentation import clear_border from imutils import contours import imutils import numpy as np import argparse import cv2 def extract_digits_and_symbols(image, charCnts, minW=5, minH=15): # grab the internal Python iterator for the list of character # contours, then initialize the character ROI and location # lists, respectively charIter = charCnts.__iter__() rois = [] locs = [] # keep looping over the character contours until we reach the end # of the list while True: try: # grab the next character contour from the list, compute # its bounding box, and initialize the ROI c = next(charIter) (cX, cY, cW, cH) = cv2.boundingRect(c) roi = None # check to see if the width and height are sufficiently # large, indicating that we have found a digit if cW >= minW and cH >= minH: # extract the ROI roi = image[cY:cY + cH, cX:cX + cW] rois.append(roi) locs.append((cX, cY, cX + cW, cY + cH)) # otherwise, we are examining one of the special symbols else: # MICR symbols include three separate parts, so we # need to grab the next two parts from our iterator, # followed by initializing the bounding box # coordinates for the symbol parts = [c, next(charIter), next(charIter)] (sXA, sYA, sXB, sYB) = (np.inf, np.inf, -np.inf, -np.inf) # loop over the parts for p in parts: # compute the bounding box for the part, then # update our bookkeeping variables (pX, pY, pW, pH) = cv2.boundingRect(p) sXA = min(sXA, pX) sYA = min(sYA, pY) sXB = max(sXB, pX + pW) sYB = max(sYB, pY + pH) # extract the ROI roi = image[sYA:sYB, sXA:sXB] rois.append(roi) locs.append((sXA, sYA, sXB, sYB)) # we have reached the end of the iterator; gracefully break # from the loop except StopIteration: break # return a tuple of the ROIs and locations return (rois, locs) # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-r", "--reference", required=True, help="path to reference MICR E-13B font") args = vars(ap.parse_args()) # initialize the list of reference character names, in the same # order as they appear in the reference image where the digits # their names and: # T = Transit (delimit bank branch routing transit #) # U = On-us (delimit customer account number) # A = Amount (delimit transaction amount) # D = Dash (delimit parts of numbers, such as routing or account) charNames = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "0", "T", "U", "A", "D"] # load the reference MICR image from disk, convert it to grayscale, # and threshold it, such that the digits appear as *white* on a # *black* background ref = cv2.imread(args["reference"]) ref = cv2.cvtColor(ref, cv2.COLOR_BGR2GRAY) ref = imutils.resize(ref, width=400) ref = cv2.threshold(ref, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] # find contours in the MICR image (i.e,. the outlines of the # characters) and sort them from left to right refCnts = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) refCnts = imutils.grab_contours(refCnts) refCnts = contours.sort_contours(refCnts, method="left-to-right")[0] # extract the digits and symbols from the list of contours, then # initialize a dictionary to map the character name to the ROI refROIs = extract_digits_and_symbols(ref, refCnts, minW=10, minH=20)[0] chars = {} # loop over the reference ROIs for (name, roi) in zip(charNames, refROIs): # resize the ROI to a fixed size, then update the characters # dictionary, mapping the character name to the ROI roi = cv2.resize(roi, (36, 36)) chars[name] = roi # initialize a rectangular kernel (wider than it is tall) along with # an empty list to store the output of the check OCR rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 7)) output = [] # load the input image, grab its dimensions, and apply array slicing # to keep only the bottom 20% of the image (that's where the account # information is) image = cv2.imread(args["image"]) (h, w,) = image.shape[:2] delta = int(h - (h * 0.2)) bottom = image[delta:h, 0:w] # convert the bottom image to grayscale, then apply a blackhat # morphological operator to find dark regions against a light # background (i.e., the routing and account numbers) gray = cv2.cvtColor(bottom, cv2.COLOR_BGR2GRAY) blackhat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, rectKernel) # compute the Scharr gradient of the blackhat image, then scale # the rest back into the range [0, 255] gradX = cv2.Sobel(blackhat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1) gradX = np.absolute(gradX) (minVal, maxVal) = (
np.min(gradX)
numpy.min
from baselines.spaces.box import Box from baselines.spaces.product import Product import numpy as np import re import gym from os.path import dirname, abspath from baselines.special import probScale1D, categorical_sample, probScale from scipy.spatial import distance from gym.utils import seeding import csv class TemporalPolicePatrollingGame(gym.Env): metadata = {'render.modes': ['human', 'ansi']} def __init__(self, N, time_shift = 0): d = dirname(dirname(abspath(__file__))) self.incident_file_num = 31 self.stateNum = 24 self.h = 100 self.time_shift = time_shift time_range = [[0,7], [8,19],[20,24]] time_shift_h = np.array(time_range)*60 self.period = time_shift_h[self.time_shift] allocation_file = (d + '/data/duty_frcs_F_1M2D_5thTeam.csv') csv_data = np.genfromtxt(allocation_file, delimiter=',') self.fixed_allocation = []# np.zeros(self.stateNum) start_hour = time_range[self.time_shift][0] end_hour = time_range[self.time_shift][1] #F_sector_centroid_distance_with_distance_and_cost for i in range(len(csv_data)): row = csv_data[i] if row[1]>=start_hour and row[2]<=end_hour: self.fixed_allocation.append(int(row[0])) #self.fixed_allocation[int(row[0])] += 1 #travel_time[urgent][zone1][zone2][time_mean][time_var] self.travel_time = np.ones((3, self.stateNum, self.stateNum,2))#*100 travel_time_file = (d + '/data/F_sector_centroid_distance_with_distance_and_cost.csv')#travel_time_google csv_data = np.genfromtxt(travel_time_file, delimiter=',') for i in range(1,len(csv_data)): row = csv_data[i] loc1 = int(row[0]) loc2 = int(row[3]) time = float(row[7])/60 + 5 #non-urgent incident travel time self.travel_time[0, loc1, loc2, 0] = time #urgent incident travel time self.travel_time[1, loc1, loc2, 0] = time#/1.2 #re-allocation travel time self.travel_time[2, loc1, loc2, 0] = time self.incident_set = [] #"sector", "start_time", "is_urgent", "demand", "engagement_time" for i in range(1, self.incident_file_num+1): input_file =d + '/data/SyntheticMonthx1000/'+ str(i) + 'L.csv' daily_incidents = [] csv_data = np.genfromtxt(input_file, delimiter=',', dtype = int) for i in range(len(csv_data)): row = csv_data[i] if (row[1]>=self.period[0])&(row[1]<=self.period[1]): daily_incidents.append(row) # time_daily_incidents = np.array(daily_incidents)[:,1] #delta_time = np.roll(time_daily_incidents, -1, axis=0) - time_daily_incidents self.incident_set.append(daily_incidents) self.t = 0 self.start_time = self.period[0] # self.initialDistribution = np.ones(self.stateNum, dtype=float)/self.stateNum self.N = len(self.fixed_allocation) #randomly extract an incident scenario self.incidents = self.incident_set[np.random.randint(7)] self.max_waiting_time = 1000 self.max_obs_value = -1000 self.delay_cost_coeff = -1 self.lose_passenger_cost = -100 self.adjacent_list = [] self.initialDistribution = np.ones(self.stateNum, dtype=float)/self.stateNum for i in range(self.stateNum): adjacent_nodes = [] for j in range(self.stateNum): if self.travel_time[0, i, j, 0] <10.0: adjacent_nodes.append(j) self.adjacent_list.append(adjacent_nodes) # adjacent_temp = np.argpartition(self.travel_time[0, 7, :, 0], 5)[:5] # self.adjacent_list[7] = list(adjacent_temp) self.scenario_index = 0 self.urgentResponse = 10 self.nonurgentResponse = 20 self.time_interval = 3 self.C = 5 self.discretized_travel_times = np.zeros((self.stateNum, self.stateNum), dtype=int) for loc1 in range(self.stateNum): for loc2 in range(self.stateNum): if loc1!=loc2: discretized_time = int(self.travel_time[2, loc1, loc2, 0]/self.C) self.discretized_travel_times[loc1, loc2] = discretized_time a = [i for i in range(24)] a[0] = [0,1,3,4,6] a[1] = [1,0,3] a[2] = [2,3,4,5,6] a[3] = [3,0,1,2,4] a[4] = [4,0,2,3,5,6] a[5] = [5,2,4,6,21] a[6] = [6,0,7,4,5,3] a[7] = [7,6,8,9] a[8] = [8,7,9,10,11] a[9] = [9,7,8,10,11] a[10] = [10,8,9,11,13,14] a[11] = [11,8,9,10,12,13,14] a[12] = [12,11,13,15,18] a[13] = [13,10,11,12,14,15,17,18] a[14] = [14,10,11,13,17,18,20,21] a[15] = [15,12,16,18] a[16] = [16,15,17,18,19,20] a[17] = [17,13,14,16,18,20,21,19] a[18] = [18,12,13,14,15,16,17] a[19] = [19,16,17,20,22,23] a[20] = [20,14,16,17,19,21,22,23] a[21] = [21,5,14,17,20,23] a[22] = [22,19,20,23] a[23] = [23,19,20,21,22] self.adjacent_list = a def generate_demand(self): incident = self.incidents[self.t] #map origin and dest to the node in the map loc = incident[0] # dest = incident[0] start_time = incident[1] is_urgent = incident[2] demand = incident[3] engagement_time = incident[4] return loc, start_time, is_urgent, demand, engagement_time def reset(self): self.t = 0 self.clock_time = 0 self.start_time = self.period[0] # randomly extract an incident scenario self.incidents = self.incident_set[self.scenario_index]#np.array(self.fixed_allocation)#np.random.randint(7)#np.random.randint(self.incident_file_num) # print('scenario_index:'+ str(self.scenario_index)) self.scenario_index += 1 self.scenario_index = self.scenario_index%self.incident_file_num #agent location self.agent_locs = self.fixed_allocation#np.array([categorical_sample(self.initialDistribution, np.random) for _ in range(self.N)])# #how many time step ahead agent would be free self.assignment_done_time = [] self.assignment_done_loc = np.array([], dtype=int) # summary of free agent self.S = np.zeros((self.stateNum, self.C+1)) # (self.C+1)) for i in range(self.N): self.S[self.agent_locs[i],-1] += 1 #/ max(self.agent_status[i], 1.0) self.obs = np.array(self.S)#np.zeros((self.N, self.stateNum)) self.state = self.S[:,-1] self.state_count = np.tile(self.S[:,0, np.newaxis], [1, self.stateNum]).flatten() return self.obs, self.state_count#, self.assignment_validity @property def observation_space(self): return (Box(low=-self.max_obs_value, high=self.max_obs_value, shape=(self.stateNum, self.C+1))) @property def action_space(self): components = [] for i in range(self.stateNum): components.append(Box(low=0, high=self.N, shape=(self.stateNum))) return Product(components) def _step(self, prob): self.t += 1 prob = probScale(np.asarray(prob, dtype=float)) a = np.asarray( [np.random.multinomial(self.state[i], prob[i]) for i in range(prob.shape[0])]) tempDests = np.zeros(self.stateNum) for i in range(self.stateNum): tempDests[i] += a[i, i] for j in range(self.stateNum): if i != j: for k in range(a[i, j]): self.assignment_done_loc = np.append(self.assignment_done_loc, j) self.assignment_done_time = np.append(self.assignment_done_time, self.travel_time[2, i, j, 0]) # generate the new demand loc, arrival_time, is_urgent, self.demand, engagement_time = self.generate_demand() time_past = arrival_time - self.clock_time self.clock_time = arrival_time # update agent status at the arrival of new demand self.assignment_done_time = np.maximum(0, np.array(self.assignment_done_time) - time_past) done_list = [] for i in range(len(self.assignment_done_time)): if self.assignment_done_time[i]==0: done_list.append(i) tempDests[self.assignment_done_loc[i]] += 1 #purge the on-the-fly list self.assignment_done_time = np.delete(self.assignment_done_time, done_list) self.assignment_done_loc =
np.delete(self.assignment_done_loc, done_list)
numpy.delete
import numpy as np import sys import pickle from collections import defaultdict import itertools import nltk import random # space is included in whitelist EN_WHITELIST = '0123456789abcdefghijklmnopqrstuvwxyz ' EN_BLACKLIST = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\'' DATA_PATH = './data/chat.txt' # these values determine the length of questions and answers while training # increase the length to get a better trained model at the cost of more time and resources... limit = { 'maxq': 20, 'minq': 0, 'maxa': 20, 'mina': 0 } # increase vocab size for a better trained mmodel at the cost of more time and resource VOCAB_SIZE = 6000 UNK = 'unk' def default(): return 1 # read lines from the file def read_lines(filename): return open(filename).read().split('\n')[:-1] # separate sentences in a line def split_sentences(line): return line.split('.') # remove anything that isn't in the vocabulary def filter_lines(line, whitelist): return ''.join([ch for ch in line if ch in whitelist]) # read words and create index to word and word to index dictionaries def index(tokenized_sentences, vocab_size): # get frequency distribution of the tokenized words which are most used freq_dist = nltk.FreqDist(itertools.chain(tokenized_sentences)) # get vocabulary of size VOCAB_SIZE vocab = freq_dist.most_common(vocab_size) # generate index to word dictionary index2word = ['_'] + [UNK] + [x[0] for x in vocab] # generate word to index dictionary word2index = dict([(w, i) for i, w in enumerate(index2word)]) return index2word, word2index, freq_dist # filter sequences based on set min length and max length def filter_data(sequences): filter_q, filter_a = [], [] raw_data_len = len(sequences) // 2 for i in range(0, len(sequences), 2): qlen = len(sequences[i].split(' ')) alen = len(sequences[i+1].split(' ')) if qlen >= limit['minq'] and qlen <= limit['maxq']: if alen >= limit['mina'] and alen <= limit['maxa']: filter_q.append(sequences[i]) filter_a.append(sequences[i+1]) filter_data_len = len(filter_q) filter_percent = int((raw_data_len - filter_data_len) / raw_data_len * 100) print('{} filtered from original data'.format(filter_percent)) return filter_q, filter_a ''' Replacing words with indices in a sequcnce Replace with unknown if word not present in vocabulary ''' def pad_seq(seq, lookup, maxlen): indices = [] for word in seq: if word in lookup: indices.append(lookup[word]) else: indices.append(lookup[UNK]) return indices + [0] * (maxlen - len(seq)) ''' generating the final dataset by creating and array of indices and adding zero paddig. Zero Padding is simply a process of adding layers of zeros to our inputs ''' def zero_pad(tokenized_q, tokenized_a, word2index): data_len = len(tokenized_q) index_q = np.zeros([data_len, limit['maxq']], dtype=np.int32) index_a = np.zeros([data_len, limit['maxa']], dtype=np.int32) for i in range(data_len): q_indices = pad_seq(tokenized_q[i], word2index, limit['maxq']) a_indices = pad_seq(tokenized_a[i], word2index, limit['maxa']) index_q[i] = np.array(q_indices) index_a[i] = np.array(a_indices) return index_q, index_a def process_data(): print('\n[ READING LINES FROM FILE ]') lines = read_lines(filename=DATA_PATH) # connverting all characters to lowercase lines = [ line.lower() for line in lines ] print('\n[ SAMPLE FROM THE DATASET ]') print(lines[25:35]) # filter out unnecessary characters print('\n[ 1ST LAYER OF FILTERING ]') lines = [ filter_lines(line, EN_WHITELIST) for line in lines ] print(lines[25:35]) # filter and distributing sequences into questions and answers print('\n[ 2ND LAYER OF FILTERING ]') qlines, alines = filter_data(lines) print('\n [ SAMPLE QUESTION ANSWER PAIR ]') print('\n q: {0} ; a: {1}'.format(qlines[15], alines[15])) print('\n q: {0} ; a: {1}'.format(qlines[20], alines[20])) # convert list of [ lines of text ] into list of [ list of words ] print('\n[ SEGMMENTING LINES OF TEXTS INTO LISTS OF WORDS ]') qtokenized = [ wordslist.split(' ') for wordslist in qlines ] atokenized = [ wordslist.split(' ') for wordslist in alines ] print('\n[ SAMPLE FROM SEGMENTED WORDS LIST ]') print('\nq : {0} ; a : {1}'.format(qtokenized[15], atokenized[15])) print('\nq : {0} ; a : {1}'.format(qtokenized[20], atokenized[20])) # indexing --> idx2w, w2idx idx2w, w2idx, freq_dist = index(qtokenized + atokenized, vocab_size=VOCAB_SIZE) # adding zero padding idx_q, idx_a = zero_pad(qtokenized, atokenized, w2idx) print('\n[ STORING NUMPY PADDED ARRAYS TO DISK ]')
np.save('./data/processed_data/idx_q.npy', idx_q)
numpy.save
import time import numpy as np import torch import torch.nn as nn import open3d as o3d import h5py import math import sklearn import copy from sklearn.neighbors import KDTree from PIL import Image import matplotlib.pyplot as plt def show_point_cloud(src_, src_corr_, ref_, ref_corr_): src = src_.copy() src_corr = src_corr_.copy() ref = ref_.copy() ref_corr = ref_corr_.copy() ref[:,1] = ref[:,1] + 2.5 ref_corr[:,1] = ref_corr[:,1] + 2.5 src_pcd = o3d.geometry.PointCloud() src_corr_pcd = o3d.geometry.PointCloud() ref_pcd = o3d.geometry.PointCloud() ref_corr_pcd = o3d.geometry.PointCloud() src_pcd.points = o3d.utility.Vector3dVector(src) ref_pcd.points = o3d.utility.Vector3dVector(ref) src_corr_pcd.points = o3d.utility.Vector3dVector(src_corr) ref_corr_pcd.points = o3d.utility.Vector3dVector(ref_corr ) ref_pcd.paint_uniform_color([1, 0, 0.651]) # 蓝色 # src_corr_pcd.paint_uniform_color([1, 0.706, 0]) # 黄色 src_pcd.paint_uniform_color([0, 0.651, 0.929]) # 红色 line_size = src_corr.shape[0] line_src = np.arange(0, 2 * line_size, 2) # 这个代表所有偶数 rand_idxs = np.random.choice(line_size, math.ceil(line_size / 3), replace=False) # print('line_src',line_src) line_src = line_src[rand_idxs].reshape(rand_idxs.shape[0], 1) # print('line_src',line_src) line_ref = line_src + 1 # print('line_ref',line_ref) lines = np.concatenate([line_ref, line_src], -1).reshape(-1, 2) # print('lines',lines) colors = [[1, 0, 0]] # triangle_points=np.concatenate([data['points_ref'][1, :, :3].detach().cpu().numpy()+1,data['points_src'][1, :, :3].detach().cpu().numpy()],-1) triangle_points = np.concatenate([src_corr, ref_corr ], -1) triangle_points = triangle_points.reshape(-1, 3) # print('triangle_points',triangle_points.shape) line_pcd = o3d.geometry.LineSet() line_pcd.lines = o3d.utility.Vector2iVector(lines) line_pcd.colors = o3d.utility.Vector3dVector(colors) # line_pcd.paint_uniform_color([1, 0.706, 0]) line_pcd.points = o3d.utility.Vector3dVector(triangle_points) o3d.visualization.draw_geometries([line_pcd, src_pcd, ref_pcd], window_name='line_pcd src_pcd src_corr_pcd') # o3d.visualization.draw_geometries([src_corr_pcd, ref_pcd], window_name='src_corr_pcd ref_pcd') # src_pcd.transform(transform) # src_corr_pcd.points = o3d.utility.Vector3dVector(weighted_ref) # o3d.visualization.draw_geometries([src_corr_pcd, src_pcd], window_name='src_corr_pcd src_pcd.transform(T)') # # ref_pcd.points = o3d.utility.Vector3dVector(ref) # o3d.visualization.draw_geometries([src_pcd, ref_pcd], window_name='src_pcd.transform(T) ref_pcd') def draw_registration_result(source, target, src_color, tgt_color): src_pcd = o3d.geometry.PointCloud() ref_pcd = o3d.geometry.PointCloud() src_pcd.points = o3d.utility.Vector3dVector(source) ref_pcd.points = o3d.utility.Vector3dVector(target) src_pcd.colors = o3d.utility.Vector3dVector(src_color) ref_pcd.colors = o3d.utility.Vector3dVector(tgt_color) # src_pcd.paint_uniform_color([1, 0.706, 0]) # ref_pcd.paint_uniform_color([0, 0.651, 0.929]) o3d.visualization.draw_geometries([src_pcd, ref_pcd]) def draw_registration_result_no_blocking(source, target,vis): vis.update_geometry(source) vis.poll_events() vis.update_renderer() def get_npy_data(filename, index): all_data = np.load(filename, allow_pickle=True) # print(len(all_data)) # xyz_src = torch.from_numpy(all_data[index * 3]) # feat_src = torch.from_numpy(all_data[index * 3 + 2]) # xyz_ref = torch.from_numpy(all_data[index * 3 + 3]) # feat_ref = torch.from_numpy(all_data[index * 3 + 5]) xyz = all_data[index * 4] normal = all_data[index * 4 + 1] feat = all_data[index * 4 + 2] color = all_data[index * 4 + 3] return xyz, normal, feat, color def calGrad(point,normal,feature,kdTree): # n * 3; n * 3 ; n * d N = point.shape[0] d = feature.shape[1] grads = np.zeros([N,3,d]) for i in range(N): pt = point[i,:].reshape(1,-1) nt = normal[i,:].reshape(1,-1) ft = feature[i,:].reshape(1,-1) _, idx = kdTree.query(pt, k=20, return_distance=True) # idx_ = np.reshape(idx,(-1,1)) # neighbor_ = point[idx_, :] # neighbor = np.reshape(neighbor_, (N,-1, 3)) neighbor_pt = point[idx, :].reshape(-1,3) neighbor_ft = feature[idx,:].reshape(-1,d) proj_pt = neighbor_pt - (neighbor_pt - pt) @ nt.T * nt A = proj_pt - pt b = neighbor_ft - ft A =
np.concatenate((A,nt),axis=0)
numpy.concatenate
""" Usage: Make instance of class (currently only MainSequence class available call instance.Interpolate(instance.dict, SpT) where dict is the name of the dictionary you want to interpolate (Temperature, Radius, or Mass) and SpT is the spectral type of what you wish to interpolate to. # Provides relations for temperature, luminosity, radius, and mass for varius spectral types #Data comes from Carroll and Ostlie book, or interpolated from it #ALL RELATIONS ARE FOR MAIN SEQUENCE ONLY! """ from __future__ import print_function, absolute_import from collections import defaultdict import re import logging import os from scipy.interpolate import UnivariateSpline import numpy as np import pandas from kglib.utils import DataStructures _ROOT = os.path.abspath(os.path.dirname(__file__)) def get_data(path): return os.path.join(_ROOT, 'data', path) SPT_PATTERN = '[A-Z]([0-9]\.?[0-9]*)' # regular expression pattern for identifying spectral types def fill_dict(row, d, key, makefloat=True): val = row[key].strip() if makefloat: if val != '': d[row['SpT'].strip()[:-1]] = float(val) else: d[row['SpT'].strip()[:-1]] = val class FitVals(): def __init__(self, coeffs, xmean=0.0, xscale=1.0, logscale=False, intercept=0.0, valid=(-5.0, 5.0)): self.coeffs = coeffs self.order = len(coeffs) - 1.0 self.xmean = xmean self.xscale = xscale self.log = logscale self.intercept = intercept self.valid = valid class FunctionFits(): def __init__(self, MS=None): self.MS = MainSequence() if MS is None else MS # Mass fits, made using the old MainSequence dictionaries self.sptnum_to_mass = FitVals(coeffs=np.array([0.11679476, -0.51168936, 0.27332682, 1.42616918, -1.56182261, -1.21786221, 1.8851773, -0.04980108, -0.30105226, -0.38423188, -0.17182606]), xmean=26.681818181818183, xscale=19.342337838478862, logscale=True, intercept=0.46702748509563452, valid=[5, 65]) # Radius fit, made using the old MainSequence dictionaries self.sptnum_to_radius = FitVals(coeffs=np.array([0.02250148, 0.06041591, -0.21719815, -0.2087987, 0.55373813, 0.13635043, -0.50930703, -0.07293512, 0.3132073, -0.24671561, -0.08480404]), xmean=34.5, xscale=20.702656834329261, logscale=True, intercept=0.16198349185993394, valid=[5, 67]) # Absolute magnitude fit, using the old MainSequence dictionaries self.sptnum_to_absmag = FitVals(coeffs=np.array([0.35215153, -0.2924717, -0.95804462, 1.74295661, -0.41864979, 2.50954236, 0.45854428]), xmean=32.44, xscale=18.456608572541164, intercept=2.8008819709959134, valid=[5, 65]) # Color fits from Boyajian et al 2013 color_relations = defaultdict(lambda: defaultdict(FitVals)) color_relations['B']['V'] = FitVals(coeffs=np.array((9552, -17443, 44350, 68940, 57338, -24072, 4009)), valid=[-0.1, 1.8]) color_relations['V']['J'] = FitVals(coeffs=
np.array((9052, -3972, 1039, -101))
numpy.array
import numpy as np import tform as tf import scipy.linalg as la import control import swing_trajectory as st class PreviewControl: def __init__(self, dt=1./240., Tsup_time=0.5, Tdl_time=0.1, CoMheight=0.45, g=9.8, previewStepNum=240, stride=0.1, initialTargetZMP=np.array([0.,0.]), initialFootPrint=np.array([[[0.,0.065],[0.,-0.065]]]), R=np.matrix([1.]), Q=np.matrix([[7000,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])): self._RIGHT_LEG = 1 self._LEFT_LEG = 0 self.dt = dt self.previewStepNum = previewStepNum self.A = np.matrix([[1, dt, (dt**2)/2], [0, 1, dt], [0, 0, 1]]) self.B = np.matrix([(dt**3)/6, (dt**2)/2, dt]).T self.C = np.matrix([1, 0, -CoMheight/g]) self.CoMheight = CoMheight self.G = np.vstack((-self.C*self.B, self.B)) self.Gr= np.matrix([1., 0., 0., 0.]).T #state vector self.x = np.matrix(np.zeros(3)).T self.y = np.matrix(np.zeros(3)).T self.footPrints = np.array([[[0.,0.065],[0.,-0.065]], [[0.,0.065],[0.,-0.065]], [[0.,0.065],[0.,-0.065]]]) self.Tsup = int(Tsup_time/dt) self.Tdl = int(Tdl_time/dt) self.px_ref = np.full((self.Tsup+self.Tdl)*3,initialTargetZMP[0]) self.py_ref = np.full((self.Tsup+self.Tdl)*3,initialTargetZMP[1]) self.px = np.array([0.0]) #zmp self.py = np.array([0.0]) self.phi = np.hstack( (np.matrix([1,0,0,0]).T, np.vstack((-self.C*self.A, self.A)) ) ) P, _, _ = control.dare(self.phi,self.G,Q,R) zai = (np.eye(4) - self.G * la.inv(R + self.G.T*P*self.G) * self.G.T * P )*self.phi self.Fr=np.array([]) for j in range(1,previewStepNum+1): self.Fr= np.append(self.Fr, -la.inv(R + self.G.T*P*self.G)*self.G.T*((zai.T)**(j-1))*P*self.Gr) self.F=-la.inv(R + self.G.T*P*self.G)*self.G.T*P*self.phi self.px_ref_log = self.px_ref[:(self.Tsup+self.Tdl)*2] self.py_ref_log = self.py_ref[:(self.Tsup+self.Tdl)*2] self.xdu = 0 self.ydu = 0 self.xu = 0 self.yu = 0 self.dx=np.matrix(np.zeros(3)).T self.dy=np.matrix(np.zeros(3)).T self.swingLeg = self._RIGHT_LEG self.supportLeg = self._LEFT_LEG self.targetZMPold = np.array([initialTargetZMP]) self.currentFootStep = 0 def footPrintAndCOMtrajectoryGenerator(self, inputTargetZMP,inputFootPrint): currentFootStep = 0 self.footPrints = self.footOneStep(self.footPrints,inputFootPrint, self.supportLeg) input_px_ref, input_py_ref = self.targetZMPgenerator(inputTargetZMP, self.targetZMPold[-1], self.Tsup,self.Tdl) self.px_ref = self.fifo(self.px_ref, input_px_ref, len(input_px_ref)) self.py_ref = self.fifo(self.py_ref, input_py_ref, len(input_py_ref)) self.px_ref_log = np.append(self.px_ref_log, input_px_ref) self.py_ref_log = np.append(self.py_ref_log, input_py_ref) CoMTrajectory = np.empty((0,3), float) startRobotVelocity = np.array([self.x[1],self.y[1]]) for k in range(len(input_px_ref)): dpx_ref = self.px_ref[k+1] - self.px_ref[k] dpy_ref = self.py_ref[k+1] - self.py_ref[k] xe = self.px_ref[k] - self.C * self.x ye = self.py_ref[k] - self.C * self.y X=self.phi * np.vstack((xe, self.dx)) + self.G*self.xdu + self.Gr*dpx_ref Y=self.phi * np.vstack((ye, self.dy)) + self.G*self.ydu + self.Gr*dpy_ref xsum=ysum=0 for j in range(1,self.previewStepNum+1): xsum +=self.Fr[j-1]*(self.px_ref[k+j]-self.px_ref[k+j-1]) ysum +=self.Fr[j-1]*(self.py_ref[k+j]-self.py_ref[k+j-1]) self.xdu=self.F*X+xsum self.ydu=self.F*Y+ysum self.xu+=self.xdu self.yu+=self.ydu old_x=self.x old_y=self.y self.x=self.A*self.x+self.B*self.xu self.y=self.A*self.y+self.B*self.yu self.dx=self.x-old_x self.dy=self.y-old_y CoMTrajectory = np.vstack((CoMTrajectory, [self.x[0,0], self.y[0,0], self.CoMheight])) self.px = np.append(self.px, self.C*self.x) self.py = np.append(self.py, self.C*self.y) robotEndVelocity = np.array([self.x[1],self.y[1],0.]) leftTrj,rightTrj = self.footTrajectoryGenerator(np.hstack((self.footPrints[currentFootStep,self.swingLeg], 0.)), np.hstack((self.footPrints[currentFootStep+1,self.swingLeg], 0.)), np.array([0.,0.,0.]), np.array([0.,0.,0.]), np.hstack((self.footPrints[currentFootStep,self.supportLeg],0.)), self.swingLeg) self.swingLeg, self.supportLeg = self.changeSupportLeg(self.swingLeg, self.supportLeg) self.targetZMPold = np.vstack((self.targetZMPold, inputTargetZMP)) return CoMTrajectory, leftTrj, rightTrj def targetZMPgenerator(self,targetZMP,targetZMPold, Tsup, Tdl): tdl_t = np.arange(0,Tdl) x_a = (targetZMPold[0]-targetZMP[0])/(0-Tdl) x_b = targetZMPold[0] y_a = (targetZMPold[1]-targetZMP[1])/(0-Tdl) y_b = targetZMPold[1] px_ref = np.hstack(( x_a * tdl_t + x_b, np.full(Tsup, targetZMP[0]) )) py_ref = np.hstack(( y_a * tdl_t + y_b, np.full(Tsup, targetZMP[1]) )) return px_ref, py_ref def footTrajectoryGenerator(self,swingStartPointV,swingEndPointV, startRobotVelocityV_xy,endRobotVelocityV,supportPointV,swingLeg,zheight=0.04): supportTrajectory = np.vstack((np.full(self.Tdl+self.Tsup,supportPointV[0]), np.full(self.Tdl+self.Tsup,supportPointV[1]), np.full(self.Tdl+self.Tsup,supportPointV[2]))).T swingTrajectoryForTdl = np.vstack((np.full(self.Tdl,swingStartPointV[0]), np.full(self.Tdl,swingStartPointV[1]), np.full(self.Tdl,swingStartPointV[2]))).T if np.array_equal(swingStartPointV, swingEndPointV): swingTrajectoryForTsup = np.vstack((
np.full(self.Tsup,swingEndPointV[0])
numpy.full
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Support functions for the sindy toolkit. Called by 'runToolkit.py', 'runToolkitExtended.py' and by 'plotSelectedIterations.py'. For the full procedure, see "README.md". For method details, please see "A toolkit for data-driven discovery of governing equations in high-noise regimes" (2022) by <NAME> and <NAME>. Copyright (c) 2021 <NAME>. <EMAIL> MIT License """ import sys import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from numpy.linalg import lstsq # since this accepts complex inputs and targets. from scipy.integrate import solve_ivp """ --------------------------------------------------------------------------------------------- ------------------------ Function Defs ------------------------------------------------------ --------------------------------------------------------------------------------------------- """ #%% Functions for various model systems, that return initial conditions for derivatives. # These are used to simulate the system via odeint(): def lorenz_fn(z, t, p=({'p0': 10, 'p1': 28, 'p2': np.round(-8/3, 2), 'numExtraVars': 0},)): """ xDot = -p0*x + p0*y yDot = p1*x - y - x*z zDot = p2*z + x*y Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ p['p0'] * (z[1] - z[0]), z[0] * (p['p1'] - z[2]) - z[1], z[0] * z[1] + p['p2'] * z[2] ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # End of lorenz attractor fn # ------------------------------------------------------------------- def dampedHarmonicOscillatorLinear_fn(z, t, p=({'p0': 0.1, 'p1': 2, 'numExtraVars': 0})): """ xDot = -p0*x + p1*y yDot = -p1*x - p0*y Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ -p['p0']*z[0] + p['p1']*z[1], -p['p1']*z[0] - p['p0']*z[1] ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of dampedHarmonicOscillatorLinear_fn # ------------------------------------------------------------------- def dampedHarmonicOscillatorCubic_fn(z, t, p=({'p0': 0.1, 'p1': 2, 'numExtraVars': 0})): """ xDot = -p0*x^3 + p1*y^3 yDot = -p1*x^3 - p0*y^3 Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ -p['p0']*pow(z[0], 3) + p['p1']*pow(z[1], 3), -p['p1']*pow(z[0], 3) - p['p0']*pow(z[1], 3) ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of dampedHarmonicOscillatorCubic_fn #---------------------------------------------------------------------- def threeDimLinear_fn(z, t, p=({'p0': 0.1, 'p1': 2, 'p2': 0.3, 'numExtraVars': 0})): """ xDot = -p0*x - p1*y yDot = p1*x - p0*y zDot = -p2*z Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). NOTE: >= 4th order library terms cause failure in Brunton """ derivList = [ -p['p0']*z[0] - p['p1']*z[1], p['p1']*z[0] - p['p0']*z[1], -p['p2']*z[2] ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of threeDimLinear_fn # ------------------------------------------------------------------- def hopfNormalForm2D_fn(z, t, p=({'p0': 0, 'p1': -1, 'p2': 1, 'numExtraVars': 0})): """ Mean field model with zDot == 0: xDot = p0*x + p1*y - p2*x*(x^2 + y^2) yDot = -p1*x + p0*y - p2*y*(x^2 + y^2) where p0 = mu, p1 = omega, p2 = A, p3 = lambda in Brunton paper. Note that in the 3D model, zDot = -p2 * (z - x^2 - y^2). In this 2D version we assume lambda is big, so zDot -> 0 rapidly and thus z = x^2 + y^2. TO-DO: we need param values for this model. mu is in [-0.2, 0.6]. omega, A, and lambda values are unknown. Initial values estimate: x,y = {1, 0.75} or {0,0} (see fig 3 in Brunton paper) Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ p['p0'] * z[0] - p['p1'] * z[1] + p['p2'] * z[0] * (pow(z[0], 2) + pow(z[1], 2)), p['p1'] * z[0] + p['p0'] * z[1] + p['p2'] * z[1] * (pow(z[0], 2) + pow(z[1], 2)) ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of hopfNormalForm2D_fn # ------------------------------------------------------------------- def hopfNormalForm3D_fn(z, t, p=({'p0': 0, 'p1': -1, 'p2': 1, 'p3': 0.5, 'numExtraVars': 0})): """ Mean field model with zDot == 0: xDot = p0*x + p1*y - p2*x*z yDot = -p1*x +p0*y - p2*y*z zDot = -p3 * (z - x^2 - y^2). where p0 = mu, p1 = omega, p2 = A, p3 = lambda in Brunton paper. In this 3D version of the model, we assume lambda is not too big, so zDot is not == 0. TO-DO: We need param values for this model. mu is in [-0.2, 0.6]. omega, A, and lambda values are unknown. See tables 10, 11 in Brunton paper S.I. Question: is mu being used in two ways, as a coefficient and as a "bifurcation parameter" (see eg table 13)? Initial values estimate: x,y = {1, 0.75} or {0,0} (see fig 3 in Brunton paper) Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ p['p0'] * z[0] - p['p1'] * z[1] + p['p2'] * z[0] * z[2], # (pow(z[0], 2) + pow(z[1], 2)), p['p1'] * z[0] + p['p0'] * z[1] + p['p2'] * z[1] * z[2], # (pow(z[0], 2) + pow(z[1], 2)), -p['p3'] * (z[2] - pow(z[0],2) - pow(z[1], 2))] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of hopfNormalForm3D_fn # ------------------------------------------------------------------ def generateModelStrAndTrueArrays_fn(modelSystem, p): """ Build a string describing the model. Parameters ---------- modelSystem : str p : dict Returns ------- modelStr : str. trueLib : tuple of lists of str trueLibCoeffs : tuple of lists of floats """ if modelSystem == 'lorenz': modelStr = \ "x' = -" + str(p['p0']) + ' x + ' + str(p['p0']) + ' y' + '\n' + \ "y' = " + str(p['p1']) + ' x - y - x*z' + '\n' + \ "z' = " + str(p['p2']) + ' z' + ' + x*y' trueLib = (['x','y'], ['x','y','x*z'], ['z', 'x*y']) trueLibCoeffs = ([-p['p0'], p['p0']], [p['p1'], -1, -1], [p['p2'], 1]) if modelSystem == 'harmOscLinear': modelStr = \ "x' = -" + str(p['p0']) + ' x + ' + str(p['p1']) + ' y' + '\n' + \ "y' = -" + str(p['p1']) + " x -" + str(p['p0']) + ' y' trueLib = (['x', 'y'], ['x', 'y']) trueLibCoeffs = ([-p['p0'], p['p1']], [-p['p1'], -p['p0']]) if modelSystem == 'harmOscCubic': modelStr = \ "x' = -" + str(p['p0']) + ' x^3 + ' + str(p['p1']) + ' y^3' + '\n' + \ "y' = -" + str(p['p1']) + " x^3 -" + str(p['p0']) + ' y^3' trueLib = (['x^3', 'y^3'], ['x^3', 'y^3']) trueLibCoeffs = ([-p['p0'], p['p1']], [-p['p1'], -p['p0']]) if modelSystem == 'threeDimLinear': modelStr = \ "x' = -" + str(p['p0']) + ' x - ' + str(p['p1']) + ' y' + '\n' + \ "y' = " + str(p['p1']) + " x -" + str(p['p0']) + ' y' + '\n' + \ "z' = -" + str(p['p2']) + " z" trueLib = (['x', 'y'], ['x', 'y'], ['z']) trueLibCoeffs = ([-p['p0'], -p['p1']], [p['p1'], -p['p0']], [-p['p2']]) if modelSystem == 'hopfNormal2D': modelStr = \ "x' = " + str(p['p0']) + ' x + ' + str(p['p1']) + ' y ' + "+ " + str(p['p2']) + \ '(x^3 + x*y^2)' + '\n' + \ "y' = " + str(p['p1']) + ' x + ' + str(p['p0']) + ' y ' + "+ " + str(p['p2']) + \ '(y*x^2 + y^3)' trueLib = (['x', 'y', 'x^3', 'x*y^2'], ['x', 'y', 'y^3', 'x^2*y']) trueLibCoeffs = ([p['p0'], p['p1'], p['p2'], p['p2']], [p['p1'], p['p0'], p['p2'], p['p2']]) if modelSystem == 'hopfNormal3D': modelStr = \ "x' = " + str(p['p0']) + ' x - ' + str(p['p1']) + ' y ' + "+ " + str(p['p2']) + \ ' x*z' + '\n' + \ "y' = " + str(p['p1']) + ' x + ' + str(p['p0']) + ' y ' + "+ " + str(p['p2']) + \ ' y*z' + '\n' + \ "z' = -" + str(p['p3']) + ' * (z - x^2 - y^2)' trueLib = (['x', 'y', 'x*z'], ['x', 'y', 'y*z'], ['z', 'x^2', 'y^2']) trueLibCoeffs = ([p['p0'], p['p1'], p['p2']], [p['p1'], p['p0'], p['p2']], [-p['p3'], p['p3'], p['p3']]) return modelStr, trueLib, trueLibCoeffs # End of generateModelStrAndTrueArrays_fn # --------------------------------------------------- def generateTrueFunctionalAndCoeffArrays_fn(trueLib, trueLibCoeffs, functionList): """ Given lists of functional names as str, and the function list, construct a true 'functionsToUseArray' Parameters ---------- trueLib : list-like of lists of str. len of list-like = numVars, len of each list = num true library functionals for that variable trueLibCoeffs : list-like of lists of floats. Matches 'trueLib' above. functionList : list of str. The functional names Returns ------- trueLibraryArray : np.array of bools, numVars x numFunctionals """ trueLibraryArray = np.zeros((len(trueLib), len(functionList)), dtype=bool) trueCoeffArray = np.zeros((len(trueLib), len(functionList))) for v in range(len(trueLib)): # v is the variable index theseFnalNames = np.array(trueLib[v]) theseCoeffs = np.array(trueLibCoeffs[v]) for f in range(len(functionList)): ind = np.where(theseFnalNames == functionList[f])[0] if len(ind) > 0: # ie functionList[f] is a true functional trueLibraryArray[v, f] = True trueCoeffArray[v, f] = theseCoeffs[ind] return trueLibraryArray, trueCoeffArray # End of generateTrueFunctionalAndCoeffArrays_fn # ---------------------------------------------------------- def generateFunctionStr_fn(v, varInds, variableNames): """ Given a list, generate a string. Used by generatePolynomialLibrary_fn. Parameters ---------- v : list of ints varInds : list of ints variableNames : list of str Returns ------- fnStr : str """ fnStr = '' for i in varInds: if i in v: if len(fnStr) > 0: # case: we need a multiplication sign: fnStr += '*' fnStr += variableNames[i] if np.sum(np.array(v) == i) > 1: # case: we need an exponent: fnStr += '^' + str(np.sum(np.array(v) == i)) return fnStr # End of generateFunctionStr_fn #------------------------------------------------------------------------ def generatePolynomialLibrary_fn(variableNames, degree): """ Generate a library of polynomials up to a certain degree. Return two things: a list of functional names and a list of recipes for use in ode evolutions. NOTE: If there is one variable, and its name is more that one character, this function will fail because 'varInds' will equal the number of characters in the variable name. Parameters ---------- variableNames : list-like of str degree : int Returns ------- functionList : list of str recipes : list of lists, length = numFunctionals """ varInds = np.arange(len(variableNames)) recipes = [] functionList = [] recipes.append(-1) # the constant function functionList.append('1') # Treat degree = 1: combos = [] # initialize for i in varInds: combos.append(i) recipes.append(i) functionList.append(variableNames[i]) deg = 2 # initialize while deg <= degree: combos = [(i, j) for i in varInds for j in combos] # vector of {int, list} entries, # entry has total len = deg. There are duplicates at >= degree 3, eg (0,(0,1)) and # (1,(0,0)). So for each entry we must (a) make into a single list; and (b) check that it # is new before appending it to 'recipes' and 'functionList'. # (a) combine int and list: keepCombos = [] # to keep the non-duplicates for k in range(len(combos)): c = combos[k] this = [] for i in c: if isinstance(i, (int, np.integer)): this.append(i) else: for j in i: this.append(j) this = list(np.sort(np.array(this))) # 'this' is now a single sorted list of ints. # (b) If 'this' is new, append to recipes: addFlag = True for i in recipes: if not isinstance(i, (int, np.integer)): if len(this) == len(i) and np.sum(np.array(this) == np.array(i)) == len(i): addFlag = False break if addFlag: recipes.append(this) keepCombos.append(this) functionList.append(generateFunctionStr_fn(this, varInds, variableNames)) # Update combos with non-duplicate list: combos = keepCombos deg += 1 return functionList, recipes # End of generatePolynomialLibrary_fn #-------------------------------------------------------------- def calculateLibraryFunctionalValues_fn(x, recipes): """ For each functional, calculate its values at the timepoints. Parameters ---------- x : np.array of floats, numTimepoints x numVars recipes : list of lists. The i'th list gives the indices of variables to be multiplied together to generate the i'th functional. Returns ------- fnVals : np.array of floats, numTimepoints x numFunctionals. """ fnVals = np.zeros((x.shape[0], len(recipes))) for i in range(fnVals.shape[1]): r = recipes[i] temp = np.ones(x.shape[0]) if isinstance(r, (int, np.integer)): # constant or degree 1 monomial if r != -1: # ie not the constant functional temp = x[:, r] else: # >= degree 2 for j in r: temp = temp * x[:, j] fnVals[:, i] = temp return fnVals # End of calculateLibraryFunctionalValues_fn #------------------------------------------------------------ #%% Make a hamming window: def makeHammingWindow_fn(hammingWindowLength, plateauRatio=0): """" Generate a hamming window, perhaps with a flat plateau in the middle (ie a smoothed step function). Inputs: hammingWindowLength: int usePlateauHammingFilterFlag: Boolean plateauRatio: float 0 to 1 Outputs: hamm: vector with sum = 1 """ if plateauRatio > 0: # add a plateau in the middle: plateauRatio = min(1, plateauRatio) ends = int(np.ceil(hammingWindowLength*(1 - plateauRatio))) if ends%2 == 1: ends = ends + 1 # make even rise = int(ends/2) ends = np.hamming(ends) # ends is now a hamming vector hamm = np.ones((1, hammingWindowLength)) hamm = hamm.flatten() hamm[0:rise] = ends[0:rise] hamm[-rise:] = ends[-rise:] else: # normal hamming filter hamm = np.hamming(hammingWindowLength) # Normalize: hamm = hamm / np.sum(hamm) return hamm # End of makeHammingWindow_fn #--------------------------------------------------------- def calculateSlopeAndStd_fn(x, dt, w): ''' given a time-series, do two things: 1. calculate the deriv at each point by simple rise/run (Euler formula) 2. calculate the std of a window (size2*h) at each point, using the slope from (1) to first tilt the data to roughly slope = 1. Inputs: z: np.vector dt: float w: int. Window length Outputs: slopeX: np.vector stdX: np.vector meanX: np.vector ''' h = int(np.round(w/2)) # Half the window length slopeX = np.zeros(x.shape) stdX = np.zeros(x.shape) meanX = np.zeros(x.shape) # For efficiency, we take the mean of the first window, then update it at each new point: for i in range(len(x)): if i == h + 1: # First point's window b = np.mean(x[i:i + h]) a = np.mean(x[i-h:i]) if i > h + 1 and i < len(x) - h: # all ensuing points' windows b = b + (x[i + h] - x[i])/h a = a + (x[i] - x[i-h])/h if i > h and i < len(x) - h: # all points' windows (ie happens for both above cases) slopeX[i] = (b-a)/h tilted = x[i-h:i+h] - slopeX[i]*np.array(range(-h, h)) stdX[i] = np.std(tilted) # subsampling doesn't speed this up much. meanX[i] = 0.5 * (b + a) # Fill in start and end values: slopeX[0:h + 1] = slopeX[h + 1] slopeX[-h:] = slopeX[-h - 1] stdX[0:h + 1] = stdX[h + 1] stdX[-h:] = stdX[-h - 1] meanX[0:h + 1] = meanX[h + 1] meanX[-h:] = meanX[-h - 1] # account for dt: slopeX = slopeX/dt return slopeX, stdX, meanX # End of calculateSlopeAndStd_fn #------------------------------------------------------------------ def addGaussianNoise_fn(X, noiseFactors, noiseType = 'normal'): """ add noise (default gaussian) directly to the trajectory array. Inputs: X: n x m np.array. n = number of variables, m = number of timepoints, ie each row is variable time-course noiseFactors: np.array of floats, num real vars x 1 noiseType: str, 'normal' or 'uniform' extraVarsnoiseFactors: float Outputs: XwithNoise: n x m np.array """ noiseArray = np.tile(noiseFactors, [X.shape[0], 1]) # Add noise to xTrain, scaled as fraction of std dev of x, y, z values over the trajectory: scalingVals = np.std(X, axis = 0) # for scaling noise. Use only x, y, z # 'scalingVals' for extra variables currently == 0, so replace these with the mean of others: scalingVals[scalingVals < 1e-5] = np.mean(scalingVals[scalingVals > 1e-5]) # Add rows for the extra variables: if noiseType == 'uniform': noiseToAdd = 2 * noiseArray * np.multiply(np.tile(scalingVals, (X.shape[0], 1)), -0.5 + np.random.uniform(size = X.shape)) else: # noiseType == 'normal': noiseToAdd = noiseArray * np.multiply(np.tile(scalingVals, (X.shape[0], 1)), np.random.normal(size = X.shape)) xNoisy = X + noiseToAdd return xNoisy # End of addNoise_fn #----------------------------------------------------------------------------------------- def addWhiteNoise_fn(xArray, noiseFactors): ''' Add white noise to trajectory array, using FFT. Inputs: xArray: np.array, numTimepoints x numVars noiseFactors: np.array of floats, num real vars x 1 Outputs: xNoisy: np.array, real part of ifft of noisy fft signal. ''' xNoisy = np.zeros(xArray.shape) for i in range(xArray.shape[1]): x = xArray[:, i] xF = np.fft.fft(x) realSigma = np.std(np.real(xF)) imSigma = np.std(np.imag(xF)) noiseToAdd = noiseFactors[i] * (realSigma * np.random.normal(size=xF.shape) + \ 1j * imSigma * np.random.normal(size=xF.shape)) xFNoisy = xF + noiseToAdd xNoisy[:, i] = np.fft.ifft(xFNoisy) return np.real(xNoisy) # End of addWhiteNoise_fn #-------------------------------------------------------------------------------------- def calcWeightArray_fn(cNew, functionsToUseArray, imputed, coeffWeightsCutoffFactor, percentileOfImputedValuesForWeights): """ Create a weight array to weight the coeffs by size of functional values. Culling will be based on the weighted coeffs. We give high weights to functionals that tend to have high values, since we want to allow them to have lower coeffs without being culled. Functionals that tend to have low values get low weights, since their effect will be less. We 'normalize' using the median of all functional imputed values. Parameters ---------- cNew : np.array of floats. numVars x numFunctionals. functionsToUseArray : np.array of booleans. numVars x numFunctionals. imputed : np.array of floats. vector 1 x numFunctionals. Estimated magnitudes of each functional. coeffWeightsCutoffFactor : (scalar float or int) percentileOfImputedValuesForWeights : scalar int Returns ------- weightArray : np.array of floats. numVars x numFunctions. """ # Reduce the extremes of this vector in each row (ie for each variable), and normalize: weightArray= np.zeros(cNew.shape) for i in range(weightArray.shape[0]): if np.sum(functionsToUseArray[i, :]) > 0: temp = imputed.copy() centralVal = np.percentile(temp[functionsToUseArray[i, :]], percentileOfImputedValuesForWeights, interpolation='lower') # Over functionals currently active for this variable. # Moderate the extremes of this vector: temp[temp > coeffWeightsCutoffFactor * centralVal] = \ coeffWeightsCutoffFactor * centralVal temp[temp < centralVal / coeffWeightsCutoffFactor] = \ centralVal / coeffWeightsCutoffFactor temp = temp * functionsToUseArray[i, :] # Zero the weights of unused functions. # Normalize (comment: It would be nice if the normalization here penalized variables # with many active functionals, to enforce sparsity.): temp = temp / np.median(temp[temp > 0]) # So in the ballpark of 1 weightArray[i, :] = temp return weightArray #-------- End of calcWeightArray_fn----------------- def calculateFftForRegression_fn(x, numFftPoints, fftRegressionTarget): """ Create a vector using some form of FFT, to act as a regression target. Parameters ---------- x : np.array (vector) of floats numFftPoints : int fftRegressionTarget : str Returns ------- xT : np.array (vector) of floats """ x = x - np.mean(x) xP = np.fft.fft(x) # Use this if fftRegressionTarget == 'complex' if fftRegressionTarget == 'realOnly': xP = np.real(xP) if fftRegressionTarget == 'magnitude': xP = np.abs(xP) if fftRegressionTarget == 'power': xP = pow(np.real(xP), 2) xP = xP[0:numFftPoints] / np.sum(np.abs(xP[0:numFftPoints])) # normalize return xP # ------- End of calculateFftRegressionTarget_fn ---------------------------- def cullAndAssessWhetherToRerun_fn(localCoeffArray, variableNames, functionList, imputedSizeOfFunctionals, cullingRulesDict, functionsToUseArray, cullable, inBalanceVarsArray, coeffWeightsCutoffFactor, percentileOfImputedValuesForWeights): """ Given results of post-smoothing sindy or linear fit, see if we can cull any variables or library functions. We make an array of booleans that shows which coeffs of the model were non-zero. This array serves as modelActiveLib, restricting which library functions can be used for each of the variables. No variables or functions are actually removed. Instead, they are set off-limits by modifying the boolean array. Parameters ---------- localCoeffArray : np.array of floats, numVars x numFunctionals variableNames : vector of strings functionList : vector of strings imputedSizeOfFunctionals : np.array of floats cullingRulesDict : Dict with keys like 'maxAllowedWeightedCoeff' functionsToUseArray : np.array booleans, numVars x numFunctionals cullable : np.array booleans, numVars x numFunctionals inBalanceVarsArray : np.array booleans, numVars x numFunctionals. True = eligible for culling coeffWeightsCutoffFactor : scalar float percentileOfImputedValuesForWeights : int Returns ------- iterateAgainFlag : Boolean functionsToUseArray : np.array of booleans, numVars x numFunctions outputStr : str minNonZeroVal : float, the minimum weighted coeff (to use as a stopping signal) """ numExtraToKill = cullingRulesDict['extraNumFnsCulledPerIter'] minAllowedWeightedCoeff = cullingRulesDict['minAllowedWeightedCoeff'] # Note: these are trivially == 1 and have no effect if 'coeffWeightsCutoffFactor' == 1: cOld = localCoeffArray # i'th col corresponds to the i'th entry in functionList. j'th #row corresponds to j'th variable. cNew = cOld.copy() # we'll zero out entries in this array fOld = functionsToUseArray.copy() # fOld is for comparison, to determine 'iterateAgainFlag', # since we'll update functionsToUseArray. # We could also get fOld from modelActiveLib # Kill the constant term if it is the only non-zero term: if cullingRulesDict['setConstantDerivEstimatesToZero']: for i in range(cNew.shape[0]): if np.sum(np.abs(cNew[i, 1:])) < 1e-5: # 1e-5 = almostZeroRoundDownThreshold, which # deals with weird not-quite-zero zeros cNew[i,0] = 0 # 1. find which vars are non-zero: zeroedVars = np.sum(cNew, axis = 1) == 0 # col vector, True -> var has been zeroed out. # 2. Now zero out all functions that involve zeroed-out variables, ie zero out columns that # contain the var name: # Note: this has not been updated to use 'cullable'. for i in range(len(zeroedVars)): if zeroedVars[i] == True: varName = variableNames[i] for j in range(cNew.shape[1]): if varName in functionList[j]: cNew[:,j] = 0 # 3. Create a weight array to weight the coeffs by size of functional values. functionsToUseArray = np.abs(cNew) > 1e-5 # almostZeroRoundDownThreshold if coeffWeightsCutoffFactor > 1: # Recall coeffWeightsCutoffFactor = 1 -> no weights. weightArray = calcWeightArray_fn(cNew, functionsToUseArray, imputedSizeOfFunctionals, coeffWeightsCutoffFactor, percentileOfImputedValuesForWeights) else: # Case: we're not weighting the coeffs. weightArray = np.ones(cNew.shape) / cNew.shape[1] # weightArray is now ready to multiply cNew. # 3. Now zero out all functions with coeffs that are too large. Currently never activates (at # maxAllowed = 50: we can disable this by picking a very large 'maxAllowedWeightedCoeff' # parameter. inBalanceVarsArray == true prevents culling fnals from vars with low fnal counts. tooBigStr = '' # cNewWeighted = cNew * weightArray # tooBigFnsArray = np.logical_and(np.abs(cNewWeighted) > maxAllowedWeightedCoeff, # inBalanceVarsArray) # make string of too-big functionals: # for i in np.where(np.sum(tooBigFnsArray,axis=1) > 0)[0]: # ie rows/variables with too-small # # functionals. # tooBigStr = tooBigStr + variableNames[i] + ': ' + \ # str(np.array(functionList)[tooBigFnsArray[i, :]]) + ' ' # cNew[np.where(tooBigFnsArray)] = 0 # set too-big coeffs to 0 # numTooBigCulledFunctionals = np.sum(tooBigFnsArray.flatten()) # 4. Make an updated boolean array of retained functions. Also cull any functionals with very # low weighted coeffs: cNewWeighted = cNew * weightArray tooSmallFnsArray = np.logical_and.reduce((np.abs(cNewWeighted) < minAllowedWeightedCoeff, np.abs(cNewWeighted) > 0, inBalanceVarsArray)) cNew[np.where(tooSmallFnsArray)] = 0 # set too-small coeffs to 0 # make string of too-small functionals: tooSmallStr = '' for i in np.where(np.sum(tooSmallFnsArray,axis=1) > 0)[0]: # ie rows/variables with too-small # functionals. tooSmallStr = tooSmallStr + variableNames[i] + ': ' + \ str(np.array(functionList)[tooSmallFnsArray[i, :]]) + ' ' numTooSmallCulledFunctionals = np.sum(tooSmallFnsArray.flatten()) # 5. see if a variable has been removed: oldZeroedVars = np.sum(cOld, axis = 1) == 0 variableRemovedFlag = np.sum(zeroedVars) > np.sum(oldZeroedVars) functionsToUseArray = np.abs(cNew) > 1e-5 # almostZeroRoundDownThreshold # Update to remove # too small coeffs # 6. See if an entire function (a column) has been removed: oldZeroedFns = np.sum(fOld, axis = 0) # Sum the columns newZeroedFns = np.sum(functionsToUseArray, axis = 0) functionColumnRemovedFlag = np.sum(newZeroedFns == 0) - np.sum(oldZeroedFns == 0) > 0 # 7. Cull based on weighted coeff size relative to current threshold: # If we have not removed a functional column, and if the lowest weighted coeff is small enough, # cull more coeffs. # Make a new weight array, since we may have removed some functionals: if coeffWeightsCutoffFactor > 1: # Recall coeffWeightsCutoffFactor = 1 -> no weights. weightArray = calcWeightArray_fn(cNew, functionsToUseArray, imputedSizeOfFunctionals, coeffWeightsCutoffFactor, percentileOfImputedValuesForWeights) else: # Case: we're not weighting the coeffs. weightArray = np.ones(cNew.shape) / cNew.shape[1] cNewWeighted = cNew * weightArray if np.sum(np.abs(cNewWeighted.flatten())) > 1e-5: # almostZeroRoundDownThreshold: minNonZeroVal = np.min(np.abs(cNewWeighted)[np.logical_and(cullable, cNewWeighted != 0)].flatten()) else: minNonZeroVal = 0 extraFunctionalKilledOffFlag = False numExtraFunctionalsKilled = 0 extraCullBypassedDueToRemovedFunctionColumnFlag = functionColumnRemovedFlag # If we removed a function from all vars (ie a column), we're done for this cull. Else see if # any functionals have coeffs below the current threshold. We ignore the protected fns (ie we # only consider 'cullable' fns) culledFnsArray = np.zeros(functionsToUseArray.shape, dtype=bool) # to record functionals # culled because they were the most below the current threshold (but not including 'too-small' # fns). while numExtraToKill > 0 and (functionColumnRemovedFlag == False) and \ np.sum(np.abs((cNewWeighted * inBalanceVarsArray).flatten())) > 1e-5: # 1e-5 = almostZeroRoundDownThreshold loc = np.where(np.logical_and.reduce((cullable, np.abs(cNewWeighted) == minNonZeroVal, inBalanceVarsArray))) functionsToUseArray[loc[0], loc[1]] = False # Update the boolean functionals array cNewWeighted[loc[0], loc[1]] = 0 # Update the beta weights array culledFnsArray[loc[0], loc[1]] = True # Record this culled functional numExtraFunctionalsKilled += len(loc[0]) # outputStr = outputStr + '; ' + str(functionList[loc[1][0]]) + \ # ' (' + str(variableNames[loc[0][0]] + ')') extraFunctionalKilledOffFlag = True # Update 'functionRemovedFlag' accounting for newly-culled function: newZeroedFns = np.sum(functionsToUseArray > 0, axis = 0) functionColumnRemovedFlag = np.sum(newZeroedFns == 0) - np.sum(oldZeroedFns == 0) > 0 temp = cNewWeighted * inBalanceVarsArray * cullable if np.sum(np.abs(temp.flatten())) > 1e-5: # almostZeroRoundDownThreshold minNonZeroVal = np.min(np.abs(temp[temp != 0].flatten())) if 'loc' in locals(): numExtraToKill -= len(loc[0]) else: numExtraToKill -= 1 else: # escape minNonZeroVal = 0 numExtraToKill = 0 culledStr = '' # List the culled fns in a str: for i in np.where(np.sum(culledFnsArray, axis=1) > 0)[0]: culledStr = culledStr + variableNames[i] + ': ' + \ str(np.array(functionList)[culledFnsArray[i, :]]) + ' ' # 8. If there are any functions still below thisThreshold, we want to rerun without changing # the threshold, in order to pick them off one by one: if np.sum(np.abs(cNewWeighted.flatten())) > 1e-5 and \ np.sum(np.logical_and(cullable, cNewWeighted != 0).flatten()) > 0: newMinNonZeroVal = np.min(np.abs(cNewWeighted)[np.logical_and(cullable, cNewWeighted != 0)].flatten()) cullableFunctionFlag = True else: cullableFunctionFlag = False # Make a combined too-big, too-small output str: # if numTooBigCulledFunctionals > 0: # tooBigStr = '. Culled ' + tooBigStr + ' with weighted coeffs > ' + \ # str(maxAllowedWeightedCoeff) + '. ' if numTooSmallCulledFunctionals > 0: tooSmallStr = 'Culled ' + tooSmallStr + \ ' with weighted coeffs < ' + str(minAllowedWeightedCoeff) + '. ' if numExtraFunctionalsKilled > 0: culledStr = 'Culled ' + culledStr else: culledStr = '' if extraCullBypassedDueToRemovedFunctionColumnFlag: culledStr = ' Extra culling step bypassed due to removed function column.' outputStr = tooBigStr + tooSmallStr + culledStr # if any new variable, new function, or even one new functional has been removed, we will do # another cull. iterateAgainFlag = variableRemovedFlag or functionColumnRemovedFlag or \ extraFunctionalKilledOffFlag or cullableFunctionFlag # Note: the returned arg 'culledFnsArray' shows the functionals culled in a way (by being # below the ratcheting threshold) that makes them eligible to be restored. Functionals that # have too-big or too-small weighted coeffs are not restorable. return iterateAgainFlag, functionsToUseArray, culledFnsArray, outputStr, \ minNonZeroVal, cullableFunctionFlag # End of cullAndAssessWhetherToRerun_fn # ----------------------------------------------------------------------------------------- def smoothData_fn(x, window, smoothType='hamming'): """ Smooth each column of an input array using a window. Parameters ---------- x : np.array of floats, likely numTimepoints x numSomething (variables or functionals) window : np.array, vector of floats smoothType : str, eg 'hamming' Returns ------- xSmoothed : np.array, size x.shape """ xSmoothed = np.zeros(x.shape) if True: # smoothType == 'hamming': Assume it's always hamming for i in range(x.shape[1]): temp = x[:, i] xSmoothed[:, i] = np.convolve(temp - temp[0], window, mode='same') + temp[0] # shift time-series to start at 0 for the convolution, to mitigate edge effects return xSmoothed # End of smoothLibraryFunctionsForRegression_fn #----------------------------------------------------------------------- def parseTimepointsByMagnitudesOfVariables_fn(x, functionsArray, nonConstantIndices, margin, maxFnValRatio, minNumStartIndsToUse, removeMarginFlag=True): """ Accept or reject timepoints to use in regressions, based on whether the functionals have widely disparate values or not. Parameters ---------- x : np.array of floats, numTimepoints x numFunctionals. Each column is time-series of a functional's values. functionsArray : np.array of booleans, numVariables x numFunctionals. nonConstantIndices : list of ints (generated after the functional library is created) margin : int maxFnValRatio : float minNumStartIndsToUse : int removeMarginFlag : bool Returns ------- startIndsToUse : np.array of booleans numVariables x numTimepoints (not counting margins at either end). """ lengthOfPadToIgnore = 0 if removeMarginFlag: lengthOfPadToIgnore = margin startIndsToUse = np.zeros((functionsArray.shape[0], x.shape[0] - 2*lengthOfPadToIgnore), dtype=bool) for var in range(functionsArray.shape[0]): if np.sum(functionsArray[var,]) == 0: # Ignore fully culled variables pass else: thisX = x * np.tile(functionsArray[var,], (x.shape[0], 1)) if removeMarginFlag: thisX = thisX[margin:-margin,] # Ignore outer margins. # At spaced timepoints, find the median of abs() of non-zero values, and use # that as an anchor for scaling: okToUse = np.ones(thisX.shape, dtype=bool) subsampleRate = 3 for t in range(0, thisX.shape[0], subsampleRate): v = np.abs(thisX[t,]) m = np.median(v[v != 0]) okToUse[t:t + subsampleRate,] = \ np.logical_and.reduce((v < m * maxFnValRatio, v > m / maxFnValRatio, functionsArray[var,])) # 'okToUse' is a boolean array that tells us, for each timepoint, which functionals # are ok to regress on. We now select the timepoints that are valid for the highest # number of functionals: numOkFnsAtEachTimepoint = np.sum(okToUse, axis=1) # 'removeMarginFlag' = False is a signal that we are testing linear dependence, so we # wish to use all the columns of functionsArray because we have already subselected # the functionals of interest. if removeMarginFlag: counts = np.zeros((1, int(np.sum(functionsArray[var, nonConstantIndices])))) else: # case: lin dependence context, use all columns of functionsArray counts = np.zeros((1, int(np.sum(functionsArray[var, :])))) for i in range(counts.shape[1]): counts[0, i] = np.sum(numOkFnsAtEachTimepoint == i + 1) # sum the columns # to get number of useable timepoints. # Keep only those timepoints that use all non-constant available fns # (captured in 'countValToUse'), ie ignore any timepoints where any # two functions exceed the maxFnValRatio-derived bounds, EXCEPT subject to a # guaranteed minimum number of timepoints 'minNumStartIndsToUse', enforced in the # while loop below. if removeMarginFlag: countValToUse = np.sum(functionsArray[var, nonConstantIndices]) else: # case: lin dependence context, use all columns of functionsArray countValToUse = np.sum(functionsArray[var, :]) # fullCountValToUse = countValToUse.copy() # used for diagnostic printout below. startIndsToUse[var,] = numOkFnsAtEachTimepoint >= countValToUse # Add a catch to prevent too few startInds: while np.sum(startIndsToUse[var,]) < minNumStartIndsToUse: countValToUse = countValToUse - 1 startIndsToUse[var,] = numOkFnsAtEachTimepoint >= countValToUse # Diagnostic printount: # print('var ' + str(var) + ': functional count used for selecting timepoints: ' + \ # str(countValToUse) + ' out of ' + str(fullCountValToUse) + \ # ', numTimepoints = ' + str(np.sum(startIndsToUse[var,])) + ' out of ' + \ # str(startIndsToUse.shape[1])) # 'startIndsToUse' is an array of booleans, which say whether a certain # timepoint (starting at 'margin' and ending at {len(tTrain) - margin}) is eligible # to use. return startIndsToUse # End of parseTimepointsByMagnitudesOfVariables_fn # --------------------------------------------------------------------------- def calculateDerivativesFromData_fn(x, t, method='centralDifference'): """ Given time-series of variables x, calculate the derivatives of each variable. This function differs from 'estimateDerivatives_fn' below by (a) accepting arrays (ie multiple time-series); (b) handling endpoints; (c) not returning weights. Could be combined. NOTE: Currently only allows central difference method Parameters ---------- x: np.array of floats, numTimepoints x numVars t : np.vector of floats. The timepoints Returns ------- df : np.array of floats, numTimepoints x numFunctionals """ t = t.reshape(-1,1) # if True method == 'centralDifference': dfMiddle = (x[2:, :] - x[0:-2, :]) / np.tile(t[2:] - t[0:-2], (1, x.shape[1])) dfFirst = (x[1, :] - x[0, :]) / (t[1] - t[0]) dfLast = (x[-1, :] - x[-2, :]) / (t[-1] - t[-2]) df = np.vstack((dfFirst, dfMiddle, dfLast)) return df # End of calculateDerivativesFromData_fn #------------------------------------------------------------------ def calculateDerivativesFromModel_fn(x, coeffs, fVals): """ Given a model with coefficients for functionals, calculate the derivatives based on this model, ie return what the model thinks the derivatives are. This is different from 'calculateDerivativesFromData_fn' above, which returns the central difference derivative of the time-series. Parameters ---------- x : np.array of floats, numTimepoints x numVars coeffs : np.array of floats, numVars x numFunctionals fVals : np.array of floats, numTimepoints x numFunctionals Returns ------- xDotByModel : np.array of floats, numTimepoints x numVars """ xDotByModel = np.zeros(x.shape) for i in range(x.shape[1]): xDotByModel[:, i] = np.sum(fVals * np.tile(coeffs[i, :], (fVals.shape[0], 1)), axis=1) return xDotByModel # End of calculateDerivativesFromModel_fn #---------------------------------------------------------------------- def estimateDerivatives_fn(xS, startInds, numDtStepsForDeriv, pointWtsForThisVar, dt): """ For a vector, calculate the target derivative (as in dx/dt = rise/run) that we hope to match when we regress on the library functionals. The target derivative is calculated using the variables' time-series. Also return the weights for each element of the target rise, for use in the regression. NOTE: We require values in xS before the first startInd and beyond the last start ind Parameters ---------- xS : np.array of floats, (column vector same length as timepoints eg tTrain), the pre-processed time-series of one variable. startInds : np.array (vector of ints). Indices of timepoints. numDtStepsForDeriv : scalar int pointWtsForThisVar : np.array (vector of floats, same length as timepoints eg tTrain). dt : scalar float. The length of the simulation timestep Returns ------- derivEstimate : np.array (vector of floats). size = startInds.shape weights : np.array (vector of floats). size = startInds.shape """ timeStep = dt*numDtStepsForDeriv # float (ie a measure of time, not an index of timepoints) # 4th order approx to derivative: m2Inds = startInds - 2*numDtStepsForDeriv # indices m1Inds = startInds - 1*numDtStepsForDeriv p2Inds = startInds + 2*numDtStepsForDeriv p1Inds = startInds + 1*numDtStepsForDeriv derivEstimates = \ (xS[m2Inds] - 8*xS[m1Inds] + 8*xS[p1Inds] - xS[p2Inds]) / (12*timeStep) # The weight for each deriv estimate combines the timepoint values used: weights = \ pointWtsForThisVar[m2Inds] + 8 * pointWtsForThisVar[m1Inds] + \ 8 * pointWtsForThisVar[p1Inds] + pointWtsForThisVar[p2Inds] weights = weights / sum(weights) return derivEstimates, weights # End of estimateDerivatives_fn #-------------------------------------------------------- def defineXAndYForLinRegressionOnEvolution_fn(xT, functionalVals, startInds, numEvolveSteps, pointWtsForThisVar, dt): """ Given start inds, create a target y to be fitted by a linear function of functionals by: 1. define a set of subtargets subY which are individual estimates of derivatives over short hops, using a sequence of equally-spaced points. 2. define an 'evolution' from the first to the last point by Euler stepping. It is not a real evolution because the input values of the points at each step are from the given time- series, not the prediction from the previous timepoint. We do this to maintain a linear relationship between the functionals and the target value: (x[t + n] - x[t])/dt = summation( beta_i * (f_i[t] + f_i[t+1] + ... + f_i[t+n-1]) ). So X = summations of the functionals over the n timepoints; and y = the difference between the two end timepoints, divided by the timestep. Parameters ---------- xT : np.array of floats, numTimepoints x numVariables (the pre-processed time-series) functionalVals : np.array of floats, numTimepoints x num active functionals for this variable (the value of the active library functionals at each timepoint). startInds : np.array (vector of ints) numEvolveSteps : scalar int. How far to evolve to get regression target. pointWtsForThisVar : np.array (vector of floats, length = numTimepoints) dt : scalar float Returns ------- X : np.array of floats, len(startInds) x num active functionals y : np.array (vector of floats, same size as 'startInds') weights : np.array (vector of floats, same size as 'startInds') """ wtsPerPoint = np.zeros((numEvolveSteps, len(startInds))) evolveSteps = np.zeros((len(startInds), functionalVals.shape[1], numEvolveSteps)) for i in range(numEvolveSteps): evolveSteps[:, :, i] = functionalVals[startInds + i, :] wtsPerPoint[i, :] = pointWtsForThisVar[startInds + i] X = np.sum(evolveSteps, axis=2) # Sum over the evolve steps. The result is # len(startInds) x numFunctionals. y = (xT[startInds + 1] - xT[startInds]) / dt weights = np.median(wtsPerPoint, axis=0) weights = weights / np.sum(weights) # so weights sum to 1 return X, y, weights # End of defineXAndYForLinRegressionOnEvolution_fn #----------------------------------------------------------- def combineSegmentCoeffs_fn(coeffsPerSeg, printDiagnosticsFlag, varName, fnalName, snrThreshold, minNumSegmentResultsToUse, outputFilename): """ Given a vector of coefficients (found by regressing on many segments, or subsets of timepoints) for some {variable, functional} pair, return (i) a median value, and (ii) a measure of reliability (stdDev/median). We do this by rejecting outliers until either a minimum number of coeffs are left, or the stdDev/median is within some bound. Parameters ---------- coeffsPerSeg : np.array (vector of floats). length = number of segments that were used in regressions. printDiagnosticsFlag : scalar boolean varName : str fnalName : str snrThreshold : scalar float minNumSegmentResultsToUse : scalar int (could be a float) outputFilename : str Returns ------- coeff : scalar float stdOverMedian : scalar float """ # Decide what coeff value to carry forward: # 1. If the SNR is low, just use mean or median. segsToUse = coeffsPerSeg != -100 # This should not be empty. this = coeffsPerSeg[segsToUse].copy() m = np.median(this) if m == 0: # to catch an edge case m = np.mean(this) s = np.std(this) # 2. Start removing outliers until snr is low: while s/np.abs(m) > snrThreshold and len(this) > minNumSegmentResultsToUse: # Eliminate values and retry: dist = np.abs(this - m) this = this[dist < max(dist)] m = np.median(this) if m == 0: m = np.mean(this) s = np.std(this) # Assign the final coeffs for this {variable, function} pair: coeff = np.median(this) stdOverMedian = np.abs(s / m) # We'll cull functions based on high variability. # (Diagnostic) Print out vector of segment coeffs if not too many: if printDiagnosticsFlag: # ie few enough fns in library that we can print the outcome: console = sys.stdout with open(outputFilename, 'a') as file: print(varName + "', " + fnalName + ' values: ' + \ str(np.round(coeffsPerSeg,2)) + ', median ' + \ str(np.round(np.median(coeffsPerSeg), 2)) + ', std ' + \ str(np.round(np.std(coeffsPerSeg), 2)) + '. Final median = ' + \ str(np.round(coeff, 2)) + ', final stdOverMedian = ' + \ str(np.round(stdOverMedian, 2)), file=file) sys.stdout = console file.close() return coeff, stdOverMedian # End of combineSegmentCoeffs_fn #------------------------------------------------------------ def cullBasedOnStdOverMedian_fn(coeffArray, coeffsBySeg, stdOverMedianArray, functionsToUseArray, startIndsToUse, segStartInds, segEndInds, pointWeights, functionalVals, p): """ Cull functions whose fitted coeffs had high stdDev/Median, ie high variability over the various segments. This has two steps: 1. Cull functionals based on high variability. Do not cull functionals with relatively high median (weighted) coefficients. 2. Do a new regression, to calculate new coeffs for the remaining functionals. NOTE: This method gave bad results (though it is the culling criterion used in REF). Parameters ---------- coeffArray : np.array of floats, numVariables x numFunctionals. The previous coefficients. coeffsBySeg : np.array of floats, numVariables x numFunctionals x numSegments. The coefficients from the new regressions on each segment, to be combined in this function. stdOverMedian : np.array of floats, numVariables x numFunctionals functionsToUseArray : np.array of booleans, numVariables x numFunctionals startIndsToUse : np.array of booleans, (numTimepoints - 2*margin) x numVars pointWeights : np.array of floats, numTimepoints x numVars functionalVals : np.array of floats, numTimepoints x numFunctionals p : dict of params, including: xTrain : np.array of floats, numTimepoints x numVars minStdOverMedianThreshold : scalar float numFunctionsToTriggerCullBasedOnStdOverMean : scalar int maxNumToRemoveByStdPerCull : scalar int numDtStepsForDeriv : scalar int dt : scalar float (the timestep) regressOnFftAlpha : scalar float (the fraction of regression that is on FFTs) fftXDotTrainTarget : np.array (numFftPoints x numVars) fftLibFns : np.array (numFftPoints x numFunctionals) variableNames : list (np.array?) of str functionList : list (np.array?) of str margin : int weightTimepointsFlag : bool fftRegressionTarget : str snrThreshold : scalar float outputFilename : str Returns ------- postRegressionCoeffs : np.array of floats, , numVariables x numFunctionals functionsToUseArray : np.array of booleans, numVariables x numFunctionals """ # Loop through the variables, handling each one independently: for v in range(functionsToUseArray.shape[0]): # Check if any functions have high variance and also lower magnitude for this variable, # and also if there are few enough functions left to start this type of cull: # Calculate stdOverMedian threshold: tempStd = stdOverMedianArray[v, functionsToUseArray[v, :]] stdThreshold = np.median(tempStd) + 1 * np.std(tempStd) stdThreshold = max(stdThreshold, p['minStdOverMedianThreshold']) # Calculate coeff median threshold: tempMag = np.abs(coeffArray[v, functionsToUseArray[v, :]]) magThreshold = np.median(tempMag) pointWtsForThisVar = pointWeights[:, v] # If there are no active functions, stdThreshold and medianThreshold = np.nan # Identify noisy functionals: high variability and low magnitude: noisyFnInds = np.where(np.logical_and(tempStd > stdThreshold, tempMag < magThreshold))[0] numActiveFns = np.sum(functionsToUseArray[v, :]) if len(noisyFnInds) > 0 and numActiveFns <= \ p['numFunctionsToTriggerCullBasedOnStdOverMean'] and numActiveFns > 2: # Cull only an allowable number of these. Argsort in descending order, then # cull the first several: inds = (np.argsort(stdOverMedianArray[v, noisyFnInds]))[-1: :-1] noisyFnInds = noisyFnInds[inds[0:p['maxNumToRemoveByStdPerCull']]] # (Diagnostic) Output to console: console = sys.stdout with open(p['outputFilename'], 'a') as file: print('Culled ' + str(np.array(p['functionList'])[noisyFnInds]) + \ ' from variable ' + p['variableNames'][v] + \ ' due to coeff stdOverMedian = ' + \ str(np.round(tempStd[noisyFnInds], 2)) + ' > ' + \ str(np.round(stdThreshold, 2)) + ' and coeff mag = ' + \ str(np.round(tempMag[noisyFnInds], 2)) + ' < ' + \ str(np.round(magThreshold, 2)) + '. Re-running linear regression.',file=file) sys.stdout = console file.close() # Update functionsToUseArray to cull noisy functions for this variable: functionsToUseArray[v, noisyFnInds] = False # Zero out coeffs for this variable. The relevant ones will be replaced using the new # regressions: coeffsBySeg[v, :, :] = -100 coeffArray[v, :] = 0 # Pick new segments and regress on each in turn. Use the same 'startIndsToUse' array. startIndsVarI = startIndsToUse[v,].copy() # booleans # Convert to indices of timepoints: startIndsVarI = np.where(startIndsVarI == True)[0] + p['margin'] for seg in range(p['numRegressionSegments']): # Pick a subset of startIndsVarI for this segment: if p['useRandomSegmentsFlag']: # Case: Randomly choose points to regress on. numPointsPerSegment = \ int(len(startIndsVarI) / p['numRegressionSegments'] * \ (1 + 2 * p['overlapFraction'])) startIndIndices = np.sort(np.random.choice(range(len(startIndsVarI)), numPointsPerSegment, replace=False)) startInds = startIndsVarI[startIndIndices] else: # Case: Use sequential segments startInds = startIndsVarI[np.logical_and(startIndsVarI >= segStartInds[seg], startIndsVarI <= segEndInds[seg])] # Now do regression, if there are startInds in this segment: functionInds = np.where(functionsToUseArray[v, :] == True)[0] if len(startInds) > 0 and len(functionInds) > 0: # Case: There are some startInds. # Define the target rise based on the derivative approximation: if p['regressionTarget'] == 'estimated derivatives': # Currently always true y, weights = \ estimateDerivatives_fn(p['xTrain'][:, v], startInds, p['numDtStepsForDeriv'], pointWtsForThisVar, p['dt']) # Extract the relevant functions (columns): X = functionalVals[startInds, :].copy() X = X[:, functionInds] if p['weightTimepointsFlag']: sampleWeights = weights else: sampleWeights = np.ones(weights.shape) / len(weights) # uniform, sum to 1 # Maybe also regress on fft(xDotTrain) as targets. There are many # fewer regression points in the fft target: 50 vs. up to 5000 for the # usual raw derivs, so use the sample weights to balance this out. if p['regressOnFftAlpha'] > 0: rawYAlpha = 1 - p['regressOnFftAlpha'] yFftOfXDot = p['fftXDotTrainTarget'][:, v] y = np.hstack((y, yFftOfXDot )) # Stack the targets XForFft = p['fftLibFns'][:, functionInds].copy() XForFft[np.where(np.isnan(XForFft))] = 0 # since fft of constant == nan X = np.vstack((X, XForFft)) numFftPoints = len(yFftOfXDot) sampleWeights = \ np.hstack((rawYAlpha * sampleWeights, p['regressOnFftAlpha'] * \ np.ones(numFftPoints) / numFftPoints)) # Finally ready to do the regressions on the segment 'seg': # Special case: If we are regressing on complex FFT, we need to use lstsq: if p['fftRegressionTarget'] == 'complex' and p['regressOnFftAlpha'] > 0: w = sampleWeights.reshape(-1, 1) betas = lstsq(np.sqrt(w) * X, np.sqrt(w) * y.reshape(-1, 1), rcond=-1)[0] betas = np.real(betas) # This may be very important and harmful. coeffsBySeg[v, functionInds, seg] = betas.flatten() else: linReg = LinearRegression() linReg = linReg.fit(X, y, sample_weight=sampleWeights) coeffsBySeg[v, functionInds, seg] = linReg.coef_ # Regressions have now been done on each segment for variable v. # For this variable, process the collections of coeffs on the different # segments to get a single set of coeffs. prs = coeffsBySeg.copy() # We are still in variable 'i'. for j in range(len(p['functionList'])): if functionsToUseArray[v, j]: # Case: this function is in use for this # var, so we need to calculate a single coeff. coeff, dummy = \ combineSegmentCoeffs_fn(prs[v, j, :], False, p['variableNames'][v], p['functionList'][j], p['snrThreshold'], p['minNumSegmentResultsToUse'], p['outputFilename']) # Output to file, not console coeffArray[v, j] = coeff else: # Case: this functional has been culled for this variable. pass # All functionals have new coeffs for this variable i, after 2nd fitting # without the functionals culled due to high stdDev / median. return coeffArray, functionsToUseArray # End of cullBasedOnStdOverMedian_fn #------------------------------------------------------------------------------- def printWeightedCoeffModel_fn(coeffArray, functionsToUseArray, weightArray, variableNames, functionList, outputFilename): """ Print out a version of the sindy model that shows the weighted coefficients used when culling functionals. These weights tend to inflate the coefficients of functionals with relatively high values, and decrease the coefficients of functionals with relatively low values, because a functional with high values can tolerate a lower coefficient and still have the same impact as a functional with low values but a higher coefficient. Parameters ---------- coeffArray : np.array, floats numVars x numFunctionals functionsToUseArray : np.array of booleans, numVariables x numFunctionals weightArray : np.array of floats, numVariables x numFunctionals variableNames : list of str functionList : list of str outputFilename : str Returns ------- None. """ weightedCoeffArray = weightArray * coeffArray this = printModel_fn(weightedCoeffArray, variableNames, functionList) console = sys.stdout with open(outputFilename, 'a') as file: print('(Weighted coefficients:) \n' + this + '\n', file=file) file.close() sys.stdout = console # End of printWeightedCoefficientModel_fn #-------------------------------------------------------------------------- def evolveModel_fn(coeffArray, recipes, initConds, timepoints): """ Evolve odes using solve_ivp. Because odeint can blow up and treat '0' coefficients as non-zero, we add some fuss to prevent this in case it can happen with solve_ivp. Method: Make a new vector of starting values, with culled variables values set to 0. Use this to simulate the system. Then tack on constant values for the culled variables. This approach assumes that if a variable has been zeroed out, then all functionals involving that variable have been zeroed. Parameters: ---------- coeffArray : np.array of floats, numVars x numFunctionals. Coeffs for the model to be evolved. recipes : list of lists, length = numFunctionals. The i'th list gives the indices of the variables to be multiplied to make the i'th fnal. initConds : np.array of floats, vector 1 x numVars timepoints : np.array of floats, vector Returns: ------- xEvolved : np.array of floats. numVars x len(timepoints) """ # The function used by solve_ivp: def odeFn(t, s, coef, recipes): """ Return the values of s at the next step: Parameters ---------- t : implicit variable s : np.array of floats, vector with len = numVars coef : np.array of floats, numVars x numFunctionals recipes : list of lists, each list may be an int (or np.int64), or a list of ints Returns ------- df : np.array of floats, vector with len = numVars """ coef = np.array(coef) coef = coef.reshape(len(s), -1) fnals = np.zeros(len(recipes)) for i in range(len(fnals)): r = recipes[i] if isinstance(r, (int, np.integer)): if r == -1: # -1 means constant term fnals[i] = 1 else: fnals[i] = s[r] else: temp = 1 for j in range(len(r)): temp = temp * s[r[j]] fnals[i] = temp df = np.zeros(s.shape) for i in range(len(df)): df[i] = np.dot(fnals, coef[i, ]) return df method = 'LSODA' # 'RK45'. For stiff equations: ‘Radau’ or ‘BDF’ startEnd = [timepoints[0], timepoints[-1]] argList = [] argList.append(coeffArray) argList.append(recipes) # Fussing to prevent possible blow-ups of zeroed-out variables: # First remove any variables that have all zero coefficients: temp = np.abs(coeffArray) > 1e-5 zeroedOutVars = np.where(np.sum(temp, axis=1) == 0)[0] # The culled variables. # Make a set of starting data with zeros in the culled variables: initCondsCulledVarsZeroed = initConds.copy() if len(zeroedOutVars) > 0: initCondsCulledVarsZeroed[zeroedOutVars] = 0 xEvolved = np.zeros((len(timepoints), len(initConds))) # Initialize sol = solve_ivp(odeFn, t_span=startEnd, y0=initCondsCulledVarsZeroed, method=method, t_eval=timepoints, args=argList) if sol.success: xEvolved = (sol.y).transpose() else: print('Error notice: solve_ivp failed.') # Fill in the constant vars: if len(zeroedOutVars) > 0: xEvolved[:, zeroedOutVars] = np.tile(initConds[zeroedOutVars], (len(timepoints), 1)) return xEvolved # could also return sol.t # End of evolveModel_fn #------------------------------------------------------------------------- def generateVariableEnvelopes_fn(xData, numInWindow, dt, shrinkFactor=1): """ For each point in a time-series, find the max and min values in a neighborhood for each variable. Parameters ---------- xData : np.array of floats, numTimepoints x numVariables numInWindow : scalar int dt : scalar float shrinkFactor : scalar float >= 1 Returns ------- varLocalMax: np.array of floats, size xData.shape varLocalMin: np.array of floats, size xData.shape """ # If required, shrink data towards local mean values: if shrinkFactor > 1: for i in range(xData.shape[1]): slopeX, stdX, meanX = calculateSlopeAndStd_fn(xData[:, i], dt, numInWindow) xData[:, i] = (xData[:, i] - meanX) / shrinkFactor + meanX half = int(np.floor(numInWindow / 2)) varLocalMax = np.zeros(xData.shape) varLocalMin = np.zeros(xData.shape) for i in range(xData.shape[0]): # loop over timepoints in this variable startInd = max(0, i - half) endInd = min(xData.shape[0], i + half) varLocalMax[i, :] = np.max(xData[startInd:endInd, :], axis=0) varLocalMin[i, :] = np.min(xData[startInd:endInd, :], axis=0) return varLocalMax, varLocalMin # End of generateVariableEnvelopes_fn #------------------------------------------------------------------------ def calculateFiguresOfMerit_fn(x, xTrue, fftPowerTrue, localMin, localMax, stdDevVector, meanVector, medianVector, fomTimepoints, maxPhaseShift): """ Evolve a model and calculate various figures of merit. NOTE: We assume that xEvolved includes only timepoints in 'fomTimepointInds'. For 'inEnvelopeFoM' we take the max over small phase shifts of the whole time-series. Parameters ---------- x : np.array of floats, numTimepoints x numVariables xTrue : np.array of floats, numTimepoints x numVariables fftPowerTrue : np.array of floats, numFftPoints x numVariables localMin : np.array of floats, numTimepoints x numVariables localMax : np.array of floats, numTimepoints x numVariables stdDevVector : np.array of floats, numTimepoints x numVariables meanVector : np.array of floats, numTimepoints x numVariables medianVector : np.array of floats, numTimepoints x numVariables fomTimepoints : np.array (list?) of ints maxPhaseShift : scalar int. Must be >= 1 Returns ------- fomDict: dict """ if len(x.shape) == 1: # Case: 1-dim with shape (val, ) rather than (val, 1) x = np.expand_dims(x, 1) phaseShifts= np.array(range(-maxPhaseShift, maxPhaseShift, 3)) # hop by 3s for speed first = maxPhaseShift # Used to prevent overshooting. final = x.shape[0] - maxPhaseShift # Ditto. fomDict = dict() inBoundsFoM = np.zeros(x.shape[1]) inEnvelopeFoM = np.zeros(x.shape[1]) inEnvPhaseShiftVals = np.zeros(len(phaseShifts)) globalMin = np.min(localMin, axis=0) globalMax = np.max(localMax, axis=0) for i in range(x.shape[1]): inBoundsFoM[i] = \ np.sum(np.logical_and(x[:, i] > globalMin[i], x[:, i] < globalMax[i])) / len(fomTimepoints) for j in range(len(phaseShifts)): pS = phaseShifts[j] inEnvPhaseShiftVals[j] = \ np.sum(np.logical_and(x[first + pS:final + pS, i] > \ localMin[first:final, i], x[first + pS:final + pS, i] < \ localMax[first:final, i])) / len(fomTimepoints) inEnvelopeFoM[i] = max(inEnvPhaseShiftVals) # Statistics: temp = np.std(x, axis=0) stdDevFoM = (temp - stdDevVector) / stdDevVector stdDevFoM[stdDevFoM > 100] = 100 # To avoid uselessly big numbers temp = np.mean(x, axis=0) meanFoM = (temp - meanVector) / meanVector meanFoM[meanFoM > 100] = 100 # To avoid uselessly big numbers meanFoM[meanFoM < -100] = -100 # To avoid uselessly big numbers temp = np.median(x, axis=0) medianFoM = (temp - medianVector) / medianVector medianFoM[medianFoM > 100] = 100 # To avoid uselessly big numbers medianFoM[medianFoM < -100] = -100 # To avoid uselessly big numbers # Correlation of FFT: numFftPoints = fftPowerTrue.shape[0] fftPower = np.zeros([numFftPoints, x.shape[1]]) fftCorrelationFoM = np.zeros(x.shape[1]) for i in range(x.shape[1]): x1 = x[:, i].copy() x1 = x1 - np.mean(x1) xP = pow(np.real(np.fft.fft(x1)), 2) # power spectrum of fft temp = xP[0:numFftPoints] / np.sum(xP[0:numFftPoints]) temp[np.isnan(temp)] = 0 fftPower[:, i] = temp # Handle case that a var is identically 0: if not np.isnan(np.sum(fftPowerTrue[:, i])): fftCorrelationFoM[i] = np.dot(fftPower[:, i], fftPowerTrue[:, i]) / \ np.dot(fftPowerTrue[:, i], fftPowerTrue[:, i]) # Normalize else: fftCorrelationFoM[i] = 0 # Correlation of histograms: numHistogramBins = 100 histogramRange = np.array((np.min(xTrue, axis=0), np.max(xTrue, axis=0))) # 2 x numVars theseHistograms = np.zeros([numHistogramBins, x.shape[1]]) theseHistogramBins = theseHistograms.copy() histogramCorrelationFoM = np.zeros(x.shape[1]) for i in range(x.shape[1]): histTrue = np.histogram(xTrue[:, i], bins=numHistogramBins)[0] temp = np.histogram(x[:, i], bins=numHistogramBins, range=(histogramRange[0, i], histogramRange[1, i])) theseHistograms[:, i] = temp[0] theseHistogramBins[:, i] = temp[1][0:-1] histogramCorrelationFoM[i] = np.dot(histTrue, theseHistograms[:, i]) / \ np.dot(histTrue, histTrue) # # Print to console: # print('inBoundsFoM = ' + str(np.round(inBoundsFoM,2)) + \ # ', inEnvelopeFoM = ' + str(np.round(inEnvelopeFoM, 2)) + \ # ', stdDevFoM = ' + str(np.round(stdDevFoM, 2)) + \ # ', meanFoM = ' + str(np.round(meanFoM, 2)) + \ # ', medianFoM = ' + str(np.round(medianFoM, 2)) + \ # ', fftCorrelationFoM = ' + str(np.round(fftCorrelationFoM, 2)) + \ # ', histogramCorrelationFoM = ' + str(np.round(histogramCorrelationFoM, 2)) + '\n') # Bundle FoMs into dict for return: fomDict['inBoundsFoM'] = inBoundsFoM fomDict['inEnvelopeFoM'] = inEnvelopeFoM fomDict['stdDevFoM'] = stdDevFoM fomDict['meanFoM'] = meanFoM fomDict['medianFoM'] = medianFoM fomDict['fftCorrelationFoM'] = fftCorrelationFoM fomDict['fftPower'] = fftPower fomDict['histogramCorrelationFoM'] = histogramCorrelationFoM fomDict['histograms'] = theseHistograms fomDict['histogramBins'] = theseHistogramBins return fomDict # End of calculateFiguresOfMerit_fn #-------------------------------------------------------------- def findSpansOfFunctionals_fn(fnArray, fnVals, fnValsNoisy, wts, includeConstantFlag, p): """ Find which functionals are in the linear span of the final selected functionals (per variable). Return R-squared values for each {functional, variable} pair (each variable has a few selected functionals). Parameters ---------- fnArray : np.array of booleans, numVars x numFunctionals in library. Shows which functionals were used for each variable. fnVals : np.array, numTimepoints (used) x numFunctionals. Gives values of functionals at timepoints, using the smoothed time-series fnValsNoisy : np.array, numTimepoints (used) x numFunctionals. Gives values of functionals at timepoints, but using the post-added noise, pre-smoothing time-series. wts : np.array, numTimepoints (used) x numVars. Gives weights of timepoints includeConstantFlag : bool p : dict of miscellaneous parameters, including: functionList : list of str variableNames : list of str outputFilename : str plottingThreshold : float windowLengthForFomEnvelopes : int dt : float margin : int maxFnValRatio : float minNumStartIndsToUse : int Returns ------- rSq : np.array of floats, size fnArray.shape. Gives the R-squared from linear fits of each functional using just the selected functionals (per variable). betaZeros : np.array of floats, size fnArray.shape. Gives .intercept_ of each fit betas : np.array of lists, array has size fnArray.shape. Gives the .coef_ of each fit """ betaZeros = np.zeros(fnArray.shape) # to save the intercepts betas = np.empty(fnArray.shape, dtype=object) # to save the coefficients rSq = np.zeros(fnArray.shape) # to save R-squared values lrSp = LinearRegression(fit_intercept=includeConstantFlag) for v in range(fnArray.shape[0]): if np.sum(fnArray[v, :]) == 0: console = sys.stdout with open(p['outputFilename'], 'a') as file: print(p['variableNames'][v] + ' has no functionals left in sparse library.', file=file) sys.stdout = console file.close() else: # case: there are functionals in this variable's sparse library basis = np.where(fnArray[v, :])[0] basisStr = str(np.array(p['functionList'])[basis]).replace('[','').replace(']','') X = fnVals[:, fnArray[v, :]] # The values of the selected functionals for i in range(fnArray.shape[1]): # num functionals if fnArray[v, i]: rSq[v, i] = 1 else: y = fnVals[:, i] # Exclude any timepoints from the regression with very large differences in # functional values used as features: miniFnArray = np.ones((1, X.shape[1]), dtype=bool) removeMarginFlag = False # since for FoM timepoint assessment, we don't ignore # a margin at each end. nonConstantIndices = np.where(np.array(p['functionList']) != '1')[0] goodInds = \ parseTimepointsByMagnitudesOfVariables_fn(X.copy(), miniFnArray, nonConstantIndices, p['margin'], p['maxFnValRatio'], p['minNumStartIndsToUse'], removeMarginFlag) # goodInds is 1 x numTimepoints vector theseWts = wts[:, v].copy() theseWts[np.logical_not(goodInds.flatten())] = 0 # theseWts = theseWts / np.sum(goodInds) # normalize the sum lrSp = lrSp.fit(X, y, sample_weight=theseWts) rSq[v, i] = lrSp.score(X, y, sample_weight=theseWts) betaZeros[v, i] = lrSp.intercept_ betas[v, i] = lrSp.coef_ # plot functionals that are somewhat well-fit: showNoiseEnvelopesFlag = True if rSq[v, i] > p['plottingThreshold'] and rSq[v, i] < 1: # < 1 to ignore basis functionals yHat = lrSp.predict(X) plt.figure() plt.title('var = ' + p['variableNames'][v] + ', basis = ' + \ basisStr + '\n' + 'functional = ' + \ p['functionList'][i] + ', R_sq = ' + str(np.round(rSq[v, i], 2)), fontsize=14, fontweight='bold') plt.scatter(np.array(range(len(y))), y, s=3, c='k', label='functional values') plt.scatter(np.array(range(len(y))), yHat, s=3, c='r', label='fit values') if showNoiseEnvelopesFlag: slopeY, stdY, meanY = \ calculateSlopeAndStd_fn(fnValsNoisy[:, i], p['dt'], p['windowLengthForFomEnvelopes']) plt.plot(meanY + 2 * stdY, 'g', label='two std dev of noisy data') plt.plot(meanY - 2 * stdY, 'g') plt.xlabel('FoM timepoints', fontsize=14, fontweight='bold') plt.ylabel('functional value', fontsize=14, fontweight='bold') plt.legend(fontsize=14) return rSq, betaZeros, betas # End of findSpansOfFunctionals_fn #--------------------------------------------------------------------- def findSpansOfFunctionalsLeaveOneOut_fn(fnArray, fnVals, fnValsNoisy, wts, includeConstantFlag, p): """ Considering the retained functionals (per variable), find which functionals are in the linear span of the other functionals (leave-one-out). Return rR-squared values for each {functional, variable} pair (each variable has a few selected functionals). Parameters ---------- fnArray : np.array of booleans, numVars x numFunctionals in library. Shows which functionals are active for each variable. fnVals : np.array, numTimepoints (used) x numFunctionals. Gives values of functionals at timepoints, using the post-smoothed time-series. fnValsNoisy : np.array, numTimepoints (used) x numFunctionals. Gives values of functionals at timepoints, using the post-added noise and pre-smoothing time-series. wts : np.array, numTimepoints (used) x numVars. Gives weights of timepoints includeConstantFlag : bool p : dict of miscellaneous parameters, including: functionList : list of str variableNames : list of str outputFilename : str windowLengthForFomEnvelopes : int dt : float margin : int maxFnValRatio : float minNumStartIndsToUse : int plottingThreshold : float Returns ------- rSq : np.array of floats, size fnArray.shape. Gives the R-squared from linear fits of each functional using just the selected functionals (per variable). betaZeros : np.array of floats, size fnArray.shape. The {i,j}th entry is the intercept for the fit of the j'th functional using the active functionals, for the i'th variable. betas : np.array of objects, size fnArray.shape. The {i,j}th object is the vector of beta coefficients found by fitting the j'th functional using the active functionals, for the i'th variable. If the j'th functional is not active, the object = []. Else its length = # active functionals for the variable. """ betaZeros = np.zeros(fnArray.shape) # to save .intercept_ betas = np.empty(fnArray.shape, dtype=object) # to save .coef_ rSq = np.zeros(fnArray.shape) lrSp = LinearRegression(fit_intercept=includeConstantFlag) for v in range(fnArray.shape[0]): # loop over numVars if np.sum(fnArray[v, :]) <= 1: console = sys.stdout with open(p['outputFilename'], 'a') as file: print(p['variableNames'][v] + ' has <= 1 functional left in library.', file=file) sys.stdout = console file.close() else: # case: there are functionals in this variable's sparse library inds = np.where(fnArray[v, :]==True)[0] for i in inds: # num functionals y = fnVals[:, i] others = inds[inds != i].copy() basisStr = str(np.array(p['functionList'])[others]).replace('[','').replace(']','') X = fnVals[:, others].copy() # the other retained functionals # Exclude any timepoints from the regression with very large differences in # functional values used as features: miniFnArray =
np.ones((1, X.shape[1]))
numpy.ones
""" Python implementation of the LiNGAM algorithms. The LiNGAM Project: https://sites.google.com/site/sshimizu06/lingam """ import itertools import numbers import warnings import numpy as np from sklearn.linear_model import LinearRegression from sklearn.utils import check_array from .direct_lingam import DirectLiNGAM from .hsic import hsic_test_gamma from .utils import predict_adaptive_lasso, find_all_paths class LongitudinalLiNGAM: """Implementation of Longitudinal LiNGAM algorithm [1]_ References ---------- .. [1] <NAME>, <NAME>, and <NAME>. Estimation of causal structures in longitudinal data using non-Gaussianity. In Proc. 23rd IEEE International Workshop on Machine Learning for Signal Processing (MLSP2013), pp. 1--6, Southampton, United Kingdom, 2013. """ def __init__(self, n_lags=1, measure="pwling", random_state=None): """Construct a model. Parameters ---------- n_lags : int, optional (default=1) Number of lags. measure : {'pwling', 'kernel'}, default='pwling' Measure to evaluate independence : 'pwling' or 'kernel'. random_state : int, optional (default=None) ``random_state`` is the seed used by the random number generator. """ self._n_lags = n_lags self._measure = measure self._random_state = random_state self._causal_orders = None self._adjacency_matrices = None def fit(self, X_list): """Fit the model to datasets. Parameters ---------- X_list : list, shape [X, ...] Longitudinal multiple datasets for training, where ``X`` is an dataset. The shape of ``X`` is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- self : object Returns the instance itself. """ # Check parameters if not isinstance(X_list, (list, np.ndarray)): raise ValueError("X_list must be a array-like.") if len(X_list) < 2: raise ValueError("X_list must be a list containing at least two items") self._T = len(X_list) self._n = check_array(X_list[0]).shape[0] self._p = check_array(X_list[0]).shape[1] X_t = [] for X in X_list: X = check_array(X) if X.shape != (self._n, self._p): raise ValueError("X_list must be a list with the same shape") X_t.append(X.T) M_tau, N_t = self._compute_residuals(X_t) B_t, causal_orders = self._estimate_instantaneous_effects(N_t) B_tau = self._estimate_lagged_effects(B_t, M_tau) # output B(t,t), B(t,t-τ) self._adjacency_matrices = np.empty( (self._T, 1 + self._n_lags, self._p, self._p) ) self._adjacency_matrices[:, :] = np.nan for t in range(1, self._T): self._adjacency_matrices[t, 0] = B_t[t] for l in range(self._n_lags): if t - l != 0: self._adjacency_matrices[t, l + 1] = B_tau[t, l] self._residuals = np.zeros((self._T, self._n, self._p)) for t in range(self._T): self._residuals[t] = N_t[t].T self._causal_orders = causal_orders return self def bootstrap(self, X_list, n_sampling, start_from_t=1): """Evaluate the statistical reliability of DAG based on the bootstrapping. Parameters ---------- X_list : array-like, shape (X, ...) Longitudinal multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. n_sampling : int Number of bootstrapping samples. Returns ------- results : array-like, shape (BootstrapResult, ...) Returns the results of bootstrapping for multiple datasets. """ # Check parameters if not isinstance(X_list, (list, np.ndarray)): raise ValueError("X_list must be a array-like.") if len(X_list) < 2: raise ValueError("X_list must be a list containing at least two items") self._T = len(X_list) self._n = check_array(X_list[0]).shape[0] self._p = check_array(X_list[0]).shape[1] X_t = [] for X in X_list: X = check_array(X) if X.shape != (self._n, self._p): raise ValueError("X_list must be a list with the same shape") X_t.append(X) # Bootstrapping adjacency_matrices = np.zeros( (n_sampling, self._T, 1 + self._n_lags, self._p, self._p) ) total_effects = np.zeros((n_sampling, self._T * self._p, self._T * self._p)) for i in range(n_sampling): resampled_X_t = np.empty((self._T, self._n, self._p)) indices = np.random.randint(0, self._n, size=(self._n,)) for t in range(self._T): resampled_X_t[t] = X_t[t][indices, :] self.fit(resampled_X_t) adjacency_matrices[i] = self._adjacency_matrices # Calculate total effects for from_t in range(start_from_t, self._T): for c, from_ in enumerate(self._causal_orders[from_t]): to_t = from_t for to in self._causal_orders[from_t][c + 1 :]: total_effects[ i, to_t * self._p + to, from_t * self._p + from_ ] = self.estimate_total_effect(X_t, from_t, from_, to_t, to) for to_t in range(from_t + 1, self._T): for to in self._causal_orders[to_t]: total_effects[ i, to_t * self._p + to, from_t * self._p + from_ ] = self.estimate_total_effect(X_t, from_t, from_, to_t, to) return LongitudinalBootstrapResult(self._T, adjacency_matrices, total_effects) def estimate_total_effect(self, X_t, from_t, from_index, to_t, to_index): """Estimate total effect using causal model. Parameters ---------- X_t : array-like, shape (n_samples, n_features) Original data, where n_samples is the number of samples and n_features is the number of features. from _t : The timepoint of source variable. from_index : Index of source variable to estimate total effect. to_t : The timepoint of destination variable. to_index : Index of destination variable to estimate total effect. Returns ------- total_effect : float Estimated total effect. """ # Check from/to causal order if to_t == from_t: from_order = self._causal_orders[to_t].index(from_index) to_order = self._causal_orders[from_t].index(to_index) if from_order > to_order: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_t={to_t}, to_index={to_index}) " f"is earlier than the source variable (from_t={from_t}, from_index={from_index})." ) elif to_t < from_t: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_t={to_t}) " f"is earlier than the source variable (from_t={from_t})." ) # X + lagged X # n_features * (to + from + n_lags) X_joined = np.zeros((self._n, self._p * (2 + self._n_lags))) X_joined[:, 0 : self._p] = X_t[to_t] for tau in range(1 + self._n_lags): pos = self._p + self._p * tau X_joined[:, pos : pos + self._p] = X_t[from_t - tau] am = np.concatenate([*self._adjacency_matrices[from_t]], axis=1) # from_index + parents indices parents = np.where(np.abs(am[from_index]) > 0)[0] predictors = [from_index + self._p] predictors.extend(parents + self._p) # Estimate total effect coefs = predict_adaptive_lasso(X_joined, predictors, to_index) return coefs[0] def get_error_independence_p_values(self): """Calculate the p-value matrix of independence between error variables. Returns ------- independence_p_values : array-like, shape (n_features, n_features) p-value matrix of independence between error variables. """ E_list = np.empty((self._T, self._n, self._p)) for t, resid in enumerate(self.residuals_): B_t = self._adjacency_matrices[t, 0] E_list[t] = np.dot(np.eye(B_t.shape[0]) - B_t, resid.T).T p_values_list = np.zeros([self._T, self._p, self._p]) p_values_list[:, :, :] = np.nan for t in range(1, self._T): p_values = np.zeros([self._p, self._p]) for i, j in itertools.combinations(range(self._p), 2): _, p_value = hsic_test_gamma( np.reshape(E_list[t][:, i], [self._n, 1]), np.reshape(E_list[t][:, j], [self._n, 1]), ) p_values[i, j] = p_value p_values[j, i] = p_value p_values_list[t] = p_values return p_values_list def _compute_residuals(self, X_t): """Compute residuals N(t)""" M_tau = np.zeros((self._T, self._n_lags, self._p, self._p)) N_t = np.zeros((self._T, self._p, self._n)) N_t[:, :, :] = np.nan for t in range(1, self._T): # predictors X_predictors = np.zeros((self._n, self._p * (1 + self._n_lags))) for tau in range(self._n_lags): pos = self._p * tau X_predictors[:, pos : pos + self._p] = X_t[t - (tau + 1)].T # estimate M(t,t-τ) by regression X_target = X_t[t].T for i in range(self._p): reg = LinearRegression() reg.fit(X_predictors, X_target[:, i]) for tau in range(self._n_lags): pos = self._p * tau M_tau[t, tau, i] = reg.coef_[pos : pos + self._p] # Compute N(t) N_t[t] = X_t[t] for tau in range(self._n_lags): N_t[t] = N_t[t] -
np.dot(M_tau[t, tau], X_t[t - (tau + 1)])
numpy.dot
#All code copyright 2014, <NAME>. All rights reserved. import numpy as np def arc_distance(lon0=None, lat0=None, lon1=None, lat1=None, R=1., input_coords='radians'): """ Gets the arc distance between (lon0, lat0) and (lon1, lat1). Either pair can be a pair or an array. R is the radius of the sphere. Uses the formula from the spherical law of cosines. `input_coords` specifies whether the inputs are in radians (default) or degrees. Returns arc distance. """ if input_coords == 'degrees': lon0, lat0 = np.radians(lon0), np.radians(lat0) lon1, lat1 = np.radians(lon1), np.radians(lat1) # spherical law of cosines aa = np.arccos(np.sin(lat0) * np.sin(lat1) +
np.cos(lat0)
numpy.cos
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Utilities for dealing with HEALPix projections and mappings.""" import copy import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.units import Quantity from gammapy.utils.array import is_power2 from ..axes import MapAxes from ..coord import MapCoord, skycoord_to_lonlat from ..geom import Geom, pix_tuple_to_idx from ..utils import INVALID_INDEX, coordsys_to_frame, frame_to_coordsys from .io import HPX_FITS_CONVENTIONS, HpxConv from .utils import ( coords_to_vec, get_nside_from_pix_size, get_pix_size_from_nside, get_subpixels, get_superpixels, match_hpx_pix, nside_to_order, parse_hpxregion, ravel_hpx_index, unravel_hpx_index, ) # Not sure if we should expose this in the docs or not: # HPX_FITS_CONVENTIONS, HpxConv __all__ = ["HpxGeom"] class HpxGeom(Geom): """Geometry class for HEALPIX maps. This class performs mapping between partial-sky indices (pixel number within a HEALPIX region) and all-sky indices (pixel number within an all-sky HEALPIX map). Multi-band HEALPIX geometries use a global indexing scheme that assigns a unique pixel number based on the all-sky index and band index. In the single-band case the global index is the same as the HEALPIX index. By default the constructor will return an all-sky map. Partial-sky maps can be defined with the ``region`` argument. Parameters ---------- nside : `~numpy.ndarray` HEALPIX nside parameter, the total number of pixels is 12*nside*nside. For multi-dimensional maps one can pass either a single nside value or a vector of nside values defining the pixel size for each image plane. If nside is not a scalar then its dimensionality should match that of the non-spatial axes. nest : bool True -> 'NESTED', False -> 'RING' indexing scheme frame : str Coordinate system, "icrs" | "galactic" region : str or tuple Spatial geometry for partial-sky maps. If none the map will encompass the whole sky. String input will be parsed according to HPX_REG header keyword conventions. Tuple input can be used to define an explicit list of pixels encompassed by the geometry. axes : list Axes for non-spatial dimensions. """ is_hpx = True is_region = False def __init__(self, nside, nest=True, frame="icrs", region=None, axes=None): # FIXME: Require NSIDE to be power of two when nest=True self._nside = np.array(nside, ndmin=1) self._axes = MapAxes.from_default(axes, n_spatial_axes=1) if self.nside.size > 1 and self.nside.shape != self.shape_axes: raise ValueError( "Wrong dimensionality for nside. nside must " "be a scalar or have a dimensionality consistent " "with the axes argument." ) self._nest = nest self._frame = frame self._ipix = None self._region = region self._create_lookup(region) self._npix = self._npix * np.ones(self.shape_axes, dtype=int) def _create_lookup(self, region): """Create local-to-global pixel lookup table.""" if isinstance(region, str): ipix = [ self.get_index_list(nside, self._nest, region) for nside in self._nside.flat ] self._ipix = [ ravel_hpx_index((p, i * np.ones_like(p)), np.ravel(self.npix_max)) for i, p in enumerate(ipix) ] self._region = region self._indxschm = "EXPLICIT" self._npix = np.array([len(t) for t in self._ipix]) if self.nside.ndim > 1: self._npix = self._npix.reshape(self.nside.shape) self._ipix = np.concatenate(self._ipix) elif isinstance(region, tuple): region = [np.asarray(t) for t in region] m = np.any(np.stack([t >= 0 for t in region]), axis=0) region = [t[m] for t in region] self._ipix = ravel_hpx_index(region, self.npix_max) self._ipix = np.unique(self._ipix) region = unravel_hpx_index(self._ipix, self.npix_max) self._region = "explicit" self._indxschm = "EXPLICIT" if len(region) == 1: self._npix = np.array([len(region[0])]) else: self._npix = np.zeros(self.shape_axes, dtype=int) idx = np.ravel_multi_index(region[1:], self.shape_axes) cnt = np.unique(idx, return_counts=True) self._npix.flat[cnt[0]] = cnt[1] elif region is None: self._region = None self._indxschm = "IMPLICIT" self._npix = self.npix_max else: raise ValueError(f"Invalid region string: {region!r}") def local_to_global(self, idx_local): """Compute a local index (partial-sky) from a global (all-sky) index. Returns ------- idx_global : tuple A tuple of pixel index vectors with global HEALPIX pixel indices """ if self._ipix is None: return idx_local if self.nside.size > 1: idx = ravel_hpx_index(idx_local, self._npix) else: idx_tmp = tuple( [idx_local[0]] + [np.zeros(t.shape, dtype=int) for t in idx_local[1:]] ) idx = ravel_hpx_index(idx_tmp, self._npix) idx_global = unravel_hpx_index(self._ipix[idx], self.npix_max) return idx_global[:1] + tuple(idx_local[1:]) def global_to_local(self, idx_global, ravel=False): """Compute global (all-sky) index from a local (partial-sky) index. Parameters ---------- idx_global : tuple A tuple of pixel indices with global HEALPix pixel indices. ravel : bool Return a raveled index. Returns ------- idx_local : tuple A tuple of pixel indices with local HEALPIX pixel indices. """ if ( isinstance(idx_global, int) or (isinstance(idx_global, tuple) and isinstance(idx_global[0], int)) or isinstance(idx_global, np.ndarray) ): idx_global = unravel_hpx_index(np.array(idx_global, ndmin=1), self.npix_max) if self.nside.size == 1: idx = np.array(idx_global[0], ndmin=1) else: idx = ravel_hpx_index(idx_global, self.npix_max) if self._ipix is not None: retval = np.full(idx.size, -1, "i") m = np.isin(idx.flat, self._ipix) retval[m] = np.searchsorted(self._ipix, idx.flat[m]) retval = retval.reshape(idx.shape) else: retval = idx if self.nside.size == 1: idx_local = tuple([retval] + list(idx_global[1:])) else: idx_local = unravel_hpx_index(retval, self._npix) m = np.any(np.stack([t == INVALID_INDEX.int for t in idx_local]), axis=0) for i, t in enumerate(idx_local): idx_local[i][m] = INVALID_INDEX.int if not ravel: return idx_local else: return ravel_hpx_index(idx_local, self.npix) def cutout(self, position, width, **kwargs): """Create a cutout around a given position. Parameters ---------- position : `~astropy.coordinates.SkyCoord` Center position of the cutout region. width : `~astropy.coordinates.Angle` or `~astropy.units.Quantity` Diameter of the circular cutout region. Returns ------- cutout : `~gammapy.maps.WcsNDMap` Cutout map """ if not self.is_regular: raise ValueError("Can only do a cutout from a regular map.") width = u.Quantity(width, "deg").value return self.create( nside=self.nside, nest=self.nest, width=width, skydir=position, frame=self.frame, axes=self.axes, ) def coord_to_pix(self, coords): import healpy as hp coords = MapCoord.create( coords, frame=self.frame, axis_names=self.axes.names ).broadcasted theta, phi = coords.theta, coords.phi if self.axes: idxs = self.axes.coord_to_idx(coords, clip=True) bins = self.axes.coord_to_pix(coords) # FIXME: Figure out how to handle coordinates out of # bounds of non-spatial dimensions if self.nside.size > 1: nside = self.nside[tuple(idxs)] else: nside = self.nside m = ~np.isfinite(theta) theta[m] = 0.0 phi[m] = 0.0 pix = hp.ang2pix(nside, theta, phi, nest=self.nest) pix = tuple([pix]) + bins if np.any(m): for p in pix: p[m] = INVALID_INDEX.int else: pix = (hp.ang2pix(self.nside, theta, phi, nest=self.nest),) return pix def pix_to_coord(self, pix): import healpy as hp if self.axes: bins = [] vals = [] for i, ax in enumerate(self.axes): bins += [pix[1 + i]] vals += [ax.pix_to_coord(pix[1 + i])] idxs = pix_tuple_to_idx(bins) if self.nside.size > 1: nside = self.nside[idxs] else: nside = self.nside ipix = np.round(pix[0]).astype(int) m = ipix == INVALID_INDEX.int ipix[m] = 0 theta, phi = hp.pix2ang(nside, ipix, nest=self.nest) coords = [np.degrees(phi), np.degrees(np.pi / 2.0 - theta)] coords = tuple(coords + vals) if np.any(m): for c in coords: c[m] = INVALID_INDEX.float else: ipix = np.round(pix[0]).astype(int) theta, phi = hp.pix2ang(self.nside, ipix, nest=self.nest) coords = (np.degrees(phi), np.degrees(np.pi / 2.0 - theta)) return coords def pix_to_idx(self, pix, clip=False): # FIXME: Look for better method to clip HPX indices # TODO: copy idx to avoid modifying input pix? # pix_tuple_to_idx seems to always make a copy!? idx = pix_tuple_to_idx(pix) idx_local = self.global_to_local(idx) for i, _ in enumerate(idx): if clip: if i > 0: np.clip(idx[i], 0, self.axes[i - 1].nbin - 1, out=idx[i]) else: np.clip(idx[i], 0, None, out=idx[i]) else: if i > 0: mask = (idx[i] < 0) | (idx[i] >= self.axes[i - 1].nbin) np.putmask(idx[i], mask, -1) else: mask = (idx_local[i] < 0) | (idx[i] < 0) np.putmask(idx[i], mask, -1) return tuple(idx) @property def axes(self): """List of non-spatial axes.""" return self._axes @property def axes_names(self): """All axes names""" return ["skycoord"] + self.axes.names @property def shape_axes(self): """Shape of non-spatial axes.""" return self.axes.shape @property def data_shape(self): """Shape of the Numpy data array matching this geometry.""" npix_shape = tuple([np.max(self.npix)]) return (npix_shape + self.axes.shape)[::-1] @property def data_shape_axes(self): """Shape of data of the non-spatial axes and unit spatial axes.""" return self.axes.shape[::-1] + (1,) @property def ndim(self): """Number of dimensions (int).""" return len(self._axes) + 2 @property def ordering(self): """HEALPix ordering ('NESTED' or 'RING').""" return "NESTED" if self.nest else "RING" @property def nside(self): """NSIDE in each band.""" return self._nside @property def order(self): """ORDER in each band (``NSIDE = 2 ** ORDER``). Set to -1 for bands with NSIDE that is not a power of 2. """ return nside_to_order(self.nside) @property def nest(self): """Is HEALPix order nested? (bool).""" return self._nest @property def npix(self): """Number of pixels in each band. For partial-sky geometries this can be less than the number of pixels for the band NSIDE. """ return self._npix @property def npix_max(self): """Max. number of pixels""" maxpix = 12 * self.nside ** 2 return maxpix * np.ones(self.shape_axes, dtype=int) @property def frame(self): return self._frame @property def projection(self): """Map projection.""" return "HPX" @property def region(self): """Region string.""" return self._region @property def is_allsky(self): """Flag for all-sky maps.""" return self._region is None @property def is_regular(self): """Flag identifying whether this geometry is regular in non-spatial dimensions. False for multi-resolution or irregular geometries. If true all image planes have the same pixel geometry. """ if self.nside.size > 1 or self.region == "explicit": return False else: return True @property def center_coord(self): """Map coordinates of the center of the geometry (tuple).""" lon, lat, frame = skycoord_to_lonlat(self.center_skydir) return tuple([lon, lat]) + self.axes.center_coord @property def center_pix(self): """Pixel coordinates of the center of the geometry (tuple).""" return self.coord_to_pix(self.center_coord) @property def center_skydir(self): """Sky coordinate of the center of the geometry. Returns ------- center : `~astropy.coordinates.SkyCoord` Center position """ # TODO: simplify import healpy as hp if self.is_allsky: lon, lat = 0.0, 0.0 elif self.region == "explicit": idx = unravel_hpx_index(self._ipix, self.npix_max) nside = self._get_nside(idx) vec = hp.pix2vec(nside, idx[0], nest=self.nest) vec = np.array([np.mean(t) for t in vec]) lonlat = hp.vec2ang(vec, lonlat=True) lon, lat = lonlat[0], lonlat[1] else: tokens = parse_hpxregion(self.region) if tokens[0] in ["DISK", "DISK_INC"]: lon, lat = float(tokens[1]), float(tokens[2]) elif tokens[0] == "HPX_PIXEL": nside_pix = int(tokens[2]) ipix_pix = int(tokens[3]) if tokens[1] == "NESTED": nest_pix = True elif tokens[1] == "RING": nest_pix = False else: raise ValueError(f"Invalid ordering scheme: {tokens[1]!r}") theta, phi = hp.pix2ang(nside_pix, ipix_pix, nest_pix) lat = np.degrees((np.pi / 2) - theta) lon = np.degrees(phi) return SkyCoord(lon, lat, frame=self.frame, unit="deg") @property def pixel_scales(self): self.angle_ = """Pixel scale. Returns ------- angle: `~astropy.coordinates.Angle` """ return get_pix_size_from_nside(self.nside) * u.deg def interp_weights(self, coords, idxs=None): """Get interpolation weights for given coords Parameters ---------- coords : `MapCoord` or dict Input coordinates idxs : `~numpy.ndarray` Indices for non-spatial axes. Returns ------- weights : `~numpy.ndarray` Interpolation weights """ import healpy as hp coords = MapCoord.create(coords, frame=self.frame).broadcasted if idxs is None: idxs = self.coord_to_idx(coords, clip=True)[1:] theta, phi = coords.theta, coords.phi m = ~np.isfinite(theta) theta[m] = 0 phi[m] = 0 if not self.is_regular: nside = self.nside[tuple(idxs)] else: nside = self.nside pix, wts = hp.get_interp_weights(nside, theta, phi, nest=self.nest) wts[:, m] = 0 pix[:, m] = INVALID_INDEX.int if not self.is_regular: pix_local = [self.global_to_local([pix] + list(idxs))[0]] else: pix_local = [self.global_to_local(pix, ravel=True)] # If a pixel lies outside of the geometry set its index to the center pixel m = pix_local[0] == INVALID_INDEX.int if m.any(): coords_ctr = [coords.lon, coords.lat] coords_ctr += [ax.pix_to_coord(t) for ax, t in zip(self.axes, idxs)] idx_ctr = self.coord_to_idx(coords_ctr) idx_ctr = self.global_to_local(idx_ctr) pix_local[0][m] = (idx_ctr[0] * np.ones(pix.shape, dtype=int))[m] pix_local += [np.broadcast_to(t, pix_local[0].shape) for t in idxs] return pix_local, wts @property def ipix(self): """HEALPIX pixel and band indices for every pixel in the map.""" return self.get_idx() def is_aligned(self, other): """Check if HEALPIx geoms and extra axes are aligned. Parameters ---------- other : `HpxGeom` Other geom. Returns ------- aligned : bool Whether geometries are aligned """ for axis, otheraxis in zip(self.axes, other.axes): if axis != otheraxis: return False if not self.nside == other.nside: return False elif not self.frame == other.frame: return False elif not self.nest == other.nest: return False else: return True def to_nside(self, nside): """Upgrade or downgrade the reoslution to a given nside Parameters ---------- nside : int Nside Returns ------- geom : `~HpxGeom` A HEALPix geometry object. """ if not self.is_regular: raise ValueError("Upgrade and degrade only implemented for standard maps") axes = copy.deepcopy(self.axes) return self.__class__( nside=nside, nest=self.nest, frame=self.frame, region=self.region, axes=axes ) def to_binsz(self, binsz): """Change pixel size of the geometry. Parameters ---------- binsz : float or `~astropy.units.Quantity` New pixel size. A float is assumed to be in degree. Returns ------- geom : `WcsGeom` Geometry with new pixel size. """ binsz = u.Quantity(binsz, "deg").value if self.is_allsky: return self.create( binsz=binsz, frame=self.frame, axes=copy.deepcopy(self.axes), ) else: return self.create( skydir=self.center_skydir, binsz=binsz, width=self.width.to_value("deg"), frame=self.frame, axes=copy.deepcopy(self.axes), ) def separation(self, center): """Compute sky separation wrt a given center. Parameters ---------- center : `~astropy.coordinates.SkyCoord` Center position Returns ------- separation : `~astropy.coordinates.Angle` Separation angle array (1D) """ coord = self.to_image().get_coord() return center.separation(coord.skycoord) def to_swapped(self): """Geometry copy with swapped ORDERING (NEST->RING or vice versa). Returns ------- geom : `~HpxGeom` A HEALPix geometry object. """ axes = copy.deepcopy(self.axes) return self.__class__( self.nside, not self.nest, frame=self.frame, region=self.region, axes=axes, ) def to_image(self): return self.__class__( np.max(self.nside), self.nest, frame=self.frame, region=self.region ) def to_cube(self, axes): axes = copy.deepcopy(self.axes) + axes return self.__class__( np.max(self.nside), self.nest, frame=self.frame, region=self.region, axes=axes, ) def _get_neighbors(self, idx): import healpy as hp nside = self._get_nside(idx) idx_nb = (hp.get_all_neighbours(nside, idx[0], nest=self.nest),) idx_nb += tuple([t[None, ...] * np.ones_like(idx_nb[0]) for t in idx[1:]]) return idx_nb def _pad_spatial(self, pad_width): if self.is_allsky: raise ValueError("Cannot pad an all-sky map.") idx = self.get_idx(flat=True) idx_r = ravel_hpx_index(idx, self.npix_max) # TODO: Pre-filter indices to find those close to the edge idx_nb = self._get_neighbors(idx) idx_nb = ravel_hpx_index(idx_nb, self.npix_max) for _ in range(pad_width): mask_edge = np.isin(idx_nb, idx_r, invert=True) idx_edge = idx_nb[mask_edge] idx_edge = np.unique(idx_edge) idx_r = np.sort(np.concatenate((idx_r, idx_edge))) idx_nb = unravel_hpx_index(idx_edge, self.npix_max) idx_nb = self._get_neighbors(idx_nb) idx_nb = ravel_hpx_index(idx_nb, self.npix_max) idx = unravel_hpx_index(idx_r, self.npix_max) return self.__class__( self.nside.copy(), self.nest, frame=self.frame, region=idx, axes=copy.deepcopy(self.axes), ) def crop(self, crop_width): if self.is_allsky: raise ValueError("Cannot crop an all-sky map.") idx = self.get_idx(flat=True) idx_r = ravel_hpx_index(idx, self.npix_max) # TODO: Pre-filter indices to find those close to the edge idx_nb = self._get_neighbors(idx) idx_nb = ravel_hpx_index(idx_nb, self.npix_max) for _ in range(crop_width): # Mask of pixels that have at least one neighbor not # contained in the geometry mask_edge = np.any(np.isin(idx_nb, idx_r, invert=True), axis=0) idx_r = idx_r[~mask_edge] idx_nb = idx_nb[:, ~mask_edge] idx = unravel_hpx_index(idx_r, self.npix_max) return self.__class__( self.nside.copy(), self.nest, frame=self.frame, region=idx, axes=copy.deepcopy(self.axes), ) def upsample(self, factor): if not is_power2(factor): raise ValueError("Upsample factor must be a power of 2.") if self.is_allsky: return self.__class__( self.nside * factor, self.nest, frame=self.frame, region=self.region, axes=copy.deepcopy(self.axes), ) idx = list(self.get_idx(flat=True)) nside = self._get_nside(idx) idx_new = get_subpixels(idx[0], nside, nside * factor, nest=self.nest) for i in range(1, len(idx)): idx[i] = idx[i][..., None] * np.ones(idx_new.shape, dtype=int) idx[0] = idx_new return self.__class__( self.nside * factor, self.nest, frame=self.frame, region=tuple(idx), axes=copy.deepcopy(self.axes), ) def downsample(self, factor, axis_name=None): if not is_power2(factor): raise ValueError("Downsample factor must be a power of 2.") if axis_name is not None: raise ValueError("Currently the only valid axis name is None.") if self.is_allsky: return self.__class__( self.nside // factor, self.nest, frame=self.frame, region=self.region, axes=copy.deepcopy(self.axes), ) idx = list(self.get_idx(flat=True)) nside = self._get_nside(idx) idx_new = get_superpixels(idx[0], nside, nside // factor, nest=self.nest) idx[0] = idx_new return self.__class__( self.nside // factor, self.nest, frame=self.frame, region=tuple(idx), axes=copy.deepcopy(self.axes), ) @classmethod def create( cls, nside=None, binsz=None, nest=True, frame="icrs", region=None, axes=None, skydir=None, width=None, ): """Create an HpxGeom object. Parameters ---------- nside : int or `~numpy.ndarray` HEALPix NSIDE parameter. This parameter sets the size of the spatial pixels in the map. binsz : float or `~numpy.ndarray` Approximate pixel size in degrees. An NSIDE will be chosen that corresponds to a pixel size closest to this value. This option is superseded by nside. nest : bool True for HEALPIX "NESTED" indexing scheme, False for "RING" scheme frame : {"icrs", "galactic"}, optional Coordinate system, either Galactic ("galactic") or Equatorial ("icrs"). skydir : tuple or `~astropy.coordinates.SkyCoord` Sky position of map center. Can be either a SkyCoord object or a tuple of longitude and latitude in deg in the coordinate system of the map. region : str HPX region string. Allows for partial-sky maps. width : float Diameter of the map in degrees. If set the map will encompass all pixels within a circular region centered on ``skydir``. axes : list List of axes for non-spatial dimensions. Returns ------- geom : `~HpxGeom` A HEALPix geometry object. Examples -------- >>> from gammapy.maps import HpxGeom, MapAxis >>> axis = MapAxis.from_bounds(0,1,2) >>> geom = HpxGeom.create(nside=16) >>> geom = HpxGeom.create(binsz=0.1, width=10.0) >>> geom = HpxGeom.create(nside=64, width=10.0, axes=[axis]) >>> geom = HpxGeom.create(nside=[32,64], width=10.0, axes=[axis]) """ if nside is None and binsz is None: raise ValueError("Either nside or binsz must be defined.") if nside is None and binsz is not None: nside = get_nside_from_pix_size(binsz) if skydir is None: lon, lat = (0.0, 0.0) elif isinstance(skydir, tuple): lon, lat = skydir elif isinstance(skydir, SkyCoord): lon, lat, frame = skycoord_to_lonlat(skydir, frame=frame) else: raise ValueError(f"Invalid type for skydir: {type(skydir)!r}") if region is None and width is not None: region = f"DISK({lon},{lat},{width/2})" return cls(nside, nest=nest, frame=frame, region=region, axes=axes) @classmethod def from_header(cls, header, hdu_bands=None, format=None): """Create an HPX object from a FITS header. Parameters ---------- header : `~astropy.io.fits.Header` The FITS header hdu_bands : `~astropy.io.fits.BinTableHDU` The BANDS table HDU. format : str, optional FITS convention. If None the format is guessed. The following formats are supported: - "gadf" - "fgst-ccube" - "fgst-ltcube" - "fgst-bexpcube" - "fgst-srcmap" - "fgst-template" - "fgst-srcmap-sparse" - "galprop" - "galprop2" - "healpy" Returns ------- hpx : `~HpxGeom` HEALPix geometry. """ if format is None: format = HpxConv.identify_hpx_format(header) conv = HPX_FITS_CONVENTIONS[format] axes = MapAxes.from_table_hdu(hdu_bands, format=format) if header["PIXTYPE"] != "HEALPIX": raise ValueError( f"Invalid header PIXTYPE: {header['PIXTYPE']} (must be HEALPIX)" ) if header["ORDERING"] == "RING": nest = False elif header["ORDERING"] == "NESTED": nest = True else: raise ValueError( f"Invalid header ORDERING: {header['ORDERING']} (must be RING or NESTED)" ) if hdu_bands is not None and "NSIDE" in hdu_bands.columns.names: nside = hdu_bands.data.field("NSIDE").reshape(axes.shape).astype(int) elif "NSIDE" in header: nside = header["NSIDE"] elif "ORDER" in header: nside = 2 ** header["ORDER"] else: raise ValueError("Failed to extract NSIDE or ORDER.") try: frame = coordsys_to_frame(header[conv.frame]) except KeyError: frame = header.get("COORDSYS", "icrs") try: region = header["HPX_REG"] except KeyError: try: region = header["HPXREGION"] except KeyError: region = None return cls(nside, nest, frame=frame, region=region, axes=axes) @classmethod def from_hdu(cls, hdu, hdu_bands=None): """Create an HPX object from a BinTable HDU. Parameters ---------- hdu : `~astropy.io.fits.BinTableHDU` The FITS HDU hdu_bands : `~astropy.io.fits.BinTableHDU` The BANDS table HDU Returns ------- hpx : `~HpxGeom` HEALPix geometry. """ # FIXME: Need correct handling of IMPLICIT and EXPLICIT maps # if HPX region is not defined then geometry is defined by # the set of all pixels in the table if "HPX_REG" not in hdu.header: pix = (hdu.data.field("PIX"), hdu.data.field("CHANNEL")) else: pix = None return cls.from_header(hdu.header, hdu_bands=hdu_bands, pix=pix) def to_header(self, format="gadf", **kwargs): """Build and return FITS header for this HEALPIX map.""" header = fits.Header() format = kwargs.get("format", HPX_FITS_CONVENTIONS[format]) # FIXME: For some sparse maps we may want to allow EXPLICIT # with an empty region string indxschm = kwargs.get("indxschm", None) if indxschm is None: if self._region is None: indxschm = "IMPLICIT" elif self.is_regular == 1: indxschm = "EXPLICIT" else: indxschm = "LOCAL" if "FGST" in format.convname.upper(): header["TELESCOP"] = "GLAST" header["INSTRUME"] = "LAT" header[format.frame] = frame_to_coordsys(self.frame) header["PIXTYPE"] = "HEALPIX" header["ORDERING"] = self.ordering header["INDXSCHM"] = indxschm header["ORDER"] = np.max(self.order) header["NSIDE"] =
np.max(self.nside)
numpy.max
""" FluctuatingBackground.py Author: <NAME> Affiliation: UCLA Created on: Mon Oct 10 14:29:54 PDT 2016 Description: """ import numpy as np from math import factorial from ..physics import Cosmology from ..util import ParameterFile from ..util.Stats import bin_c2e from scipy.special import erfinv from scipy.optimize import fsolve from scipy.interpolate import interp1d from scipy.integrate import quad, simps from ..physics.Hydrogen import Hydrogen from ..physics.HaloModel import HaloModel from ..util.Math import LinearNDInterpolator from ..populations.Composite import CompositePopulation from ..physics.CrossSections import PhotoIonizationCrossSection from ..physics.Constants import g_per_msun, cm_per_mpc, dnu, s_per_yr, c, \ s_per_myr, erg_per_ev, k_B, m_p, dnu, g_per_msun root2 = np.sqrt(2.) four_pi = 4. * np.pi class Fluctuations(object): # pragma: no cover def __init__(self, grid=None, **kwargs): """ Initialize a FluctuatingBackground object. Creates an object capable of modeling fields that fluctuate spatially. """ self._kwargs = kwargs.copy() self.pf = ParameterFile(**kwargs) # Some useful physics modules if grid is not None: self.grid = grid self.cosm = grid.cosm else: self.grid = None self.cosm = Cosmology() self._done = {} @property def zeta(self): if not hasattr(self, '_zeta'): raise AttributeError('Must set zeta by hand!') return self._zeta @zeta.setter def zeta(self, value): self._zeta = value @property def zeta_X(self): if not hasattr(self, '_zeta_X'): raise AttributeError('Must set zeta_X by hand!') return self._zeta_X @zeta_X.setter def zeta_X(self, value): self._zeta_X = value @property def hydr(self): if not hasattr(self, '_hydr'): if self.grid is None: self._hydr = Hydrogen(**self.pf) else: self._hydr = self.grid.hydr return self._hydr @property def xset(self): if not hasattr(self, '_xset'): xset_pars = \ { 'xset_window': 'tophat-real', 'xset_barrier': 'constant', 'xset_pdf': 'gaussian', } xset = ares.physics.ExcursionSet(**xset_pars) xset.tab_M = pop.halos.tab_M xset.tab_sigma = pop.halos.tab_sigma xset.tab_ps = pop.halos.tab_ps_lin xset.tab_z = pop.halos.tab_z xset.tab_k = pop.halos.tab_k_lin xset.tab_growth = pop.halos.tab_growth self._xset = xset return self._xset def _overlap_region(self, dr, R1, R2): """ Volume of intersection between two spheres of radii R1 < R2. """ Vo = np.pi * (R2 + R1 - dr)**2 \ * (dr**2 + 2. * dr * R1 - 3. * R1**2 \ + 2. * dr * R2 + 6. * R1 * R2 - 3. * R2**2) / 12. / dr if type(Vo) == np.ndarray: # Small-scale vs. large Scale SS = dr <= R2 - R1 LS = dr >= R1 + R2 Vo[LS == 1] = 0.0 if type(R1) == np.ndarray: Vo[SS == 1] = 4. * np.pi * R1[SS == 1]**3 / 3. else: Vo[SS == 1] = 4. * np.pi * R1**3 / 3. return Vo def IV(self, dr, R1, R2): """ Just a vectorized version of the overlap calculation. """ return self._overlap_region(dr, R1, R2) def intersectional_volumes(self, dr, R1, R2, R3): IV = self.IV V11 = IV(dr, R1, R1) zeros = np.zeros_like(V11) if np.all(R2 == 0): return V11, zeros, zeros, zeros, zeros, zeros V12 = IV(dr, R1, R2) V22 = IV(dr, R2, R2) if np.all(R3 == 0): return V11, V12, V22, zeros, zeros, zeros V13 = IV(dr, R1, R3) V23 = IV(dr, R2, R3) V33 = IV(dr, R3, R3) return V11, V12, V22, V13, V23, V33 def overlap_volumes(self, dr, R1, R2): """ Overlap volumes, i.e., volumes in which a source affects two points in different ways. For example, V11 is the volume in which a source ionizes both points (at separation `dr`), V12 is the volume in which a source ionizes one point and heats the other, and so on. In this order: V11, V12, V13, V22, V23, V33 """ IV = self.IV V1 = 4. * np.pi * R1**3 / 3. if self.pf['ps_temp_model'] == 1: V2 = 4. * np.pi * (R2**3 - R1**3) / 3. else: V2 = 4. * np.pi * R2**3 / 3. Vt = 4. * np.pi * R2**3 / 3. V11 = IV(dr, R1, R1) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: V12 = V1 else: V12 = 2 * IV(dr, R1, R2) - IV(dr, R1, R1) V22 = IV(dr, R2, R2) if self.pf['ps_temp_model'] == 1: V22 += -2. * IV(dr, R1, R2) + IV(dr, R1, R1) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 1: V1n = V1 - IV(dr, R1, R2) elif self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: V1n = V1 else: V1n = V1 - V11 V2n = V2 - IV(dr, R2, R2) if self.pf['ps_temp_model'] == 1: V2n += IV(dr, R1, R2) # 'anything' to one point, 'nothing' to other. # Without temperature fluctuations, same as V1n if self.pf['ps_include_temp']: Van = Vt - IV(dr, R2, R2) else: Van = V1n return V11, V12, V22, V1n, V2n, Van def exclusion_volumes(self, dr, R1, R2, R3): """ Volume in which a single source only affects one """ pass @property def heating_ongoing(self): if not hasattr(self, '_heating_ongoing'): self._heating_ongoing = True return self._heating_ongoing @heating_ongoing.setter def heating_ongoing(self, value): self._heating_ongoing = value def BubbleShellFillingFactor(self, z, R_s=None): """ """ # Hard exit. if not self.pf['ps_include_temp']: return 0.0 Qi = self.MeanIonizedFraction(z) if self.pf['ps_temp_model'] == 1: R_i, M_b, dndm_b = self.BubbleSizeDistribution(z) if Qi == 1: return 0.0 if type(R_s) is np.ndarray: nz = R_i > 0 const_rsize = np.allclose(np.diff(R_s[nz==1] / R_i[nz==1]), 0.0) if const_rsize: fvol = (R_s[0] / R_i[0])**3 - 1. Qh = Qi * fvol else: V = 4. * np.pi * (R_s**3 - R_i**3) / 3. Mmin = self.Mmin(z) * self.zeta Qh = self.get_prob(z, M_b, dndm_b, Mmin, V, exp=False, ep=0.0, Mmax=None) #raise NotImplemented("No support for absolute scaling of hot bubbles yet.") if (Qh > (1. - Qi) * 1.): #or Qh > 0.5: #or Qi > 0.5: self.heating_ongoing = 0 Qh = np.minimum(Qh, 1. - Qi) return Qh else: # This will get called if temperature fluctuations are off return 0.0 elif self.pf['ps_temp_model'] == 2: Mmin = self.Mmin(z) * self.zeta_X R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=False) V = 4. * np.pi * R_i**3 / 3. Qh = self.get_prob(z, M_b, dndm_b, Mmin, V, exp=False, ep=0.0, Mmax=None) #Qh = self.BubbleFillingFactor(z, ion=False) #print('Qh', Qh) return np.minimum(Qh, 1. - Qi) else: raise NotImplemented('Uncrecognized option for BSD.') #return min(Qh, 1.), min(Qc, 1.) @property def bsd_model(self): return self.pf['bubble_size_dist'].lower() def MeanIonizedFraction(self, z, ion=True): Mmin = self.Mmin(z) logM = np.log10(Mmin) if ion: if not self.pf['ps_include_ion']: return 0.0 zeta = self.zeta return np.minimum(1.0, zeta * self.halos.fcoll_2d(z, logM)) else: if not self.pf['ps_include_temp']: return 0.0 zeta = self.zeta_X # Assume that each heated region contains the same volume # of fully-ionized material. Qi = self.MeanIonizedFraction(z, ion=True) Qh = zeta * self.halos.fcoll_2d(z, logM) - Qi return np.minimum(1.0 - Qi, Qh) def delta_shell(self, z): """ Relative density != relative over-density. """ if not self.pf['ps_include_temp']: return 0.0 if self.pf['ps_temp_model'] == 2: return self.delta_bubble_vol_weighted(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) rdens = self.pf["bubble_shell_rdens_zone_0"] return rdens * (1. + delta_i_bar) - 1. def BulkDensity(self, z, R_s): Qi = self.MeanIonizedFraction(z) #Qh = self.BubbleShellFillingFactor(z, R_s) Qh = self.MeanIonizedFraction(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) delta_h_bar = self.delta_shell(z) if self.pf['ps_igm_model'] == 2: delta_hal_bar = self.mean_halo_overdensity(z) Qhal = self.Qhal(z, Mmax=self.Mmin(z)) else: Qhal = 0.0 delta_hal_bar = 0.0 return -(delta_i_bar * Qi + delta_h_bar * Qh + delta_hal_bar * Qhal) \ / (1. - Qi - Qh - Qhal) def BubbleFillingFactor(self, z, ion=True, rescale=True): """ Fraction of volume filled by bubbles. This is never actually used, but for reference, the mean ionized fraction would be 1 - exp(-this). What we actually do is re-normalize the bubble size distribution to guarantee Q = zeta * fcoll. See MeanIonizedFraction and BubbleSizeDistribution for more details. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if self.bsd_model is None: R_i = self.pf['bubble_size'] V_i = 4. * np.pi * R_i**3 / 3. ni = self.BubbleDensity(z) Qi = 1. - np.exp(-ni * V_i) elif self.bsd_model in ['fzh04', 'hmf']: # Smallest bubble is one around smallest halo. # Don't actually need its mass, just need index to correctly # truncate integral. Mmin = self.Mmin(z) * zeta # M_b should just be self.m? No. R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion, rescale=rescale) V_i = 4. * np.pi * R_i**3 / 3. iM = np.argmin(np.abs(Mmin - M_b)) Qi = np.trapz(dndm_b[iM:] * M_b[iM:] * V_i[iM:], x=np.log(M_b[iM:])) # This means reionization is over. if self.bsd_model == 'fzh04': if self._B0(z, zeta) <= 0: return 1. else: raise NotImplemented('Uncrecognized option for BSD.') return min(Qi, 1.) # Grab heated phase to enforce BC #Rs = self.BubbleShellRadius(z, R_i) #Vsh = 4. * np.pi * (Rs - R_i)**3 / 3. #Qh = np.trapz(dndm * Vsh * M_b, x=np.log(M_b)) #if lya and self.pf['bubble_pod_size_func'] in [None, 'const', 'linear']: # Rc = self.BubblePodRadius(z, R_i, zeta, zeta_lya) # Vc = 4. * np.pi * (Rc - R_i)**3 / 3. # # if self.pf['powspec_rescale_Qlya']: # # This isn't actually correct since we care about fluxes # # not number of photons, but fine for now. # Qc = min(zeta_lya * self.halos.fcoll_2d(z, np.log10(self.Mmin(z))), 1) # else: # Qc = np.trapz(dndlnm[iM:] * Vc[iM:], x=np.log(M_b[iM:])) # # return min(Qc, 1.) # #elif lya and self.pf['bubble_pod_size_func'] == 'fzh04': # return self.BubbleFillingFactor(z, zeta_lya, None, lya=False) #else: @property def tab_Mmin(self): if not hasattr(self, '_tab_Mmin'): raise AttributeError('Must set Mmin by hand (right now)') return self._tab_Mmin @tab_Mmin.setter def tab_Mmin(self, value): if type(value) is not np.ndarray: value = np.ones_like(self.halos.tab_z) * value else: assert value.size == self.halos.tab_z.size self._tab_Mmin = value def Mmin(self, z): return np.interp(z, self.halos.tab_z, self.tab_Mmin) def mean_halo_bias(self, z): bias = self.halos.Bias(z) M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) dndm_h = self.halos.tab_dndm[iz_h] return 1.0 #return simps(M_h * dndm_h * bias, x=np.log(M_h)) \ # / simps(M_h * dndm_h, x=np.log(M_h)) def tab_bubble_bias(self, zeta): if not hasattr(self, '_tab_bubble_bias'): func = lambda z: self._fzh04_eq22(z, zeta) self._tab_bubble_bias = np.array(map(func, self.halos.tab_z_ps)) return self._tab_bubble_bias def _fzh04_eq22(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma S = s**2 #return 1. + ((self.LinearBarrier(z, zeta, zeta) / S - (1. / self._B0(z, zeta))) \ # / self._growth_factor(z)) return 1. + (self._B0(z, zeta)**2 / S / self._B(z, zeta, zeta)) def bubble_bias(self, z, ion=True): """ Eq. 9.24 in Loeb & Furlanetto (2013) or Eq. 22 in FZH04. """ return self._fzh04_eq22(z, ion) #iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) # #x, y = self.halos.tab_z_ps, self.tab_bubble_bias(zeta)[iz] # # # #m = (y[-1] - y[-2]) / (x[-1] - x[-2]) # #return m * z + y[-1] #iz = np.argmin(np.abs(z - self.halos.tab_z)) #s = self.sigma #S = s**2 # ##return 1. + ((self.LinearBarrier(z, zeta, zeta) / S - (1. / self._B0(z, zeta))) \ ## / self._growth_factor(z)) # #fzh04 = 1. + (self._B0(z, zeta)**2 / S / self._B(z, zeta, zeta)) # #return fzh04 def mean_bubble_bias(self, z, ion=True): """ """ R, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion) #if ('h' in term) or ('c' in term) and self.pf['powspec_temp_method'] == 'shell': # R_s, Rc = self.BubbleShellRadius(z, R_i) # R = R_s #else: if ion: zeta = self.zeta else: zeta = self.zeta_X V = 4. * np.pi * R**3 / 3. Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(Mmin - self.m)) bHII = self.bubble_bias(z, ion) #tmp = dndm[iM:] #print(z, len(tmp[np.isnan(tmp)]), len(bHII[np.isnan(bHII)])) #imax = int(min(np.argwhere(np.isnan(R_i)))) if ion and self.pf['ps_include_ion']: Qi = self.MeanIonizedFraction(z) elif ion and not self.pf['ps_include_ion']: raise NotImplemented('help') elif (not ion) and self.pf['ps_include_temp']: Qi = self.MeanIonizedFraction(z, ion=False) elif ion and self.pf['ps_include_temp']: Qi = self.MeanIonizedFraction(z, ion=False) else: raise NotImplemented('help') return np.trapz(dndm_b[iM:] * V[iM:] * bHII[iM:] * M_b[iM:], x=np.log(M_b[iM:])) / Qi #def delta_bubble_mass_weighted(self, z, zeta): # if self._B0(z, zeta) <= 0: # return 0. # # R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, zeta) # V_i = 4. * np.pi * R_i**3 / 3. # # Mmin = self.Mmin(z) * zeta # iM = np.argmin(np.abs(Mmin - self.m)) # B = self._B(z, zeta) # rho0 = self.cosm.mean_density0 # # dm_ddel = rho0 * V_i # # return simps(B[iM:] * dndm_b[iM:] * M_b[iM:], x=np.log(M_b[iM:])) def delta_bubble_vol_weighted(self, z, ion=True): if not self.pf['ps_include_ion']: return 0.0 if not self.pf['ps_include_xcorr_ion_rho']: return 0.0 if ion: zeta = self.zeta else: zeta = self.zeta_X if self._B0(z, zeta) <= 0: return 0. R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion) V_i = 4. * np.pi * R_i**3 / 3. Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(Mmin - self.m)) B = self._B(z, ion=ion) return np.trapz(B[iM:] * dndm_b[iM:] * V_i[iM:] * M_b[iM:], x=np.log(M_b[iM:])) #def mean_bubble_overdensity(self, z, zeta): # if self._B0(z, zeta) <= 0: # return 0. # # R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, zeta) # V_i = 4. * np.pi * R_i**3 / 3. # # Mmin = self.Mmin(z) * zeta # iM = np.argmin(np.abs(Mmin - self.m)) # B = self._B(z, zeta) # rho0 = self.cosm.mean_density0 # # dm_ddel = rho0 * V_i # # return simps(B[iM:] * dndm_b[iM:] * M_b[iM:], x=np.log(M_b[iM:])) def mean_halo_abundance(self, z, Mmin=False): M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) if Mmin: iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) else: iM_h = 0 dndm_h = self.halos.tab_dndm[iz_h] return np.trapz(M_h * dndm_h, x=np.log(M_h)) def spline_cf_mm(self, z): if not hasattr(self, '_spline_cf_mm_'): self._spline_cf_mm_ = {} if z not in self._spline_cf_mm_: iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) self._spline_cf_mm_[z] = interp1d(np.log(self.halos.tab_R), self.halos.tab_cf_mm[iz], kind='cubic', bounds_error=False, fill_value=0.0) return self._spline_cf_mm_[z] def excess_probability(self, z, R, ion=True): """ This is the excess probability that a point is ionized given that we already know another point (at distance r) is ionized. """ # Function of bubble mass (bubble size) bHII = self.bubble_bias(z, ion) bbar = self.mean_bubble_bias(z, ion) if R < self.halos.tab_R.min(): print("R too small") if R > self.halos.tab_R.max(): print("R too big") xi_dd = self.spline_cf_mm(z)(np.log(R)) #if term == 'ii': return bHII * bbar * xi_dd #elif term == 'id': # return bHII * bbar * xi_dd #else: # raise NotImplemented('help!') def _K(self, zeta): return erfinv(1. - (1. / zeta)) def _growth_factor(self, z): return np.interp(z, self.halos.tab_z, self.halos.tab_growth, left=np.inf, right=np.inf) def _delta_c(self, z): return self.cosm.delta_c0 / self._growth_factor(z) def _B0(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma # Variance on scale of smallest collapsed object sigma_min = self.sigma_min(z) return self._delta_c(z) - root2 * self._K(zeta) * sigma_min def _B1(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma #* self.halos.growth_factor[iz] sigma_min = self.sigma_min(z) return self._K(zeta) / np.sqrt(2. * sigma_min**2) def _B(self, z, ion=True, zeta_min=None): return self.LinearBarrier(z, ion, zeta_min=zeta_min) def LinearBarrier(self, z, ion=True, zeta_min=None): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma #/ self.halos.growth_factor[iz] if zeta_min is None: zeta_min = zeta return self._B0(z, ion) + self._B1(z, ion) * s**2 def Barrier(self, z, ion=True, zeta_min=None): """ Full barrier. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if zeta_min is None: zeta_min = zeta #iz = np.argmin(np.abs(z - self.halos.tab_z)) #D = self.halos.growth_factor[iz] sigma_min = self.sigma_min(z) #Mmin = self.Mmin(z) #sigma_min = np.interp(Mmin, self.halos.M, self.halos.sigma_0) delta = self._delta_c(z) return delta - np.sqrt(2.) * self._K(zeta) \ *
np.sqrt(sigma_min**2 - self.sigma**2)
numpy.sqrt
# This script is used to produce fitting and confidence interval for results in python. # #%% import numpy as np from scipy.optimize import curve_fit from scipy.stats.distributions import t #%% from numpy import cos, sin, exp, pi, meshgrid def KentFunc(Xin, theta, phi, psi, kappa, beta, A): # Assume theta_z, phi_z are column vectors ([0,2 pi]), theta, phi, psi are # rotational scaler ([0,2 pi]) theta_z, phi_z = Xin[:, 0], Xin[:, 1] Z = np.array([cos(theta_z) * cos(phi_z), sin(theta_z) * cos(phi_z), sin(phi_z)]).T # M by 3 finally coord = SO3(theta, phi, psi) mu1 = coord[:, 0:1] # col vector # mu23 = coord[:, 1:3] # 2 col vectors, 3 by 2 mu2 = coord[:, 1:2] # 2 col vectors, 3 by 2 mu3 = coord[:, 2:3] # 2 col vectors, 3 by 2 fval = A * exp(kappa * Z @ mu1 + beta * ((Z @ mu2) ** 2 - (Z @ mu3) ** 2)) return fval[:, 0] def KentFunc_bsl(Xin, theta, phi, psi, kappa, beta, A, bsl): # Assume theta_z, phi_z are column vectors ([0,2 pi]), theta, phi, psi are # rotational scaler ([0,2 pi]) theta_z, phi_z = Xin[:, 0], Xin[:, 1] Z = np.array([cos(theta_z) * cos(phi_z), sin(theta_z) * cos(phi_z), sin(phi_z)]).T # M by 3 finally coord = SO3(theta, phi, psi) mu1 = coord[:, 0:1] # col vector # mu23 = coord[:, 1:3] # 2 col vectors, 3 by 2 mu2 = coord[:, 1:2] # 2 col vectors, 3 by 2 mu3 = coord[:, 2:3] # 2 col vectors, 3 by 2 fval = A * exp(kappa * Z @ mu1 + beta * ((Z @ mu2) ** 2 - (Z @ mu3) ** 2)) + bsl return fval[:, 0] def SO3(theta, phi, psi): orig = np.array([[cos(theta)*cos(phi), sin(theta)*cos(phi), sin(phi)], [-sin(theta) , cos(theta) , 0], [cos(theta)*sin(phi), sin(theta)*sin(phi), -cos(phi)]]).T Rot23 = np.array([[1, 0, 0], [0, cos(psi), sin(psi)], [0, -sin(psi), cos(psi)]]) coord = orig @ Rot23 return coord #%% def fit_Kent(theta_arr, phi_arr, act_map): phi_grid, theta_grid = meshgrid(phi_arr, theta_arr) Xin = np.array([theta_grid.flatten(), phi_grid.flatten()]).T fval = act_map.flatten() try: # avoid fitting failure to crash the whole thing. param, pcov = curve_fit(KentFunc, Xin, fval, p0=[0, 0, pi / 2, 0.1, 0.1, 0.1], bounds=([-pi, -pi / 2, 0, 0, 0, 0], [pi, pi / 2, pi, np.inf, np.inf, np.inf])) sigmas = np.diag(pcov) ** 0.5 return param, sigmas except RuntimeError as err: print(type(err)) print(err) return np.ones(6)*np.nan, np.ones(6)*np.nan def fit_Kent_bsl(theta_arr, phi_arr, act_map): phi_grid, theta_grid = meshgrid(phi_arr, theta_arr) Xin = np.array([theta_grid.flatten(), phi_grid.flatten()]).T fval = act_map.flatten() try: # avoid fitting failure to crash the whole thing. param, pcov = curve_fit(KentFunc_bsl, Xin, fval, p0=[0, 0, pi / 2, 0.1, 0.1, 0.1, 0.001], bounds=([-pi, -pi / 2, 0, 0, 0, 0, 0], [pi, pi / 2, pi, np.inf, np.inf, np.inf, np.inf])) sigmas = np.diag(pcov) ** 0.5 return param, sigmas except RuntimeError as err: print(type(err)) print(err) return np.ones(7)*np.nan, np.ones(7)*np.nan #% def fit_stats(act_map, param, func=KentFunc): """Generate fitting statistics from scipy's curve fitting""" phi_grid, theta_grid = meshgrid(phi_arr, theta_arr) Xin = np.array([theta_grid.flatten(), phi_grid.flatten()]).T fval = act_map.flatten() fpred = func(Xin, *param) # KentFunc res = fval - fpred rsquare = 1 - (res**2).mean() / fval.var() return res.reshape(act_map.shape), rsquare #%% Testing the fitting functionalilty ang_step = 18 theta_arr = np.arange(-90, 90.1, ang_step) / 180 * pi phi_arr = np.arange(-90, 90.1, ang_step) / 180 * pi phi_grid, theta_grid = meshgrid(phi_arr, theta_arr) Xin = np.array([theta_grid.flatten(), phi_grid.flatten()]).T fval = KentFunc(Xin, *[0, 0, pi/2, 0.1, 0.1, 1]) param, pcov = curve_fit(KentFunc, Xin, fval, p0=[-1, 1, pi/2, 0.1, 0.1, 0.2]) # Note python fitting will treat each data point as separate. He cannot estimate CI like matlab. fval = KentFunc_bsl(Xin, *[0, 0, pi/2, 0.1, 0.1, 1, 5]) param, pcov = curve_fit(KentFunc_bsl, Xin, fval, p0=[-1, 1, pi/2, 0.1, 0.1, 0.2,0.001]) #%% fval = KentFunc_bsl(Xin, *[0, 0, pi/2, 0.1, 0.1, 1, 5]) #%% Testing the fitting functionalilty under noise ang_step = 18 theta_arr = np.arange(-90, 90.1, ang_step) / 180 * pi phi_arr = np.arange(-90, 90.1, ang_step) / 180 * pi phi_grid, theta_grid = meshgrid(phi_arr, theta_arr) Xin = np.array([theta_grid.flatten(), phi_grid.flatten()]).T fval = KentFunc(Xin, *[1, 0, pi/2, 0.1, 0.1, 0.1]) + np.random.randn(Xin.shape[0]) * 0.01 param, pcov = curve_fit(KentFunc, Xin, fval, p0=[0, 0, pi/2, 0.1, 0.1, 0.1], bounds=([-pi, -pi/2, 0, -np.inf, 0, 0], [ pi, pi/2, pi, np.inf, np.inf, np.inf])) print(param) print(pcov) #%% Using lmfit package import numpy as np import lmfit # trying out another package. x = np.linspace(0.3, 10, 100)
np.random.seed(0)
numpy.random.seed
# -*- coding: utf-8 -*- """ Created on Thu Apr 16 20:52:06 2020 @author: Nicolai """ from ITestbenchBase import ITestbenchBase import numpy as np import scipy.integrate as integrate import time import psutil import gc class CiPdeBase(ITestbenchBase): """ Abstract class that implements the ITestbenchBase interface. It further provides functionality that is used by the CI solver. Attributes ---------- opt_algo: IOptAlgoBase implementation of an IOptAlgoBase for any optimisation algorithm kernel: IKernelBase KernelGauss or any other implementation of the IKernelBase pop_history: list population at every iteration during the optimisation fit_history: list fitness value at every iteration during the optimisation cr_history: list crossover probability at every iteration f_history: list scalar factor at every iteration _nb: list list of evaluation point (tupels) on the boundary _nc: list list of inner evaluation points stored as tupels _weight_reference: float denominator of weighting factor stored to only compute once _lx: float lower x value at of the domain _ux: float upper x limit of the domain _xi: list weighting factor for inner collocation points _phi: list weighting factor for boundary point Methods ------- pde_string(): string getter for returning the _pde_string that holds a short description of the problem exec_time(): float getter for returning the execution time taken for solving the probem mem_consumption(): int getter for returning the memory consumption of the solver exact(x): flaot takes a numpy array, returns the function value of the exact solution approx(x): float takes a numpy array,returns the function value of the approximate solution normL2(): float returns the distance between the exact and the approximate solution solve(): None not implemented, must be overridden by the child class that is specific to a pde nc_weight(xi): float calculates the weighting factor for one specific xi from nc fitness_func(kernels): float objective function passed to the optimisation algorithm, not implemented, must be overridden by the child class that is specific to a pde _ly(x): float lower y boundary of the domain _uy(x): float upper y boundary of the domain """ def __init__(self, opt_algo, kernel, nb, nc): self.opt_algo = opt_algo self.kernel = kernel self._pde_string = "" self._exec_time = 0.0 self._mem_consumption = 0 self.pop_history = [] self.fit_history = [] self.cr_history = [] self.f_history = [] self.sol_kernel = np.array([]) self._nc = nc self._nb = nb # inner weightin factor reference term temp_denominator = [] for xk in nc: temp_xk_xj = [] for xj in nb: temp_xk_xj.append(np.linalg.norm(np.array([xk[0], xk[1]])-np.array([xj[0], xj[1]]))) temp_denominator.append(min(temp_xk_xj)) self._weight_reference = max(temp_denominator) self._xi = [] self._phi = [] self._kappa = 0 self._lx = None self._ux = None self._ly = None self._uy = None @property def pde_string(self): return self._pde_string @property def exec_time(self): return self._exec_time @property def mem_consumption(self): return self._mem_consumption def exact(self, x): pass def approx(self, x): try: return self.kernel.solution(self.sol_kernel, x) except ValueError: print("self.sol_kernel is empty, try to call solve() first") def normL2(self): difference_func = lambda x,y: \ (self.approx(np.array([x,y])) - self.exact(np.array([x,y]))) * \ (self.approx(np.array([x,y])) - self.exact(np.array([x,y]))) return np.sqrt(integrate.dblquad(difference_func, self._lx, self._ux, self._ly, self._uy)[0]) def fitness_func(self, kernels): pass def nc_weight(self, xi): temp_xi_xj = [] for xj in self._nb: temp_xi_xj.append(np.linalg.norm(np.array([xi[0], xi[1]])-
np.array([xj[0], xj[1]])
numpy.array
# Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: BSD 3 clause from __future__ import division from itertools import chain, combinations import warnings from itertools import combinations_with_replacement as combinations_w_r from distutils.version import LooseVersion import numpy as np from scipy import sparse from scipy import stats from scipy import optimize from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six import string_types from ..utils import check_array from ..utils.extmath import row_norms from ..utils.extmath import _incremental_mean_and_var from ..utils.fixes import boxcox, nanpercentile, nanmedian from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, incr_mean_variance_axis, min_max_axis) from ..utils.validation import (check_is_fitted, check_random_state, FLOAT_DTYPES) from ._encoders import OneHotEncoder BOUNDS_THRESHOLD = 1e-7 zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'QuantileTransformer', 'PowerTransformer', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'quantile_transform', 'power_transform', ] def _handle_zeros_in_scale(scale, copy=True): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == .0: scale = 1. return scale elif isinstance(scale, np.ndarray): if copy: # New array to avoid side-effects scale = scale.copy() scale[scale == 0.0] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : {array-like, sparse matrix} The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSC matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSC matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSC matrix. NaNs are treated as missing values: disregarded to compute the statistics, and maintained during the data transformation. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. See also -------- StandardScaler: Performs scaling to unit variance using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ # noqa X = check_array(X, accept_sparse='csc', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if with_std: _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var, copy=False) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) if with_mean: mean_ = np.nanmean(X, axis) if with_std: scale_ = np.nanstd(X, axis) # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = np.nanmean(Xr, axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: scale_ = _handle_zeros_in_scale(scale_, copy=False) Xr /= scale_ if with_mean: mean_2 = np.nanmean(Xr, axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # scale_ is very small so that mean_2 = mean_1/scale_ > 0, even # if mean_1 was close to zero. The problem is thus essentially # due to the lack of precision of mean_. A solution is then to # subtract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range : tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. data_min_ : ndarray, shape (n_features,) Per feature minimum seen in the data .. versionadded:: 0.17 *data_min_* data_max_ : ndarray, shape (n_features,) Per feature maximum seen in the data .. versionadded:: 0.17 *data_max_* data_range_ : ndarray, shape (n_features,) Per feature range ``(data_max_ - data_min_)`` seen in the data .. versionadded:: 0.17 *data_range_* Examples -------- >>> from sklearn.preprocessing import MinMaxScaler >>> >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] >>> scaler = MinMaxScaler() >>> print(scaler.fit(data)) MinMaxScaler(copy=True, feature_range=(0, 1)) >>> print(scaler.data_max_) [ 1. 18.] >>> print(scaler.transform(data)) [[0. 0. ] [0.25 0.25] [0.5 0.5 ] [1. 1. ]] >>> print(scaler.transform([[2, 2]])) [[1.5 0. ]] See also -------- minmax_scale: Equivalent function without the estimator API. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.min_ del self.n_samples_seen_ del self.data_min_ del self.data_max_ del self.data_range_ def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of min and max on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) if sparse.issparse(X): raise TypeError("MinMaxScaler does no support sparse input. " "You may consider to use MaxAbsScaler instead.") X = check_array(X, copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES, force_all_finite="allow-nan") data_min = np.nanmin(X, axis=0) data_max = np.nanmax(X, axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next steps else: data_min = np.minimum(self.data_min_, data_min) data_max = np.maximum(self.data_max_, data_max) self.n_samples_seen_ += X.shape[0] data_range = data_max - data_min self.scale_ = ((feature_range[1] - feature_range[0]) / _handle_zeros_in_scale(data_range)) self.min_ = feature_range[0] - data_min * self.scale_ self.data_min_ = data_min self.data_max_ = data_max self.data_range_ = data_range return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES, force_all_finite="allow-nan") X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. It cannot be sparse. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES, force_all_finite="allow-nan") X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. .. versionadded:: 0.17 *minmax_scale* function interface to :class:`sklearn.preprocessing.MinMaxScaler`. Parameters ---------- X : array-like, shape (n_samples, n_features) The data. feature_range : tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). See also -------- MinMaxScaler: Performs scaling to a given range using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). Notes ----- For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. X = check_array(X, copy=False, ensure_2d=False, warn_on_dtype=True, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual features do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. This scaler can also be applied to sparse CSR or CSC matrices by passing `with_mean=False` to avoid breaking the sparsity structure of the data. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). Attributes ---------- scale_ : ndarray or None, shape (n_features,) Per feature relative scaling of the data. Equal to ``None`` when ``with_std=False``. .. versionadded:: 0.17 *scale_* mean_ : ndarray or None, shape (n_features,) The mean value for each feature in the training set. Equal to ``None`` when ``with_mean=False``. var_ : ndarray or None, shape (n_features,) The variance for each feature in the training set. Used to compute `scale_`. Equal to ``None`` when ``with_std=False``. n_samples_seen_ : int or array, shape (n_features,) The number of samples processed by the estimator for each feature. If there are not missing samples, the ``n_samples_seen`` will be an integer, otherwise it will be an array. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. Examples -------- >>> from sklearn.preprocessing import StandardScaler >>> data = [[0, 0], [0, 0], [1, 1], [1, 1]] >>> scaler = StandardScaler() >>> print(scaler.fit(data)) StandardScaler(copy=True, with_mean=True, with_std=True) >>> print(scaler.mean_) [0.5 0.5] >>> print(scaler.transform(data)) [[-1. -1.] [-1. -1.] [ 1. 1.] [ 1. 1.]] >>> print(scaler.transform([[2, 2]])) [[3. 3.]] See also -------- scale: Equivalent function without the estimator API. :class:`sklearn.decomposition.PCA` Further removes the linear correlation across features with 'whiten=True'. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.mean_ del self.var_ def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, <NAME>., <NAME>, and <NAME>. "Algorithms for computing the sample variance: Analysis and recommendations." The American Statistician 37.3 (1983): 242-247: Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') # Even in the case of `with_mean=False`, we update the mean anyway # This is needed for the incremental computation of the var # See incr_mean_variance_axis and _incremental_mean_variance_axis # if n_samples_seen_ is an integer (i.e. no missing values), we need to # transform it to a NumPy array of shape (n_features,) required by # incr_mean_variance_axis and _incremental_variance_axis if (hasattr(self, 'n_samples_seen_') and isinstance(self.n_samples_seen_, (int, np.integer))): self.n_samples_seen_ = np.repeat(self.n_samples_seen_, X.shape[1]).astype(np.int64) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") sparse_constructor = (sparse.csr_matrix if X.format == 'csr' else sparse.csc_matrix) counts_nan = sparse_constructor( (np.isnan(X.data), X.indices, X.indptr), shape=X.shape).sum(axis=0).A.ravel() if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = (X.shape[0] - counts_nan).astype(np.int64) if self.with_std: # First pass if not hasattr(self, 'scale_'): self.mean_, self.var_ = mean_variance_axis(X, axis=0) # Next passes else: self.mean_, self.var_, self.n_samples_seen_ = \ incr_mean_variance_axis(X, axis=0, last_mean=self.mean_, last_var=self.var_, last_n=self.n_samples_seen_) else: self.mean_ = None self.var_ = None if hasattr(self, 'scale_'): self.n_samples_seen_ += X.shape[0] - counts_nan else: if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = np.zeros(X.shape[1], dtype=np.int64) # First pass if not hasattr(self, 'scale_'): self.mean_ = .0 if self.with_std: self.var_ = .0 else: self.var_ = None if not self.with_mean and not self.with_std: self.mean_ = None self.var_ = None self.n_samples_seen_ += X.shape[0] - np.isnan(X).sum(axis=0) else: self.mean_, self.var_, self.n_samples_seen_ = \ _incremental_mean_and_var(X, self.mean_, self.var_, self.n_samples_seen_) # for backward-compatibility, reduce n_samples_seen_ to an integer # if the number of samples is the same for each feature (i.e. no # missing values) if np.ptp(self.n_samples_seen_) == 0: self.n_samples_seen_ = self.n_samples_seen_[0] if self.with_std: self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_)) else: self.scale_ = None return self def transform(self, X, y='deprecated', copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool, optional (default: None) Copy the input X or not. """ if not isinstance(y, string_types) or y != 'deprecated': warnings.warn("The parameter y on transform() is " "deprecated since 0.19 and will be removed in 0.21", DeprecationWarning) check_is_fitted(self, 'scale_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.scale_ is not None: inplace_column_scale(X, 1 / self.scale_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.scale_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. copy : bool, optional (default: None) Copy the input X or not. Returns ------- X_tr : array-like, shape [n_samples, n_features] Transformed array. """ check_is_fitted(self, 'scale_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.scale_ is not None: inplace_column_scale(X, self.scale_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.scale_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. .. versionadded:: 0.17 Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. max_abs_ : ndarray, shape (n_features,) Per feature maximum absolute value. n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. Examples -------- >>> from sklearn.preprocessing import MaxAbsScaler >>> X = [[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]] >>> transformer = MaxAbsScaler().fit(X) >>> transformer MaxAbsScaler(copy=True) >>> transformer.transform(X) array([[ 0.5, -1. , 1. ], [ 1. , 0. , 0. ], [ 0. , 1. , -0.5]]) See also -------- maxabs_scale: Equivalent function without the estimator API. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, copy=True): self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.max_abs_ def fit(self, X, y=None): """Compute the maximum absolute value to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of max absolute value of X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0, ignore_nan=True) max_abs = np.maximum(np.abs(mins), np.abs(maxs)) else: max_abs = np.nanmax(np.abs(X), axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next passes else: max_abs = np.maximum(self.max_abs_, max_abs) self.n_samples_seen_ += X.shape[0] self.max_abs_ = max_abs self.scale_ = _handle_zeros_in_scale(max_abs) return self def transform(self, X): """Scale the data Parameters ---------- X : {array-like, sparse matrix} The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : {array-like, sparse matrix} The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- X : array-like, shape (n_samples, n_features) The data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). See also -------- MaxAbsScaler: Performs scaling to the [-1, 1] range using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). Notes ----- NaNs are treated as missing values: disregarded to compute the statistics, and maintained during the data transformation. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. X = check_array(X, accept_sparse=('csr', 'csc'), copy=False, ensure_2d=False, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MaxAbsScaler(copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the ``transform`` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. .. versionadded:: 0.17 Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This will cause ``transform`` to raise an exception when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0 Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR Quantile range used to calculate ``scale_``. .. versionadded:: 0.18 copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. .. versionadded:: 0.17 *scale_* attribute. Examples -------- >>> from sklearn.preprocessing import RobustScaler >>> X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] >>> transformer = RobustScaler().fit(X) >>> transformer RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True, with_scaling=True) >>> transformer.transform(X) array([[ 0. , -2. , 0. ], [-1. , 0. , 0.4], [ 1. , 0. , -1.6]]) See also -------- robust_scale: Equivalent function without the estimator API. :class:`sklearn.decomposition.PCA` Further removes the linear correlation across features with 'whiten=True'. Notes ----- For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. https://en.wikipedia.org/wiki/Median https://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.quantile_range = quantile_range self.copy = copy def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ # at fit, convert sparse matrices to csc for optimized computation of # the quantiles X = check_array(X, accept_sparse='csc', copy=self.copy, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') q_min, q_max = self.quantile_range if not 0 <= q_min <= q_max <= 100: raise ValueError("Invalid quantile range: %s" % str(self.quantile_range)) if self.with_centering: if sparse.issparse(X): raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") self.center_ = nanmedian(X, axis=0) else: self.center_ = None if self.with_scaling: quantiles = [] for feature_idx in range(X.shape[1]): if sparse.issparse(X): column_nnz_data = X.data[X.indptr[feature_idx]: X.indptr[feature_idx + 1]] column_data = np.zeros(shape=X.shape[0], dtype=X.dtype) column_data[:len(column_nnz_data)] = column_nnz_data else: column_data = X[:, feature_idx] quantiles.append(nanpercentile(column_data, self.quantile_range)) quantiles = np.transpose(quantiles) self.scale_ = quantiles[1] - quantiles[0] self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False) else: self.scale_ = None return self def transform(self, X): """Center and scale the data. Parameters ---------- X : {array-like, sparse matrix} The data used to scale along the specified axis. """ check_is_fitted(self, 'center_', 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like The data used to scale along the specified axis. """ check_is_fitted(self, 'center_', 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0 Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR Quantile range used to calculate ``scale_``. .. versionadded:: 0.18 copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. See also -------- RobustScaler: Performs centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=False, ensure_2d=False, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, quantile_range=quantile_range, copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0., 0., 1.], [ 1., 2., 3., 4., 6., 9.], [ 1., 4., 5., 16., 20., 25.]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0.], [ 1., 2., 3., 6.], [ 1., 4., 5., 20.]]) Attributes ---------- powers_ : array, shape (n_output_features, n_input_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def get_feature_names(self, input_features=None): """ Return feature names for output features Parameters ---------- input_features : list of string, length n_features, optional String names for input features if available. By default, "x0", "x1", ... "xn_features" is used. Returns ------- output_feature_names : list of string, length n_output_features """ powers = self.powers_ if input_features is None: input_features = ['x%d' % i for i in range(powers.shape[1])] feature_names = [] for row in powers: inds = np.where(row)[0] if len(inds): name = " ".join("%s^%d" % (input_features[ind], exp) if exp != 1 else input_features[ind] for ind, exp in zip(inds, row[inds])) else: name = "1" feature_names.append(name) return feature_names def fit(self, X, y=None): """ Compute number of output features. Parameters ---------- X : array-like, shape (n_samples, n_features) The data. Returns ------- self : instance """ n_samples, n_features = check_array(X, accept_sparse=True).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X): """Transform data to polynomial features Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] The data to transform, row by row. Sparse input should preferably be in CSC format. Returns ------- XP : np.ndarray or CSC sparse matrix, shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X, dtype=FLOAT_DTYPES, accept_sparse='csc') n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) if sparse.isspmatrix(X): columns = [] for comb in combinations: if comb: out_col = 1 for col_idx in comb: out_col = X[:, col_idx].multiply(out_col) columns.append(out_col) else: columns.append(sparse.csc_matrix(np.ones((X.shape[0], 1)))) XP = sparse.hstack(columns, dtype=X.dtype).tocsc() else: XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) for i, comb in enumerate(combinations): XP[:, i] = X[:, comb].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True, return_norm=False): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). return_norm : boolean, default False whether to return the computed norms Returns ------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Normalized input X. norms : array, shape [n_samples] if axis=1 else [n_features] An array of norms along given axis for X. When X is sparse, a NotImplementedError will be raised for norm 'l1' or 'l2'. See also -------- Normalizer: Performs normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). Notes ----- For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if return_norm and norm in ('l1', 'l2'): raise NotImplementedError("return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'") if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms_elementwise = norms.repeat(np.diff(X.indptr)) mask = norms_elementwise != 0 X.data[mask] /= norms_elementwise[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X /= norms[:, np.newaxis] if axis == 0: X = X.T if return_norm: return X, norms else: return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Examples -------- >>> from sklearn.preprocessing import Normalizer >>> X = [[4, 1, 2, 2], ... [1, 3, 9, 3], ... [5, 7, 5, 1]] >>> transformer = Normalizer().fit(X) # fit does nothing. >>> transformer Normalizer(copy=True, norm='l2') >>> transformer.transform(X) array([[0.8, 0.2, 0.4, 0.4], [0.1, 0.3, 0.9, 0.3], [0.5, 0.7, 0.5, 0.1]]) Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. See also -------- normalize: Equivalent function without the estimator API. """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. Parameters ---------- X : array-like """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y='deprecated', copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool, optional (default: None) Copy the input X or not. """ if not isinstance(y, string_types) or y != 'deprecated': warnings.warn("The parameter y on transform() is " "deprecated since 0.19 and will be removed in 0.21", DeprecationWarning) copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- Binarizer: Performs binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Examples -------- >>> from sklearn.preprocessing import Binarizer >>> X = [[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]] >>> transformer = Binarizer().fit(X) # fit does nothing. >>> transformer Binarizer(copy=True, threshold=0.0) >>> transformer.transform(X) array([[1., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- binarize: Equivalent function without the estimator API. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. Parameters ---------- X : array-like """ check_array(X, accept_sparse='csr') return self def transform(self, X, y='deprecated', copy=None): """Binarize each element of X Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : bool Copy the input X or not. """ if not isinstance(y, string_types) or y != 'deprecated': warnings.warn("The parameter y on transform() is " "deprecated since 0.19 and will be removed in 0.21", DeprecationWarning) copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. Examples -------- >>> from sklearn.preprocessing import KernelCenterer >>> from sklearn.metrics.pairwise import pairwise_kernels >>> X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] >>> K = pairwise_kernels(X, metric='linear') >>> K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]]) >>> transformer = KernelCenterer().fit(K) >>> transformer KernelCenterer() >>> transformer.transform(K) array([[ 5., 0., -5.], [ 0., 14., -14.], [ -5., -14., 19.]]) """ def __init__(self): # Needed for backported inspect.signature compatibility with PyPy pass def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K, dtype=FLOAT_DTYPES) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y='deprecated', copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. y : (ignored) .. deprecated:: 0.19 This parameter will be removed in 0.21. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ if not isinstance(y, string_types) or y != 'deprecated': warnings.warn("The parameter y on transform() is " "deprecated since 0.19 and will be removed in 0.21", DeprecationWarning) check_is_fitted(self, 'K_fit_all_') K = check_array(K, copy=copy, dtype=FLOAT_DTYPES) K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K @property def _pairwise(self): return True def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : {array, sparse matrix}, shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[1., 0., 1.], [1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], dtype=FLOAT_DTYPES) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.full(n_samples, value), X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.full(n_samples, value), X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.full((n_samples, 1), value), X)) class QuantileTransformer(BaseEstimator, TransformerMixin): """Transform features using quantiles information. This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature, this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers: this is therefore a robust preprocessing scheme. The transformation is applied on each feature independently. The cumulative density function of a feature is used to project the original values. Features values of new/unseen data that fall below or above the fitted range will be mapped to the bounds of the output distribution. Note that this transform is non-linear. It may distort linear correlations between variables measured at the same scale but renders variables measured at different scales more directly comparable. Read more in the :ref:`User Guide <preprocessing_transformer>`. Parameters ---------- n_quantiles : int, optional (default=1000) Number of quantiles to be computed. It corresponds to the number of landmarks used to discretize the cumulative density function. output_distribution : str, optional (default='uniform') Marginal distribution for the transformed data. The choices are 'uniform' (default) or 'normal'. ignore_implicit_zeros : bool, optional (default=False) Only applies to sparse matrices. If True, the sparse entries of the matrix are discarded to compute the quantile statistics. If False, these entries are treated as zeros. subsample : int, optional (default=1e5) Maximum number of samples used to estimate the quantiles for computational efficiency. Note that the subsampling procedure may differ for value-identical sparse and dense matrices. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Note that this is used by subsampling and smoothing noise. copy : boolean, optional, (default=True) Set to False to perform inplace transformation and avoid a copy (if the input is already a numpy array). Attributes ---------- quantiles_ : ndarray, shape (n_quantiles, n_features) The values corresponding the quantiles of reference. references_ : ndarray, shape(n_quantiles, ) Quantiles of references. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import QuantileTransformer >>> rng = np.random.RandomState(0) >>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0) >>> qt = QuantileTransformer(n_quantiles=10, random_state=0) >>> qt.fit_transform(X) # doctest: +ELLIPSIS array([...]) See also -------- quantile_transform : Equivalent function without the estimator API. PowerTransformer : Perform mapping to a normal distribution using a power transform. StandardScaler : Perform standardization that is faster, but less robust to outliers. RobustScaler : Perform robust standardization that removes the influence of outliers but does not put outliers and inliers on the same scale. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, n_quantiles=1000, output_distribution='uniform', ignore_implicit_zeros=False, subsample=int(1e5), random_state=None, copy=True): self.n_quantiles = n_quantiles self.output_distribution = output_distribution self.ignore_implicit_zeros = ignore_implicit_zeros self.subsample = subsample self.random_state = random_state self.copy = copy def _dense_fit(self, X, random_state): """Compute percentiles for dense matrices. Parameters ---------- X : ndarray, shape (n_samples, n_features) The data used to scale along the features axis. """ if self.ignore_implicit_zeros: warnings.warn("'ignore_implicit_zeros' takes effect only with" " sparse matrix. This parameter has no effect.") n_samples, n_features = X.shape references = self.references_ * 100 # numpy < 1.9 bug: np.percentile 2nd argument needs to be a list if LooseVersion(np.__version__) < '1.9': references = references.tolist() self.quantiles_ = [] for col in X.T: if self.subsample < n_samples: subsample_idx = random_state.choice(n_samples, size=self.subsample, replace=False) col = col.take(subsample_idx, mode='clip') self.quantiles_.append(nanpercentile(col, references)) self.quantiles_ = np.transpose(self.quantiles_) def _sparse_fit(self, X, random_state): """Compute percentiles for sparse matrices. Parameters ---------- X : sparse matrix CSC, shape (n_samples, n_features) The data used to scale along the features axis. The sparse matrix needs to be nonnegative. """ n_samples, n_features = X.shape references = self.references_ * 100 # numpy < 1.9 bug: np.percentile 2nd argument needs to be a list if LooseVersion(np.__version__) < '1.9': references = references.tolist() self.quantiles_ = [] for feature_idx in range(n_features): column_nnz_data = X.data[X.indptr[feature_idx]: X.indptr[feature_idx + 1]] if len(column_nnz_data) > self.subsample: column_subsample = (self.subsample * len(column_nnz_data) // n_samples) if self.ignore_implicit_zeros: column_data = np.zeros(shape=column_subsample, dtype=X.dtype) else: column_data = np.zeros(shape=self.subsample, dtype=X.dtype) column_data[:column_subsample] = random_state.choice( column_nnz_data, size=column_subsample, replace=False) else: if self.ignore_implicit_zeros: column_data = np.zeros(shape=len(column_nnz_data), dtype=X.dtype) else: column_data = np.zeros(shape=n_samples, dtype=X.dtype) column_data[:len(column_nnz_data)] = column_nnz_data if not column_data.size: # if no nnz, an error will be raised for computing the # quantiles. Force the quantiles to be zeros. self.quantiles_.append([0] * len(references)) else: self.quantiles_.append(nanpercentile(column_data, references)) self.quantiles_ = np.transpose(self.quantiles_) def fit(self, X, y=None): """Compute the quantiles used for transforming. Parameters ---------- X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. Returns ------- self : object """ if self.n_quantiles <= 0: raise ValueError("Invalid value for 'n_quantiles': %d. " "The number of quantiles must be at least one." % self.n_quantiles) if self.subsample <= 0: raise ValueError("Invalid value for 'subsample': %d. " "The number of subsamples must be at least one." % self.subsample) if self.n_quantiles > self.subsample: raise ValueError("The number of quantiles cannot be greater than" " the number of samples used. Got {} quantiles" " and {} samples.".format(self.n_quantiles, self.subsample)) X = self._check_inputs(X) rng = check_random_state(self.random_state) # Create the quantiles of reference self.references_ = np.linspace(0, 1, self.n_quantiles, endpoint=True) if sparse.issparse(X): self._sparse_fit(X, rng) else: self._dense_fit(X, rng) return self def _transform_col(self, X_col, quantiles, inverse): """Private function to transform a single feature""" if self.output_distribution == 'normal': output_distribution = 'norm' else: output_distribution = self.output_distribution output_distribution = getattr(stats, output_distribution) if not inverse: lower_bound_x = quantiles[0] upper_bound_x = quantiles[-1] lower_bound_y = 0 upper_bound_y = 1 else: lower_bound_x = 0 upper_bound_x = 1 lower_bound_y = quantiles[0] upper_bound_y = quantiles[-1] # for inverse transform, match a uniform PDF with np.errstate(invalid='ignore'): # hide NaN comparison warnings X_col = output_distribution.cdf(X_col) # find index for lower and higher bounds with np.errstate(invalid='ignore'): # hide NaN comparison warnings lower_bounds_idx = (X_col - BOUNDS_THRESHOLD < lower_bound_x) upper_bounds_idx = (X_col + BOUNDS_THRESHOLD > upper_bound_x) isfinite_mask = ~np.isnan(X_col) X_col_finite = X_col[isfinite_mask] if not inverse: # Interpolate in one direction and in the other and take the # mean. This is in case of repeated values in the features # and hence repeated quantiles # # If we don't do this, only one extreme of the duplicated is # used (the upper when we do ascending, and the # lower for descending). We take the mean of these two X_col[isfinite_mask] = .5 * ( np.interp(X_col_finite, quantiles, self.references_) - np.interp(-X_col_finite, -quantiles[::-1], -self.references_[::-1])) else: X_col[isfinite_mask] = np.interp(X_col_finite, self.references_, quantiles) X_col[upper_bounds_idx] = upper_bound_y X_col[lower_bounds_idx] = lower_bound_y # for forward transform, match the output PDF if not inverse: with np.errstate(invalid='ignore'): # hide NaN comparison warnings X_col = output_distribution.ppf(X_col) # find the value to clip the data to avoid mapping to # infinity. Clip such that the inverse transform will be # consistent clip_min = output_distribution.ppf(BOUNDS_THRESHOLD - np.spacing(1)) clip_max = output_distribution.ppf(1 - (BOUNDS_THRESHOLD - np.spacing(1))) X_col = np.clip(X_col, clip_min, clip_max) return X_col def _check_inputs(self, X, accept_sparse_negative=False): """Check inputs before fit and transform""" X = check_array(X, accept_sparse='csc', copy=self.copy, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') # we only accept positive sparse matrix when ignore_implicit_zeros is # false and that we call fit or transform. with np.errstate(invalid='ignore'): # hide NaN comparison warnings if (not accept_sparse_negative and not self.ignore_implicit_zeros and (sparse.issparse(X) and np.any(X.data < 0))): raise ValueError('QuantileTransformer only accepts' ' non-negative sparse matrices.') # check the output PDF if self.output_distribution not in ('normal', 'uniform'): raise ValueError("'output_distribution' has to be either 'normal'" " or 'uniform'. Got '{}' instead.".format( self.output_distribution)) return X def _check_is_fitted(self, X): """Check the inputs before transforming""" check_is_fitted(self, 'quantiles_') # check that the dimension of X are adequate with the fitted data if X.shape[1] != self.quantiles_.shape[1]: raise ValueError('X does not have the same number of features as' ' the previously fitted data. Got {} instead of' ' {}.'.format(X.shape[1], self.quantiles_.shape[1])) def _transform(self, X, inverse=False): """Forward and inverse transform. Parameters ---------- X : ndarray, shape (n_samples, n_features) The data used to scale along the features axis. inverse : bool, optional (default=False) If False, apply forward transform. If True, apply inverse transform. Returns ------- X : ndarray, shape (n_samples, n_features) Projected data """ if sparse.issparse(X): for feature_idx in range(X.shape[1]): column_slice = slice(X.indptr[feature_idx], X.indptr[feature_idx + 1]) X.data[column_slice] = self._transform_col( X.data[column_slice], self.quantiles_[:, feature_idx], inverse) else: for feature_idx in range(X.shape[1]): X[:, feature_idx] = self._transform_col( X[:, feature_idx], self.quantiles_[:, feature_idx], inverse) return X def transform(self, X): """Feature-wise transformation of the data. Parameters ---------- X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. Returns ------- Xt : ndarray or sparse matrix, shape (n_samples, n_features) The projected data. """ X = self._check_inputs(X) self._check_is_fitted(X) return self._transform(X, inverse=False) def inverse_transform(self, X): """Back-projection to the original space. Parameters ---------- X : ndarray or sparse matrix, shape (n_samples, n_features) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. Returns ------- Xt : ndarray or sparse matrix, shape (n_samples, n_features) The projected data. """ X = self._check_inputs(X, accept_sparse_negative=True) self._check_is_fitted(X) return self._transform(X, inverse=True) def quantile_transform(X, axis=0, n_quantiles=1000, output_distribution='uniform', ignore_implicit_zeros=False, subsample=int(1e5), random_state=None, copy=False): """Transform features using quantiles information. This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature, this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers: this is therefore a robust preprocessing scheme. The transformation is applied on each feature independently. The cumulative density function of a feature is used to project the original values. Features values of new/unseen data that fall below or above the fitted range will be mapped to the bounds of the output distribution. Note that this transform is non-linear. It may distort linear correlations between variables measured at the same scale but renders variables measured at different scales more directly comparable. Read more in the :ref:`User Guide <preprocessing_transformer>`. Parameters ---------- X : array-like, sparse matrix The data to transform. axis : int, (default=0) Axis used to compute the means and standard deviations along. If 0, transform each feature, otherwise (if 1) transform each sample. n_quantiles : int, optional (default=1000) Number of quantiles to be computed. It corresponds to the number of landmarks used to discretize the cumulative density function. output_distribution : str, optional (default='uniform') Marginal distribution for the transformed data. The choices are 'uniform' (default) or 'normal'. ignore_implicit_zeros : bool, optional (default=False) Only applies to sparse matrices. If True, the sparse entries of the matrix are discarded to compute the quantile statistics. If False, these entries are treated as zeros. subsample : int, optional (default=1e5) Maximum number of samples used to estimate the quantiles for computational efficiency. Note that the subsampling procedure may differ for value-identical sparse and dense matrices. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Note that this is used by subsampling and smoothing noise. copy : boolean, optional, (default=True) Set to False to perform inplace transformation and avoid a copy (if the input is already a numpy array). Attributes ---------- quantiles_ : ndarray, shape (n_quantiles, n_features) The values corresponding the quantiles of reference. references_ : ndarray, shape(n_quantiles, ) Quantiles of references. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import quantile_transform >>> rng = np.random.RandomState(0) >>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0) >>> quantile_transform(X, n_quantiles=10, random_state=0) ... # doctest: +ELLIPSIS array([...]) See also -------- QuantileTransformer : Performs quantile-based scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). power_transform : Maps data to a normal distribution using a power transformation. scale : Performs standardization that is faster, but less robust to outliers. robust_scale : Performs robust standardization that removes the influence of outliers but does not put outliers and inliers on the same scale. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ n = QuantileTransformer(n_quantiles=n_quantiles, output_distribution=output_distribution, subsample=subsample, ignore_implicit_zeros=ignore_implicit_zeros, random_state=random_state, copy=copy) if axis == 0: return n.fit_transform(X) elif axis == 1: return n.fit_transform(X.T).T else: raise ValueError("axis should be either equal to 0 or 1. Got" " axis={}".format(axis)) class PowerTransformer(BaseEstimator, TransformerMixin): """Apply a power transform featurewise to make data more Gaussian-like. Power transforms are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired. Currently, PowerTransformer supports the Box-Cox transform and the Yeo-Johson transform. The optimal parameter for stabilizing variance and minimizing skewness is estimated through maximum likelihood. Box-Cox requires input data to be strictly positive, while Yeo-Johnson supports both positive or negative data. By default, zero-mean, unit-variance normalization is applied to the transformed data. Read more in the :ref:`User Guide <preprocessing_transformer>`. Parameters ---------- method : str, (default='yeo-johnson') The power transform method. Available methods are: - 'yeo-johnson' [1]_, works with positive and negative values - 'box-cox' [2]_, only works with strictly positive values standardize : boolean, default=True Set to True to apply zero-mean, unit-variance normalization to the transformed output. copy : boolean, optional, default=True Set to False to perform inplace computation during transformation. Attributes ---------- lambdas_ : array of float, shape (n_features,) The parameters of the power transformation for the selected features. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import PowerTransformer >>> pt = PowerTransformer() >>> data = [[1, 2], [3, 2], [4, 5]] >>> print(pt.fit(data)) PowerTransformer(copy=True, method='yeo-johnson', standardize=True) >>> print(pt.lambdas_) [1.38668178e+00 5.93926346e-09] >>> print(pt.transform(data)) [[-1.31616039 -0.70710678] [ 0.20998268 -0.70710678] [ 1.1061777 1.41421356]] See also -------- power_transform : Equivalent function without the estimator API. QuantileTransformer : Maps data to a standard normal distribution with the parameter `output_distribution='normal'`. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. References ---------- .. [1] <NAME> and <NAME>, "A new family of power transformations to improve normality or symmetry." Biometrika, 87(4), pp.954-959, (2000). .. [2] <NAME> and <NAME>, "An Analysis of Transformations", Journal of the Royal Statistical Society B, 26, 211-252 (1964). """ def __init__(self, method='yeo-johnson', standardize=True, copy=True): self.method = method self.standardize = standardize self.copy = copy def fit(self, X, y=None): """Estimate the optimal parameter lambda for each feature. The optimal lambda parameter for minimizing skewness is estimated on each feature independently using maximum likelihood. Parameters ---------- X : array-like, shape (n_samples, n_features) The data used to estimate the optimal transformation parameters. y : Ignored Returns ------- self : object """ self._fit(X, y=y, force_transform=False) return self def fit_transform(self, X, y=None): return self._fit(X, y, force_transform=True) def _fit(self, X, y=None, force_transform=False): X = self._check_input(X, check_positive=True, check_method=True) if not self.copy and not force_transform: # if call from fit() X = X.copy() # force copy so that fit does not change X inplace optim_function = {'box-cox': self._box_cox_optimize, 'yeo-johnson': self._yeo_johnson_optimize }[self.method] self.lambdas_ = [] for col in X.T: with
np.errstate(invalid='ignore')
numpy.errstate
import numpy as np from taps.models.models import Model class MullerBrown(Model): """ Muller Brown Potential .. math:: \\begin{equation} V\\left(x,y\\right) = \\sum_{\\mu=1}^{4}{A_\\mu e^{a_\\mu \\left(x-x_\\mu^0\\right)^2 + b_\\mu \\left(x-x_\\mu^0\\right) \\left(y-y_\\mu^0\\right) + c_\\mu\\left(y-y_\\mu^0\\right)^2}} \\end{equation} * Initial position = (-0.55822365, 1.44172582) * Final position = (0.6234994, 0.02803776) Parameters ---------- A = np.array([-200, -100, -170, 15]) a = np.array([-1, -1, -6.5, 0.7]) b = np.array([0, 0, 11, 0.6]) c = np.array([-10, -10, -6.5, 0.7]) x0 = np.array([1, 0, -0.5, -1]) y0 = np.array([0, 0.5, 1.5, 1]) potential_unit = 'unitless' Example ------- >>> import numpy as np >>> N = 300 >>> x = np.linspace(-0.55822365, 0.6234994, N) >>> y = np.linspace(1.44172582, 0.02803776, N) >>> paths.coords = np.array([x, y]) """ implemented_properties = {'potential', 'gradients', 'hessian'} A = np.array([-200, -100, -170, 15]) / 100 a = np.array([-1, -1, -6.5, 0.7]) b = np.array([0, 0, 11, 0.6]) c = np.array([-10, -10, -6.5, 0.7]) x0 = np.array([1, 0, -0.5, -1]) y0 = np.array([0, 0.5, 1.5, 1]) potential_unit = 'unitless' def calculate(self, paths, coords, properties=['potential'], **kwargs): """ x : N shape array y : N shape array return D x N """ if not isinstance(coords, np.ndarray): coords = coords.coords if len(coords.shape) == 1: coords = coords[:, np.newaxis] x, y = coords A, a, b, c, x0, y0 = self.A, self.a, self.b, self.c, self.x0, self.y0 x_x0 = (x[:, np.newaxis] - x0) # N x 4 y_y0 = (y[:, np.newaxis] - y0) # N x 4 Vk = A *
np.exp(a * x_x0 ** 2 + b * x_x0 * y_y0 + c * y_y0 ** 2)
numpy.exp